Sample records for broad beam facility

  1. Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharrati, Hedi; Agrebi, Amel; Karaoui, Mohamed-Karim

    2007-04-15

    X-ray buildup factors of lead in broad beam geometry for energies from 15 to 150 keV are determined using the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C). The obtained buildup factors data are fitted to a modified three parameter Archer et al. model for ease in calculating the broad beam transmission with computer at any tube potentials/filters combinations in diagnostic energies range. An example for their use to compute the broad beam transmission at 70, 100, 120, and 140 kVp is given. The calculated broad beam transmission is compared to data derived from literature, presenting good agreement.more » Therefore, the combination of the buildup factors data as determined and a mathematical model to generate x-ray spectra provide a computationally based solution to broad beam transmission for lead barriers in shielding x-ray facilities.« less

  2. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities.

    PubMed

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-10-01

    A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  3. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-10-15

    Purpose: A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Methods: Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. Results: An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenthmore » value layer are calculated from the broad beam transmission for these tube potentials. Conclusions: The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.« less

  4. Broad beam transmission properties of some common shielding materials for use in diagnostic radiology.

    PubMed

    Rossi, R P; Ritenour, R; Christodoulou, E

    1991-11-01

    Broad beam geometry was used to measure the x-ray transmission properties of gypsum wallboard, steel, plate glass, and concrete for x-ray tube potentials of 50-125 kVp using an x-ray generator having a three-phase, twelve-pulse waveform and total initial beam filtration sufficient to provide half-value layers representative of those found in common practice and required by regulatory agencies. Measurement results are presented graphically and as numerical fits to a mathematical model of broad beam transmission to permit their use in the design of protective barriers for medical diagnostic x-ray facilities.

  5. Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei

    NASA Astrophysics Data System (ADS)

    Wiescher, Michael

    2018-06-01

    Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.

  6. Formation of a uniform ion beam using octupole magnets for BioLEIR facility at CERN

    NASA Astrophysics Data System (ADS)

    Amin, T.; Barlow, R.; Ghithan, S.; Roy, G.; Schuh, S.

    2018-04-01

    The possibility to transform the Low Energy Ion Ring (LEIR) accelerator at CERN into a multidisciplinary, biomedical research facility (BioLEIR) was investigated based on a request from the biomedical community. BioLEIR aims to provide a unique facility with a range of fully stripped ion beams (e.g. He, Li, Be, B, C, N, O) and energies suitable for multidisciplinary biomedical, clinically-oriented research. Two horizontal and one vertical beam transport lines have been designed for transporting the extracted beam from LEIR to three experimental end-stations. The vertical beamline was designed for a maximum energy of 75 MeV/u, while the two horizontal beamlines shall deliver up to a maximum energy of 440 MeV/u. A pencil beam of 4.3 mm FWHM (Full Width Half Maximum) as well as a homogeneous broad beam of 40 × 40 mm2, with a beam homogeneity better than ±4%, are available at the first horizontal (H1) irradiation point, while only a pencil beam is available at the second horizontal (H2) and vertical (V) irradiation points. The H1 irradiation point shall be used to conduct systematic studies of the radiation effect from different ion species on cell-lines. The H1 beamline was designed to utilize two octupole magnets which transform the Gaussian beam distribution at the target location into an approximately uniformly distributed rectangular beam. In this paper, we report on the multi-particle tracking calculations performed using MAD-X software suite for the H1 beam optics to arrive at a homogeneous broad beam on target using nonlinear focusing techniques, and on those to create a Gaussian pencil beam on target by adjusting quadrupoles strengths and positions.

  7. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, M.; Edwards, H.; Harms, E.

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP mission of Accelerator Stewardship.« less

  8. Characterization and application of a broad bandwidth oscillator for the HELEN laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew, J.E.; Stevenson, R.M.; Bett, T.H.

    1995-12-31

    Preliminary investigations of a potential broad band oscillator for the HELEN laser facility and its proposed upgrade are described. The reasons for the need of broad bandwidth and the choice of commercial technology to achieve it are discussed. The characterization of the device and the diagnostics used for the investigations are described. Small signal amplification of the bandwidth by a glass amplifier was also performed along with investigations of the effect of various bandwidths on the far field beam quality when using random phase plates.

  9. Towards ion beam therapy based on laser plasma accelerators.

    PubMed

    Karsch, Leonhard; Beyreuther, Elke; Enghardt, Wolfgang; Gotz, Malte; Masood, Umar; Schramm, Ulrich; Zeil, Karl; Pawelke, Jörg

    2017-11-01

    Only few ten radiotherapy facilities worldwide provide ion beams, in spite of their physical advantage of better achievable tumor conformity of the dose compared to conventional photon beams. Since, mainly the large size and high costs hinder their wider spread, great efforts are ongoing to develop more compact ion therapy facilities. One promising approach for smaller facilities is the acceleration of ions on micrometre scale by high intensity lasers. Laser accelerators deliver pulsed beams with a low pulse repetition rate, but a high number of ions per pulse, broad energy spectra and high divergences. A clinical use of a laser based ion beam facility requires not only a laser accelerator providing beams of therapeutic quality, but also new approaches for beam transport, dosimetric control and tumor conformal dose delivery procedure together with the knowledge of the radiobiological effectiveness of laser-driven beams. Over the last decade research was mainly focused on protons and progress was achieved in all important challenges. Although currently the maximum proton energy is not yet high enough for patient irradiation, suggestions and solutions have been reported for compact beam transport and dose delivery procedures, respectively, as well as for precise dosimetric control. Radiobiological in vitro and in vivo studies show no indications of an altered biological effectiveness of laser-driven beams. Laser based facilities will hardly improve the availability of ion beams for patient treatment in the next decade. Nevertheless, there are possibilities for a need of laser based therapy facilities in future.

  10. Preparing for Harvesting Radioisotopes from FRIB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peaslee, Graham F.; Lapi, Suzanne E.

    2015-02-02

    The Facility for Rare Isotope Beams (FRIB) is the next generation accelerator facility under construction at Michigan State University. FRIB will produce a wide variety of rare isotopes by a process called projectile fragmentation for a broad range of new experiments when it comes online in 2020. The accelerated rare isotope beams produced in this facility will be more intense than any current facility in the world - in many cases by more than 1000-fold. These beams will be available to the primary users of FRIB in order to do exciting new fundamental research with accelerated heavy ions. In themore » standard mode of operation, this will mean one radioisotope will be selected at a time for the user. However, the projectile fragmentation process also yields hundreds of other radioisotopes at these bombarding energies, and many of these rare isotopes are long-lived and could have practical applications in medicine, national security or the environment. This project developed new methods to collect these long-lived rare isotopes that are by-products of the standard FRIB operation. These isotopes are important to many areas of research, thus this project will have a broad impact in several scientific areas including medicine, environment and homeland security.« less

  11. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.

  12. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.

    PubMed

    Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J

    2017-07-07

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.

  13. Development and Commissioning of an External Beam Facility in the Union College Ion Beam Analysis Laboratory

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Clark, Morgan; Labrake, Scott; Vineyard, Michael

    2015-10-01

    We have developed an external beam facility for the 1.1-MV tandem Pelletron accelerator in the Union College Ion Beam Analysis Laboratory. The beam is extracted from an aluminum pipe through a 1 / 4 ' ' diameter window with a 7.5- μm thick Kapton foil. This external beam facility allows us to perform ion beam analysis on samples that cannot be put under vacuum, including wet samples and samples too large to fit into the scattering chamber. We have commissioned the new facility by performing proton induced X-ray emission (PIXE) analysis of several samples of environmental interest. These include samples of artificial turf, running tracks, and a human tooth with an amalgam filling. A 1.7-MeV external proton beam was incident on the samples positioned 2 cm from the window. The resulting X-rays were measured using a silicon drift detector and were analyzed using GUPIX software to determine the concentrations of elements in the samples. The results on the human tooth indicate that while significant concentrations of Hg, Ag, and Sn are present in the amalgam filling, only trace amounts of Hg appear to have leached into the tooth. The artificial turf and running tracks show rather large concentrations of a broad range of elements and trace amounts of Pb in the turf infill.

  14. Sandia QIS Capabilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Richard P.

    2017-07-01

    Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.

  15. NSCL and FRIB at Michigan State University: Nuclear science at the limits of stability

    NASA Astrophysics Data System (ADS)

    Gade, A.; Sherrill, B. M.

