Science.gov

Sample records for broad band photon

  1. Broad-band optical parametric gain on a silicon photonic chip

    NASA Astrophysics Data System (ADS)

    Foster, Mark A.; Turner, Amy C.; Sharping, Jay E.; Schmidt, Bradley S.; Lipson, Michal; Gaeta, Alexander L.

    2006-06-01

    Developing an optical amplifier on silicon is essential for the success of silicon-on-insulator (SOI) photonic integrated circuits. Recently, optical gain with a 1-nm bandwidth was demonstrated using the Raman effect, which led to the demonstration of a Raman oscillator, lossless optical modulation and optically tunable slow light. A key strength of optical communications is the parallelism of information transfer and processing onto multiple wavelength channels. However, the relatively narrow Raman gain bandwidth only allows for amplification or generation of a single wavelength channel. If broad gain bandwidths were to be demonstrated on silicon, then an array of wavelength channels could be generated and processed, representing a critical advance for densely integrated photonic circuits. Here we demonstrate net on/off gain over a wavelength range of 28nm through the optical process of phase-matched four-wave mixing in suitably designed SOI channel waveguides. We also demonstrate wavelength conversion in the range 1,511-1,591nm with peak conversion efficiencies of +5.2dB, which represents more than 20 times improvement on previous four-wave-mixing efficiencies in SOI waveguides. These advances allow for the implementation of dense wavelength division multiplexing in an all-silicon photonic integrated circuit. Additionally, all-optical delays, all-optical switches, optical signal regenerators and optical sources for quantum information technology, all demonstrated using four-wave mixing in silica fibres, can now be transferred to the SOI platform.

  2. Broad-band, RF-photonic antennas: System and integrated devices

    NASA Astrophysics Data System (ADS)

    Xu, Ligeng

    1997-07-01

    We analyze an optically controlled microwave phased array antenna system whereby beam forming is accomplished with a large number of antenna elements that can receive any of several different true-time-delays from a single fiber using multi-channel optical heterodyne techniques. The system performance such as the signal-to-noise ratio, signal-to-interchannel interference ratio, and dynamic range (DR) for various modulation-demodulation schemes (i.e., AM, FM and PM) are quantitatively analyzed. An experimental system insensitive to laser linewidth and IF frequency instabilities is demonstrated for the first time. We demonstrate accurate true-time delay across the L band (from 0.8 to 1.5 GHz). The DR for one channel is 52 dB/MHz. For a narrow channel spacing of 1 A at 1.55 μm wavelength, the interchannel interference is <- 50dB. It is found that this system provides improved controllability over direct detection methods, and can meet the stringent requirements of modern high resolution microwave antenna systems. Monolithic photonic integration using vertical twin- waveguide (TG) structure based on a single-step MBE grown InP/InGaAsP material is also studied as a means for practically implementing large scale photonic systems such as the above system. Specifically, integration of a MQW laser with a passive waveguide is demonstrated in this material with a record high 45% light coupling. An InGaAs loss layer is introduced for the first time to ensure a constant laser feedback and output coupling by eliminating even mode propagation, while having little effect on the odd mode. Finally, we have investigated means to obtain high efficiency, high power semiconductor lasers for use in high DR, and high density RF-optical links, employing a 1.5 μm wavelength InGaAsP/InP separate confinement multi-quantum well structure with broadened waveguides. A record low internal loss of 1.3 cm -1 (compared to a previous value of 3.5 cm-1) and threshold current density of 73 A/cm2 per

  3. Broad band waveguide spectrometer

    DOEpatents

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  4. Broad-band beam buncher

    DOEpatents

    Goldberg, David A.; Flood, William S.; Arthur, Allan A.; Voelker, Ferdinand

    1986-01-01

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  5. Broad-band beam buncher

    DOEpatents

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1984-03-20

    A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-

  6. Photonic band structure

    SciTech Connect

    Yablonovitch, E.

    1993-05-01

    We learned how to create 3-dimensionally periodic dielectric structures which are to photon waves, as semiconductor crystals are to electron waves. That is, these photonic crystals have a photonic bandgap, a band of frequencies in which electromagnetic waves are forbidden, irrespective of propagation direction in space. Photonic bandgaps provide for spontaneous emission inhibition and allow for a new class of electromagnetic micro-cavities. If the perfect 3-dimensional periodicity is broken by a local defect, then local electromagnetic modes can occur within the forbidden bandgap. The addition of extra dielectric material locally, inside the photonic crystal, produces {open_quotes}donor{close_quotes} modes. Conversely, the local removal of dielectric material from the photonic crystal produces {open_quotes}acceptor{close_quotes} modes. Therefore, it will now be possible to make high-Q electromagnetic cavities of volume {approx_lt}1 cubic wavelength, for short wavelengths at which metallic cavities are useless. These new dielectric micro-resonators can cover the range all the way from millimeter waves, down to ultraviolet wavelengths.

  7. Does Broad-Band Seismometer Clip?

    NASA Astrophysics Data System (ADS)

    Tunc, S.; Tunc, B.; Caka, D.; Ada, S.; Rademacher, H.

    2012-12-01

    Any measurement system's dynamic range in decibel (dB), can be defined as proportion of maximum and minimum amplitude (Amax and Amin) which can be measured by the system. Dynamic range defines limitation of the system. Maximum dynamic range, caused by an earthquake with magnitude around 9 is known approximately 220dB in the world. Although the analog feed-back broad-band seismic sensors have 160 dB dynamic range seems to be enough to record most of the earthquakes, these sensors may clip (saturation), when the ground shaking caused by seismic waves is strong enough. Many institutions use broad-band seismometer in Turkey. Because of the clipping of the broad-band seismometers, there were some problems on location and magnitude of the Van Earthquake which occurred October, 23, 2011. To avoid the clipping problem proposed that, relevant sensors choose or install accelerometer simultaneously with the broad-band sensor to the recording system at the seismic stations. In this study, giving information on why the broad-band seismometers clipping, clearing up the general and wrong understanding is "broad-band seismometers do not clip".

  8. The GREGOR Broad-Band Imager

    NASA Astrophysics Data System (ADS)

    von der Lühe, O.; Volkmer, R.; Kentischer, T. J.; Geißler, R.

    2012-11-01

    The design and characteristics of the Broad-Band Imager (BBI) of GREGOR are described. BBI covers the visible spectral range with two cameras simultaneously for a large field and with critical sampling at 390 nm, and it includes a mode for observing the pupil in a Foucault configuration. Samples of first-light observations are shown.

  9. Broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Cobb, E.D.

    1993-01-01

    The broad-band acoustic Doppler current profiler is an instrument that determines velocity based on the Doppler principle by reflecting acoustic signals off sediment particles in the water. The instrument is capable of measuring velocity magnitude and direction throughout a water column and of measuring water depth. It is also capable of bottom tracking and can, therefore, keep track of its own relative position as it is moved across a channel. Discharge measurements can be made quickly and, based on limited tests, accurately with this instrument. ?? 1993.

  10. Ultra-Broad-Band Optical Parametric Amplifier or Oscillator

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatolly; Maleki, Lute

    2009-01-01

    A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter

  11. Broad-Band Activatable White-Opsin

    PubMed Central

    Batabyal, Subrata; Cervenka, Gregory; Ha, Ji Hee; Kim, Young-tae; Mohanty, Samarendra

    2015-01-01

    Currently, the use of optogenetic sensitization of retinal cells combined with activation/inhibition has the potential to be an alternative to retinal implants that would require electrodes inside every single neuron for high visual resolution. However, clinical translation of optogenetic activation for restoration of vision suffers from the drawback that the narrow spectral sensitivity of an opsin requires active stimulation by a blue laser or a light emitting diode with much higher intensities than ambient light. In order to allow an ambient light-based stimulation paradigm, we report the development of a ‘white-opsin’ that has broad spectral excitability in the visible spectrum. The cells sensitized with white-opsin showed excitability at an order of magnitude higher with white light compared to using only narrow-band light components. Further, cells sensitized with white-opsin produced a photocurrent that was five times higher than Channelrhodopsin-2 under similar photo-excitation conditions. The use of fast white-opsin may allow opsin-sensitized neurons in a degenerated retina to exhibit a higher sensitivity to ambient white light. This property, therefore, significantly lowers the activation threshold in contrast to conventional approaches that use intense narrow-band opsins and light to activate cellular stimulation. PMID:26360377

  12. Photonic band gap structure simulator

    DOEpatents

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  13. Multi-Band and Broad-Band Infrared Detectors Based on III-V Materials for Spectral Imaging Instruments

    NASA Technical Reports Server (NTRS)

    Bandara, S. V.; Gunapala, S. D.; Liu, J. K.; Rafol, S. B.; Hill, C. J.; Ting, D. Z.; Mumolo, J. M.; Trinh, T. Q.

    2005-01-01

    Quantum well infrared photodetector technology has shown remarkable success by realizing large-format focal plane arrays in both broad-bands and in multi-bands. The spectral response of these detectors based on the III-V material system are tailorable within the mid and long wavelength IR bands (similar to 3-25 mu m) and possibly beyond. Multi-band and broad-band detector arrays have been developed by vertically integrating stacks of multi quantum wells tailored for response in different wavelengths bands. Each detector stack absorbs photons within the specified wavelength band while allowing the transmission other photons, thus efficiently permitting multiband detection. Flexibility in many design parameters of these detectors allows for tuning and tailoring the spectral shape according to application requirements, specifically for spectral imaging instruments.

  14. Optically tuneable blue phase photonic band gaps

    SciTech Connect

    Liu, H.-Y.; Wang, C.-T.; Hsu, C.-Y.; Lin, T.-H.; Liu, J.-H.

    2010-03-22

    This study investigates an optically switchable band gap of photonic crystal that is based on an azobenzene-doped liquid crystal blue phase. The trans-cis photoisomerization of azobenzene deforms the cubic unit cell of the blue phase and shifts the photonic band gap. The fast back-isomerization of azobenzene was induced by irradiation with different wavelengths light. The crystal structure is verified using Kossel diffraction diagram. An optically addressable blue phase display, based on Bragg reflection from the photonic band gap, is also demonstrated. The tunable ranges are around red, green, and blue wavelengths and exhibit a bright saturated color.

  15. Multimode Broad-Band Patch Antennas

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2003-01-01

    Microstrip patch antennas of a proposed type would be tunable over broad wavelength ranges. These antennas would be attractive for use in a variety of microwave communication systems in which there are requirements for transmission and/or reception at multiple, widely separated frequencies. Prior efforts to construct tunable microstrip patch antennas have involved integration of microstrip circuitry with, variously, ferrite films with magneticfield tuning, solid-state electronic tuning devices, or piezoelectric tuning actuators. Those efforts have been somewhat successful, but have yielded tuning ranges of 20 percent and smaller much smaller than needed in typical practical cases. Like prior microstrip patch antennas (both tunable and non-tunable), the proposed antennas would have instantaneous bandwidths of about 1 percent of their nominal or resonance frequencies. However, these would be tunable over much broader frequency ranges as much as several octaves, depending on specific designs. They could be fabricated relatively simply and inexpensively by use of conventional photolithography, and without need for integration with solid-state electronic or piezoelectric control devices. An antenna as proposed (see figure) would include a microstrip patch radiating element on a thin ferroelectric film on a semiconductor substrate with a ground-plane conductor on the underside of the substrate. The ferroelectric film could be, for example, SrTiO3 with a thickness of the order of 1 or 2 micrometers.

  16. Broad band airborne water vapor radiometry

    NASA Astrophysics Data System (ADS)

    Kuhn, Peter M.

    An infrared radiometer with a pass band of 280 to 520 cm-1 (35.7 to 19.2 µm) is employed on the NASA Ames Research Center U-2 and C-141A aircraft in the measurement of water vapor burden in the upper troposphere and stratosphere. Coincidentally with altitude changes the water vapor mass mixing ratio is also inferred by observing the change in optical depth over a known vertical distance. Data from the December 1980 U-2 Water Vapor Exchange Experiment over the Panama Canal Zone adds to the concept that overshooting cumulonimbus towers “moisten” the lower stratosphere. The average mass mixing ratio in close proximity to or above such towers ranges from 3.5 to 5.0 parts per million above 18 km while the average background mass mixing ratio is only 2.9 parts per million. Generally the lowest background mixing ratios, averaging 2.6 parts per million occurred in the 18 to 21 km layer. For the same levels background Panama mass mixing ratios averaged from 1.0 to 3.0 parts per million higher than in middle latitudes.

  17. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  18. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  19. Broad band variability of SS433: accretion disk at work?

    NASA Astrophysics Data System (ADS)

    Revnivtsev, M.; Fabrika, S.; Abolmasov, P.; Postnov, K.; Bikmaev, I.; Burenin, R.; Pavlinsky, M.; Sunyaev, R.; Khamitov, I.; Sakhibullin, N.

    2006-02-01

    We present broad band power spectra of variations of SS433 in radio, optical and X-ray spectral bands. We show that at frequencies lower than 10-5 Hz the source demonstrates the same variability pattern in all these bands. The broad band power spectrum can be fitted by one power law down to frequencies 10-7 Hz with flattening afterwards. Such a flattening means that on time scales longer than 107 s the source variability becomes uncorrelated. This naturally leads to the appearance of quasi-poissonian flares in the source light curve, which have been regularly observed in radio and optical spectral bands. The radio flux power spectrum appears to have a second break at Fourier frequencies ˜ 10-5 Hz which can be caused by the smearing of the intrinsic radio variability on timescale of the light-crossing time of the radio emitting region. We find a correlation of the radio and optical fluxes of SS433 and the radio flux is delayed by about ˜ 2 days with respect to the optical one. Power spectra of optical and X-ray variabilities continue with the same power law from 10-7 Hz up to 0.01{-}0.05 Hz. The broad band power spectrum of SS433 can be interpreted in terms of self-similar accretion rate modulations in the accretion disk proposed by Lyubarskii (1997, MNRAS, 292, 679) and elaborated by Churazov et al. (2001, MNRAS, 321, 759). We discuss a viscous time-scale in the accretion disk of SS433 with reference to the observed broad band power spectrum.

  20. Tuning photonic bands in plasma metallic photonic crystals

    NASA Astrophysics Data System (ADS)

    Chaudhari, Mayank Kumar; Chaudhari, Sachin

    2016-11-01

    Introducing plasma in the background provides additional degrees of freedom for tuning dispersion curves of photonic crystals. 2D photonic crystals in triangular lattice arrangements offer more global bandgap regions and thus are of more interest for various applications. The dispersion characteristics of a two-dimensional plasma metallic photonic crystal (PMPC) in square as well as triangular lattice arrangements have been analyzed in this paper using the orthogonal finite difference time domain method. The dispersion characteristics of PMPCs for the range of r/a ratios and plasma frequencies for triangular lattice configuration have been analyzed. On introducing plasma in the background, the photonic bands of PMPC are shifted towards higher normalized frequencies. This shift is more for lower bands and increases with plasma frequency. The cut-off frequency was observed for both TE and TM polarizations in PMPC and showed strong dependence on r/a ratio as well as plasma frequency. Photonic bandgaps of PMPC may be tuned by controlling plasma parameters, giving opportunity for utilizing these PMPC structures for various applications such as fine-tuning cavities for enhanced light-matter interaction, plasmonic waveguides, and Gyrotron cavities.

  1. Effect of size of silica microspheres on photonic band gap

    SciTech Connect

    Dhiman, N. Sharma, A. Gathania, A. K.; Singh, B. P.

    2014-04-24

    In present work photonic crystals of different size of silica microspheres have been fabricated. The optical properties of these developed photonic crystals have been studied using UV-visible spectroscopy. UV-visible spectroscopy shows that they have photonic band gap that can be tuned in visible and infrared regime by changing the size of silica microspheres. The photonic band gap structures of these photonic crystals have been calculated using MIT photonic band gap package. It also reveals that with the increase in size of silica microspheres the photonic band gap shifts to lower energy region.

  2. Photon ratchet intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Ekins-Daukes, N. J.; Farrell, D. J.; Phillips, C. C.

    2012-06-01

    In this paper, we propose an innovative concept for solar power conversion—the "photon ratchet" intermediate band solar cell (IBSC)—which may increase the photovoltaic energy conversion efficiency of IBSCs by increasing the lifetime of charge carriers in the intermediate state. The limiting efficiency calculation for this concept shows that the efficiency can be increased by introducing a fast thermal transition of carriers into a non-emissive state. At 1 sun, the introduction of a "ratchet band" results in an increase of efficiency from 46.8% to 48.5%, due to suppression of entropy generation.

  3. Fabrication of photonic band gap materials

    DOEpatents

    Constant, Kristen; Subramania, Ganapathi S.; Biswas, Rana; Ho, Kai-Ming

    2002-01-15

    A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.

  4. Low-noise cryogenically cooled broad-band microwave preamplifiers

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1987-04-01

    The present noise performance, bandwidth capability and gain stability of low-noise cryogenically cooled broad-band preamplifiers are summarized and reviewed in the 150 MHz to 4 GHz frequency range. Stability factor of Gallium Arsenide Field-Effect transistors as a function of frequency and ambient temperature is presented and discussed. Also, other performance data, such as gain nonuniformity, phase shift as a function of frequency, and voltage standing-wave ratio, of several low-noise wide-band preamplifiers of interest for research instrumentation systems are presented.

  5. Interpretation of broad-band seismograms from central Aleutian earthquakes.

    USGS Publications Warehouse

    Engdahl, E.R.; Kind, R.

    1986-01-01

    Broad-band Graefenberg (GRF) array data from 11 moderate-size shallow-depth earthquakes in the central Aleutians have been used to study the effects of focal depth and structure across the arc on observed waveforms. The theoretical results, primarily phase arrival times, suggest that arc structure is responsible for many of the complicated features seen on vertical-component summation seismograms simulated with different instrument responses from the broad-band array data. Except for one trench event, all the earthquakes studied occurred along the plate interface zone, had similar thrust focal mechanisms, and differed only in depth. As a result, the effects of depth phases on observed GRF waveforms across the arc were found to be systematically related to the increase in focal depth along the shallow-dipping seismic zone. -from Authors

  6. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    DTIC Science & Technology

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE, PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects...tailoring of dispersion and the photonic band gap. The band gap frequency can be matched to tailor the emission from active medium such as quantum

  7. A broad band imager for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Munari, Matteo; Scuderi, Salvatore; Cecconi, Massimo

    2012-09-01

    We report on the results of the conceptual design study of a broad band imager for the European Solar Telescope (EST), a joint project of several European research institutes to design and realize a 4-m class solar telescope. The EST broad band imager is an imaging instrument whose function is to obtain diffraction limited images over the full field of view of EST at multiple wavelengths and high frame rate. Its scientific objective is the study of fundamental astrophysical processes at their intrinsic scales in the Sun's atmosphere. The optical layout foresee two observational modes: a maximum field of view mode and a high resolution mode. The imager will have a 2'x2' corrected field of view in the first mode and an angular resolution better than 0.04" at 500nm in the latter mode. The imager will cover a wavelength range spanning from 390nm to 900nm through a number of filters with bandpasses between 0.05nm and 0.5nm. The selected optical layout is an all refractive design. To optimize optical performances and throughput there will be two arms working simultaneously: a blue arm (covering the 380nm - 500nm range) and a red arm (600nm - 900nm). The blue arm will have two channels while the red arm only one. Each channel will be divided in three subchannels: one will host narrow band filters for chromospheric observations, another one, in focus wide band filters used as reference for speckle reconstruction and photospheric observations, and the last one, out of focus wide band filters for phase diversity reconstruction of photospheric observations.

  8. Broad-Band Spectroscopy of Hercules X-1 with Suzaku

    NASA Technical Reports Server (NTRS)

    Asami, Fumi; Enoto, Teruaki; Iwakiri, Wataru; Yamada, Shin'ya; Tamagawa, Toru; Mihara, Tatehiro; Nagase, Fumiaki

    2014-01-01

    Hercules X-1 was observed with Suzaku in the main-on state from 2005 to 2010. The 0.4- 100 keV wide-band spectra obtained in four observations showed a broad hump around 4-9 keV in addition to narrow Fe lines at 6.4 and 6.7 keV. The hump was seen in all the four observations regardless of the selection of the continuum models. Thus it is considered a stable and intrinsic spectral feature in Her X-1. The broad hump lacked a sharp structure like an absorption edge. Thus it was represented by two different spectral models: an ionized partial covering or an additional broad line at 6.5 keV. The former required a persistently existing ionized absorber, whose origin was unclear. In the latter case, the Gaussian fitting of the 6.5-keV line needs a large width of sigma = 1.0-1.5 keV and a large equivalent width of 400-900 eV. If the broad line originates from Fe fluorescence of accreting matter, its large width may be explained by the Doppler broadening in the accretion flow. However, the large equivalent width may be inconsistent with a simple accretion geometry.

  9. Dual-band photon sorting plasmonic MIM metamaterial sensor

    NASA Astrophysics Data System (ADS)

    Jung, Young Uk; Bendoym, Igor; Golovin, Andrii B.; Crouse, David T.

    2014-06-01

    We propose plasmonic metal-insulator-metal (MIM) metamaterial designs for the sensing of two infrared wavelength bands, the mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) band by using a photon sorting technique. The proposed structures can capture light effectively on the metasurfaces based on coupling of free space energy to a subwavelength plasmonic mode. Photon sorting can be performed such that the incident light with a broad spectrum upon the metasurfaces can be "split" according to wavelength, channeling different spectral bands to different physical regions of the array on the surface where it is then absorbed by the insulator. Two different structures described in this work are (1) Square-type structure which consists of MIM resonators being periodically arranged to form a polarization independent sensor and (2) Meander-type structure which consists of MIM resonators being connected to form the meander shaped sensor. Mercury Cadmium Telluride (HgCdTe) posts are used as absorbing material within the MIM structure to generate free carriers and allow for collection of carrier charges. The proposed structures have compact designs and exhibit efficient light splitting and absorption for the IR spectral band. Structural and material properties, the electric field distribution and Poynting vector fields at the resonance frequencies are provided. Applications include thermal imaging, night vision systems, rifle sights, missile detection and discrimination, dual bandwidth optical filters, light trapping, and electromagnetically induced transparency.

  10. Assessment of autonomic response by broad-band respiration

    NASA Technical Reports Server (NTRS)

    Berger, R. D.; Saul, J. P.; Cohen, R. J.

    1989-01-01

    We present a technique for introducing broad-band respiratory perturbations so that the response characteristics of the autonomic nervous system can be determined noninvasively over a wide range of physiologically relevant frequencies. A subject's respiratory bandwidth was broadened by breathing on cue to a sequence of audible tones spaced by Poisson intervals. The transfer function between the respiratory input and the resulting instantaneous heart rate was then computed using spectral analysis techniques. Results using this method are comparable to those found using traditional techniques, but are obtained with an economy of data collection.

  11. Photonic band-edge micro lasers with quantum dot gain.

    PubMed

    Nomura, Masahiro; Iwamoto, Satoshi; Tandaechanurat, Aniwat; Ota, Yasutomo; Kumagai, Naoto; Arakawa, Yasuhiko

    2009-01-19

    We demonstrate optically pumped continuous-wave photonic band-edge microlasers on a two-dimensional photonic crystal slab. Lasing was observed at a photonic band-edge, where the group velocity was significantly small near the K point of the band structure having a triangular lattice. Lasing was achieved by using a quantum dot gain material, which resulted in a significant decrease in the laser threshold, compared with photonic band-edge lasers using quantum well gain material. Extremely low laser thresholds of approximately 80 nW at 6 K was achieved. Lasing was observed in a defect-free photonic crystal as small as approximately 7 microm square.

  12. Broad band imager for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Munari, Matteo; Scuderi, Salvo; Cecconi, Massimo

    2010-07-01

    The European Solar Telescope (EST) is a joint project of several European research institutes to design and realize a 4-m class solar telescope. The EST broad band imager is an imaging instrument whose function is to obtain diffraction limited images over the full field of view of EST at multiple wavelengths and high frame rate. Its scientific objective is the study of fundamental astrophysical processes at their intrinsic scales in the Sun's atmosphere. The current layout foresee two observation modes: a maximum field of view mode and a high resolution mode. The imager will have a 2'x2' corrected field of view in the first mode and an angular resolution better than 0.04" at 500nm in the latter mode. The imager will cover a wavelength range spanning from 390nm to 900nm through a number of filters with bandpasses between 0.05nm and 0.5nm. To optimize optical performances and throughput there will be two arms working simultaneously: a blue arm (covering the 380nm - 500nm range) and a red arm (600nm - 900nm). The blue arm will have two channels while the red arm only one. Each channel will be divided in three subchannels: one will host narrow band filters for chromospheric observations, another one, in focus wide band filters used as reference for speckle reconstruction and photospheric observations, and the last one, out of focus wide band filters for phase diversity reconstruction of photospheric observations.

  13. Bi-directional evolutionary optimization for photonic band gap structures

    SciTech Connect

    Meng, Fei; Huang, Xiaodong; Jia, Baohua

    2015-12-01

    Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gaps from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.

  14. A prism based magnifying hyperlens with broad-band imaging

    NASA Astrophysics Data System (ADS)

    Habib, Md. Samiul; Stefani, Alessio; Atakaramians, Shaghik; Fleming, Simon C.; Argyros, Alexander; Kuhlmey, Boris T.

    2017-03-01

    Magnification in metamaterial hyperlenses has been demonstrated using curved geometries or tapered devices, at frequencies ranging from the microwave to the ultraviolet spectrum. One of the main issues of such hyperlenses is the difficulty in manufacturing. In this letter, we numerically and experimentally study a wire medium prism as an imaging device at THz frequencies. We characterize the transmission of the image of two sub-wavelength apertures, observing that our device is capable of resolving the apertures and producing a two-fold magnified image at the output. The hyperlens shows strong frequency dependent artefacts, a priori limiting the use of the device for broad-band imaging. We identify the main source of image aberration as the reflections supported by the wire medium and also show that even the weaker reflections severely affect the imaging quality. In order to correct for the reflections, we devise a filtering technique equivalent to spatially variable time gating so that ultra-broad band imaging is achieved.

  15. Two photon absorption in high power broad area laser diodes

    NASA Astrophysics Data System (ADS)

    Dogan, Mehmet; Michael, Christopher P.; Zheng, Yan; Zhu, Lin; Jacob, Jonah H.

    2014-03-01

    Recent advances in thermal management and improvements in fabrication and facet passivation enabled extracting unprecedented optical powers from laser diodes (LDs). However, even in the absence of thermal roll-over or catastrophic optical damage (COD), the maximum achievable power is limited by optical non-linear effects. Due to its non-linear nature, two-photon absorption (TPA) becomes one of the dominant factors that limit efficient extraction of laser power from LDs. In this paper, theoretical and experimental analysis of TPA in high-power broad area laser diodes (BALD) is presented. A phenomenological optical extraction model that incorporates TPA explains the reduction in optical extraction efficiency at high intensities in BALD bars with 100μm-wide emitters. The model includes two contributions associated with TPA: the straightforward absorption of laser photons and the subsequent single photon absorption by the holes and electrons generated by the TPA process. TPA is a fundamental limitation since it is inherent to the LD semiconductor material. Therefore scaling the LDs to high power requires designs that reduce the optical intensity by increasing the mode size.

  16. Method of construction of composite one-dimensional photonic crystal with extended photonic band gaps.

    PubMed

    Tolmachev, V; Perova, T; Moore, R

    2005-10-17

    A method of photonic band gap extension using mixing of periodic structures with two or more consecutively placed photonic crystals with different lattice constants is proposed. For the design of the structures with maximal photonic band gap extension the gap map imposition method is utilised. Optimal structures have been established and the gap map of photonic band gaps has been calculated at normal incidence of light for both small and large optical contrast and at oblique incidence of light for small optical contrast.

  17. Quality Control on the IBERARRY broad-band seismic network

    NASA Astrophysics Data System (ADS)

    Diaz, J.; Liguerzana, S.; Villaseñor, A.; Carbonell, R.

    2008-12-01

    Systematic quality control of the seismic recordings acquired by the IBERARRAY broad-band seismic network is carried out. As part of the standard quality control procedure of the raw seismic data, the background noise power spectral density (PSD) is regularly estimated for all the stations of the IberArray portable seismic network and is statistically analyzed to compute probability density functions (PDFs) using the PQLX software package. These PDFs provide a useful tool for managing the network, as they allow to identify stations with unacceptable high noise levels in the frequency band of interest as well as temporal changes of the noise level that may indicate the convenience of changing the location of some sites. At long periods (20-120s), the vertical components usually lie 15db above the NLNM of Peterson (1993). The horizontal components are much noisier in this frequency range, often depassing the NHNM for the longest periods. At microseismic frequencies (0.05 - 0.3 Hz), the noise level is very similar between all the stations, while at high frequencies (> 1 Hz), the main contribution seems to arise from the cultural noise and therefore produces significant variations between the stations. Among the different features observed in the PDF curves, we can highlight the day/night differences in the mean noise level, specially significant for high frequencies, the importance of the local site effects, illustrated by two stations located less than 100 km away but lying in very different terrains and the observation of noise variations related to weather conditions in the microseismic band.

  18. Broad Band Intra-Cavity Total Reflection Chemical Sensor

    DOEpatents

    Pipino, Andrew C. R.

    1998-11-10

    A broadband, ultrahigh-sensitivity chemical sensor is provided that allows etection through utilization of a small, extremely low-loss, monolithic optical cavity. The cavity is fabricated from highly transparent optical material in the shape of a regular polygon with one or more convex facets to form a stable resonator for ray trajectories sustained by total internal reflection. Optical radiation enters and exits the monolithic cavity by photon tunneling in which two totally reflecting surfaces are brought into close proximity. In the presence of absorbing material, the loss per pass is increased since the evanescent waves that exist exterior to the cavity at points where the circulating pulse is totally reflected, are absorbed. The decay rate of an injected pulse is determined by coupling out an infinitesimal fraction of the pulse to produce an intensity-versus-time decay curve. Since the change in the decay rate resulting from absorption is inversely proportional to the magnitude of absorption, a quantitative sensor of concentration or absorption cross-section with 1 part-per-million/pass or better sensitivity is obtained. The broadband nature of total internal reflection permits a single device to be used over a broad wavelength range. The absorption spectrum of the surrounding medium can thereby be obtained as a measurement of inverse decay time as a function of wavelength.

  19. BeppoSAX broad-band observations of Gamma Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Owens, A.; Oosterbroek, T.; Parmar, A. N.; Schulz, R.; Stüwe, J. A.; Haberl, F.

    1999-08-01

    We report broad-band X-ray measurements of the Be star gamma Cassiopeiae by the BeppoSAX X-ray astronomy satellite. The observations took place on 1998 July, 18-23. The 0.1-200 keV X-ray spectrum is reasonably well fit by an optically thin thermal plasma model of temperature 12.5+/-0.6 keV with significant residuals around 0.3 keV and 1 keV. The former is interpreted as the variable soft component reported by ROSAT, although there is no evidence for variability at the 5% level. For a blackbody interpretation, the fitted temperature is 100+/- (320) 13 eV, in agreement with the ROSAT value of 200+/- 10 eV. However, a MEKAL interpretation gives a significantly lower temperature of (48+/-11 eV). The fitted abundances are about half solar values, in agreement with previous measurements. At higher energies, the spectrum does not require non-thermal components and the observation of a line at 6.8 keV supports the ASCA interpretation of the source as an accreting white dwarf. Assuming a source distance of 188 pc, the bolometric luminosity in the 2-10 keV band is 6x10(32) ergs s(-1) . Simultaneous optical measurements by the Wendelstein Observatory near Munich, indicate that the source continues to be in a late but rather normal Be phase, with no obvious signs of a transition to the Be-shell phase. The measured magnitudes at B, V and R wavelengths of 2.18+/-0.06, 2.23+/-0.02 and 2.36+/-0.03, respectively, confirm this.

  20. Axial flow fan broad-band noise and prediction

    NASA Astrophysics Data System (ADS)

    Carolus, Thomas; Schneider, Marc; Reese, Hauke

    2007-02-01

    Two prediction methods for broad-band noise of low-pressure axial fans are investigated. Emphasis is put on the interaction noise due to ingested turbulence. The numerical large eddy simulation (LES) is applied to predict the unsteady blade forces due to grid generated highly turbulent inflow; the blade forces are then fed into an analytical two-dimensional acoustic ducted source model. A simple semi-empirical noise prediction model (SEM) is utilized for indicative comparison. Finally, to obtain a database for detailed verification, the turbulence statistics for a variety of different inflow configurations are determined experimentally using hot wire anemometry and a correlation analysis. In the limits of the necessary assumptions the SEM predicts the noise spectra and the overall sound power surprisingly well without any further tuning of parameters; the influence of the fan operating point and the nature of the inflow is obtained. Naturally, the predicted spectra appear unrealistically "smooth", since the empirical input data are averaged and modeled in the frequency domain. By way of contrast the LES yields the fluctuating forces on the blades in the time domain. Details of the source characteristics and their origin are obtained rather clearly. The predicted effects of the ingested turbulence on the fluctuating blade forces and the fan noise compare favorably with experiments. However, the choice of the numerical grid size determines the maximal resolvable frequency and the computational cost. As contrasted with the SEM, the cost for the LES-based method are immense.

  1. Quantum electrodynamics near a photonic band-gap

    NASA Astrophysics Data System (ADS)

    Liu, Yanbing; Houck, Andrew

    Quantum electrodynamics predicts the localization of light around an atom in photonic band-gap (PBG) medium or photonic crystal. Here we report the first experimental realization of the strong coupling between a single artificial atom and an one dimensional PBG medium using superconducting circuits. In the photonic transport measurement, we observe an anomalous Lamb shift and a large band-edge avoided crossing when the artificial atom frequency is tuned across the band-edge. The persistent peak within the band-gap indicates the single photon bound state. Furthermore, we study the resonance fluorescence of this bound state, again demonstrating the breakdown of the Born-Markov approximation near the band-edge. This novel architecture can be directly generalized to study many-body quantum electrodynamics and to construct more complicated spin chain models.

  2. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Voinov, Yu. P.; Shchavlev, V. V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2016-12-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  3. Connected hexagonal photonic crystals with largest full band gap.

    PubMed

    Fu, H; Chen, Y; Chern, R; Chang, Chien

    2005-10-03

    A two-dimensional photonic crystal with a large full band gap has been designed, fabricated, and characterized. The photonic crystal design was based on a calculation using inverse iteration with multigrid acceleration. The fabrication of the photonic crystal on silicon was realized by the processes of electron-beam lithography and inductively coupled plasma reactive ion etching. It was found that the hexagonal array of circular columns and rods has an optimal full photonic band gap. In addition, we show that a larger extraction of light from our designed photonic crystal can be obtained when compared with the frequently used photonic crystals reported previously. Our designed PC structure therefore should be very useful for creating highly efficient optoelectronic devices.

  4. Photonic band gap enhancement in frequency-dependent dielectrics.

    PubMed

    Toader, Ovidiu; John, Sajeev

    2004-10-01

    We illustrate a general technique for evaluating photonic band structures in periodic d -dimensional microstructures in which the dielectric constant epsilon (omega) exhibits rapid variations with frequency omega . This technique involves the evaluation of generalized electromagnetic dispersion surfaces omega ( k--> ,epsilon) in a (d+1) -dimensional space consisting of the physical d -dimensional space of wave vectors k--> and an additional dimension defined by the continuous, independent, variable epsilon . The physical band structure for the photonic crystal is obtained by evaluating the intersection of the generalized dispersion surfaces with the "cutting surface" defined by the function epsilon (omega) . We apply this method to evaluate the band structure of both two- and three-dimensional (3D) periodic microstructures. We consider metallic photonic crystals with free carriers described by a simple Drude conductivity and verify the occurrence of electromagnetic pass bands below the plasma frequency of the bulk metal. We also evaluate the shift of the photonic band structure caused by free carrier injection into semiconductor-based photonic crystals. We apply our method to two models in which epsilon (omega) describes a resonant radiation-matter interaction. In the first model, we consider the addition of independent, resonant oscillators to a photonic crystal with an otherwise frequency-independent dielectric constant. We demonstrate that for an inhomogeneously broadened distribution of resonators impregnated within an inverse opal structure, the full 3D photonic band gap (PBG) can be considerably enhanced. In the second model, we consider a coupled resonant oscillator mode in a photonic crystal. When this mode is an optical phonon, there can be a synergetic interplay between the polaritonic resonance and the geometrical scattering resonances of the structured dielectric, leading to PBG enhancement. A similar effect may arise when resonant atoms that are

  5. Parasitic Photon-Pair Suppression via Photonic Stop-Band Engineering

    NASA Astrophysics Data System (ADS)

    Helt, L. G.; Brańczyk, Agata M.; Liscidini, Marco; Steel, M. J.

    2017-02-01

    We calculate that an appropriate modification of the field associated with only one of the photons of a photon pair can suppress generation of the pair entirely. From this general result, we develop a method for suppressing the generation of undesired photon pairs utilizing photonic stop bands. For a third-order nonlinear optical source of frequency-degenerate photons, we calculate the modified frequency spectrum (joint spectral intensity) and show a significant increase in a standard metric, the coincidence to accidental ratio. These results open a new avenue for photon-pair frequency correlation engineering.

  6. Toward broad-band x-ray detected ferromagnetic resonance in longitudinal geometry

    SciTech Connect

    Ollefs, K.; Meckenstock, R.; Spoddig, D.; Römer, F. M.; Hassel, Ch.; Schöppner, Ch.; Farle, M.; Ney, V.; Ney, A.

    2015-06-14

    An ultrahigh-vacuum-compatible setup for broad-band X-ray detected ferromagnetic resonance (XFMR) in longitudinal geometry is introduced which relies on a low-power, continuous-wave excitation of the ferromagnetic sample. A simultaneous detection of the conventional ferromagnetic resonance via measuring the reflected microwave power and the XFMR signal of the X-ray absorption is possible. First experiments on the Fe and Co L{sub 3}-edges of a permalloy film covered with Co nanostripes as well as the Fe and Ni K-edges of a permalloy film are presented and discussed. Two different XFMR signals are found, one of which is independent of the photon energy and therefore does not provide element-selective information. The other much weaker signal is element-selective, and the dynamic magnetic properties could be detected for Fe and Co separately. The dependence of the latter XFMR signal on the photon helicity of the synchrotron light is found to be distinct from the usual x-ray magnetic circular dichroism effect.

  7. Very Broad Band VHF/UHF Omnidirectional Antenna Design Study

    DTIC Science & Technology

    1989-12-01

    antennas, is unsuitable for the given appli- cation because its pattern is bi- directional and produces a broad lobe perpendicular to both sides of the...starting point for the new design. The objective was to modify the LPDA to fit the A/V and concurrently achieve a nearly omni- directional radiation pattern...has been included in this review. In particular, many conformal designs including microstrip patch, stripline, slot, and cavity antennas have been

  8. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures.

    PubMed

    Mudd, Garry W; Svatek, Simon A; Hague, Lee; Makarovsky, Oleg; Kudrynskyi, Zakhar R; Mellor, Christopher J; Beton, Peter H; Eaves, Laurence; Novoselov, Kostya S; Kovalyuk, Zakhar D; Vdovin, Evgeny E; Marsden, Alex J; Wilson, Neil R; Patanè, Amalia

    2015-07-01

    High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures is achieved by exploiting the broad-band transparency of graphene, the direct bandgap of InSe, and the favorable band line up of InSe with graphene. The photoresponsivity exceeds that for other van der Waals heterostructures and the spectral response extends from the near-infrared to the visible spectrum.

  9. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  10. Design of a three-dimensional photonic band gap cavity in a diamondlike inverse woodpile photonic crystal

    NASA Astrophysics Data System (ADS)

    Woldering, Léon A.; Mosk, Allard P.; Vos, Willem L.

    2014-09-01

    We theoretically investigate the design of cavities in a three-dimensional (3D) inverse woodpile photonic crystal. This class of cubic diamondlike crystals has a very broad photonic band gap and consists of two perpendicular arrays of pores with a rectangular structure. The point defect that acts as a cavity is centered on the intersection of two intersecting perpendicular pores with a radius that differs from the ones in the bulk of the crystal. We have performed supercell band structure calculations with up to 5×5×5 unit cells. We find that up to five isolated and dispersionless bands appear within the 3D photonic band gap. For each isolated band, the electric-field energy is localized in a volume centered on the point defect, hence the point defect acts as a 3D photonic band gap cavity. The mode volume of the cavities resonances is as small as 0.8 λ3 (resonance wavelength cubed), indicating a strong confinement of the light. By varying the radius of the defect pores we found that only donorlike resonances appear for smaller defect radius, whereas no acceptorlike resonances appear for greater defect radius. From a 3D plot of the distribution of the electric-field energy density we conclude that peaks of energy are found in sharp edges situated at the point defect, similar to how electrons collect at such features. This is different from what is observed for cavities in noninverted woodpile structures. Since inverse woodpile crystals can be fabricated from silicon by CMOS-compatible means, we project that single cavities and even cavity arrays can be realized, for wavelength ranges compatible with telecommunication windows in the near infrared.

  11. Special purpose modes in photonic band gap fibers

    DOEpatents

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  12. Photonic crystal digital alloys and their band structure properties.

    PubMed

    Lee, Jeongkug; Kim, Dong-Uk; Jeon, Heonsu

    2011-09-26

    We investigated semi-disordered photonic crystals (PCs), digital alloys, and made thorough comparisons with their counterparts, random alloys. A set of diamond lattice PC digital alloys operating in a microwave regime were prepared by alternately stacking two kinds of sub-PC systems composed of alumina and silica spheres of the same size. Measured transmission spectra as well as calculated band structures revealed that when the digital alloy period is short, band-gaps of the digital alloys are practically the same as those of the random alloys. This study indicates that the concept of digital alloys holds for photons in PCs as well.

  13. Parallel Processing of Broad-Band PPM Signals

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement

    2010-01-01

    A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).

  14. Probing the gamma-ray variability in 3C 279 using broad-band observations

    NASA Astrophysics Data System (ADS)

    Rani, B.; Krichbaum, T. P.; Lee, S.-S.; Sokolovsky, K.; Kang, S.; Byun, D.-Y.; Mosunova, D.; Zensus, J. A.

    2017-01-01

    We present the results of a broad-band radio-to-GeV observing campaign organized to get a better understanding of the radiation processes responsible for the γ-ray flares observed in 3C 279. The total intensity and polarization observations of the source were carried out between 2013 December 28 and 2014 January 03 using the Fermi-Large Area Telescope, Swift-XRT, Swift-UVOT, and Korean VLBI Network telescopes. A prominent flare observed in the optical/near-UV passbands was found to be correlated with a concurrent γ-ray flare at a confidence level >95 per cent, which suggests a co-spatial origin of the two. Moreover, the flaring activity in the two regimes was accompanied by no significant spectral variations. A peak in the X-ray light curve coincides with the peaks of the fractional polarization curves at 43 and 86 GHz radio bands. No prominent variation was noticed for the total intensity and the electric vector position angle observations at radio bands during this period. We noticed a possible hint of steepening of the radio spectrum with an increase in percentage polarization, which suggests that the radio polarization variations could be simply due to a spectral change. In a simple scenario, the correlated optical/γ-ray flares could be caused by the same population of emitting particles. The coincidence of the increase in radio polarization with the X-ray flux supports the picture that X-rays are produced via inverse-Compton scattering of radio photons. The observed fractional variability for the γ-ray flare ˜0.23 does not exceed that in the optical regime, which is inconsistent with what we usually observe for 3C 279; it could be due to different dependencies of the magnetic field and the external radiation field energy density profiles along the jet.

  15. Characteristics of a broad band and thin ferrite absorbing wall

    NASA Astrophysics Data System (ADS)

    Kotsuka, Youji

    The author proposes a method of reducing the thickness of a ferrite absorbing wall and controlling the matching frequency characteristics by applying a DC magnetic field, HDC, perpendicularly to the microwave magnetic field. The matching characteristics of this method are investigated in detail on the basis of experimental data. The thickness reduction of the absorbing is first discussed from the standpoint of scalar permeability. Based upon these investigations, a thinned ferrite absorbing wall has been designed on a trial basis. The synthetic wave-absorbing material consists of a ferrite disk backed with a samarium-cobalt magnetic material generating a static magnetic field. Fairly good VSWR (voltage standing wave ratio) characteristics below 1.2 have been obtained with a total thickness of 3.8 mm in the frequency range from VHF to UHF. As an application of these characteristics, by controlling both the ferrite thickness and DC magnetic field simultaneously, it has been clarified that the matching frequency characteristics are easily exchanged in the broad frequency region.

  16. Quantum interference of independently generated telecom-band single photons

    SciTech Connect

    Patel, Monika; Altepeter, Joseph B.; Huang, Yu-Ping; Oza, Neal N.; Kumar, Prem

    2014-12-04

    We report on high-visibility quantum interference of independently generated telecom O-band (1310 nm) single photons using standard single-mode fibers. The experimental data are shown to agree well with the results of simulations using a comprehensive quantum multimode theory without the need for any fitting parameter.

  17. High-Power Fiber Lasers Using Photonic Band Gap Materials

    NASA Technical Reports Server (NTRS)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power

  18. Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection

    NASA Astrophysics Data System (ADS)

    Nazirzadeh, Mohammad Amin; Atar, Fatih Bilge; Turgut, Berk Berkan; Okyay, Ali Kemal

    2014-11-01

    In this work, we propose Silicon based broad-band near infrared Schottky barrier photodetectors. The devices operate beyond 1200 nm wavelength and exhibit photoresponsivity values as high as 3.5 mA/W with a low dark current density of about 50 pA/µm2. We make use of Au nanoislands on Silicon surface formed by rapid thermal annealing of a thin Au layer. Surface plasmons are excited on Au nanoislands and this field localization results in efficient absorption of sub-bandgap photons. Absorbed photons excite the electrons of the metal to higher energy levels (hot electron generation) and the collection of these hot electrons to the semiconductor results in photocurrent (internal photoemission). Simple and scalable fabrication makes these devices suitable for ultra-low-cost NIR detection applications.

  19. Efficient light amplification in low gain materials due to a photonic band edge effect.

    PubMed

    Ondič, L; Pelant, I

    2012-03-26

    One of the possibilities of increasing optical gain of a light emitting source is by embedding it into a photonic crystal (PhC). If the properties of the PhC are tuned so that the emission wavelength of the light source with gain falls close to the photonic band edge of the PhC, then due to low group velocity of the light modes near the band edge caused by many multiple reflections of light on the photonic structure, the stimulated emission can be significantly enhanced. Here, we perform simulation of the photonic band edge effect on the light intensity of spectrally broad source interacting with a diamond PhC with low optical gain. We show that even for the case of low gain, up to 10-fold increase of light intensity output can be obtained for the two-dimensional PhC consisting of only 19 periodic layers of infinitely high diamond rods ordered into a square lattice. Moreover, considering the experimentally feasible structure composed of diamond rods of finite height - PhC slab - we show that the gain enhancement, even if reduced compared to the ideal case of infinite rods, still remains relatively high. For this particular structure, we show that up to 3.5-fold enhancement of light intensity can be achieved.

  20. Two-pattern compound photonic crystals with a large complete photonic band gap

    SciTech Connect

    Jia Lin; Thomas, Edwin L.

    2011-09-15

    We present a set of two-dimensional aperiodic structures with a large complete photonic band gap (PBG), which are named two-pattern photonic crystals. By superposing two substructures without regard to registration, we designed six new aperiodic PBG structures having a complete PBG larger than 15% for {epsilon}{sub 2}/{epsilon}{sub 1} = 11.4. The rod-honeycomb two-pattern photonic crystal provides the largest complete PBG to date. An aperiodic structure becomes the champion structure with the largest PBG. Surprisingly, the TM and TE gaps of a two-pattern photonic crystal are much less interdependent than the PBGs of conventional photonic crystals proposed before, affording interesting capabilities for us to tune the TM and TE PBGs separately. By altering the respective substructures, optical devices for different polarizations (TE, TM, or both) can readily be designed.

  1. Estimating carbon dioxide fluxes from temperate mountain grasslands using broad-band vegetation indices

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, G.; Pilloni, S.; Hörtnagl, L.; Hammerle, A.

    2009-11-01

    The broad-band normalised difference vegetation index (NDVI) and the simple ratio (SR) were calculated from measurements of reflectance of photosynthetically active and short-wave radiation at two temperate mountain grasslands in Austria and related to the net ecosystem CO2 exchange (NEE) measured concurrently by means of the eddy covariance method. There was no significant statistical difference between the relationships of midday mean NEE with narrow- and broad-band NDVI and SR, measured during and calculated for that same time window, respectively. The skill of broad-band NDVI and SR in predicting CO2 fluxes was higher for metrics dominated by gross photosynthesis and lowest for ecosystem respiration, with NEE in between. A method based on a simple light response model whose parameters were parameterised based on broad-band NDVI allowed to improve predictions of daily NEE and is suggested to hold promise for filling gaps in the NEE time series. Relationships of CO2 flux metrics with broad-band NDVI and SR however generally differed between the two studied grassland sites indicting an influence of additional factors not yet accounted for.

  2. Estimating carbon dioxide fluxes from temperate mountain grasslands using broad-band vegetation indices

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, G.; Pilloni, S.; Hörtnagl, L.; Hammerle, A.

    2010-02-01

    The broad-band normalised difference vegetation index (NDVI) and the simple ratio (SR) were calculated from measurements of reflectance of photosynthetically active and short-wave radiation at two temperate mountain grasslands in Austria and related to the net ecosystem CO2 exchange (NEE) measured concurrently by means of the eddy covariance method. There was no significant statistical difference between the relationships of midday mean NEE with narrow- and broad-band NDVI and SR, measured during and calculated for that same time window, respectively. The skill of broad-band NDVI and SR in predicting CO2 fluxes was higher for metrics dominated by gross photosynthesis and lowest for ecosystem respiration, with NEE in between. A method based on a simple light response model whose parameters were parameterised based on broad-band NDVI allowed to improve predictions of daily NEE and is suggested to hold promise for filling gaps in the NEE time series. Relationships of CO2 flux metrics with broad-band NDVI and SR however generally differed between the two studied grassland sites indicting an influence of additional factors not yet accounted for.

  3. Mini-stop bands in single heterojunction photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Shahid, N.; Amin, M.; Naureen, S.; Anand, S.

    2013-03-01

    Spectral characteristics of mini-stop bands (MSB) in line-defect photonic crystal (PhC) waveguides and in heterostructure PhC waveguides having one abrupt interface are investigated. Tunability of the MSB position by air-fill factor heterostructure PhC waveguides is utilized to demonstrate different filter functions, at optical communication wavelengths, ranging from resonance-like to wide band pass filters with high transmission. The narrowest filter realized has a resonance-like transmission peak with a full width at half maximum of 3.4 nm. These devices could be attractive for coarse wavelength selection (pass and drop) and for sensing applications.

  4. Photonic band gap spectra in Octonacci metamaterial quasicrystals

    NASA Astrophysics Data System (ADS)

    Brandão, E. R.; Vasconcelos, M. S.; Albuquerque, E. L.; Fulco, U. L.

    2017-02-01

    In this work we study theoretically the photonic band gap spectra for a one-dimensional quasicrystal made up of SiO2 (layer A) and a metamaterial (layer B) organized following the Octonacci sequence, where its nth-stage Sn is given by the inflation rule Sn =Sn - 1Sn - 2Sn - 1 for n ≥ 3 , with initial conditions S1 = A and S2 = B . The metamaterial is characterized by a frequency dependent electric permittivity ε(ω) and magnetic permeability μ(ω) . The polariton dispersion relation is obtained analytically by employing a theoretical calculation based on a transfer-matrix approach. A quantitative analysis of the spectra is then discussed, stressing the distribution of the allowed photonic band widths for high generations of the Octonacci structure, which depict a self-similar scaling property behavior, with a power law depending on the common in-plane wavevector kx .

  5. Manipulating full photonic band gaps in two dimensional birefringent photonic crystals.

    PubMed

    Proietti Zaccaria, Remo; Verma, Prabhat; Kawaguchi, Satoshi; Shoji, Satoru; Kawata, Satoshi

    2008-09-15

    The probability to realize a full photonic band gap in two-dimensional birefringent photonic crystals can be readily manipulated by introducing symmetry reduction or air holes in the crystal elements. The results lie in either creation of new band gaps or enlargement of existing band gaps. In particular, a combination of the two processes produces an effect much stronger than a simple summation of their individual contributions. Materials with both relatively low refractive index (rutile) and high refractive index (tellurium) were considered. The combined effect of introduction of symmetry reduction and air holes resulted in a maximum enlargement of the band gaps by 8.4% and 20.2%, respectively, for the two materials.

  6. A wide-angle and polarization insensitive infrared broad band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Xie, Ting; Chen, Zhong; Ma, Rongyi; Zhong, Min

    2017-01-01

    In this paper, we present the design and experimental demonstration of a broad single-band metamaterial absorber composed of a simple two-dimensional periodic silver-SiO2-silver sandwich array. The experimental results show that a near-perfect absorption band with a bandwidth of approximately 0.4 μm in the THz region is obtained, which is in reasonable agreement with the simulated results. The calculated electric field intensity distributions indicate that the broad absorption band is achieved by plasmonic hybridization of two plasmon resonances: one originates from outward coupling between adjacent unit cells and the other arises from inward coupling between the two sub-structures. The effects of the structural parameters and the SiO2 layer thickness on the broad absorption band are investigated experimentally. The effect of the angle of incidence on the broad absorption band is also investigated experimentally and the absorption band remains high at large angles of incidence (60°), which thus provides more efficient absorption of obliquely incident beams.

  7. Photonic Band Gap resonators for high energy accelerators

    SciTech Connect

    Schultz, S.; Smith, D.R.; Kroll, N. |

    1993-12-31

    We have proposed that a new type of microwave resonator, based on Photonic Band Gap (PBG) structures, may be particularly useful for high energy accelerators. We provide an explanation of the PBG concept and present data which illustrate some of the special properties associated with such structures. Further evaluation of the utility of PBG resonators requires laboratory testing of model structures at cryogenic temperatures, and at high fields. We provide a brief discussion of our test program, which is currently in progress.

  8. Extreme narrow photonic bands and strong photonic localization produced by 2D defect two-segment-connected quadrangular waveguide networks

    NASA Astrophysics Data System (ADS)

    Li, Zhaoyang; Yang, Xiangbo; Timon Liu, Chengyi

    2014-09-01

    In this paper, we investigate the properties of optical transmission and photonic localization of two-dimensional (2D) defect two-segment-connected quadrangular waveguide networks (DTSCQWNs) and find that many groups of extreme narrow photonic bands are created in the middle of the transmission spectra. The electromagnetic (EM) waves in DTSCQWNs with the frequencies of extreme narrow photonic bands can produce strong photonic localizations by adjusting defect broken degree. On the other hand, we obtain the formula of extreme narrow photonic bands' frequencies dependent on defect broken degree and the formula of the largest intensity of photonic localization dependent on defect broken degree, respectively. It may possess potential application for designing all-optical devices based on strong photonic localizations. Additionally, we propose a so-called defecton mode to study the splitting rules of extreme narrow photonic bands, where decomposition-decimation method is expanded from the field of electronic energy spectra to that of optical transmission spectra.

  9. Photonic band gaps in one-dimensional magnetized plasma photonic crystals with arbitrary magnetic declination

    SciTech Connect

    Zhang Haifeng; Liu Shaobin; Kong Xiangkun

    2012-12-15

    In this paper, the properties of photonic band gaps and dispersion relations of one-dimensional magnetized plasma photonic crystals composed of dielectric and magnetized plasma layers with arbitrary magnetic declination are theoretically investigated for TM polarized wave based on transfer matrix method. As TM wave propagates in one-dimensional magnetized plasma photonic crystals, the electromagnetic wave can be divided into two modes due to the influence of Lorentz force. The equations for effective dielectric functions of such two modes are theoretically deduced, and the transfer matrix equation and dispersion relations for TM wave are calculated. The influences of relative dielectric constant, plasma collision frequency, incidence angle, plasma filling factor, the angle between external magnetic field and +z axis, external magnetic field and plasma frequency on transmission, and dispersion relation are investigated, respectively, and some corresponding physical explanations are also given. From the numerical results, it has been shown that plasma collision frequency cannot change the locations of photonic band gaps for both modes, and also does not affect the reflection and transmission magnitudes. The characteristics of photonic band gaps for both modes can be obviously tuned by relative dielectric constant, incidence angle, plasma filling factor, the angle between external magnetic field and +z axis, external magnetic field and plasma frequency, respectively. These results would provide theoretical instructions for designing filters, microcavities, and fibers, etc.

  10. Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

    SciTech Connect

    Noble, Robert J.; Spencer, James E.; Kuhlmey, Boris T.; /Sydney U.

    2011-08-19

    Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.

  11. A broad-band three-dimensional isotropic left-handed metamaterial

    NASA Astrophysics Data System (ADS)

    Wang, Jia Fu; Qu, Shao Bo; Xu, Zhuo; Fu, Zhen Tang; Ma, Hua; Yang, Yi Ming

    2009-08-01

    A broad-band three-dimensional (3D) isotropic left-handed metamaterial (LHM) is proposed in this paper. The 3D unit cell is composed of a dielectric cube with metallic Jerusalem crosses on all its six sides. A theoretical model was set up by using equivalent-circuit theory. The magnetic and electric resonant frequencies of the proposed LHM are always equal, which guarantees the existence of a left-handed band. Numerical simulations were carried out to verify the proposed LHM. The results show that the relative bandwidth reaches up to 44.6%; the left-handed band is independent of the polarization of incident waves and is almost the same for different incident angles. Thus, the proposed LHM is a good candidate as a broad-band 3D isotropic LHM.

  12. Modeling of Photonic Band Gap Crystals and Applications

    SciTech Connect

    El-Kady, Ihab Fathy

    2002-01-01

    In this work, the authors have undertaken a theoretical approach to the complex problem of modeling the flow of electromagnetic waves in photonic crystals. The focus is to address the feasibility of using the exciting phenomena of photonic gaps (PBG) in actual applications. The authors start by providing analytical derivations of the computational electromagnetic methods used in their work. They also present a detailed explanation of the physics underlying each approach, as well as a comparative study of the strengths and weaknesses of each method. The Plane Wave expansion, Transfer Matrix, and Finite Difference time Domain Methods are addressed. They also introduce a new theoretical approach, the Modal Expansion Method. They then shift the attention to actual applications. They begin with a discussion of 2D photonic crystal wave guides. The structure addressed consists of a 2D hexagonal structure of air cylinders in a layered dielectric background. Comparison with the performance of a conventional guide is made, as well as suggestions for enhancing it. The studies provide an upper theoretical limit on the performance of such guides, as they assumed no crystal imperfections and non-absorbing media. Next, they study 3D metallic PBG materials at near infrared and optical wavelengths. The main objective is to study the importance of absorption in the metal and the suitability of observing photonic band gaps in such structures. They study simple cubic structures where the metallic scatters are either cubes or interconnected metallic rods. Several metals are studied (aluminum, gold, copper, and silver). The effect of topology is addressed and isolated metallic cubes are found to be less lossy than the connected rod structures. The results reveal that the best performance is obtained by choosing metals with a large negative real part of the dielectric function, together with a relatively small imaginary part. Finally, they point out a new direction in photonic crystal

  13. Unfolding the band structure of non-crystalline photonic band gap materials.

    PubMed

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-08-20

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain.

  14. Unfolding the band structure of non-crystalline photonic band gap materials

    PubMed Central

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-01-01

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain. PMID:26289434

  15. Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations.

    PubMed

    Wen, Feng; David, Sylvain; Checoury, Xavier; El Kurdi, Moustafa; Boucaud, Philippe

    2008-08-04

    Photonic crystals exhibiting a photonic band gap in both TE and TM polarizations are particularly interesting for a better control of light confinement. The simultaneous achievement of large band gaps in both polarizations requires to reduce the symmetry properties of the photonic crystal lattice. In this letter, we propose two different designs of two-dimensional photonic crystals patterned in high refractive index thin silicon slabs. These slabs are known to limit the opening of photonic band gaps for both polarizations. The proposed designs exhibit large complete photonic band gaps: the first photonic crystal structure is based on the honey-comb lattice with two different hole radii and the second structure is based on a "tri-ellipse" pattern in a triangular lattice. Photonic band gap calculations show that these structures offer large complete photonic band gaps deltaomega/omega larger than 10% between first and second photonic bands. This figure of merit is obtained with single-mode slab waveguides and is not restricted to modes below light cone.

  16. Observations of broad-band circular polarization in sunspots - Magnetic field correspondence

    NASA Technical Reports Server (NTRS)

    Illing, R. M. E.; Landman, D. A.; Mickey, D. L.

    1974-01-01

    The present work proposes a general rule relating the polarity of broad-band (spectral range: 5250 A to 5350 A) circular polarization fields observed in sunspots to that of the corresponding magnetic fields. The rule is illustrated with observations of particular spots.

  17. Photonic band gap structure for a ferroelectric photonic crystal at microwave frequencies.

    PubMed

    King, Tzu-Chyang; Chen, De-Xin; Lin, Wei-Cheng; Wu, Chien-Jang

    2015-10-10

    In this work, the photonic band gap (PBG) structure in a one-dimensional ferroelectric photonic crystal (PC) is theoretically investigated. We consider a PC, air/(AB)N/air, in which layer A is a dielectric of MgO and layer B is taken to be a ferroelectric of Ba0.55Sr0.45TiO3 (BSTO). With an extremely high value in the dielectric constant in BSTO, the calculated photonic band structure at microwave frequencies exhibits some interesting features that are significantly different from those in a usual dielectric-dielectric PC. First, the photonic transmission band consists of multiple and nearly discrete transmission peaks. Second, the calculated bandwidth of the PBG is nearly unchanged as the angle of incidence varies in the TE wave. The bandwidth will slightly reduce for the TM mode. Thus, a wide omnidirectional PBG can be obtained. Additionally, the effect of the thickness of the ferroelectric layer on the PBG is much more pronounced compared to the dielectric layer thickness. That is, the increase of ferroelectric thickness can significantly decrease the PBG bandwidth.

  18. Broad-band transmission spectrum and K-band thermal emission of WASP-43b as observed from the ground

    NASA Astrophysics Data System (ADS)

    Chen, G.; van Boekel, R.; Wang, H.; Nikolov, N.; Fortney, J. J.; Seemann, U.; Wang, W.; Mancini, L.; Henning, Th.

    2014-03-01

    Aims: WASP-43b is the closest-orbiting hot Jupiter, and it has high bulk density. It causes deep eclipse depths in the system's light curve in both transit and occultation that is attributed to the cool temperature and small radius of its host star. We aim to secure a broad-band transmission spectrum and to detect its near-infrared thermal emission in order to characterize its atmosphere. Methods: We observed one transit and one occultation event simultaneously in the g', r', i', z', J, H, K bands using the GROND instrument on the MPG/ESO 2.2-m telescope, where the telescope was heavily defocused in staring mode. After modeling the light curves, we derived wavelength-dependent transit depths and flux ratios and compared them to atmospheric models. Results: From the transit event, we have independently derived WASP-43's system parameters with high precision and improved the period to be 0.81347437(13) days based on all the available timings. No significant variation in transit depths is detected, with the largest deviations coming from the i'-, H-, and K-bands. Given the observational uncertainties, the broad-band transmission spectrum can be explained by either (i) a flat featureless straight line that indicates thick clouds; (ii) synthetic spectra with absorption signatures of atomic Na/K, or molecular TiO/VO that in turn indicate cloud-free atmosphere; or (iii) a Rayleigh scattering profile that indicates high-altitude hazes. From the occultation event, we detected planetary dayside thermal emission in the K-band with a flux ratio of 0.197 ± 0.042%, which confirms previous detections obtained in the 2.09 μm narrow band and KS-band. The K-band brightness temperature 1878+108-116 K favors an atmosphere with poor day- to nightside heat redistribution. We also have a marginal detection in the i'-band (0.037+0.023-0.021%), corresponding to TB = 2225+139-225 K, which is either a false positive, a signature of non-blackbody radiation at this wavelength, or an

  19. On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing

    SciTech Connect

    Gerrits, Thomas; Lita, Adriana E.; Calkins, Brice; Tomlin, Nathan A.; Fox, Anna E.; Linares, Antia Lamas; Mirin, Richard P.; Nam, Sae Woo; Thomas-Peter, Nicholas; Metcalf, Benjamin J.; Spring, Justin B.; Langford, Nathan K.; Walmsley, Ian A.; Gates, James C.; Smith, Peter G. R.

    2011-12-15

    Integration is currently the only feasible route toward scalable photonic quantum processing devices that are sufficiently complex to be genuinely useful in computing, metrology, and simulation. Embedded on-chip detection will be critical to such devices. We demonstrate an integrated photon-number-resolving detector, operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows it to be placed at arbitrary locations within a planar circuit. Up to five photons are resolved in the guided optical mode via absorption from the evanescent field into a tungsten transition-edge sensor. The detection efficiency is 7.2{+-}0.5 %. The polarization sensitivity of the detector is also demonstrated. Detailed modeling of device designs shows a clear and feasible route to reaching high detection efficiencies.

  20. Photonic band gaps in quasiperiodic photonic crystals with negative refractive index

    NASA Astrophysics Data System (ADS)

    Vasconcelos, M. S.; Mauriz, P. W.; de Medeiros, F. F.; Albuquerque, E. L.

    2007-10-01

    We investigate the photonic band gaps in quasiperiodic photonic crystals made up of both positive (SiO2) and negative refractive index materials using a theoretical model based on a transfer matrix treatment. The quasiperiodic structures are characterized by the nature of their Fourier spectrum, which can be dense pure point (Fibonacci sequences) or singular continuous (Thue-Morse and double-period sequences). These substitutional sequences are described in terms of a series of generations that obey peculiar recursion relations. We discussed the photonic band gap spectra for both the ideal cases, where the negative refractive index material can be approximated as a constant in the frequency range considered, as well as the more realistic case, taking into account the frequency-dependent electric permittivity γ and magnetic permeability μ . We also present a quantitative analysis of the results, pointing out the distribution of the allowed photonic bandwidths for high generations, which gives a good insight about their localization and power laws.

  1. Broad Band Light Absorption and High Photocurrent of (In,Ga)N Nanowire Photoanodes Resulting from a Radial Stark Effect.

    PubMed

    Kamimura, Jumpei; Bogdanoff, Peter; Corfdir, Pierre; Brandt, Oliver; Riechert, Henning; Geelhaar, Lutz

    2016-12-21

    The photoelectrochemical properties of (In,Ga)N nanowire photoanodes are investigated using H2O2 as a hole scavenger to prevent photocorrosion. Under simulated solar illumination, In0.16Ga0.84N nanowires grown by plasma-assisted molecular beam epitaxy show a high photocurrent of 2.7 mA/cm(2) at 1.2 V vs reversible hydrogen electrode. This value is almost the theoretical maximum expected from the corresponding band gap (2.8 eV) for homogeneous bulk material without taking into account surface effects. These nanowires exhibit a higher incident photon-to-current conversion efficiency over a broader wavelength range and a higher photocurrent than a compact layer with higher In content of 28%. These results are explained by the combination of built-in electric fields at the nanowire sidewall surfaces and compositional fluctuations in (In,Ga)N, which gives rise to a radial Stark effect. This effect enables spatially indirect transitions at energies much lower than the band gap. The resulting broad band light absorption leads to high photocurrents. This benefit of the radial Stark effect in (In,Ga)N nanowires for solar harvesting applications opens up the perspective to break the theoretical limit for photocurrents.

  2. Collision-induced stimulated photon echo on the broad spectral line

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.

    2017-01-01

    The collision-induced stimulated photon echo formed on the broad spectral line on the transition with the angular momentum change {{J}a}=0\\to {{J}b}=1 is studied theoretically. The dependencies of the echo intensity on the areas of exciting pulses and on the strength of the external magnetic field under the conditions of experiments in ytterbium (174Yb) vapor are obtained. The ways to measure orientation and alignment relaxation rates of the excited atomic level are discussed.

  3. Radiative transfer equations in broad-band, time-varying fields

    NASA Technical Reports Server (NTRS)

    Cooper, J.; Zoller, P.

    1984-01-01

    A derivation of the equation of transfer is obtained by starting with Maxwell's equations in the 'slowly varying envelope' form. Particular attention is paid to characterizing the intensity that is 'seen' by the atom (which is found to be related to a Wigner distribution of the electric field). The equation of transfer is found to be valid for 'broad-band' slowly varying radiation fields.

  4. Fraunhofer type diffraction of phase-modulated broad-band femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Dakova, A. M.; Kovachev, L. M.; Kovachev, K. L.; Y Dakova, D.

    2015-03-01

    Attosecond optical pulses with one-two cycles under the envelope diffract in nonparaxial regime on several diffraction lengths. Their intensity profile takes a form similar to Fraunhofer distribution. An analytical theory was developed, where was pointed, that such type of diffraction depends on the spectral width of the optical pulse. In this paper is shown that even for a broad-band phase-modulated femtosecond pulses the diffraction is also of Fraunhofer type.

  5. Ray-based geoacoustic inversion for high frequency broad band data

    NASA Astrophysics Data System (ADS)

    Siderius, Martin; Hursky, Paul; Porter, Michael

    2003-04-01

    One of the difficulties in making reliable acoustic propagation predictions in shallow water is the lack of good information about the seabed type. In recent years, matched field processing- (MFP-) based geoacoustic inversion has been shown as a practical technique for estimating properties of the seabed. The MFP inversion method compares measured acoustic fields to those generated using an acoustic propagation model. Often, thousands of forward model calculations are required to find a set of seabed parameters that correlate well with the measured data. The large number of forward model calculations is computationally demanding and this is made worse when matching at higher frequencies or over broad band data. Ray-based propagation modeling relieves some of the computational burden since the calculation time is fairly insensitive to frequency and is inherently broad band. Further, the ray arrival amplitudes and delays are well suited for interpolation and this allows the seabed parameter search space to be explored using just a few ray trace calculations. The broad band nature of the modeled data provides flexibility in choosing correlation functions and this allows for more robust inversions. In this presentation, techniques using ray-based propagation modeling will be applied to the geoacoustic inversion problem.

  6. Broad-band magnetic induction probe calibration using a frequency-corrected reference probe.

    PubMed

    Hill, Carrie

    2013-10-01

    Finite impedances of magnetic induction probes attenuate and shift the field fluctuations measured by the probe so that they differ from the measured signal at the digitizer. These effects vary with frequency. Traditionally, impedance effects have been accounted for in the calibration process by sweeping the frequency of the magnetic field source through a range of frequencies. Situations arise where the conventional calibration method is not feasible due to probe geometry or hardware constraints. A new calibration technique is presented in this paper which calibrates the probe in situ at a single frequency and uses impedance measurements of the probe assembly across the desired frequency range to account for broad-band effects. The in situ calibration technique requires a reference probe with a known proportionality constant NA and known impedances. Impedance effects are corrected in the probe signal using broad-band impedance measurements included in a transfer function in frequency space. The in situ calibration technique is shown to be complicated by capacitive coupling between the probes and the high voltage source coil. Circuit modeling demonstrates that this coupling introduces negligible attenuation and a small phase-delay so that the relative phase-delay between the reference and target probe signals can be corrected by shifting the signals in time. In summary, this calibration method extends traditional single-frequency calibration techniques to broad-band applications, accounting for important non-ideal effects to improve the accuracy of the magnetic field measurement.

  7. Wide-Band Microwave Receivers Using Photonic Processing

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Yu, Nan; Strekalov, Dmitry; Savchenkov, Anatoliy

    2008-01-01

    In wide-band microwave receivers of a type now undergoing development, the incoming microwave signals are electronically preamplified, then frequency-up-converted to optical signals that are processed photonically before being detected. This approach differs from the traditional approach, in which incoming microwave signals are processed by purely electronic means. As used here, wide-band microwave receivers refers especially to receivers capable of reception at any frequency throughout the range from about 90 to about 300 GHz. The advantage expected to be gained by following the up-conversion-and-photonic-processing approach is the ability to overcome the limitations of currently available detectors and tunable local oscillators in the frequency range of interest. In a receiver following this approach (see figure), a preamplified incoming microwave signal is up-converted by the method described in the preceeding article. The frequency up-converter exploits the nonlinearity of the electromagnetic response of a whispering gallery mode (WGM) resonator made of LiNbO3. Up-conversion takes place by three-wave mixing in the resonator. The WGM resonator is designed and fabricated to function simultaneously as an electro-optical modulator and to exhibit resonance at the microwave and optical operating frequencies plus phase matching among the microwave and optical signals circulating in the resonator. The up-conversion is an efficient process, and the efficiency is enhanced by the combination of microwave and optical resonances. The up-converted signal is processed photonically by use of a tunable optical filter or local oscillator, and is then detected. Tunable optical filters can be made to be frequency agile and to exhibit high resonance quality factors (high Q values), thereby making it possible to utilize a variety of signal-processing modalities. Therefore, it is anticipated that when fully developed, receivers of this type will be compact and will be capable of both

  8. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    NASA Technical Reports Server (NTRS)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  9. Trapping of coherence and entanglement in photonic band-gaps

    NASA Astrophysics Data System (ADS)

    Feng, Ling-Juan; Zhang, Ying-Jie; Xing, Gui-Chao; Xia, Yun-Jie; Gong, Shang-Qing

    2017-02-01

    We investigate the coherence trapping of a two-level atom transversally interacting with a reservoir with a photonic band-gap structure function. We then focus on the multipartite entanglement dynamics via genuinely multipartite concurrence among N independent atoms each locally coupled with its own reservoir. By considering the Lorentzian width and the system size, we find that for the resonant and near-resonant conditions, the increase of Lorentzian width and the decrease of system size can lead to the occurrence of coherence trapping and entanglement trapping. By choosing the multipartite GHZ state as atomic initial state, we show that the multipartite entanglement may exhibit entanglement sudden death depending on the initial condition and the system size. In addition, we also analyze how the crossover behaviors of two dynamical regimes are influenced by the Lorentzian width and the weight ratio, in terms of the non-Markovianity.

  10. Tunable photonic band-gaps in one-dimensional photonic crystals containing linear graded index material

    NASA Astrophysics Data System (ADS)

    Singh, Bipin K.; Kumar, Pawan; Pandey, Praveen C.

    2014-12-01

    We have demonstrated control of the photonic band gaps (PBGs) in 1-D photonic crystals using linear graded index material. The analysis of PBG has been done in THz region by considering photonic crystals in the form of ten periods of second, third and fourth generation of the Fibonacci sequence as unit cell. The unit cells are constituted of two kinds of layers; one is taken of linear graded index material and other of normal dielectric material. For this investigation, we used a theoretical model based on transfer matrix method. We have obtained a large number of PBGs and their bandwidths can be tuned by changing the grading profile and thicknesses of linear graded index layers. The number of PBGs increases with increase in the thicknesses of layers and their bandwidths can be controlled by the contrast of initial and final refractive index of the graded layers. In this way, we provide more design freedom for photonic devices such as reflectors, filters, optical sensors, couplers, etc.

  11. Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states.

    PubMed

    Pavarini, E; Andreani, L C

    2002-09-01

    The photonic band dispersion and density of states (DOS) are calculated for the three-dimensional (3D) hexagonal structure corresponding to a distributed Bragg reflector patterned with a 2D triangular lattice of circular holes. Results for the Si/SiO(2) and GaAs/Al(x)Ga(1-x)As systems determine the optimal parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of the multilayer. The DOS is considerably reduced in correspondence with the overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS weighted with the squared electric field at a given point) has strong variations depending on the position. Both results imply substantial changes of spontaneous emission rates and patterns for a local emitter embedded in the structure and make this system attractive for the fabrication of a 3D photonic crystal with controlled radiative properties.

  12. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  13. Relationship of Aerial Broad Band Reflectance to Meloidogyne incognita Density in Cotton

    PubMed Central

    Wheeler, T. A.; Kaufman, H. W.

    2003-01-01

    Aerial images were obtained on 22 July 1999 and 4 August 2000 from five cotton sites infested with Meloidogyne incognita. Images contained three broad bands representing the green (500-600 nm), red (600-700 nm), and near-infrared (700-900 nm) spectrum. Soil samples were collected and assayed for nematodes in the fall at these sites. Sampling locations were identified from images, by locating the coordinates of a wide range of light intensity (measured as a digital number) for each single band, and combinations of bands. There was no single band or band combination in which reflectance consistently predicted M. incognita density. In all 10 site-year combinations, the minimum number of samples necessary to estimate M. incognita density within 25% of the population mean was greater when sampling by reflectance-based classes (3 to 4 per site) than sampling based on the entire site as one unit. Two sites were sampled at multiple times during the growing season. At these sites, there was no single time during the growing season optimal to take images for nematode sampling. Aerial infrared photography conducted during the growing season could not be used to accurately determine fall population densities of M. incognita. PMID:19265974

  14. Telecom-band two-photon Michelson interferometer using frequency entangled photon pairs generated by spontaneous parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Akio; Fukuda, Daiji; Tsuchida, Hidemi

    2014-02-01

    We demonstrate a telecom-band fiber-optic two-photon Michelson interferometer using near-degenerate and collinear photon pairs with frequency entanglement. For spontaneous parametric down-conversion (SPDC), a continuous-wave laser diode pumps a periodically poled lithium niobate waveguide. Two threshold single-photon detectors record coincidence counts to observe two-photon interference and evaluate the correlation function. Multi-pair emission events are inevitable in SPDC and photon pairs without frequency entanglement are unintentionally registered as coincidence counts. In the demonstrated experiment, a mixture of photon pairs with and without frequency entanglement is present. The effects of such a mixed state on the correlation function are experimentally investigated. Two-photon interference of photon pairs without frequency entanglement is also measured for comparison.

  15. Nonlinear effects in photoionization over a broad photon-energy range within the TDCIS scheme

    NASA Astrophysics Data System (ADS)

    Karamatskou, Antonia

    2017-01-01

    The present tutorial provides an overview of the time-dependent configuration interaction singles scheme applied to nonlinear ionization over a broad photon-energy range. The efficient propagation of the wave function and the calculation of photoelectron spectra within this approach are described and demonstrated in various applications. Above-threshold ionization of argon and xenon in the extreme ultraviolet energy range is investigated as an example. A particular focus is put on the xenon 4d giant dipole resonance and the information that nonlinear ionization can provide about resonance substructure. Furthermore, above-threshold ionization is studied in the x-ray regime and the intensity regime, at which multiphoton ionization starts to play a role at hard x-ray photon energies, is identified.

  16. The broad-band radio spectrum of LS I +61°303 in outburst

    NASA Astrophysics Data System (ADS)

    Zimmermann, L.; Fuhrmann, L.; Massi, M.

    2015-08-01

    Aims: Our aim is to explore the broad-band radio continuum spectrum of LS I +61°303 during its outbursts by employing the available set of secondary focus receivers of the Effelsberg 100 m telescope. Methods: The clear periodicity of the system LS I +61°303 allowed observations to be scheduled covering the large radio outburst in March-April 2012. We observed LS I +61°303 on 14 consecutive days at 2.6, 4.85, 8.35, 10.45, 14.3, 23, and 32 GHz with a cadence of about 12 h followed by two additional observations several days later. Based on these observations we obtained a total of 24 quasi-simultaneous broad-band radio spectra. Results: During onset, the main flare shows an almost flat broad-band spectrum, most prominently seen on March 27, 2012, where - for the first time - a flat spectrum (α = 0.00 ± 0.07, S ∝ να) is observed up to 32 GHz (9 mm wavelength). The flare decay phase shows superimposed "sub-flares" with the spectral index oscillating between -0.4 and -0.1 in a quasi-regular fashion. Finally, the spectral index steepens during the decay phase, showing optically thin emission with values α ~ -0.5 to -0.7. Conclusions: The radio characteristics of LS I +61°303 compare well with those of the microquasars XTE J1752-223 and Cygnus X-3. In these systems the flaring phase is actually also composed of a sequence of outbursts with clearly different spectral characteristics: a first outburst with a flat/inverted spectrum followed by a bursting phase of optically thin emission.

  17. Control of lateral divergence in high-power, broad-area photonic crystal lasers

    NASA Astrophysics Data System (ADS)

    Rong, Jiamin; Xing, Enbo; Wang, Lijie; Shu, Shili; Tian, Sicong; Tong, Cunzhu; Wang, Lijun

    2016-07-01

    One-dimensional photonic bandgap crystal (PBC) lasers have demonstrated ultra-low vertical divergence and record brightness; however, their future development is limited by their lateral beam quality. In this paper, a fishbone microstructure is proposed to control the lateral modes in broad-area PBC lasers. The findings reveal that the introduction of the microstructure improves the full width at half maximum of the lateral far field by 22.2% and increases the output power to a small extent. The detailed measurements show that the lateral beam parameter product decreases by 15.9%.

  18. [Broad excitation band alkaline-earth silicate luminescent materials activated by rare earth and its applications].

    PubMed

    Xia, Wei; Lei, Ming-Kai; Luo, Xi-Xian; Xiao, Zhi-Guo

    2008-01-01

    Series of novel broad excitation band phosphors M2 MgSis O7 : Eu, Dy(M = Ca, Sr) were prepared by a high temperature solid-state reaction method. The crystal structure of compound was characterized. And the effects of part substitution of alkaline-earth on crystal structure, photoluminescence spectra and luminescence properties were also investigated. It is found that the excitation band of silicate luminescent materials extend to visible region and they exhibit yellow, green and blue long after-glow luminescence after excited by ultraviolet or visible light. Ca MgSi O7 : Eu, Dy luminescent materials can be excited effectively under the 450-480 nm range and exhibit a strong emission at 536 nm, nicely combining with blue light emitted by InGaN chips to produce white light. This promises the silicate luminescent materials a potential yellow phosphor for white LED.

  19. Low-frequency and broad band metamaterial absorber: design, fabrication, and characterization

    NASA Astrophysics Data System (ADS)

    Sun, Liang Kui; Cheng, Hai Feng; Zhou, Yong Jiang; Wang, Jun

    2011-10-01

    We report a metamaterial absorber (MA) with a broad absorption band in the frequency region of 2-4 GHz, whose thickness is not limited to the quarter-wavelength. Theoretical and experimental results show that the absorber has two adjacent absorption apexes at 2.24 and 3.46 GHz, respectively, which are both related to the electric and magnetic resonances of the metamaterial. The absorption is over 68% in the whole wave band of 2-4 GHz provided the thickness of 4 mm. The distributions of the surface currents and the power loss density indicate that the surface currents produced by the electric and magnetic resonances are strongly consumed by the resistive patches. This low-frequency absorber has potential applications in many scientific and martial fields.

  20. Synchronous fluctuation in broad-band processes and application to the electroencephalographic brain data

    NASA Astrophysics Data System (ADS)

    Lin, D. C.; Perez Velazquez, J. L.; Nenadovic, V.

    2012-02-01

    We propose phase-like characteristics in the broad-band process and introduce a novel wavelet-based method to analyze fluctuation in synchrony (FIS) in a wide frequency range. We demonstrate FIS between multifractal processes and a modeled dynamical system in phase transition. We then apply the idea to analyze surface scalp electroencephalographic data from normal subjects and traumatic brain-injured (TBI) patients. Our results show that FIS in normal subjects is more pronounced and exhibits more dynamic spatiotemporal patterns. Moreover, we find an intrinsic synchrony-variability relationship underlying these FIS characteristics.

  1. Spectral characteristics of high-power 1. 5. mu. m broad-band superluminescent fiber sources

    SciTech Connect

    Wysocki, P.F.; Digonnet, M.J.F.; Kim, B.Y. . Edward L. Ginzton Lab.)

    1990-03-01

    The authors study the spectral variation of spontaneous emission from erbium-doped single-mode fibers with the aim of producing high-power (more than 5 mW), broad-band (in excess of 10 nm) amplified spontaneous emission sources for fiber gyroscope applications. In particular, they demonstrate the evolution of spectral shape and center wavelength with fiber length and output power in the previously unstudied high-power regime where saturation effects dominate. Also presented is a visibility curve for a potential twin-peaked nonresonant erbium-doped fiber gyroscope source with a short (210 {mu}m) coherence length.

  2. Broad-band X-ray observations of CIR X-1

    NASA Astrophysics Data System (ADS)

    Maisack, M.; Staubert, R.; Balucinska-Church, M.; Skinner, G.; Doebereiner, S.; Englhauser, J.; Aref'ev, V. A.; Efremov, V. V.; Sunyaev, R. A.

    1995-08-01

    We present broad-band (2-88 keV) X-ray observations of the X-ray binary Cir X-1 with the TTM and HEXE instruments on board of the Mir space station. The observations were made in January/February 1989. The spectrum is best described by a model with 3 components: a blackbody at low energies, an iron line and a Comptonized hard continuum. The spectrum is variable during our observations; when the Comptonized component becomes harder, the spectrum becomes softer below 15 keV. The high-energy spectrum resembles that of X-ray binary pulsars.

  3. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    DOEpatents

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  4. Local density of optical states of an asymmetric waveguide grating at photonic band gap resonant wavelength

    NASA Astrophysics Data System (ADS)

    Alatas, Husin; Sumaryada, Tony I.; Ahmad, Faozan

    2015-01-01

    We have investigated the characteristics of local density of optical states (LDOS) at photonic band gap resonant wavelength of an asymmetric waveguide grating based on Green's function formulation. It is found that the LDOS of the considered structure exhibits different characteristics in its localization between the upper and lower resonant wavelengths of the corresponding photonic band gap edges.

  5. Photonic band gaps of wurtzite GaN and AlN photonic crystals at short wavelengths

    NASA Astrophysics Data System (ADS)

    Melo, E. G.; Alayo, M. I.

    2015-04-01

    Group III-nitride materials such as GaN and AlN have attracted a great attention in researches on photonic devices that operate at short light wavelengths. The large band gaps of these materials turn them suitable for nanophotonic devices that operate in light ranges from visible to deep ultraviolet. The physical properties of wurtzite GaN and AlN such as their second and third order nonlinear susceptibilities, and their thermal and piezoelectric coefficients, also make them excellent candidates for integrate photonic devices with electronics, microelectromechanics, microfluidics and general sensing applications. Using a plane wave expansion method (PWE) the photonic band gap maps of 36 different two-dimensional photonic crystal lattices in wurtzite GaN and AlN were obtained and analyzed. The wavelength dependence and the effects of the material anisotropy on the position of the photonic band gaps are also discussed. The results show regions with slow group velocity at the edges of a complete photonic band gap in the M-K direction of the triangular lattices with circular, hexagonal, and rhombic air holes. Was also found a very interesting disposition of the photonic band gaps in the lattices composed of rhombic air holes.

  6. Study of transmission line attenuation in broad band millimeter wave frequency range

    SciTech Connect

    Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.

    2013-10-15

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.

  7. Broad-band polarization in molecular spectra. [Zeeman effect in magnetic stars

    NASA Technical Reports Server (NTRS)

    Illing, R. M. E.

    1981-01-01

    The rotational lines of the CN(0,0) red system have been observed to show a strongly asymmetric Zeeman profile. Certain molecules are very susceptible to magnetic perturbation because of the weakness of their spin-rotation coupling; a fairly weak magnetic field can cause a complete Paschen-Back effect. The calculation of transition probabilities incorporating this effect into the Hamiltonian is discussed, and the detailed calculation is then given. The resulting transition probabilities are transformed into synthetic line profiles by using the Unno (1956) model of polarized radiation transfer. The dependence of the net polarized flux on magnetic field and equivalent width is investigated. It is shown that entire band systems may be significantly polarized. Broad-band circular polarization of sunspots may be due, in part, to molecular bands. Analysis of the CH G band indicates a magnetic field of 0.25-0.50 x 10 to the 6th gauss in the white dwarf G99-37, an order of magnitude lower than previous estimates.

  8. Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap

    NASA Astrophysics Data System (ADS)

    Berrada, K.; Ooi, C. H. Raymond; Abdel-Khalek, S.

    2015-03-01

    Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times. This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency.

  9. Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap

    SciTech Connect

    Berrada, K.; Ooi, C. H. Raymond; Abdel-Khalek, S.

    2015-03-28

    Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times. This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency.

  10. Crustal structure beneath broad-band seismic stations in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    van der Meijde, Mark; van der Lee, Suzan; Giardini, Domenico

    2003-03-01

    We have analysed receiver functions to derive simple models for crustal structure below 12 broad-band seismological stations from the MIDSEA project and 5 permanent broad-band stations in the Mediterranean region including northern Africa. To determine an accurate Moho depth we have reduced the trade-off between crustal velocities and discontinuity depth using a new grid search method, which is an extension of recently published methods to determine crustal thickness. In this method the best fitting synthetic receiver function, containing both the direct conversion and the reverberated phases, is identified on a model grid of varying Moho depth and varying Poisson's ratio. The values we found for Moho depth range from around 20 km for intra-oceanic islands and extended continental margins to near 45 km in regions where the Eurasian and African continents have collided. More detailed waveform modelling shows that all receiver functions can be well fit using a 2- or 3-layer model containing a sedimentary layer and/or a mid-crustal discontinuity. On comparing our results with Moho maps inferred from interpolated reflection and refraction data, we find that for some regions the agreement between our receiver function analysis and existing Moho maps is very good, while for other regions our observations deviate from the interpolated map values and extend beyond the geographic bounds of these maps.

  11. Broad Band X-Ray Telescope (BBXRT) Work Station in the Spacelab Payload Operations Control Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity of WUPPE (Wisconsin Ultraviolet Photo-Polarimeter Experiment) data review at the Science Operations Area during the mission. This image shows mission activities at the Broad Band X-Ray Telescope (BBXRT) Work Station in the Science Operations Area (SOA).

  12. High-power narrow-vertical-divergence photonic band crystal laser diodes with optimized epitaxial structure

    SciTech Connect

    Liu, Lei; Qu, Hongwei; Liu, Yun; Zhang, Yejin; Zheng, Wanhua; Wang, Yufei; Qi, Aiyi

    2014-12-08

    900 nm longitudinal photonic band crystal (PBC) laser diodes with optimized epitaxial structure are fabricated. With a same calculated fundamental-mode divergence, stronger mode discrimination is achieved by a quasi-periodic index modulation in the PBC waveguide than a periodic one. Experiments show that the introduction of over 5.5 μm-thick PBC waveguide contributes to only 10% increment of the internal loss for the laser diodes. For broad area PBC lasers, output powers of 5.75 W under continuous wave test and over 10 W under quasi-continuous wave test are reported. The vertical divergence angles are 10.5° at full width at half maximum and 21.3° with 95% power content, in conformity with the simulated angles. Such device shows a prospect for high-power narrow-vertical-divergence laser emission from single diode laser and laser bar.

  13. Communication: Excitation band modulation with high-order photonic band gap in PMMA:Eu(TTA)3(TPPO)2 opals

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Bai, Xue; Zhu, Yongsheng; Liu, Tong; Xu, Sai; Dong, Biao; Song, Hongwei

    2013-05-01

    Changes in the excitation spectra of luminescent species inserted in photorefractive crystals as a function of changes in the high-order photonic band gap (PBG) have not been previously observed. In this communication, we present our results monitoring the excitation band of Eu(TTA)3(TPPO)2 inserted in the PMMA opal photonic crystals as a function of the changes in the high-order PBG of the crystals. We find shifts in the complex excitation band and changes in the integrated emission intensity that correlates with shifts in the high-order PBG through coupling to the excitation transition.

  14. Communication: excitation band modulation with high-order photonic band gap in PMMA:Eu(TTA)3(TPPO)2 opals.

    PubMed

    Xu, Wen; Bai, Xue; Zhu, Yongsheng; Liu, Tong; Xu, Sai; Dong, Biao; Song, Hongwei

    2013-05-14

    Changes in the excitation spectra of luminescent species inserted in photorefractive crystals as a function of changes in the high-order photonic band gap (PBG) have not been previously observed. In this communication, we present our results monitoring the excitation band of Eu(TTA)3(TPPO)2 inserted in the PMMA opal photonic crystals as a function of the changes in the high-order PBG of the crystals. We find shifts in the complex excitation band and changes in the integrated emission intensity that correlates with shifts in the high-order PBG through coupling to the excitation transition.

  15. Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier

    PubMed Central

    Nanni, E. A.; Lewis, S. M.; Shapiro, M. A.; Griffin, R. G.; Temkin, R. J.

    2014-01-01

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous −3 dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245–256 GHz. The widest instantaneous −3 dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier. PMID:24476286

  16. Photonic-band-gap traveling-wave gyrotron amplifier.

    PubMed

    Nanni, E A; Lewis, S M; Shapiro, M A; Griffin, R G; Temkin, R J

    2013-12-06

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous -3  dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245-256 GHz. The widest instantaneous -3  dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier.

  17. Broad-band X-ray emission and the reality of the broad iron line from the neutron star-white dwarf X-ray binary 4U 1820-30

    NASA Astrophysics Data System (ADS)

    Mondal, Aditya S.; Dewangan, G. C.; Pahari, M.; Misra, R.; Kembhavi, A. K.; Raychaudhuri, B.

    2016-09-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disc. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here, we investigate the reality of the broad iron line detected earlier from the neutron-star low-mass X-ray binary 4U 1820-30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broad-band spectral study of the atoll source using Suzaku and simultaneous NuSTAR and Swift observations. We have used different continuum models involving accretion disc emission, thermal blackbody and thermal Comptonization of either disc or blackbody photons. The Suzaku data show positive and negative residuals in the region of Fe K band. These features are well described by two absorption edges at 7.67 ± 0.14 keV and 6.93 ± 0.07 keV or partial covering photoionized absorption or by blurred reflection. Though, the simultaneous Swift and NuSTAR data do not clearly reveal the emission or absorption features, the data are consistent with the presence of either absorption or emission features. Thus, the absorption based models provide an alternative to the broad iron line or reflection model. The absorption features may arise in winds from the inner accretion disc. The broad-band spectra appear to disfavour continuum models in which the blackbody emission from the neutron-star surface provides the seed photons for thermal Comptonization. Our results suggest emission from a thin accretion disc (kTdisc ˜ 1 keV), Comptonization of disc photons in a boundary layer most likely covering a large fraction of the neutron-star surface and innermost parts of the accretion disc, and blackbody emission (kTbb ˜ 2 keV) from the polar regions.

  18. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  19. Observation of localized flat-band states in Kagome photonic lattices.

    PubMed

    Zong, Yuanyuan; Xia, Shiqiang; Tang, Liqin; Song, Daohong; Hu, Yi; Pei, Yumiao; Su, Jing; Li, Yigang; Chen, Zhigang

    2016-04-18

    We report the first experimental demonstration of localized flat-band states in optically induced Kagome photonic lattices. Such lattices exhibit a unique band structure with the lowest band being completely flat (diffractionless) in the tight-binding approximation. By taking the advantage of linear superposition of the flat-band eigenmodes of the Kagome lattices, we demonstrate a high-fidelity transmission of complex patterns in such two-dimensional pyrochlore-like photonic structures. Our numerical simulations find good agreement with experimental observations, upholding the belief that flat-band lattices can support distortion-free image transmission.

  20. Broad-band and multi-band polarimetric observations of post-AGB and RV Tauri stars

    NASA Astrophysics Data System (ADS)

    Akras, S.; Ramirez-Velez, J.; Hiriart, D.; Lopez, M.; Bonanos, A.

    2013-02-01

    We present optical broad-band (UBVRI) aperture polarimetry of 52 post-AGB stars, selected from De Ruyter et al. (2006) and the Torun Catalog, based on the shape of their SED and near-infrared excess. We find 10 (19%) of the stars in our sample to have high polarization (P > 5%), 30 (56%) intermediate/low polarization (1% < P < 5%) and 13 (25%) very low (or non-polarized) polarization (P < 1%). Our observations show clear evidence of asymmetric circumstellar envelopes or equatorial density enhancement around post-AGB stars, probably formed at the beginning of the AGB phase. Some stars exhibit wavelength-independent polarization suggesting scattered light by large dust grains or free electrons (Thomson scattering), while others show wavelength-dependent polarization originated from scattering by small dust grains (Rayleigh scattering). Finally, we conclude that highly polarized sources (P > 3%), show systematically [12] - [25] > 1.5, J - H > 0.5 and J - K > 0.5, clearly separated from the group of RV Tauri stars, which are found to have very low polarization (P < 3%).

  1. Results on the Performance of a Broad Band Focussing Cherenkov Counter

    DOE R&D Accomplishments Database

    Cester, R.; Fitch, V. L.; Montag, A.; Sherman, S.; Webb, R. C.; Witherell, M. S.

    1980-01-01

    The field of ring imaging (broad band differential) Cherenkov detectors has become a very active area of interest in detector development at several high energy physics laboratories. Our group has previously reported on a method of Cherenkov ring imaging for a counter with large momentum and angular acceptance using standard photo multipliers. Recently, we have applied this technique to the design of a set of Cherenkov counters for use in a particle search experiment at Fermi National Accelerator Laboratory (FNAL). This new detector operates over the range 0.998 < ..beta.. < 1.000 in velocity with a delta..beta.. approx. 2 x 10{sup -4}. The acceptance in angle is +- 14 mrad in the horizontal and +- 28 mrad in the vertical. We report here on the performance of this counter.

  2. Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode.

    PubMed

    Denzer, W; Hamilton, M L; Hancock, G; Islam, M; Langley, C E; Peverall, R; Ritchie, G A D

    2009-11-01

    A fibre coupled near-infrared superluminescent light emitting diode that emits approximately 10 mW of radiation between 1.62 and 1.7 microm is employed in combination with a broad-band cavity enhanced spectrometer consisting of a linear optical cavity with mirrors of reflectivity approximately 99.98% and either a dispersive near-infrared spectrometer or a Fourier transform interferometer. Results are presented on the absorption of 1,3-butadiene, and sensitivities are achieved of 6.1 x 10(-8) cm(-1) using the dispersive spectrometer in combination with phase-sensitive detection, and 1.5 x 10(-8) cm(-1) using the Fourier transform interferometer (expressed as a minimum detectable absorption coefficient) over several minutes of acquisition time.

  3. Precise broad-band anti-refection coating fabricated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Li, Yanghui; Shen, Weidong; Zhang, Yueguang; Hao, Xiang; Fan, Huanhuan; Liu, Xu

    2013-04-01

    By demarcating the ranges of transition regions on different underlayers in atomic layer deposition (ALD), their effects on broad-band anti-refection (BBAR) coating (400-680 nm) are evaluated. In ALD, comparatively larger transition region of TiO2 on bare BK7 glass severely limits the fabricated precision of BBAR coating with a thin first layer. Considering that the transition region on existent ALD material is much thinner than that on bare substrate, a thick Al2O3 film is inserted as a pre-deposited layer on the substrate to completely overlay the transition region on bare BK7.A good agreement between the designed and experimental curves is obtained, and its average reflectance is 0.535% (400-680 nm) in practice.

  4. Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs.

    PubMed

    Pennec, Y; Djafari Rouhani, B; El Boudouti, E H; Li, C; El Hassouani, Y; Vasseur, J O; Papanikolaou, N; Benchabane, S; Laude, V; Martinez, A

    2010-06-21

    We discuss the simultaneous existence of phononic and photonic band gaps in a periodic array of holes drilled in a Si membrane. We investigate in detail both the centered square lattice and the boron nitride (BN) lattice with two atoms per unit cell which include the simple square, triangular and honeycomb lattices as particular cases. We show that complete phononic and photonic band gaps can be obtained from the honeycomb lattice as well as BN lattices close to honeycomb. Otherwise, all investigated structures present the possibility of a complete phononic gap together with a photonic band gap of a given symmetry, odd or even, depending on the geometrical parameters.

  5. Cerebral oxygenation monitoring during cardiac bypass surgery in infants with broad band spatially resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Soschinski, Jan; Ben Mine, Lofti; Geraskin, Dmitri; Bennink, Gerardus; Kohl-Bareis, Matthias

    2007-07-01

    Neurological impairments following cardio-pulmonary bypass (CPB) during open heart surgery can result from microembolism and ischaemia. Here we present results from monitoring cerebral haemodynamics during CPB with near infrared spatially resolved broadband spectroscopy. In particular, the study has the objective (a) to monitor oxy- and deoxy-hemoglobin concentrations (oxy-Hb, deoxy-Hb) and their changes as well as oxygen saturation during CPB surgery and (b) to develop and test algorithms for the calculation of these parameters from broad band spectroscopy. For this purpose a detection system was developed based on an especially designed lens imaging spectrograph with optimised sensitivity of recorded reflectance spectra for wavelengths between 600 and 1000 nm. The high f/#-number of 1:1.2 of the system results in about a factor of 10 higher light throughput combined with a lower astigmatism and crosstalk between channels when compared with a commercial mirror spectrometers (f/# = 1:4). For both hemispheres two independent channels each with three source-detector distances (ρ = 25 . 35 mm) were used resulting in six spectra. The broad band approach allows to investigate the influence of the wavelength range on the calculated haemoglobin concentrations and their changes and oxygen saturation when the attenuation A(λ) and its slope ΔA(λ)/Δρ are evaluated. Furthermore, the different depth sensitivities of these measurement parameters are estimated from Monte Carlo simulations and exploited for an optimization of the cerebral signals. It is demonstrated that the system does record cerebral oxygenation parameters during CPB in infants. In particular, the correlation of haemoglobin concentrations with blood supply (flow, pressure) by the heart-lung machine and the significant decreases in oxygen saturation during cardiac arrest is discussed.

  6. Efficient generation of broad Raman sidebands in an index-guided photonic crystal fiber.

    PubMed

    Li, Ying; Hou, Jing; Jiang, Zongfu; Leng, Jinyong

    2013-04-01

    The efficient generation of broad Raman sidebands is experimentally demonstrated in a short piece of index-guided photonic crystal fiber, which is pumped by a high-peak-power pulse near the zero-dispersion wavelength and seeded by a continuous-wave Stokes signal centered at 1117 nm. The Raman sidebands generated via stimulated Raman scattering and cascaded four-wave mixing contain five Stokes and six anti-Stokes peaks and span from 827 to 1398 nm, and the 3 dB linewidth for each peak is smaller than 1 nm. However, the pure Raman sidebands are largely dependent on the pulse pump power as well as the fiber length.

  7. Broad-band soft x-ray diagnostic instruments at the LLNL Novette laser facility

    SciTech Connect

    Tirsell, K.G.; Lee, P.H.Y.; Nilson, D.G.; Medecki, H.

    1983-09-15

    Complementary broad-band instruments have been developed to measure time dependent, absolute soft x-ray spectra at the Lawrence Livermore National Laboratory (LLNL) Nd glass laser irradiation facilities. Absolute flux measurements of x rays emitted from laser-produced plasmas are important for understanding laser absorption and energy transport. We will describe two new 10-channel XRD systems that have been installed at the LLNL Novette facility for use in the 0.15- to 1.5-keV range. Since XRD channel time response is limited by available oscilloscope performance to 120 ps, a soft x-ray streak camera has been developed for better time resolution (20 ps) and greater dynamic range (approx.10/sup 3/) in the same x-ray energy region. Using suitable filters, grazing incidence mirrors, and a gold or cesium-iodide transmission cathode, this streak camera instrument has been installed at Novette to provide one broad and four relatively narrow channels. It can also be used in a single channel, spatially discriminating mode by means of pinhole imaging. The complementary nature of these instruments has been enhanced by locating them in close proximity and matching their channel energy responses. As an example of the use of these instruments, we present results from Novette 2..omega..(0.53 ..mu..m) gold disk irradiations at 1 ns and 10/sup 14/ to 10/sup 15/ W/cm/sup 2/.

  8. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250-450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl- negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  9. Multiwavelength observations of the energetic GRB 080810: detailed mapping of the broad-band spectral evolution

    NASA Astrophysics Data System (ADS)

    Page, K. L.; Willingale, R.; Bissaldi, E.; Postigo, A. De Ugarte; Holland, S. T.; McBreen, S.; O'Brien, P. T.; Osborne, J. P.; Prochaska, J. X.; Rol, E.; Rykoff, E. S.; Starling, R. L. C.; Tanvir, N. R.; van der Horst, A. J.; Wiersema, K.; Zhang, B.; Aceituno, F. J.; Akerlof, C.; Beardmore, A. P.; Briggs, M. S.; Burrows, D. N.; Castro-Tirado, A. J.; Connaughton, V.; Evans, P. A.; Fynbo, J. P. U.; Gehrels, N.; Guidorzi, C.; Howard, A. W.; Kennea, J. A.; Kouveliotou, C.; Pagani, C.; Preece, R.; Perley, D.; Steele, I. A.; Yuan, F.

    2009-11-01

    GRB 080810 was one of the first bursts to trigger both Swift and the Fermi Gamma-ray Space Telescope. It was subsequently monitored over the X-ray and UV/optical bands by Swift, in the optical by Robotic Optical Transient Search Experiment (ROTSE) and a host of other telescopes, and was detected in the radio by the Very Large Array. The redshift of z = 3.355 +/- 0.005 was determined by Keck/High Resolution Echelle Spectrometer (HIRES) and confirmed by RTT150 and NOT. The prompt gamma/X-ray emission, detected over 0.3-103 keV, systematically softens over time, with Epeak moving from ~600 keV at the start to ~40 keV around 100s after the trigger; alternatively, this spectral evolution could be identified with the blackbody temperature of a quasi-thermal model shifting from ~60 to ~3keV over the same time interval. The first optical detection was made at 38s, but the smooth, featureless profile of the full optical coverage implies that this is originated from the afterglow component, not from the pulsed/flaring prompt emission. Broad-band optical and X-ray coverage of the afterglow at the start of the final X-ray decay (~8ks) reveals a spectral break between the optical and X-ray bands in the range of 1015-2 × 1016Hz. The decay profiles of the X-ray and optical bands show that this break initially migrates blueward to this frequency and then subsequently drifts redward to below the optical band by ~3 × 105s. GRB 080810 was very energetic, with an isotropic energy output for the prompt component of 3 × 1053 and 1.6 × 1052 erg for the afterglow; there is no evidence for a jet break in the afterglow up to 6d following the burst. This paper is dedicated to the memory of Professor Martin Turner, who sadly passed away during its writing. Martin was an influential figure in X-ray Astronomy and an excellent PhD supervisor. He will be greatly missed. E-mail: kpa@star.le.ac.uk ‡ NASA postdoctoral program fellow.

  10. Study of multi- and broad-band internal antennas for mobile applications

    NASA Astrophysics Data System (ADS)

    Baek, Seung Hoon

    The modified aperture coupled MicroStrip Antenna (MSA) and Planar Inverted F Antenna (PIFA) for mobile applications are studied and presented in this dissertation. The designed antennas are improved multi-band and broad-band characteristics by the modification of radiating elements and/or the ground plane. The novel modified aperture coupling annular-ring antenna fed by stripline is the hybrid structure of the aperture coupling feed MSA and the proximity feed MSA. The proximity feed enable to concentrate the field strength toward the direction of the radiating element and the modified aperture layer contributes to provide the maximum coupling to the radiating element. The measurement bandwidths of the Aperture Coupling Proximity Feed Hybrid MSA #1(ACPF-HMSA#1, design #1) and ACPF-HMSA #2 (design #2) are 185MHz (7%) and 105MHz (4.1%), VSWR in less than 2, respectively. Two layers Planar Inverted F Antenna (PIFA) with the modification of the ground and radiating element was studied. The inserted T-shaped or L-shaped ground and inserted a slot and slits on radiating elements help to adjust the resonant frequencies to the target applications. The result of PIFA #3 (design #3) is presented a significant board-band characteristic on the upper band by 910MHz (from 1.45GHz to 2.36GHz) with VSWR less than 2.5. It covers GPS, DCS, PCS, and UMTS bands. Novel internal loop planar inverted F antennas (L-PIFA) with Inserted Concentrated Annular Rings (ICAR) and Inserted Loop Inductors (ILI) are presented as design #4 (ICAR-L-PIFA #4) and design #5 (ILI-L-PIFA #5), respectively. The simple loop structure consists of a meandered line. It increases the capacitance between adjacent lines. The Inserted annular-rings and loop inductors provide inductance values to the main loop antennas. Therefore, the impedance bandwidth of the design #4 is 570MHz (from 1.69GHz to 2.26GHz) with VSWR less than 2.5. And, the impedance bandwidth of the design #5 is 275MHz (from 1.63GHz to 1.905GHz) and

  11. The Australia Telescope Compact Array Broad-band Backend: description and first results

    NASA Astrophysics Data System (ADS)

    Wilson, Warwick E.; Ferris, R. H.; Axtens, P.; Brown, A.; Davis, E.; Hampson, G.; Leach, M.; Roberts, P.; Saunders, S.; Koribalski, B. S.; Caswell, J. L.; Lenc, E.; Stevens, J.; Voronkov, M. A.; Wieringa, M. H.; Brooks, K.; Edwards, P. G.; Ekers, R. D.; Emonts, B.; Hindson, L.; Johnston, S.; Maddison, S. T.; Mahony, E. K.; Malu, S. S.; Massardi, M.; Mao, M. Y.; McConnell, D.; Norris, R. P.; Schnitzeler, D.; Subrahmanyan, R.; Urquhart, J. S.; Thompson, M. A.; Wark, R. M.

    2011-09-01

    Here, we describe the Compact Array Broad-band Backend (CABB) and present first results obtained with the upgraded Australia Telescope Compact Array (ATCA). The 16-fold increase in observing bandwidth, from 2 × 128 to 2 × 2048 MHz, high-bit sampling and the addition of 16 zoom windows (each divided into further 2048 channels) provide major improvements for all ATCA observations. The benefits of the new system are: (1) hugely increased radio continuum and polarization sensitivity as well as image fidelity; (2) substantially improved capability to search for and map emission and absorption lines over large velocity ranges; (3) simultaneous multi-line and continuum observations; (4) increased sensitivity, survey speed and dynamic range due to high-bit sampling and (5) high-velocity resolution, while maintaining full polarization output. The new CABB system encourages all observers to make use of both spectral line and continuum data to achieve their full potential. Given the dramatic increase of the ATCA capabilities in all bands (ranging from 1.1 to 105 GHz) CABB enables scientific projects that were not feasible before the upgrade, such as simultaneous observations of multiple spectral lines, on-the-fly mapping, fast follow-up of radio transients (e.g. the radio afterglow of new supernovae) and maser observation at high-velocity resolution and full polarization. The first science results presented here include wide-band spectra, high dynamic-range images and polarization measurements, highlighting the increased capability and discovery potential of the ATCA. The Australia Telescope Compact Array is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  12. Uncooled ultrasensitive broad-band solution-processed photodetectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gong, Xiong

    2016-09-01

    Sensing from the ultraviolet (UV)-visible to infrared (IR) is critical to environmental monitoring and remote sensing, fibre-optic communication, day and night-time surveillance, and emerging medical imaging modalities. Today, separate sensors or materials are required for different sub-bands within the UV to IR wavelength range. In general, AlGaN, Si, InGaAs and PbS based photodetectors (PDs) are used for the four important sub-bands: 0.25 μm-0.4 μm (UV), 0.45 μm-0.8 μm (visible), 0.9 μm-1.7 μm (near IR), 1.5 μm-2.6 μm (middle IR), respectively. To obtain the desired sensitivity, these detectors must be operated at low temperatures (for example, at 4.2 K). Thus, a "breakthrough" technology would be enabled by a new class of PDs -- PDs that do not require cooling to obtain high detectivity; PDs which are fabricated by solution-processing to enable low-cost multi-color, high quantum efficiency, high sensitivity and high speed response over this broad spectral range. The availability of such PDs for use at room temperature (RT) would offer new and important applications. In this presentation, we would like to share with you how we approach RT operated ultrasensitive broad-band solution-processed PDs. - By developing novel low bandgap semiconducting polymers, we are able to develop RT operated solution-processed polymers PDs with spectral response from 350 nm to 1450 nm, the detectivity over 1013 Jones and linear dynamic range over 100 dB; spectral response from 350 nm to 2500 nm, the detectivity over 1012 Jones; - By using low bandgap semiconducting polymers mixed with high electrical conductivity PbS quantum dots (QDs), inverted polymer hybrid PDs with spectral response from 300 nm to 25000 nm, the detectivity over 1013 Jones and linear dynamic range over 100 dB are realized; - By using novel perovskite hybrid materials incorporated with carbon nanotubes, novel n-type newly developed semiconducting polymers, we are able to realize RT operated solution

  13. Broadly tunable femtosecond mid-infrared source based on dual photonic crystal fibers.

    PubMed

    Yao, Yuhong; Knox, Wayne H

    2013-11-04

    We report a novel scheme of generating broadly tunable femtosecond mid-IR pulses based on difference frequency mixing the outputs from dual photonic crystal fibers (PCF). With a 1.3 W, 1035 nm, 300 fs and 40 MHz Yb fiber chirped pulse amplifier as the laser source, a PCF with single zero dispersion wavelength (ZDW) at the laser wavelength is employed to spectrally broaden a portion of the laser pulses. Facilitated by self-phase modulation, its output spectrum possesses two dominant outermost peaks that can be extended to 970 nm and 1092 nm. A different PCF with two closely spaced ZDWs around the laser wavelength is used to generate the intense Stokes pulses between 1240 - 1260 nm. Frequency mixing the dual PCFs outputs in an AgGaS(2) crystal results in mid-IR pulses broadly tunable from 4.2 μm to 9 μm with a maximum average power of 640 µW at 4.5 μm, corresponding to 16 pJ of pulse energy.

  14. Fabrication of 3-D Photonic Band Gap Crystals Via Colloidal Self-Assembly

    NASA Technical Reports Server (NTRS)

    Subramaniam, Girija; Blank, Shannon

    2005-01-01

    The behavior of photons in a Photonic Crystals, PCs, is like that of electrons in a semiconductor in that, it prohibits light propagation over a band of frequencies, called Photonic Band Gap, PBG. Photons cannot exist in these band gaps like the forbidden bands of electrons. Thus, PCs lend themselves as potential candidates for devices based on the gap phenomenon. The popular research on PCs stem from their ability to confine light with minimal losses. Large scale 3-D PCs with a PBG in the visible or near infra red region will make optical transistors and sharp bent optical fibers. Efforts are directed to use PCs for information processing and it is not long before we can have optical integrated circuits in the place of electronic ones.

  15. X-Band Photonic Band-Gap Accelerator Structure Breakdown Experiment

    SciTech Connect

    Marsh, Roark A.; Shapiro, Michael A.; Temkin, Richard J.; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A.Dian; Tantawi, Sami G.; /SLAC

    2012-06-11

    In order to understand the performance of photonic band-gap (PBG) structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz). The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65 MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110 MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100 MV/m and a surface magnetic field of 890 kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14 MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  16. Investigation on the properties of omnidirectional photonic band gaps in two-dimensional plasma photonic crystals

    SciTech Connect

    Zhang, Hai-Feng; Liu, Shao-Bin; Li, Bing-Xiang

    2016-01-15

    The properties of omnidirectional photonic band gaps (OBGs) in two-dimensional plasma photonic crystals (2D PPCs) are theoretically investigated by the modified plane wave expansion method. In the simulation, we consider the off-plane incident wave vector. The configuration of 2D PPCs is the triangular lattices filled with the nonmagnetized plasma cylinders in the homogeneous and isotropic dielectric background. The calculated results show that the proposed 2D PPCs possess a flatbands region and the OBGs. Compared with the OBGs in the conventional 2D dielectric-air PCs, it can be obtained more easily and enlarged in the 2D PPCs with a similar structure. The effects of configurational parameters of the PPCs on the OBGs also are studied. The simulated results demonstrate that the locations of OBGs can be tuned easily by manipulating those parameters except for changing plasma collision frequency. The achieved OBGs can be enlarged by optimizations. The OBGs of two novel configurations of PPCs with different cross sections are computed for a comparison. Both configurations have the advantages of obtaining the larger OBGs compared with the conventional configuration, since the symmetry of 2D PPCs is broken by different sizes of periodically inserted plasma cylinders or connected by the embedded plasma cylinders with thin veins. The analysis of the results shows that the bandwidths of OBGs can be tuned by changing geometric and physical parameters of such two PPCs structures. The theoretical results may open a new scope for designing the omnidirectional reflectors or mirrors based on the 2D PPCs.