    2016-05-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) is a scientific user facility that offers beams of rare isotopes at a wide range of energies. This article describes the facility, its capabilities, and some of the experimental devices used to conduct research with rare isotopes. The versatile nuclear science program carried out by researchers at NSCL continues to address the broad challenges of the field, employing sensitive experimental techniques that have been developed and optimized for measurements with rare isotopes produced by in-flight separation. Selected examples showcase the broad program, capabilities, and the relevance for forefront science questions in nuclear physics, addressing, for example, the limits of nuclear existence; the nature of the nuclear force; the origin of the elements in the cosmos; the processes that fuel explosive scenarios in the Universe; and tests for physics beyond the standard model of particle physics. NSCL will cease operations in approximately 2021. The future program will be carried out at the Facility for Rare Isotope Beams, FRIB, presently under construction on the MSU campus adjacent to NSCL. FRIB will provide fast, stopped, and reaccelerated beams of rare isotopes at intensities exceeding NSCL’s capabilities by three orders of magnitude. An outlook will be provided on the enormous opportunities that will arise upon completion of FRIB in the early 2020s.

  16. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.

    PubMed

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Jung, Wongyun; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2017-07-01

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Design study of beam transport lines for BioLEIR facility at CERN

    NASA Astrophysics Data System (ADS)

    Ghithan, S.; Roy, G.; Schuh, S.

    2017-09-01

    The biomedical community has asked CERN to investigate the possibility to transform the Low Energy Ion Ring (LEIR) accelerator into a multidisciplinary, biomedical research facility (BioLEIR) that could provide ample, high-quality beams of a range of light ions suitable for clinically oriented, fundamental research on cell cultures and for radiation instrumentation development. The present LEIR machine uses fast beam extraction to the next accelerator in the chain, eventually leading to the Large Hadron Collider (LHC) . To provide beam for a biomedical research facility, a new slow extraction system must be installed. Two horizontal and one vertical experimental beamlines were designed for transporting the extracted beam to three experimental end-stations. The vertical beamline (pencil beam) was designed for a maximum energy of 75 MeV/u for low-energy radiobiological research, while the two horizontal beamlines could deliver up to 440 MeV/u. One horizontal beamline shall be used preferentially for biomedical experiments and shall provide pencil beam and a homogeneous broad beam, covering an area of 5 × 5 cm2 with a beam homogeneity of ±5%. The second horizontal beamline will have pencil beam only and is intended for hardware developments in the fields of (micro-)dosimetry and detector development. The minimum full aperture of the beamlines is approximately 100 mm at all magnetic elements, to accommodate the expected beam envelopes. Seven dipoles and twenty quadrupoles are needed for a total of 65 m of beamlines to provide the specified beams. In this paper we present the optical design for the three beamlines.

  18. SPES and the neutron facilities at Laboratori Nazionali di Legnaro

    NASA Astrophysics Data System (ADS)

    Silvestrin, L.; Bisello, D.; Esposito, J.; Mastinu, P.; Prete, G.; Wyss, J.

    2016-03-01

    The SPES Radioactive Ion Beam (RIB) facility, now in the construction phase at INFN-LNL, has the aim to provide high-intensity and high-quality beams of neutron-rich nuclei for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam. The SPES system is based on a dual-exit high-current cyclotron, with tunable proton beam energy 35-70MeV and 0.20-0.75mA. The first exit is used as proton driver to supply an ISOL system with an UCx Direct Target able to sustain a power of 10kW. The expected fission rate in the target is of the order of 10^{13} fissions per second. The exotic isotopes will be re-accelerated by the ALPI superconducting LINAC at energies of 10 A MeV and higher, for masses around A=130 amu, with an expected beam intensity of 10^7 - 10^9 pps. The second exit will be used for applied physics: radioisotope production for medicine and neutrons for material studies. Fast neutron spectra will be produced by the proton beam interaction with a conversion target. A production rate in excess of 10^{14} n/s can be achieved: this opens up the prospect of a high-flux neutron irradiation facility (NEPIR) to produce both discrete and continuous energy neutrons. A direct proton beam line is also envisaged. NEPIR and the direct proton line would dramatically increase the wide range of irradiation facilities presently available at LNL. We also present LENOS, a proposed project dedicated to accurate neutron cross-sections measurements using intense, well-characterized, broad energy neutron beams. Other activities already in operation at LNL are briefly reviewed: the SIRAD facility for proton and heavy-ion irradiation at the TANDEM-ALPI accelerator and the BELINA test facility at CN van de Graaff accelerator.

  19. Transmission of broad W/Rh and W/Al (target/filter) x-ray beams operated at 25-49 kVp through common shielding materials.

    PubMed

    Li, Xinhua; Zhang, Da; Liu, Bob

    2012-07-01

    To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-μm Rh and 700-μm Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV, including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10(-5) for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of α, β, and γ in Archer equation were provided. The α values of kVp ≥ 40 were approximately consistent with those of NCRP Report No. 147. These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.

  20. Backscatter spectra measurements of the two beams on the same cone on Shenguang-III laser facility

    NASA Astrophysics Data System (ADS)

    Zha, Weiyi; Yang, Dong; Xu, Tao; Liu, Yonggang; Wang, Feng; Peng, Xiaoshi; Li, Yulong; Wei, Huiyue; Liu, Xiangming; Mei, Yu; Yan, Yadong; He, Junhua; Li, Zhichao; Li, Sanwei; Jiang, Xiaohua; Guo, Liang; Xie, Xufei; Pan, Kaiqiang; Liu, Shenye; Jiang, Shaoen; Zhang, Baohan; Ding, Yongkun

    2018-01-01

    In laser driven hohlraums, laser beams on the same incident cone may have different beam and plasma conditions, causing beam-to-beam backscatter difference and subsequent azimuthal variations in the x-ray drive on the capsule. To elucidate the large variation of backscatter proportion from beam to beam in some gas-filled hohlraum shots on Shenguang-III, two 28.5° beams have been measured with the Stimulated Raman Scattering (SRS) time-resolved spectra. A bifurcated fiber is used to sample two beams and then coupled to a spectrometer and streak camera combination to reduce the cost. The SRS spectra, characterized by a broad wavelength, were further corrected considering the temporal distortion and intensity modulation caused by components along the light path. This measurement will improve the understanding of the beam propagation inside the hohlraum and related laser plasma instabilities.

  1. Transmission of broad W/Rh and W/Al (target/filter) x-ray beams operated at 25-49 kVp through common shielding materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xinhua; Zhang Da; Liu, Bob

    2012-07-15

    Purpose: To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. Methods: The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-{mu}m Rh and 700-{mu}m Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV,more » including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. Results: The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10{sup -5} for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of {alpha}, {beta}, and {gamma} in Archer equation were provided. The {alpha} values of kVp Greater-Than-Or-Slanted-Equal-To 40 were approximately consistent with those of NCRP Report No. 147. Conclusions: These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.« less

  2. The Imaging and Medical Beam Line at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-01

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  3. The Imaging and Medical Beam Line at the Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton

    2010-07-23

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the 'Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stemmore » cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1 - monochromatic and white - to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.« less

  4. Hadron Physics with PANDA at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Ulrich

    2011-10-21

    The recently established FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The PANDA experiment, which is integrated in the HESR storage ring for antiprotons is at the center of the hadron physics program. It includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics and electromagnetic processes.

  5. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    NASA Astrophysics Data System (ADS)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  6. Unique capabilities for ICF and HEDP research with the KrF laser

    NASA Astrophysics Data System (ADS)

    Obenschain, Stephen; Bates, Jason; Chan, Lop-Yung; Karasik, Max; Kehne, David; Sethian, John; Serlin, Victor; Weaver, James; Oh, Jaechul; Jenkins, Bruce; Lehmberg, Robert; Hegeler, Frank; Terrell, Stephen; Aglitskiy, Yefim; Schmitt, Andrew

    2014-10-01

    The krypton-fluoride (KrF) laser provides the shortest wavelength, broadest bandwidth and most uniform target illumination of all developed high-energy lasers. For directly driven targets these characteristics result in higher and more uniform ablation pressures as well as higher intensity thresholds for laser-plasma instability. The ISI beam smoothing scheme implemented on the NRL Nike KrF facility allows easy implementation of focal zooming where the laser radial profile is varied during the laser pulse. The capability for near continuous zooming with KrF would be valuable towards minimizing the effects of cross beam energy transport (CBET) in directly driven capsule implosions. The broad bandwidth ISI beam smoothing that is utilized with the Nike KrF facility may further inhibit certain laser plasma instability. In this presentation we will summarize our current understanding of laser target interaction with the KrF laser and the benefits it provides for ICF and certain HEDP experiments. Status and progress in high-energy KrF laser technology will also be discussed. Work supported by the Deparment of Energy, NNSA.

  7. Hadron Physics at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Ulrich

    2011-10-24

    The new FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The hadron physics program centers around the the high-energy storage ring HESR for antiprotons and the PANDA experiment that is integrated in it. The physics program includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics, electromagnetic processes and charm in nuclei.

  8. The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space.

    PubMed

    Mitaroff, A; Cern, M Silari

    2002-01-01

    A reference facility for the calibration and intercomparison of active and passive detectors in broad neutron fields has been available at CERN since 1992. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield, at 90 degrees with respect to the direction of the incoming beam. made of either 80 to 160 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the 80 cm concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. This paper describes the facility, reports on the latest neutron spectral measurements, gives an overview of the most important experiments performed by the various collaborating institutions over recent years and briefly addresses the possible application of the facility to measurements related to the space programme.

  9. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source.

    PubMed

    Greene, Geoffrey; Cianciolo, Vince; Koehler, Paul; Allen, Richard; Snow, William Michael; Huffman, Paul; Gould, Chris; Bowman, David; Cooper, Martin; Doyle, John

    2005-01-01

    The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory with an anticipated start-up in early 2006, will provide the most intense pulsed beams of cold neutrons in the world. At a projected power of 1.4 MW, the time averaged fluxes and fluences of the SNS will approach those of high flux reactors. One of the flight paths on the cold, coupled moderator will be devoted to fundamental neutron physics. The fundamental neutron physics beamline is anticipated to include two beam-lines; a broad band cold beam, and a monochromatic beam of 0.89 nm neutrons for ultracold neutron (UCN) experiments. The fundamental neutron physics beamline will be operated as a user facility with experiment selection based on a peer reviewed proposal process. An initial program of five experiments in neutron decay, hadronic weak interaction and time reversal symmetry violation have been proposed.

  10. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device

    PubMed Central

    Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.

    2015-01-01

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima. PMID:26273118

  11. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  12. FAIR - Cosmic Matter in the Laboratory

    NASA Astrophysics Data System (ADS)

    Stöcker, Horst; Stöhlker, Thomas; Sturm, Christian

    2015-06-01

    To explore cosmic matter in the laboratory - this fascinating research prospect becomes available at the Facility for Antiproton and Ion Research, FAIR. The new facility is being constructed within the next five years adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, expanding the research goals and technical possibilities substantially. This includes new insights into the dynamics of supernovae depending on the properties of short-lived neutron-rich nuclei which will be investigated with intense rare isotope beams. New insights will be provided into the interior of stars by exploring dense plasmas with intense heavy-ion beams combined with a high-performance laser - or into neutron star cores by probing the highest baryon densities in relativistic nucleus-nucleus collisions at unprecedented collision rates. To the latter, the properties of hadrons play an important part which will be systematically studied by high precision hadron spectroscopy with antiproton beams at unmatched intensities. The worldwide unique accelerator and experimental facilities of FAIR will open the way for a broad spectrum of unprecedented fore-front research supplying a large variety of experiments in hadron, nuclear, atomic and plasma physics as well as biomedical and material science which will be briefly described in this article. This article is based on the FAIR Green Paper [4] and gives an update of former publications [5] - [12].

  13. Transmission data for shielding diagnostic x-ray facilities.

    PubMed

    Simpkin, D J

    1995-05-01

    Recently published exposure transmission curves for broad diagnostic x-ray beams in lead, concrete, gypsum wallboard, steel, plate glass, and wood have been used to calculate the transmission in 5 kVp increments over the 25 to 35 kVp range for molybdenum-anode tubes and 50 to 150 kVp for tungsten-anode tubes. The data are fit to a three parameter model for ease in calculating the x-ray transmission with computers or calculators.

  14. Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara

    2016-02-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies.

  15. Ion beam plume and efflux characterization flight experiment study. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.

    1977-01-01

    A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.

  16. Characterization of the new neutron imaging and materials science facility IMAT

    NASA Astrophysics Data System (ADS)

    Minniti, Triestino; Watanabe, Kenichi; Burca, Genoveva; Pooley, Daniel E.; Kockelmann, Winfried

    2018-04-01

    IMAT is a new cold neutron imaging and diffraction instrument located at the second target station of the pulsed neutron spallation source ISIS, UK. A broad range of materials science and materials testing areas will be covered by IMAT. We present the characterization of the imaging part, including the energy-selective and energy-dispersive imaging options, and provide the basic parameters of the radiography and tomography instrument. In particular, detailed studies on mono and bi-dimensional neutron beam flux profiles, neutron flux as a function of the neutron wavelength, spatial and energy dependent neutron beam uniformities, guide artifacts, divergence and spatial resolution, and neutron pulse widths are provided. An accurate characterization of the neutron beam at the sample position, located 56 m from the source, is required to optimize collection of radiographic and tomographic data sets and for performing energy-dispersive neutron imaging via time-of-flight methods in particular.

  17. Accelerating Radioactive Ion Beams With REX-ISOLDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, F.; Emhofer, S.; Habs, D.

    2003-08-26

    The post accelerator REX-ISOLDE is installed at the ISOLDE facility at CERN, where a broad variety of radioactive ions can be addressed. Since the end of 2001 beams at the final energy of 2.2 MeV/u are available. REX-ISOLDE uses a unique system of beam bunching and charge breeding. First a Penning trap accumulates and bunches the ions, which are delivered as a quasi-continuous beam from the ISOLDE target-ion-source, and then an electron beam ion source (EBIS) charge-breeds them to a mass-to-charge ratio below 4.5. This enables a very compact design for the following LINAC, consisting of a 4 rod RFQ,more » an IH structure and three 7-gap-resonators. The later ones allow a variation of the final energy between 0.8 and 2.2 MeV/u. Although the machine is still in the commissioning phase, first physics experiments have been done with neutron rich Na and Mg isotopes and 9Li. A total efficiency of several percent has already been obtained.« less

  18. Overview of the Neutron Radiography and Computed Tomography at the Oak Ridge National Laboratory and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilheux, Hassina Z; Bilheux, Jean-Christophe; Tremsin, Anton S

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than atmore » pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.« less

  19. Recent Upgrades at the Fermilab Test Beam Facility

    NASA Astrophysics Data System (ADS)

    Rominsky, Mandy

    2016-03-01

    The Fermilab Test Beam Facility is a world class facility for testing and characterizing particle detectors. The facility has been in operation since 2005 and has undergone significant upgrades in the last two years. A second beam line with cryogenic support has been added and the facility has adopted the MIDAS data acquisition system. The facility also recently added a cosmic telescope test stand and improved tracking capabilities. With two operational beam lines, the facility can deliver a variety of particle types and momenta ranging from 120 GeV protons in the primary beam line down to 200 MeV particles in the tertiary beam line. In addition, recent work has focused on analyzing the beam structure to provide users with information on the data they are collecting. With these improvements, the Fermilab Test Beam facility is capable of supporting High Energy physics applications as well as industry users. The upgrades will be discussed along with plans for future improvements.

  20.  Generation of low-flux X-ray micro-planar beams and their biological effect on a murine subcutaneous tumor model

    PubMed Central

    Hong, Zhengshan; Zenkoh, Junko; Le, Biao; Gerelchuluun, Ariungerel; Suzuki, Kenshi; Moritake, Takashi; Washio, Masakazu; Urakawa, Junji; Tsuboi, Koji

    2015-01-01

    We generated low-flux X-ray micro-planar beams (MPBs) using a laboratory-scale industrial X-ray generator (60 kV/20 mA) with custom-made collimators with three different peak/pitch widths (50/200 μm, 100/400 μm, 50/400 μm). To evaluate normal skin reactions, the thighs of C3H/HeN mice were exposed to 100 and 200 Gy MPBs in comparison with broad beams (20, 30, 40, 50, 60 Gy). Antitumor effects of MPBs were evaluated in C3H/HeN mice with subcutaneous tumors (SCCVII). After the tumors were irradiated with 100 and 200 Gy MPBs and 20 and 30 Gy broad beams, the tumor sizes were measured and survival analyses were performed. In addition, the tumors were excised and immunohistochemically examined to detect γ-H2AX, ki67 and CD34. It was shown that antitumor effects of 200 Gy MPBs at 50/200 μm and 100/400 μm were significantly greater than those of 20 Gy broad beams, and were comparable with 30 Gy broad beams. γ-H2AX-positive cells demonstrated clear stripe-patterns after MPB irradiation; the pattern gradually faded and intermixed over 24 h. The chronological changes in ki67 positivity did not differ between MPBs and broad beams, whereas the CD34-positive area decreased significantly more in MPBs than in broad beams. In addition, it was shown that skin injury after MPB irradiation was significantly milder when compared with broad-beam irradiation at equivalent doses for achieving the same tumor control effect. Bystander effect and tumor vessel injury may be the mechanism contributing to the efficacy of MPBs. PMID:26141370

  1. Cross sections for the γp→K*0Σ+ reaction at Eγ=1.7 3.0 GeV

    NASA Astrophysics Data System (ADS)

    Hleiqawi, I.; Hicks, K.; Carman, D. S.; Mibe, T.; Niculescu, G.; Tkabladze, A.; Amarian, M.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carnahan, B.; Chen, S.; Cole, P. L.; Collins, P.; Coltharp, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Masi, R. De; Vita, R. De; Sanctis, E. De; Degtyarenko, P. V.; Dennis, L.; Deur, A.; Djalali, C.; Dickson, R.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Feldman, G.; Fersch, R.; Feuerbach, R.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, J.; Livingston, K.; Lu, H. Y.; Lukashin, K.; MacCormick, M.; McAleer, S.; McKinnon, B.; McNabb, J.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Mutchler, G. S.; Munevar, E.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Pierce, J.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Preedom, B.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tkachenko, S.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weygand, D. P.; Whisnant, S.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z.