  17. Broad Band Polarimetry with the Soft Gamma-ray Detector on board Hitomi (ASTRO-H)

    NASA Astrophysics Data System (ADS)

    Mizuno, Tsunefumi

    2016-07-01

    X-ray and gamma-ray polarization can arise from synchrotron emission in ordered magnetic fields, photon propagation in extremely strong magnetic fields and anisotropic Compton scattering. Polarization measurement provides vital information (often inaccessible even with the current best imaging instruments) on magnetic field and accretion disk around astrophysical objects, hence is a powerful probe to investigate emission mechanism and geometries of the sources. The Soft Gamma-ray Detector (SGD) on board Hitomi (ASTRO-H) satellite is a highly-sensitive spectrometer in the 40-600 keV energy band. Since the SGD is a Si/CdTe Compton camera surrounded by a thick BGO shield, it also works as a very sensitive polarimeter in wide energy range. We have verified the SGD polarization measurement capability through extensive beam tests at a synchrotron facility SPring-8 in 2008 (Takeda et al. 2010) and 2015 (Katsuta et al. in preparation). In addition, we have examined possible sciences provided by the SGD polarimetry based on the expected performance (Coppi et al. 2014). In this contribution, we will present the SGD instrumentation, the latest beam test results and expected sciences provided by the polarization measurements. The results based on the initial observations will also be reported.

  18. Field demonstration of X-band photonic antenna remoting in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Lutes, G.; Logan, R. T., Jr.; Maleki, L.

    1994-01-01

    We designed a photonic link for antenna remoting based on our integrated system analysis. With this 12-km link, we successfully demonstrated photonic antenna-remoting capability at X-band (8.4 GHz) at one of NASA's Deep Space Stations while tracking the Magellan spacecraft.

  19. Photonics aided ultra-wideband W-band signal generation and air space transmission

    NASA Astrophysics Data System (ADS)

    Li, Xinying; Yu, Jianjun

    2016-02-01

    We achieve several field trial demonstrations of ultra-wideband W-band millimeter-wave (mm-wave) signal generation and its long-distance air space transmission based on some enabling technologies and advanced devices. First, we demonstrated photonics generation and up to 1.7-km wireless delivery of 20-Gb/s polarization division multiplexing quadrature phase shift keying (PDM-QPSK) signal at W-band, adopting both optical and antenna polarization multiplexing. Then, we demonstrated photonics generation and up to 300-m wireless delivery of 80-Gb/s PDM-QPSK signal at W-band, adopting both optical and antenna polarization multiplexing as well as multi-band multiplexing. We also demonstrated photonics generation and up to 100-m wireless delivery of 100-Gb/s QPSK signal at W-band, adopting antenna polarization multiplexing.

  20. How well can we really estimate the stellar masses of galaxies from broad-band photometry?

    NASA Astrophysics Data System (ADS)

    Mitchell, Peter D.; Lacey, Cedric G.; Baugh, Carlton M.; Cole, Shaun

    2013-10-01

    The estimated stellar masses of galaxies are widely used to characterize how the galaxy population evolves over cosmic time. If stellar masses can be estimated in a robust manner, free from any bias, global diagnostics such as the stellar mass function can be used to constrain the physics of galaxy formation. We explore how galaxy stellar masses, estimated by fitting broad-band spectral energy distributions (SEDs) with stellar population models, can be biased as a result of commonly adopted assumptions for the star formation and chemical enrichment histories, recycled fractions and dust attenuation curves of galaxies. We apply the observational technique of broad-band SED fitting to model galaxy SEDs calculated by the theoretical galaxy formation model GALFORM, isolating the effect of each of these assumptions. We find that, averaged over the entire galaxy population, the common assumption of exponentially declining star formation histories does not, by itself, adversely affect stellar mass estimation. However, we also show that this result does not hold when considering galaxies that have undergone a recent burst of star formation. We show that fixing the metallicity in SED fitting or using sparsely sampled metallicity grids can introduce mass-dependent systematics into stellar mass estimates. We find that the common assumption of a star-dust geometry corresponding to a uniform foreground dust screen can cause the stellar masses of dusty model galaxies to be significantly underestimated. Finally, we show that stellar mass functions recovered by applying SED fitting to model galaxies at high redshift can differ significantly in both shape and normalization from the intrinsic mass functions predicted by a given model. In particular, the effects of dust can reduce the normalization at the high-mass end by up to 0.6 dex in some cases. Given these differences, our methodology of using stellar masses estimated from model galaxy SEDs offers a new, self-consistent way to

  1. Low-energy broad-beam photon shielding data for constituents of concrete.

    PubMed

    Ogundare, Folorunso O; Ogundele, Samuel A; Akerele, Olumide O; Balogun, Fatai A

    2012-03-08

    The ability of concrete to attenuate ionizing radiation intensity is assessed using its linear or mass attenuation coefficient. In this work, the broad-beam linear and mass attenuation coefficients of different types of soils and cements used for making concrete were measured at different photon energies (60-1333 keV), nearly spanning the diagnostic photon energy range, using a NaI detector. The mass attenuation coefficients of cement decreased from 0.133 ± 0.002 at 60 keV to 0.047 ± 0.003 at 1332.5 keV. For soils, the mass attenuation coefficient of those collected from the beach was the highest, decreasing from 0.176 ± 0.003 cm²/g at 60 keV to 0.054 ± 0.001 cm²/g at 1332.5 keV. Land soils had the least value, decreasing from 0.124 ± 0.002 cm²/g at 60 keV to 0.044 ± 0.003 cm²/g at 1332.5 keV. Limestone had smaller mass attenuation coefficients than the cement produced using it. The implication of the above is that for making concrete, beach sand should be preferred as the sand component of the concrete. Models of the form μ(L) = A(E) exp[B(E)ρ] and μ(m) = αln(E)+β are proposed for fitting the linear attenuation coefficient and mass attenuation coefficient data, respectively.

  2. Enhanced third-harmonic generation in photonic crystals at band-gap pumping

    NASA Astrophysics Data System (ADS)

    Yurchenko, Stanislav O.; Zaytsev, Kirill I.; Gorbunov, Evgeny A.; Yakovlev, Egor V.; Zotov, Arsen K.; Masalov, Vladimir M.; Emelchenko, Gennadi A.; Gorelik, Vladimir S.

    2017-02-01

    More than one order enhancement of third-harmonic generation is observed experimentally at band-gap pumping of globular photonic crystals. Due to a lateral modulation of the dielectric permittivity in two- and three-dimensional photonic crystals, sharp peaks of light intensity (light localization) arise in the media at the band-gap pumping. The light localization enhances significantly the nonlinear light conversion, in particular, third-harmonic generation, in the near-surface volume of photonic crystal. The observed way to enhance the nonlinear conversion can be useful for creation of novel compact elements of nonlinear and laser optics.

  3. Ratio of UV to global broad band irradiation in Valencia, Spain

    NASA Astrophysics Data System (ADS)

    Martinez-Lozano, J. A.; Tena, F.; Utrillas, M. P.

    1999-06-01

    This paper presents the results of an analysis of 6 years of measurements of UV and broad band irradiation values in Valencia, Spain. Hourly and daily integrated UV irradiance, ITUV, measured by a TUVR Eppley radiometer, and global irradiance IT from a Kipp-Zonen CM-11 pyranometer, were highly correlated, with ITUV/IT percentages varying from 2.9% to 3.5% for hourly values and from 2.9% to 3.4% for daily values. If a general linear relation ITUV=mIT is considered, the correlation coefficient r is always greater than 0.96 for hourly values and 0.91 for daily values. However, the relation between ITUV/IT and the clearness index kT is poorly correlated, although improved results, with less dependence on a specific location, can be observed using the kTUV and kT clearness indices. For a general linear relation, kTUV=mkT, the correlation coefficient r is always greater than 0.89 for hourly values and 0.86 for daily values.

  4. A Broad-Band Phase-Contrast Wave-Front Sensor

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric; Wallace, J. Kent

    2005-01-01

    A broadband phase-contrast wave-front sensor has been proposed as a real-time wave-front sensor in an adaptive-optics system. The proposed sensor would offer an alternative to the Shack-Hartmann wave-front sensors now used in high-order adaptive-optics systems of some astronomical telescopes. Broadband sensing gives higher sensitivity than does narrow-band sensing, and it appears that for a given bandwidth, the sensitivity of the proposed phase-contrast sensor could exceed that of a Shack-Hartmann sensor. Relative to a Shack-Hartmann sensor, the proposed sensor may be optically and mechanically simpler. As described below, an important element of the principle of operation of a phase-contrast wave-front sensor is the imposition of a 90deg phase shift between diffracted and undiffracted parts of the same light beam. In the proposed sensor, this phase shift would be obtained by utilizing the intrinsic 90 phase shift between the transmitted and reflected beams in an ideal (thin, symmetric) beam splitter. This phase shift can be characterized as achromatic or broadband because it is 90deg at every wavelength over a broad wavelength range.

  5. The solar wind control of Jupiter's broad-band kilometric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Leblanc, Y.; Desch, M. D.

    1988-01-01

    Observations of the solar wind close to Jupiter are compared with the broad-band kilometric radio emission (bKOM), using data recorded by Voyager 1 and Voyager 2 during 1979. The lower bKOM frequencies, less than about 300 kHz, are found to correlate with the solar wind density and pressure and with the interplanetary magnetic field (IMF) magnitude during periods when there is a well-defined magnetic sector structure. The results suggest that lower frequency bKOM events are most likely to occur after a sector boundary has passed Jupiter during the period when the solar wind density and the IMF magnitude are increasing towards the sector center. The average bKOM energy per Jovian rotation tends to have lower values soon after the sector center has passed. Higher-frequency/higher-energy bKOM emission may be contaminated by hectometric emission (HOM) and differently correlated with solar activity. The solar wind control may also be obscured by some stronger control. It is suggested that electron density fluctuations in the Io torus, where the source is believed to be located, may be responsible for variations in the beaming and hence variations in the observed emission.

  6. A compact low cost, high-power broad band SPDT switch for HF and VHF radar

    NASA Astrophysics Data System (ADS)

    Agarwal, Arvind; Sarkar, B. K.

    1993-08-01

    The high power SPDT (single pole double throw) switch is extremely useful as a building block for forming linear and circular polarized beams in high power radars. It can also be used simply as a switch to route the RF to two different feeder lines. This paper brings out the detailed design and development of a broad band, low loss, SPDT switch for high power applications using vacuum relay. This fabricated unit is comparatively economical as the only purchased item is a vacuum relay. The size is also compact and two outputs are adjacent to each other as per the requirements. The constructed SPDT switch operates well from dc to VHF range (200 MHz) and has an insertion loss of less than 0.5 dB and isolation better than 35 dB up to 200 MHz. This switch has been tested for 120 kW peak power at 53 MHz with the load VSWR of 2:1 without any trace of breakdown and is already connected with the Indian MST Radar system. There are 32 such units in the whole radar system.

  7. Numerical experiments to investigate the accuracy of broad-band moment magnitude, Mwp

    NASA Astrophysics Data System (ADS)

    Hara, Tatsuhiko; Nishimura, Naoki

    2011-12-01

    We perform numerical experiments to investigate the accuracy of broad-band moment magnitude, Mwp. We conduct these experiments by measuring Mwp from synthetic seismograms and comparing the resulting values to the moment magnitudes used in the calculation of synthetic seismograms. In the numerical experiments using point sources, we have found that there is a significant dependence of Mwp on focal mechanisms, and that depths phases have a large impact on Mwp estimates, especially for large shallow earthquakes. Numerical experiments using line sources suggest that the effects of source finiteness and rupture propagation on Mwp estimates are on the order of 0.2 magnitude units for vertical fault planes with pure dip-slip mechanisms and 45° dipping fault planes with pure dip-slip (thrust) mechanisms, but that the dependence is small for strike-slip events on a vertical fault plane. Numerical experiments for huge thrust faulting earthquakes on a fault plane with a shallow dip angle suggest that the Mwp estimates do not saturate in the moment magnitude range between 8 and 9, although they are underestimates. Our results are consistent with previous studies that compared Mwp estimates to moment magnitudes calculated from seismic moment tensors obtained by analyses of observed data.

  8. Broad-band FMR study of ferromagnetic thin films patterned with antidot lattices

    NASA Astrophysics Data System (ADS)

    Bhat, V.; Woods, J.; De Long, L. E.; Hastings, J. T.; Metlushko, V. V.; Rivkin, K.; Heinonen, O.; Sklenar, J.; Ketterson, J. B.

    2012-09-01

    Previous ferromagnetic resonance (FMR) studies of ferromagnetic (FM) thin films patterned with antidot (AD) arrays have generally avoided the low-field, hysteretic regime that is dominated by irreversible domain wall (DW) dynamics in unpatterned films. Moreover, FM vortices have not yet been identified and systematically studied in films patterned with AD lattices (ADLs). We have studied DC magnetization and broad-band FMR data for permalloy thin films of thickness t ≈ 25 nm, patterned with square lattices of square-shaped AD of width D and separation d = 1000 nm. We observe highly reproducible magnetic hysteresis curves and FMR spectra in the low-field reversal regime (i.e., applied magnetic fields H < HC, where HC is the coercive field), which indicates the ADL enforces a reproducible evolution of spin textures compared to the more random behavior of DW evolution in unpatterned films. The width of the reversal regime (2HC) and the field separation between observed FMR modes increases with D for a fixed separation d. Our micromagnetic simulations suggest these effects are consequences of both edge pinning of moments by individual AD, or DW pinning by the extended ADL, which involves two distinct length scales L ≈ d and L ≫ d, respectively. FM vortices are observed in our simulations, and their stability sensitively depends upon the AD size and applied magnetic field history.

  9. Photonic band structure of dielectric membranes periodically textured in two dimensions

    NASA Astrophysics Data System (ADS)

    Pacradouni, V.; Mandeville, W. J.; Cowan, A. R.; Paddon, P.; Young, Jeff F.; Johnson, S. R.

    2000-08-01

    The real and imaginary photonic band structure of modes attached to two-dimensionally textured semiconductor membranes is determined experimentally and theoretically. These porous waveguides exhibit large (1000 cm-1 at 9500 cm-1) second-order optical gaps, highly dispersive lifetimes, and bands with well-defined polarization along directions of high symmetry.

  10. Multiplexed Volume Bragg Gratings in Narrowand Broad-band Spectral Systems: Analysis and Application

    NASA Astrophysics Data System (ADS)

    Ingersoll, Gregory B.

    Volume Bragg gratings (VBGs) are important holographic optical elements in many spectral systems. Using multiple volume gratings, whether multiplexed or arranged sequentially, provides advantages to many types of systems in overall efficiency, dispersion performance, flexibility of design, etc. However, the use of multiple gratings---particularly when the gratings are multiplexed in a single holographic optical element (HOE)---is subject to inter-grating coupling effects that ultimately limit system performance. Analyzing these coupling effects requires a more complex mathematical model than the straightforward analysis of a single volume grating. We present a matrix-based algorithm for determining diffraction efficiencies of significant coupled waves in these multiplexed grating holographic optical elements (HOEs). Several carefully constructed experiments with spectrally multiplexed gratings in dichromated gelatin verify our conclusions. Applications of this theory to broad- and narrow-band systems are explored in detailed simulations. Broadband systems include spectrum splitters for diverse-bandgap photovoltaic (PV) cells. Volume Bragg gratings can serve as effective spectrum splitters, but the inherent dispersion of a VBG can be detrimental given a broad-spectrum input. The performance of a holographic spectrum splitter element can be improved by utilizing multiple volume gratings, each operating in a slightly different spectral band. However, care must be taken to avoid inter-grating coupling effects that limit ultimate performance. We explore broadband multi-grating holographic optical elements (HOEs) in sandwiched arrangements where individual single-grating HOEs are placed in series, and in multiplexed arrangements where multiple gratings are recorded in a single HOE. Particle swarm optimization (PSO) is used to tailor these systems to the solar spectrum taking into account both efficiency and dispersion. Both multiplexed and sandwiched two-grating systems

  11. Broad-band spectrophotometry of HAT-P-32 b: search for a scattering signature in the planetary spectrum

    NASA Astrophysics Data System (ADS)

    Mallonn, M.; Bernt, I.; Herrero, E.; Hoyer, S.; Kirk, J.; Wheatley, P. J.; Seeliger, M.; Mackebrandt, F.; von Essen, C.; Strassmeier, K. G.; Granzer, T.; Künstler, A.; Dhillon, V. S.; Marsh, T. R.; Gaitan, J.

    2016-11-01

    Multicolour broad-band transit observations offer the opportunity to characterize the atmosphere of an extrasolar planet with small- to medium-sized telescopes. One of the most favourable targets is the hot Jupiter HAT-P-32 b. We combined 21 new transit observations of this planet with 36 previously published light curves for a homogeneous analysis of the broad-band transmission spectrum from the Sloan u' band to the Sloan z' band. Our results rule out cloud-free planetary atmosphere models of solar metallicity. Furthermore, a discrepancy at reddest wavelengths to previously published results makes a recent tentative detection of a scattering feature less likely. Instead, the available spectral measurements of HAT-P-32 b favour a completely flat spectrum from the near-UV to the near-IR. A plausible interpretation is a thick cloud cover at high altitudes.

  12. X-Ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    SciTech Connect

    Ostorero, L.; Moderski, R.; Stawarz, L.; Diaferio, A.; Kowalska, I.; Cheung, C.C.; Kataoka, J.; Begelman, M.C.; Wagner, S.J.; /Heidelberg Observ.

    2010-06-07

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the {gamma}-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N{sub H}) and radio (N{sub HI}) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  13. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    NASA Astrophysics Data System (ADS)

    Fathollahi Khalkhali, T.; Bananej, A.

    2016-12-01

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals.

  14. Flat and self-trapping photonic bands through coupling of two unidirectional edge modes

    NASA Astrophysics Data System (ADS)

    Fang, Yun-tuan; He, Han-Qing; Hu, Jian-xia; Chen, Lin-kun; Wen, Zhang

    2015-03-01

    We find a flat band and a self-trapping band through the coupling of two unidirectional edge modes, which was originally achieved by Wang et al. [Phys. Rev. Lett. 100, 013905 (2008), 10.1103/PhysRevLett.100.013905; Nature 461, 772 (2009), 10.1038/nature08293] in two-dimensional magneto-optical photonic crystals. We break up a square-lattice yttrium-iron-garnet photonic crystal forming a waveguide and two edges. Given a proper interval of the two edges, two unidirectional edge modes with opposite group velocity directions can be coupled. The coupling leads to a wide flat band in which the group velocity is near zero, and a self-trapping band in which light is totally localized around the source. The position of the flat band and the group velocity can be adjusted by the external magnetic field. Numerical simulations and theoretical analysis both demonstrate the two interesting band structures.

  15. Analysis of plasma-magnetic photonic crystal with a tunable band gap

    SciTech Connect

    Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A.

    2013-04-15

    In this paper, electromagnetic wave propagation through the one-dimensional plasma-magnetic photonic crystal in the presence of external magnetic field has been analyzed. The dispersion relation, transmission and reflection coefficients have been obtained by using the transfer matrix method. It is investigated how photonic band gap of photonic crystals will be tuned when both dielectric function {epsilon} and magnetic permeability {mu} of the constitutive materials, depend on applied magnetic field. This is shown by one dimensional photonic crystals consisting of plasma and ferrite material layers stacked alternately.

  16. Localization and characterization of the metallic band gaps in a ternary metallo-dielectric photonic crystal

    NASA Astrophysics Data System (ADS)

    Alejo-Molina, Adalberto; Romero-Antequera, David L.; Sánchez-Mondragón, José J.

    2014-02-01

    In this work, we demonstrate the existence of structural metallic band gaps in a ternary material, dielectric-dielectric-metal, and we show analytical equations for their computation. We show the existence of metallic band gaps not only in the lowest band but also for high frequencies. These gaps are structural ones but different and additional to the dielectric ones in the dielectric photonic crystal substrate. Therefore, as the desire properties of both, the dielectric and metallic photonic crystals, are present the applications for this particular structure are straightforward.

  17. Photonic Band Gap Structures as a Gateway to Nano-Photonics

    SciTech Connect

    FRITZ, IAN J.; GOURLEY, PAUL L.; HAMMONS, G.; HIETALA, VINCENT M.; JONES, ERIC D.; KLEM, JOHN F.; KURTZ, SHARON L.; LIN, SHAWN-YU; LYO, SUNGKWUN K.; VAWTER, GREGORY A.; WENDT, JOEL R.

    1999-08-01

    This LDRD project explored the fundamental physics of a new class of photonic materials, photonic bandgap structures (PBG), and examine its unique properties for the design and implementation of photonic devices on a nano-meter length scale for the control and confinement of light. The low loss, highly reflective and quantum interference nature of a PBG material makes it one of the most promising candidates for realizing an extremely high-Q resonant cavity, >10,000, for optoelectronic applications and for the exploration of novel photonic physics, such as photonic localization, tunneling and modification of spontaneous emission rate. Moreover, the photonic bandgap concept affords us with a new opportunity to design and tailor photonic properties in very much the same way we manipulate, or bandgap engineer, electronic properties through modern epitaxy.

  18. Analysis of Photonic Band Gaps in a Two-Dimensional Triangular Lattice with Superconducting Hollow Rods

    NASA Astrophysics Data System (ADS)

    Diaz-Valencia, B. F.; Calero, J. M.

    2017-02-01

    In this work, we use the plane wave expansion method to calculate photonic band structures in two-dimensional photonic crystals which consist of high-temperature superconducting hollow rods arranged in a triangular lattice. The variation of the photonic band structure with respect to both, the inner radius and the system temperature, is studied, taking into account temperatures below the critical temperature of the superconductor in the low frequencies regime and assuming E polarization of the incident light. Permittivity contrast and nontrivial geometry of the hollow rods lead to the appearance of new band gaps as compared with the case of solid cylinders. Such band gaps can be modulated by means of the inner radius and system temperature.

  19. Precision Column CO2 Measurement from Space Using Broad Band LIDAR

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2009-01-01

    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. To uncover the missing sink" that is responsible for the large discrepancies in the budget as we presently understand it, calculation has indicated that measurement accuracy of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of 0.25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong constraints on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics. We are examining the possibility of making precise measurements of atmospheric carbon dioxide using a broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.

  20. Broad Band Antireflection Coating on Zinc Sulphide Window for Shortwave infrared cum Night Vision System

    NASA Astrophysics Data System (ADS)

    Upadhyaya, A. S.; Bandyopadhyay, P. K.

    2012-11-01

    In state of art technology, integrated devices are widely used or their potential advantages. Common system reduces weight as well as total space covered by its various parts. In the state of art surveillance system integrated SWIR and night vision system used for more accurate identification of object. In this system a common optical window is used, which passes the radiation of both the regions, further both the spectral regions are separated in two channels. ZnS is a good choice for a common window, as it transmit both the region of interest, night vision (650 - 850 nm) as well as SWIR (0.9 - 1.7 μm). In this work a broad band anti reflection coating is developed on ZnS window to enhance the transmission. This seven layer coating is designed using flip flop design method. After getting the final design, some minor refinement is done, using simplex method. SiO2 and TiO2 coating material combination is used for this work. The coating is fabricated by physical vapour deposition process and the materials were evaporated by electron beam gun. Average transmission of both side coated substrate from 660 to 1700 nm is 95%. This coating also acts as contrast enhancement filter for night vision devices, as it reflect the region of 590 - 660 nm. Several trials have been conducted to check the coating repeatability, and it is observed that transmission variation in different trials is not very much and it is under the tolerance limit. The coating also passes environmental test for stability.

  1. Achieving omnidirectional photonic band gap in sputter deposited TiO{sub 2}/SiO{sub 2} one dimensional photonic crystal

    SciTech Connect

    Jena, S. Tokas, R. B.; Sarkar, P.; Thakur, S.; Sahoo, N. K.; Haque, S. Maidul; Misal, J. S.; Rao, K. D.

    2015-06-24

    The multilayer structure of TiO{sub 2}/SiO{sub 2} (11 layers) as one dimensional photonic crystal (1D PC) has been designed and then fabricated by using asymmetric bipolar pulse DC magnetron sputtering technique for omnidirectional photonic band gap. The experimentally measured photonic band gap (PBG) in the visible region is well matched with the theoretically calculated band structure (ω vs. k) diagram. The experimentally measured omnidirectional reflection band of 44 nm over the incident angle range of 0°-70° is found almost matching within the theoretically calculated band.

  2. Band gap characterization and slow light effects in periodic and quasiperiodic one dimensional photonic crystal

    NASA Astrophysics Data System (ADS)

    Zaghdoudi, J.; Kuszelewicz, R.; Kanzari, M.; Rezig, B.

    2008-04-01

    Slow light offers many opportunities for photonic devices by increasing the effective interaction length of imposed refractive index changes. The slow wave effect in photonic crystals is based on their unique dispersive properties and thus entirely dielectric in nature. In this work we demonstrate an interesting opportunity to decrease drastically the group velocity of light in one-dimensional photonic crystals constructed form materials with large dielectric constant without dispersion). We use numerical analysis to study the photonic properties of periodic (Bragg mirror) and quasiperiodic one dimensional photonic crystals realized to engineer slow light effects. Various geometries of the photonic pattern have been characterized and their photonic band-gap structure analyzed. Indeed, one dimensional quasi periodic photonic multilayer structure based on Fibonacci, Thue-Morse, and Cantor sequences were studied. Quasiperiodic structures have a rich and highly fragmented reflectivity spectrum with many sharp resonant peaks that could be exploited in a microcavity system. A comparison of group velocity through periodic and quasiperiodic photonic crystals was discussed in the context of slow light propagation. The velocity control of pulses in materials is one of the promising applications of photonic crystals. The material systems used for the numerical analysis are TiO II/SiO II and Te/SiO II which have a refractive index contrast of approximately 1.59 and 3.17 respectively. The proposed structures were modelled using the Transfer Matrix Method.

  3. High efficiency single transverse mode photonic band crystal lasers with low vertical divergence

    NASA Astrophysics Data System (ADS)

    Zhao, Shaoyu; Qu, Hongwei; Liu, Yun; Li, Lunhua; Chen, Yang; Zhou, Xuyan; Lin, Yuzhe; Liu, Anjin; Qi, Aiyi; Zheng, Wanhua

    2016-10-01

    High efficiency 980 nm longitudinal photonic band crystal (PBC) edge emitting laser diodes are designed and fabricated. The calculated results show that eight periods of Al0.1Ga0.9As and Al0.25Ga0.75As layer pairs can reduce the vertical far field divergence to 10.6° full width at half maximum (FWHM). The broad area (BA) lasers show a very high internal quantum efficiency ηi of 98% and low internal loss αi of 1.92 cm-1. Ridge waveguide (RW) lasers with 3 mm cavity length and 5um strip width provide 430 mW stable single transverse mode output at 500 mA injection current with power conversion efficiency (PCE) of 47% under continuous wave (CW) mode. A maximum PCE of 50% is obtained at the 300 mA injection current. A very low vertical far field divergence of 9.4° is obtained at 100 mA injection. At 500 mA injection, the vertical far field divergence increases to 11°, the beam quality factors M2 values are 1.707 in vertical direction and 1.769 in lateral direction.

  4. Energy transfer from Rhodamine-B to Oxazine-170 in the presence of photonic stop band

    NASA Astrophysics Data System (ADS)

    Kedia, Sunita; Sinha, Sucharita

    2015-03-01

    Photonic crystals can effectively suppress spontaneous emission of embedded emitter in the direction were photonic stop band overlaps emission band of emitter. This property of PhC has been successfully exploited to enhance energy transfer from a donor Rhodamine-B dye to an acceptor Oxazine-170 dye by inhibiting the fluorescence emission of donor in a controlled manner. Self-assembled PhC were synthesized using RhB dye doped polystyrene microspheres subsequently infiltrated with O-170 dye molecules dissolved in ethanol. An angle dependent enhancement of emission intensity of acceptor via energy transfer in photonic crystal environment was observed. These results were compared with observations made on a dye mixture solution of the same two dyes. Restricted number of available modes in photonic crystal inhibited de-excitation of donor thereby enabling efficient transfer of energy from excited donor to acceptor dye molecules.

  5. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    SciTech Connect

    Kang, Henry Hao-Chuan

    2004-12-19

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  6. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  7. Low-frequency photonic band structures in graphene-like triangular metallic lattice

    NASA Astrophysics Data System (ADS)

    Wang, Kang

    2016-11-01

    We study the low frequency photonic band structures in triangular metallic lattice, displaying Dirac points in the frequency spectrum, and constructed upon the lowest order regular polygonal tiles. We show that, in spite of the unfavourable geometrical conditions intrinsic to the structure symmetry, the lowest frequency photonic bands are formed by resonance modes sustained by local structure patterns, with the corresponding electric fields following a triangular distribution at low structure filling rate and a honeycomb distribution at high filling rate. For both cases, the lowest photonic bands, and thus the plasma gap, can be described in the framework of a tight binding model, and analysed in terms of local resonance modes and their mutual correlations. At high filling rate, the Dirac points and their movement following the structure deformation are described in the same framework, in relation with local structure patterns and their variations, as well as the particularity of the metallic lattice that enhances the topological anisotropy.

  8. Quantum speedup of an atom coupled to a photonic-band-gap reservoir

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Nan; Wang, Jing; Zhang, Han-Zhuang

    2017-01-01

    For a model of an atom embedded in a photonic-band-gap reservoir, it was found that the speedup of quantum evolution is subject to the atomic frequency changes. In this work, we propose different points of view on speeding up the evolution. We show that the atomic embedded position, the width of the band gap and the defect mode also play an important role in accelerating the evolution. By changing the embedded position of the atom and the coupling strength with the defect mode, the speedup region lies even outside the band-gap region, where the non-Markovian effect is weak. The mechanism for the speedup is due to the interplay of atomic excited population and the non-Markovianity. The feasible experimental system composed of quantum dots in the photonic crystal is discussed. These results provide new degree of freedoms to depress the quantum speed limit time in photonic crystals.

  9. Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity.

    PubMed

    Jeon, Seung-Woo; Han, Jin-Kyu; Song, Bong-Shik; Noda, Susumu

    2010-08-30

    To enhance the mechanical stability of a two-dimensional photonic crystal slab structure and maintain its excellent performance, we designed a glass-embedded silicon photonic crystal device consisting of a broad bandwidth waveguide and a nanocavity with a high quality (Q) factor, and then fabricated the structure using spin-on glass (SOG). Furthermore, we showed that the refractive index of the SOG could be tuned from 1.37 to 1.57 by varying the curing temperature of the SOG. Finally, we demonstrated a glass-embedded heterostructured cavity with an ultrahigh Q factor of 160,000 by adjusting the refractive index of the SOG.

  10. Broad-band colours and overall photometric properties of template galaxy models from stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Buzzoni, Alberto

    2005-08-01

    the observation (and the interpretation) of high-redshift surveys. In addition to broad-band colours, the modelling of Balmer line emission in disc-dominated systems shows that striking emission lines, like Hα, can very effectively track stellar birth rate in a galaxy. For these features to be useful age tracers as well, however, one should first assess the real change of b versus time on the basis of supplementary (and physically independent) arguments.

  11. Zero-coupling-gap degenerate band edge resonators in silicon photonics.

    PubMed

    Burr, Justin R; Reano, Ronald M

    2015-11-30

    Resonances near regular photonic band edges are limited by quality factors that scale only to the third power of the number of periods. In contrast, resonances near degenerate photonic band edges can scale to the fifth power of the number periods, yielding a route to significant device miniaturization. For applications in silicon integrated photonics, we present the design and analysis of zero-coupling-gap degenerate band edge resonators. Complex band diagrams are computed for the unit cell with periodic boundary conditions that convey characteristics of propagating and evanescent modes. Dispersion features of the band diagram are used to describe changes in resonance scaling in finite length resonators. Resonators with non-zero and zero coupling gap are compared. Analysis of quality factor and resonance frequency indicates significant reduction in the number of periods required to observe fifth power scaling when degenerate band edge resonators are realized with zero-coupling-gap. High transmission is achieved by optimizing the waveguide feed to the resonator. Compact band edge cavities with large optical field distribution are envisioned for light emitters, switches, and sensors.

  12. Differential-phase-shift quantum key distribution using heralded narrow-band single photons.

    PubMed

    Liu, Chang; Zhang, Shanchao; Zhao, Luwei; Chen, Peng; Fung, C-H F; Chau, H F; Loy, M M T; Du, Shengwang

    2013-04-22

    We demonstrate the first proof of principle differential phase shift (DPS) quantum key distribution (QKD) using narrow-band heralded single photons with amplitude-phase modulations. In the 3-pulse case, we obtain a quantum bit error rate (QBER) as low as 3.06% which meets the unconditional security requirement. As we increase the pulse number up to 15, the key creation efficiency approaches 93.4%, but with a cost of increasing the QBER. Our result suggests that narrow-band single photons maybe a promising source for the DPS-QKD protocol.

  13. Systematic design of flat band slow light in photonic crystal waveguides.

    PubMed

    Li, Juntao; White, Thomas P; O'Faolain, Liam; Gomez-Iglesias, Alvaro; Krauss, Thomas F

    2008-04-28

    We present a systematic procedure for designing "flat bands" of photonic crystal waveguides for slow light propagation. The procedure aims to maximize the group index - bandwidth product by changing the position of the first two rows of holes of W1 line defect photonic crystal waveguides. A nearly constant group index - bandwidth product is achieved for group indices of 30-90 and as an example, we experimentally demonstrate flat band slow light with nearly constant group indices of 32.5, 44 and 49 over 14 nm, 11 nm and 9.5 nm bandwidth around 1550 nm, respectively.

  14. Full band structure calculation of two-photon indirect absorption in bulk silicon

    SciTech Connect

    Cheng, J. L.; Rioux, J.; Sipe, J. E.

    2011-03-28

    Degenerate two-photon indirect absorption in silicon is an important limiting effect on the use of silicon structures for all-optical information processing at telecommunication wavelengths. We perform a full band structure calculation to investigate two-photon indirect absorption in bulk silicon, using a pseudopotential description of the energy bands and an adiabatic bond charge model to describe phonon dispersion and polarization. Our results agree well with some recent experimental results. The transverse acoustic/optical phonon-assisted processes dominate.

  15. Photonic crystal alloys: a new twist in controlling photonic band structure properties.

    PubMed

    Kim, Hee Jin; Kim, Dong-Uk; Roh, Young-Geun; Yu, Jaejun; Jeon, Heonsu; Park, Q-Han

    2008-04-28

    We identified new photonic structures and phenomenon that are analogous to alloy crystals and the associated electronic bandgap engineering. From a set of diamond-lattice microwave photonic crystals of randomly mixed silica and alumina spheres but with a well defined mixing composition, we observed that both bandedges of the L-point bandgap monotonically shifted with very little bowing as the composition was varied. The observed results were in excellent agreement with the virtual crystal approximation theory originally developed for electronic properties of alloy crystals. This result signifies the similarity and correspondence between photonics and electronics.

  16. Broad-band Rayleigh wave phase velocity maps (10-150 s) across the United States from ambient noise data

    NASA Astrophysics Data System (ADS)

    Zhao, Kaifeng; Luo, Yinhe; Xie, Jun

    2017-02-01

    In this study, we demonstrate the feasibility of imaging broad-band (10-150 s) Rayleigh wave phase velocity maps on a continental scale using ambient noise tomography (ANT). We obtain broad-band Rayleigh waves from cross-correlations of ambient noise data between all station pairs of USArray and measure the dispersion curves from these cross-correlations at a period band of 10-150 s. The large-scale dense USArray enables us to obtain over 500 000 surface wave paths which cover the contiguous United States densely. Using these paths, we generate Rayleigh wave phase velocity maps at 10-150 s periods. Our phase velocity maps are similar to other reported phase velocity maps based on ambient noise data at short periods (<50 s) and based on earthquake data at intermediate/long periods (50-90 s). This study extends ANT from short/intermediate periods (<50 s) to long periods up to 150 s in a continental scale of the USA. These broad-band phase velocity maps from ANT can be used to construct 3-D lithospheric and asthenospheric velocity structures.

  17. Generation of Narrow-Band Polarization-Entangled Photon Pairs at a Rubidium D1 Line

    NASA Astrophysics Data System (ADS)

    Tian, Long; Li, Shujing; Yuan, Haoxiang; Wang, Hai

    2016-12-01

    Using the process of cavity-enhanced spontaneous parametric down-conversion (SPDC), we generate a narrow-band polarization-entangled photon pair resonant on the rubidium (Rb) D1 line (795 nm). The degenerate single-mode photon pair is selected by multiple temperature controlled etalons. The linewidth of generated polarization-entangled photon pairs is 15 MHz which matches the typical atomic memory bandwidth. The measured Bell parameter for the polarization-entangled photons S = 2.73 ± 0.04 which violates the Bell-CHSH inequality by ˜18 standard deviations. The presented entangled photon pair source could be utilized in quantum communication and quantum computing based on quantum memories in atomic ensemble.

  18. True-time-delay photonic beamformer for an L-band phased array radar

    NASA Astrophysics Data System (ADS)

    Zmuda, Henry; Toughlian, Edward N.; Payson, Paul M.; Malowicki, John E.

    1995-10-01

    The problem of obtaining a true-time-delay photonic beamformer has recently been a topic of great interest. Many interesting and novel approaches to this problem have been studied. This paper examines the design, construction, and testing of a dynamic optical processor for the control of a 20-element phased array antenna operating at L-band (1.2-1.4 GHz). The approach taken here has several distinct advantages. The actual optical control is accomplished with a class of spatial light modulator known as a segmented mirror device (SMD). This allows for the possibility of controlling an extremely large number (tens of thousands) of antenna elements using integrated circuit technology. The SMD technology is driven by the HDTV and laser printer markets so ultimate cost reduction as well as technological improvements are expected. Optical splitting is efficiently accomplished using a diffractive optical element. This again has the potential for use in antenna array systems with a large number of radiating elements. The actual time delay is achieved using a single acousto-optic device for all the array elements. Acousto-optic device technologies offer sufficient delay as needed for a time steered array. The topological configuration is an optical heterodyne system, hence high, potentially millimeter wave center frequencies are possible by mixing two lasers of slightly differing frequencies. Finally, the entire system is spatially integrated into a 3D glass substrate. The integrated system provides the ruggedness needed in most applications and essentially eliminates the drift problems associated with free space optical systems. Though the system is presently being configured as a beamformer, it has the ability to operate as a general photonic signal processing element in an adaptive (reconfigurable) transversal frequency filter configuration. Such systems are widely applicable in jammer/noise canceling systems, broadband ISDN, and for spread spectrum secure communications

  19. Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer

    SciTech Connect

    Trifonov, T.; Marsal, L.F.; Pallares, J.; Rodriguez, A.; Alcubilla, R.

    2004-11-15

    We investigate different aspects of the absolute photonic band gap (PBG) formation in two-dimensional photonic structures consisting of rods covered with a thin dielectric film. Specifically, triangular and honeycomb lattices in both complementary arrangements, i.e., air rods drilled in silicon matrix and silicon rods in air, are studied. We consider that the rods are formed of a dielectric core (silicon or air) surrounded by a cladding layer of silicon dioxide (SiO{sub 2}), silicon nitride (Si{sub 3}N{sub 4}), or germanium (Ge). Such photonic lattices present absolute photonic band gaps, and we study the evolution of these gaps as functions of the cladding material and thickness. Our results show that in the case of air rods in dielectric media the existence of dielectric cladding reduces the absolute gap width and may cause complete closure of the gap if thick layers are considered. For the case of dielectric rods in air, however, the existence of a cladding layer can be advantageous and larger absolute PBG's can be achieved.

  20. Nonequilibrium Band Mapping of Unoccupied Bulk States below the Vacuum Level by Two-Photon Photoemission

    SciTech Connect

    Johnson, P.D.; Hao, Z.; Dadap, J.I.; Knox, K.R.; Yilmaz, M.B.; Zaki, N.; Osgood, R.M.

    2010-07-01

    We demonstrate angle-resolved, tunable, two-photon photoemission (2PPE) to map a bulk unoccupied band, viz. the Cu sp band 0 to 1 eV below the vacuum level, in the vicinity of the L point. This short-lived bulk band is seen due to the strong optical pump rate, and the observed transition energies and their dispersion with photon energy {h_bar}{omega}, are in excellent agreement with tight-binding band-structure calculations. The variation of the final-state energy with {h_bar}{omega} has a measured slope of -1.64 in contrast to values of 1 or 2 observed for 2PPE from two-dimensional states. This unique variation illustrates the significant role of the perpendicular momentum {h_bar}k{perpendicular} in 2PPE.

  1. Nonequilibrium Band Mapping of Unoccupied Bulk States below the Vacuum Level by Two-Photon Photoemission

    SciTech Connect

    Hao Zhaofeng; Dadap, J. I.; Knox, K. R.; Zaki, N.; Osgood, R. M.; Yilmaz, M. B.; Johnson, P. D.

    2010-07-02

    We demonstrate angle-resolved, tunable, two-photon photoemission (2PPE) to map a bulk unoccupied band, viz. the Cu sp band 0 to 1 eV below the vacuum level, in the vicinity of the L point. This short-lived bulk band is seen due to the strong optical pump rate, and the observed transition energies and their dispersion with photon energy ({h_bar}/2{pi}){omega}, are in excellent agreement with tight-binding band-structure calculations. The variation of the final-state energy with ({h_bar}/2{pi}){omega} has a measured slope of {approx}1.64 in contrast to values of 1 or 2 observed for 2PPE from two-dimensional states. This unique variation illustrates the significant role of the perpendicular momentum ({h_bar}/2{pi})k{sub perpendicular} in 2PPE.

  2. Analytical Approximation of the Deconvolution of Strongly Overlapping Broad Fluorescence Bands

    NASA Astrophysics Data System (ADS)

    Dubrovkin, J. M.; Tomin, V. I.; Ushakou, D. V.

    2016-09-01

    A method for deconvoluting strongly overlapping spectral bands into separate components that enables the uniqueness of the deconvolution procedure to be monitored was proposed. An asymmetric polynomial-modified function subjected to Fourier filtering (PMGFS) that allowed more accurate and physically reasonable band shapes to be obtained and also improved significantly the deconvolution convergence was used as the band model. The method was applied to the analysis of complexation in solutions of the molecular probe 4'-(diethylamino)-3-hydroxyflavone with added LiCl. Two-band fluorescence of the probe in such solutions was the result of proton transfer in an excited singlet state and overlapped strongly with stronger spontaneous emission of complexes with the ions. Physically correct deconvolutions of overlapping bands could not always be obtained using available software.

  3. Diamond Opal-Replica Photonic Crystals and Graphitic Metallic Photonic Band Gap Structures: Fabrication and Properties

    NASA Astrophysics Data System (ADS)

    Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Khayrullin, I. I.; Ralchenko, V. G.

    1998-03-01

    We demonstrate a new method for the formation of photonic bandgap crystals that operate at optical wavelengths. This method involves the templating of a self-assempled SiO2 lattice with diamond, graphite, or amorphous forms of carbon, followed by the removal of the original SiO2 lattice matrix by chemical means. Such carbon opal replicas are the "air type" of photonic crystal (where air replaces silica spheres) that are most favourable for photonic bandgap formation. Surprisingly, the structure of the original opal lattice having a typical cubic lattice dimension of 250 nm) is reliably replicated down to the nanometer scale using either a diamond, graphite, or amorphous carbon templated material. The optical properties of these photonic bandgap crystals are reported and compared with both theory and experimental results on other types of opal-derived lattices that we have investigated. The graphitic reverse opal is the first example of a network type metallic photonic crystal for the optical domain, for which a large photonic bandgap have been predicted.

  4. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    SciTech Connect

    Zhang Haifeng; Liu Shaobin; Kong Xiangkun; Bian Borui; Dai Yi

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonic band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.

  5. Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response.

    PubMed

    Gordon, H R

    1995-12-20

    A methodology for delineating the influence of finite spectral bandwidths and significant out-of-band response of sensors for remote sensing of ocean color is developed and applied to the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS). The basis of the method is the application of the sensor's spectral-response functions to the individual components of the top-of-the-atmosphere (TOA) radiance rather than the TOA radiance itself. For engineering purposes, this approach allows one to assess easily (and quantitatively) the potential of a particular sensor design for meeting the system-sensor plus algorithms-performance requirements. In the case of the SeaWiFS, two significant conclusions are reached. First, it is found that the out-of-band effects on the water-leaving radiance component of the TOA radiance are of the order of a few percent compared with a sensor with narrow spectral response. This implies that verification that the SeaWiFS system-sensor plus algorithms-meets the goal of providing the water-leaving radiance in the blue in clear ocean water to within 5% will require measurements of the water-leaving radiance over the entire visible spectrum as opposed to just narrow-band (10-20-nm) measurements in the blue. Second, it is found that the atmospheric correction of the SeaWiFS can be degraded by the influence of water-vapor absorption in the shoulders of the atmospheric-correction bands in the near infrared. This absorption causes an apparent spectral variation of the aerosol component between these two bands that will be uncharacteristic of the actual aerosol present, leading to an error in correction. This effect is dependent on the water-vapor content of the atmosphere. At typical water-vapor concentrations the error is larger for aerosols with a weak spectral variation in reflectance than for those that display a strong spectral variation. If the water-vapor content is known, a simple procedure is provided to remove the degradation of the atmospheric

  6. Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.

    PubMed

    Contestabile, G; Yoshida, Y; Maruta, A; Kitayama, K

    2012-12-03

    We report broadband, all-optical wavelength conversion over 100 nm span, in full S- and C-band, with positive conversion efficiency with low optical input power exploiting dual pump Four-Wave-Mixing in a Quantum Dot Semiconductor Optical Amplifier (QD-SOA). We also demonstrate by Error Vector Magnitude analysis the full transparency of the conversion scheme for coherent modulation formats (QPSK, 8-PSK, 16-QAM, OFDM-16QAM) in the whole C-band.

  7. Chirped distributed Bragg reflector for broad-band group velocity dispersion compensation in terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Xu, C.; Ban, D.

    2016-11-01

    Behaviors of chirped DBR for group velocity dispersion (GVD) compensation in THz QCLs with metal-metal waveguides have been investigated theoretically in both 1D and 3D models with COMSOL Multiphysics. The strategy of designing chirped DBR for GVD compensation in terahertz frequency range has been presented. In order to achieve broad-band GVD compensation with less distortion, a two-section chirped DBR structure is proposed.

  8. Research on Shore-Ship Photonic Link Performance for Two- Frequency-Band Signals

    NASA Astrophysics Data System (ADS)

    Zuo, Yanqin; Cong, Bo

    2016-02-01

    Ka and Ku bands links for shore-ship communications suffer limited bandwidth and high loss. In this paper, photonics-based links are proposed and modeled. The principle of phase modulation (PM) is elaborated and analyzed. It is showed that PM can effectively suppress high-order inter-modulation distortion (IMD), reduce the insert loss and improve the reliability of the system.

  9. Photonic band-gap formation by optical-phase-mask lithography.

    PubMed

    Chan, Timothy Y M; Toader, Ovidiu; John, Sajeev

    2006-04-01

    We demonstrate an approach for fabricating photonic crystals with large three-dimensional photonic band gaps (PBG's) using single-exposure, single-beam, optical interference lithography based on diffraction of light through an optical phase mask. The optical phase mask (OPM) consists of two orthogonally oriented binary gratings joined by a thin, solid layer of homogeneous material. Illuminating the phase mask with a normally incident beam produces a five-beam diffraction pattern which can be used to expose a suitable photoresist and produce a photonic crystal template. Optical-phase-mask Lithography (OPML) is a major simplification from the previously considered multibeam holographic lithography of photonic crystals. The diffracted five-beam intensity pattern exhibits isointensity surfaces corresponding to a diamondlike (face-centered-cubic) structure, with high intensity contrast. When the isointensity surfaces in the interference patterns define a silicon-air boundary in the resulting photonic crystal, with dielectric contrast 11.9 to 1, the optimized PBG is approximately 24% of the gap center frequency. The ideal index contrast for the OPM is in the range of 1.7-2.3. Below this range, the intensity contrast of the diffraction pattern becomes too weak. Above this range, the diffraction pattern may become too sensitive to structural imperfections of the OPM. When combined with recently demonstrated polymer-to-silicon replication methods, OPML provides a highly efficient approach, of unprecedented simplicity, for the mass production of large-scale three-dimensional photonic band-gap materials.

  10. Experimental Generation of Narrow-Band Paired Photons: from Damped Rabi Oscillation to Group Delay

    NASA Astrophysics Data System (ADS)

    Liao, Kai-Yu; Yan, Hui; He, Jun-Yu; Huang, Wei; Zhang, Zhi-Ming; Zhu, Shi-Liang

    2014-03-01

    We report the experimental generation of narrow-band paired photons through electromagnetically induced transparency and spontaneous four-wave mixing in a two-dimensional magneto-optical trap (2D MOT). By controlling the optical depth of the 2D MOT from 0 to 40, the temporal length of the generated narrow-band paired photons can be varied from 50 to 900 ns. The ‘transition’ between damped Rabi oscillation and group delay is observed undisputedly. In the damped Rabi oscillation regime, a violation factor of the Cauchy—Schwartz inequality as large as 6642 is observed. In the group delay regime, sub-MHz linewidth (~ 0.65 MHz) paired photons are obtained with a generation rate of about 0.8 × 105 s-1.

  11. Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase

    NASA Astrophysics Data System (ADS)

    Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-07-01

    This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately ‑0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically).

  12. Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase

    PubMed Central

    Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-01-01

    This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475

  13. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    SciTech Connect

    Sutherland, Kevin Jerome

    2001-01-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  14. Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Linfang; Ye, Zhuo; He, Sailing

    2003-07-01

    A two-stage genetic algorithm (GA) with a floating mutation probability is developed to design a two-dimensional (2D) photonic crystal of a square lattice with the maximal absolute band gap. The unit cell is divided equally into many square pixels, and each filling pattern of pixels with two dielectric materials corresponds to a chromosome consisting of binary digits 0 and 1. As a numerical example, the two-stage GA gives a 2D GaAs structure with a relative width of the absolute band gap of about 19%. After further optimization, a new 2D GaAs photonic crystal is found with an absolute band gap much larger than those reported before.

  15. 160 Gbit/s photonics wireless transmission in the 300-500 GHz band

    NASA Astrophysics Data System (ADS)

    Yu, X.; Jia, S.; Hu, H.; Galili, M.; Morioka, T.; Jepsen, P. U.; Oxenløwe, L. K.

    2016-11-01

    To accommodate the ever increasing wireless traffic in the access networks, considerable efforts have been recently invested in developing photonics-assisted wireless communication systems with very high data rates. Superior to photonic millimeter-wave systems, terahertz (THz) band (300 GHz-10 THz) provides a much larger bandwidth and thus promises an extremely high capacity. However, the capacity potential of THz wireless systems has by no means been achieved yet. Here, we successfully demonstrate 160 Gbit/s wireless transmission by using a single THz emitter and modulating 25 GHz spaced 8 channels (20 Gbps per channel) in the 300-500 GHz band, which is the highest bitrate in the frequency band above 300 GHz, to the best of our knowledge.

  16. Broad-band radio behaviour of flaring BL Lac (J2202+4216)

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Fuhrmann, L.; Nestoras, I.; Schmidt, R.; Zensus, J. A.; Krichbaum, T. P.; Ungerechts, H.; Sievers, A.; Riquelme, D.

    2011-05-01

    Responding to the ATels #3368, #3371, #3375 and #3377 reporting the recent activity of BL Lac (J2202+4216, RA= 22:02:43, DEC=+42:16:39 in J2000) at different high energy bands, we here report its behaviour in the cm-to-mm radio bands as observed by the F-GAMMA program. Recent activity: Observations performed with the Effelsberg 100-m and the IRAM 30-m telescope over the last months on May 1, 7, 20 and 25, show a persistent increase in the flux at all frequencies observed.

  17. Detailed Study of the TE band structure of two dimensional metallic photonic crystals with square symmetry

    NASA Astrophysics Data System (ADS)

    Sedghi, Aliasghar; Valiaghaie, Soma; Soufiani, Ahad Rounaghi

    2014-10-01

    By virtue of the efficiency of the Dirichlet-to-Neumann map method, we have calculated, for H-polarization (TE mode), the band structure of 2D photonic crystals with a square lattice composed of metallic rods embedded in an air background. The rod in the unit cell is chosen to be circular in shape. Here, from a practical point of view, in order to obtain maximum band gaps, we have studied the band structure as a function of the size of the rods. We have also studied the flat bands appearing in the band structures and have shown that for frequencies around the surface plasmon frequency, the modes are highly localized at the interface between the metallic rods and the air background.

  18. Advanced Multi-Photon Chromophores for Broad-Band Ultra-Fast Optical Limiting

    DTIC Science & Technology

    2014-11-04

    measured by NLT method show that both isomers show similar 2PA spectra and peak cross section values; 2. New near collimated beam technique for high...cis- and trans-DPAF and of cis- and trans- BTF (c-d) in THF at ambient conditions; Empty blue triangles correspond to “trans” isomer ; Solid green...squares – to “cis” isomer . Linear absorption spectra are shown for comparison by solid lines. 3.2.7. Pt-PE1-R complexes series (synthesis Tom

  19. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO₂.

    PubMed

    Waterhouse, G I N; Wahab, A K; Al-Oufi, M; Jovic, V; Anjum, D H; Sun-Waterhouse, D; Llorca, J; Idriss, H

    2013-10-10

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.

  20. Compact Broad-Band Wavelength-Agile Mid-Infrared Semiconductor Lasers for Spectroscopic Sensing

    DTIC Science & Technology

    2004-12-01

    IEEE Photon. Technol. Lett. Jan 2005). Yi Wang, Chuan Peng, HuanLin Zhang, and Han Q. Le, “Wavelength modulation imaging with tunable mid- infrared...Wen-Yen Hwang, Jae Um, Bujin Guo, Hao Lee, and Chih- Hsiang Lin, “Continuous-wave operation of a 5.2 µm quantum-cascade laser up to 210 K”, Appl. Phys...Lett. 79, 1745-1747, (2001). 2. Proceedings Yi Wang, Yang Wang, Chuan Peng, HuanLin Zhang, Anush Seetheraman, and Han Q. Le, “Concepts for Scalable

  1. Experimental and Theoretical Studies of Photonic Band gaps in Artificial Opals

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yin, Ming; Arammash, Fouzi; Datta, Timir

    2014-03-01

    Photonic band structure and band gap were numerically computed for a number of closed packed simple cubic and Hexagonal arrangements of non-conducting spheres using ``Finite Difference Time Domain Method''. Photonic gaps were found to exist in the simple cubic overlapping spheres with index of refraction (n) >3.2. Gap increased linearly from 0.117- 0.161 (1/micron) as lattice constant decreased from 0.34 to 0.18 (micron). For less than 3.2 no gap was obtained. Also, no gaps were obtained for hexagonal packing. UV-VIS reflectivity and transmission measurements of polycrystalline bulk artificial opals of silica (SiO2) spheres, ranging from 250nm to 300nm in sphere diameter indicate a reflection peak in the 500-600 nm regimes. Consistent with photonic band gap behavior we find that reflectivity is enhanced in the same wavelength where transmission is reduced. To the best of our knowledge this is the first observation of photonic gap in the visible wave length under ambient conditions. The wave length at the reflectance peak increases with the diameter of the SiO2 spheres, and is approximately twice the diameter following Bragg reflection. DOD Award No 60177-RT-H from ARO.

  2. Single-pulse broad-band rotational CARS thermometry of cold N2 gas

    NASA Technical Reports Server (NTRS)

    Chang, R. K.; Murphy, D. V.

    1981-01-01

    Coherent anti Stokes Raman scattering (CARS) from the pure rotational Raman lines of N2 was employed to measure the instantaneous (10 nsec) rotational temperature of the gas at room temperature and below. An entire rotational CARS spectrum was generated by a single laser pulse using a broad bandwidth dye laser and was recorded on an optical multichannel analyzer. A best fit temperature obtained for individual experimental spectra by comparison with calculated spectra. Good agreement between CARS temperatures and thermocouple temperatures was observed.

  3. UV-visible luminescence properties of the broad-band Yb:CALGO laser crystal

    NASA Astrophysics Data System (ADS)

    Jaffres, A.; Sharma, S. K.; Loiseau, P.; Viana, B.; Doualan, J. L.; Moncorgé, R.

    2015-03-01

    Yb:CALGO is now recognized to exhibit outstanding properties for the production of high-power and ultra-short laser pulses in the near infrared spectral range. However, various UV-visible absorption bands can be also observed due to different types of charge transfer mechanisms. Some of them are assigned to the formation of color centers due to small polarons and others to O2-→Yb3+ ligand-to-metal charge transfer (LMCT) transitions. The former can be removed by using adequate thermal treatments. The latter are intrinsic and they are very intense with cross sections of about two orders of magnitude larger that the near infrared ones. In fact, such LMCT absorption bands are responsible for relatively large changes of ionic polarizabilities and to non-negligible pseudo-nonlinear changes of refractive indices which should certainly affect the laser properties of Yb:CALGO at high pump power levels.

  4. A theoretical roadmap for optical lithography of photonic band gap microchips

    NASA Astrophysics Data System (ADS)

    Chan, Timothy Y. M.

    This thesis presents designs and fabrication algorithms for 3D photonic band gap (PBG) material synthesis and embedded optical waveguide networks. These designs are suitable for large scale micro-fabrication using optical lithography methods. The first of these is a criss-crossing pore structure based on fabrication by direct photo-electrochemical etching in single-crystal silicon. We demonstrate that a modulation of the pore radius between pore crossing points leads to a moderately large PBG. We delineate a variety of PBG architectures amenable to fabrication by holographic lithography. In this technique, an optical interference pattern exposes a photo-sensitive material, leading to a template structure in the photoresist whose dielectric-air interface corresponds to an iso-intensity surface in the exposing interference pattern. We demonstrate PBG architectures obtainable from the interference patterns from four independent beams. The PBG materials may be fabricated by replicating the developed photoresist with established silicon replication methods. We identify optical beam configurations that optimize the intensity contrast in the photoresist. We describe the invention of a new approach to holographic lithography of PBG materials using the diffraction of light through a three-layer optical phase mask (OPM). We show how the diffraction-interference pattern resulting from single beam illumination of our OPM closely resembles a diamondlike architecture for suitable designs of the phase mask. It is suggested that OPML may both simplify and supercede all previous optical lithography approaches to PBG material synthesis. Finally, we demonstrate theoretically the creation of three-dimensional optical waveguide networks in holographically defined PBG materials. This requires the combination of direct laser writing (DLW) of lines of defects within the holographically-defined photoresist and the replication of the microchip template with a high refractive index

  5. Emergence of Very Broad Infrared Absorption Band By Hyperdoping of Silicon with Chalcogens

    DTIC Science & Technology

    2013-06-03

    measured by Hall effect in Ref. 9 (crosses) as functions of implanted sulfur dose. (c) Calculated reflectivity by Kramers- Kronig transformation of the...MIR band is small enough, this assumption is reasonable according to the Kramers- Kronig relationship between optical absorption and reflectivity...calculated by a Kramers- Kronig transformation of the absorption spectrum shown in Fig. 1(a) and the results are shown in Fig. 1(c). However, the a value

  6. Broad-band radio activity of gamma-ray flaring FSRQ B3 0650+453

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Fuhrmann, L.; Angelakis, E.; Nestoras, I.; Krichbaum, T. P.; Zensus, J. A.; Ungerechts, H.; Sievers, A.; Riquelme, D.