    2007-04-01

    Differential cross sections for the reaction γp→K*0Σ+ are presented in the photon energy range of 1.7 to 3.0 GeV. The K*0 was detected by its decay products, K+π-, in the Continuous Electron Beam Accelerator Facility's large acceptance spectrometer (CLAS) detector at the Thomas Jefferson National Accelerator Facility. These data are the first K*0 photoproduction cross sections ever published over a broad range of angles. Comparison with a theoretical model based on the vector and tensor K*-quark couplings shows good agreement with the data, except at forward angles, suggesting that the role of scalar κ meson exchange should be investigated.

  2. Evaluation of beam wobbling methods for heavy-ion radiotherapy.

    PubMed

    Yonai, Shunsuke; Kanematsu, Nobuyuki; Komori, Masataka; Kanai, Tatsuaki; Takei, Yuka; Takahashi, Osamu; Isobe, Yoshiharu; Tashiro, Mutsumi; Koikegami, Hajime; Tomita, Hideki

    2008-03-01

    The National Institute of Radiological Sciences (NIRS) has extensively studied carbon-ion radiotherapy at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) with some positive outcomes, and has established its efficacy. Therefore, efforts to distribute the therapy to the general public should be made, for which it is essential to enable direct application of clinical and technological experiences obtained at NIRS. For widespread use, it is very important to reduce the cost through facility downsizing with minimal acceleration energy to deliver the HIMAC-equivalent clinical beams. For the beam delivery system, the requirement of miniaturization is translated to reduction in length while maintaining the clinically available field size and penetration range for range-modulated uniform broad beams of regular fields that are either circular or square for simplicity. In this paper, we evaluate the various wobbling methods including original improvements, especially for application to the compact facilities through the experimental and computational studies. The single-ring wobbling method used at HIMAC is the best one including a lot of experience at HIMAC but the residual range is a fatal problem in the case of a compact facility. On the other hand, uniform wobbling methods such as the spiral and zigzag wobbling methods are effective and suitable for a compact facility. Furthermore, these methods can be applied for treatment with passive range modulation including respiratory gated irradiation. In theory, the choice between the spiral and zigzag wobbling methods depends on the shape of the required irradiation field. However, we found that it is better to use the zigzag wobbling method with transformation of the wobbling pattern even when a circular uniform irradiation field is required, because it is difficult to maintain the stability of the wobbler magnet due to the rapid change of the wobbler current in the spiral wobbling method. The regulated wobbling method, which is our improvement, can well expand the uniform irradiation field and lead to reducing the power requirement of the wobbler magnets. Our evaluations showed that the regulated zigzag wobbling method is the most suitable method for use in currently designed compact carbon-therapy facilities.

  3. GCR Simulator Reference Field and a Spectral Approach for Laboratory Simulation

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara; Walker, Steven A.

    2015-01-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, an approach for selecting beams at NSRL to simulate the designated reference field is presented. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the simulated field are discussed in this context.

  4. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.

    2013-07-01

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.

  5. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.

    2013-07-03

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. Formore » the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.« less

  6. Comparison of PA imaging by narrow beam scanning and one-shot broad beam excitation

    NASA Astrophysics Data System (ADS)

    Xia, Jinjun; Wei, Chen-Wei; Huang, Lingyun; Pelivanov, I. M.; O'Donnell, Matthew

    2011-03-01

    Current systems designed for deep photoacoustic (PA) imaging typically use a low repetition rate, high power pulsed laser to provide a ns-scale pulse illuminating a large tissue volume. Acoustic signals recorded on each laser firing can be used to reconstruct a complete 2-D (3-D) image of sources of heat release within that region. Using broad-beam excitation, the maximum frame rate of the imaging system is restricted by the pulse repetition rate of the laser. An alternate illumination approach is proposed based on fast scanning by a low energy (~ 1 mJ) high repetition rate (up to a few kHz) narrow laser beam (~1 mm) along the tissue surface over a region of interest. A final PA image is produced from the summation of individual PA images reconstructed at each laser beam position. This concept can take advantage of high repetition rate fiber lasers to create PA images with much higher frame rates than current systems, enabling true real-time integration of photoacoustics with ultrasound imaging. As an initial proof of concept, we compare conventional broad beam illumination to a scanned beam approach in a simple model system. Two transparent teflon tubes with diameters of 1.6 mm and 0.8 mm were filled with ink having an absorption coefficient of 5 cm-1. These tubes were buried inside chicken breast tissue acting as an optical scattering medium. They were separated by 3 mm or 10 mm to test spatial and contrast resolution for the two scan formats. The excitation wavelength was 700 nm. The excitation source is a traditional OPO pumped by a Q-switched Nd:YAG laser with doubler. Photoacoustic images were reconstructed using signals from a small, scanned PVDF transducer acting as an acoustic array. Two different illumination schemes were compared: one was 15 mm x 10 mm in cross section and acted as the broad beam; the other was 5 mm x 2 mm in cross section (15 times smaller than the broad beam case) and was scanned over an area equivalent to broad beam illumination. Multiple images obtained during narrow beam scanning were added together to form one PA image equivalent to the single-shot broad beam one. Results of the phantom study indicate that PA images formed by narrow beam scanning excitation can be equivalent to one shot broad beam illumination in signal to noise ratio and spatial resolution. Future studies will focus on high repetition-rate laser sources and scan formats appropriate for real-time, integrated deep photoacoustic/ultrasonic imaging.

  7. Photo-Production of Proton Antiproton Pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul Eugenio; Burnham Stokes

    2007-02-01

    Results are reported on the reaction gammap --> ppp-bar . A high statistic data set was obtained at the Thomas Jefferson National Accelerator Facility utilizing the CLAS detector and a tagged photon beam of 4.8 to 5.2 GeV incident on a liquid hydrogen target. The focus of this study was to search for possible intermediate resonances which decay to proton-antiproton. Both final state protons were detected in the CLAS apparatus whereas the antiproton was identified via missing mass. General features of the data are presented along with results on narrow and broad resonance studies.

  8. Rare isotope accelerator project in Korea and its application to high energy density sciences

    NASA Astrophysics Data System (ADS)

    Chung, M.; Chung, Y. S.; Kim, S. K.; Lee, B. J.; Hoffmann, D. H. H.

    2014-01-01

    As a national science project, the Korean government has recently established the Institute for Basic Science (IBS) with the goal of conducting world-class research in basic sciences. One of the core facilities for the IBS will be the rare isotope accelerator which can produce high-intensity rare isotope beams to investigate the fundamental properties of nature, and also to support a broad research program in material sciences, medical and biosciences, and future nuclear energy technologies. The construction of the accelerator is scheduled to be completed by approximately 2017. The design of the accelerator complex is optimized to deliver high average beam current on targets, and to maximize the production of rare isotope beams through the simultaneous use of Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IFF) methods. The proposed accelerator is, however, not optimal for high energy density science, which usually requires very high peak currents on the target. In this study, we present possible beam-plasma experiments that can be done within the scope of the current accelerator design, and we also investigate possible future extension paths that may enable high energy density science with intense pulsed heavy ion beams.

  9. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    PubMed

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  10. CONCEPTUAL DESIGN REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROBINSON,K.

    2006-12-31

    Brookhaven National Laboratory has prepared a conceptual design for a world class user facility for scientific research using synchrotron radiation. This facility, called the ''National Synchrotron Light Source II'' (NSLS-II), will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopymore » on a single atom. The overall objective of the NSLS-II project is to deliver a research facility to advance fundamental science and have the capability to characterize and understand physical properties at the nanoscale, the processes by which nanomaterials can be manipulated and assembled into more complex hierarchical structures, and the new phenomena resulting from such assemblages. It will also be a user facility made available to researchers engaged in a broad spectrum of disciplines from universities, industries, and other laboratories.« less

  11. Final design of the Energy-Resolved Neutron Imaging System “RADEN” at J-PARC

    NASA Astrophysics Data System (ADS)

    Shinohara, T.; Kai, T.; Oikawa, K.; Segawa, M.; Harada, M.; Nakatani, T.; Ooi, M.; Aizawa, K.; Sato, H.; Kamiyama, T.; Yokota, H.; Sera, T.; Mochiki, K.; Kiyanagi, Y.

    2016-09-01

    A new pulsed-neutron instrument, named the Energy-Resolved Neutron Imaging System “RADEN”, has been constructed at the beam line of BL22 in the Materials and Life Science Experimental Facility (MLF) of J-PARC. The primary purpose of this instrument is to perform energy-resolved neutron imaging experiments through the effective utilization of the pulsed nature of the neutron beam, making this the world's first instrument dedicated to pulsed neutron imaging experiments. RADEN was designed to cover a broad energy range: from cold neutrons with energy down to 1.05 meV (or wavelength up to 8.8 Å) with a good wavelength resolution of 0.20% to high-energy neutrons with energy of several tens keV (or wavelength of 10-3 Å). In addition, this instrument is intended to perform state-of-the-art neutron radiography and tomography experiments in Japan. Hence, a maximum beam size of 300 mm square and a high L/D value of up to 7500 are provided.

  12. Recent advances in β-decay spectroscopy at CARIBU

    NASA Astrophysics Data System (ADS)

    Mitchell, A. J.; Copp, P.; Savard, G.; Lister, C. J.; Lane, G. J.; Carpenter, M. P.; Clark, J. A.; Zhu, S.; Ayangeakaa, A. D.; Bottoni, S.; Brown, T. B.; Chowdhury, P.; Chillery, T. W.; David, H. M.; Hartley, D. J.; Heckmaier, E.; Janssens, R. V. F.; Kolos, K.; Kondev, F. G.; Lauritsen, T.; McCutchan, E. A.; Norman, E. B.; Padgett, S.; Scielzo, N. D.; Seweryniak, D.; Smith, M. L.; Wilson, G. L.

    2016-09-01

    β-decay spectroscopy of nuclei far from stability can provide powerful insight into a broad variety of topics in nuclear science, ranging from exotic nuclear structure phenomena, stellar nucleosynthesis processes, and applied topics such as quantifying "decay heat" discrepancies for advanced nuclear fuel cycles. Neutronrich nuclei approaching the drip-line are difficult to access experimentally, leaving many key examples largely under studied. The CARIBU radioactive beam facility at Argonne National Laboratory exploits spontaneous fission of 252Cf in production of such beams. The X-Array and SATURN decay station have been commissioned to perform detailed decay spectroscopy of low-energy CARIBU beams. An extended science campaign was started during 2015; with projects investigating nuclear shape changes, collective octupole vibrations, β-delayed neutron emission, and decay-scheme properties which could explain the reactor antineutrino puzzle. In this article we review the current status of the setup, update on the first results and recent hardware upgrades, and look forward to future possibilities.

  13. Fourteenth Exotic Beam Summer School EBSS 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedenhoever, Ingo

    The Fourteenth Annual Exotic Beam Summer School EBSS 2015 was held August 2nd - August 7th, 2015, and belongs to the series of summer programs aimed at educating future workforce in nuclear physics-related areas, mostly about the challenges of radioactive ion beam physics. Through these schools the research community will be able to exploit fully the opportunities created by the exotic beam facilities. These facilities in the US include CARIBU at ANL, the NSCL and the future FRIB laboratory as well as smaller-scale university laboratories. The skill set needed by the future workforce is very diverse and a fundamental understandingmore » of theoretical, technical, computational and applied fields are all important. Therefore, the Exotic Beam Summer Schools follow a unique approach, in which the students not only receive lectures but also participate in hands-on activities. The lectures covered broad topics in both the experimental and theoretical physics of nuclei far from stability as well as radioactive ions production and applications. The afternoons provided opportunities for "hands-on" projects with experimental equipment and techniques useful in FRIB research. Five activities were performed in groups of eight students, rotating through the activities over the five afternoons of the school. The center of the activities was an experiment at the FSU tandem accelerator, measuring the angular distribution and cross section of the 12C(d,p) 13C transfer reaction, measured with a silicon telescope in a scattering chamber. The experimental data were analyzed by performing a DWBA calculation with the program DWUCK, and the resulting spectroscopic factors were compared to a shell model calculation. The other activities included target preparation, digital gamma-spectroscopy and modern neutron detection methods.« less

  14. SU-F-BRD-15: Quality Correction Factors in Scanned Or Broad Proton Therapy Beams Are Indistinguishable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorriaux, J; Lee, J; ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve

    2015-06-15

    Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (kQ). Pencil beam scanning (PBS) requires multiple spots to reproduce the reference conditions. The objective is to demonstrate, using Monte Carlo (MC) calculations, that kQ factors for broad beams can be used for scanned beams under the same reference conditions with no significant additional uncertainty. We consider hereafter the general Alfonso formalism (Alfonso et al, 2008) for non-standard beam. Methods: To approach the reference conditions and the associated dose distributions, PBS must combinemore » many pencil beams with range modulation and shaping techniques different than those used in passive systems (broad beams). This might lead to a different energy spectrum at the measurement point. In order to evaluate the impact of these differences on kQ factors, ion chamber responses are computed with MC (Geant4 9.6) in a dedicated scanned pencil beam (Q-pcsr) producing a 10×10cm2 composite field with a flat dose distribution from 10 to 16 cm depth. Ion chamber responses are also computed by MC in a broad beam with quality Q-ds (double scattering). The dose distribution of Q -pcsr matches the dose distribution of Q-ds. k-(Q-pcsr,Q-ds) is computed for a 2×2×0.2cm{sup 3} idealized air cavity and a realistic plane-parallel ion chamber (IC). Results: Under reference conditions, quality correction factors for a scanned composite field versus a broad beam are the same for air cavity dose response, k-(Q-pcsr,Q-ds) =1.001±0.001 and for a Roos IC, k-(Q-pcsr,Q-ds) =0.999±0.005. Conclusion: Quality correction factors for ion chamber response in scanned and broad proton therapy beams are identical under reference conditions within the calculation uncertainties. The results indicate that quality correction factors published in IAEA TRS-398 can be used for scanned beams in the SOBP of a high-energy proton beam. Jefferson Sorriaux is financed by the Walloon Region under the convention 1217662. Jefferson Sorriaux is sponsored by a public-private partnership IBA - Walloon Region.« less

  15. Broad-band beam buncher

    DOEpatents

    Goldberg, David A.; Flood, William S.; Arthur, Allan A.; Voelker, Ferdinand

    1986-01-01

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  16. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  17. Photo-Production of Proton Antiproton Pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eugenio, Paul; Stokes, Burnham

    2007-02-27

    Results are reported on the reaction {gamma}p {yields} ppp-bar. A high statistic data set was obtained at the Thomas Jefferson National Accelerator Facility utilizing the CLAS detector and a tagged photon beam of 4.8 to 5.2 GeV incident on a liquid hydrogen target. The focus of this study was to search for possible intermediate resonances which decay to proton-antiproton. Both final state protons were detected in the CLAS apparatus whereas the antiproton was identified via missing mass. General features of the data are presented along with results on narrow and broad resonance studies.

  18. Analysis and measurement of the transfer matrix of a 9-cell, 1.3-GHz superconducting cavity

    DOE PAGES

    Halavanau, A.; Eddy, N.; Edstrom, D.; ...

    2017-04-13

    Superconducting linacs are capable of producing intense, stable, high-quality electron beams that have found widespread applications in science and industry. Here, the 9-cell, 1.3-GHz superconducting standing-wave accelerating rf cavity originally developed for e +/e - linear-collider applications has been broadly employed in various superconducting-linac designs. In this paper we discuss the transfer matrix of such a cavity and present its measurement performed at the Fermilab Accelerator Science and Technology (FAST) facility. Finally, the experimental results are found to be in agreement with analytical calculations and numerical simulations.

  19. SU-C-204-02: Behavioral and Pathologic Differences in Mice Exposed to Proton Minibeam Arrays Versus Proton Broad Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, J; Zhang, C; Wolfe, T

    Purpose: Minibeam therapy using protons or light-ions offers a theoretical reduction of biologic damage to tissues upstream of a tumor compared to broad-beam therapy while providing equal tumor control. The purpose of this study was to investigate behavioral and pathologic differences in mice after exposure of healthy brain to proton minibeam arrays versus proton broad beams. Methods: Twenty-four C57BL/6J juvenile mice were divided into 5 study arms: sham irradiation (NoRT), broad-beam 10 Gy (BB10), minibeam 10Gy (MB10), broad-beam 30 Gy (BB30), and minibeam 30 Gy (MB30), approximate integral entrance doses. Circular beams of 100 MeV protons with 7-mm diameter weremore » delivered laterally through the brain, either as broad beams or as planar minibeam arrays having 300-micron beam width and 1-mm spacing on center. Mice were followed for 8 months using standard behavioral tests. Pathologic studies were carried out at 8 months after irradiation. Results: Peak entrance doses were 10.0, 23.8, 30.0, and 71.3 Gy for mice in BB10, MB10, BB30, and MB30, respectively. Despite the high single-fraction doses, no animals showed signs of radiation sickness or neurophysical impairment over the 8-month study duration. The Morris water maze alternate-starting-position trial showed significant evidence of better spatial learning for mice in MB10 versus BB10 (p=0.026), but other behavioral tests showed no significant differences. Glial fibrillary acidic protein stains showed gliosis in arms BB10, BB30, and MB30 but not in NoRT or MB10. A secondary finding was categorically higher epilation in broad-beam arms compared with their minibeam dose counterparts. Conclusion: Our findings indicate trends that, despite the higher peak doses, proton minibeam therapy can reduce radiation side effects in shallow tissue and brain compared to proton broadbeam therapy. As the behavioral findings were mixed, confirmation studies are needed with larger numbers of animals. AAPM Research Seed Funding Grant.« less

  20. Beam dynamics and expected performance of Sweden's new storage-ring light source: MAX IV

    NASA Astrophysics Data System (ADS)

    Leemann, S. C.; Andersson, Å.; Eriksson, M.; Lindgren, L.-J.; Wallén, E.; Bengtsson, J.; Streun, A.