    2011-08-01

    Responding to ATel #3580 reporting the recent Fermi/GST flaring activity of B3 0650+453 at gamma-rays late August 2011, we here report its behavior at radio bands as observed by the F-GAMMA program. Long-term activity: The source has been observed with the Effelsberg 100-m and the IRAM 30-m telescope since January and late July 2009, respectively.

  7. Broad band radio outburst of gamma-ray flaring blazar 4C+28.07

    NASA Astrophysics Data System (ADS)

    Nestoras, I.; Fuhrmann, L.; Angelakis, E.; Schmidt, R.; Krichbaum, T. P.; Zensus, J. A.; Ungerechts, H.; Sievers, A.; Riquelme, D.

    2011-10-01

    Responding to ATel #3670 reporting the recent Fermi LAT flaring activity of 4C+28.07 (J0237+2848) at gamma-rays on October 3, 2011, and the optical follow-up reported in ATel #3672, we here report its past and recent behavior at radio bands as observed by the F GAMMA program. Long-term activity: The source has been observed with the Effelsberg 100-m and the IRAM 30-m telescopes since January and June 2007, respectively.

  8. Band structure of one-dimensional plasma photonic crystals using the Fresnel coefficients method

    NASA Astrophysics Data System (ADS)

    Jafari, A.; Rahmat, A.

    2017-04-01

    The current study has examined the band structures of two types of photonic crystals (PCs). The first is a one-dimensional metamaterial photonic crystal (1DMMPC) composed of double-layered units for which both layers of each unit are dielectric. The second type is a very similar one-dimensional plasma photonic crystal (1DPPC) also composed of double-layered units in which the first layer is a dielectric material but the second is a plasma layer. This study compares the band structures of the 1DMMPC with specific optical characteristics of the 1DPPC using the Fresnel coefficients method and also compares the results of this method with the results of the transfer matrix method. It is concluded that the dependency of the electric permittivity of the plasma layer on the incident field frequency causes differences in the band structures in 1DMMPC and 1DPPC for both TE and TM polarizations and their gaps reside in different frequencies. The band structures of the 1DMMPC and 1DPPC are confirmed by the results of the transfer matrix method.

  9. Band structure of one-dimensional plasma photonic crystals using the Fresnel coefficients method

    NASA Astrophysics Data System (ADS)

    Jafari, A.; Rahmat, A.

    2016-11-01

    The current study has examined the band structures of two types of photonic crystals (PCs). The first is a one-dimensional metamaterial photonic crystal (1DMMPC) composed of double-layered units for which both layers of each unit are dielectric. The second type is a very similar one-dimensional plasma photonic crystal (1DPPC) also composed of double-layered units in which the first layer is a dielectric material but the second is a plasma layer. This study compares the band structures of the 1DMMPC with specific optical characteristics of the 1DPPC using the Fresnel coefficients method and also compares the results of this method with the results of the transfer matrix method. It is concluded that the dependency of the electric permittivity of the plasma layer on the incident field frequency causes differences in the band structures in 1DMMPC and 1DPPC for both TE and TM polarizations and their gaps reside in different frequencies. The band structures of the 1DMMPC and 1DPPC are confirmed by the results of the transfer matrix method.

  10. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band.

    PubMed

    Huang, Li; Chowdhury, Dibakar Roy; Ramani, Suchitra; Reiten, Matthew T; Luo, Sheng-Nian; Taylor, Antoinette J; Chen, Hou-Tong

    2012-01-15

    We present the design, numerical simulations and experimental measurements of terahertz metamaterial absorbers with a broad and flat absorption top over a wide incidence angle range for either transverse electric or transverse magnetic polarization depending on the incident direction. The metamaterial absorber unit cell consists of two sets of structures resonating at different but close frequencies. The overall absorption spectrum is the superposition of individual components and becomes flat at the top over a significant bandwidth. The experimental results are in excellent agreement with numerical simulations.

  11. Two-Dimensional Phononic-Photonic Band Gap Optomechanical Crystal Cavity

    NASA Astrophysics Data System (ADS)

    Safavi-Naeini, Amir H.; Hill, Jeff T.; Meenehan, Seán; Chan, Jasper; Gröblacher, Simon; Painter, Oskar

    2014-04-01

    We present the fabrication and characterization of an artificial crystal structure formed from a thin film of silicon that has a full phononic band gap for microwave X-band phonons and a two-dimensional pseudo-band gap for near-infrared photons. An engineered defect in the crystal structure is used to localize optical and mechanical resonances in the band gap of the planar crystal. Two-tone optical spectroscopy is used to characterize the cavity system, showing a large coupling (g0/2π≈220 kHz) between the fundamental optical cavity resonance at ωo/2π =195 THz and colocalized mechanical resonances at frequency ωm/2π ≈9.3 GHz.

  12. Effects of broad band electromagnetic fields on HSP70 expression and ischemia-reperfusion in rat hearts.

    PubMed

    Ronchi, Raffaella; Marano, Lidia; Braidotti, Paola; Bianciardi, Paola; Calamia, Mario; Fiorentini, Cesare; Samaja, Michele

    2004-09-03

    Although exposure to broad band (0.2-20 MHz) electromagnetic fields (EMF) is part of the treatment of several diseases, little is known as to their effects on myocardial protein expression and resistance to ischemia-reperfusion (I/R). We exposed Sprague-Dawley rats to either high (H, 10 min/day at 200 V/m, 36.1 microT) or low (L, 2 min/day at 30 V/m, 11.4 microT) intensity broad band EMF for 15 days. At the end of the treatment, myocardial HSP70 was 32 +/- 8% (mean +/- SEM) higher in L (P = 0.01) than in control (C), whereas in H it remained the same as in C. Electron microscopy revealed sporadic ruptures of mitochondrial cristae in H hearts, with no differences in other parameters. Malondialdehyde was increased in treated hearts (P < 0.05), but especially in H (P = 0.008). To assess the protective role of HSP70 during I/R, hearts were Langendorff-perfused with Krebs-Henseleit. After I/R, C hearts displayed depressed rate. pressure (-13 +/- 7%) and increased end-diastolic (+9.2 +/- 2.8 mmHg) and perfusion pressures (+30 +/- 10 mmHg). In H and L, rate. pressure recovery was similar to C (-2 +/- 21% and -12 +/- 16%, respectively, P = NS). In contrast, both end-diastolic and perfusion pressures were higher in L than in H (30.8 +/- 5.4 vs 18.2 +/- 3.5, P = 0.01, and 54 +/- 8 vs 21 +/- 8 mmHg, P = 0.01, respectively) indicating diastolic derangement in L. In conclusion, the effects of broad band EMF on HSP70 appear to be biphasic, and HSP70 overexpression might not be directly related to improved protection against I/R.

  13. A tunable, linac based, intense, broad-band THz source forpump-probe experiments

    SciTech Connect

    Schmerge, J.; Adolphsen, C.; Corbett, J.; Dolgashev, V.; Durr, H.; Fazio, M.; Fisher, A.; Frisch, J.; Gaffney, K.; Guehr, M.; Hastings, J.; Hettel, B.; Hoffmann, M.; Hogan, M.; Holtkamp, N.; Huang, X.; Huang, Z.; Kirchmann, P.; LaRue, J.; Limborg, C.; Lindenberg, A.; Loos, H.; Maxwell, T.; Nilsson, A.; Raubenheimer, T.; Reis, D.; Ross, M.; Shen, Z. -X.; Stupakov, G.; Tantawi, S.; Tian, K.; Wu, Z.; Xiang, D.; Yakimenko, V.

    2015-02-02

    We propose an intense THz source with tunable frequency and bandwidth that can directly interact with the degrees of freedom that determine the properties of materials and thus provides a new tool for controlling and directing these ultrafast processes as well as aiding synthesis of new materials with new functional properties. This THz source will broadly impact our understanding of dynamical processes in matter at the atomic-scale and in real time. Established optical pumping schemes using femtosecond visible frequency laser pulses for excitation are extended into the THz frequency regime thereby enabling resonant excitation of bonds in correlated solid state materials (phonon pumping), to drive low energy electronic excitations, to trigger surface chemistry reactions, and to all-optically bias a material with ultrashort electric fields or magnetic fields. A linac-based THz source can supply stand-alone experiments with peak intensities two orders of magnitude stronger than existing laser-based sources, but when coupled with atomic-scale sensitive femtosecond x-ray probes it opens a new frontier in ultrafast science with broad applications to correlated materials, interfacial and liquid phase chemistry, and materials in extreme conditions.

  14. Comparison of UV-B measurements performed with a Brewer spectrophotometer and a new UVB-1 broad band detector

    NASA Technical Reports Server (NTRS)

    Bais, Alkiviadis F.; Zerefos, Christos S.; Meleti, Charicleia; Ziomas, Ioannis C.

    1994-01-01

    Measurements of the UV-B erythemal dose, based on solar spectra acquired with a Brewer spectrophotometer at Thessaloniki, Greece, are compared to measurements performed with the recently introduced, by the Yankee Environmental Systems, (Robertson type) broad band solar UV-B detector. The spectral response function of this detector, when applied to the Brewer spectral UV-B measurements, results in remarkably comparable estimates of the erythemal UV-B dose. The two instruments provide similar information on the UV-B dose when they are cross-examined under a variety of meteorological and atmospheric conditions and over the a large range of solar zenith angles and total ozone.

  15. Coherent-subspace array processing based on wavelet covariance: an application to broad-band, seismo-volcanic signals

    NASA Astrophysics Data System (ADS)

    Saccorotti, G.; Nisii, V.; Del Pezzo, E.

    2008-07-01

    Long-Period (LP) and Very-Long-Period (VLP) signals are the most characteristic seismic signature of volcano dynamics, and provide important information about the physical processes occurring in magmatic and hydrothermal systems. These events are usually characterized by sharp spectral peaks, which may span several frequency decades, by emergent onsets, and by a lack of clear S-wave arrivals. These two latter features make both signal detection and location a challenging task. In this paper, we propose a processing procedure based on Continuous Wavelet Transform of multichannel, broad-band data to simultaneously solve the signal detection and location problems. Our method consists of two steps. First, we apply a frequency-dependent threshold to the estimates of the array-averaged WCO in order to locate the time-frequency regions spanned by coherent arrivals. For these data, we then use the time-series of the complex wavelet coefficients for deriving the elements of the spatial Cross-Spectral Matrix. From the eigenstructure of this matrix, we eventually estimate the kinematic signals' parameters using the MUltiple SIgnal Characterization (MUSIC) algorithm. The whole procedure greatly facilitates the detection and location of weak, broad-band signals, in turn avoiding the time-frequency resolution trade-off and frequency leakage effects which affect conventional covariance estimates based upon Windowed Fourier Transform. The method is applied to explosion signals recorded at Stromboli volcano by either a short-period, small aperture antenna, or a large-aperture, broad-band network. The LP (0.2 < T < 2s) components of the explosive signals are analysed using data from the small-aperture array and under the plane-wave assumption. In this manner, we obtain a precise time- and frequency-localization of the directional properties for waves impinging at the array. We then extend the wavefield decomposition method using a spherical wave front model, and analyse the VLP

  16. A broad-band VLF-burst associated with ring-current electrons. [geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Maeda, K.

    1982-01-01

    Frequency band broadening takes place just outside of the nighttime plasmasphere, where the density of cold plasma is known to be very low during the later phase of a geomagnetic storm. Instead of the gradual broadening of several hours duration, a burst type broadening of VLF emission lasting less than ten minutes was observed by Explorer 45 in a similar location. The magnetic field component of this emission is very weak and the frequency spreads below the local half electron cyclotron frequency. Corresponding enhancement of the anisotropic ring current electrons is also very sudden and limited below the order of 10 keV without significant velocity dispersion, in contrast to the gradual broadening events. The cause of this type of emission band spreading can be attributed to the generation of the quasielectrostatic whistler mode emission of short wavelength by hot bimaxwellian electrons surging into the domain of relatively low density magnetized cold plasma. The lack of energy dispersion in the enhanced electrons indicates that the inner edge of the plasma sheet, the source of these hot electrons, is not far from the location of this event.

  17. Research of dual-band microwave photonic filter for WLAN based on optical frequency comb.

    PubMed

    Zhang, Qi; Li, Jiaqi; Jiang, Lingke; Pan, Linbing; Dong, Wei; Zhang, Xindong; Ruan, Shengping

    2016-07-20

    This paper presents a dual-band microwave photonic filter for a wireless local area networks with independently tunable passband center frequencies and bandwidths. The two bands of the filter were 2.4 GHz and 5.725 GHz, respectively. The filter was based on a stimulated Brillouin scattering and an optical frequency comb (OFC) scheme. We created this filter using OFC pumps instead of a single pump. The OFC scheme consists of a cascaded Mach-Zehnder modulator (MZM) and a dual-parallel MZM (DPMZM) hybrid modulation that generated seven and 11 lines. The experimental results show that the two passbands of the filter were 80 and 130 MHz.

  18. Multi-cavity coupling acoustic metamaterials with low-frequency broad band gaps based on negative mass density

    NASA Astrophysics Data System (ADS)

    Yang, Chuanhui; Wu, Jiu Hui; Cao, Songhua; Jing, Li

    2016-08-01

    This paper studies a novel kind of low-frequency broadband acoustic metamaterials with small size based on the mechanisms of negative mass density and multi-cavity coupling. The structure consists of a closed resonant cavity and an open resonant cavity, which can be equivalent to a homogeneous medium with effective negative mass density in a certain frequency range by using the parameter inversion method. The negative mass density makes the anti-resonance area increased, which results in broadened band gaps greatly. Owing to the multi-cavity coupling mechanism, the local resonances of the lower frequency mainly occur in the closed cavity, while the local resonances of the higher frequency mainly in the open cavity. Upon the interaction between the negative mass density and the multi-cavity coupling, there exists two broad band gaps in the range of 0-1800 Hz, i.e. the first-order band gap from 195 Hz to 660 Hz with the bandwidth of 465 Hz and the second-order band gap from 1157 Hz to 1663 Hz with the bandwidth of 506 Hz. The acoustic metamaterials with small size presented in this paper could provide a new approach to reduce the low-frequency broadband noises.

  19. Spatially graded TiO₂-SiO₂ Bragg reflector with rainbow-colored photonic band gap.

    PubMed

    Singh, Dhruv Pratap; Lee, Seung Hee; Choi, Il Yong; Kim, Jong Kyu

    2015-06-29

    A simple single-step method to fabricate spatially graded TiO2-SiO2 Bragg stack with rainbow colored photonic band gap is presented. The gradation in thickness of the Bragg stack was accomplished with a modified glancing angle deposition (GLAD) technique with dynamic shadow enabled by a block attached to one edge of the rotating substrate. A linear gradation in thickness over a distance of about 17 mm resulted in a brilliant colorful rainbow pattern. Interestingly, the photonic band gap position can be changed across the whole visible wavelength range by linearly translating the graded Bragg stack over a large area substrate. The spatially graded Bragg stack may find potential applications in the tunable optical devices, such as optical filters, reflection gratings, and lasers.

  20. Photonic band gaps of increasingly isotropic crystals at high dielectric contrasts

    NASA Astrophysics Data System (ADS)

    Pollard, M. E.; Parker, G. J.; Charlton, M. D. B.

    2012-03-01

    Photonic band gaps (PBGs) are highly sensitive to lattice geometry and dielectric contrast. Here, we report theoretical and experimental confirmation of PBGs in photonic crystals (PhCs) with increasing levels of structural isotropy. These structures are: a standard 6-fold hexagonal lattice, a locally 12-fold Archimedean-like crystal, a true quasicrystal generated by non-random Stampfli inflation, and a biomimetic crystal based on Fibonacci phyllotaxis. Experimental transmission spectra were obtained at microwave frequencies using high-index alumina (ɛ = 9.61) rods. The results were compared to FDTD-calculated transmission spectra and PWE-calculated band diagrams. Wide and deep (> 60dB) primary TM gaps present in all high-index samples are related to reciprocal space vectors with the strongest Fourier coefficients. Their mid-gap frequencies are largely independent of the lattice geometry for comparable fill factors, whereas the gap ratios shrink monotonically as structural isotropy increases.

  1. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOEpatents

    Ozbay, Ekmel; Tuttle, Gary; Michel, Erick; Ho, Kai-Ming; Biswas, Rana; Chan, Che-Ting; Soukoulis, Costas

    1995-01-01

    A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.

  2. Thermal tuning the reversible optical band gap of self-assembled polystyrene photonic crystals

    NASA Astrophysics Data System (ADS)

    Vakili Tahami, S. H.; Pourmahdian, S.; Shirkavand Hadavand, B.; Azizi, Z. S.; Tehranchi, M. M.

    2016-11-01

    Nano-sized polymeric colloidal particles could undergo self-organization into three-dimensional structures to produce desired optical properties. In this research, a facile emulsifier-free emulsion polymerization method was employed to synthesize highly mono-disperse sub-micron polystyrene colloids. A high quality photonic crystal (PhC) structure was prepared by colloidal polystyrene. The reversible thermal tuning effect on photonic band gap position as well as the attenuation of the band gap was investigated in detail. The position of PBG can be tuned from 420 nm to 400 nm by varying the temperature of the PhC structure, reversibly. This reversible effect provides a reconfigurable PhC structure which could be used as thermo-responsive shape memory polymers.

  3. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals

    PubMed Central

    Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Tang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2016-01-01

    In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC. PMID:28335295

  4. Atom-atom interactions around the band edge of a photonic crystal waveguide.

    PubMed

    Hood, Jonathan D; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E; Kimble, H J

    2016-09-20

    Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields [Formula: see text] outside the bandgap to localized fields [Formula: see text] within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the [Formula: see text] line of atomic cesium for [Formula: see text] atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.

  5. Atom–atom interactions around the band edge of a photonic crystal waveguide

    PubMed Central

    Hood, Jonathan D.; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E.; Kimble, H. J.

    2016-01-01

    Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields E(x)∝e±ikxx outside the bandgap to localized fields E(x)∝e−κx|x| within the bandgap should be accompanied by a transition from largely dissipative atom–atom interactions to a regime where dispersive atom–atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the D1 line of atomic cesium for N¯=3.0±0.5 atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom–atom interactions with low dissipation into the guided mode. PMID:27582467

  6. Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast.

    PubMed

    Man, Weining; Florescu, Marian; Matsuyama, Kazue; Yadak, Polin; Nahal, Geev; Hashemizad, Seyed; Williamson, Eric; Steinhardt, Paul; Torquato, Salvatore; Chaikin, Paul

    2013-08-26

    We report the first experimental demonstration of a TE-polarization photonic band gap (PBG) in a 2D isotropic hyperuniform disordered solid (HUDS) made of dielectric media with a dielectric index contrast of 1.6:1, very low for PBG formation. The solid is composed of a connected network of dielectric walls enclosing air-filled cells. Direct comparison with photonic crystals and quasicrystals permitted us to investigate band-gap properties as a function of increasing rotational isotropy. We present results from numerical simulations proving that the PBG observed experimentally for HUDS at low index contrast has zero density of states. The PBG is associated with the energy difference between complementary resonant modes above and below the gap, with the field predominantly concentrated in the air or in the dielectric. The intrinsic isotropy of HUDS may offer unprecedented flexibilities and freedom in applications (i. e. defect architecture design) not limited by crystalline symmetries.

  7. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOEpatents

    Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.

    1995-04-11

    A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.

  8. Coupled-mode theory for photonic band-gap inhibition of spatial instabilities.

    PubMed

    Gomila, Damià; Oppo, Gian-Luca

    2005-07-01

    We study the inhibition of pattern formation in nonlinear optical systems using intracavity photonic crystals. We consider mean-field models for singly and doubly degenerate optical parametric oscillators. Analytical expressions for the new (higher) modulational thresholds and the size of the "band gap" as a function of the system and photonic crystal parameters are obtained via a coupled-mode theory. Then, by means of a nonlinear analysis, we derive amplitude equations for the unstable modes and find the stationary solutions above threshold. The form of the unstable mode is different in the lower and upper parts of the band gap. In each part there is bistability between two spatially shifted patterns. In large systems stable wall defects between the two solutions are formed and we provide analytical expressions for their shape. The analytical results are favorably compared with results obtained from the full system equations. Inhibition of pattern formation can be used to spatially control signal generation in the transverse plane.

  9. Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides

    NASA Astrophysics Data System (ADS)

    Charlton, Christy; Temelkuran, Burak; Dellemann, Gregor; Mizaikoff, Boris

    2005-05-01

    An integrated midinfrared sensing system for trace level (ppb) gas analysis combining a quantum cascade laser with an emission frequency of 10.3μm with a frequency matched photonic band-gap hollow core waveguide has been developed, demonstrating the sensing application of photonic band-gap fibers. The photonic band-gap fiber simultaneously acts as a wavelength selective waveguide and miniaturized gas cell. The laser emission wavelength corresponds to the vibrational C-H stretch band of ethyl chloride gas. This sensing system enabled the detection of ethyl chloride at concentration levels of 30ppb (v/v) with a response time of 8s probing a sample volume of only 1.5mL in a transmission absorption measurement within the photonic band-gap hollow core waveguide, which corresponds to a sensitivity improvement by three orders of magnitude compared to previously reported results obtained with conventional hollow waveguides.

  10. A versatile optical junction using photonic band-gap guidance and self collimation

    SciTech Connect

    Gupta, Man Mohan; Medhekar, Sarang

    2014-09-29

    We show that it is possible to design two photonic crystal (PC) structures such that an optical beam of desired wavelength gets guided within the line defect of the first structure (photonic band gap guidance) and the same beam gets guided in the second structure by self-collimation. Using two dimensional simulation of a design made of the combination of these two structures, we propose an optical junction that allows for crossing of two optical signals of same wavelength and same polarization with very low crosstalk. Moreover, the junction can be operated at number of frequencies in a wide range. Crossing of multiple beams with very low cross talk is also possible. The proposed junction should be important in future integrated photonic circuits.

  11. Edge-enhanced imaging obtained with very broad energy band x-rays

    SciTech Connect

    Taibi, A.; Cardarelli, P.; Di Domenico, G.; Marziani, M.; Gambaccini, M.; Hanashima, T.; Yamada, H.

    2010-04-05

    We demonstrate both theoretically and experimentally that edge-enhancement effects are produced when objects, in contact with the x-ray detector, are imaged by using very broad x-ray spectra. Radiographs of thin Al objects have been obtained with a table-top synchrotron source which generates x-rays in the energy range from a few kilo-electron-volts up to 6 MeV. Edge-enhancement effects arise from the combination of x-ray absorption (kilo-electron-volt part of the spectrum) and secondary particle emission (mega-electron-volt part of the spectrum) within the sample. The exact contribution of absorption and emission profiles in the edge-enhanced images has been calculated via Monte Carlo simulation.

  12. Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures.

    PubMed

    Hattori, Haroldo T; Schneider, Vitor M; Cazo, Rogério M; Barbosa, Carmem L

    2005-05-20

    Recently, photonic crystal band-edge structures have been analyzed in the literature. However, most devices that have been presented so far emit light in different directions. We present a modal analysis (no gain included) of a few schemes to improve the directionality of these devices, i.e., in such a way that light that exits from them will travel mainly in a certain direction, eventually coupling its energy to a wide waveguide.

  13. High brightness photonic band crystal semiconductor lasers in the passive mode locking regime

    SciTech Connect

    Rosales, R.; Kalosha, V. P.; Miah, M. J.; Bimberg, D.; Posilović, K.; Pohl, J.; Weyers, M.

    2014-10-20

    High brightness photonic band crystal lasers in the passive mode locking regime are presented. Optical pulses with peak power of 3 W and peak brightness of about 180 MW cm{sup −2} sr{sup −1} are obtained on a 5 GHz device exhibiting 15 ps pulses and a very low beam divergence in both the vertical and horizontal directions.

  14. A compact planar multi-broad band monopole antenna for mobile devices

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoqing; Yao, Bin; Zheng, Qinhong; Yang, Jikong; Cao, Xiangqi

    2015-10-01

    A Multiple-frequency broadband planar monopole antenna is proposed in this Paper. The antenna is stimulated and numerically optimized by HFSS13.0 (High Frequency Structure Simulator). The size of it is 39mm×22mm×1.7mm. The antenna resonates at many frequencies. The parameter S11<=-6dB means the proposed antenna matches well with its feed-line and covers many useful operation frequency bands, including 2G(DCS1800 and PCS1900), 3G(UMTS), 4G(LTE2300 and LTE2500), ISM, WLAN. It is quiet appropriate for the present ultra-thin smart phones

  15. Precision X-Band Linac Technologies for Nuclear Photonics Gamma-Ray Sources

    SciTech Connect

    Hartemann, F V; Albert, F; Anderson, S G; Bayramian, A J; Cross, R R; Ebbers, C A; Gibson, D J; Houck, T L; Marsh, R A; Messerly, M J; Siders, C W; McNabb, D P; Barty, C J; Adolphsen, C E; Chu, T S; Jongewaard, E N; Tantawi, S G; Vlieks, A E; Wang, F; Wang, J W; Raubenheimer, T O; Ighigeanu, D; Toma, M; Cutoiu, D

    2011-08-31

    Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabled by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).

  16. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids

    PubMed Central

    Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y. C.; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M.; Steinhardt, Paul J.

    2013-01-01

    Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials. PMID:24043795

  17. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids.

    PubMed

    Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y C; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M; Steinhardt, Paul J

    2013-10-01

    Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials.

  18. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  19. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating.

    PubMed

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-09

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  20. Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic band gaps.

    PubMed

    Toader, Ovidiu; John, Sajeev

    2002-07-01

    We provide a blueprint for microfabricating photonic crystals with very large and robust three-dimensional photonic band gaps (PBG's). These crystals are based on interleaving polygonal spiral posts and can be efficiently manufactured on a large scale in a one-step process using the recently introduced technique of glancing angle deposition. We classify various families of spiral photonic crystals based on (i) the parent three-dimensional (3D) point lattice to which they are most closely related, (ii) the crystallographic axis of the parent lattice around which the spiral posts wind, and (iii) the set of points of the parent lattice which the spiral arms connect or nearly connect. We obtain optimal geometries for the spiral photonic crystals by detailed mapping of the size and location of the PBG within a multidimensional parameter space which characterizes the shape of each spiral post. For the optimum PBG, the spiral arms and elbows may deviate significantly from the points of the original point lattice. The largest 3D PBG's are obtained for square spiral posts that wind around the [001] axis of diamond (or face centered cubic) lattice and in which the spiral arm segments approximately connect either the fifth or first nearest-neighbor points of the parent lattice. In the case of silicon posts (with a dielectric constant of 11.9) in an air background, whose arm segments nearly connect fifth nearest-neighbor point of the diamond lattice, the full PBG can be as large as 16% of the gap center frequency. For the corresponding air posts in a silicon background, the maximum PBG is 24% of the gap center frequency. We compute both the total electromagnetic density of states and the electromagnetic field distributions near the PBG. It is suggested the PBG in an optimized structure is highly tolerant to various forms of disorder that may arise during the manufacturing process.

  1. Design of a hybrid spoof plasmonic sub-terahertz waveguide with low bending loss in a broad frequency band.

    PubMed

    Moghaddam, Mohammad Ali Khosrovani; Ahmadi-Boroujeni, Mehdi

    2017-03-20

    The effect of dielectric cladding on the waveguiding characteristics of an array of metallic pillars on a metal plane in the sub-terahertz band is explored. Firstly, a 2D structure made up of a metallic grating of infinite lateral width with various dielectric overlays is analytically studied to get more insight into the problem. Then the ideas inferred from the 2D structure are applied to the realistic 3D structure that has a finite lateral width. It is shown that by proper design of the dielectric medium surrounding the metallic structure the modal field confinement can be enhanced in a broad frequency band resulting in a low bending loss. Especially, by integrating the pillars into a silicon channel of finite size and evacuating the spaces between them a highly confined spoof surface plasmon is supported and a considerable reduction in the bending loss over a broad bandwidth is observed. Due to small cross-sectional size, low bending loss and ease of fabrication, the proposed waveguide is a promising choice for millimeter-wave and terahertz integrated circuits; particularly those based on the silicon technology.

  2. Development of inexpensive optical broad- and narrow-band sensors for ecosystem research

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Cuntz, Thomas; Bumberger, Jan

    2014-05-01

    The observation and monitoring of ecosystem processes are great challenges in environmental science, due to the dynamic and complexity of such procedures. To describe and understand biotic and abiotic processes and their interaction it is necessary to acquire multiple parameters, which are influencing the natural regime. Essential issues are: the detection of spatial heterogeneities and scale overlapping procedures in the environment. To overcome these problems an adequate monitoring system should cover a representative area as well as have a sufficient resolution in time and space. Hence, the needed quantity of sensors (depending on the observed parameters or processes) can be enormous. According to these issues, there is a high demand on low-cost sensor technologies (with adequate performances) to realize a delicate monitoring platform. In the case of vegetation processes, one key feature is to characterize photosynthetic activity of the plants in detail. Common investigation methods are based on optical measurements. Here photosynthetically active radiation (PAR) sensors and hyperspectral sensors are in major use. Photosynthetically active radiation (solar radiation from 400 to 700 nanometers) designates the spectral range that photosynthetic organisms are able to use in the process of photosynthesis. PAR sensors enable the detection of the reflected solar light of the vegetation in whole the PAR wave band. The amount of absorption indicates photosynthetic activity of the plant. Hyperspectral sensors observe specific parts of the solar light spectrum and facilitate the determination of the main pigment classes (Chlorophyll, Carotenoid and Anthocyanin). Due to absorption of pigments they producing a specific spectral signature in the visible part of the electromagnetic spectrum (narrow-band peaks). If vegetation is affected by water or nutritional deficience the proportion of light-absorbing pigments is reduced which finally results in an overall reduced light

  3. Photonic band-gap modulation of blue phase liquid crystal (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Hsien

    2015-10-01

    Blue phase liquid crystals (BPLCs) are self-assembled 3D photonic crystals exhibiting high susceptibility to external stimuli. Two methods for the photonic bandgap tuning of BPs were demonstrated in this work. Introducing a chiral azobenzene into a cholesteric liquid crystal could formulate a photoresponsive BPLC. Under violet irradiation, the azo dye experiences trans-cis isomerization, which leads to lattice swelling as well as phase transition in different stages of the process. Ultrawide reversible tuning of the BP photonic bandgap from ultraviolet to near infrared has been achieved. The tuning is reversible and nonvolatile. We will then demonstract the electric field-induced bandgap tuning in polymer-stabilized BPLCs. Under different BPLCs material preparation conditions, both red-shift and broadening of the photonic bandgaps have been achieved respectively. The stop band can be shifted over 100 nm. The bandwidth can be expanded from ~ 30 nm to ~ 250 nm covering nearly the full visible range. It is believed that the developed approaches could strongly promote the use of BPLC in photonic applications.

  4. Deep Broad-Band Infrared Nulling Using A Single-Mode Fiber Beam Combiner and Baseline Rotation

    NASA Technical Reports Server (NTRS)

    Mennesson, Bertrand; Haguenauer, P.; Serabyn, E.; Liewer, K.

    2006-01-01

    The basic advantage of single-mode fibers for deep nulling applications resides in their spatial filtering ability, and has now long been known. However, and as suggested more recently, a single-mode fiber can also be used for direct coherent recombination of spatially separated beams, i.e. in a 'multi-axial' nulling scheme. After the first successful demonstration of deep (<2e-6) visible LASER nulls using this technique (Haguenauer & Serabyn, Applied Optics 2006), we decided to work on an infrared extension for ground based astronomical observations, e.g. using two or more off-axis sub-apertures of a large ground based telescope. In preparation for such a system, we built and tested a laboratory infrared fiber nuller working in a wavelength regime where atmospheric turbulence can be efficiently corrected, over a pass band (approx.1.5 to 1.8 micron) broad enough to provide reasonable sensitivity. In addition, since no snapshot images are readily accessible with a (single) fiber nuller, we also tested baseline rotation as an approach to detect off-axis companions while keeping a central null. This modulation technique is identical to the baseline rotation envisioned for the TPF-I space mission. Within this context, we report here on early laboratory results showing deep stable broad-band dual polarization infrared nulls <5e-4 (currently limited by detector noise), and visible LASER nulls better than 3e-4 over a 360 degree rotation of the baseline. While further work will take place in the laboratory to achieve deeper stable broad-band nulls and test off-axis sources detection through rotation, the emphasis will be put on bringing such a system to a telescope as soon as possible. Detection capability at the 500:1 contrast ratio in the K band (2.2 microns) seem readily accessible within 50-100 mas of the optical axis, even with a first generation system mounted on a >5m AO equipped telescope such as the Palomar Hale 200 inch, the Keck, Subaru or Gemini telescopes.

  5. Geoacoustic inversion of broad-band ambient noise data using undersampled and short aperture arrays

    NASA Astrophysics Data System (ADS)

    Siderius, Martin; Porter, Michael; Harrison, Chris

    2004-05-01

    Ocean ambient noise is generated in many ways such as from winds, rain and shipping. A technique has recently been developed [Harrison and Simons, J. Acoust. Soc. Am. 112 (2002)] that uses the vertical directionality of ambient noise to determine seabed properties. The ratio of beams steered towards the surface to those steered towards the bottom produces the bottom reflection loss curve. This technique was applied to data in the 200-1500-Hz band using a 16-m array. Extending this to higher frequencies allows the array length to be substantially shortened and greatly reduces interference from shipping. However, this limits the low end of the frequency spectrum since reduced aperture increases beam widths and the up/down beam ratio no longer produces reflection loss. Similarly, for high frequencies, if hydrophone spacing is greater than half-wavelength, the beamformed output is aliased and again the up/down ratio produces erroneous results. In general, frequencies much below the array design will suffer from large beams and frequencies above from undersampling. In this paper, we describe techniques for obtaining seabed properties from ambient noise measured on short or undersampled arrays. Results will be presented from the KauaiEx (July 2003) and ElbaEx (October 2003) experiments.

  6. Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator.

    PubMed

    Wen, Zhen; Guo, Hengyu; Zi, Yunlong; Yeh, Min-Hsin; Wang, Xin; Deng, Jianan; Wang, Jie; Li, Shengming; Hu, Chenguo; Zhu, Liping; Wang, Zhong Lin

    2016-07-26

    Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (<100 rpm) or motion frequencies (<2 Hz) energy, which fits the frequency range for most of the water wave based blue energy, while W-EMG is able to produce larger output at high frequencies (>10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature.

  7. Bimetallic Nanoshells for Metal – Enhanced Fluorescence with Broad Band Fluorophores

    PubMed Central

    Zhang, Jian; Fu, Yi; Mahdavi, Farhad

    2012-01-01

    In this article, we reported the near-field interactions between the Ru(bpy)32+ complexes and plasmon resonances from the bimetallic nanoshells. The metallic nanoshells were fabricated on 20 nm silica spheres as cores by depositing 10 nm monometallic or bimetallic shells. There were approx. 15 Ru(bpy)32+ complexes in the silica core. The metal shells were constituted of silver or/and gold. The bimetallic shells could be generated in homogeneous or heterogeneous geometries. The homogeneous bimetallic shells contained 10 nm silver-gold alloys. The heterogeneous bimetallic shells contained successive 5 nm gold and 5 nm silver shells, or alternatively, 5 nm silver and 5 nm gold shells. Optical properties of metal nanoshells were studied on both the ensemble spectra and single nanoparticle imaging measurements. The heterogeneous bimetallic shells were found to have a large scale of metal-enhanced emission relative to the monometallic or homogeneous bimetallic shells. It is because the heterogeneous bimetallic shells may display split dual plasmon resonances which can interact with the excitation and emission bands of the Ru(bpy)32+ complexes in the silica cores leading to more efficient near-field interactions. The prediction can be demonstrated by the lifetimes. Therefore, it is suggested that both the compositions and geometries of the metal shells can influence the interactions with the fluorophores in the cores. This observation also offers us an opportunity for developing plasmon-based fluorescence metal nanoparticles as novel nanoparticle imaging agents which have high performances in fluorescence cell or tissue imaging. PMID:23230456

  8. F-Gamma program: Probing the AGN physics via broad-band radio variability studies

    NASA Astrophysics Data System (ADS)

    Schmidt, Rebekka

    2011-07-01

    The F-GAMMA program (Fermi-GST AGN Multi-frequency Monitoring Alliance) is meant to investigate the physics of AGNs via a multi-frequency monitoring approach. Blazars are AGNs that show intense variability in flux and polarisation and super-luminal motions due to small viewing angles to the jet axis. Hence, there is very extreme physics at work and despite decades of study the exact physics are still unclear. A method to distinguish between different emission models are the multi-frequency variability studies. The Fermi-GST scans the entire sky every three hours. So, for the first time it provides densely sampled gamma-ray light curves which can be cross-correlated with radio, optical or other light curves. To fully exploit these features 65 Fermi-GST detectable blazars are being monitored monthly in radio wavelength since 2007. The core program involves observations with the 100-m Effelsberg telescope at 8 frequencies between 2.6 and 43 GHz, the 30-m IRAM telescope at 86, 145 and 240 GHz and the APEX 12-m telescope at 345 GHz. Spectra simultaneous within a week are produced for cross-band studies. In this talk results of time series analysis studies will be presented in an attempt to search for characteristic timescales and study the brightness temperatures and variability Doppler factors of these objects. Furthermore, it will be shown that all the spectra can be grouped in only 9 phenomenological classes of spectral variability pattern. Seven of these classes are clearly dominated by spectral evolution and can be interpreted as a quiescent optically thin spectrum with a super-imposed flaring event. The different classes can be explained by different redshifts and intrinsic-source/flare parameters as simulations showed. The other 2 classes vary self-similarly with almost no apparent shift of the peak frequency implying that a totally different mechanism is at work. From all this it is concluded that only two mechanisms have been observed to produce variability

  9. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    PubMed Central

    Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.

    2013-01-01

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability. PMID:24108361

  10. Spectral element method for band structures of three-dimensional anisotropic photonic crystals

    NASA Astrophysics Data System (ADS)

    Luo, Ma; Liu, Qing Huo

    2009-11-01

    A spectral element method (SEM) is introduced for accurate calculation of band structures of three-dimensional anisotropic photonic crystals. The method is based on the finite-element framework with curvilinear hexahedral elements. Gauss-Lobatto-Legendre polynomials are used to construct the basis functions. In order to suppress spurious modes, mixed-order vector basis functions are employed and the Bloch periodic boundary condition is imposed into the basis functions with tangential components at the boundary by multiplying a Bloch phase factor. The fields and coordinates in the curvilinear hexahedral elements are mapped to the reference domain by covariant mapping, which preserves the continuity of tangential components of the field. Numerical results show that the SEM has exponential convergence for both square-lattice and triangular-lattice photonic crystals. The sampling density as small as 3.4 points per wavelength can achieve accuracy as high as 99.9%. The band structures of several modified woodpile photonic crystals are calculated by using the SEM.

  11. Spectral element method for band structures of three-dimensional anisotropic photonic crystals.

    PubMed

    Luo, Ma; Liu, Qing Huo

    2009-11-01

    A spectral element method (SEM) is introduced for accurate calculation of band structures of three-dimensional anisotropic photonic crystals. The method is based on the finite-element framework with curvilinear hexahedral elements. Gauss-Lobatto-Legendre polynomials are used to construct the basis functions. In order to suppress spurious modes, mixed-order vector basis functions are employed and the Bloch periodic boundary condition is imposed into the basis functions with tangential components at the boundary by multiplying a Bloch phase factor. The fields and coordinates in the curvilinear hexahedral elements are mapped to the reference domain by covariant mapping, which preserves the continuity of tangential components of the field. Numerical results show that the SEM has exponential convergence for both square-lattice and triangular-lattice photonic crystals. The sampling density as small as 3.4 points per wavelength can achieve accuracy as high as 99.9%. The band structures of several modified woodpile photonic crystals are calculated by using the SEM.

  12. Analysis of photonic band gap in dispersive properties of tunable three-dimensional photonic crystals doped by magnetized plasma

    SciTech Connect

    Zhang HaiFeng; Liu Shaobin; Yang Huan; Kong Xiangkun

    2013-03-15

    In this paper, the magnetooptical effects in dispersive properties for two types of three-dimensional magnetized plasma photonic crystals (MPPCs) containing homogeneous dielectric and magnetized plasma with diamond lattices are theoretically investigated for electromagnetic (EM) wave based on plane wave expansion (PWE) method, as incidence EM wave vector is parallel to the external magnetic field. The equations for two types of MPPCs with diamond lattices (dielectric spheres immersed in magnetized plasma background or vice versa) are theoretically deduced. The influences of dielectric constant, plasma collision frequency, filling factor, the external magnetic field, and plasma frequency on the dispersive properties for both types of structures are studied in detail, respectively, and some corresponding physical explanations are also given. From the numerical results, it has been shown that the photonic band gaps (PBGs) for both types of MPPCs can be manipulated by plasma frequency, filling factor, the external magnetic field, and the relative dielectric constant of dielectric, respectively. Especially, the external magnetic field can enlarge the PBG for type-2 structure (plasma spheres immersed in dielectric background). However, the plasma collision frequency has no effect on the dispersive properties of two types of three-dimensional MPPCs. The locations of flatbands regions for both types of structures cannot be tuned by any parameters except for plasma frequency and the external magnetic field. The analytical results may be informative and of technical use to design the MPPCs devices.

  13. The properties of photonic band gaps for three-dimensional plasma photonic crystals in a diamond structure

    SciTech Connect

    Zhang Haifeng; Liu Shaobin; Kong Xiangkun, Chenchen; Bian Borui

    2013-04-15

    In this paper, the properties of photonic band gaps (PBGs) for two types of three-dimensional plasma photonic crystals (PPCs) composed of isotropic dielectric and unmagnetized plasma with diamond lattices are theoretically investigated for electromagnetic waves based on a modified plane wave expansion method. The equations for type-1 structure are theoretically deduced, which depend on the diamond lattices realization (dielectric spheres immersed in plasma background). The influences of dielectric constant of dielectric, plasma collision frequency, filling factor, and plasma frequency on PBGs are investigated, respectively, and some corresponding physical explanations and the possible methods to realize the three-dimensional PPCs in experiments are also given. From the numerical results, it has been shown that not only the locations but also the gap/midgap ratios of the PBGs for two types of PPCs can be tuned by plasma frequency, filling factor, and the relative dielectric constant, respectively. However, the plasma collision frequency has no effect on the frequency ranges and gap/midgap ratios of the PBGs for two types of PPCs.

  14. Photonic crystal film with three alternating layers for simultaneous R, G, B multi-mode photonic band-gaps.

    PubMed

    Park, Byoungchoo; Kim, Mi-Na; Kim, Sun Woong; Ho Park, Jin

    2008-09-15

    We studied 1-dimensional (1-D) photonic crystal (PC) films with three alternating layers to investigate multi-mode photonic band-gaps (PBGs) at red, green, and blue color regions. From simulations, it was shown that PCs with three alternating layered elements of [a/b/c] structure have sharp PBGs at the three color regions with the central wavelengths of 459 nm, 527 nm, and 626 nm, simultaneously. Experimentally, it was proven that red, green, and blue PBGs were generated clearly by the PCs, which were made of multilayers of [SiO(2)/Ta(2)O(5)/TiO(2)], based on the simulation. It was also shown that the measured wavelengths of the PBGs corresponded exactly to those of the simulated results. Moreover, it was demonstrated that a 1-D PC of [a/b/c] structure can be used for making white organic light emitting devices (OLEDs) with improved color rendering index (CRI) for color display or lighting.

  15. Efficient heralding of O-band passively spatial-multiplexed photons for noise-tolerant quantum key distribution.

    PubMed

    Liu, Mao Tong; Lim, Han Chuen

    2014-09-22

    When implementing O-band quantum key distribution on optical fiber transmission lines carrying C-band data traffic, noise photons that arise from spontaneous Raman scattering or insufficient filtering of the classical data channels could cause the quantum bit-error rate to exceed the security threshold. In this case, a photon heralding scheme may be used to reject the uncorrelated noise photons in order to restore the quantum bit-error rate to a low level. However, the secure key rate would suffer unless one uses a heralded photon source with sufficiently high heralding rate and heralding efficiency. In this work we demonstrate a heralded photon source that has a heralding efficiency that is as high as 74.5%. One disadvantage of a typical heralded photon source is that the long deadtime of the heralding detector results in a significant drop in the heralding rate. To counter this problem, we propose a passively spatial-multiplexed configuration at the heralding arm. Using two heralding detectors in this configuration, we obtain an increase in the heralding rate by 37% and a corresponding increase in the heralded photon detection rate by 16%. We transmit the O-band photons over 10 km of noisy optical fiber to observe the relation between quantum bit-error rate and noise-degraded second-order correlation function of the transmitted photons. The effects of afterpulsing when we shorten the deadtime of the heralding detectors are also observed and discussed.

  16. THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band.

    PubMed

    Jia, Shi; Yu, Xianbin; Hu, Hao; Yu, Jinlong; Guan, Pengyu; Da Ros, Francesco; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif K

    2016-10-17

    We propose and experimentally demonstrate THz photonic wireless communication systems with 16-QAM modulation in the 375-450 GHz band. The overall throughput reaches as high as 80 Gbit/s by exploiting four THz channels with 5 Gbaud 16-QAM baseband modulation per channel. We create a coherent optical frequency comb (OFC) for photonic generation of multiple THz carriers based on photo-mixing in a uni-travelling carrier photodiode (UTC-PD). The OFC configuration also allows us to generate reconfigurable THz carriers with low phase noise. The multiple-channel THz radiation is received by using a Schottky mixer based electrical receiver after 0.5 m free-space wireless propagation. 2-channel (40 Gbit/s) and 4-channel (80 Gbit/s) THz photonic wireless links with 16-QAM modulation are reported in this paper, and the bit error rate (BER) performance for all channels in both cases is below the hard decision forward error correction (HD-FEC) threshold of 3.8e-3 with 7% overhead. In addition, we also successfully demonstrate hybrid photonic wireless transmission of 40 Gbit/s 16-QAM signal at carrier frequencies of 400 GHz and 425 GHz over 30 km standard single mode fiber (SSMF) between the optical baseband signal transmitter and the THz wireless transmitter with negligible induced power penalty.

  17. Zero- n bar band gap in two-dimensional metamaterial photonic crystals

    NASA Astrophysics Data System (ADS)

    Mejía-Salazar, J. R.; Porras-Montenegro, N.

    2015-04-01

    We have theoretically studied metamaterial photonic crystals (PCs) composed by air and double negative (DNG) material. Numerical data were obtained by means of the finite difference time-domain (FDTD) method, with results indicating the possibility for the existence of the zero- n bar non-Bragg gap in two-dimensional metamaterial PCs, which has been previously observed only in one-dimensional photonic superlattices. Validity of the present FDTD algorithm for the study of one-dimensional metamaterial PCs is shown by comparing with results for the transmittance spectra obtained by means of the well known transfer matrix method (TMM). In the case of two-dimensional metamaterial PCs, we have calculated the photonic band structure (PBS) in the limiting case of a one-dimensional photonic superlattice and for a nearly one-dimensional PC, showing a very similar dispersion relation. Finally, we show that due to the strong electromagnetic field localization on the constitutive rods, the zero- n bar non-Bragg gap may only exist in two-dimensional systems under strict geometrical conditions.

  18. Comparison of M46 broad-band visible data with ELF data from the Sprites `96 campaign

    SciTech Connect

    Mitchell, E.A.

    1997-10-01

    Lightning data, recorded with satellite optical sensors, are compared with extremely low frequency (ELF) and Schumann resonance (SR) data from the Sprites `96 Campaign. The satellite data are broad-band visible events recorded by the M46 satellite payload. Full width at half maximum and optical tail durations from the satellite data are compared with ELF slow tail features and Schumann resonance spectral color. In addition, continuing current estimates were computed for several positive cloud-to-ground (PCG) strokes. These estimates were derived using relative optical intensities from the satellite data and a peak current measurement from National Lightning Detection Network (NLDN) data. This assessment of M46 lightning data supports correlations between visible and ELF signatures. More data must be studied for compelling proof.

  19. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics

    SciTech Connect

    Boschini, F.; Hedayat, H.; Piovera, C.; Dallera, C.; Gupta, A.; Carpene, E.

    2015-01-15

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO{sub 2} single crystals as a benchmark.

  20. Flight qualified solid argon cooler for the BBXRT instrument. [Broad Band X Ray Telescope for ASTRO-1 payload

    NASA Technical Reports Server (NTRS)

    Cygnarowicz, Thomas A.; Schein, Michael E.; Lindauer, David A.; Scarlotti, Roger; Pederson, Robert

    1990-01-01

    A solid argon cooler (SAC) for attached Shuttle payloads has been developed and qualified to meet the need for low cost cooling of flight instruments to the temperature range of 60-120 K. The SACs have been designed and tested with the intent of flying them up to five times. Two coolers, as part of the Broad Band X-ray Telescope (BBXRT) instrument on the ASTRO-1 payload, are awaiting launch on Space Shuttle mission STS-35. This paper describes the design, testing and performance of the SAC and its vacuum maintenance system (VMS), used to maintain the argon as a solid during launch delays of up to 5 days. BBXRT cryogen system design features used to satisfy Shuttle safety requirements are discussed, along with SAC ground servicing equipment (GSE) and procedures used to fill, freeze and subcool the argon.

  1. Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements

    NASA Astrophysics Data System (ADS)

    Soomro, R. A.; Weidle, C.; Cristiano, L.; Lebedev, S.; Meier, T.; Passeq Working Group

    2016-01-01

    The increasingly dense coverage of Europe with broad-band seismic stations makes it possible to image its lithospheric structure in great detail, provided that structural information can be extracted effectively from the very large volumes of data. We develop an automated technique for the measurement of interstation phase velocities of (earthquake-excited) fundamental-mode surface waves in very broad period ranges. We then apply the technique to all available broad-band data from permanent and temporary networks across Europe. In a new implementation of the classical two-station method, Rayleigh and Love dispersion curves are determined by cross-correlation of seismograms from a pair of stations. An elaborate filtering and windowing scheme is employed to enhance the target signal and makes possible a significantly broader frequency band of the measurements, compared to previous implementations of the method. The selection of acceptable phase-velocity measurements for each event is performed in the frequency domain, based on a number of fine-tuned quality criteria including a smoothness requirement. Between 5 and 3000 single-event dispersion measurements are averaged per interstation path in order to obtain robust, broad-band dispersion curves with error estimates. In total, around 63,000 Rayleigh- and 27,500 Love-wave dispersion curves between 10 and 350 s have been determined, with standard deviations lower than 2 per cent and standard errors lower than 0.5 per cent. Comparisons of phase-velocity measurements using events at opposite backazimuths and the examination of the variance of the phase-velocity curves are parts of the quality control. With the automated procedure, large data sets can be consistently and repeatedly measured using varying selection parameters. Comparison of average interstation dispersion curves obtained with different degrees of smoothness shows that rough perturbations do not systematically bias the average dispersion measurement. They

  2. A Broad-Band X-Ray Telescope spectrum of the massive X-ray binary X Persei

    NASA Technical Reports Server (NTRS)

    Schlegel, Eric M.; Serlemitsos, Peter J.; Jahoda, Keith; Marshall, Frank; Petre, Robert; Boldt, Elihu; Mushotzky, Richard; Swank, Jean; Szymkowiak, Andrew; Smale, Alan

    1993-01-01

    The Broad Band X-Ray Telescope, covering the 0.3-12 keV bandpass with moderate spectral resolution, observed the Be/X-ray binary X Per in 1990 December during the Astro-l mission on the Space Shuttle Columbia. The data obtained are the best to date to search for lines and edges. The data are well fitted by a power-law spectrum with a high-energy cutoff. A low value for the high-energy cutoff is found, implying a slightly weaker magnetic field strength for the X-ray pulsar. No iron line is present at about 6.5 keV with an equivalent width greater than 30-40 eV. The BBXRT observation corresponded to the 'off' state of X Per's recent 'phase change'.

  3. Robust topology optimization of three-dimensional photonic-crystal band-gap structures.

    PubMed

    Men, H; Lee, K Y K; Freund, R M; Peraire, J; Johnson, S G

    2014-09-22

    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniques such as a simple approach to impose symmetry constraints. We also demonstrate a technique for robust topology optimization, in which some uncertainty is included in each voxel and we optimize the worst-case gap, and we show that the resulting band gaps have increased robustness to systematic fabrication errors.

  4. Photonic-band-gap properties for two-component slow light

    SciTech Connect

    Ruseckas, J.; Kudriasov, V.; Juzeliunas, G.; Unanyan, R. G.; Otterbach, J.; Fleischhauer, M.

    2011-06-15

    We consider two-component ''spinor'' slow light in an ensemble of atoms coherently driven by two pairs of counterpropagating control laser fields in a double tripod-type linkage scheme. We derive an equation of motion for the spinor slow light (SSL) representing an effective Dirac equation for a massive particle with the mass determined by the two-photon detuning. By changing the detuning the atomic medium acts as a photonic crystal with a controllable band gap. If the frequency of the incident probe light lies within the band gap, the light experiences reflection from the sample and can tunnel through it. For frequencies outside the band gap, the transmission and reflection probabilities oscillate with the increasing length of the sample. In both cases the reflection takes place into the complementary mode of the probe field. We investigate the influence of the finite excited state lifetime on the transmission and reflection coefficients of the probe light. We discuss possible experimental implementations of the SSL using alkali-metal atoms such as rubidium or sodium.

  5. Swiss AlpArray: deployment of the Swiss AlpArray temporary broad-band stations and their noise characterization

    NASA Astrophysics Data System (ADS)

    Molinari, Irene; Kissling, Edi; Clinton, John; Hetényi, György; Šipka, Vesna; Stipćević, Josip; Dasović, Iva; Solarino, Stefano; Wéber, Zoltán; Gráczer, Zoltán; Electronics Lab, SED

    2016-04-01

    One of the main actions of the AlpArray European initiative is the deployment of a dense seismic broad-band network, that complements the existing permanent stations. This will ensure a spatially homogeneous seismic coverage of the greater Alpine area for at least two years, allowing a great number of innovative scientific works to be carried out. Our contribution to the AlpArray Seismic Network consists in the deployment of 24 temporary broad-band stations: three in Switzerland, twelve in Italy, three in Croatia, three in Bosnia and Herzegovina and three in Hungary. This deployment is lead by ETH Zurich and founded by the Swiss-AlpArray Sinergia programme by SNSF, and is the result of a fruitful collaboration between five research institutes. Stations were installed between Autumn and Winter 2015. Our installations are both free field and in-house and consist of 21 STS-2 and 3 Trillium Compact sensors equipped with Taurus digitizers and 3G telemetry sending data in real time to the ETH EIDA node. In this work, we present sites and stations setting and we discuss in details the characteristics in terms of site effects and noise level of each station. In particular we analyse the power spectral density estimates investigating the major source of noise and the background noise related to seasons, time of the day, human activities and type of installation. In addition we will show examples of data usage - i.e. earthquake locations, noise cross correlations, measures of surface wave dispersion curves. We thanks the Swiss AlpArray Field Team: Blanchard A., Erlanger E. D., Jarić D., Herak D., M. Herak, Hermann M., Koelemeijer P. J., Markušić S., Obermann A., Sager K., Šikman S., Singer J., Winterberg S. SED Electronic Lab: Barman S., Graf P., Hansemann R., Haslinger F., Hiemer S., Racine R., Tanner R., Weber F.

  6. Micro-metric electronic patterning of a topological band structure using a photon beam

    NASA Astrophysics Data System (ADS)

    Golden, Mark; Frantzeskakis, Emmanouil; de Jong, Nick; Huang, Yingkai; Wu, Dong; Pan, Yu; de Visser, Anne; van Heumen, Erik; van Bay, Tran; Zwartsenberg, Berend; Pronk, Pieter; Varier Ramankutty, Shyama; Tytarenko, Alona; Xu, Nan; Plumb, Nick; Shi, Ming; Radovic, Milan; Varkhalov, Andrei

    2015-03-01

    The only states crossing EF in ideal, 3D TIs are topological surface states. Single crystals of Bi2Se3andBi2Te3 are too defective to exhibit bulk-insulating behaviour, and ARPES shows topologically trivial 2DEGs at EF in the surface region due to downward band bending. Ternary & quaternary alloys of Bi /Te /Se /Sb hold promise for obtaining bulk-insulating crystals. Here we report ARPES data from quaternary, bulk-insulating, Bi-based TIs. Shortly after cleavage in UHV, downward band bending pulls the bulk conduction band below EF, once again frustrating the ``topological only'' ambition for the Fermi surface. However, there is light at the end of the tunnel: we show that a super-band-gap photon beam generates a surface photovoltage sufficient to flatten the bands, thereby recovering the ideal, ``topological only'' situation. In our bulk-insulating quaternary TIs, this effect is local in nature, and permits the writing of arbitrary, micron-sized patterns in the topological energy landscape at the surface. Support from FOM, NWO and the EU is gratefully acknowledged.

  7. Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Zhukovsky, Sergei V.; Orlov, Alexey A.; Babicheva, Viktoriia E.; Lavrinenko, Andrei V.; Sipe, J. E.