    2009-12-01

    MAX IV will be Sweden’s next-generation high-performance synchrotron radiation source. The project has recently been granted funding and construction is scheduled to begin in 2010. User operation for a broad and international user community should commence in 2015. The facility is comprised of two storage rings optimized for different wavelength ranges, a linac-based short-pulse facility and a free-electron laser for the production of coherent radiation. The main radiation source of MAX IV will be a 528 m ultralow emittance storage ring operated at 3 GeV for the generation of high-brightness hard x rays. This storage ring was designed to meet the requirements of state-of-the-art insertion devices which will be installed in nineteen 5 m long dispersion-free straight sections. The storage ring is based on a novel multibend achromat design delivering an unprecedented horizontal bare lattice emittance of 0.33 nm rad and a vertical emittance below the 8 pm rad diffraction limit for 1 Å radiation. In this paper we present the beam dynamics considerations behind this storage-ring design and detail its expected unique performance.

  1. Heavy-ion conformal irradiation in the shallow-seated tumor therapy terminal at HIRFL.

    PubMed

    Li, Qiang; Dai, Zhongying; Yan, Zheng; Jin, Xiaodong; Liu, Xinguo; Xiao, Guoqing

    2007-11-01

    Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.

  2. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  3. The US ICF Ignition Program and the Inertial Fusion Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindl, J D; Hammel, B A; Logan, B G

    2003-07-02

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 andmore » ignition experiments are expected to begin shortly after that time. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with drywall chambers and direct drive targets. Induction accelerators for heavy ions are being developed in conjunction with thick-liquid protected wall chambers and indirect-drive targets.« less

  4. Methods for implementing microbeam radiation therapy

    DOEpatents

    Dilmanian, F. Avraham; Morris, Gerard M.; Hainfeld, James F.

    2007-03-20

    A method of performing radiation therapy includes delivering a therapeutic dose such as X-ray only to a target (e.g., tumor) with continuous broad beam (or in-effect continuous) using arrays of parallel planes of radiation (microbeams/microplanar beams). Microbeams spare normal tissues, and when interlaced at a tumor, form a broad-beam for tumor ablation. Bidirectional interlaced microbeam radiation therapy (BIMRT) uses two orthogonal arrays with inter-beam spacing equal to beam thickness. Multidirectional interlaced MRT (MIMRT) includes irradiations of arrays from several angles, which interleave at the target. Contrast agents, such as tungsten and gold, are administered to preferentially increase the target dose relative to the dose in normal tissue. Lighter elements, such as iodine and gadolinium, are used as scattering agents in conjunction with non-interleaving geometries of array(s) (e.g., unidirectional or cross-fired (intersecting) to generate a broad beam effect only within the target by preferentially increasing the valley dose within the tumor.

  5. The ISOLDE facility and the HIE-HISOLDE project: Recent highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borge, M. J. G.

    2014-07-23

    The ISOLDE facility at CERN has as objective the production, study and research of nuclei far from stability. The facility provides low energy radioactive beams and post-accelerated beams. In the last 45 years the ISOLDE facility has gathered unique expertise in research with radioactive beams. Over 700 isotopes of more than 70 elements have been used in a wide range of research domains, including cutting edge studies in nuclear structure, atomic physics, nuclear astrophysics, and fundamental interactions. These nuclear probes are also used to do frontier research in solid state and life sciences. There is an on-going upgrade of themore » facility, the HIE-ISOLDE project, which aims to improve the ISOLDE capabilities in a wide front, from an energy increase of the post-accelerated beam to improvements in beam quality and beam purity. The first phase of HIE-ISOLDE will start for physics in the autumn of 2015 with an upgrade of energy for all post-accelerated ISOLDE beams up to 5.5 MeV/u. In this contribution the most recent highlights of the facility are presented.« less

  6. Magnetic dipole strength in 128Xe and 134Xe in the spin-flip resonance region

    NASA Astrophysics Data System (ADS)

    Massarczyk, R.; Rusev, G.; Schwengner, R.; Dönau, F.; Bhatia, C.; Gooden, M. Â. E.; Kelley, J. Â. H.; Tonchev, A. Â. P.; Tornow, W.

    2014-11-01

    The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in 128Xe and 134Xe using quasimonoenergetic and linearly polarized γ -ray beams at the High-Intensity γ -Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with phenomenological approximations and with predictions of a quasiparticle random phase approximation in a deformed basis.

  7. The Fundamental Neutron Physics Facilities at NIST.

    PubMed

    Nico, J S; Arif, M; Dewey, M S; Gentile, T R; Gilliam, D M; Huffman, P R; Jacobson, D L; Thompson, A K

    2005-01-01

    The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities.

  8. The Fundamental Neutron Physics Facilities at NIST

    PubMed Central

    Nico, J. S.; Arif, M.; Dewey, M. S.; Gentile, T. R.; Gilliam, D. M.; Huffman, P. R.; Jacobson, D. L.; Thompson, A. K.

    2005-01-01

    The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities. PMID:27308110

  9. Characterization of a 5-eV neutral atomic oxygen beam facility

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1991-01-01

    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.

  10. Shielding and Activation Analyses for BTF Facility at SNS

    NASA Astrophysics Data System (ADS)

    Popova, Irina; Gallmeier, Franz X.

    2017-09-01

    The beam test facility (BTF), which simulates front end of the Spallation Neutron Source (SNS), has been built at the SNS, and is preparing for commissioning. The BTF has been assembled and will operate in one of service buildings at the site. The 2.5 MeV proton beam, produced in the facility, will be stopped in the beam dump. In order to support BTF project from radiation protection site, neutronics simulations and activation analyses were performed to evaluate the necessary shielding around the facility and radionuclide inventory of the beam stop.

  11. Broad-band beam buncher

    DOEpatents

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1984-03-20

    A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-

  12. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  13. High energy proton induced radiation damage of rare earth permanent magnet quadrupoles

    NASA Astrophysics Data System (ADS)

    Schanz, M.; Endres, M.; Löwe, K.; Lienig, T.; Deppert, O.; Lang, P. M.; Varentsov, D.; Hoffmann, D. H. H.; Gutfleisch, O.

    2017-12-01

    Permanent magnet quadrupoles (PMQs) are an alternative to common electromagnetic quadrupoles especially for fixed rigidity beam transport scenarios at particle accelerators. Using those magnets for experimental setups can result in certain scenarios, in which a PMQ itself may be exposed to a large amount of primary and secondary particles with a broad energy spectrum, interacting with the magnetic material and affecting its magnetic properties. One specific scenario is proton microscopy, where a proton beam traverses an object and a collimator in which a part of the beam is scattered and deflected into PMQs used as part of a diagnostic system. During the commissioning of the PRIOR (Proton Microscope for Facility for Antiproton and Ion Research) high energy proton microscope facility prototype at Gesellschaft für Schwerionenforschung in 2014, a significant reduction of the image quality was observed which was partially attributed to the demagnetization of the used PMQ lenses and the corresponding decrease of the field quality. In order to study this phenomenon, Monte Carlo simulations were carried out and spare units manufactured from the same magnetic material—single wedges and a fully assembled PMQ module—were deliberately irradiated by a 3.6 GeV intense proton beam. The performed investigations have shown that in proton radiography applications the above described scattering may result in a high irradiation dose in the PMQ magnets. This did not only decrease the overall magnetic strength of the PMQs but also caused a significant degradation of the field quality of an assembled PMQ module by increasing the parasitic multipole field harmonics which effectively makes PMQs impractical for proton radiography applications or similar scenarios.

  14. High energy proton induced radiation damage of rare earth permanent magnet quadrupoles.

    PubMed

    Schanz, M; Endres, M; Löwe, K; Lienig, T; Deppert, O; Lang, P M; Varentsov, D; Hoffmann, D H H; Gutfleisch, O

    2017-12-01

    Permanent magnet quadrupoles (PMQs) are an alternative to common electromagnetic quadrupoles especially for fixed rigidity beam transport scenarios at particle accelerators. Using those magnets for experimental setups can result in certain scenarios, in which a PMQ itself may be exposed to a large amount of primary and secondary particles with a broad energy spectrum, interacting with the magnetic material and affecting its magnetic properties. One specific scenario is proton microscopy, where a proton beam traverses an object and a collimator in which a part of the beam is scattered and deflected into PMQs used as part of a diagnostic system. During the commissioning of the PRIOR (Proton Microscope for Facility for Antiproton and Ion Research) high energy proton microscope facility prototype at Gesellschaft für Schwerionenforschung in 2014, a significant reduction of the image quality was observed which was partially attributed to the demagnetization of the used PMQ lenses and the corresponding decrease of the field quality. In order to study this phenomenon, Monte Carlo simulations were carried out and spare units manufactured from the same magnetic material-single wedges and a fully assembled PMQ module-were deliberately irradiated by a 3.6 GeV intense proton beam. The performed investigations have shown that in proton radiography applications the above described scattering may result in a high irradiation dose in the PMQ magnets. This did not only decrease the overall magnetic strength of the PMQs but also caused a significant degradation of the field quality of an assembled PMQ module by increasing the parasitic multipole field harmonics which effectively makes PMQs impractical for proton radiography applications or similar scenarios.

  15. Astrophysics at the future Rare Isotope Accelerator

    NASA Astrophysics Data System (ADS)

    Smith, Michael; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    PoS(NIC-IX)179 Significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical phenomena require intense beams of a wide range of unsta- ble nuclei. While some such beams are currently available and being used for important studies in nuclear astrophysics, the beams are often insufficient in intensity, purity, or available isotopes. It is anticipated that a next-generation radioactive beam facility will be built in the U.S. in the next decade to address these shortcomings, and a Working Group has been established to develop and promote nuclear astrophysics research at this new facility. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities around the world.

  16. Production of negatively charged radioactive ion beams

    DOE PAGES

    Liu, Y.; Stracener, D. W.; Stora, T.

    2017-02-15

    Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridgemore » National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities.« less

  17. High resolution energy analyzer for broad ion beam characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanarov, V.; Hayes, A.; Yevtukhov, R.

    2008-09-15

    Characterization of the ion energy distribution function (IEDF) of low energy high current density ion beams by conventional retarding field and deflection type energy analyzers is limited due to finite ion beam emittance and beam space charge spreading inside the analyzer. These deficiencies are, to a large extent, overcome with the recent development of the variable-focusing retarding field energy analyzer (RFEA), which has a cylindrical focusing electrode preceding the planar retarding grid. The principal concept of this analyzer is conversion of a divergent charged particle beam into a quasiparallel beam before analyzing it by the planar retarding field. This allowsmore » analysis of the beam particle total kinetic energy distribution with greatly improved energy resolution. Whereas this concept was first applied to analyze 5-10 keV pulsed electron beams, the present authors have adapted it to analyze the energy distribution of a low energy ({<=}1 KeV) broad ion beam. In this paper we describe the RFEA design, which was modified from the original, mainly as required by the specifics of broad ion beam energy analysis, and the device experimental characterization and modeling results. Among the modifications, an orifice electrode placed in front of the RFEA provides better spatial resolution of the broad ion beam ion optics emission region and reduces the beam plasma density in the vicinity of analyzer entry. An electron repeller grid placed in front of the RFEA collector was found critical for suppressing secondary electrons, both those incoming to the collector and those released from its surface, and improved energy spectrum measurement repeatability and accuracy. The use of finer mesh single- and double-grid retarding structures reduces the retarding grid lens effect and improves the analyzer energy resolution and accuracy of the measured spectrum mean energy. However, additional analyzer component and configuration improvements did not further change the analyzed IEDF shape or mean energy value. This led us to conclude that the optimized analyzer construction provides an energy resolution considerably narrower than the investigated ion beam energy spectrum full width at half maximum, and the derived energy spectrum is an objective and accurate representation of the analyzed broad ion beam energy distribution characteristics. A quantitative study of the focusing voltage and retarding grid field effects based on the experimental data and modeling results have supported this conclusion.« less

  18. Achieving highly efficient and broad-angle polarization beam filtering using epsilon-near-zero metamaterials mimicked by metal-dielectric multilayers

    NASA Astrophysics Data System (ADS)

    Wu, Feng

    2018-03-01

    We report a highly efficient and broad-angle polarization beam filter at visible wavelengths using an anisotropic epsilon-near-zero metamaterial mimicked by a multilayer composed of alternative subwavelength magnesium fluoride and silver layers. The underlying physics can be explained by the dramatic difference between two orthogonal polarizations' iso-frequency curves of anisotropic epsilon-near-zero metamaterials. Transmittance for two orthogonal polarization waves and the polarization extinction ratio are calculated via the transfer matrix method to assess the comprehensive performance of the proposed polarization beam filter. From the simulation results, the proposed polarization beam filter is highly efficient (the polarization extinction ratio is far larger than two orders of magnitude) and has a broad operating angle range (ranging from 30° to 75°). Finally, we show that the proper tailoring of the periodic number enables us to obtain high comprehensive performance of the proposed polarization beam filter.

  19. Baryon spectroscopy with polarization observables from CLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauch, Steffen

    The spectrum of nucleon excitations is dominated by broad and overlapping resonances. Polarization observables in photoproduction reactions are key in the study of these excitations. They give indispensable constraints to partial-wave analyses and help clarify the spectrum. A series of polarized photoproduction experiments have been performed at the Thomas Jefferson National Accelerator Facility with the CEBAF Large Acceptance Spectrometer (CLAS). These measurements include data with linearly and circularly polarized tagged-photon beams, longitudinally and transversely polarized proton and deuterium targets, and recoil polarizations through the observation of the weak decay of hyperons. An overview of these studies and recent results willmore » be given.« less

  20. BEaTriX, expanded x-ray beam facility for testing modular elements of telescope optics: an update

    NASA Astrophysics Data System (ADS)

    Pelliciari, C.; Spiga, D.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Pareschi, G.; Tagliaferri, G.

    2015-09-01

    We present in this paper an update on the design of BEaTriX (Beam Expander Testing X-ray facility), an X-ray apparatus to be realized at INAF/OAB and that will generate an expanded, uniform and parallel beam of soft X-rays. BEaTriX will be used to perform the functional tests of X-ray focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, using the Silicon Pore Optics (SPO) as a baseline technology, and Slumped Glass Optics (SGO) as a possible alternative. Performing the tests in X-rays provides the advantage of an in-situ, at-wavelength quality control of the optical modules produced in series by the industry, performing a selection of the modules with the best angular resolution, and, in the case of SPOs, there is also the interesting possibility to align the parabolic and the hyperbolic stacks directly under X-rays, to minimize the aberrations. However, a parallel beam with divergence below 2 arcsec is necessary in order to measure mirror elements that are expected to reach an angular resolution of about 4 arcsec, since the ATHENA requirement for the entire telescope is 5 arcsec. Such a low divergence over the typical aperture of modular optics would require an X-ray source to be located in a several kilometers long vacuum tube. In contrast, BEaTriX will be compact enough (5 m x 14 m) to be housed in a small laboratory, will produce an expanded X-ray beam 60 mm x 200 mm broad, characterized by a very low divergence (1.5 arcsec HEW), strong polarization, high uniformity, and X-ray energy selectable between 1.5 keV and 4.5 keV. In this work we describe the BEaTriX layout and show a performance simulation for the X-ray energy of 4.5 keV.

  1. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  2. Fast Neutron Tomography of Low-Z Object in High-Z Material Shielding

    NASA Astrophysics Data System (ADS)

    Babai, Ruth Weiss; Sabo-Napadensky, Iris; Bar, Doron; Mor, Ilan; Tamim, Noam; Dangendorf, Volker; Tittelmeier, Kai; Bromberger, Benjamin; Weierganz, Mathias

    The technique and first results of Fast Neutron Tomography (FNCT) experiments are presented which are performed at the accelerator facility of PTB, Germany. A high-intensity neutron beam of broad spectral distribution with an average energy of 5.5 MeV, was produced by 11.5 MeV deuterons impinging upon a thick beryllium target. The capability of FNCT for high contrast imaging of low-Z materials embedded in thick high-Z shielding materials is demonstrated, which is superior to more conventional high-energy X-ray imaging techniques. For demonstrating the method special test objects were prepared: One consisted of an assembled polyethylene cylinder with holes of various diameters and directions drilled in its surface and inner parts. The plastic phantom was inserted into lead cylinders of different thicknesses. The detector system consisted of a plastic scintillator along with a dedicated optics, image-intensifier and a CCD camera. Two scintillator screens were compared: a bulk plastic scintillator screen and a fibres optical scintillator screen. The tomographic scans were taken in two geometrical configurations: cone beam and semi-fan beam configuration. The image quality favours the semi-fan beam configuration which on the other hand is more time consuming The obtained tomographic images and a comparison of the imaging quality between the different experimental conditions will be presented.