    2014-07-01

    We study theoretically the propagation of large-wave-vector waves (volume plasmon polaritons) in multilayer hyperbolic metamaterials with two levels of structuring. We show that when the parameters of a subwavelength metal-dielectric multilayer (substructure) are modulated (superstructured) on a larger, wavelength scale, the propagation of volume plasmon polaritons in the resulting multiscale hyperbolic metamaterials is subject to photonic-band-gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. When this geometry is periodic, stop bands due to Bragg reflection form within the volume plasmonic band. When a cavity layer is introduced in an otherwise periodic superstructure, resonance peaks of the Fabry-Pérot nature are present within the stop bands. More complicated superstructure geometries are also considered. For example, fractal Cantor-like multiscale metamaterials are found to exhibit characteristic self-similar spectral signatures in the volume plasmonic band. Multiscale hyperbolic metamaterials are shown to be a promising platform for large-wave-vector bulk plasmonic waves, whether they are considered for use as a kind of information carrier or for far-field subwavelength imaging.

  8. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    NASA Astrophysics Data System (ADS)

    Tadesse, Semere A.; Li, Huan; Liu, Qiyu; Li, Mo

    2015-11-01

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Our system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.

  9. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    SciTech Connect

    Tadesse, Semere A.; Li, Huan; Liu, Qiyu; Li, Mo

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Our system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.

  10. Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Taylor, Richard J. E.; Williams, David M.; Orchard, Jon R.; Childs, David T. D.; Khamas, Salam; Hogg, Richard A.

    2013-07-01

    In this paper we describe elements of photonic crystal surface-emitting laser (PCSEL) design and operation, highlighting that epitaxial regrowth may provide advantages over current designs incorporating voids. High coupling coefficients are shown to be possible for all-semiconductor structures. We introduce type I and type II photonic crystals (PCs), and discuss the possible advantages of using each. We discussed band structure and coupling coefficients as a function of atom volume for a circular atom on a square lattice. Additionally we explore the effect PC atom size has on in-plane and out-of-plane coupling. We conclude by discussing designs for a PCSEL combined with a distributed Bragg reflector to maximize external efficiency.

  11. Dispersion-tolerant two-photon Michelson interferometer using telecom-band frequency-entangled photon pairs generated by spontaneous parametric downconversion

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Akio; Fukuda, Daiji; Tsuchida, Hidemi; Yamamoto, Noritsugu

    2015-05-01

    The chromatic group velocity dispersion tolerance of a fiber-optic two-photon interferometer is characterized for telecom-band photon pairs that are frequency entangled. Two indium-gallium-arsenide single-photon detectors are used to record the coincidence counts. A single-wavelength laser diode continuously pumps a periodically poled lithium niobate waveguide of 1-mm length. For near-degenerate spontaneous parametric downconversion, it generates wideband entangled collinear photon pairs. The spectral width of 115.8 nm is centered at 1550 nm. It is restricted by the performance of the single-photon detectors whose efficiency is poor beyond 1610 nm. Using a Michelson interferometer, two-photon interference signals are recorded with and without frequency entanglement. The frequency-entangled photon pairs are found to exhibit dispersion-tolerant two-photon interference, even though the two paths through the interferometer have different group velocity dispersion. The observed two-photon interference signal has a correlation time of 42.7 fs, in good agreement with calculations for a 115.8-nm spectral width. For comparison, results are also presented for photon pairs lacking frequency entanglement.

  12. Numerical investigation of the flat band Bloch modes in a 2D photonic crystal with Dirac cones.

    PubMed

    Zhang, Peng; Fietz, Chris; Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M

    2015-04-20

    A numerical method combining complex-k band calculations and absorbing boundary conditions for Bloch waves is presented. We use this method to study photonic crystals with Dirac cones. We demonstrate that the photonic crystal behaves as a zero-index medium when excited at normal incidence, but that the zero-index behavior is lost at oblique incidence due to excitation of modes on the flat band. We also investigate the formation of monomodal and multimodal cavity resonances inside the photonic crystals, and the physical origins of their different line-shape features.

  13. Analysis of band structure, transmission properties, and dispersion behavior of THz wave in one-dimensional parabolic plasma photonic crystal

    SciTech Connect

    Askari, Nasim; Eslami, Esmaeil; Mirzaie, Reza

    2015-11-15

    The photonic band gap of obliquely incident terahertz electromagnetic waves in a one-dimensional plasma photonic crystal is studied. The periodic structure consists of lossless dielectric and inhomogeneous plasma with a parabolic density profile. The dispersion relation and the THz wave transmittance are analyzed based on the electromagnetic equations and transfer matrix method. The dependence of effective plasma frequency and photonic band gap characteristics on dielectric and plasma thickness, plasma density, and incident angle are discussed in detail. A theoretical calculation for effective plasma frequency is presented and compared with numerical results. Results of these two methods are in good agreement.

  14. Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes

    NASA Astrophysics Data System (ADS)

    Meister, H.; Willmeroth, M.; Zhang, D.; Gottwald, A.; Krumrey, M.; Scholze, F.

    2013-12-01

    The energy resolved efficiency of two bolometer detector prototypes for ITER with 4 channels each and absorber thicknesses of 4.5 μm and 12.5 μm, respectively, has been calibrated in a broad spectral range from 1.46 eV up to 25 keV. The calibration in the energy range above 3 eV was performed against previously calibrated silicon photodiodes using monochromatized synchrotron radiation provided by five different beamlines of Physikalische Technische Bundesanstalt at the electron storage rings BESSY II and Metrology Light Source in Berlin. For the measurements in the visible range, a setup was realised using monochromatized halogen lamp radiation and a calibrated laser power meter as reference. The measurements clearly demonstrate that the efficiency of the bolometer prototype detectors in the range from 50 eV up to ≈6 keV is close to unity; at a photon energy of 20 keV the bolometer with the thick absorber detects 80% of the photons, the one with the thin absorber about 50%. This indicates that the detectors will be well capable of measuring the plasma radiation expected from the standard ITER scenario. However, a minimum absorber thickness will be required for the high temperatures in the central plasma. At 11.56 keV, the sharp Pt-L3 absorption edge allowed to cross-check the absorber thickness by fitting the measured efficiency to the theoretically expected absorption of X-rays in a homogeneous Pt-layer. Furthermore, below 50 eV the efficiency first follows the losses due to reflectance expected for Pt, but below 10 eV it is reduced further by a factor of 2 for the thick absorber and a factor of 4 for the thin absorber. Most probably, the different histories in production, storage, and operation led to varying surface conditions and additional loss channels.

  15. Interaction Between the Broad-Lined Type Ic Supernova 2012ap and Carriers of Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Milisavljevic, Dan; Margutti, Raffaella; Crabtree, Kyle N.; Foster, Jonathan B.; Soderberg, Alicia M.; Fesen, Robert A.; Parrent, Jerod T.; Sanders, Nathan E.; Drout, Maria R.; Kamble, Atish; Cenko, S. Bradley

    2014-01-01

    The diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond with electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad- lined Type Ic supernova SN2012ap that exhibit changes in equivalent width over short (. 30 days) timescales. The 4428 A and 6283 A DIB features get weaker with time, whereas the 5780 A feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of the DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.

  16. Real-time monitoring of reactive species in downstream etch reactor by VUV broad-band absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Soriano, R.; Vallier, L.; Cunge, G.; Sadeghi, N.

    2016-09-01

    Plasma etching of nanometric size, high aspect-ratio structures is more challenging at each new technological node. Remote plasmas are beginning to find use when damages on nanostructures by ion bombardment become critical or when etching with high selectivity on different materials present on the wafer is necessary (i . e . tungsten oxide etching with fluorine and hydrogen containing plasmas in remote reactor from AMAT). Furthermore, it is expected that downstream plasma will replace many wet chemical etching processes to alleviate the issue of pattern collapses caused by capillary forces when nanometer size high aspect ratio structures are immersed in liquids. In these downstream plasmas, radicals are the main active species and a control of their density is of prime importance. Most of gases used and radicals produced in etching plasmas (HBr, BrCl, Br2, NF3, CH2F2,...) have strong absorption bands in the vacuum UV spectral region and we have shown that very low concentration of these species can be detected by VUV absorption. We have recently improved the technique by using a VUV CCD camera, instead of the PMT, which render possible the Broad-Band absorption spectroscopy in the 120-200 nm range, with a deuterium lamp, or a laser produced xenon arc lamp as light source. The multi-spectral detection ability of the CCD reduces the acquisition time to less than 1 second and can permit the real time control of the process control.

  17. INTERACTION BETWEEN THE BROAD-LINED TYPE Ic SUPERNOVA 2012ap AND CARRIERS OF DIFFUSE INTERSTELLAR BANDS

    SciTech Connect

    Milisavljevic, Dan; Margutti, Raffaella; Crabtree, Kyle N.; Soderberg, Alicia M.; Sanders, Nathan E.; Drout, Maria R.; Kamble, Atish; Chakraborti, Sayan; Kirshner, Robert P.; Foster, Jonathan B.; Fesen, Robert A.; Parrent, Jerod T.; Pickering, Timothy E.; Cenko, S. Bradley; Silverman, Jeffrey M.; Marion, G. H. Howie; Vinko, Jozsef; Filippenko, Alexei V.; Mazzali, Paolo; Maeda, Keiichi; and others

    2014-02-10

    Diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond to electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (≲ 30 days) timescales. The 4428 Å and 6283 Å DIB features get weaker with time, whereas the 5780 Å feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.

  18. Design and testing of photonic band gap channel-drop-filters

    SciTech Connect

    Shchegolkov, Dmitry; Earley, Lawrence M; Health, Cynthia E; Smirnova, Evgenya I

    2009-01-01

    We have designed, fabricated and tested several novel passive mm-wave spectrometers based on Photonic Band Gap (PBG) structures. Our spectrometers were designed to operate in the frequency ranges of 90-130 and 220-300 GHz. We built and tested both metallic and dielectric silicon Channel-Drop-Filter (CDF) structures at 90-130 GHz. We are currently fabricating a dielectric CDF structure to operate at 220-300 GHz. The complete recent test results for the metal version and preliminary test results for the higher frequency silicon versions will be presented at the conference.

  19. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes

    NASA Astrophysics Data System (ADS)

    Han, Ying; Hou, Lan-Tian; Zhou, Gui-Yao; Yuan, Jin-Hui; Xia, Chang-Ming; Wang, Wei; Wang, Chao; Hou, Zhi-Yun

    2012-05-01

    Flat supercontinuum in the telecommunication wave bands of E+S+C is generated by coupling a train of femtosecond pulses generated by a mode-locked Ti:sapphire laser into the fundamental mode of a photonic crystal fiber with central holes fabricated in our lab. The pulse experiences the anomalous dispersion regime, and the soliton dynamic effect plays an important role in supercontinuum generation. The output spectrum in the wavelength range of 1360-1565 nm does not include significant ripples due to higher pump peak power, and the normalized intensity shows less fluctuation.

  20. Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap.

    PubMed

    Zhang, Zhaoyang; Ma, Danmeng; Zhang, Yiqi; Cao, Mingtao; Xu, Zhongfeng; Zhang, Yanpeng

    2017-03-15

    We experimentally generate a vortex beam through a four-wave mixing (FWM) process after satisfying the phase-matching condition in a rubidium atomic vapor cell with a photonic band gap (PBG) structure. The observed FWM vortex can also be viewed as the reflected part of the launched probe vortex from the PBG. Further, we investigate the propagation behaviors, including the spatial shift and splitting of the probe and FWM vortices in the medium with enhanced Kerr nonlinearity induced by electromagnetically induced transparency. This Letter can be useful for better understanding and manipulating the applications involving the interactions between optical vortices and the medium.

  1. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers.

    PubMed

    Ouzounov, Dimitre G; Ahmad, Faisal R; Müller, Dirk; Venkataraman, Natesan; Gallagher, Michael T; Thomas, Malcolm G; Silcox, John; Koch, Karl W; Gaeta, Alexander L

    2003-09-19

    The measured dispersion of a low-loss, hollow-core photonic band-gap fiber is anomalous throughout most of the transmission band, and its variation with wavelength is large compared with that of a conventional step-index fiber. For an air-filled fiber, femtosecond self-frequency--shifted fundamental solitons with peak powers greater than 2megawatts can be supported. For Xe-filled fibers, nonfrequency-shifted temporal solitons with peak powers greater than 5.5 megawatts can be generated, representing an increase in the power that can be propagated in an optical fiber of two orders of magnitude. The results demonstrate a unique capability to deliver high-power pulses in a single spatial mode over distances exceeding 200 meters.

  2. A ministop band in a single-defect photonic crystal waveguide based on silicon on insulator

    NASA Astrophysics Data System (ADS)

    Tang, Hai-Xia; Zuo, Yu-Hua; Yu, Jin-Zhong; Wang, Qi-Ming

    2008-01-01

    This paper reports that a two-dimensional single-defect photonic crystal waveguide in the Γ-K direction with triangular lattice on a silicon-on-insulator substrate is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. A ministop band (MSB) is observed by the measurement of transmission characteristics. It results from the coupling between the two modes with the same symmetry, which is analysed from the stimulated band diagram by the effective index and the two-dimensional plane wave expansion methods. The parameter working on the MSB is the ratio of the radius of air holes to the lattice constant, r/a. It is obtained that the critical r/a value determining the occurrence or disappearance of MSB is 0.36. When r/a is larger than or equal to 0.36, the MSB occurs. However, when r/a is smaller than 0.36, the MSB disappears.

  3. Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials

    NASA Astrophysics Data System (ADS)

    Froufe-Pérez, Luis S.; Engel, Michael; Damasceno, Pablo F.; Muller, Nicolas; Haberko, Jakub; Glotzer, Sharon C.; Scheffold, Frank

    2016-07-01

    We study photonic band gap formation in two-dimensional high-refractive-index disordered materials where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in both cases. We find that the band gap width is controlled by the increase in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key importance for designing disordered PBG materials.

  4. Broad-Band Continuum and Line Emission of the gamma-Ray Blazar PKS 0537-441

    NASA Technical Reports Server (NTRS)

    Pian, E.; Falomo, R.; Hartman, R. C.; Maraschi, L.; Tavecchio, F.; Tornikoski, M.; Treves, A.; Urry, C. M.; Ballo, L.; Mukherjee, R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    PKS 0537-441, a bright gamma ray emitting blazar was observed at radio, optical, UV and X-ray frequencies during various EGRET paintings, often quasi-simultaneously. In 1995 the object was found in an intense emission state at all wavelengths. BeppoSAX observations made in 1998, non-simultaneously with exposures at other frequencies, allow us to characterize precisely the spectral shape of the high energy blazer component, which we attribute to inverse Compton scatter in The optical-to-gamma-ray spectral energy distributions at the different epochs show that the gamma-ray luminosity dominates the barometric output. This, together with the presence of optical and UV line emission, suggests that, besides the synchrotron self-Compton mechanism, the Compton upscattering of photons external to the jet (e.g., in the broad line region) may have a significant role for high energy radiation. The multiwavelength variability can be reproduced by changes of the plasma bulk Lorentz factor. The spectrum secured by ICE in 1995 appears to be partially absorbed shortward of approximately 1700 Angstroms. However, this signature is not detected in the HST spectrum taker during a lower state of the source. The presence of intervening absorbers is not supported by optical imaging and spectroscopy of the field.

  5. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Geivandov, A. R.; Kasyanova, I. V.; Palto, V. S.

    2015-09-01

    Transmission of planar layers of cholesteric liquid crystals is studied in pulsed electric fields perpendicular to the helix axis at normal incidence of both linearly polarized and unpolarized light. Spectral and light polarization properties of the primary photonic band and the field-induced bands up to fourth order of Bragg selective reflection are studied in detail. In our experiments we have achieved an electric field strength several times higher than the theoretical values corresponding to the critical field of full helix unwinding. However, the experiments show that despite the high strength of the electric field applied the helix does not unwind, but strongly deforms, keeping its initial spatial period. Strong helix deformation results in distinct spectral band splitting, as well as very high field-induced selective reflectance that can be applied in lasers and other optoelectronic devices. Peculiarities of inducing and splitting the bands are discussed in terms of the scattering coefficient approach. All observed effects are confirmed by numerical simulations. The simulations also show that liquid crystal surface anchoring is not the factor that prevents the helix unwinding. Thus, the currently acknowledged concept of continuous helix unwinding in the electric field should be reconsidered.

  6. Spectral element method for band structures of two-dimensional anisotropic photonic crystals.

    PubMed

    Luo, Ma; Liu, Qing Huo; Li, Zhibing

    2009-02-01

    A spectral element method (SEM) is proposed for the accurate calculation of band structures of two-dimensional anisotropic photonic crystals. It uses Gauss-Lobatto-Legendre polynomials as the basis functions in the finite-element framework with curvilinear quadrilateral elements. Coordination mapping is introduced to make the curved quadrilateral elements conformal with the problem geometry. Mixed order basis functions are used in the vector SEM for full vector calculation. The numerical convergence speed of the method is investigated with both square and triangular lattices, and with isotropic and in-plane anisotropic media. It is shown that this method has spectral accuracy, i.e., the numerical error decreases exponentially with the order of basis functions. With only four points per wavelength, the SEM can achieve a numerical error smaller than 0.1%. The full vector calculation method can suppress all spurious modes with nonzero eigenvalues, thus making it easy to filter out real modes. It is thus demonstrated that the SEM is an efficient alternative method for accurate determination of band structures of two-dimensional photonic crystals.

  7. Spectral element method for band structures of two-dimensional anisotropic photonic crystals

    NASA Astrophysics Data System (ADS)

    Luo, Ma; Liu, Qing Huo; Li, Zhibing

    2009-02-01

    A spectral element method (SEM) is proposed for the accurate calculation of band structures of two-dimensional anisotropic photonic crystals. It uses Gauss-Lobatto-Legendre polynomials as the basis functions in the finite-element framework with curvilinear quadrilateral elements. Coordination mapping is introduced to make the curved quadrilateral elements conformal with the problem geometry. Mixed order basis functions are used in the vector SEM for full vector calculation. The numerical convergence speed of the method is investigated with both square and triangular lattices, and with isotropic and in-plane anisotropic media. It is shown that this method has spectral accuracy, i.e., the numerical error decreases exponentially with the order of basis functions. With only four points per wavelength, the SEM can achieve a numerical error smaller than 0.1%. The full vector calculation method can suppress all spurious modes with nonzero eigenvalues, thus making it easy to filter out real modes. It is thus demonstrated that the SEM is an efficient alternative method for accurate determination of band structures of two-dimensional photonic crystals.

  8. Periodic dielectric structure for production of photonic band gap and devices incorporating the same

    DOEpatents

    Ho, Kai-Ming; Chan, Che-Ting; Soukoulis, Costas

    1994-08-02

    A periodic dielectric structure which is capable of producing a photonic band gap and which is capable of practical construction. The periodic structure is formed of a plurality of layers, each layer being formed of a plurality of rods separated by a given spacing. The material of the rods contrasts with the material between the rods to have a refractive index contrast of at least two. The rods in each layer are arranged with their axes parallel and at a given spacing. Adjacent layers are rotated by 90.degree., such that the axes of the rods in any given layer are perpendicular to the axes in its neighbor. Alternating layers (that is, successive layers of rods having their axes parallel such as the first and third layers) are offset such that the rods of one are about at the midpoint between the rods of the other. A four-layer periocity is thus produced, and successive layers are stacked to form a three-dimensional structure which exhibits a photonic band gap. By virtue of forming the device in layers of elongate members, it is found that the device is susceptible of practical construction.

  9. The Seismic Broad Band Western Mediterranean (wm) Network and the Obs Fomar Pool: Current state and Obs activities.

    NASA Astrophysics Data System (ADS)

    Pazos, Antonio; Davila, Jose Martin; Buforn, Elisa; Bezzeghoud, Mourad; Harnafi, Mimoun; Mattesini, Mauricio; Caldeira, Bento; Hanka, Winfried; El Moudnib, Lahcen; Strollo, Angelo; Roca, Antoni; Lopez de Mesa, Mireya; Dahm, Torsten; Cabieces, Roberto

    2016-04-01

    The Western Mediterranean (WM) seismic network started in 1996 as an initiative of the Royal Spanish Navy Observatory (ROA) and the Universidad Complutense de Madrid (UCM), with the collaboration of the GeoForschungsZentrum (GFZ) of Potsdam. A first broad band seismic station (SFUC) was installed close to Cádiz (South Spain). Since then, additional stations have been installed in the Ibero-Moghrebian region. In 2005, the "WM" code was assigned by the FDSN and new partners were jointed: Evora University (UEVO, Portugal), the Scientifique Institute of Rabat (ISRABAT, Morocco), and GFZ. Now days, the WM network is composed by 15 BB stations, all of them with Streckaisen STS-2 or STS-2.5 sensors, Quanterra or Earthdata digitizers and SeiscomP. Most them have co-installed a permanent geodetic GPS stations, and some them also have an accelerometer. There are 10 stations deployed in Spanish territory (5 in the Iberian peninsula, 1 in Balearic islands and 4 in North Africa Spanish places) with VSAT or Internet communications, 2 in Portugal (one of them without real time), and 3 in Morocco (2 VSAT and 1 ADSL). Additionally, 2 more stations (one in South Spain and one in Morocco) will be installed along this year. Additionally ROA has deployed a permanent real time VBB (CMG-3T: 360s) station at the Alboran Island. Due to the fact that part of the seismic activity is located at marine areas, and also because of the poor geographic azimuthal coverage at some zones provided by the land stations (specially in the SW of the San Vicente Cape area), ROA and UCM have acquired six broad band "LOBSTERN" OBS, manufactured by KUM (Kiel, Germany), conforming the OBS FOMAR pool. Three of them with CMG-40T sensor and the other with Trillium 120. These OBS were deployed along the Gibraltar strait since January to November 2014 to study the microseismicity in the Gibraltar strait area. In September 2015 FOMAR network has been deployed in SW of the San Vicente Cape for 8 months as a part of

  10. Experimental Demonstration of a Hybrid-Quantum-Emitter Producing Individual Entangled Photon Pairs in the Telecom Band

    PubMed Central

    Chen, Geng; Zou, Yang; Zhang, Wen-Hao; Zhang, Zi-Huai; Zhou, Zong-Quan; He, De-Yong; Tang, Jian-Shun; Liu, Bi-Heng; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-01-01

    Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution. Here, we demonstrate in principle that IEPPs in the telecom band can be created by combining a single QD-NW and a nonlinear crystal waveguide. The QD-NW system serves as the single photon source, and the emitted visible single photons are split into IEPPs at approximately 1.55 μm through the process of spontaneous parametric down conversion (SPDC) in a periodically poled lithium niobate (PPLN) waveguide. The compatibility of the QD-PPLN interface is the determinant factor in constructing this novel hybrid-quantum-emitter (HQE). Benefiting from the desirable optical properties of QD-NWs and the extremely high nonlinear conversion efficiency of PPLN waveguides, we successfully generate IEPPs in the telecom band with the polarization degree of freedom. The entanglement of the generated photon pairs is confirmed by the entanglement witness. Our experiment paves the way to producing HQEs inheriting the advantages of multiple systems. PMID:27225881

  11. Wave propagation in ordered, disordered, and nonlinear photonic band gap materials

    SciTech Connect

    Lidorikis, Elefterios

    1999-12-10

    Photonic band gap materials are artificial dielectric structures that give the promise of molding and controlling the flow of optical light the same way semiconductors mold and control the electric current flow. In this dissertation the author studied two areas of photonic band gap materials. The first area is focused on the properties of one-dimensional PBG materials doped with Kerr-type nonlinear material, while, the second area is focused on the mechanisms responsible for the gap formation as well as other properties of two-dimensional PBG materials. He first studied, in Chapter 2, the general adequacy of an approximate structure model in which the nonlinearity is assumed to be concentrated in equally-spaced very thin layers, or 6-functions, while the rest of the space is linear. This model had been used before, but its range of validity and the physical reasons for its limitations were not quite clear yet. He performed an extensive examination of many aspects of the model's nonlinear response and comparison against more realistic models with finite-width nonlinear layers, and found that the d-function model is quite adequate, capturing the essential features in the transmission characteristics. The author found one exception, coming from the deficiency of processing a rigid bottom band edge, i.e. the upper edge of the gaps is always independent of the refraction index contrast. This causes the model to miss-predict that there are no soliton solutions for a positive Kerr-coefficient, something known to be untrue.

  12. Monolithically integrated broad-band Mach-Zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics.

    PubMed

    Psarouli, A; Salapatas, A; Botsialas, A; Petrou, P S; Raptis, I; Makarona, E; Jobst, G; Tukkiniemi, K; Sopanen, M; Stoffer, R; Kakabakos, S E; Misiakos, K

    2015-12-02

    Protein detection and characterization based on Broad-band Mach-Zehnder Interferometry is analytically outlined and demonstrated through a monolithic silicon microphotonic transducer. Arrays of silicon light emitting diodes and monomodal silicon nitride waveguides forming Mach-Zehnder interferometers were integrated on a silicon chip. Broad-band light enters the interferometers and exits sinusoidally modulated with two distinct spectral frequencies characteristic of the two polarizations. Deconvolution in the Fourier transform domain makes possible the separation of the two polarizations and the simultaneous monitoring of the TE and the TM signals. The dual polarization analysis over a broad spectral band makes possible the refractive index calculation of the binding adlayers as well as the distinction of effective medium changes into cover medium or adlayer ones. At the same time, multi-analyte detection at concentrations in the pM range is demonstrated.

  13. Monolithically integrated broad-band Mach-Zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics

    PubMed Central

    Psarouli, A.; Salapatas, A.; Botsialas, A.; Petrou, P. S.; Raptis, I.; Makarona, E.; Jobst, G.; Tukkiniemi, K.; Sopanen, M.; Stoffer, R.; Kakabakos, S. E.; Misiakos, K.

    2015-01-01

    Protein detection and characterization based on Broad-band Mach-Zehnder Interferometry is analytically outlined and demonstrated through a monolithic silicon microphotonic transducer. Arrays of silicon light emitting diodes and monomodal silicon nitride waveguides forming Mach-Zehnder interferometers were integrated on a silicon chip. Broad-band light enters the interferometers and exits sinusoidally modulated with two distinct spectral frequencies characteristic of the two polarizations. Deconvolution in the Fourier transform domain makes possible the separation of the two polarizations and the simultaneous monitoring of the TE and the TM signals. The dual polarization analysis over a broad spectral band makes possible the refractive index calculation of the binding adlayers as well as the distinction of effective medium changes into cover medium or adlayer ones. At the same time, multi-analyte detection at concentrations in the pM range is demonstrated. PMID:26825114

  14. Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO.

    PubMed

    Vaughan, Stewart; Gherman, Titus; Ruth, Albert A; Orphal, Johannes

    2008-08-14

    The novel combination of incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS) and a discharge-flow tube for the study of three key atmospheric trace species, I(2), IO and OIO, is reported. Absorption measurements of I(2) and OIO at lambda=525-555 nm and IO at lambda=420-460 nm were made using a compact cavity-enhanced spectrometer employing a 150 W short-arc Xenon lamp. The use of a flow system allowed the monitoring of the chemically short-lived radical species IO and OIO to be conducted over timescales of several seconds. We report detection limits of approximately 26 pmol mol(-1) for I(2) (L=81 cm, acquisition time 60 s), approximately 45 pmol mol(-1) for OIO (L=42.5 cm, acquisition time 5 s) and approximately 210 pmol mol(-1) for IO (L=70 cm, acquisition time 60 s), demonstrating the usefulness of this approach for monitoring these important species in both laboratory studies and field campaigns.

  15. Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene

    NASA Astrophysics Data System (ADS)

    Zolot, A. M.; Giorgetta, F. R.; Baumann, E.; Swann, W. C.; Coddington, I.; Newbury, N. R.

    2013-03-01

    The Doppler-limited spectra of methane between 176 THz and 184 THz (5870-6130 cm-1) and acetylene between 193 THz and 199 THz (6430-6630 cm-1) are acquired via comb-tooth resolved dual comb spectroscopy with frequency accuracy traceable to atomic standards. A least squares analysis of the measured absorbance and phase line shapes provides line center frequencies with absolute accuracy of 0.2 MHz, or less than one thousandth of the room temperature Doppler width. This accuracy is verified through comparison with previous saturated absorption spectroscopy of 37 strong isolated lines of acetylene. For the methane spectrum, the center frequencies of 46 well-isolated strong lines are determined with similar high accuracy, along with the center frequencies for 1107 non-isolated lines at lower accuracy. The measured methane line-center frequencies have an uncertainty comparable to the few available laser heterodyne measurements in this region but span a much larger optical bandwidth, marking the first broad-band measurements of the methane 2ν3 region directly referenced to atomic frequency standards. This study demonstrates the promise of dual comb spectroscopy to obtain high resolution broadband spectra that are comparable to state-of-the-art Fourier-transform spectrometer measurements but with much improved frequency accuracy.Work of the US government, not subject to US copyright.

  16. Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infrared region.

    PubMed

    Zhang, Lianbin; Li, Yang; Sun, Junqi; Shen, Jiacong

    2008-03-01

    Broad-band superhydrophobic antireflective (AR) coatings in near infrared (NIR) region were readily fabricated on silicon or quartz substrates by a layer-by-layer (LbL) assembly technique. First, a porous poly(diallyldimethylammonium chloride) (PDDA)/SiO2 nanoparticle multilayer coating with AR property was prepared by LbL deposition of PDDA and 200 nm SiO2 nanoparticles. PDDA was then alternately assembled with sodium silicate on the PDDA/SiO2 nanoparticle coating to prepare a two-level hierarchical surface. Superhydrophobic AR coating with a water contact angle of 154 degrees was finally obtained after chemical vapor deposition of a layer of fluoroalkylsilane on the hierarchical surface. Quartz substrate with the as-fabricated superhydrophobic AR coating has a maximal transmittance above 98% of incidence light in the NIR region, which is increased by five percent compared with bare quartz substrate. Simultaneously, the superhydrophobic property endows the AR coating with water-repellent ability. Such superhydrophobic AR coatings can effectively avoid the disturbance of water vapor on their AR property and are expected to be applicable under humid environments.

  17. Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broad band left-hand polarized waves

    NASA Technical Reports Server (NTRS)

    Chang, T.; Crew, G. B.; Hershkowitz, N.; Jasperse, J. R.; Retterer, J. M.

    1986-01-01

    Central plasma sheet (CPS) ion conics are oxygen-dominated, with peak energies ranging from tens to hundreds of eV centered around pitch-angles between 115 and 130 degrees. Because of the lack of correlation between the CPS conics and the observed currents and/or electron beam-like structures, it is not likely that all of these conics are generated by interactions with electrostatic ion cyclotron waves or lower hybrid waves. Instead, it is suggested that the observed intense broad band electric field fluctuations in the frequency range between 0 and 100 Hz can be responsible for the transverse energization of the ions through cyclotron resonance heating with the left-hand polarized electromagnetic waves. This process is much more efficient for heating the oxygen ions than hydrogen ions, thus providing a plausible explanation of the oxygen dominance in CPS conics. Simple algebraic expressions are given from which estimates of conic energy and pitch angle can be easily calculated. This suggested mechanism can also provide some preheating of the oxygen ions in the boundary plasma sheet (BPS) where discrete aurorae form.

  18. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    NASA Technical Reports Server (NTRS)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; Koo, D. C.; Ferguson, H. C.; Scarlata, C.; Hathi, N. P.; Dunlop, J. S.; Newman, J. A.; Dickinson, M.; Jahnke, K.; Salmon, B. W.; deMello, D. F.; Kkocevski, D. D.; Lai, K.; Grogin, N. A.; Rodney, S. A.; Guo, Yicheng

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  19. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    NASA Technical Reports Server (NTRS)

    VanDerWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; Koo, D.; Ferguson, H. C.; Scarlata, C.; Hathi, N. P.; Dunlop, J. S.; Newman, J. A.; Kocevski, D. D.; Lai, K.; Grogin, N. A.; Rodney, S. A.; Lee, K.-S.; Guo, Y.

    2011-01-01

    We identify an abundant population of extreme emission line galaxies at redshift z=1.6 - 1.8 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared, broad-band fluxes. Supported by spectroscopic confirmation of strong [OIII] emission lines - with equivalent widths approximately 1000A - in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are dwarf galaxies with approximately 10(exp 8) solar mass in stellar mass, undergoing an enormous star-burst phase with M*/M* of only approximately 10 Myr. The star formation activity and the co-moving number density (3.7 x 10(exp -4) Mpc(exp -3)) imply that strong, short-lived bursts play a significant, perhaps even dominant role in the formation and evolution of dwarf galaxies at z greater than 1. The observed star formation activity can produce in less than 5 Gyr the same amount of stellar mass density as is presently contained in dwarf galaxies. Therefore, our observations provide a strong indication that the stellar populations of present-day dwarf galaxies formed mainly in strong, short-lived bursts, mostly at z greater than 1.

  20. Performance of the NIST goniocolorimeter with a broad-band source and multichannel charged coupled device based spectrometer.

    PubMed

    Podobedov, V B; Miller, C C; Nadal, M E

    2012-09-01

    The authors describe the NIST high-efficiency instrument for measurements of bidirectional reflectance distribution function of colored materials, including gonioapparent materials such as metallic and pearlescent coatings. The five-axis goniospectrometer measures the spectral reflectance of samples over a wide range of illumination and viewing angles. The implementation of a broad-band source and a multichannel CCD spectrometer corrected for stray light significantly increased the efficiency of the goniometer. In the extended range of 380 nm to 1050 nm, a reduction of measurement time from a few hours to a few minutes was obtained. Shorter measurement time reduces the load on the precise mechanical assembly ensuring high angular accuracy over time. We describe the application of matrix-based correction of stray light and the extension of effective dynamic range of measured fluxes to the values of 10(6) to 10(7) needed for the absolute characterization of samples. The measurement uncertainty was determined to be 0.7% (k = 2), which is comparable with similar instruments operating in a single channel configuration. Several examples of reflectance data obtained with the improved instrument indicate a 0.3% agreement compared to data collected with the single channel configuration.

  1. Optical Spectroscopy of Serendipitous Chandra Sources from the ChaMP and a Thousand Broad-band SEDs

    NASA Astrophysics Data System (ADS)

    Trichas, Markos; Green, P. J.; Aldcroft, T. L.; Constantin, A.; Silverman, J. D.; Ruiz, A.; Haggard, D.; Barkhouse, W. A.; Kim, D.; Wik, D. R.; Wolfgang, A.; Covey, K. R.; Romero-Colmenero, E.; Smith, M. G.; Wilkes, B. J.; Schechter, P. L.; Marschall, H. L.

    2011-09-01

    From optical spectroscopy of X-ray sources observed as part of the Chandra Multiwavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-ups using the FLWO 1.5m, WIYN 3.5m, CTIO 4m, Magellan 6.5m, MMT 6.5m and Gemini 8m telescopes, and from archival SDSS spectroscopy. We classify the optical counterparts as 50% broad line AGN, 16% emission line galaxies, 14%s absorption line galaxies, and 20% stars. We detect QSOs out to z 5.5 and galaxies out to z 3. We have compiled extensive photometry, including X-ray (ChaMP), UV (GALEX), Optical (SDSS), NIR (UKIDSS, 2MASS), MIR (WISE) and Radio (FIRST, NVSS) bands. Together with our spectroscopic information, this enables us to derive detailed spectral energy distributions (SEDs) for all our extragalactic sources. We fit a variety of template SEDs to determine bolometric luminosities, and to constrain AGN and starburst components where both present. The latter in combination to the derived X-ray spectral fits for all our sources will provide us with a large sample to be able to study in detail the AGN/Star-formation coevolution and the relationship between nuclear obscuration and star-formation.

  2. High-resolution line-shape spectroscopy during a laser pulse based on Dual-Broad-Band-CARS interferometry

    SciTech Connect

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M E-mail: Al_Vereshchagin@mail.r E-mail: stelmakh@kapella.gpi.r

    2006-07-31

    A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern, considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  3. Relationship between quantum speed limit time and memory time in a photonic-band-gap environment

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wu, Y. N.; Mo, M. L.; Zhang, H. Z.

    2016-12-01

    Non-Markovian effect is found to be able to decrease the quantum speed limit (QSL) time, and hence to enhance the intrinsic speed of quantum evolution. Although a reservoir with larger degree of non-Markovianity may seem like it should cause smaller QSL times, this seemingly intuitive thinking may not always be true. We illustrate this by investigating the QSL time of a qubit that is coupled to a two-band photonic-band-gap (PBG) environment. We show how the QSL time is influenced by the coherent property of the reservoir and the band-gap width. In particular, we find that the decrease of the QSL time is not attributed to the increasing non-Markovianity, while the memory time of the environment can be seen as an essential reflection to the QSL time. So, the QSL time provides a further insight and sharper identification of memory time in a PBG environment. We also discuss a feasible experimental realization of our prediction.

  4. Relationship between quantum speed limit time and memory time in a photonic-band-gap environment

    PubMed Central

    Wang, J.; Wu, Y. N.; Mo, M. L.; Zhang, H. Z.

    2016-01-01

    Non-Markovian effect is found to be able to decrease the quantum speed limit (QSL) time, and hence to enhance the intrinsic speed of quantum evolution. Although a reservoir with larger degree of non-Markovianity may seem like it should cause smaller QSL times, this seemingly intuitive thinking may not always be true. We illustrate this by investigating the QSL time of a qubit that is coupled to a two-band photonic-band-gap (PBG) environment. We show how the QSL time is influenced by the coherent property of the reservoir and the band-gap width. In particular, we find that the decrease of the QSL time is not attributed to the increasing non-Markovianity, while the memory time of the environment can be seen as an essential reflection to the QSL time. So, the QSL time provides a further insight and sharper identification of memory time in a PBG environment. We also discuss a feasible experimental realization of our prediction. PMID:28008937

  5. Spectral modification of the laser emission of a terahertz quantum cascade laser induced by broad-band double pulse injection seeding

    SciTech Connect

    Markmann, Sergej Nong, Hanond Hekmat, Negar; Jukam, Nathan; Pal, Shovon; Scholz, Sven; Kukharchyk, Nadezhda; Ludwig, Arne; Wieck, Andreas D.; Dhillon, Sukhdeep; Tignon, Jérôme; Marcadet, Xavier; Bock, Claudia; Kunze, Ulrich

    2015-09-14

    We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.

  6. A physical parameter method for the design of broad-band X-ray imaging systems to do coronal plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Kahler, S.; Krieger, A. S.

    1978-01-01

    The technique commonly used for the analysis of data from broad-band X-ray imaging systems for plasma diagnostics is the filter ratio method. This requires the use of two or more broad-band filters to derive temperatures and line-of-sight emission integrals or emission measure distributions as a function of temperature. Here an alternative analytical approach is proposed in which the temperature response of the imaging system is matched to the physical parameter being investigated. The temperature response of a system designed to measure the total radiated power along the line of sight of any coronal structure is calculated. Other examples are discussed.

  7. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    SciTech Connect

    Sutherland, Kevin Jerome

    2001-06-27

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. It was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the

  8. Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture

    PubMed Central

    Xu, Changqing; Wang, Gang; Hang, Zhi Hong; Luo, Jie; Chan, C. T.; Lai, Yun

    2015-01-01

    Based on a band engineering method, we propose a theoretical prescription to create a full-k-space flat band in dielectric photonic crystals covering the whole Brillouin Zone. With wave functions distributed in air instead of in the dielectrics, such a flat band represents a unique mechanism for achieving flat dispersions beyond the tight-binding picture, which can enormously reduce the requirement of permittivity contrast in the system. Finally, we propose and numerically demonstrate a unique application based on the full-k-space coverage of the flat band: ultra-sensitive detection of small scatterers. PMID:26656882

  9. Frequency-selective plasmonic wave propagation through the overmoded waveguide with photonic-band-gap slab arrays

    SciTech Connect

    Shin, Young-Min

    2012-05-15

    Confined propagation of guided waves through the periodically corrugated channel sandwiched between two staggered dielectric photonic-band-gap slab arrays is investigated with the band-response analysis. Numerical simulations show that longitudinally polarized evanescent waves within the band gap propagate with insertion loss of {approx}-0.2 to 1 dB (-0.05 to 0.4 dB/mm at G-band) in the hybrid band filter. This structure significantly suppresses low energy modes and higher-order-modes beyond the band-gap, including background noises, down to {approx}-45 dB. This would enable the single-mode propagation in the heavily over-moded waveguide (TEM-type), minimizing abnormal excitation probability of trapped modes. This band filter could be integrated with active and passive RF components for electron beam and optoelectronic devices.

  10. Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications.

    PubMed

    Liang, Chuang; Lee, Kim Fook; Levin, Todd; Chen, Jun; Kumar, Prem

    2006-07-24

    We demonstrate a novel alignment-free all-fiber source for generating telecom-band polarization-entangled photon pairs. Polarization entanglement is created by injecting two relatively delayed, orthogonally polarized pump pulses into a piece of dispersion-shifted fiber, where each one independently engages in four-photon scattering, and then removing any distinguishability between the correlated photon-pairs produced by each pulse at the fiber output. Our scheme uses a Michelson-interferometer configuration with Faraday mirrors to achieve practically desirable features such as ultra-stable performance and turnkey operation. Up to 91.7% two-photon-interference visibility is observed without subtracting the accidental coincidences that arise from background photons while operating the source at room temperature.

  11. Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.

    2011-05-01

    A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.

  12. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure.

    PubMed

    Simakov, Evgenya I; Arsenyev, Sergey A; Buechler, Cynthia E; Edwards, Randall L; Romero, William P; Conde, Manoel; Ha, Gwanghui; Power, John G; Wisniewski, Eric E; Jing, Chunguang

    2016-02-12

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic-band-gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have the potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. We conducted an experiment at the Argonne Wakefield Accelerator test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.

  13. Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures

    NASA Astrophysics Data System (ADS)

    Scalora, M.; Bloemer, M. J.; Pethel, A. S.; Dowling, J. P.; Bowden, C. M.; Manka, A. S.

    1998-03-01

    We investigate numerically the properties of metallo-dielectric, one-dimensional, photonic band-gap structures. Our theory predicts that interference effects give rise to a new transparent metallic structure that permits the transmission of light over a tunable range of frequencies, for example, the ultraviolet, the visible, or the infrared wavelength range. The structure can be designed to block ultraviolet light, transmit in the visible range, and reflect all other electromagnetic waves of lower frequencies, from infrared to microwaves and beyond. The transparent metallic structure is composed of a stack of alternating layers of a metal and a dielectric material, such that the complex index of refraction alternates between a high and a low value. The structure remains transparent even if the total amount of metal is increased to hundreds of skin depths in net thickness.

  14. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    NASA Astrophysics Data System (ADS)

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; Edwards, Randall L.; Romero, William P.; Conde, Manoel; Ha, Gwanghui; Power, John G.; Wisniewski, Eric E.; Jing, Chunguang

    2016-02-01

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic-band-gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have the potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. We conducted an experiment at the Argonne Wakefield Accelerator test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.

  15. Scanning nonreciprocity spatial four-wave mixing process in moving photonic band gap

    NASA Astrophysics Data System (ADS)

    Wang, Hang; Zhang, Yunzhe; Li, Mingyue; Ma, Danmeng; Guo, Ji; Zhang, Dan; Zhang, Yanpeng

    2017-03-01

    We experimentally investigate the scanning nonreciprocity of four-wave mixing process induced by optical parametric amplification in moving photonic band gap, which is different from the propagation nonreciprocity in the optical diode. Meanwhile the frequency offset and the intensity difference are observed when we scan the frequency of the beams on two arm ramps of one round trip. Such scanning nonreciprocities can be controlled by changing the frequency detuning of the dressing beams. For the first time, we find that the intensity difference can cause the nonreciprocity in spatial image. In the nonreciprocity process, the focusing or defocusing is resulted from the feedback dressing self-phase modulation while shift and split is attributed to feedback dressing cross-phase modulation. Our study could have a potential application in the controllable optical diode.

  16. First High power test results for 2.1 GHz superconducting photonic band gap accelerator cavities.

    PubMed

    Simakov, Evgenya I; Haynes, W Brian; Madrid, Michael A; Romero, Frank P; Tajima, Tsuyoshi; Tuzel, Walter M; Boulware, Chase H; Grimm, Terry L

    2012-10-19

    We report the results of the recent high power testing of superconducting radio frequency photonic band gap (PBG) accelerator cells. Tests of the two single-cell 2.1 GHz cavities were performed at both 4 and 2 K. An accelerating gradient of 15 MV/m and an unloaded quality factor Q(0) of 4×10(9) were achieved. It has been long realized that PBG structures have great potential in reducing long-range wakefields in accelerators. A PBG structure confines the fundamental TM(01)-like accelerating mode, but does not support higher order modes. Employing PBG cavities to filter out higher order modes in superconducting particle accelerators will allow suppression of dangerous beam instabilities caused by wakefields and thus operation at higher frequencies and significantly higher beam luminosities. This may lead towards a completely new generation of colliders for high energy physics and energy recovery linacs for the free-electron lasers.

  17. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    DOE PAGES

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; ...

    2016-02-10

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less

  18. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    SciTech Connect

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; Edwards, Randall L.; Romero, William P.; Conde, Manoel; Ha, Gwanghui; Power, John G.; Wisniewski, Eric E.; Jing, Chunguang

    2016-02-10

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. We conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.

  19. Pushing the Gradient Limitations of Superconducting Photonic Band Gap Structure Cells

    SciTech Connect

    Simakov, Evgenya I.; Haynes, William B.; Kurennoy, Sergey S.; Shchegolkov, Dmitry; O'Hara, James F.; Olivas, Eric R.

    2012-06-07

    Superconducting photonic band gap resonators present us with unique means to place higher order mode couples in an accelerating cavity and efficiently extract HOMs. An SRF PBG resonator with round rods was successfully tested at LANL demonstrating operation at 15 MV/m. Gradient in the SRF PBG resonator was limited by magnetic quench. To increase the quench threshold in PBG resonators one must design the new geometry with lower surface magnetic fields and preserve the resonator's effectiveness for HOM suppression. The main objective of this research is to push the limits for the high-gradient operation of SRF PBG cavities. A NCRF PBG cavity technology is established. The proof-of-principle operation of SRF PBG cavities is demonstrated. SRF PBG resonators are effective for outcoupling HOMs. PBG technology can significantly reduce the size of SRF accelerators and increase brightness for future FELs.

  20. Photonic band-gap engineering in UV fiber gratings by the arc discharge technique.

    PubMed

    Cusano, Andrea; Iadicicco, Agostino; Paladino, Domenico; Campopiano, Stefania; Cutolo, Antonello

    2008-09-29

    Localized heat treatments combined with local non-adiabatic tapering is proposed as suitable tool for the engineering of photonic band-gaps in UV-written fiber Bragg gratings (FBGs). In particular, here, we propose the use of the electric arc discharge to achieve localized defects along the FBG structure, however differently from previously reported works, we demonstrate how this post processing tool properly modified can be exploited to achieve the full control of the spectral characteristics of the final device. Also, we show how the suitable choice of the grating features and the correct selection of the defect geometry can be efficiently used to achieve interesting features for both communication and sensing applications.

  1. Optical processes of photonic band gap structure with dressing field in atomic system

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Zhe; Liu, Zhe; Cai, Kang-Ning; Zhong, Hua; Zhang, Wei-Tao; Liu, Jun-Feng; Zhang, Yan-Peng

    2016-12-01

    We experimentally investigate probe transmission signals (PTS), the four-wave mixing photonic band gap signal (FWM BGS), and the fluorescence signal (FLS) in an inverted Y-type four level atomic system. For the first time, we compare the FLS of the two ground-state hyperfine levels of Rb 85. In particular, the second-order and the fourth-order fluorescence signals perform dramatic dressing discrepancies under the two hyperfine levels. Moreover, we find that the dressing field has some dressing effects on three such types of signals. Therefore, we demonstrate that the characteristics of PTS, FWM BGS, and FLS can be controlled by frequency detunings, the powers or phases of the dressing field. Such research could have potential applications in optical diodes, amplifiers, and quantum information processing.

  2. Suzaku broad-band spectrum of 4U 1705-44: probing the reflection component in the hard state

    NASA Astrophysics Data System (ADS)

    Di Salvo, T.; Iaria, R.; Matranga, M.; Burderi, L.; D'Aí, A.; Egron, E.; Papitto, A.; Riggio, A.; Robba, N. R.; Ueda, Y.

    2015-05-01

    Iron emission lines at 6.4-6.97 keV, identified with Kα radiative transitions, are among the strongest discrete features in the X-ray band. These are one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper, we present a recent Suzaku observation, 100-ks effective exposure, of the atoll source and X-ray burster 4U 1705-44, where we clearly detect signatures of a reflection component which is distorted by the high-velocity motion in the accretion disc. The reflection component consists of a broad iron line at about 6.4 keV and a Compton bump at high X-ray energies, around 20 keV. All these features are consistently fitted with a reflection model, and we find that in the hard state the smearing parameters are remarkably similar to those found in a previous XMM-Newton observation performed in the soft state. In particular, we find that the inner disc radius is Rin = 17 ± 5Rg (where Rg is the gravitational radius, GM/c2), the emissivity dependence from the disc radius is r-2.5 ± 0.5, the inclination angle with respect to the line of sight is i = 43° ± 5°, and the outer radius of the emitting region in the disc is Rout > 200Rg. We note that the accretion disc does not appear to be truncated at large radii, although the source is in a hard state at ˜3 per cent of the Eddington luminosity for a neutron star. We also find evidence of a broad emission line at low energies, at 3.03 ± 0.03 keV, compatible with emission from mildly ionized argon (Ar XVI-XVII). Argon transitions are not included in the self-consistent reflection models that we used and we therefore added an extra component to our model to fit this feature. The low-energy line appears compatible with being smeared by the same inner disc parameters found for the reflection component.

  3. A Broad-band Spectral and Timing Study of the X-Ray Binary System Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Audley, Michael Damian

    1998-01-01

    This dissertation describes a multi-mission investigation of the high mass X-ray binary pulsar Centaurus X-3. Cen X-3 was observed with the Broad Band X-Ray Telescope (BBXRT) in December 1990. This was the first high-resolution solid state X-ray spectrometer to cover the iron K fluorescence region. The Fe K emission feature was resolved into two components for the first time. A broad 6.7 keV feature was found to be a blend of lines from Fe XXI-Fe XXVI with energies ranging from 6.6 to 6.9 keV due to photoionization of the companion's stellar wind. A narrow line at 6.4 keV due to fluorescence of iron in relatively low ionization states was also found. The quasi-periodic oscillations (QPO) at about 40 mHz were used to estimate the surface magnetic field of Cen X-3 as approx. 2.6 x 10(exp 12) G and to predict that there should be a cyclotron scattering resonance absorption feature (CSRF) near 30 keV. In order to further resolve the iron line complex and to investigate the pulse-phase dependence of the iron line intensities, Cen X-3 was observed with the Advanced Satellite for Cosmology and Astrophysics (ASCA). Using ASCA's state-of-the-art non-dispersive X-ray spectrometers the 6.4 keV fluorescent iron line was found to be pulsing while the intensities of the 6.7 and 6.9 keV recombination lines do not vary with pulse phase. This confirms that the 6.4 keV line is due to reflection by relatively neutral matter close to the neutron star while the recombination lines originate in the extended stellar wind. The continuum spectrum was found to be modified by reflection from matter close to the neutron star. Observations with the EXOSAT GSPC were used to search for a CSRF. The EXOSAT spectra were consistent with the presence of a CSRF but an unambiguous detection was not possible because of a lack of sensitivity at energies higher than the cyclotron energy. Cen X-3 was then observed with the Rossi X-Ray Timing Explorer (RXTE) and evidence for a CSRF at 25.1 +/- 0.3 keV was

  4. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    NASA Astrophysics Data System (ADS)

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-03-01

    We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.

  5. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    NASA Astrophysics Data System (ADS)

    Michieletto, Mattia; Johansen, Mette M.; Lyngsø, Jens K.; Lægsgaard, Jesper; Bang, Ole; Alkeskjold, Thomas T.

    2016-03-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier setup. It provided 22ps pulses with a maximum average power of 95W, 40MHz repetition rate at 1032nm (~2.4μJ pulse energy), with M2 <1.3. We determined the facet damage threshold for a 7-cells hollow core photonic bandgap fiber and showed up to 59W average power output for a 5 meters fiber. The damage threshold for a 19-cell hollow core photonic bandgap fiber exceeded the maximum power provided by the light source and up to 76W average output power was demonstrated for a 1m fiber. In both cases, no special attention was needed to mitigate bend sensitivity. The fibers were coiled on 8 centimeters radius spools and even lower bending radii were present. In addition, stimulated rotational Raman scattering arising from nitrogen molecules was measured through a 42m long 19 cell hollow core fiber.

  6. Wide-band acousto-optic deflectors for large field of view two-photon microscope.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2012-04-01

    Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58-2.12 μm and 2.17-3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV.

  7. 2D photonic crystal complete band gap search using a cyclic cellular automaton refination

    NASA Astrophysics Data System (ADS)

    González-García, R.; Castañón, G.; Hernández-Figueroa, H. E.

    2014-11-01

    We present a refination method based on a cyclic cellular automaton (CCA) that simulates a crystallization-like process, aided with a heuristic evolutionary method called differential evolution (DE) used to perform an ordered search of full photonic band gaps (FPBGs) in a 2D photonic crystal (PC). The solution is proposed as a combinatorial optimization of the elements in a binary array. These elements represent the existence or absence of a dielectric material surrounded by air, thus representing a general geometry whose search space is defined by the number of elements in such array. A block-iterative frequency-domain method was used to compute the FPBGs on a PC, when present. DE has proved to be useful in combinatorial problems and we also present an implementation feature that takes advantage of the periodic nature of PCs to enhance the convergence of this algorithm. Finally, we used this methodology to find a PC structure with a 19% bandgap-to-midgap ratio without requiring previous information of suboptimal configurations and we made a statistical study of how it is affected by disorder in the borders of the structure compared with a previous work that uses a genetic algorithm.

  8. Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide

    SciTech Connect

    Singh, A.; Huisman, S. R.; Ctistis, G. Mosk, A. P.; Pinkse, P. W. H.; Korterik, J. P.; Herek, J. L.

    2015-01-21

    We have measured the photonic bandstructure of GaAs photonic-crystal waveguides with high resolution in energy as well as in momentum using near-field scanning optical microscopy. Intriguingly, we observe additional bands that are not predicted by eigenmode solvers, as was recently demonstrated by Huisman et al. [Phys. Rev. B 86, 155154 (2012)]. We study the presence of these additional bands by performing measurements of these bands while varying the incident light power, revealing a non-linear power dependence. Here, we demonstrate experimentally and theoretically that the observed additional bands are caused by a waveguide-specific near-field tip effect not previously reported, which can significantly phase-modulate the detected field.

  9. Broad-band Seismology for Understanding Earthquake Physics and Developing a Modern Practice for Seismic Damage Mitigation

    NASA Astrophysics Data System (ADS)

    Kanamori, H.; Heaton, T. H.

    2003-12-01

    In 1987, immediately after the 1987 Whittier Narrows earthquake, the Caltech broad-band regional seismic network project, TERRAscope, was launched under the direction of Don Anderson. At the time, UC Berkeley had also embarked on such a project. The objectives included: 1) Collect high-quality seismic data for developing theories of Earth's interior and exterior, 2) Develop a physics-based earthquake damage mitigation method, 3) Provide a test-bed for novel approaches in real-time seismology, 4) Provide an infrastructure for cultivating new directions in seismology. The data from TERRAscope, combined with those from other networks such as GDSN, IDA, IRIS, GeoScope networks were used to study various seismological problems, some of which had not been commonly investigated. We focus on three areas. The interaction between the solid earth and atmosphere had been the subject of considerable interest. The broadband networks detected interesting atmospheric waves from a few Hz (N waves from space shuttles) to 0.001 Hz (Morning-glory waves. At the time it was not recognized as such). Also, it recorded monochromatic (period ˜ 230 sec) Rayleigh waves which were generated by the near source atmospheric oscillations excited by the 1991 Pinatubo eruption. These waves were not immediately recognized as such, because they had not been observed yet. This represents one of few cases in which significant energy transfer occurred from the atmosphere to the solid earth. These observations eventually led to the more ambitious ongoing projects for detecting ionospheric signature of acoustic and internal gravity waves in the atmosphere that couple into the solid earth. Gutenberg, together with Richter, published a series of papers on the energy of earthquakes in the 1940's to 1950's. The intent of these studies was to determine the most important quantity necessary for understanding the fundamental physics of earthquakes. Unfortunately, because of the overwhelming observational

  10. A source model of the 2014 South Napa Earthquake by the EGF broad-band strong ground motion simulation

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.; Kubo, H.

    2014-12-01

    The source model of the 2014 South Napa earthquake (Mw6.0) is estimated using broad band strong ground motion simulation by the empirical Green's function method (Irikura, 1986, Irikura et al., 1997). We used the CESMD strong motion data. Aftershock ground motion records of Mw3.6 which occurred at 05:33 on 24th August (PDT), are used as an empirical Green's function. We refer to the finite source model by Dreger et al. (2014) for setting the geometry of the source fault plane and the rupture velocity. We assume a single rectangular strong motion generation area (e.g. Miyake et al., 2003; Asano and Iwata, 2012). The seismic moment ratio between the target and EGF events is fixed from the moment magnitudes. As only five station data are available for the aftershock records, the size of SMGA area, rupture starting point, and the rise time on the SMGA are determined by the trial and error. Preliminary SMGA model is 6x6km2 and the rupture mainly propagates WNW and shallower directions. The SMGA size we obtained follows the empirical relationship of Mw and SMGA size for the inland crustal events (Irikura and Miyake, 2011). Waveform fittings are fairly well at the near source station NHC (Huichica creek) and 68150 (Napa Collage), where as the fitting is not good at the south-side stations, 68206 (Crockett - Carquinez Br. Geotech Array) and 68310 (Vallejo - Hwy 37/Napa River E Geo. Array). Particularly, we did not succeed in explaining the high PGA at the 68206 surface station. We will try to improve our SMGA model and will discuss the origin of the high PGA observed at that station.

  11. Calibrating broad-band seismometers in the extreme cold : Application to the observatory station CCD (Concordia, DomeC, Antarctica)

    NASA Astrophysics Data System (ADS)

    Bes de Berc, M.; Lévêque, J.; Maggi, A.; Thoré, J.; Sorrentino, D.; Delladio, A.; Danesi, S.; Morelli, A.

    2011-12-01

    The first year-round continuous broad-band recordings at the Concordia observatory station in East Antarctica (CCD) started in 2005. For the first two years, technical problems due to the extreme cold conditions (the seismic vault is at a constant temperature of -54°C) resulted in data whose quality was too poor to permit distribution. Since January 2007, the data from CCD have been officially open to any researchers who wish to request them directly to the operators. Such requests have been honored to the best of our ability, taking into account the delay for the data being shipped from Concordia to Europe (we receive data once a year, at the end of the summer field season in Antarctica). Up to now, we have only been able to provide nominal seismometer responses along with the data, despite suspecting that the extreme cold could affect the characteristics of the instruments. After several unsuccessful attempts in early 2008, 2009 and 2010, we finally succeeded in calibrating the seismometers in situ in early 2011. Here we present the design of our cold-tested calibration box, and the results of the direct calibrations of two instruments that were running in 2011 : an STS-2 running at -30°C (i.e. above the ambient temperature in the vault), and a T240 running at -54°C. We have found the response of the "warm" STS-2 to be near nominal, while that of the "cold T240" differs substantially from its nominal response. Furthermore, during the time period 2007-2009, the "warm" STS-2 was running alongside an identical but unheated STS-2, for which we shall present a relative calibration. Thanks to these calibrations, we shall shortly be able to distribute the Concordia data more widely, via the data centers at Geoscope and IRIS.

  12. Broad band and long period magnetotellurics for imaging the onshore portion of Santos basin and orogenic belts of southeast Brazil

    NASA Astrophysics Data System (ADS)

    Solon, F. F.; Fontes, S. L.; Miquelutti, L. G.; La Terra, E. F.

    2012-12-01

    Between October 2011 and April 2012, we carried out 81 broad band and 40 long period magnetotelluric soundings covering the frequency range 1000 Hz - 0.0001 Hz. These soundings are distributed into two parallel 210km long profiles, approximately 50 km apart, spaced 5 km with EM field components oriented to the magnetic north and east directions. Both ADU07 (Metronix) and LEMI 417 (Lviv) systems were used. Typically, three to four MT soundings were measured simultaneously for this study. Both profiles initiate at the coast and continues to the continent direction. These profiles crossed two major Neoproterozoic Orogenic Belts, Brasilia and Ribeira, as well as several geosutures in the basement of the marginal basins of southeastern Brazil. The geophysical survey associated with the available geological information brought important contributions to the understanding of the main geosutures presents in the area. One located at the southeast end of the MT profiles, separating the tectonic domains of Ribeira Belt from the Pre-cambrian lands of Santos Basin. The other one situated in the extreme northwest of the MT profiles, limiting the Ribeira and Brasilia Belts. Data were processed using a robust remote-reference technique. Strike and dimensionality analysis along with G-B decomposition support a general 2-D regional character of the conductivity distribution in the area, allowing us to create a 2-D inversion model. Good misfit can be observed between the measured and calculated transfer functions projected onto the profile direction. Very preliminary results imaged the two main suture zones between the orogenics belts and allow inferences about the geographic position of their lateral limits.

  13. The Broad-band X-Ray Spectrum of IC 4329A from a Joint NuSTAR/Suzaku Observation

    NASA Astrophysics Data System (ADS)

    Brenneman, L. W.; Madejski, G.; Fuerst, F.; Matt, G.; Elvis, M.; Harrison, F. A.; Ballantyne, D. R.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Grefenstette, B. W.; Hailey, C. J.; Madsen, K. K.; Marinucci, A.; Rivers, E.; Stern, D.; Walton, D. J.; Zhang, W. W.

    2014-06-01

    We have obtained a deep, simultaneous observation of the bright, nearby Seyfert galaxy IC 4329A with Suzaku and NuSTAR. Through a detailed spectral analysis, we are able to robustly separate the continuum, absorption, and distant reflection components in the spectrum. The absorbing column is found to be modest ({\\sim }6 \\times 10^{21} {\\, cm^{-2}\\,}), and does not introduce any significant curvature in the Fe K band. We are able to place a strong constraint on the presence of a broadened Fe Kα line (E_rest=6.46^{+0.08}_{-0.07} \\, keV with \\sigma =0.33^{+0.08}_{-0.07} \\, keV and EW=34^{+8}_{-7} \\, eV), though we are not able to constrain any of the parameters of a relativistic reflection model. These results highlight the range in broad Fe K line strengths observed in nearby, bright, active galactic nuclei (roughly an order of magnitude), and imply a corresponding range in the physical properties of the inner accretion disk in these sources. We have also updated our previously reported measurement of the high-energy cutoff of the hard X-ray emission using both observatories rather than just NuSTAR alone: E cut = 186 ± 14 keV. This high-energy cutoff acts as a proxy for the temperature of the coronal electron plasma, enabling us to further separate this parameter from the plasma's optical depth and to update our results for these parameters as well. We derive kT=50^{+6}_{-3} \\, keV with \\tau =2.34^{+0.16}_{-0.11} using a spherical geometry, kT = 61 ± 1 keV with τ = 0.68 ± 0.02 for a slab geometry, with both having an equivalent goodness-of-fit.

  14. An ATCA survey of Sagittarius B2 at 7 mm: chemical complexity meets broad-band interferometry

    NASA Astrophysics Data System (ADS)

    Corby, Joanna F.; Jones, Paul A.; Cunningham, Maria R.; Menten, Karl M.; Belloche, Arnaud; Schwab, Frederic R.; Walsh, Andrew J.; Balnozan, Egon; Bronfman, Leonardo; Lo, Nadia; Remijan, Anthony J.

    2015-10-01

    We present a 30-50 GHz survey of Sagittarius B2(N) conducted with the Australia Telescope Compact Array with ˜5-10 arcsec resolution. This work releases the survey data and demonstrates the utility of scripts that perform automated spectral line fitting on broad-band line data. We describe the line-fitting procedure, evaluate the performance of the method, and provide access to all data and scripts. The scripts are used to characterize the spectra at the positions of three H II regions, each with recombination line emission and molecular line absorption. Towards the most line-dense of the three regions characterized in this work, we detect ˜500 spectral line components of which ˜90 per cent are confidently assigned to H and He recombination lines and to 53 molecular species and their isotopologues. The data reveal extremely sub-thermally excited molecular gas absorbing against the continuum background at two primary velocity components. Based on the line radiation over the full spectra, the molecular abundances and line excitation in the absorbing components appear to vary substantially towards the different positions, possibly indicating that the two gas clouds are located proximate to the star-forming cores instead of within the envelope of Sgr B2. Furthermore, the spatial distributions of species including CS, OCS, SiO, and HNCO indicate that the absorbing gas components likely have high UV-flux. Finally, the data contain line-of-sight absorption by ˜15 molecules observed in translucent gas in the Galactic Centre, bar, and intervening spiral arm clouds, revealing the complex chemistry and clumpy structure of this gas. Formamide (NH2CHO) is detected for the first time in a translucent cloud.

  15. Junction-type photonic crystal waveguides for notch- and pass-band filtering.

    PubMed

    Shahid, Naeem; Amin, Muhammad; Naureen, Shagufta; Swillo, Marcin; Anand, Srinivasan

    2011-10-10

    Evolution of the mode gap and the associated transmission mini stop-band (MSB) as a function of photonic crystal (PhC) waveguide width is theoretically and experimentally investigated. The change of line-defect width is identified to be the most appropriate way since it offers a wide MSB wavelength tuning range. A high transmission narrow-band filter is experimentally demonstrated in a junction-type waveguide composed of two PhC waveguides with slightly different widths. The full width at half maximum is 5.6 nm; the peak transmission is attenuated by only ~5 dB and is ~20 dB above the MSBs. Additionally, temperature tuning of the filter were also performed. The results show red-shift of the transmission peak and the MSB edges with a gradient of dλ/dT = 0.1 nm/°C. It is proposed that the transmission MSBs in such junction-type cascaded PhC waveguides can be used to obtain different types of filters.

  16. Fratricide-preventing friend identification tag based on photonic band structure coding

    NASA Astrophysics Data System (ADS)

    Eliyahu, Danny; Sadovnik, Lev S.; Manasson, Vladimir A.

    2000-07-01

    A new friend foe identification tag based on photonic band structure (PBS) is presented. The tag utilizes frequency-coded radar signal return. Targets that include the passive tag responds selectively to slightly different frequencies generated by interrogating MMW radar. It is possible to use in- and out-of-band gap frequencies or defect modes of the PBS in order to obtain frequency dependent radar waves reflections. This tag can be made in the form of patch attachable such as plate or corner reflectors, to be worn by an individual marine, or to be integrated into the platform camouflage. Ultimately, it can be incorporated as smart skin or a ground or airborne vehicle. The proposed tag takes full advantage of existing sensors for interrogation (minimal chances required), it is lightweight and small in dimensions, it operates in degraded environments, it has no impact on platform vulnerability, it has low susceptibility to spoofing and mimicking (code of the day) and it has low susceptibility to active jamming. We demonstrated the operation of the tag using multi-layer dielectric (Duroid) having periodic structure of metal on top of each of the layers (metal strips in this case). The experimental results are consistent with numerical simulation. The device can be combined with temporal coding to increase target detection and identification resolution.

  17. A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Chen, Deyuan; Zhang, Gang; Wang, Juebin; Tao, Shangbin

    2016-03-01

    In this paper, a novel structure of super narrow band filter based on two-dimensional square lattice photonic crystals of silicon rods in air for 1.5 um communication is proposed and studied. COMSOL Multiphysics4.3b software is used to simulate the optical behavior of the filter. The filter consists of one point-defect-based resonator and two line-defect-based reflectors. The resonance frequency, transmission coefficient and quality factor are investigated by varying the parameters of the structure. In design, a silicon rod is removed to form the resonator; for the rows of rods above and below the resonator, a part of the rods are removed to form the reflectors. By optimizing the parameters of the filter, the quality factor and transmission coefficient of the filter at the resonance frequency of 2e14 Hz can reach 1330 and 0.953, respectively. The super narrow band filter can be integrated into optical circuit for its micron size. Also, it can be used for wavelength selection and noise filtering of optical amplifier in future communication application.

  18. Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber.

    PubMed

    Zhang, Fangzheng; Wu, Jian; Fu, Songnian; Xu, Kun; Li, Yan; Hong, Xiaobin; Shum, Ping; Lin, Jintong

    2010-07-19

    We propose and experimentally demonstrate a scheme to simultaneously realize multi-channel centimeter wave (CMW) band and millimeter wave (MMW) band ultra-wideband (UWB) monocycle pulse generation using four wave mixing (FWM) effect in a highly nonlinear photonic crystal fiber (HNL-PCF). Two lightwaves carrying polarity-reversed optical Gaussian pulses with appropriate time delay and another lightwave carrying a 20 GHz clock signal are launched into the HNL-PCF together. By filtering out the FWM idlers, two CMW-band UWB monocycle signals and two MMW-band UWB monocycle signals at 20 GHz are obtained simultaneously. Experimental measurements of the generated UWB monocycle pulses at individual wavelength, which comply with the FCC regulations, verify the feasibility and flexibility of proposed scheme for use in practical UWB communication systems.

  19. REVERBERATION MAPPING WITH INTERMEDIATE-BAND PHOTOMETRY: DETECTION OF BROAD-LINE Hα TIME LAGS FOR QUASARS AT 0.2 < z < 0.4

    SciTech Connect

    Jiang, Linhua; Shen, Yue; McGreer, Ian D.; Fan, Xiaohui; Morganson, Eric; Windhorst, Rogier A.

    2016-02-20

    We present a reverberation mapping (RM) experiment that combines broad- and intermediate-band photometry; it is the first such attempt targeting 13 quasars at 0.2 < z < 0.9. The quasars were selected to have strong Hα or Hβ emission lines that are located in one of three intermediate bands (with FWHM around 200 Å) centered at 8045, 8505, and 9171 Å. The imaging observations were carried out in the intermediate bands and the broad i and z bands using the prime-focus imager 90Prime on the 2.3 m Bok telescope. Because of the large (∼1 deg{sup 2}) field of view (FOV) of 90Prime, we included the 13 quasars within only five telescope pointings or fields. The five fields were repeatedly observed over 20–30 epochs that were unevenly distributed over a duration of 5–6 months. The combination of the broad- and intermediate-band photometry allows us to derive accurate light curves for both optical continuum emission (from the accretion disk) and line emission (from the broad-line region, or BLR). We detect Hα time lags between the continuum and line emission in six quasars. These quasars are at relatively low redshifts 0.2 < z < 0.4. The measured lags are consistent with the current BLR size–luminosity relation for Hβ at z < 0.3. While this experiment appears successful in detecting lags of the bright Hα line, further investigation is required to see if it can also be applied to the fainter Hβ line for quasars at higher redshifts. Finally we demonstrate that, by using a small telescope with a large FOV, intermediate-band photometric RM can be efficiently executed for a large sample of quasars at z > 0.2.

  20. Imaging P-to-S conversions with broad-band seismic arrays using multichannel time-domain deconvolution

    NASA Astrophysics Data System (ADS)

    Neal, Scott L.; Pavlis, Gary L.

    2001-09-01

    reduced and the input model is reliably recovered. Further tests with data from the Lodore broad-band array in Colorado and Wyoming show significant improvement over conventional time domain methods. We image lateral variations in Moho continuity and reflectivity across the array, with significant improvement in resolution in the first 10 seconds of data.

  1. Broad-band calibration of marine seismic sources used by R/V Polarstern for academic research in polar regions

    NASA Astrophysics Data System (ADS)

    Breitzke, Monika; Boebel, Olaf; El Naggar, Saad; Jokat, Wilfried; Werner, Berthold

    2008-08-01

    Air guns and air-gun arrays of different volumes are used for scientific seismic surveys with R/V Polarstern in polar regions. To assess the potential risk of these research activities on marine mammal populations, knowledge of the sound pressure field of the seismic sources is essential. Therefore, a broad-band (0-80 kHz) calibration study was conducted at the Heggernes Acoustic Range, Norway. A GI (2.4 l), a G (8.5 l) and a Bolt gun (32.8 l) were deployed as single sources, 3 GI (7.4 l), 3 G (25.6 l) and 8 VLF™ Prakla-Seismos air guns (24.0 l) as arrays. Each configuration was fired along a line of 3-4 km length running between two hydrophone chains with receivers in 35, 100, 198 and 263 m depth. Peak-to-peak, zero-to-peak, rms and sound exposure levels (SEL) were analysed as functions of range. They show the typical dipole-like directivity of marine seismic sources with amplitude cancellation close to the sea surface, higher amplitudes in greater depths, and sound pressure levels which continuously decrease with range. Levels recorded during the approach are lower than during the departure indicating a shadowing effect of Polarsterns's hull. Backcalculated zero-to-peak source levels range from 224-240 dB re 1 μPa @ 1 m. Spectral source levels are highest below 100 Hz and amount to 182-194 dB re 1 μPa Hz-1. They drop off continuously with range and frequency. At 1 kHz they are ~30 dB, at 80 kHz ~60 dB lower than the peak level. Above 1 kHz amplitude spectra are dominated by Polarstern's self-noise. From the rms and sound exposure levels of the deepest hydrophone radii for different thresholds are derived. For a 180 dB rms-level threshold radii maximally vary between 200 and 600 m, for a 186 dB SEL threshold between 50 and 300 m.

  2. Localized photonic band edge modes and orbital angular momenta of light in a golden-angle spiral.

    PubMed

    Liew, Seng Fatt; Noh, Heeso; Trevino, Jacob; Negro, Luca Dal; Cao, Hui

    2011-11-21

    We present a numerical study on photonic bandgap and band edge modes in the golden-angle spiral array of air cylinders in dielectric media. Despite the lack of long-range translational and rotational order, there is a large PBG for the TE polarized light. Due to spatial inhomogeneity in the air hole spacing, the band edge modes are spatially localized by Bragg scattering from the parastichies in the spiral structure. They have discrete angular momenta that originate from different families of the parastichies whose numbers correspond to the Fibonacci numbers. The unique structural characteristics of the golden-angle spiral lead to distinctive features of the band edge modes that are absent in both photonic crystals and quasicrystals.

  3. Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures

    NASA Astrophysics Data System (ADS)

    Bendickson, Jon M.; Dowling, Jonathan P.; Scalora, Michael

    1996-04-01

    We derive an exact expression for the electromagnetic mode density, and hence the group velocity, for a finite, N-period, one-dimensional, photonic band-gap structure. We begin by deriving a general formula for the mode density in terms of the complex transmission coefficient of an arbitrary index profile. Then we develop a specific formula that gives the N-period mode density in terms of the complex transmission coefficient of the unit cell. The special cases of mode-density enhancement and suppression at the photonic band edge and also at midgap, respectively, are derived. The specific example of a quarter-wave stack is analyzed, and applications to three-dimensional structures, spontaneous emission control, delay lines, band-edge lasers, and superluminal tunneling times are discussed.

  4. Atom-atom interactions around the band edge of a photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Hood, Jonathan D.; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E.; Kimble, H. J.

    2016-09-01

    Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields E(x)e±ikxxE(x)∝e±ikxx outside the bandgap to localized fields E(x)e-κx|x|E(x)∝e-κx|x| within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the D1D1 line of atomic cesium for N¯=3.0±0.5

  5. Study on the anisotropic photonic band gaps in three-dimensional tunable photonic crystals containing the epsilon-negative materials and uniaxial materials

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Li, Bing-Xiang

    2014-08-01

    In this paper, the properties of anisotropic photonic band gaps (PBGs) for three-dimensional (3D) photonic crystals (PCs) composed of the anisotropic positive-index materials (the uniaxial materials) and the epsilon-negative (ENG) materials with body-centered-cubic (bcc) lattices are theoretically studied by a modified plane wave expansion (PWE) method, which are the uniaxial materials spheres inserted in the epsilon-negative materials background. The anisotropic photonic band gaps (PBGs) and one flatbands region can be achieved in first irreducible Brillouin zone. The influences of the ordinary-refractive index, extraordinary-refractive index, filling factor, the electronic plasma frequency, the dielectric constant of ENG materials and the damping factor on the properties of anisotropic PBGs for such 3D PCs are studied in detail, respectively, and some corresponding physical explanations are also given. The numerical results show that the anisotropy can open partial band gaps in such 3D PCs with bcc lattices composed of the ENG materials and uniaxial materials, and the complete PBGs can be obtained compared to the conventional 3D PCs containing the isotropic materials. The calculated results also show that the anisotropic PBGs can be manipulated by the parameters as mentioned above except for the damping factor. Introducing the uniaxial materials into 3D PCs containing the ENG materials can obtain the larger complete PBGs as such 3D PCs with high symmetry, and also provides a way to design the tunable devices.

  6. Broad self-trapped and slow light bands based on negative refraction and interference of magnetic coupled modes.

    PubMed

    Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun

    2016-01-13

    We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively.

  7. High power breakdown testing of a photonic band-gap accelerator structure with elliptical rods

    NASA Astrophysics Data System (ADS)

    Munroe, Brian J.; Cook, Alan M.; Shapiro, Michael A.; Temkin, Richard J.; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A. Dian; Tantawi, Sami G.; Marsh, Roark A.

    2013-01-01

    An improved single-cell photonic band-gap (PBG) structure with an inner row of elliptical rods (PBG-E) was tested with high power at a 60 Hz repetition rate at X-band (11.424 GHz), achieving a gradient of 128MV/m at a breakdown probability of 3.6×10-3 per pulse per meter at a pulse length of 150 ns. The tested standing-wave structure was a single high-gradient cell with an inner row of elliptical rods and an outer row of round rods; the elliptical rods reduce the peak surface magnetic field by 20% and reduce the temperature rise of the rods during the pulse by several tens of degrees, while maintaining good damping and suppression of high order modes. When compared with a single-cell standing-wave undamped disk-loaded waveguide structure with the same iris geometry under test at the same conditions, the PBG-E structure yielded the same breakdown rate within measurement error. The PBG-E structure showed a greatly reduced breakdown rate compared with earlier tests of a PBG structure with round rods, presumably due to the reduced magnetic fields at the elliptical rods vs the fields at the round rods, as well as use of an improved testing methodology. A post-testing autopsy of the PBG-E structure showed some damage on the surfaces exposed to the highest surface magnetic and electric fields. Despite these changes in surface appearance, no significant change in the breakdown rate was observed in testing. These results demonstrate that PBG structures, when designed with reduced surface magnetic fields and operated to avoid extremely high pulsed heating, can operate at breakdown probabilities comparable to undamped disk-loaded waveguide structures and are thus viable for high-gradient accelerator applications.

  8. Topologically evolved photonic crystals: breaking the world record in band gap size

    NASA Astrophysics Data System (ADS)

    Bilal, Osama R.; El-Beltagy, Mohammed A.; Hussein, Mahmoud I.

    2012-04-01

    Using topology optimization, a photonic crystal (PtC) unit cell can be designed to exhibit favorable electromagnetic wave propagation properties. Among these is the opening of a band gap (BG) with the largest possible ratio of width to midgap frequency. In this paper the aim is to maximize the relative size of the first and fourth relative BGs of two-dimensional (2D) PtCs with a square lattice configuration. In addition, we examine the effects of the degree of unit cell symmetry on the relative BG size and on the geometric traits of the optimized topologies. We use a specialized genetic algorithm (GA) for our search. The results show that the type of symmetry constraint imposed has a significant, and rather subtle, effect on the unit cell topology and BG size of the emerging optimal designs. In pursuit of record values of BG size, we report two low-symmetry unit cells as an outcome of our search efforts to date: one with a relative BG size of 46% for TE waves and the other with a relative BG size of 47% for TM waves.

  9. Recent progress in chiral photonic band-gap liquid crystals for laser applications.

    PubMed

    Furumi, Seiichi

    2010-12-01

    This article describes a brief review of recent research advances in chiral liquid crystals (CLCs) for laser applications. The CLC molecules have an intrinsic capability to spontaneously organize supramolecular helical assemblages consisting of liquid crystalline layers through their helical twisting power. Such CLC supramolecular helical structures can be regarded as one-dimensional photonic crystals (PhCs). Owing to their supramolecular helical structures, the CLCs show negative birefringence along the helical axis. Selective reflection of circularly polarized light is the most unique and important optical property in order to generate internal distributed feedback effect for optically-excited laser emission. When a fluorescent dye is embedded in the CLC medium, optical excitation gives rise to stimulated laser emission peak(s) at the band edge(s) and/or within the CLC selective reflection. Furthermore, the optically-excited laser emission peaks can be controlled by external stimuli through the self-organization of CLC molecules. This review introduces the research background of CLCs carried out on the PhC realm, and highlights intriguing precedents of various CLC materials for laser applications. It would be greatly advantageous to fabricate active CLC laser devices by controlling the supramolecular helical structures. Taking account of the peculiar features, we can envisage that a wide variety of supramolecular helical structures of CLC materials will play leading roles in next-generation optoelectronic molecular devices.

  10. Seis-Net a Possible Very Broad Band Seismometer for the Future Mars-Net Russian Mission

    NASA Astrophysics Data System (ADS)

    Schibler, P.; Lognonne, P.; Nibut, T.

    2011-12-01

    Introduction: Following the invitation from IKI for participating to the future Russian Mars-Net mission, our objective is to realize a preliminary study for the deployment of a seismometers network, on the surface of Mars. This experiment would be realized thanks to the "basic brick" of the planetary seismometer developed by IPGP: a Very Broad Band (VBB) axis/pendulum adapted to the Mars-Net mission but analog to the one already proposed for other missions (Humboldt-ExoMars, Selene 2, Discovery GEMS). In order to respect, as much as possible, the mass and power budgets of the Mars96/OPTIMISM seismometer, we plan to propose only one axis/pendulum modified in order to become vertical. This adaptation could be, for instance, simply realized by adding an additional mass and modifying the axis tilt. Compared to the seismic sensor proposed for GEMS, there would be a deployment on Mars without any uncoupling from the lander. So, we estimate that the performances of the Mars-Net seismometer (< 0.1 ng/Hz1/2) will be halfway between OPTIMISM (1 ng/Hz1/2) and GEMS (< 0.05 ng/Hz1/2) seismometers. Scientific objectives: Since the projects Mesur/InterMarsNet in 1990 years then NetLander in 2000 years, our knowledge of interior of Mars has progressed. A network mission about 2018-2020 has to take into account these evolutions. However a lot of questions are still open without any answer. Which is the seismic activity of the planet? Which is the average thickness of the crust? Which is the detailed mineralogy of the mantle? Is there thermical heterogeneities inside mantle associated to a remaining of contemporary mantlellic convection? Which is the fine structure of the core? Therefore one of the first objectives of a network mission is the seismic discovery of Mars. That means, in particularly, to obtain for the first time the quantification of the contemporary seismic activity of the planet and the determination of the absolute thickness of the crust. That will be possible with

  11. Spin-wave band-pass filters based on yttrium iron garnet films for tunable microwave photonic oscillators

    NASA Astrophysics Data System (ADS)

    Ustinov, A. B.; Drozdovskii, A. V.; Nikitin, A. A.; Kalinikos, B. A.

    2015-12-01

    The paper reports on development of tunable band-pass microwave filters for microwave photonic generators. The filters were fabricated with the use of epitaxial yttrium iron garnet films. Principle of operation of the filters was based on excitation, propagation, and reception of spin waves. In order to obtain narrow pass band, the filtering properties of excitation and reception antennas were exploited. The filters demonstrated insertion losses of 2-3 dB, bandwidth of 25-35 MHz, and tuning range of up to 1.5 GHz in the range 3-7 GHz.

  12. Band structure of cavity-type hypersonic phononic crystals fabricated by femtosecond laser-induced two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Rakhymzhanov, A. M.; Gueddida, A.; Alonso-Redondo, E.; Utegulov, Z. N.; Perevoznik, D.; Kurselis, K.; Chichkov, B. N.; El Boudouti, E. H.; Djafari-Rouhani, B.; Fytas, G.

    2016-05-01

    The phononic band diagram of a periodic square structure fabricated by femtosecond laser pulse-induced two photon polymerization is recorded by Brillouin light scattering (BLS) at hypersonic (GHz) frequencies and computed by finite element method. The theoretical calculations along the two main symmetry directions quantitatively capture the band diagrams of the air- and liquid-filled structure and moreover represent the BLS intensities. The theory helps identify the observed modes, reveals the origin of the observed bandgaps at the Brillouin zone boundaries, and unravels direction dependent effective medium behavior.

  13. Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Tocci, Michael D.; Scalora, Michael; Bloemer, Mark J.; Dowling, Jonathan P.; Bowden, Charles M.

    1996-04-01

    We present results of an experimental investigation into alteration of the spontaneous emission spectrum of GaAs from within one-dimensional photonic band gap (PBG) structures. The PBG samples are multilayer AlAs/Al0.2Ga0.8As/GaAs p-i-n light-emitting diodes, with layers arranged as a distributed Bragg reflector. The emission spectra normal to the layers are measured, and we use a simple method to model the power spectrum of spontaneous emission from within the structures. We find that the emitted power is enhanced by a factor of 3.5 at the frequencies near the photonic band edge.

  14. Spontaneous emission from a two-level atom in anisotropic one-band photonic crystals: A fractional calculus approach

    SciTech Connect

    Wu, J.-N.; Huang, C.-H.; Cheng, S.-C.; Hsieh, W.-F.

    2010-02-15

    Spontaneous emission (SE) from a two-level atom in an anisotropic photonic crystal (PC) is investigated by the fractional calculus. Physical phenomena of the SE are studied analytically by solving the fractional kinetic equations of the SE. There is a dynamical discrepancy between the SE of anisotropic and isotropic PCs. We find that, contrary to the SE phenomenon of the isotropic PC, the SE near the band edge of an anisotropic PC shows no photon-atom bound state. It is consistent with the experimental results of Barth, Schuster, Gruber, and Cichos [Phys. Rev. Lett. 96, 243902 (2006)] that the anisotropic property of the system enhances the SE. We also study effects of dispersion curvatures on the changes of the photonic density of states and the appearance of the diffusion fields in the SE.

  15. Defect guidance in kagome-clad fibers: the role of photonic band gaps and self-similarity of the lattice

    NASA Astrophysics Data System (ADS)

    Perez, H.; Zheltikov, A. M.

    2017-01-01

    We examine the influence of the structural self-similarity of the kagome lattice on the defect modes and waveguiding properties of hollow-core kagome-cladding fibers. We show that the guidance of such fibers is influenced by photonic band gaps (PBGs) which appear for a subset of the kagome lattice. Using these insights, we provide design considerations to further decrease loss in kagome-clad fibers.

  16. Extreme Band Engineering of III-Nitride Nanowire Heterostructures for Electronic and Photonic Application

    NASA Astrophysics Data System (ADS)

    Sarwar, ATM Golam

    Bottom-up nanowires are attractive for realizing semiconductor devices with extreme heterostructures because strain relaxation through the nanowire sidewalls allows the combination of highly lattice mismatched materials without creating dislocations. The resulting nanowires are used to fabricate light-emitting diodes (LEDs), lasers, solar cells, and sensors. The aim of this work is to investigate extreme heterostructures, which are impossible or very hard to realize in conventional planar films, exploiting the strain accommodation property of nanowires and engineer their band structure for novel electronic and photonic applications. To this end, in this thesis, III-Nitride semiconductor nanowires are investigated. In the first part of this work, a complete growth phase diagram of InN nanowires on silicon using plasma assisted molecular beam epitaxy is developed, and structural and optical characteristics are mapped as a function of growth parameters. Next, a novel up-side down pendeoepitaxial growth of InN forming mushroom-like microstructures is demonstrated and detail structural and optical characterizations are performed. Based on this, a method to grow strain-free large area single crystalline InN or thin film is proposed and the growth of InN on patterned GaN is investigated. The optimized growth conditions developed for InN are further used to grow InGaN nanowires graded over the whole composition range. Numerical energy band simulation is performed to better understand the effect of polarization charge on photo-carrier transport in these extremely graded nanowires. A novel photodetector device with negative differential photocurrent is demonstrated using the graded InGaN nanowires. In the second part of this thesis, polarization-induced nanowire light emitting diodes (PINLEDs) are investigated. The electrical and optical properties of the nanowire heterostructure are engineered and optimized for ultraviolet and deep ultraviolet applications. The electrical

  17. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    PubMed

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  18. Tunable all-angle negative refraction and photonic band gaps in two-dimensional plasma photonic crystals with square-like Archimedean lattices

    SciTech Connect

    Zhang, Hai-Feng E-mail: lsb@nuaa.edu.cn; Liu, Shao-Bin E-mail: lsb@nuaa.edu.cn; Jiang, Yu-Chi

    2014-09-15

    In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.

  19. Tunable all-angle negative refraction and photonic band gaps in two-dimensional plasma photonic crystals with square-like Archimedean lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi

    2014-09-01

    In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.

  20. One-photon band gap engineering of borate glass doped with ZnO for photonics applications

    SciTech Connect

    Abdel-Baki, Manal; Abdel-Wahab, Fathy A.; El-Diasty, Fouad

    2012-04-01

    Lithium tungsten borate glass of the composition (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0 {<=}x{<=} 0.1 mol. %) is prepared for photonics applications. The glass is doped with ZnO to tune the glass absorption characteristics in a wide spectrum range (200-2500 nm). Chemical bond approach, including chemical structure, electronegativity, bond ionicity, nearest-neighbor coordination, and other chemical bonding aspect, is used to analyze and to explain the obtained glass properties such as: transmittance, absorption, electronic structure parameters (bandgap, Fermi level, and Urbach exciton-phonon coupling), Wannier free excitons excitation (applying Elliott's model), and two-photon absorption coefficient as a result of replacement of B{sub 2}O{sub 3} by ZnO.

  1. Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses.

    PubMed

    Biswas, Kaushik; Sontakke, Atul D; Sen, R; Annapurna, K

    2013-08-01

    In this work, a new and non-conventional oxide glass composition based on Bi2O3-GeO2-ZnO system has been formulated with an aim to realize low phonon oxide glass and elucidate its performance when co-doped with Ho(3+)/Yb(3+) for the energy transfer based NIR emission at 2 μm from Ho(3+) ions under Yb(3+) excitation. The glass with 1.0 mol% Ho2O3 and 0.5 mol% Yb2O3 has exhibited maximum energy transfer rate (3602 s(-1)) and energy transfer efficiency (65.92%). Important radiative properties have been predicted for emission transitions of Ho(3+) ions using intensity parameters derived from measured absorption spectra using standard Judd-Ofelt theory. At lower acceptor ion concentration (0.1 mol%), an efficient NIR to visible up-conversion emission has been observed based on two photon absorption process which has found to be reduced significantly at higher Ho(3+) concentrations with simultaneous enhancement in 2 μm emission. Hence, this newly developed glass codoped with Yb(3+)/Ho(3+) is promising glass for sensitized 2 μm emission applications as broad band tunable lasers because of the combination of low phonon energy (707 cm(-1)), high energy transfer efficiency, moderately high emission cross-section (5.33×10(-21) cm(2)) and larger effective half-width of the emission band value of 169 nm.

  2. Comparing Broad-Band and Red Edge-Based Spectral Vegetation Indices to Estimate Nitrogen Concentration of Crops Using Casi Data

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Liao, Qinhong; Yang, Guijun; Feng, Haikuan; Yang, Xiaodong; Yue, Jibo

    2016-06-01

    In recent decades, many spectral vegetation indices (SVIs) have been proposed to estimate the leaf nitrogen concentration (LNC) of crops. However, most of these indices were based on the field hyperspectral reflectance. To test whether they can be used in aerial remote platform effectively, in this work a comparison of the sensitivity between several broad-band and red edge-based SVIs to LNC is investigated over different crop types. By using data from experimental LNC values over 4 different crop types and image data acquired using the Compact Airborne Spectrographic Imager (CASI) sensor, the extensive dataset allowed us to evaluate broad-band and red edge-based SVIs. The result indicated that NDVI performed the best among the selected SVIs while red edge-based SVIs didn't show the potential for estimating the LNC based on the CASI data due to the spectral resolution. In order to search for the optimal SVIs, the band combination algorithm has been used in this work. The best linear correlation against the experimental LNC dataset was obtained by combining the 626.20nm and 569.00nm wavebands. These wavelengths correspond to the maximal chlorophyll absorption and reflection position region, respectively, and are known to be sensitive to the physiological status of the plant. Then this linear relationship was applied to the CASI image for generating an LNC map, which can guide farmers in the accurate application of their N fertilization strategies.

  3. Photonic dual RF beam reception of an X band phased array antenna using a photonic crystal fiber-based true-time-delay beamformer.

    PubMed

    Subbaraman, Harish; Chen, Maggie Yihong; Chen, Ray T

    2008-12-01

    We report dual RF beam reception of an X band phased array antenna using a photonic crystal fiber (PCF)-based delay network. Each incoming RF signal can be independently received, and the angle of arrival can be determined based on the delay time-dependent wavelength. Two RF signals with frequencies 8.4 and 12 GHz impinge upon an X-band antenna array from -7.4 degrees and -21.2 degrees . These signals are detected, and the angle of arrival is determined with a very good degree of accuracy using PCF-based true-time delay. The total number of RF beams that can be simultaneously detected is limited by the hardware availability and the bandwidth of the wavelength differentiation capability of the system.

  4. Dynamics of a robust photo-induced insulator-metal transition driven by coherent and broad-band light in epitaxial films of La(0.625-y)Pr(y)Ca(0.375)MnO(3).

    PubMed

    Chaudhuri, S; Pandey, N K; Saini, Shrikant; Budhani, R C

    2010-07-14

    A dramatic drop of ≈5 orders of magnitude in the resistance (R) of La(0.175)Pr(0.45)Ca(0.375)MnO(3) epitaxial films upon exposure to optical photons derived from both continuous and pulsed lasers, as well as broad-band sources at temperatures (T) < 30 K is reported. The strength of change is a sensitive function of both the incident photon flux and temperature. Under isothermal conditions the photo-generated low resistance state persists eternally after removal of light. This non-equilibrium state is metallic, as revealed by the positive dR/dT for T ≤ T(p) (≈120 K). This electrically conducting state is presumably ferromagnetic as T(p) coincides with the temperature where a weak ferromagnetism sets in on cooling the insulating film from room temperature. To rule out the possibility of photon-induced local heating of the sample as a mechanism of the observed effects, photo-illumination experiments were performed under identical conditions on thin films of two non-charge-ordered manganites deposited on substrates of similar thermal conductivity. Our model for the observed transition encompasses a global charge-ordered state in which ferromagnetic metallic clusters of fraction p much less than the critical fraction p(c) for percolation exists at low temperatures. Photo-induced melting of the charge-ordered state increases this fraction beyond p(c) in a cumulative manner as successive pulses of light fall on the sample.

  5. Broad band nonlinear optical absorption measurements of the laser dye IR26 using white light continuum Z-scan

    NASA Astrophysics Data System (ADS)

    Dey, Soumyodeep; Bongu, Sudhakara Reddy; Bisht, Prem Ballabh

    2017-03-01

    We study the nonlinear optical response of a standard dye IR26 using the Z-scan technique, but with the white light continuum. The continuum source of wavelength from 450 nm to 1650 nm has been generated from the photonic crystal fiber on pumping with 772 nm of Ti:Sapphire oscillator. The use of broadband incident pulse enables us to probe saturable absorption (SA) and reverse saturable absorption (RSA) over the large spectral range with a single Z-scan measurement. The system shows SA in the resonant region while it turns to RSA in the non-resonant regions. The low saturation intensity of the dye can be explained based on the simultaneous excitation from ground states to various higher energy levels with the help of composite energy level diagram. The cumulative effects of excited state absorption and thermal induced nonlinear optical effects are responsible for the observed RSA.

  6. Investigation of the validity of quasilinear theory for electron Landau damping in a tokamak using a broad-band wave effect

    DOE PAGES

    Lee, Jungpyo; Bonoli, Paul; Wright, John

    2011-01-01

    The quasilinear diffusion coefficient assuming a constant magnetic field along the electron orbit is widely used to describe electron Landau damping of waves in a tokamak where the magnitude of the magnetic field varies on a flux surface. To understand the impact of violating the constant magnetic field assumption, we introduce the effect of a broad-bandwidth wave spectrum which has been used in the past to validate quasilinear theory for the fast decorrelation process between resonances. By the reevaluation of the diffusion coefficient through the level of the phase integral for the tokamak geometry with the broad-band wave effect included,more » we identify the three acceptable errors for the use of the quasilinear diffusion coefficient.« less

  7. Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing

    NASA Astrophysics Data System (ADS)

    Cha, Hyungrae; Lee, Jeongkug; Jordan, Luke R.; Lee, Si Hoon; Oh, Sang-Hyun; Kim, Hyo Jin; Park, Juhun; Hong, Seunghun; Jeon, Heonsu

    2015-02-01

    We report on the conformal surface passivation of photonic crystal (PC) laser devices with an ultrathin dielectric layer. Air-bridge-type Γ-point band-edge lasers (BELs) are fabricated by forming a honeycomb lattice two-dimensional PC structure into an InGaAsP multiple-quantum-well epilayer. Atomic layer deposition (ALD) is employed for conformal deposition of a few-nanometer-thick SiO2 layer over the entire device surface, not only on the top and bottom surfaces of the air-bridge membrane but also on the air-hole sidewalls. Despite its extreme thinness, the ALD passivation layer is found to protect the InGaAsP BEL devices from harsh chemicals. In addition, the ALD-SiO2 is compatible with the silane-based surface chemistry, which allows us to use ALD-passivated BEL devices as label-free biosensors. The standard streptavidin-biotin interaction shifts the BEL lasing wavelength by ~1 nm for the dipole-like Γ-point band-edge mode. A sharp lasing line (<0.2 nm, full width at half-maximum) and a large refractive index sensitivity (~163 nm per RIU) produce a figure of merit as high as ~800 for our BEL biosensor, which is at least an order of magnitude higher than those of more common biosensors that rely on a broad resonance peak, showing that our nanolaser structures are suitable for highly sensitive biosensor applications.

  8. A procedure for determining the optical characteristics of a device for measuring illumination in the atmosphere of Venus. [broad band photometer

    NASA Technical Reports Server (NTRS)

    Golovin, Y. M.; Moshkin, B. Y.

    1979-01-01

    A procedure is described for obtaining the calibration, angular and spectral characteristics of a broad band photometer used on Venera 9 and 10 spacecraft to measure the illuminance regime in five spectral intervals with respect to three directions. The photometer has three identical groups of photoreceivers on which light falls through fiber light guides. Each group contains three cadmium sulfide photoresistors with light filters, a cadmium selenide photoresistor and a silicon photodiode. The temperature of the photoreceivers is measured by thermistors installed in series with the receivers.

  9. Photonic band gap and defect mode of one-dimensional photonic crystal coated from a mixture of (HMDSO, N2) layers deposited by PECVD

    NASA Astrophysics Data System (ADS)

    Amri, R.; Sahel, S.; Gamra, D.; Lejeune, M.; Clin, M.; Zellama, K.; Bouchriha, H.

    2017-04-01

    One dimensional photonic crystal based on a mixture of an organic compound HMDSO and nitrogen N2, is elaborated by radiofrequency Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) at different radiofrequency powers. The variation of the radiofrequency power for a flow of N2/HMDSO ratio equal to 0.4, leads to obtain two kinds of layers A and B with refractive index nA = 2 and nB = 1.55 corresponding to RF power of 200 W and 20 W, respectively. The analysis of the infrared results shows that these layers have the same chemical composition element with different structure. These layers, which exhibit a good indexes difference (nA - nB) contrast, allowed then the elaboration of a one-photonic crystal from the same initial gas mixture, which is the aim of this work. After the optimization of the layers thickness, we have measured transmission and reflection spectra and we found that the photonic band gap (PBG) appears after 15 periods of alternating A and B deposited layers. The introduction of defect in the structure leads to obtain a localized mode in the center of the PBG corresponding to the telecommunication wave length 1.55 μm. Finally, we have successfully interpreted our experimental results by using a theoretical model based on transfer matrix method.

  10. Experimental evidence of the photonic band gap in hybrid one-dimensional photonic crystal based on a mixture of (HMDSO, O2)

    NASA Astrophysics Data System (ADS)

    Amri, R.; Sahel, S.; Manaa, C.; Bouaziz, L.; Gamra, D.; Lejeune, M.; Clin, M.; Zellama, K.; Bouchriha, H.

    2016-08-01

    Hybrid One-dimensional photonic crystal coated from a mixture of an organic compound (HMDSO) and oxygen (O2) is elaborated by PECVD technique. The originality of the method consists in obtaining layers of different permittivity with the same gas mixture, but with different flow. The change in flow is optimized to obtain organic/inorganic layers of good quality with high and low refractive index of 2.1 and 1.4 corresponding respectively to HMDSO and SiO2 materials as assigned by IR measurement. Evidence of the photonic band gap is obtained by measuring the transmissions and reflections spectra which show that it appears only after 13 periods with a width of 325 nm corresponding to energy 3.8 eV. We have also introduced a defect in this photonic structure by changing the thickness of central layer, and observed the presence of a frequency mode corresponding to this defect. Our results are interpreted by using a theoretical model based on transfer matrix wich well reproduced the experimental data.

  11. Photonic band structures of periodic arrays of pores in a metallic host: tight-binding beyond the quasistatic approximation

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmoo; Stroud, David

    2014-03-01

    We have calculated the photonic band structures of metallic inverse opals and of periodic linear chains of spherical pores in a metallic host, below a plasma frequency ωp. In both cases, we use a tight-binding approximation, assuming a Drude dielectric function for the metallic component, but without making the quasistatic approximation. The tight-binding modes are linear combinations of the single-cavity transverse magnetic (TM) modes. For the inverse-opal structures, the lowest modes are analogous to those constructed from the three degenerate atomic p-states in fcc crystals. For the linear chains, in the limit of small spheres compared to a wavelength, the results bear some qualitative resemblance to the dispersion relation for metal spheres in an insulating host, as calculated by Brongersma et al. [Phys. Rev. B 62, R16356 (2000)]. Because the electromagnetic fields of these modes decay exponentially in the metal, there are no radiative losses, in contrast to the case of arrays of metallic spheres in air. We suggest that this tight-binding approach to photonic band structures of such metallic inverse materials may be a useful approach for studying photonic crystals containing metallic components. This work was supported by KIAS, by NSF-MRSEC at OSU (DMR-0820414), and by DOE Grant No. DE-FG02-07ER46424. Computing resources were provided by OSC and by Abacus at KIAS.

  12. Photonic band structures of periodic arrays of pores in a metallic host: tight-binding beyond the quasistatic approximation.

    PubMed

    Kim, Kwangmoo; Stroud, D

    2013-08-26

    We have calculated the photonic band structures of metallic inverse opals and of periodic linear chains of spherical pores in a metallic host, below a plasma frequency ωp. In both cases, we use a tight-binding approximation, assuming a Drude dielectric function for the metallic component, but without making the quasistatic approximation. The tight-binding modes are linear combinations of the single-cavity transverse magnetic (TM) modes. For the inverse-opal structures, the lowest modes are analogous to those constructed from the three degenerate atomic p-states in fcc crystals. For the linear chains, in the limit of small spheres compared to a wavelength, the results bear some qualitative resemblance to the dispersion relation for metal spheres in an insulating host, as calculated by Brongersma et al. [Phys. Rev. B 62, R16356 (2000)]. Because the electromagnetic fields of these modes decay exponentially in the metal, there are no radiative losses, in contrast to the case of arrays of metallic spheres in air. We suggest that this tight-binding approach to photonic band structures of such metallic inverse materials may be a useful approach for studying photonic crystals containing metallic components, even beyond the quasistatic approximation.

  13. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  14. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  15. The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    SciTech Connect

    Visser, P. J. de; Yates, S. J. C.; Guruswamy, T.; Goldie, D. J.; Withington, S.; Neto, A.; Llombart, N.; Baryshev, A. M.; Klapwijk, T. M.; Baselmans, J. J. A.

    2015-06-22

    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on, the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice, this is a measurement of the frequency dependence of the quasiparticle creation efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements.

  16. Femtosecond Pulse Characterization as Applied to One-Dimensional Photonic Band Edge Structures

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Gamble, Lisa J.; Diffey, William M.

    1999-01-01

    The ability to control the group velocity and phase of an optical pulse is important to many current active areas of research. Electronically addressable one-dimensional photonic crystals are an attractive candidate to achieve this control. This report details work done toward the characterization of photonic crystals and improvement of the characterization technique. As part of the work, the spectral dependence of the group delay imparted by a GaAs/AlAs photonic crystal was characterized. Also, a first generation an electrically addressable photonic crystal was tested for the ability to electronically control the group delay. The measurement technique, using 100 femtosecond continuum pulses was improved to yield high spectral resolution (1.7 nanometers) and concurrently with high temporal resolution (tens of femtoseconds). Conclusions and recommendations based upon the work done are also presented.

  17. Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin

    2016-08-01

    In this paper, the properties of photonic band gaps (PBGs) in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs) under a transverse-magnetic (TM) wave are theoretically investigated by a modified plane wave expansion (PWE) method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.

  18. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Becher, Christoph

    2011-06-20

    We report on single photon frequency downconversion from the red part of the spectrum (738 nm) to the telecommunications C-band. By mixing attenuated laser pulses with an average photon number per pulse < 1 with a strong continuous light field at 1403 nm in a periodically poled Zn:LiNbO3 ridge waveguide an internal conversion efficiency of ∼ 73% is achieved. We further investigate the noise properties of the process by measuring the output spectrum. Our results indicate that by narrow spectral filtering a quantum interface should be feasible which bridges the wavelength gap between quantum emitters like color centers in diamond emitting in the red part of the spectrum and low-loss fiber-optic telecommunications wavelengths.

  19. Biological and biochemical characterization of venom from the broad-banded copperhead (Agkistrodon contortrix laticinctus): isolation of two new dimeric disintegrins

    PubMed Central

    Rodríguez-Acosta, Alexis; Lucena, Sara; Alfonso, Andrea; Goins, Amber; Walls, Robert; Guerrero, Belsy; Suntravat, Montamas; Sánchez, Elda E.

    2016-01-01

    Disintegrins represent a family of effective cell-cell and cell-matrix inhibitors by binding to integrin receptors. Integrins are heterodimeric, transmembrane receptors that are the bridges for these cell interactions. Disintegrins have been shown to have many therapeutic implications for the treatment of strokes, heart attacks, and cancer. Two novel heterodimeric disintegrins were isolated from the venom of the broad-banded copperhead (Agkistrodon contortrix laticinctus). Crude venom separated by cation-exchange chromatography resulted in several fractions possessing hemorrhagic, fibrinolytic, gelatinase, and platelet activities. Venom fractions 2–3 and 17–19 showed fibrinolytic activity. Fractions 2–6, 8–11, and 16–21 had hemorrhagic activity. Gelatinase activity was found in fractions 3, 11, and 19. The isolation of laticinstatins 1 and 2 was accomplished by fractionating crude venom using reverse phase chromatography. Data from both SDS-PAGE and N-terminal sequencing determined that laticinstatins 1 and 2 were heterodimeric disintegrins, and both were assayed for their ability to inhibit platelet aggregation in human whole blood. Future functional evaluation of snake venom disintegrins shows considerable promise for elucidating the biochemical mechanisms of integrin-ligand interactions that will allow the development of adequate medications for hemostatic pathologies such as thrombosis, stroke, and cerebral and cardiac accidents. In this study, we are presenting the first report of the purification, and partial characterization of two new dimeric disintegrins isolated from the venom of broad-banded copperhead snakes. PMID:28090197

  20. Ultrasensitive solution-processed broad-band photodetectors using CH₃NH₃PbI₃ perovskite hybrids and PbS quantum dots as light harvesters.

    PubMed

    Liu, Chang; Wang, Kai; Du, Pengcheng; Wang, Enmin; Gong, Xiong; Heeger, Alan J

    2015-10-21

    Sensing from ultraviolet-visible to infrared is critical for both scientific and industrial applications. In this work, we demonstrate solution-processed ultrasensitive broad-band photodetectors (PDs) utilizing organolead halide perovskite materials (CH3NH3PbI3) and PbS quantum dots (QDs) as light harvesters. Through passivating the structural defects on the surface of PbS QDs with diminutive molecular-scaled CH3NH3PbI3, both trap states in the bandgap of PbS QDs for charge carrier recombination and the leakage currents occurring at the defect sites are significantly reduced. In addition, CH3NH3PbI3 itself is an excellent light harvester in photovoltaics, which contributes a great photoresponse in the ultraviolet-visible region. Consequently, operated at room temperature, the resultant PDs show a spectral response from 375 nm to 1100 nm, with high responsivities over 300 mA W(-1) and 130 mA W(-1), high detectivities exceeding 10(13) Jones (1 Jones = 1 cm Hz(1/2) W(-1)) and 5 × 10(12) Jones in the visible and near infrared regions, respectively. These device performance parameters are comparable to those from pristine inorganic counterparts. Thus, our results offer a facile and promising route for advancing the performance of broad-band PDs.

  1. Amplification of broad-band chirped pulses up to the 100-mJ level using alexandrite-pumped neodymium-doped glasses

    SciTech Connect

    Gamache, C.; Husson, D.; Seznec, S.; Descamps, D.; Migus, A. |

    1996-08-01

    In this work, the authors are concerned by the amplification of broad-band energetic pulses in laser-pumped Nd:glasses, with obvious applications to ultrashort pulse technology, but also to a front end for the envisioned Megajoules Nd:glass laser facility devoted to inertial confinement fusion (ICF) studies and ignition demonstration. An alexandrite laser is used to longitudinally end-pump mixed Nd:glass rods in a multipass arrangement in order to amplify chirped pulses in the 50--100-mJ range at a 1-Hz repetition rate. This system has a broad-band capability of up to 8--10 nm output bandwidth. The authors have developed a model, which in the specific case of amplification of chirped-pulse, takes into account the exact configuration of the rods, their spectral properties, and the longitudinal pumping geometry. An agreement between experiment and theory is obtained by assuming a pump quantum efficiency of the order of 60%.

  2. Alcohol sensing over O+E+S+C+L+U transmission band based on porous cored octagonal photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Paul, Bikash Kumar; Islam, Md. Shadidul; Ahmed, Kawsar; Asaduzzaman, Sayed

    2017-03-01

    A micro structure porous cored octagonal photonic crystal fiber (P-OPCF) has been proposed to sense aqueous analysts (alcohol series) over a wavelength range of 0.80 μm to 2.0 μm. By implementing a full vectorial finite element method (FEM), the numerical simulation on the proposed O-PCF has been analyzed. Numerical investigation shows that high sensitivity can be gained by changing the structural parameters. The obtained result shows the sensitivities of 66.78%, 67.66%, 68.34%, 68.72%, and 69.09%, and the confinement losses of 2.42×10-10 dB/m, 3.28×10-11 dB/m, 1.21×10-6 dB/m, 4.79×10-10 dB/m, and 4.99×10-9 dB/m at the 1.33 μm wavelength for methanol, ethanol, propanol, butanol, and pentanol, respectively can satisfy the condition of much legibility to install an optical system. The effects of the varying core and cladding diameters, pitch distance, operating wavelength, and effective refractive index are also reported here. It reflects that a significant sensitivity and low confinement loss can be achieved by the proposed P-OPCF. The proposed P-OPCF also covers the wavelength band (O+E+S+C+L+U). The investigation also exhibits that the sensitivity increases when the wavelength increases like S O-bandband band < S C-band band band. This research observation has much pellucidity which has remarkable impact on the field of optical fiber sensor.

  3. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12

    NASA Astrophysics Data System (ADS)

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-04-01

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices.

  4. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12

    PubMed Central

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-01-01

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices. PMID:27098924

  5. Fiber-optic CATV system performance improvement by using split-band technique and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Han; Tzeng, Shah-Jye; Chuang, Yao-Wei; Chen, Guan-Lin; Peng, Hsiang-Chun

    2007-03-01

    A directly-modulated amplitude modulation-vestigial sideband (AM-VSB) cable television (CATV) erbium-doped fiber amplifier (EDFA)-repeated system that uses split-band technique and photonic crystal fiber (PCF) as a broadband dispersion compensation device is proposed and demonstrated. In contrast to a conventional externally-modulated fiber-optic CATV system, good performance of carrier-to-noise ratio (CNR), composite second order (CSO) and composite triple beat (CTB) were obtained in our proposed systems over a combination of 100-km single-mode fiber (SMF) and 3.6 km PCF.

  6. Ultrashort pulse propagation at the photonic band edge: Large tunable group delay with minimal distortion and loss

    NASA Astrophysics Data System (ADS)

    Scalora, M.; Flynn, R. J.; Reinhardt, S. B.; Fork, R. L.; Bloemer, M. J.; Tocci, M. D.; Bowden, C. M.; Ledbetter, H. S.; Bendickson, J. M.; Dowling, J. P.; Leavitt, R. P.

    1996-08-01

    We examine optical pulse propagation through a 30-period, GaAs/AlAs, one-dimensional, periodic structure at the photonic band-edge transmission resonance. We predict theoretically-and demonstrate experimentally-an approximate energy, momentum, and form invariance of the transmitted pulse, as well as large group index (up to 13.5). The group index is tunable and many orders of magnitude more sensitive to variation in material refractive index than for bulk material. We interpret this observation in terms of time-dependent electromagnetic states of the pulse-crystal system.

  7. Broad Balmer Wings in BA Hyper/Supergiants Distorted by Diffuse Interstellar Bands: Five Examples in the 30 Doradus Region from the VLT-FLAMES Tarantula Survey

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan R.; Sana, Hugues; Evans, Christopher J.; Taylor, William D.; Sabbi, Elena; Barbá, Rodolfo H.; Morrell, Nidia I.; Maíz Apellániz, Jesús; Sota, Alfredo; Dufton, Philip L.; McEvoy, Catherine M.; Clark, J. Simon; Markova, Nevena; Ulaczyk, Krzysztof

    2015-08-01

    Extremely broad emission wings at Hβ and Hα have been found in VLT-FLAMES Tarantula Survey data for five very luminous BA supergiants in or near 30 Doradus in the Large Magellanic Cloud. The profiles of both lines are extremely asymmetrical, which we have found to be caused by very broad diffuse interstellar bands (DIBs) in the longward wing of Hβ and the shortward wing of Hα. These DIBs are well known to interstellar but not to many stellar specialists, so that the asymmetries may be mistaken for intrinsic features. The broad emission wings are generally ascribed to electron scattering, although we note difficulties for that interpretation in some objects. Such profiles are known in some Galactic hyper/supergiants and are also seen in both active and quiescent Luminous Blue Variables (LBVs). No prior or current LBV activity is known in these 30 Dor stars, although a generic relationship to LBVs is not excluded; subject to further observational and theoretical investigation, it is possible that these very luminous supergiants are approaching the LBV stage for the first time. Their locations in the HRD and presumed evolutionary tracks are consistent with that possibility. The available evidence for spectroscopic variations of these objects is reviewed, while recent photometric monitoring does not reveal variability. A search for circumstellar nebulae has been conducted, with an indeterminate result for one of them.

  8. BROAD BALMER WINGS IN BA HYPER/SUPERGIANTS DISTORTED BY DIFFUSE INTERSTELLAR BANDS: FIVE EXAMPLES IN THE 30 DORADUS REGION FROM THE VLT-FLAMES TARANTULA SURVEY

    SciTech Connect

    Walborn, Nolan R.; Sana, Hugues; Sabbi, Elena E-mail: hsana@stsci.edu; and others

    2015-08-10

    Extremely broad emission wings at Hβ and Hα have been found in VLT-FLAMES Tarantula Survey data for five very luminous BA supergiants in or near 30 Doradus in the Large Magellanic Cloud. The profiles of both lines are extremely asymmetrical, which we have found to be caused by very broad diffuse interstellar bands (DIBs) in the longward wing of Hβ and the shortward wing of Hα. These DIBs are well known to interstellar but not to many stellar specialists, so that the asymmetries may be mistaken for intrinsic features. The broad emission wings are generally ascribed to electron scattering, although we note difficulties for that interpretation in some objects. Such profiles are known in some Galactic hyper/supergiants and are also seen in both active and quiescent Luminous Blue Variables (LBVs). No prior or current LBV activity is known in these 30 Dor stars, although a generic relationship to LBVs is not excluded; subject to further observational and theoretical investigation, it is possible that these very luminous supergiants are approaching the LBV stage for the first time. Their locations in the HRD and presumed evolutionary tracks are consistent with that possibility. The available evidence for spectroscopic variations of these objects is reviewed, while recent photometric monitoring does not reveal variability. A search for circumstellar nebulae has been conducted, with an indeterminate result for one of them.

  9. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    NASA Astrophysics Data System (ADS)

    Pintore, F.; Sanna, A.; Di Salvo, T.; Del Santo, M.; Riggio, A.; D'Aì, A.; Burderi, L.; Scarano, F.; Iaria, R.

    2016-04-01

    We analysed a 115-ks XMM-Newton observation and the stacking of 8 d of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (˜2 keV) and an additional hard X-ray emission described by a power law (Γ ˜ 2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high-energy tail is still under debate. In addition, a number of broad (σ = 0.1-0.4 keV) emission features likely associated with reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity of the source is ˜5 × 1037 erg s-1, about 25 per cent of the Eddington limit assuming a 1.4 M⊙ NS. We suggest that the spectral properties of SAX J1748.9-2021 are consistent with a soft state, differently from many other accreting X-ray millisecond pulsars which are usually found in the hard state. Moreover, none of the observed type-I burst reached the Eddington luminosity. Assuming that the burst ignition and emission are produced above the whole NS surface, we estimate an NS radius of ˜7-8 km, consistent with previous results.

  10. A compact dual-band bandpass filter based on porous silicon dual-microcavity of one-dimensional photonic crystal

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Zhang, Hong-yan

    2015-03-01

    We propose a compact dual-band bandpass filter (BPF) based on one-dimensional porous silicon (PS) photonic crystal by electrochemical etching. By inserting three periods of high and low reflective index layers in the center of porous silicon microcavity (PSM), two sharp resonant peaks appear in the high reflectivity stop band on both sides of the resonance wavelength. Through simulation and experiment, the physical mechanisms of the two resonance peaks and the resonance wavelength are also studied. It is found that the resonance wavelength can be tuned only by adjusting the effective optical thickness (EOT) of each PS layer, in which different resonance wavelengths have different widths between the two sharp resonance peaks. Besides, the analysis indicates that oxidization makes the blue shift become larger for high wavelength than that for low wavelength. Such a fabricated BPF based on PS dual-microcavity is easy to be fabricated and low cost, which benefits the application of integrated optical devices.

  11. Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor.

    PubMed

    Rahimi, Somayyeh; Hosseini, Amir; Xu, Xiaochuan; Subbaraman, Harish; Chen, Ray T

    2011-10-24

    Group-index independent coupling to a silicon-on-insulator (SOI) based band-engineered photonic crystal (PCW) waveguide is presented. A single hole size is used for designing both the PCW coupler and the band-engineered PCW to improve fabrication yield. Efficiency of several types of PCW couplers is numerically investigated. An on-chip integrated Fourier transform spectral interferometry device is used to experimentally determine the group-index while excluding the effect of the couplers. A low-loss, low-dispersion slow light transmission over 18 nm bandwidth under the silica light line with a group index of 26.5 is demonstrated, that corresponds to the largest slow-down factor of 0.31 ever demonstrated for a PCW with oxide bottom cladding.

  12. Broad band simulation of Gamma Ray Bursts (GRB) prompt emission in presence of an external magnetic field

    NASA Astrophysics Data System (ADS)

    Ziaeepour, Houri; Gardner, Brian

    2011-12-01

    The origin of prompt emission in GRBs is not yet well understood. The simplest and most popular model is Synchrotron Self-Compton (SSC) emission produced by internal shocks inside an ultra-relativistic jet. However, recent observations of a delayed high energy component by the Fermi-LAT instrument have encouraged alternative models. Here we use a recently developed formulation of relativistic shocks for GRBs to simulate light curves and spectra of synchrotron and self-Compton emissions in the framework of internal shock model. This model takes into account the evolution of quantities such as densities of colliding shells, and fraction of kinetic energy transferred to electrons and to induced magnetic field. We also extend this formulation by considering the presence of a precessing external magnetic field. These simulations are very realistic and present significant improvement with respect to previous phenomenological GRB simulations. They reproduce light curves of separate peaks of real GRBs and variety of spectral slopes at E > Epeak observed by the Fermi-LAT instrument. The high energy emission can be explained by synchrotron emission and a subdominant contribution from inverse Compton. We also suggest an explanation for extended tail emission and relate it to the screening of the magnetic field and/or trapping of accelerated electrons in the electromagnetic energy structure of the plasma in the shock front. Spectral slopes of simulated bursts at E << Epeak are consistent with theoretical prediction and at E < Epeak can be flatter if the spectrum of electrons is roughly flat or has a shallow slope at low energies. The observed flat spectra at soft gamma-ray and hard x-ray bands is the evidence that there is a significant contribution at E < Epeak from lower Lorentz factor wing of electron distribution which have a roughly random acceleration rather than being thermal. This means that the state of matter in the jet at the time of ejection is most probably

  13. Complete photonic band gaps and tunable self-collimation in the two-dimensional plasma photonic crystals with a new structure

    SciTech Connect

    Zhang, Hai-Feng; Ding, Guo-Wen; Li, Hai-Ming; Liu, Shao-Bin

    2015-02-15

    In this paper, the properties of complete photonic band gaps (CPBGs) and tunable self-collimation in two-dimensional plasma photonic crystals (2D PPCs) with a new structure in square lattices, whose dielectric fillers (GaAs) are inserted into homogeneous and nomagnetized plasma background are theoretically investigated by a modified plane wave expansion (PWE) method with a novel technique. The novel PWE method can be utilized to compute the dispersion curves of 2D PPCs with arbitrary-shaped cross section in any lattices. As a comparison, CPBGs of PPCs for four different configurations are numerically calculated. The computed results show that the proposed design has the advantages of achieving the larger CPBGs compared to the other three configurations. The influences of geometric parameters of filled unit cell and plasma frequency on the properties of CPBGs are studied in detail. The calculated results demonstrate that CPBGs of the proposed 2D PPCs can be easily engineered by changing those parameters, and the larger CPBGs also can be obtained by optimization. The self-collimation in such 2D PPCs also is discussed in theory under TM wave. The theoretical simulations reveal that the self-collimation phenomena can be found in the TM bands, and both the frequency range of self-collimation and the equifrequency surface contours can be tuned by the parameters as mentioned above. It means that the frequency range and direction of electromagnetic wave can be manipulated by designing, as it propagates in the proposed PPCs without diffraction. Those results can hold promise for designing the tunable applications based on the proposed PPCs.

  14. The properties of photonic band gap and surface plasmon modes in the three-dimensional magnetized photonic crystals as the mixed polarized modes considered

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi

    2015-04-01

    In this paper, the properties of photonic band gap (PBG) and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic (fcc) lattices are theoretically investigated based on the plane wave expansion (PWE) method, in which the homogeneous magnetized plasma spheres are immersed in the homogeneous dielectric background, as the Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The dispersive properties of all of the EM modes are studied because the PBG is not only for the extraordinary and ordinary modes but also for the mixed polarized modes. The equations for PBGs also are theoretically deduced. The numerical results show that the PBG and a flatbands region can be observed. The effects of the dielectric constant of dielectric background, filling factor, plasma frequency and plasma cyclotron frequency (the external magnetic field) on the dispersive properties of all of the EM modes in such 3D MPPCs are investigated in detail, respectively. Theoretical simulations show that the PBG can be manipulated by the parameters as mentioned above. Compared to the conventional dielectric-air PCs with similar structure, the larger PBG can be obtained in such 3D MPPCs. It is also shown that the upper edge of flatbands region cannot be tuned by the filling factor and dielectric constant of dielectric background, but it can be manipulated by the plasma frequency and plasma cyclotron frequency.

  15. Controllable transmission photonic band gap and all-optical switching behaviors of 1-D InAs/GaAs quantum-dot photonic crystal

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Xiang, Bowen; Xing, Yunsheng

    2016-12-01

    Transmission optical properties of one-dimensional (1-D) InAs/GaAs quantum-dot photonic crystal (QD-PC), composed of 400 elementary cells, were analyzed by using transfer matrix method. In our calculations, a homogeneous broadening with temperature and other inhomogeneous broadening with quantum dot (QD) size fluctuations are introduced. Our results show that a large optical Stark shift occurs at the high energy edge of the transmission photonic band-gap (TPBG) when, which exhibits the function of light with light, an external laser field acts resonantly on the excitons in the InAs QDs. Utilized this TPBG based on the pump-probe geometry, an all-optical switch can be constructed and the on-off switching extinction ratio (SER) is varied with both the temperature and the inhomogeneity of QDs. Significantly, it still maintains switching behavior and can process the data sequence of return-to-zero codes of 250 Gb/s even if the QD standard deviation of relative size fluctuations (SD-RSF) is up to 3% and the temperature is at 100 K.

  16. Broad and ultra-flattened supercontinuum generation in the visible wavelengths based on the fundamental mode of photonic crystal fibre with central holes

    NASA Astrophysics Data System (ADS)

    Yuan, Jin-Hui; Sang, Xin-Zhu; Yu, Chong-Xiu; Xin, Xiang-Jun; Shen, Xiang-Wei; Zhang, Jin-Long; Zhou, Gui-Yao; Li, Shu-Guang; Hou, Lan-Tian

    2011-05-01

    By coupling a train of femtosecond pulses with 100 fs pulse width at a repetition rate of 76 MHz generated by a mode-locked Ti: sapphire laser into the fundamental mode of photonic crystal fibre (PCF) with central holes fabricated through extracting air from the central hole, the broad and ultra-flattened supercontinuum (SC) in the visible wavelengths is generated. When the fundamental mode experiences an anomalous dispersion regime, three phases in the SC generation process are primarily presented. The SC generation (SCG) in the wavelength range from 470 nm to 805 nm does not emerge significant ripples due to a higher pump peak power and the corresponding mode fields at different wavelengths are observed using Bragg gratings. The relative intensity fluctuations of output spectrum in the wavelength ranges of 530 nm to 640 nm and 543 nm to 590 nm are only 0.028 and 0.0071, respectively.

  17. Development of high refractive index poly(thiophene) for the fabrication of all organic three-dimensional photonic materials with a complete photonic band gap

    NASA Astrophysics Data System (ADS)

    Graham, Matthew J.

    The field of photonics hopes to harness light to supercede in performance many of the functions carried out by electronics. To accomplish this, the flow of light can be controlled by means of a photonic band gap (PBG) the same way electronic band gaps can control the flow of electrons. PBGs, through the coherent backscattering of radiation, create frequency ranges in which light propagation is forbidden. A PBG is created when a wave propagates through a periodic array of materials with sufficient refractive index (n ) contrast (n1/n 2) where the dimensionality of the periodicity defines the dimensionality of the PBG. The n contrast required to open a PBG increases as the dimensionality increases. Currently, only inorganic materials have a sufficiently high n to open a complete 3-D PBG. The goal of this project is to fabricate a polymeric material with a complete 3-D PBG, to bring the tailorable physical, electrical, and optical properties of polymeric materials to 3-D PBG materials. The first step was to develop a polymer with a sufficiently high n. Because of its conjugated nature and the presence of a heavy sulfur atom in its repeat unit, poly(thiophene) (PT) is predicted to have one of the highest polymeric refractive indices with n = 3.9 at 700 nm1, but the reported n value for PT is 1.4 at 633 nm.2 This discrepancy is because the potential needed to electrosynthesize PT, the only method available to synthesize thick and high quality PT films, is higher than its degradation potential. It was found that by polymerizing thiophene with an optimized monomer concentration, proton trap concentration, and reaction temperature in a strong aprotic Lewis acid solvent, the polymerization potential could be reduced below the degradation potential of PT. The resultant PT film had a maximum n of 3.36, which is sufficiently high to open a 3-D PBG. Photonic templates were then constructed using a combination of Colvin's method3 with monodisperse spheres and mechanical

  18. The advantage of linear viscoelastic material behavior in passive damper design-with application in broad-banded resonance dampers for industrial high-precision motion stages

    NASA Astrophysics Data System (ADS)

    Verbaan, Cornelis A. M.; Peters, Gerrit W. M.; Steinbuch, Maarten

    2017-01-01

    In this paper we demonstrate the advantage of applying viscoelastic materials instead of purely viscous materials as damping medium in mechanical dampers. Although the loss modulus decreases as function of frequency in case of viscoelastic behavior, which can be interpreted as a decrease of damping, the viscoelastic behavior still leads to an increased modal damping for mechanical structures. This advantage holds for inertial-mass-type dampers that are tuned for broad-banded resonance damping. It turns out that an increase of the storage modulus as function of frequency contributes to the effectiveness of mechanical dampers with respect to energy dissipation at different mechanical resonance frequencies. It is shown that this phenomenon is medium specific and is independent of the amount of damper mass.

  19. The Relationship between Oxygen A-band Photon Pathlength Distributions and 3D Structures of Heating Rate Profiles

    NASA Astrophysics Data System (ADS)

    Song, L.; Min, Q.

    2012-12-01

    Broadband heating directly drives the global atmospheric and oceanic circulation and its vertical profiles strongly depend upon cloud three-dimensional (3D) structures. Due to the complexity of cloud 3D problems and the difficulties in observations of broadband heating rate profiles (BBHRP), there are still large uncertainties in the relationship of clouds, radiation and climate feedback. Oxygen A-band photon pathlength distributions (PPLD) contain rich information about the 3D structures of clouds and BBHRP and can be observed by both ground based and space based measurements. Therefore, it is meaningful to explore the possibility of connecting A-band PPLD and BBHRP and consequently to describe the internal relationship between them together with the cloud 3D effects on BBHRP. A 3D Monte Carlo radiative transfer model is applied to simulate solar broadband heating rate profiles and oxygen A-band photon pathlength distributions of several ideal cloud fields and two typical cloud fields generated by cloud resolving model (CRM). Principal components (PCs) and the first four moments are selected to represent the vertical structures of BBHRP and PPLD, respectively. In ideal cloud fields, the moments show clear constraint to PCs of BBHRP. The results demonstrate the feasibility to describe the vertical structures of BBHRP by PPLD. The relationship between moments and PCs turns complicated in CRM cloud fields due to the composition of various 3D effects. However, detailed analysis still show that the moments, the PCs and total cloud optical depth are effective factors in defining BBHRP, especially for the vertical structures of relative low clouds. Further, a statistical fitting between the PCs and the moments by a two-layer neural network is applied to provide a quantitative representation of the linkages.

  20. Photonic band gap effect and structural color from silver nanoparticle gelatin emulsion.

    PubMed

    Kok, Mang Hin; Ma, Rui; Lee, Jeffrey Chi Wai; Tam, Wing Yim; Chan, C T; Sheng, Ping; Cheah, Kok Wai

    2005-10-01

    We have fabricated planar structures of silver nanoparticles in monochromatic gelatin emulsion with a continuous spacing ranging from 0.15-0.40 micron using a two-beam interference of a single laser source. Our planar holograms display a colorful "rainbow" pattern and photonic bandgaps covering the visible and IR ranges. We model the planar silver nanoparticle-gelatin composite system using an effective medium approach and good agreement is obtained between theory and experiment.

  1. W-Band Technology and Techniques for Analog Millimeter-Wave Photonics

    DTIC Science & Technology

    2015-08-19

    available technology and standard techniques for millimeter-wave photonics at frequencies up to 110 GHz. Measured data for commercial electro-optic...Measured data for commercial electro- optic phase modulators, electro-optic intensity modulators, p-i-n photodiodes and waveguide photodetectors...millimeter-wave application is associated with wireless links [5-7], radio astronomy [8], or military systems, the main components that determine the

  2. Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands.

    PubMed

    Terawaki, Ryo; Takahashi, Yasushi; Chihara, Masahiro; Inui, Yoshitaka; Noda, Susumu

    2012-09-24

    We have studied the feasibility of extending the operating wavelength range of high-Q silicon nanocavities above and below the 1.55 μm wavelength band, while maintaining Q factors of more than one million. We have succeeded in developing such nanocavities in the optical telecommunication bands from 1.27 μm to 1.50 μm. Very high Q values of more than two million were obtained even for the 1.30 μm band. The Q values increase proportionally to the resonant wavelength because the scattering loss decreases. We have also analyzed the influence of absorption due to surface water. We conclude that high-Q nanocavities are feasible for an even wider wavelength region including parts of the mid-infrared.

  3. Characterization of toxins from the broad-banded water snake Helicops angulatus (Linnaeus, 1758): isolation of a cysteine-rich secretory protein, Helicopsin.

    PubMed

    Estrella, Amalid; Sánchez, Elda E; Galán, Jacob A; Tao, W Andy; Guerrero, Belsy; Navarrete, Luis F; Rodríguez-Acosta, Alexis

    2011-04-01

    Helicops angulatus (broad-banded water snake) according to recent proposals is presently cited in the family Dipsadidae, subfamily Xenodontinae, forming the tribe Hydropsini along with the genera Hydrops and Pseudoeryx. The current work characterizes the proteolytic and neurotoxic activities of H. angulatus crude toxins from salivary excretion (SE) and describes the isolation and identification of a cysteine-rich secretory protein (CRISP) called helicopsin. The SE lethal dose (LD₅₀) was 5.3 mg/kg; however, the SE did not contain hemorrhagic activity. Helicopsin was purified using activity-guided, Superose 12 10/300 GL molecular exclusion, Mono Q10 ion exchange, and Protein Pak 60 molecular exclusion. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a highly purified band of approximately 20 kDa. The minimal lethal dose for helicopsin was 0.4 mg/kg. Liquid chromatography mass spectrometry (LC-MS/MS) analysis identified 2 unique peptides MEWYPEAAANAER and YTQIVWYK, representing a protein sequence (deleted homology) belonging to cysteine-rich secretory proteins, which are conserved in snake venoms (CRISPs). CRISPs are a large family of cysteine-rich secretory proteins found in various organisms and participate in diverse biological processes. Helicopsin exhibited robust neurotoxic activity as evidenced by immediate death (~8 min) due to respiratory paralysis in NIH mice. These observations for helicopsin purified from H. angulatus provide further evidence of the extensive distribution of highly potent neurotoxins in the Colubroidea superfamily of snakes than previously described.

  4. Distance between Cys-201 in erythrocyte band 3 and the bilayer measured by single-photon radioluminescence.

    PubMed Central

    Thevenin, B J; Bicknese, S E; Park, J; Verkman, A S; Shohet, S B

    1996-01-01

    Single-photon radioluminescence (SPR), the excitation of fluorophores by short-range beta-decay electrons, was developed for the measurement of submicroscopic distances. The cytoplasmic domain of band 3 (cdb3) is the primary, multisite anchorage for the erythrocyte skeleton. To begin to define the membrane arrangement of the highly asymmetrical cdb3 structure, the distance from the bilayer of Cys-201 next to the "hinge" of cdb3 was measured by both SPR and resonance energy transfer (RET). cdb3 was labeled at Cys-201 with fluorescein maleimide. For SPR measurements, the bilayer was labeled with [3H]oleic acid. The corrected cdb3-specific SPR signal was 98 +/- 2 cps microCi-1 [mumol band 3]-1. From this and the signal from a parallel sample in which 3H2O was substituted for [3H]oleic acid to create uniform geometry between 3H and the fluorophores, a Cys-201-to-bilayer separation of 39 +/- 7 A was calculated. Confirmatory distances of 40 and 43 A were obtained by RET between fluorescein on Cys-201 and eosin and rhodamine B lipid probes, respectively. This distance indicates that Cys-201 lies near band 3's vertical axis of symmetry and that the subdomain of cdb3 between the hinge and the membrane is not significantly extended. In addition, these results validate SPR as a measure of molecular distances in biological systems. Images FIGURE 2 PMID:8913602

  5. Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices

    NASA Astrophysics Data System (ADS)

    Schokker, A. Hinke; van Riggelen, Floor; Hadad, Yakir; Alù, Andrea; Koenderink, A. Femius

    2017-02-01

    We study lasing in distributed feedback lasers made from square lattices of silver particles in a dye-doped waveguide. We present a systematic analysis and experimental study of the band structure underlying the lasing process as a function of the detuning between the particle plasmon resonance and the lattice Bragg diffraction condition. To this end, as gain medium we use either a polymer doped with Rh6G only, or polymer doped with a pair of dyes (Rh6G and Rh700) that act as a Förster energy transfer (FRET) pair. This allows for gain, respectively, at 590 or 700 nm when pumped at 532 nm, compatible with the achievable size tunability of silver particles embedded in the polymer. By polarization-resolved spectroscopic Fourier microscopy, we are able to observe the plasmonic/photonic band structure of the array, unraveling both the stop gap width, as well as the loss properties of the four involved bands at fixed lattice Bragg diffraction condition and as a function of detuning of the plasmon resonance. To explain the measurements we derive an analytical model that sheds insights on the lasing process in plasmonic lattices, highlighting the interaction between two competing resonant processes, one localized at the particle level around the plasmon resonance, and one distributed across the lattice. Both are shown to contribute to the lasing threshold and the overall emission properties of the array.

  6. Photonic band structure and effective medium properties of doubly-resonant core-shell metallo-dielectric nanowire arrays: low-loss, isotropic optical negative-index behavior

    NASA Astrophysics Data System (ADS)

    Abujetas, D. R.; Paniagua-Domínguez, R.; Nieto-Vesperinas, M.; Sánchez-Gil, J. A.

    2015-12-01

    We investigate theoretically and numerically the photonic band structure in the optical domain of an array of core-shell metal-semiconductor nanowires. Corresponding negative-index photonic bands are calculated, showing isotropic equifrequency surfaces. The effective (negative) electric permittivity and magnetic permeability, retrieved from S-parameters, are used to compare the performance of such nanowire arrays with homogeneous media in canonical examples, such as refraction through a prism and flat-lens focusing. Very good agreement is found, confirming the effective medium behavior of the nanowire array as a low-loss, isotropic (2D) and bulk, optical negative index metamaterial. Indeed, disorder is introduced to further stress its robustness.

  7. Photon counting as a probe of superfluidity in a two-band Bose-Hubbard system coupled to a cavity field.

    PubMed

    Rajaram, Sara; Trivedi, Nandini

    2013-12-13

    We show that photon number measurement can be used to detect superfluidity for a two-band Bose-Hubbard model coupled to a cavity field. The atom-photon coupling induces transitions between the two internal atomic levels and results in entangled polaritonic states. In the presence of a cavity field, we find different photon numbers in the Mott-insulating versus superfluid phases, providing a method of distinguishing the atomic phases by photon counting. Furthermore, we examine the dynamics of the photon field after a rapid quench to zero atomic hopping by increasing the well depth. We find a robust correlation between the field's quench dynamics and the initial superfluid order parameter, thereby providing a novel and accurate method of determining the order parameter.

  8. Ultrashort pulse propagation at the photonic band edge: Large tunable group delay with minimal distortion and loss

    NASA Astrophysics Data System (ADS)

    Fork, Richard; Scalora, Michael; Flynn, Rachel; Reinhardt, Senter; Dowling, John; Bloemer, Mark; Tocci, Michael; Bowden, Chuck; Leavitt, Rich

    1996-03-01

    We examine optical pulse propagation through a 30 period, GaAs/AIAs, one-dimensional, photnic crystal at the photonic band-edge transmission resonance. We predict theoretically -- and demonstrated experimentally -- an approximate energy, momentum, and form invariance of the transmitted pulse, as well as large group index (up to 13.5). The group index is tunable and many orders of magnitude more sensitive to variation in material refractive index than for bulk material. We interpret this observation in terms of novel, time-dependent electromagnetic states of the pulse-crystal system.We discuss this novel state and potential applications in the context of ongoing work on high dielectric constant materials. Multi-order of magnitude improvements appear possible invarious applications.

  9. Higher order mode damping in a five-cell superconducting rf cavity with a photonic band gap coupler cell

    NASA Astrophysics Data System (ADS)

    Arsenyev, Sergey A.; Temkin, Richard J.; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Boulware, Chase H.; Grimm, Terry L.; Rogacki, Adam R.

    2016-08-01

    We present a study of higher order mode (HOM) damping in the first multicell superconducting radio-frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving higher average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery linacs (ERLs). Beam current in ERLs is limited by the beam breakup instability, caused by parasitic HOMs interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The five-cell cavity with a PBG cell was designed and optimized for HOM damping. Monopole and dipole HOMs were simulated. The SRF cavity was fabricated and tuned. External quality factors for some HOMs were measured in a cold test. The measurements agreed well with the simulations.

  10. Modeling of chirped pulse propagation through a mini-stop band in a two-dimensional photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Cao, Tun; Cryan, Martin J.; Ivanov, Pavel S.; Ho, Daniel; Ren, Bob; Craddock, Ian J.; Rorison, Judy M.; Railton, Chris J.

    2007-07-01

    The finite-difference time-domain (FDTD) and frequency-domain finite-element (FE) methods are used to study chirped pulse propagation in 2D photonic crystal (PhC) waveguides. Chirped pulse FDTD has been implemented, which allows the study of pulse propagation in a direct way. The carrier wavelength of the pulse is swept across the bandwidth of a mini-stop-band (MSB) feature, and pulse compression behavior is observed. Both round-hole and square-hole PhC waveguides are studied, with the latter giving increased pulse compression. A group-delay analysis is then used to understand the compression behavior, and this shows how the fast-light regime that occurs within the MSB plays an important role in the observed pulse compression.

  11. Photonic band gap in an imperfect atomic diamond lattice: Penetration depth and effects of finite size and vacancies

    NASA Astrophysics Data System (ADS)

    Antezza, Mauro; Castin, Yvan

    2013-09-01

    We study the effects of finite size and of vacancies on the photonic band gap recently predicted for an atomic diamond lattice. Close to a Jg=0→Je=1 atomic transition, and for atomic lattices containing up to N≈3×104 atoms, we show how the density of states can be affected by both the shape of the system and the possible presence of a fraction of unoccupied lattice sites. We numerically predict and theoretically explain the presence of shape-induced border states and of vacancy-induced localized states appearing in the gap. We also investigate the penetration depth of the electromagnetic field which we compare to the case of an infinite system.

  12. Octave-wide photonic band gap in three-dimensional plasmonic Bragg structures and limitations of radiative coupling.

    PubMed

    Taubert, Richard; Dregely, Daniel; Stroucken, Tineke; Christ, Andre; Giessen, Harald

    2012-02-21

    Radiative coupling between oscillators is one of the most fundamental subjects of research in optics, where particularly a Bragg-type arrangement is of interest and has already been applied to atoms and excitons in quantum wells. Here we explore this arrangement in a plasmonic structure. We observe the emergence of an octave-wide photonic band gap in the optical regime. Compared with atomic or excitonic systems, the coupling efficiency of the particle plasmons utilized here is several orders of magnitude larger and widely tunable by changing the size and geometry of the plasmonic nanowires. We are thus able to explore the regime where the coupling distance is even limited by the large radiative decay rate of the oscillators. This Bragg-stacked coupling scheme will open a new route for future plasmonic applications such as far-field coupling to quantum emitters without quenching, plasmonic cavity structures and plasmonic distributed gain schemes for spasers.

  13. Nonaqueous sol-gel chemistry applied to atomic layer deposition: tuning of photonic band gap properties of silica opals.

    PubMed

    Marichy, Catherine; Dechézelles, Jean-Francois; Willinger, Marc-Georg; Pinna, Nicola; Ravaine, Serge; Vallée, Renaud

    2010-05-01

    Combining both electromagnetic simulations and experiments, it is shown that the photonic pseudo band gap (PPBG) exhibited by a silica opal can be fully controlled by Atomic Layer Deposition (ALD) of titania into the pores of the silica spheres constituting the opal. Different types of opals were assembled by the Langmuir-Blodgett technique: homogeneous closed packed structures set up of, respectively, 260 and 285 nm silica spheres, as well as opal heterostructures consisting of a monolayer of 430 nm silica spheres embedded within 10 layers of 280 nm silica spheres. For the stepwise infiltration of the opals with titania, titanium isopropoxide and acetic acid were used as metal and oxygen sources, in accordance with a recently published non-aqueous approach to ALD. A shift of the direct PPBG, its disappearance, and the subsequent appearance and shifting of the inverse PPBG are observed as the opal is progressively filled. The close agreement between simulated and experimental results is striking, and promising in terms of predicting the properties of advanced photonic materials. Moreover, this work demonstrates that the ALD process is rather robust and can be applied to the coating of complex nanostructures.

  14. High-depth-resolution 3-dimensional radar-imaging system based on a few-cycle W-band photonic millimeter-wave pulse generator.

    PubMed

    Tseng, Tzu-Fang; Wun, Jhih-Min; Chen, Wei; Peng, Sui-Wei; Shi, Jin-Wei; Sun, Chi-Kuang

    2013-06-17

    We demonstrate that a near-single-cycle photonic millimeter-wave short-pulse generator at W-band is capable to provide high spatial resolution three-dimensional (3-D) radar imaging. A preliminary study indicates that 3-D radar images with a state-of-the-art ranging resolution of around 1.2 cm at the W-band can be achieved.

  15. Modulation of the photonic band structure topology of a honeycomb lattice in an atomic vapor

    SciTech Connect

    Zhang, Yiqi; Liu, Xing; Belić, Milivoj R.; Wu, Zhenkun; Zhang, Yanpeng

    2015-12-15

    In an atomic vapor, a honeycomb lattice can be constructed by utilizing the three-beam interference method. In the method, the interference of the three beams splits the dressed energy level periodically, forming a periodic refractive index modulation with the honeycomb profile. The energy band topology of the honeycomb lattice can be modulated by frequency detunings, thereby affecting the appearance (and disappearance) of Dirac points and cones in the momentum space. This effect can be usefully exploited for the generation and manipulation of topological insulators.

  16. Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: Phase velocity maps and limitations of ray theory

    USGS Publications Warehouse

    Godey, S.; Snieder, R.; Villasenor, A.; Benz, H.M.

    2003-01-01

    We present phase velocity maps of fundamental mode Rayleigh waves across the North American and Caribbean plates. Our data set consists of 1846 waveforms from 172 events recorded at 91 broad-band stations operating in North America. We compute phase velocity maps in four narrow period bands between 50 and 150 s using a non-linear waveform inversion method that solves for phase velocity perturbations relative to a reference Earth model (PREM). Our results show a strong velocity contrast between high velocities beneath the stable North American craton, and lower velocities in the tectonically active western margin, in agreement with other regional and global surface wave tomography studies. We perform detailed comparisons with global model results, which display good agreement between phase velocity maps in the location and amplitude of the anomalies. However, forward modelling shows that regional maps are more accurate for predicting waveforms. In addition, at long periods, the amplitude of the velocity anomalies imaged in our regional phase velocity maps is three time larger than in global phase velocity models. This amplitude factor is necessary to explain the data accurately, showing that regional models provide a better image of velocity structures. Synthetic tests show that the raypath coverage used in this study enables one to resolve velocity features of the order of 800-1000 km. However, only larger length-scale features are observed in the phase velocity maps. The limitation in resolution of our maps can be attributed to the wave propagation theory used in the inversion. Ray theory does not account for off-great-circle ray propagation effects, such as ray bending or scattering. For wavelengths less than 1000 km, scattering effects are significant and may need to be considered.

  17. Micro-metric electronic patterning of a topological band structure using a photon beam

    PubMed Central

    Frantzeskakis, E.; De Jong, N.; Zwartsenberg, B.; Huang, Y. K.; Bay, T. V.; Pronk, P.; Van Heumen, E.; Wu, D.; Pan, Y.; Radovic, M.; Plumb, N. C.; Xu, N.; Shi, M.; De Visser, A.; Golden, M. S.

    2015-01-01

    In an ideal 3D topological insulator (TI), the bulk is insulating and the surface conducting due to the existence of metallic states that are localized on the surface; these are the topological surface states. Quaternary Bi-based compounds of Bi2−xSbxTe3−ySey with finely-tuned bulk stoichiometries are good candidates for realizing ideal 3D TI behavior due to their bulk insulating character. However, despite its insulating bulk in transport experiments, the surface region of Bi2−xSbxTe3−ySey crystals cleaved in ultrahigh vacuum also exhibits occupied states originating from the bulk conduction band. This is due to adsorbate-induced downward band-bending, a phenomenon known from other Bi-based 3D TIs. Here we show, using angle-resolved photoemission, how an EUV light beam of moderate flux can be used to exclude these topologically trivial states from the Fermi level of Bi1.46Sb0.54Te1.7Se1.3 single crystals, thereby re-establishing the purely topological character of the low lying electronic states of the system. We furthermore prove that this process is highly local in nature in this bulk-insulating TI, and are thus able to imprint structures in the spatial energy landscape at the surface. We illustrate this by ‘writing’ micron-sized letters in the Dirac point energy of the system. PMID:26543011

  18. Comparison of broad band time series recorded parallel by FGI type interferometric water level and Lippmann type pendulum tilt meters at Conrad observatory, Austria

    NASA Astrophysics Data System (ADS)

    Ruotsalainen, Hannu; Papp, Gabor; Leonhardt, Roman; Ban, Dora; Szücs, Eszter; Benedek, Judith

    2016-04-01

    The Finnish Geodetic Institute (FGI) the progenitor of Finnish Geospatial Research Institute of NLS designed and built a 5.5m long prototype of interferometric water level tiltmeter (iWT) in early 2014. Geodetic and Geophysical Institute (GGI), Sopron, Hungary bought the instrument and started tilt measurement in August 2014 at the Conrad observatory (COBS), Austria to monitor geodynamical phenomena like microseisms, free oscillations of the Earth, earth tides, mass loading effects and crustal deformations in cooperation with Austrian Central Institute for Meteorology and Geodynamics (ZAMG) and the FGI. On the July 16 2015 a Lippmann-type 2D tilt sensor (LTS) was also installed by GGI on the 6 m long pier where iWT was set up previously. This situation opens a possibility to do broad band (from secular to seismic variations up to 15 Hz) geophysical signal analysis comparing the responses of long (several meters) and short (a few decimeters) base instruments implementing different physical principles (relative height change of a level surface and inclination change of the plumb line). The characteristics of the sensors are studied by the evaluation of the spectra of recorded signals dominated by microseisms. The iWT has internal interferometric calibration and it can be compared to Lippmanns tilt meter one. Both instruments show good long term ( > 1 day) stability when earth tides and ocean and air mass loading tilts are modelled.

  19. Study and Control of Various Corona Modes in an Atmospheric Pressure Weakly Ionized Plasma Reactor Using a Current Sensor Characterized by a Broad Frequency Band

    NASA Astrophysics Data System (ADS)

    Islam, Rokibul; Pedrow, Patrick; Lekobou, William; Englund, Karl

    2013-09-01

    A broad band current sensor is being used to monitor the various phenomena (primary streamers, secondary streamers, back corona, etc.) associated with an atmospheric pressure needle-array-to-grounded-screen corona discharge. The reactor consists of a PVC tube and the needle array consists of nickel coated steel electrodes with radius of curvature about 50 μ . The grounded screen is made from stainless steel mesh and applied voltage has a frequency of 60 Hz with an RMS value ranging from 0 to 10 kV. The voltage sensor is a resistive divider and the current sensor is a viewing resistor with value 50 Ω. The feed gas stream is presently (argon + acetylene) or (argon + oxygen) with the argon acting as carrier gas and the acetylene and oxygen acting as precursor gases. Voltage and current are captured with a LeCroy 9350AL 500MHz oscilloscope and analyzed with Matlab using digital signal processing algorithms. The goals of the research are 1) to measure reactor electrical power on a real time basis; 2) to provide real time control of the applied voltage and thus avoid spark conditions; and 3) to identify the various corona modes present in the reactor. Processing of substrates takes place downstream from the grounded screen, outside of the harsh corona discharge environment.

  20. Broad-band conductivity and dielectric spectroscopy of composites of multiwalled carbon nanotubes and poly(ethylene terephthalate) around their low percolation threshold.

    PubMed

    Nuzhnyy, D; Savinov, M; Bovtun, V; Kempa, M; Petzelt, J; Mayoral, B; McNally, T

    2013-02-08

    Composites of multiwalled carbon nanotubes with poly(ethylene terephthalate) (PET-MWCNT) with up to 3 vol% MWCNTs were prepared and characterized by broad-band AC conductivity and dielectric spectroscopy up to the infrared range using several techniques. A very low electrical percolation threshold of 0.07 vol% MWCNTs was revealed from the low-frequency conductivity plateau as well as from DC conductivity, whose values show the same critical power dependence on MWCNT concentration with the exponent t = 4.3. Above the plateau, the AC conductivity increases with frequency up to the THz range, where it becomes overlapped with the absorption of vibrational modes. The temperature dependence down to ~5 K has shown semiconductor behaviour with a concentration-independent but weakly temperature-dependent small activation energy of ~3 meV. The behaviour is compatible with the previously suggested fluctuation-induced tunnelling conductivity model through a thin (~1 nm) polymer contact layer among the adjacent MWCNTs within percolated clusters. At higher frequencies, deviations from the simple universal conductivity behaviour are observed, indicating some distribution of energy barriers for an electron hopping mechanism.

  1. A re-analysis of the NuSTAR and XMM-Newton broad-band spectrum of Serpens X-1

    NASA Astrophysics Data System (ADS)

    Matranga, M.; Di Salvo, T.; Iaria, R.; Gambino, A. F.; Burderi, L.; Riggio, A.; Sanna, A.

    2017-03-01

    Context. High-resolution X-ray spectra of neutron star low-mass X-ray binaries (LMXBs) in the energy range 6.4-6.97 keV are often characterized by the presence of Kα transition features of iron at different ionization stages. Since these lines are thought to originate by reflection of the primary Comptonization spectrum over the accretion disk, the study of these features allows us to investigate the structure of the accretion flow close to the central source. Thus, the study of these features gives us important physical information on the system parameters and geometry. Ser X-1 is a well studied LMXB that clearly shows a broad iron line. Several attempts to fit this feature as a smeared reflection feature have been performed on XMM-Newton, suzaku, NuSTAR, and, more recently, on Chandra data, finding different results for the inner radius of the disk and other reflection or smearing parameters. High-quality broad-band NuSTAR data on Ser X-1 have recently been published. Using relativistically smeared self-consistent reflection models, a value of Rin close to 1.0 RISCO (corresponding to 6 Rg, where Rg is the Gravitational radius, defined as usual Rg = GM/c2) was found, as well as a low inclination angle of less than 10°. Aims: The aim of this paper is to probe to what extent the choice of reflection and continuum models (and uncertainties therein) can affect the conclusions about the disk parameters inferred from the reflection component. To this aim, we re-analyze all the available public NuSTAR and XMM-Newton observations, which have the best sensitivity at the iron line energy, of Ser X-1. Ser X-1 is a well studied source, its spectrum has been observed by several instruments, and is therefore one of the best sources for this study. Methods: We used slightly different continuum and reflection models with respect to those adopted in the literature for this source. In particular, we fit the iron line and other reflection features with self-consistent reflection

  2. Modelling the variable broad-band optical/UV/X-ray spectrum of PG1211+143: implications for the ionized outflow

    NASA Astrophysics Data System (ADS)

    Papadakis, I. E.; Nicastro, F.; Panagiotou, C.

    2016-06-01

    Context. We present the results from a detailed analysis of the 2007 Swift monitoring campaign of the quasar PG1211+143. Aims: We study its broad-band optical/UV-X-ray spectral energy distribution and its variations, with the use of physically motivated models. Methods: We constructed broad-band, optical/UV-X-ray spectral energy distributions over three X-ray flux intervals, and we fitted them with a model which accounts for the disc and the X-ray coronal emission. We also added a spectral model component to account for the presence of the warm absorber which has been well established from past observations of the source. Results: We detected no optical/UV variations over the two-month period of the monitoring campaign. On the other hand, the X-rays are highly variable in a correlated way in the soft and hard X-ray bands with an amplitude larger than has been commonly observed in nearby Seyferts, even on longer time scales. The three flux spectra are well fitted by the model we considered. The disc inner temperature remains constant at ~2 eV, while X-rays are variable in slope and normalization. The absorber covers almost 90% of the central source. It is outflowing with a velocity less than 2.3 × 104 km s-1 (3σ upper limit), and has a column density of log NH ~ 23.2. Its ionization parameter varies by a factor of 1.6, and it is in photo-ionizing equilibrium with the ionizing flux. It is located at a distance of less than 0.35 pc from the central source, and its relative thickness, ΔR/R, is less than 0.1. The absorber's ionization parameter variations can explain the larger than average amplitude of the X-ray variations. Conclusions: The absence of optical/UV variations are consistent with the high black hole mass estimate of ~108M⊙ for this object, which implies variability time scales longer than the period of the Swift observations. It argues against the presence of inward propagating fluctuations in the disc as the reason for the flux variability in this

  3. An organic dye with very large Stokes-shift and broad tunability of fluorescence: Potential two-photon probe for bioimaging and ultra-sensitive solid-state gas sensor

    SciTech Connect

    He, Tingchao; Tian, Xiaoqing; Lin, Xiaodong E-mail: hdsun@ntu.edu.sg; Wang, Yue; Zhao, Xin; Sun, Handong E-mail: hdsun@ntu.edu.sg; Gao, Yang; Grimsdale, Andrew C.

    2016-01-04

    Light-emitting nonlinear optical molecules, especially those with large Stokes shifts and broad tunability of their emission wavelength, have attracted considerable attention for various applications including biomedical imaging and fluorescent sensors. However, most fluorescent chromophores have only limited potential for such applications due to small Stokes shifts, narrow tunability of fluorescence emissions, and small optical nonlinearity in highly polar solvents. In this work, we demonstrate that a two-photon absorbing stilbene chromophore exhibits a large two-photon absorption action cross-section (ηδ = 320 GM) in dimethylsulfoxide (DMSO) and shows broad fluorescence tunability (125 nm) by manipulating the polarity of the surrounding medium. Importantly, a very large Stokes shift of up to 227 nm is achieved in DMSO. Thanks to these features, this chromophore can be utilized as a two-photon probe for bioimaging applications and in an ultrasensitive solid-state gas detector.

  4. Measurement of the resonant polaron effect in the Reststrahlen band of GaAs:Si using far-infrared two-photon excitation

    SciTech Connect

    Wenckebach, W.Th.; Planken, P.C.M.; Son, P.C. van

    1995-12-31

    We present the results of photoconductivity measurements of the resonant electron-phonon interaction in the middle of the Reststrahlen band using two-photon excitation with intense picosecond pulses with frequency around 143 cm{sup -1} (70 {mu}m). We use two photons rather than a single photon for the excitation of the resonant-polaron to avoid the problems of strong reflection and dielectric artifacts encountered in direct single-photon excitation in the Reststrahlen band. The sample is a 10 {mu}m thick Si-doped GaAs epitaxial layer on a 400 {mu}m semi-insulating GaAs substrate. The electronic levels of the Si shallow donor can be tuned by the application of a magnetic field. Intense tunable picosecond pulses with a frequency of around 143 cm{sup -1} from the Dutch free-electron laser FELIX are weakly focussed onto the sample, which is kept at 8 K. Electrons excited to the 3d{sup +2} state via the electric-dipole allowed two-photon transition out of the 1s{sub 0-} ground state, decay to the conduction band and give rise to an increase in the photoconductivity. The figure shows the energy-peak position of the 3d{sup +2} transition thus obtained as a function of the magnetic-field strength. The figure clearly shows the avoided crossing around the LO-phonon energy where the coupling shows the avoided crossing around the LO-phonon energy where the coupling between the 3d{sup +2} state and the LO phonon is strongest. Note that the data between 267 cm{sup -1} and 296 cm{sup -1} are extremely difficult to obtain with single-photon excitation because of their position in the middle of the Reststrahlen band.

  5. Switching of the photonic band gap in three-dimensional film photonic crystals based on opal-VO{sub 2} composites in the 1.3-1.6 {mu}m spectral range

    SciTech Connect

    Pevtsov, A. B. Grudinkin, S. A.; Poddubny, A. N.; Kaplan, S. F.; Kurdyukov, D. A.; Golubev, V. G.

    2010-12-15

    The parameters of three-dimensional photonic crystals based on opal-VO{sub 2} composite films in the 1.3-1.6 {mu}m spectral range important for practical applications (Telecom standard) are numerically calculated. For opal pores, the range of filling factors is established (0.25-0.6) wherein the composite exhibits the properties of a three-dimensional insulator photonic crystal. On the basis of the opal-VO{sub 2} composites, three-dimensional photonic film crystals are synthesized with specified parameters that provide a maximum shift of the photonic band gap in the vicinity of the wavelength {approx}1.5 {mu}m ({approx}170 meV) at the semiconductor-metal transition in VO{sub 2}.

  6. Coherent all-optical switching by resonant quantum-dot distributions in photonic band-gap waveguides

    NASA Astrophysics Data System (ADS)

    Vujic, Dragan; John, Sajeev

    2007-12-01

    We study the detailed propagative characteristics of optical pulses in photonic band-gap (PBG) waveguides, coupled near resonantly to inhomogeneously broadened distributions of quantum dots. The line centers of the quantum-dot (QD) distributions are placed near a sharp discontinuity in the local electromagnetic density of states. Using finite-difference time-domain (FDTD) simulations of optical pulse dynamics and independent QD susceptibilities associated with resonance fluorescence, we demonstrate subpicosecond switching from pulse absorption to pulse amplification using steady-state optical holding and gate fields with power levels on the order of 1 milliwatt. In the case of collective response of QDs within the periodic dielectric microstructure, the gate power level is reduced to 200 microwatt for room temperature operation. In principle, this enables 200 Gbits per second optical information processing at wavelengths near 1.5 microns in various wavelength channels. The allowed pulse bandwidth in a given waveguide channel exceeds 0.5 THz allowing switching of subpicosecond laser pulses without pulse distortion. The switching contrast from absorption to gain is governed by the QD oscillator strength and dipole dephasing time scale. We consider dephasing time scales ranging from nanoseconds (low-temperature operation) to one picosecond (room-temperature operation). This all-optical transistor action is based on simple Markovian models of single-dot and collective-dot inversion and switching by coherent resonant pumping near the photon density of states discontinuity. The structured electromagnetic vacuum is provided by two-mode waveguide architectures in which one waveguide mode has a cutoff that occurs, with very large Purcell factor, near the QDs resonance, while the other waveguide mode exhibits nearly linear dispersion for fast optical propagation and modulation. Unlike optical switching based on Kerr nonlinearities in an optical cavity resonator, switching

  7. A Comparison Of The Performance Of Texan Data Loggers With 1 HZ Seismometers And Broad Band Instruments Applied To Receiver Function Imaging

    NASA Astrophysics Data System (ADS)

    Talavera, N. A.; Zou, Z.; Gurrola, H.

    2013-12-01

    Receiver Functions (RF) Produced from 2 year deployment of Broad Band seismometer have become a standard way to image the crust and upper mantle. This includes receiver functions produced from P-wave recording to interpret Pds phases and reverberations ending in an S; and S-waves RFs where Pds phases that appear as precursors to the S-phase are interpreted for crustal structure. A less commonly used method of receiver function analysis is the single component P RF where the PPdp reverberations are interpreted. This work will explore the possibility of using shorter term deployments of 1Hz geophones with Texan data loggers to image the crust using the RF method. In this work the instrument is removed to recover the lower frequencies. While the 1 Hz geophones are noisier and will operate in a noisier part of the spectrum they the lower cost and ready availability of these instruments makes it possible to put many more on the ground as compared to the broad band instruments. By doing so we can place them close enough to have a much higher density of raypaths in common conversion point (CCP) stacking which can make up for shorter deployment. We will examine the result for sample deployments of these Texan seismometers in China and in a location near Lubbock, TX. The Chinese deployment was in the Three Gorges area. One experiment that was conducted was to run a string of 43 Texans for one month one summer with only vertical component 1Hz geophones with average 5 km spacing. These stations were beam formed to produce a common P source function for each event (four Events were used) which was then used as the source function to produce RFs for each individual station using the iterative deconvolution method. The result was a high resolution image of the upper 20 km of the crust where we were able to interpret features of a deep sedimentary basin. A second deployment was to deploy 15 Texans in a '+' pattern. Nine Texans were equipped with vertical component jugs with 4 km

  8. Broad-band spectroscopy of the eclipsing high-mass X-ray binary 4U 1700-37 with Suzaku

    NASA Astrophysics Data System (ADS)

    Jaisawal, Gaurava K.; Naik, Sachindra

    2015-03-01

    We present the results obtained from broad-band spectroscopy of the high-mass X-ray binary 4U 1700-37 using data from a Suzaku observation in 2006 September 13-14 covering 0.29-0.72 orbital phase range. The light curves showed significant and rapid variation in source flux during entire observation. We did not find any signature of pulsations in the light curves. However, a quasi-periodic oscillation at ˜20 mHz was detected in the power density spectrum of the source. The 1-70 keV spectrum was fitted with various continuum models. However, we found that the partially absorbed high-energy cut-off power law and Negative and Positive power law with Exponential cut-off (NPEX) models described the source spectrum well. Iron emission lines at 6.4 and 7.1 keV were detected in the source spectrum. An absorption-like feature at ˜39 keV was detected in the residuals while fitting the data with NPEX model. Considering the feature as cyclotron absorption line, the surface magnetic field of the neutron star was estimated to be ˜3.4 × 1012 G. To understand the cause of rapid variation in the source flux, time-resolved spectroscopy was carried out by dividing the observation into 20 narrow segments. The results obtained from the time-resolved spectroscopy are interpreted as the accretion of inhomogeneously distributed matter in the stellar wind of the supergiant companion star as the cause of observed flux variation in 4U 1700-37. A sharp increase in column density after ˜0.63 orbital phase indicates the presence of an accretion wake that blocks the continuum and produces the eclipse like low-flux segment.

  9. Broad-band strong motion simulations coupling k-square kinematic source models with empirical Green's functions: the 2009 L'Aquila earthquake

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Sergio; Causse, Mathieu; Festa, Gaetano

    2015-10-01

    The use of simulated accelerograms may improve the evaluation of the seismic hazard when an accurate modelling of both source and propagation is performed. In this paper, we performed broad-band simulations of the 2009, M 6.3 L'Aquila earthquake, coupling a k-2 kinematic model for the seismic source with empirical Green's functions (EGFs) as propagators. We extracted 10 EGFs candidates from a database of aftershocks satisfying quality criteria based on signal-to-noise ratio, fault proximity, small magnitude, similar focal mechanism and stress drop. For comparison with real observations, we also derived a low-frequency kinematic model, based on inversion of ground displacement as integrated from strong motion data. Kinematic properties of the inverted model (rupture velocity, position of the rupture nucleation, low-frequency slip and roughness degree of slip heterogeneity) were used as constraints in the k-2 model, to test the use of a single specific EGF against the use of the whole set of EGFs. Comparison to real observations based on spectral and peak ground acceleration shows that the use of all available EGFs improves the fit of simulations to real data. Moreover the epistemic variability related to the selection of a specific EGF is significantly larger (two to three times) than recent observations of between event variability, that is the variability associated with the randomness of the rupture process. We finally performed `blind' simulations releasing all the information on source kinematics and only considering the fault geometry and the magnitude of the target event as known features. We computed peak ground acceleration, acceleration Fourier and response spectra. Simulations follow the same trend with distance as real observations. In most cases these latter fall within one sigma from predictions. Predictions with source parameters constrained at low frequency do not perform better than `blind' simulations, showing that extrapolation of the low

  10. Broad-band spectrophotometry of the hot Jupiter HAT-P-12b from the near-UV to the near-IR

    NASA Astrophysics Data System (ADS)

    Mallonn, M.; Nascimbeni, V.; Weingrill, J.; von Essen, C.; Strassmeier, K. G.; Piotto, G.; Pagano, I.; Scandariato, G.; Csizmadia, Sz.; Herrero, E.; Sada, P. V.; Dhillon, V. S.; Marsh, T. R.; Künstler, A.; Bernt, I.; Granzer, T.

    2015-11-01

    Context. The detection of trends or gradients in the transmission spectrum of extrasolar planets is possible with observations at very low spectral resolution. Transit measurements of sufficient accuracy using selected broad-band filters allow for an initial characterization of the atmosphere of the planet. Aims: We want to investigate the atmosphere of the hot Jupiter HAT-P-12b for an increased absorption at the very blue wavelength regions caused by scattering. Furthermore, we aim for a refinement of the transit parameters and the orbital ephemeris. Methods: We obtained time series photometry of 20 transit events and analyzed them homogeneously, along with eight light curves obtained from the literature. In total, the light curves span a range from 0.35 to 1.25 microns. During two observing seasons over four months each, we monitored the host star to constrain the potential influence of starspots on the derived transit parameters. Results: We rule out the presence of a Rayleigh slope extending over the entire optical wavelength range, a flat spectrum is favored for HAT-P-12b with respect to a cloud-free atmosphere model spectrum. A potential cause of such gray absorption is the presence of a cloud layer at the probed latitudes. Furthermore, in this work we refine the transit parameters, the ephemeris and perform a TTV analysis in which we found no indication for an unseen companion. The host star showed a mild non-periodic variability of up to 1%. However, no stellar rotation period could be detected to high confidence.

  11. Temperature dependence of beat-length and confinement loss in an air-core photonic band-gap fiber

    NASA Astrophysics Data System (ADS)

    Xu, Zhenlong; Li, Xuyou; Hong, Yong; Liu, Pan; Yang, Hanrui; Ling, Weiwei

    2016-05-01

    The temperature dependence of polarization-maintaining (PM) property and loss in a highly-birefringent air-core photonic band-gap fiber (PBF) is investigated. The effects of temperature variation on the effective index, beat-length and confinement loss are studied numerically by using the full-vector finite element method (FEM). It is found that, the PM property of this PBF is insensitive to the temperature, and the temperature-dependent beat-length coefficient can be as low as 2.86×10-8 m/°C, which is typically 200 times less than those of conventional panda fibers, the PBF has a stable confinement loss of 0.01 dB/m over the temperature range of -30 to 20 °C for the slow axis at the wavelength of 1.55 μm. The PBF with ultra-low temperature-dependent PM property and low loss can reduce the thermally induced polarization instability apparently in interferometric applications such as resonant fiber optic gyroscope (RFOG), optical fiber sensors, and so on.

  12. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Jain, P. K.

    2015-09-01

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE041-like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code "CST Particle Studio" has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ˜108 kW with ˜15.5% efficiency in a well confined TE041-like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  13. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  14. Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control

    PubMed Central

    2012-01-01

    Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED) technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD). The average photosynthetic PFD (PPFD) in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%), which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD) of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm) grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength), the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg) and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1) was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a graphical user interface

  15. Band structure of a 2D photonic crystal based on ferrofluids of Co(1-x)Znx Fe2O4 nanoparticles under perpendicular applied magnetic field

    NASA Astrophysics Data System (ADS)

    Lopez, Javier; Gonzalez, Luz Esther; Quinonez, Mario; Porras, Nelson; Zambrano, Gustavo; Gomez, Maria Elena

    2014-03-01

    Using a ferrfluid of cobalt-zinc ferrite nanoparticles Co(1 - x)ZnxFe2O4 coated with oleic acid and suspended in ethanol, we have fabricated a 2D photonic crystal (PC) by the application of an external magnetic field perpendicular to the plane of the ferrofluid. The 2D PC is made by rods of nanoparticles organized in a hexagonal structure. By means of the plane-wave expansion method, we study its photonic band structure (PBS) which depends on the effective permittivity and on the area ratio of the liquid phase. Additionaly, taking into account the Maxwell-Garnett theory we calculated the effective permittivity of the rods. We have found that the effective refractive index of the ferrofluid increases with its magnetization. Using these results we calculate the band structure of the photonic crystal at different applied magnetic fields, finding that the increase of the applied magnetic field shifts the band structure to lower frequencies with the appearance of more band gaps. Departamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia

  16. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.

    PubMed

    Chou, Stephen Y; Ding, Wei

    2013-01-14

    Three of central challenges in solar cells are high light coupling into solar cell, high light trapping and absorption in a sub-absorption-length-thick active layer, and replacement of the indium-tin-oxide (ITO) transparent electrode used in thin-film devices. Here, we report a proposal and the first experimental study and demonstration of a new ultra-thin high-efficiency organic solar cell (SC), termed "plasmonic cavity with subwavelength hole-array (PlaCSH) solar cell", that offers a solution to all three issues with unprecedented performances. The ultrathin PlaCSH-SC is a thin plasmonic cavity that consists of a 30 nm thick front metal-mesh electrode with subwavelength hole-array (MESH) which replaces ITO, a thin (100 nm thick) back metal electrode, and in-between a polymer photovoltaic active layer (P3HT/PCBM) of 85 nm thick (1/3 average absorption-length). Experimentally, the PlaCSH-SCs have achieved (1) light coupling-efficiency/absorptance as high as 96% (average 90%), broad-band, and Omni acceptance (light coupling nearly independent of both light incident angle and polarization); (2) an external quantum efficiency of 69% for only 27% single-pass active layer absorptance; leading to (3) a 4.4% power conversion efficiency (PCE) at standard-solar-irradiation, which is 52% higher than the reference ITO-SC (identical structure and fabrication to PlaCSH-SC except MESH replaced by ITO), and also is among the highest PCE for the material system that was achievable previously only by using thick active materials and/or optimized polymer compositions and treatments. In harvesting scattered light, the Omni acceptance can increase PCE by additional 81% over ITO-SC, leading to a total 175% increase (i.e. 8% PCE). Furthermore, we found that (a) after formation of PlaCSH the light reflection and absorption by MESH are reduced by 2 to 6 fold from the values when it is alone; and (b) the sheet resistance of a 30 nm thick MESH is 2.2 ohm/sq or less-4.5 fold or more lower

  17. Effects of refractive index changes on four-wave mixing bands in Er-doped photonic crystal fibers pumped at 976 nm.

    PubMed

    Velázquez-Ibarra, L; Díez, A; Andrés, M V; Lucio, J L

    2012-04-01

    An experimental study of the effects of an auxiliary 976 nm pump signal on the four-wave mixing parametric bands generated with a 1064 nm pump in a normal dispersion Er-doped photonic crystal fiber is presented. The four-wave mixing signal and idler bands shift to shorter and longer wavelengths, respectively, with increasing 976 nm pump power. It is shown that the wavelength-dependent resonant refractive index change in the erbium-doped core under 976 nm pumping is at the origin of the effect.

  18. Polarization and field dependent two-photon absorption in GaAs/AlGaAs multiquantum well waveguides in the half-band gap spectral region

    NASA Astrophysics Data System (ADS)

    Tsang, H. K.; Penty, R. V.; White, I. H.; Grant, R. S.; Sibbett, W.; Soole, J. B. D.; LeBlanc, H. P.; Andreadakis, N. C.; Colas, E.; Kim, M. S.

    1991-12-01

    We report the observation of two photon absorption which is strongly dependent on the applied electric field and the optical polarization. At 1.55 μm wavelength, the two-photon absorption coefficient of the GaAs/AlGaAs multiquantum well (MQW) waveguides for transverse-magnetic light is about seven times lower than for transverse-electric polarized light and changes by a factor of approximately 4 for a change in applied direct-current electric field of ˜140 kV/cm. Ultrafast nonlinear refraction causing phase changes of over π radians without appreciable excess loss is observed. These measurements demonstrate that GaAs/AlGaAs MQW waveguides could be successfully used for subpicosecond all-optical switching near half-band gap, at wavelengths corresponding to the 1.55 μm optical communications band.

  19. A program for calculating photonic band structures, Green's functions and transmission/reflection coefficients using a non-orthogonal FDTD method

    NASA Astrophysics Data System (ADS)

    Ward, A. J.; Pendry, J. B.

    2000-06-01

    In this paper we present an updated version of our ONYX program for calculating photonic band structures using a non-orthogonal finite difference time domain method. This new version employs the same transparent formalism as the first version with the same capabilities for calculating photonic band structures or causal Green's functions but also includes extra subroutines for the calculation of transmission and reflection coefficients. Both the electric and magnetic fields are placed onto a discrete lattice by approximating the spacial and temporal derivatives with finite differences. This results in discrete versions of Maxwell's equations which can be used to integrate the fields forwards in time. The time required for a calculation using this method scales linearly with the number of real space points used in the discretization so the technique is ideally suited to handling systems with large and complicated unit cells.

  20. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide

    PubMed Central

    Marichy, Catherine; Muller, Nicolas; Froufe-Pérez, Luis S.; Scheffold, Frank

    2016-01-01

    Photonic crystal materials are based on a periodic modulation of the dielectric constant on length scales comparable to the wavelength of light. These materials can exhibit photonic band gaps; frequency regions for which the propagation of electromagnetic radiation is forbidden due to the depletion of the density of states. In order to exhibit a full band gap, 3D PCs must present a threshold refractive index contrast that depends on the crystal structure. In the case of the so-called woodpile photonic crystals this threshold is comparably low, approximately 1.9 for the direct structure. Therefore direct or inverted woodpiles made of high refractive index materials like silicon, germanium or titanium dioxide are sought after. Here we show that, by combining multiphoton lithography and atomic layer deposition, we can achieve a direct inversion of polymer templates into TiO2 based photonic crystals. The obtained structures show remarkable optical properties in the near-infrared region with almost perfect specular reflectance, a transmission dip close to the detection limit and a Bragg length comparable to the lattice constant. PMID:26911540

  1. Measuring surface wave phase velocities beneath small broad-band arrays: tests of an improved algorithm and application to the French Alps

    NASA Astrophysics Data System (ADS)

    Pedersen, Helle A.; Coutant, Olivier; Deschamps, A.; Soulage, M.; Cotte, N.

    2003-09-01

    The local measurement of dispersion curves of intermediate-period surface waves is particularly difficult because of the long wavelengths involved. We suggest an improved procedure for measuring dispersion curves using small-aperture broad-band arrays. The method is based on the hypotheses of plane incoming waves and that averaging over a set of events with a good backazimuth distribution will suppress the effects of diffraction outside the array. None of the elements of the processing are new in themselves, but each step is optimized so we can obtain a reliable dispersion curve with a well-defined uncertainty. The method is based on the inversion for the slowness vector at each event and frequency using time delays between pairs of stations, where the time delays Δt are obtained by frequency-domain Wiener filtering. The interstation distance projected on to the slowness vector (D) is then calculated. The final dispersion curve is found by, at each frequency, calculating the inverse of the slope of the best-fitting line of all (D, Δt) points. To test the algorithm, it is applied to synthetic seismograms of fundamental mode Rayleigh waves in different configurations: (1) the sum of several incident waves; (2) an array located next to or above a crustal thickening; and (3) added white noise, using regular and irregular backazimuth distributions. In each case, a circular array of 23 km diameter and composed of six stations is used. The algorithm is stable over a large range of wavelengths (between half and a tenth of the array size), depending on the configuration. The situations of several, simultaneously incoming waves or neighbouring heterogeneities are well handled and the inferred dispersion curve corresponds to that of the underlying medium. Above a strong lateral heterogeneity, the inferred dispersion curve corresponds to that of the underlying medium up to wavelengths of eight times the array size in the configuration considered, but further work is needed

  2. Multiwavelength campaign on Mrk 509. XV. Global modeling of the broad emission lines in the optical, UV, and X-ray bands

    NASA Astrophysics Data System (ADS)

    Costantini, E.; Kriss, G.; Kaastra, J. S.; Bianchi, S.; Branduardi-Raymont, G.; Cappi, M.; De Marco, B.; Ebrero, J.; Mehdipour, M.; Petrucci, P.-O.; Paltani, S.; Ponti, G.; Steenbrugge, K. C.; Arav, N.

    2016-11-01

    Aims: We model the broad emission lines present in the optical, UV, and X-ray spectra of Mrk 509, a bright type 1 Seyfert galaxy. The broad lines were simultaneously observed during a large multiwavelength campaign, using the XMM-Newton-OM for the optical lines, HST-COS for the UV lines, and XMM-Newton-RGS and Epic for the X-ray lines. We also used FUSE archival data for the broad lines observed in the far-ultraviolet. The goal is to find a physical connection among the lines measured at different wavelengths and to determine the size and the distance from the central source of the emitting gas components. Methods: We used the Locally Optimally emission Cloud (LOC) model which interprets the emissivity of the broad line region (BLR) as regulated by power law distributions of both gas density and distances from the central source. Results: We find that one LOC component cannot model all the lines simultaneously. In particular, we find that the X-ray and UV lines may likely originate in the more internal part of the AGN at radii in the range 5 × 1014-3 × 1017 cm, while the optical lines and part of the UV lines may likely originate farther out at radii 3 × 1017-3 × 1018 cm. These two gas components are parametrized by a radial distribution of the luminosities with a slope γ of 1.15 and 1.10, respectively, both of them covering at least 60% of the source. This simple parametrization points to a structured broad line region where the higher ionized emission comes from closer in, while the emission of the low-ionization lines is more concentrated in the outskirts of the broad line region.

  3. Computation of broad spectral band electro-optical system transmittance response characteristics to military smokes and obscurants using field test data from transmissometer system measurements

    NASA Astrophysics Data System (ADS)

    Farmer, W. Michael; Davis, Roger; Laughman, Robert; Watkins, Wendall

    1990-03-01

    Electro-optical weapon system developers and users must know the smoke/obscurant countermeasure transmittance levels required to defeat their systems. This information is required in order to establish both operational smoke screen requirements and system scenario applicability. Transmittance data acquired in field tests such as the Smoke Week tests, Smoke/Obscurants were developed for this purpose. Narrow-band transmittance data can be analyzed using the Beer-Bouguer transmittance law to evaluate the performance of narrow-band electro-optical weapon systems such as laser rangefinders. However, broadband transmittance data for smokes such as phosphorus, fog oil, and dust in the visible, 3 to 5, or 8 to 12 micron bands cannot be evaluated directly using the Beer-Bouguer transmission law for broadband electro-optical systems such as FLIRs. A method for transforming field-measured transmittance data into equivalent electro-optical system transmittance is required. The transmissometer system analysis developed in the Project Manager, Smoke/Obscurants TRANSmissometer VALidation (TRANSVAL) program has provided the basis for developing such a method. The method developed in the TRANSVAL program for computing equivalent broadband electro-optical sensor transmittance from field test data is described. It is shown that band averages of the mass extinction coefficient used with the Beer-Bouguer transmission law do not yield correct estimates of equivalent electro-optical system transmittance. Examples are provided to illustrate the kinds of errors that can arise if sensor performance is incorrectly interpreted using field test data.

  4. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots.

    PubMed

    Chen, Ze-Sheng; Ma, Ben; Shang, Xiang-Jun; He, Yu; Zhang, Li-Chun; Ni, Hai-Qiao; Wang, Jin-Liang; Niu, Zhi-Chuan

    2016-12-01

    Single-photon emission in the telecommunication wavelength band is realized with self-assembled strain-coupled bilayer InAs quantum dots (QDs) embedded in a planar microcavity on GaAs substrate. Low-density large QDs in the upper layer active for ~1.3 μm emission are fabricated by precisely controlling the indium deposition amount and applying a gradient indium flux in both QD layers. Time-resolved photoluminescence (PL) intensity suggested that the radiative lifetime of their exciton emission is 1.5~1.6 ns. The second-order correlation function of g (2)(0) < 0.5 which demonstrates a pure single-photon emission.

  5. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.

    PubMed

    Nozawa, Tomohiro; Takagi, Hiroyuki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2015-07-08

    We present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser. These results reveal the direct demonstration of the two-step photon absorption in a single QD. This is an essential result for both the fundamental operation and the realization of ultrahigh solar-electricity energy conversion in quantum dot intermediate-band solar cells.

  6. Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors

    NASA Astrophysics Data System (ADS)

    Vincenti, Maria Antonietta; Trevisi, Simona; De Sario, Marco; Petruzzelli, Vincenzo; D'Orazio, Antonella; Prudenzano, Francesco; Cioffi, Nicola; de Ceglia, Domenico; Scalora, Michael

    2008-03-01

    In this paper we report a numerical study of a palladium-based metallo-dielectric photonic band gap structure for the purpose of detecting H2. In particular, and as an example, we will explore applications to the diagnosis of lactose malabsorption, more commonly known as lactose intolerance condition. This pathology occurs as a result of an incomplete absorption or digestion of different substances, causing an increased spontaneous emission of H2 in human breath. Palladium is considered in order to exploit its well known ability to absorb hydrogen spontaneously. The proposed structure is particularly able to detect the lactose malabsorption level of the patient with relatively high sensitivity and rapidity.

  7. Simple Experimental Verification of the Relation between the Band-Gap Energy and the Energy of Photons Emitted by LEDs

    ERIC Educational Resources Information Center

    Precker, Jurgen W.

    2007-01-01

    The wavelength of the light emitted by a light-emitting diode (LED) is intimately related to the band-gap energy of the semiconductor from which the LED is made. We experimentally estimate the band-gap energies of several types of LEDs, and compare them with the energies of the emitted light, which ranges from infrared to white. In spite of…

  8. Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime.

    PubMed

    García-Rupérez, Jaime; Toccafondo, Veronica; Bañuls, María José; Castelló, Javier García; Griol, Amadeu; Peransi-Llopis, Sergio; Maquieira, Ángel

    2010-11-08

    We report experimental results of label-free anti-bovine serum albumin (anti-BSA) antibody detection using a SOI planar photonic crystal waveguide previously bio-functionalized with complementary BSA antigen probes. Sharp fringes appearing in the slow-light regime near the edge of the guided band are used to perform the sensing. We have modeled the presence of these band edge fringes and demonstrated the possibility of using them for sensing purposes by performing refractive index variations detection, achieving a sensitivity of 174.8 nm/RIU. Then, label-free anti-BSA biosensing experiments have been carried out, estimating a surface mass density detection limit below 2.1 pg/mm2 and a total mass detection limit below 0.2 fg.

  9. Band alignment and photon extraction studies of Na-doped MgZnO/Ga-doped ZnO heterojunction for light-emitter applications

    SciTech Connect

    Pandey, Sushil Kumar; Awasthi, Vishnu; Sengar, Brajendra Singh; Garg, Vivek; Sharma, Pankaj; Mukherjee, Shaibal; Kumar, Shailendra; Mukherjee, C.

    2015-10-28

    Ultraviolet photoelectron spectroscopy is carried out to measure the energy discontinuity at the interface of p-type Na-doped MgZnO (NMZO)/n-type Ga-doped ZnO (GZO) heterojunction grown by dual ion beam sputtering. The offset values at valence band and conduction band of NMZO/GZO heterojunction are calculated to be 1.93 and −2.36 eV, respectively. The p-type conduction in NMZO film has been confirmed by Hall measurement and band structure. Moreover, the effect of Ar{sup +} ion sputtering on the valence band onset values of NMZO and GZO thin films has been investigated. This asymmetric waveguide structure formed by the lower refractive index of GZO than that of NMZO indicates that easy extraction of photons generated in GZO through the NMZO layer into free space. The asymmetric waveguide structure has potential applications to produce ZnO-based light emitters with high extraction efficiency.

  10. Two-level system immersed in a photonic band-gap material: A non-Markovian stochastic Schroedinger-equation approach

    SciTech Connect

    Vega, Ines de; Alonso, Daniel; Gaspard, Pierre

    2005-02-01

    It is our aim to study the dynamics of a two-level atom immersed in the modified radiation field of a photonic band-gap material using non-Markovian stochastic Schroedinger equations. Up to now, such methodology has only been applied to toy models and not to physically realistic systems as the one presented here. In order to check its validity, we shall study several of the physical phenomena already described in the literature within non-Markovian master equations, such as the long-time-limit residual population in the excited level of the atom and the population inversion which occurs in the atomic system when applying an external laser field. In addition to the stochastic equation, we propose a non-Markovian master equation derived from the stochastic formalism, which in contrast to the current models of master equation preserves positivity. We propose a correlation function for the radiation field (environment) that captures many of the physically relevant aspects of the problem and describes the short-time behavior in a more accurate way than previously proposed ones. This characteristic permits a correct description of the fluctuations of the electromagnetic field, which in the stochastic formalism are represented by the noise, and a better description of the non-Markovian effects in the atomic dynamics. The methodology presented in this paper to apply stochastic Schroedinger equations can be followed to study more complex systems, like many-level atoms embedded in more complicated photonic band-gap structures.

  11. Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab

    NASA Astrophysics Data System (ADS)

    Sánchez-Cano, R.; Porras-Montenegro, N.

    2016-04-01

    We present numerical predictions for the photonic TE-like band gap ratio and the quality factors of symmetric localized defect as a function of the thickness slab and temperature by the use of plane wave expansion and the finite-difference time-domain methods. The photonic-crystal hole slab is composed of a 2D hexagonal array with identical air holes and a circular cross section, embedded in a non-dispersive III-V semiconductor quaternary alloy slab, which has a high value of dielectric function in the near-infrared region, and the symmetric defect is formed by increasing the radius of a single hole in the 2D hexagonal lattice. We show that the band gap ratio depends linearly on the temperature in the range 150-400 K. Our results show a strong temperature dependence of the quality factor Q, the maximum (Q = 7000) is reached at T = 350 hbox {K}, but if the temperature continues to increase, the efficiency drops sharply. Furthermore, we present numerical predictions for the electromagnetic field distribution at T = 350 hbox {K}.

  12. Role of charge separation on two-step two photon absorption in InAs/GaAs quantum dot intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Creti, A.; Tasco, V.; Cola, A.; Montagna, G.; Tarantini, I.; Salhi, A.; Al-Muhanna, A.; Passaseo, A.; Lomascolo, M.

    2016-02-01

    In this work, we report on the competition between two-step two photon absorption, carrier recombination, and escape in the photocurrent generation mechanisms of high quality InAs/GaAs quantum dot intermediate band solar cells. In particular, the different role of holes and electrons is highlighted. Experiments of external quantum efficiency dependent on temperature and electrical or optical bias (two-step two photon absorption) highlight a relative increase as high as 38% at 10 K under infrared excitation. We interpret these results on the base of charge separation by phonon assisted tunneling of holes from quantum dots. We propose the charge separation as an effective mechanism which, reducing the recombination rate and competing with the other escape processes, enhances the infrared absorption contribution. Meanwhile, this model explains why thermal escape is found to predominate over two-step two photon absorption starting from 200 K, whereas it was expected to prevail at lower temperatures (≥70 K), solely on the basis of the relatively low electron barrier height in such a system.

  13. Lattice dynamics and broad-band dielectric properties of multiferroic Pb(Fe1/2Nb1/2)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Mackeviciute, R.; Goian, V.; Greicius, S.; Grigalaitis, R.; Nuzhnyy, D.; Holc, J.; Banys, J.; Kamba, S.

    2015-02-01

    Complex dielectric properties of Pb(Fe1/2Nb1/2)O3 ceramics were investigated in a broad frequency range from 100 Hz up to 90 THz. A broad dielectric anomaly was observed near the temperature of the ferroelectric phase transition (TC1 = 376 K). Below 1 MHz, the anomaly is strongly influenced by conductivity of the sample, but higher frequency data taken up to 81 MHz reveal a broad and frequency independent peak at TC1 typical for a diffuse ferroelectric phase transition. Surprisingly, dielectric permittivity measured at 37 GHz exhibits a peak shifted by 25 K above TC1, which indicates polar nanoregions with dynamics in microwave frequency region. A dielectric relaxation, which appears in THz region below 700 K, slows down towards TC1 and again hardens below TC2 = 356 K. This central mode drives both phase transitions, so they belong to order-disorder type, although the polar phonons exhibit anomalies near both phase transitions. In the paraelectric phase, infrared reflectivity spectra correspond to local F m 3 ¯ m structure due to short-range chemical ordering of Fe and Nb cations on the B perovskite sites. Moreover, each polar phonon is split due to two different cations on the B sites. Recently, Manley et al. [Nat. Commun. 5, 3683 (2014)] proposed a new mechanism of creation of polar nanoregions in relaxor ferroelectrics. They argued, based on their inelastic neutron scattering studies of PMN-PT, that the TO1 phonon is split and interaction of both components gives rise to so called Anderson phonon localization, which can produce regions of trapped standing waves and these waves induce polar nanoregions in relaxors. We cannot exclude or confirm this mechanism, but we show that the splitting of polar phonons is a common feature for all complex perovskites with relaxor ferroelectric behavior and it can be also observed in canonical ferroelectric BaTiO3, where the soft mode is split in paraelectric phase due to a strong lattice anharmonicity.

  14. Lattice dynamics and broad-band dielectric properties of multiferroic Pb(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} ceramics

    SciTech Connect

    Mackeviciute, R.; Greicius, S.; Grigalaitis, R.; Banys, J.; Goian, V.; Nuzhnyy, D.; Kamba, S.; Holc, J.

    2015-02-28

    Complex dielectric properties of Pb(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} ceramics were investigated in a broad frequency range from 100 Hz up to 90 THz. A broad dielectric anomaly was observed near the temperature of the ferroelectric phase transition (T{sub C1} = 376 K). Below 1 MHz, the anomaly is strongly influenced by conductivity of the sample, but higher frequency data taken up to 81 MHz reveal a broad and frequency independent peak at T{sub C1} typical for a diffuse ferroelectric phase transition. Surprisingly, dielectric permittivity measured at 37 GHz exhibits a peak shifted by 25 K above T{sub C1}, which indicates polar nanoregions with dynamics in microwave frequency region. A dielectric relaxation, which appears in THz region below 700 K, slows down towards T{sub C1} and again hardens below T{sub C2} = 356 K. This central mode drives both phase transitions, so they belong to order–disorder type, although the polar phonons exhibit anomalies near both phase transitions. In the paraelectric phase, infrared reflectivity spectra correspond to local Fm3{sup ¯}m structure due to short-range chemical ordering of Fe and Nb cations on the B perovskite sites. Moreover, each polar phonon is split due to two different cations on the B sites. Recently, Manley et al. [Nat. Commun. 5, 3683 (2014)] proposed a new mechanism of creation of polar nanoregions in relaxor ferroelectrics. They argued, based on their inelastic neutron scattering studies of PMN–PT, that the TO1 phonon is split and interaction of both components gives rise to so called Anderson phonon localization, which can produce regions of trapped standing waves and these waves induce polar nanoregions in relaxors. We cannot exclude or confirm this mechanism, but we show that the splitting of polar phonons is a common feature for all complex perovskites with relaxor ferroelectric behavior and it can be also observed in canonical ferroelectric BaTiO{sub 3}, where the soft mode is split in

  15. Wide Band to ''Double Band'' upgrade

    SciTech Connect

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs.

  16. Optimal design and loss mechanism analysis of microwave absorbing unidirectional SiC fiber composites with broad absorption band and good polarization stability

    NASA Astrophysics Data System (ADS)

    Wan, Guangchao; Jiang, Jianjun; He, Yun; Bie, Shaowei

    2016-04-01

    A microwave-absorbing unidirectional SiC fiber composite with wide absorption and good polarization stability was designed by genetic algorithm. The anisotropic nature of unidirectional fiber composites was considered in the design by characterizing tensor permittivity. This special composite is composed of two kinds of SiC fibers that separately exhibit relatively high conductivity and low conductivity. The electromagnetic loss mechanism of this composite was examined for polarizations that differ in the electric field of the incident wave, applied either in the direction of the fiber or in the transverse direction, perpendicular to the fibers. For both polarizations, the absorption band of our composite can reach 6 GHz and the lowest microwave reflectivity was about -20 dB over a range of 8-18 GHz. When the electric field is polarized parallel to fibers, strong coupling among the high-conductivity fibers can induce a strong current and thus efficiently dissipate the electromagnetic energy. When the electric field is polarized perpendicular to fibers, the electromagnetic loss mechanism in the composite resembles the electric energy loss in capacitors and currents in the transverse direction are obstructed by the fibers resulting in attenuation of the electromagnetic energy in the matrix.

  17. Wide-field broad-band radio imaging with phased array feeds: a pilot multi-epoch continuum survey with ASKAP-BETA

    NASA Astrophysics Data System (ADS)

    Heywood, I.; Bannister, K. W.; Marvil, J.; Allison, J. R.; Ball, L.; Bell, M. E.; Bock, D. C.-J.; Brothers, M.; Bunton, J. D.; Chippendale, A. P.; Cooray, F.; Cornwell, T. J.; De Boer, D.; Edwards, P.; Gough, R.; Gupta, N.; Harvey-Smith, L.; Hay, S.; Hotan, A. W.; Indermuehle, B.; Jacka, C.; Jackson, C. A.; Johnston, S.; Kimball, A. E.; Koribalski, B. S.; Lenc, E.; Macleod, A.; McClure-Griffiths, N.; McConnell, D.; Mirtschin, P.; Murphy, T.; Neuhold, S.; Norris, R. P.; Pearce, S.; Popping, A.; Qiao, R. Y.; Reynolds, J. E.; Sadler, E. M.; Sault, R. J.; Schinckel, A. E. T.; Serra, P.; Shimwell, T. W.; Stevens, J.; Tuthill, J.; Tzioumis, A.; Voronkov, M. A.; Westmeier, T.; Whiting, M. T.

    2016-04-01

    The Boolardy Engineering Test Array is a 6 × 12 m dish interferometer and the prototype of the Australian Square Kilometre Array Pathfinder (ASKAP), equipped with the first generation of ASKAP's phased array feed (PAF) receivers. These facilitate rapid wide-area imaging via the deployment of simultaneous multiple beams within an ˜30 deg2 field of view. By cycling the array through 12 interleaved pointing positions and using nine digitally formed beams, we effectively mimic a traditional 1 h × 108 pointing survey, covering ˜150 deg2 over 711-1015 MHz in 12 h of observing time. Three such observations were executed over the course of a week. We verify the full bandwidth continuum imaging performance and stability of the system via self-consistency checks and comparisons to existing radio data. The combined three epoch image has arcminute resolution and a 1σ thermal noise level of 375 μJy beam-1, although the effective noise is a factor of ˜3 higher due to residual sidelobe confusion. From this we derive a catalogue of 3722 discrete radio components, using the 35 per cent fractional bandwidth to measure in-band spectral indices for 1037 of them. A search for transient events reveals one significantly variable source within the survey area. The survey covers approximately two-thirds of the Spitzer South Pole Telescope Deep Field. This pilot project demonstrates the viability and potential of using PAFs to rapidly and accurately survey the sky at radio wavelengths.

  18. Photonic quantum well composed of photonic crystal and quasicrystal

    NASA Astrophysics Data System (ADS)

    Xu, Shaohui; Zhu, Yiping; Wang, Lianwei; Yang, Pingxiong; Chu, Paul K.

    2014-02-01

    A photonic quantum well structure composed of photonic crystal and Fibonacci quasicrystal is investigated by analyzing the transmission spectra and electric field distributions. The defect band in the photonic well can form confined quantized photonic states that can change in the band-gap of the photonic barriers by varying the thickness ratio of the two stacking layers. The number of confined states can be tuned by adjusting the period of the photonic well. The photons traverse the photonic quantum well by resonance tunneling and the coupling effect leads to the high transmission intensity of the confined photonic states.

  19. InGaAsP/InP Nanocavity for Single-Photon Source at 1.55-μm Telecommunication Band

    NASA Astrophysics Data System (ADS)

    Song, Hai-Zhi; Hadi, Mukhtar; Zheng, Yanzhen; Shen, Bizhou; Zhang, Lei; Ren, Zhilei; Gao, Ruoyao; Wang, Zhiming M.

    2017-02-01

    A new structure of 1.55-μm pillar cavity is proposed. Consisting of InP-air-aperture and InGaAsP layers, this cavity can be fabricated by using a monolithic process, which was difficult for previous 1.55-μm pillar cavities. Owing to the air apertures and tapered distributed Bragg reflectors, such a pillar cavity with nanometer-scaled diameters can give a quality factor of 104-105 at 1.55 μm. Capable of weakly and strongly coupling a single quantum dot with an optical mode, this nanocavity could be a prospective candidate for quantum-dot single-photon sources at 1.55-μm telecommunication band.

  20. InGaAsP/InP Nanocavity for Single-Photon Source at 1.55-μm Telecommunication Band.

    PubMed

    Song, Hai-Zhi; Hadi, Mukhtar; Zheng, Yanzhen; Shen, Bizhou; Zhang, Lei; Ren, Zhilei; Gao, Ruoyao; Wang, Zhiming M

    2017-12-01

    A new structure of 1.55-μm pillar cavity is proposed. Consisting of InP-air-aperture and InGaAsP layers, this cavity can be fabricated by using a monolithic process, which was difficult for previous 1.55-μm pillar cavities. Owing to the air apertures and tapered distributed Bragg reflectors, such a pillar cavity with nanometer-scaled diameters can give a quality factor of 10(4)-10(5) at 1.55 μm. Capable of weakly and strongly coupling a single quantum dot with an optical mode, this nanocavity could be a prospective candidate for quantum-dot single-photon sources at 1.55-μm telecommunication band.

  1. Strong interlayer coupling mediated giant two-photon absorption in MoS e2 /graphene oxide heterostructure: Quenching of exciton bands

    NASA Astrophysics Data System (ADS)

    Sharma, Rituraj; Aneesh, J.; Yadav, Rajesh Kumar; Sanda, Suresh; Barik, A. R.; Mishra, Ashish Kumar; Maji, Tuhin Kumar; Karmakar, Debjani; Adarsh, K. V.

    2016-04-01

    A complex few-layer MoS e2 /graphene oxide (GO) heterostructure with strong interlayer coupling was prepared by a facile hydrothermal method. In this strongly coupled heterostructure, we demonstrate a giant enhancement of two-photon absorption that is in stark contrast to the reverse saturable absorption of a weakly coupled MoS e2 /GO heterostructure and saturable absorption of isolated MoS e2 . Spectroscopic evidence of our study indicates that the optical signatures of isolated MoS e2 and GO domains are significantly modified in the heterostructure, displaying a direct coupling of both domains. Furthermore, our first-principles calculations indicate that strong interlayer coupling between the layers dramatically suppresses the MoS e2 excitonic bands. We envision that our findings provide a powerful tool to explore different optical functionalities as a function of interlayer coupling, which may be essential for the development of device technologies.

  2. Photonic frequency-quadrupling and balanced pre-coding technologies for W-band QPSK vector mm-wave signal generation based on a single DML

    NASA Astrophysics Data System (ADS)

    Wang, Yanyi; Yang, Chao; Chi, Nan; Yu, Jianjun

    2016-05-01

    We propose a novel scheme for high-frequency quadrature phase shift keying (QPSK) photonic vector signal generation based on a single directly modulated laser (DML) employing photonic frequency quadrupling and balanced pre-coding technologies. In order to realize frequency quadrupling, a wavelength selective switch (WSS) is intruded in our experiment. The intruded WSS combined with DML can not only realize high-frequency vector signal generation but also simplify the architecture. We experimentally demonstrate 1-or 2-Gbaud QPSK vector signal generation at 88 GHz based on our proposed scheme. The generated 1-Gbaud balanced pre-coded QPSK vector signal is transmitted 0.5-m wireless distance with the bit-error-ratio (BER) below hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3. To our knowledge, this is the first time to demonstrate W-band mm-wave vector signal based on a single DML with quadrupling frequency and pre-coding technologies.

  3. InGaAsP/InP-air-aperture microcavities for single-photon sources at 1.55-μm telecommunication band

    NASA Astrophysics Data System (ADS)

    Guo, Sijie; Zheng, Yanzhen; Weng, Zhuo; Yao, Haicheng; Ju, Yuhao; Zhang, Lei; Ren, Zhilei; Gao, Ruoyao; Wang, Zhiming M.; Song, Hai-Zhi

    2016-11-01

    InGaAsP/InP-air-aperture micropillar cavities are proposed to serve as 1.55-μm single photon sources, which are indispensable in silica-fiber based quantum information processing. Owing to air-apertures introduced to InP layers, and adiabatically tapered distributed Bragg-reflector structures used in the central cavity layers, the pillar diameters can be less than 1 μm, achieving mode volume as small as (λ/n)3, and the quality factors are more than 104 - 105, sufficient to increase the quantum dot emission rate for 100 times and create strong coupling between the optical mode and the 1.55- μm InAs/InP quantum dot emitter. The mode wavelengths and quality factors are found weakly changing with the cavity size and the deviation from the ideal shape, indicating the robustness against the imperfection of the fabrication technique. The fabrication, simply epitaxial growth, dry and chemical etching, is a damage-free and monolithic process, which is advantageous over previous hybrid cavities. The above properties satisfy the requirements of efficient, photonindistinguishable and coherent 1.55-μm quantum dot single photon sources, so the proposed InGaAsP/InP-air-aperture micropillar cavities are prospective candidates for quantum information devices at telecommunication band.

  4. Optical Fabry-Perot filter based on photonic band gap quasi-periodic one-dimensional multilayer according to the definite Rudin-Shapiro distribution

    NASA Astrophysics Data System (ADS)

    Bouazzi, Y.; Kanzari, M.

    2012-06-01

    In this work, a new type of optical filter using photonic band gap materials has been suggested. Indeed, a combination of periodic H(LH)J and Rudin-Shapiro quasi-periodic one-dimensional photonic multilayer systems (RSM) were used. SiO2 (L) and TiO2 (H) were chosen as two elementary layers with refractive indexes nL = 1.45 and nH = 2.30 respectively. The study configuration is H(LH)J[RSM]PH(LH)J, which forms an effective Fabry-Perot filter (FPF), where J and P are respectively the repetition number of periodic and (RSM) stacks. We have numerically investigated by means of transfer-matrix approach the transmission properties in the visible spectral range of FPF system. We show that the number and position of resonator peaks are dependent on the (RSM) repetition number P and incidence angle of exciting light. The effect of these two parameters for producing an improved polychromatic filter with high finesse coefficient (F) and quality factor (Q) is studied in details.

  5. Green photonics

    NASA Astrophysics Data System (ADS)

    Quan, Frederic

    2012-02-01

    Photonics, the broad merger of electronics with the optical sciences, encompasses such a wide swath of technology that its impact is almost universal in our everyday lives. This is a broad overview of some aspects of the industry and their contribution to the ‘green’ or environmental movement. The rationale for energy conservation is briefly discussed and the impact of photonics on our everyday lives and certain industries is described. Some opinions from industry are presented along with market estimates. References are provided to some of the most recent research in these areas.

  6. W-band photonic-wireless link with a Schottky diode envelope detector and bend insensitive fiber.

    PubMed

    Rommel, Simon; Cavalcante, Lucas C P; Quintero, Alexander G; Mishra, Arvind K; Vegas Olmos, J J; Monroy, Idelfonso Tafur

    2016-05-30

    The performance and potential of a W-band radio-over-fiber link is analyzed, including a characterization of the wireless channel. The presented setup focuses on minimizing complexity in the radio frequency domain, using a passive radio frequency transmitter and a Schottky diode based envelope detector. Performance is experimentally validated with carriers at 75-87GHz over wireless distances of 30-70m. Finally the necessity for and impact of bend insensitive fiber for on-site installation are discussed and experimentally investigated.

  7. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    SciTech Connect

    Feng, Liefeng E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda; Yao, Dongsheng; Li, Yang; Li, Ding; Hu, Xiaodong; Li, Hongru E-mail: lihongru@nankai.edu.cn

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u} is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  8. Random quasi-phase-matched conversion of broadband radiation in a nonlinear photonic crystal

    SciTech Connect

    Aleksandrovsky, A. S.; Vyunishev, A. M.; Zaitsev, A. I.; Slabko, V. V.

    2010-11-15

    Radiation in the range 187.5-215 nm was generated via random quasi-phase-matched frequency doubling of femtosecond laser pulses in nonlinear photonic crystals of strontium tetraborate. A broad spectrum of fundamental radiation favors the probing of the nonlinear photonic crystal band structure. The red shift of the band structure upon the fundamental wave-vector rotation was observed. No principal limitations of the tuning range at its shorter wavelength boundary from the nonlinear photonic crystal (NPC) material are found. Calculation shows that the NPC structure enables enhancement of nonlinear generation in the vacuum ultraviolet.

  9. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  10. Source Depths Utilizing Broad Band Data

    DTIC Science & Technology

    1987-03-19

    THIS PAGE UNCLASSIFIED SECURITY CLASSFICATION OF THIS PAGE 19. (continued) state filtered data into radial and transverse horizontal components and...30 Figure 14. Vertical, radial , and tran se components of motion for the August 31, 1982, Adirondack earthquake as recorded at station RSNY...kin) . ............................................................................ 34 Figure 17. Vertical, radial , and transverse components of

  11. Noise in Broad-Band Hydrophones

    DTIC Science & Technology

    1975-05-01

    accolertion and pressure in water A• / , ILLUS’.RATIONrs (coat 1d ) 22 Aaplifiar and titrisi nOise backgnnumd JMT 1 BUTION’ . ... . .. t. .* .*. . *. . *** o. o...Then, Z (fros equation (49c)) W 2 1 S2 2n,- - 2(69)QU 2ni(69 This appriisate relationship has boon used in the following ezW , even wtare the element is

  12. Functional Electronic Amplifiers with Broad Dynamic Band,

    DTIC Science & Technology

    1983-09-27

    dynamic properties of amplifiers, assembled on this type of amplifier instruments, it is expedient to introduce the concept of the dynamic quality...qjvL> ql. 3. Amplifier has data: K" =K’/m; , vus,, q -q4cujvv.4 in Fig. 1). Functional amplifier is assembled on the block diagram Fig. 2b. It has...following data: K-mr’ vv;m-v-mvv’-" qpYmq j° ey" As can be seen from the given examples, dynamic quality of FU, assembled on the identical amplifier

  13. Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit.

    PubMed

    Zhuang, Leimeng; Zhu, Chen; Corcoran, Bill; Burla, Maurizio; Roeloffzen, Chris G H; Leinse, Arne; Schröder, Jochen; Lowery, Arthur J

    2016-03-21

    Modern optical communications rely on high-resolution, high-bandwidth filtering to maximize the data-carrying capacity of fiber-optic networks. Such filtering typically requires high-speed, power-hungry digital processes in the electrical domain. Passive optical filters currently provide high bandwidths with low power consumption, but at the expense of resolution. Here, we present a passive filter chip that functions as an optical Nyquist-filtering interleaver featuring sub-GHz resolution and a near-rectangular passband with 8% roll-off. This performance is highly promising for high-spectral-efficiency Nyquist wavelength division multiplexed (N-WDM) optical super-channels. The chip provides a simple two-ring-resonator-assisted Mach-Zehnder interferometer, which has a sub-cm2 footprint owing to the high-index-contrast Si3N4/SiO2 waveguide, while manifests low wavelength-dependency enabling C-band (> 4 THz) coverage with more than 160 effective free spectral ranges of 25 GHz. This device is anticipated to be a critical building block for spectrally-efficient, chip-scale transceivers and ROADMs for N-WDM super-channels in next-generation optical communication networks.

  14. Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms

    NASA Astrophysics Data System (ADS)

    Saitoh, Kunimasa; Florous, Nikolaos J.; Murao, Tadashi; Koshiba, Masanori

    2006-08-01

    The objective of the present investigation is to propose and theoretically demonstrate the effective suppression of higher-order modes in large-hollow-core photonic band gap fibers (PBGFs), mainly for low-loss data transmission platforms and/or high power delivery systems. The proposed design strategy is based on the index-matching mechanism of central air-core modes with defected outer core modes. By incorporating several air-cores in the cladding of the PBGF with 6-fold symmetry it is possible to resonantly couple the light corresponding to higher-order modes into the outer core, thus significantly increasing the leakage losses of the higher-order modes in comparison to the fundamental mode, thus making our proposed design to operate in an effectively single mode fashion with polarization independent propagation characteristics. The validation of the procedure is ensured with a detailed PBGF analysis based on an accurate finite element modal solver. Extensive numerical results show that the leakage losses of the higher-order modes can be enhanced in a level of at least 2 orders of magnitude in comparison to those of the fundamental mode. Our investigation is expected to remove an essential obstacle in the development of large-core single-mode hollow-core fibers, thus enabling them to surpass the attenuation of conventional fibers.

  15. Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms.

    PubMed

    Saitoh, Kunimasa; Florous, Nikolaos J; Murao, Tadashi; Koshiba, Masanori

    2006-08-07

    The objective of the present investigation is to propose and theoretically demonstrate the effective suppression of higher-order modes in large-hollow-core photonic band gap fibers (PBGFs), mainly for low-loss data transmission platforms and/or high power delivery systems. The proposed design strategy is based on the index-matching mechanism of central air-core modes with defected outer core modes. By incorporating several air-cores in the cladding of the PBGF with 6-fold symmetry it is possible to resonantly couple the light corresponding to higher-order modes into the outer core, thus significantly increasing the leakage losses of the higher-order modes in comparison to the fundamental mode, thus making our proposed design to operate in an effectively single mode fashion with polarization independent propagation characteristics. The validation of the procedure is ensured with a detailed PBGF analysis based on an accurate finite element modal solver. Extensive numerical results show that the leakage losses of the higher-order modes can be enhanced in a level of at least 2 orders of magnitude in comparison to those of the fundamental mode. Our investigation is expected to remove an essential obstacle in the development of large-core single-mode hollow-core fibers, thus enabling them to surpass the attenuation of conventional fibers.

  16. Design of single-polarization coupler based on dual-core photonic band-gap fiber implied in resonant fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Xu, Zhenlong; Li, Xuyou; Zhang, Chunmei; Ling, Weiwei; Liu, Pan; Xia, Linlin; Yang, Hanrui

    2016-12-01

    A novel (to our knowledge) type of single-polarization (SP) coupler based on a dual-core photonic band-gap fiber (PBF) is proposed. The effects of structure parameters on the performance of this coupler are studied numerically based on the full vector finite element method (FEM). Finally, an optimal design with a length of 0.377 mm at the wavelength of 1.55 μm is achieved, and its implication in PBF-based fiber ring resonator (FRR), the effect of angular misalignment on the SP coupler are analyzed as well. When the SP coupler is incorporated into a PBF-based FRR, it functions as the power splitter and the polarizer simultaneously, and can extinct the secondary eigenstate of polarization (ESOP) propagating in the FRR. The mode field of SP coupler can match with the polarization-maintaining (PM) PBF with ultra-low temperature sensitivity proposed in previous study, and an all PM-PBF based FRR can be established, which is of great significance in suppressing the temperature-related polarization fluctuation and improving the long-term stability for RFOG, and the SP coupler has high angular misalignment tolerance as well.

  17. Modeling of optical wireless scattering communication channels over broad spectra.

    PubMed

    Liu, Weihao; Zou, Difan; Xu, Zhengyuan

    2015-03-01

    The air molecules and suspended aerosols help to build non-line-of-sight (NLOS) optical scattering communication links using carriers from near infrared to visible light and ultraviolet bands. This paper proposes channel models over such broad spectra. Wavelength dependent Rayleigh and Mie scattering and absorption coefficients of particles are analytically obtained first. They are applied to the ray tracing based Monte Carlo method, which models the photon scattering angle from the scatterer and propagation distance between two consecutive scatterers. Communication link path loss is studied under different operation conditions, including visibility, particle density, wavelength, and communication range. It is observed that optimum communication performances exist across the wavelength under specific atmospheric conditions. Infrared, visible light and ultraviolet bands show their respective features as conditions vary.

  18. Pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} on amorphous dielectric layers towards monolithic 3D photonic integration

    SciTech Connect

    Li, Haofeng; Brouillet, Jeremy; Wang, Xiaoxin; Liu, Jifeng

    2014-11-17

    We demonstrate pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} crystallized on amorphous layers at <450 °C towards 3D Si photonic integration. We developed two approaches to seed the lateral single crystal growth: (1) utilize the Gibbs-Thomson eutectic temperature depression at the tip of an amorphous GeSn nanotaper for selective nucleation; (2) laser-induced nucleation at one end of a GeSn strip. Either way, the crystallized Ge{sub 0.89}Sn{sub 0.11} is dominated by a single grain >18 μm long that forms optoelectronically benign twin boundaries with others grains. These pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} patterns are suitable for monolithic 3D integration of active photonic devices on Si.

  19. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs.

    PubMed

    Williamson, Ian A D; Mousavi, S Hossein; Wang, Zheng

    2016-05-04

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene's large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude.

  20. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    PubMed Central

    Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng

    2016-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314

  1. Tectonic and Kinematic Regime along the Northern Caribbean Plate Boundary: New Insights from Broad-band Modeling of the May 25, 1992, Ms = 6.9 Cabo Cruz, Cuba, Earthquake

    NASA Astrophysics Data System (ADS)

    Perrot, J.; Calais, E.; Mercier de Lépinay, B.

    On May 25th, 1992, an Ms = 6.9 earthquake occurred off the southwestern tip of Cuba, along the boundary between the Caribbean and North American plates. This earthquake was the largest to strike southern Cuba since 1917 and the largest ever recorded in that region by global seismic networks. It is therefore a key element for our understanding of the tectonic and kinematic regime along the northern Caribbean plate boundary. In order to test the previously proposed source parameters of the Cabo Cruz earthquake and to better constrain its focal mechanism, we derived a new set of source parameters from unfiltered broad-band teleseismic records. We used a hybrid ray tracing method that allows us to take into account propagation effects of seismic waves in a realistic crustal model around the source. Our solution is consistent with the long-period focal mechanism solution of Virieux et al. (1992). Our solution also models the higher frequency crustal and water layer phases. The primarily strike-slip focal mechanism has a small thrust component. Its shows an east-west trending nodal plane dipping 55° to the north that we interpret as the rupture plane since it corresponds to the geometry of the major active fault in that area. The displacement on this plane is a left-lateral strike-slip combined with a small amount of southward thrust. The result is in good agreement with the active tectonic structures observed along the Oriente fault south of Cuba. The small thrust component demonstrates that, contrary to prior belief, the transpressive regime extends along this whole segment of the Caribbean/North American plate boundary. Together with historical seismicity, it suggests that most of the stress accumulated by the Caribbean/North American plate motion is released seismically along the southern Cuban margin during relatively few but large earthquakes.

  2. Broad-band spectroscopy of the transient X-ray binary pulsar KS 1947+300 during 2013 giant outburst: Detection of pulsating soft X-ray excess component

    NASA Astrophysics Data System (ADS)

    Epili, Prahlad; Naik, Sachindra; Jaisawal, Gaurava K.

    2016-05-01

    We present the results obtained from detailed timing and spectral studies of the Be/X-ray binary pulsar KS 1947+300 during its 2013 giant outburst. We used data from Suzaku observations of the pulsar at two epochs, i.e. on 2013 October 22 (close to the peak of the outburst) and 2013 November 22. X-ray pulsations at ˜18.81 s were clearly detected in the light curves obtained from both observations. Pulse periods estimated during the outburst showed that the pulsar was spinning up. The pulse profile was found to be single-peaked up to ˜10 keV beyond which a sharp peak followed by a dip-like feature appeared at hard X-rays. The dip-like feature has been observed up to ˜70 keV. The 1-110 keV broad-band spectroscopy of both observations revealed that the best-fit model was comprised of a partially absorbed Negative and Positive power law with EXponential cutoff (NPEX) continuum model along with a blackbody component for the soft X-ray excess and two Gaussian functions at 6.4 and 6.7 keV for emission lines. Both the lines were identified as emission from neutral and He-like iron atoms. To fit the spectra, we included the previously reported cyclotron absorption line at 12.2 keV. From the spin-up rate, the magnetic field of the pulsar was estimated to be ˜1.2×1012 G and found to be comparable to that obtained from the detection of the cyclotron absorption feature. Pulse-phase resolved spectroscopy revealed the pulsating nature of the soft X-ray excess component in phase with the continuum flux. This confirms that the accretion column and/or accretion stream are the most probable regions of the soft X-ray excess emission in KS1947+300. The presence of the pulsating soft X-ray excess in phase with continuum emission may be the possible reason for not observing the dip at soft X-rays.

  3. Photonic Bandgaps in Photonic Molecules

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This talk will focus on photonic bandgaps that arise due to nearly free photon and tight-binding effects in coupled microparticle and ring-resonator systems. The Mie formulation for homogeneous spheres is generalized to handle core/shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multi-layered structures to be treated as photonic bandgap (PBG) materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands arising from nearly free photon effects are easily observed in the backscattering, asymmetry parameter, and albedo for periodic quarter-wave concentric layers, though are not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, enhancing the ratio of backscattering to forward scattering inside the bandgap, in direct analogy with planar quarter-wave multilayers. PBGs arising from tight-binding may also be observed when the layers (or rings) are designed such that the coupling between them is weak. We demonstrate that for a structure consisting of N coupled micro-resonators, the morphology dependent resonances split into N higher-Q modes, in direct analogy with other types of oscillators, and that this splitting ultimately results in PBGs which can lead to enhanced nonlinear optical effects.

  4. High-Efficiency Solar Cells Using Photonic-Bandgap Materials

    NASA Technical Reports Server (NTRS)

    Dowling, Jonathan; Lee, Hwang

    2005-01-01

    Solar photovoltaic cells would be designed to exploit photonic-bandgap (PBG) materials to enhance their energy-conversion efficiencies, according to a proposal. Whereas the energy-conversion efficiencies of currently available solar cells are typically less than 30 percent, it has been estimated that the energy-conversion efficiencies of the proposed cells could be about 50 percent or possibly even greater. The primary source of inefficiency of a currently available solar cell is the mismatch between the narrow wavelength band associated with the semiconductor energy gap (the bandgap) and the broad wavelength band of solar radiation. This mismatch results in loss of power from both (1) long-wavelength photons, defined here as photons that do not have enough energy to excite electron-hole pairs across the bandgap, and (2) short-wavelength photons, defined here as photons that excite electron- hole pairs with energies much above the bandgap. It follows that a large increase in efficiency could be obtained if a large portion of the incident solar energy could be funneled into a narrow wavelength band corresponding to the bandgap. In the proposed approach, such funneling would be effected by use of PBG materials as intermediaries between the Sun and photovoltaic cells.

  5. Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity

    SciTech Connect

    Albrecht, Roland; Bommer, Alexander; Becher, Christoph; Pauly, Christoph; Mücklich, Frank; Schell, Andreas W.; Engel, Philip; Benson, Oliver; Schröder, Tim; Reichel, Jakob

    2014-08-18

    We report the realization of a device based on a single Nitrogen-Vacancy (NV) center in diamond coupled to a fiber-cavity for use as single photon source (SPS). The device consists of two concave mirrors each directly fabricated on the facets of two optical fibers and a preselected nanodiamond containing a single NV center deposited onto one of these mirrors. Both, cavity in- and out-put are directly fiber-coupled, and the emission wavelength is easily tunable by variation of the separation of the two mirrors with a piezo-electric crystal. By coupling to the cavity, we achieve an increase of the spectral photon rate density by two orders of magnitude compared to free-space emission of the NV center. With this work, we establish a simple all-fiber based SPS with promising prospects for the integration into photonic quantum networks.

  6. Broad-Spectrum Solution-Processed Photovoltaics

    NASA Astrophysics Data System (ADS)

    Ip, Alexander Halley

    High global demand for energy coupled with dwindling fossil fuel supply has driven the development of sustainable energy sources such as solar photovoltaics. Emerging solar technologies aim for low-cost, solution-processable materials which would allow wide deployment. Colloidal quantum dots (CQDs) are such a materials system which exhibits the ability to absorb across the entire solar spectrum, including in the infrared where many technologies cannot harvest photons. However, due to their nanocrystalline nature, CQDs are susceptible to surface-associated electronic traps which greatly inhibit performance. In this thesis, surface engineering of CQDs is presented through a combined ligand approach which improves the passivation of surface trap states. A metal halide treatment is found to passivate quantum dot surfaces in solution, while bifunctional organic ligands produce a dense film in solid state. This approach reduced midgap trap states fivefold compared with conventional passivation strategies and led to solar cells with a record certified 7.0% power conversion efficiency. The effect of this process on the electronic structure is studied through photoelectron spectroscopy. It is found that while the halide provides deep trap passivation, the nature of the metal cation on the CQD surface affects the density of band tail states. This effect is explored further through a wide survey of materials, and it is found that the coordination ability of the metal cation is responsible for the suppression of shallow traps. With this understanding of CQD surface passivation, broad spectral usage is then explored through a study of visible-absorbing organolead halide perovskite materials as well as narrow-bandgap CQD solar cells. Control over growth conditions and modification of electrode interfaces resulted in efficient perovskite devices with effective usages of visible photons. For infrared-absorbing CQDs, it is found that, in addition to providing surface trap

  7. Microresonator and associated method for producing and controlling photonic signals with a photonic bandgap delay apparatus

    NASA Technical Reports Server (NTRS)

    Fork, Richard Lynn (Inventor); Jones, Darryl Keith (Inventor); Keys, Andrew Scott (Inventor)

    2000-01-01

    By applying a photonic signal to a microresonator that includes a photonic bandgap delay apparatus having a photonic band edge transmission resonance at the frequency of the photonic signal, the microresonator imparts a predetermined delay to the photonic signal. The photonic bandgap delay apparatus also preferably has a photonic band edge transmission resonance bandwidth which is at least as wide as the bandwidth of the photonic signal such that a uniform delay is imparted over the entire bandwidth of the photonic signal. The microresonator also includes a microresonator cavity, typically defined by a pair of switchable mirrors, within which the photonic bandgap delay apparatus is disposed. By requiring the photonic signal to oscillate within the microresonator cavity so as to pass through the photonic bandgap delay apparatus several times, the microresonator can controllably impart an adjustable delay to the photonic signal.

  8. EL2 deep level defects and above-band gap two-photon absorption in high gain lateral semi-insulating GaAs photoconductive switch

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wang, Wei; Niu, Hongjian; Zhang, Xianbin; Ji, Weili

    2005-01-01

    Experiments of a lateral semi-insulating GaAs photoconductive switch, both linear and nonlinear mode of the switch were observed when the switch was triggered by 1064 nm laser pulses, with energy of 1.9 mJ and the pulse width of 60 ns, and operated at biased electric field of 4.37 kV/cm. It"s wavelength is longer than 876nm, but the experiments indicate that the semi-insulating GaAs photoconductive switches can absorb 1064 nm laser obviously, which is out of the absorption range of the GaAs material. It is not possible to explain this behavior by using intrinsic absorption mechanism. We think that there are two mostly kinds of absorption mechanisms play a key part in absorption process, they are the two-steps-single-photon absorption that based on the EL2 energy level and two-photon absorption.

  9. Photoresponse beyond the red border of the internal photoeffect: designing problems of photon counting schemes in 10μm band

    NASA Astrophysics Data System (ADS)

    Dresvyannikov, Maxim A.; Karuzskii, Aleksandr L.; Perestoronin, Anatoly V.; Tskhovrebov, Andrey M.; Zherikhina, Larisa N.

    2014-12-01

    In the context of all-weather tracking distant cosmic objects issues, six original schemes of detecting far-infrared radiation are presented here, which approach in their sensitivity to the level that allows their use in photon counting mode. The first one is a modernized version of the Up-converter (with the placement of nonlinear crystal/mixer inside of resonator in a single laser unit) for the transfer of far-infrared photons in the visible range, where the photon counting is possible via PMT or APD. The second scheme of registration far IR is based on the forward bias LED at a current, which is still not enough for the generation of radiation. The experiments allowed to observe photoresponse of such a system for the red border of the internal photoelectric effect. The following three schemes are cryogenic. And the last one is an Up-converter, where instead of the classical mixing on nonlinear crystal is used quantum effect of releasing energy metastable state under the influence of the far-infrared radiation quanta.

  10. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B.; Knott, W. M. (Principal Investigator)

    1993-01-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  11. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  12. The two-photon absorptivity of rotational transitions in the A2 Sigma hyperon + (v prime = O) - X-2 pion (v prime prime = O) gamma band of nitric oxide

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1982-01-01

    A predominantly single-mode pulsed dye laser system giving a well characterized spatial and temporal output suitable for absolute two-photon absorptivity measurements was used to study the NO gamma(0,0) S11 + R21 (J double prime = 7-1/2) transition. Using a calibrated induced-fluorescence technique, an absorptivity parameter of 2.8 + or - 1.4 x 10 to the minus 51st power cm to the 6th power was obtained. Relative strengths of other rotational transitions in the gamma(0,0) band were also measured and shown to compare well with predicted values in all cases except the O12 (J double prime = 10-1/2) transition.

  13. Photonic crystals, amorphous materials, and quasicrystals

    PubMed Central

    Edagawa, Keiichi

    2014-01-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states. PMID:27877676

  14. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  15. Production and testing of the VITAMIN-B6 fine-group and the BUGLE-93 broad-group neutron/photon cross-section libraries derived from ENDF/B-VI nuclear data

    SciTech Connect

    Ingersoll, D.T.; White, J.E.; Wright, R.Q.; Hunter, H.T.; Slater, C.O.; Greene, N.M.; MacFarlane, R.E.

    1993-11-01

    A new multigroup cross-section library based on ENDF/B-VI data has been produced and tested for light water reactor shielding and reactor pressure vessel dosimetry applications. The broad-group library is designated BUGLE-93. The processing methodology is consistent with ANSI/ANS 6.1.2, since the ENDF data were first processed into a fine-group, ``pseudo problem-independent`` format and then collapsed into the final broad-group format. The fine-group library is designated VITAMIN-B6. An extensive integral data testing effort was also performed. In general, results using the new data show significant improvements relative to earlier ENDF data.

  16. X-band continuously variable true-time delay lines using air-guiding photonic bandgap fibers and a broadband light source.

    PubMed

    Liu, Zhigang; Zheng, Xiaoping; Zhang, Hanyi; Guo, Yili; Zhou, Binggun

    2006-09-15

    We propose a novel implementation of true-time delay (TTD) using air-guiding photonic bandgap fibers (PBGFs) and a broadband light source. The air-guiding PBGFs are experimentally studied and used in the TTD module for the first time, to the best of our knowledge. The proposed approach shows the advantages of simple architecture, compact size, larger dispersion, low-temperature sensitivity, and high immunity to nonlinear effects in our experiments. The PBGFs were spliced with single-mode fibers with a 2 dB loss, and the characteristics of the PBGFs were measured. The PBGF-TTD with a continuously tunable time delays from 0 to 500 ps was demonstrated using the amplified spontaneous emission light of an erbium-doped filter amplifier as a broadband light source.

  17. Engineering band structure in nanoscale quantum-dot supercrystals.

    PubMed

    Baimuratov, Anvar S; Rukhlenko, Ivan D; Fedorov, Anatoly V

    2013-07-01

    Supercrystals made of periodically arranged semiconductor quantum dots (QDs) are promising structures for nanophotonics applications due to almost unlimited degrees of freedom enabling fine tuning of their optical responses. Here we demonstrate broad engineering opportunities associated with the possibility of tailoring the energy bands of excitons in two-dimensional quantum-dot supercrystals through the alteration in the QD arrangement. These opportunities offer an unprecedented control over the optical properties of the supercrystals, which may be used as a versatile material base for advanced photonics devices on the nanoscale.

  18. A photonic-crystal optical antenna for extremely large local-field enhancement.

    PubMed

    Chang, Hyun-Joo; Kim, Se-Heon; Lee, Yong-Hee; Kartalov, Emil P; Scherer, Axel

    2010-11-08

    We propose a novel design of an all-dielectric optical antenna based on photonic-band-gap confinement. Specifically, we have engineered the photonic-crystal dipole mode to have broad spectral response (Q~70) and well-directed vertical-radiation by introducing a plane mirror below the cavity. Considerably large local electric-field intensity enhancement~4,500 is expected from the proposed design for a normally incident planewave. Furthermore, an analytic model developed based on coupled-mode theory predicts that the electric-field intensity enhancement can easily be over 100,000 by employing reasonably high-Q (~10,000) resonators.

  19. The 2010 Broad Prize

    ERIC Educational Resources Information Center

    Education Digest: Essential Readings Condensed for Quick Review, 2011

    2011-01-01

    A new data analysis, based on data collected as part of The Broad Prize process, provides insights into which large urban school districts in the United States are doing the best job of educating traditionally disadvantaged groups: African-American, Hispanics, and low-income students. Since 2002, The Eli and Edythe Broad Foundation has awarded The…

  20. The Broad Way

    ERIC Educational Resources Information Center

    Butler, Kevin

    2008-01-01

    In the world of corporate philanthropy, there are those who give to educational causes, and this article describes one such philanthropist, Eli Broad, who shares his take on schools in America. Broad is in a category unto himself not only because of the amount of money he has given--more than $280 million since 1999--but also for his unique…