  3. 14. FACILITY IDENTIFICATION STENCILED ON ROOF BEAM, 'RIGGING LOFT' PORTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. FACILITY IDENTIFICATION STENCILED ON ROOF BEAM, 'RIGGING LOFT' PORTION OF BUILDING 4. - Chollas Heights Naval Radio Transmitting Facility, Public Works Shop, 6410 Zero Road, San Diego, San Diego County, CA

  4. Ablation centration after active eye tracker-assisted LASIK and comparison of flying-spot and broad-beam laser.

    PubMed

    Lin, Jane-Ming; Chen, Wen-Lu; Chiang, Chun-Chi; Tsai, Yi-Yu

    2008-04-01

    To evaluate ablation centration of flying-spot LASIK, investigate the effect of patient- and surgeon-related factors on centration, and compare flying-spot and broad-beam laser results. This retrospective study comprised 173 eyes of 94 patients who underwent LASIK with the Alcon LADARVision4000 with an active eye-tracking system. The effective tracking rate of the system is 100 Hz. The amount of decentration was analyzed by corneal topography. Patient- (low, high, and extreme myopia; effect of learning) and surgeon-related (learning curve) factors influencing centration were identified. Centration was compared to the SCHWIND Multiscan broad-beam laser with a 50-Hz tracker from a previous study. Mean decentration was 0.36+/-0.18 mm (range: 0 to 0.9 mm). Centration did not differ in low, high, and extreme myopia or in patients' first and second eyes. There were no significant differences in centration between the first 50 LASIK procedures and the last 50 procedures. Comparing flying-spot and broad-beam laser results, there were no differences in centration in low myopia. However, the LADARVision4000 yielded better centration results in high and extreme myopia. The Alcon LADARVision4000 active eye tracking system provides good centration for all levels of myopic correction and better centration than the Schwind broad-beam Multiscan in eyes with high and extreme myopia.

  5. An ion beam facility based on a 3 MV tandetron accelerator in Sichuan University, China

    NASA Astrophysics Data System (ADS)

    Han, Jifeng; An, Zhu; Zheng, Gaoqun; Bai, Fan; Li, Zhihui; Wang, Peng; Liao, Xiaodong; Liu, Mantian; Chen, Shunli; Song, Mingjiang; Zhang, Jun

    2018-03-01

    A new ion beam facility based on a 3 MV tandetron accelerator system has been installed in Sichuan University, China. The facility was developed by High Voltage Engineering Europa and consists of three high-energy beam lines including the ion beam analysis, ion implantation and nuclear physics experiment end stations, respectively. The terminal voltage stability of the accelerator is better than ±30 V, and the brightness of the proton beam is approximately 5.06 A/rad2/m2/eV. The system demonstrates a great application potential in fields such as nuclear, material and environmental studies.

  6. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    DOEpatents

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  7. The TRIUMF nuclear structure program and TIGRESS

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Chakrawarthy, R. S.; Churchman, R.; Cline, D.; Cooper, R. J.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T.; Finlay, P.; Gagnon, K.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Maharaj, R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Ruiz, C.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Strange, M. D.; Subramanian, M.; Svensson, C. E.; Waddington, J. C.; Wan, J.; Whitbeck, A.; Williams, S. J.; Wood, J. L.; Wong, J. C.; Wu, C. Y.; Zganjar, E. F.

    2007-08-01

    The isotope separator and accelerator (ISAC) facility located at the TRIUMF laboratory in Vancouver, Canada, is one of the world's most advanced isotope separator on-line-type radioactive ion beam facilities. An extensive γ-ray spectroscopy programme at ISAC is centred around two major research facilities: (i) the 8π γ-ray spectrometer for β-delayed γ-ray spectroscopy experiments with the low-energy beams from ISAC-I, and (ii) the next generation TRIUMF-ISAC gamma-ray escape suppressed spectrometer (TIGRESS) for in-beam experiments with the accelerated radioactive-ion beams. An overview of these facilities and recent results from the diverse programme of nuclear structure and fundamental interaction studies they support is presented.

  8. Extreme Light Infrastructure - Nuclear Physics pillar (ELI-NP) : new horizons in physics with high power lasers and brilliant gamma beams.

    PubMed

    Gales, Sydney; Tanaka, Kazuo A; Balabanski, D L; Negoita, Florin; Stutman, D; Ur, Calin Alexander; Tesileanu, Ovidiu; Ursescu, Daniel; Ghita, Dan Gabriel; Andrei, I; Ataman, Stefan; Cernaianu, M O; D'Alessi, L; Dancus, I; Diaconescu, B; Djourelov, N; Filipescu, D; Ghenuche, P; Matei, C; Seto Kei, K; Zeng, M; Zamfir, Victor Nicolae

    2018-06-28

    The European Strategic Forum for Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser elds with intensities reaching up to 10221023 W/cm2 called \\ELI" for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011 2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania. The Romanian pillar is ELI-Nuclear Physics (ELI-NP). The new facility is intended to serve a broad national, European and International science community. Its mission covers scientic research at the frontier of knowledge involving two domains. The rst one is laser-driven experiments related to nuclear physics, strong-eld quantum electrodynamics and associated vacuum eects. The second is based on a Comptonbackscattering high-brilliance and intense low-energy gamma beam (< 20 MeV), a marriage of laser and accelerator technology which will allow us to investigate nuclear structure and reactions as well as nuclear astrophysics with unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with signicant societal impact are being developed. The ELI-NP research centre will be located in Magurele near Bucharest, Romania. The project is implemented by \\Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH). The project started in January 2013 and the new facility will be fully operational by the end of 2019. After a short introduction to multi-PW lasers and Multi-MeV brilliant gamma beam scientic and technical description of the future ELI-NP facility as well as the present status of its implementation of ELI-NP, will be presented. The science and examples of societal applications at reach with these new probes will be discussed with a special focus on day-one experiments and associated novel instrumentation. © 2018 IOP Publishing Ltd.

  9. Summary talk: Experiments at low energies

    NASA Astrophysics Data System (ADS)

    Leifels, Yvonne

    2016-01-01

    In heavy-ion collisions at beam energies √sNN between 1 and 150A GeV highest baryonic densities are reached at rather moderate temperatures. By varying the beam energy and the system size a broad range of the QCD phase diagram is scanned where several interesting phenomena are predicted by theoretical models. Apart from possible phase transitions and existence of a critical point in this regime, the production of strangeness and the interaction of strange particles with the surrounding hot and dense nuclear medium constitutes a prominent probe not only to address the underlying reaction mechanisms and production processes but in particular to constrain densities and temperatures reached in the course of the collision. Recent results on heavy-ion collisions in this beam energy regime obtained by various experimental collaborations are summarized, with special emphasis on strangeness production, rare probes, and critical phenomena. The importance of data on elementary reactions (i.e., pp, p+nucleus, and π+nucleus) as a bench mark for theoretical models and their relevance for understanding the underlying mechanisms of heavy-ion collisions are being discussed. Several interesting observables have been presented in various contributions, which give further motivation for the construction of high-rate experiments at new accelerator facilities.

  10. ER@CEBAF: A test of 5-pass energy recovery at CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, S. A.; Douglas, D.; Dubbe, C.

    2016-06-06

    Jefferson Lab personnel have broad expertise in the design, commissioning, and operation of multiple energy recovery linacs (ERLs): the CEBAF Front-End Test (early 1990s), CEBAF-ER (2003), the IR Free Electron Laser (FEL) Demo, the IR FEL Upgrade, and the UV FEL Driver (1997-2014). Continued development of this core competency has led to this collaborative proposal to explore the forefronts of ERL technology at high energy in a unique expansion of CEBAF capability to a 5-pass ERL with negligible switchover time and programmatic impact to the CEBAF physics program. Such a capability would enable world-class studies of open issues in high-energymore » ERL beam dynamics that are relevant to future facilities such as electron-ion colliders (EICs). This proposal requests support from the CEBAF Program Advisory Committee to seek funding for hardware installation, and a prospective 12 days of beam time circa Fall 2018 for commissioning this high-energy multi-pass ERL experiment in CEBAF.« less

  11. Workshop on Pion-Kaon Interactions (PKI2018) Mini-Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaryan, M; Pal, Bilas

    This volume is a short summary of talks given at the PKI2018 Workshop organized to discuss current status and future prospects of pi -K interactions. The precise data on pi K interaction will have a strong impact on strange meson spectroscopy and form factors that are important ingredients in the Dalitz plot analysis of a decays of heavy mesons as well as precision measurement of Vus matrix element and therefore on a test of unitarity in the first raw of the CKM matrix. The workshop has combined the efforts of experimentalists, Lattice QCD, and phenomenology communities. Experimental data relevant tomore » the topic of the workshop were presented from the broad range of different collaborations like CLAS, GlueX, COMPASS, BaBar, BELLE, BESIII, VEPP-2000, and LHCb. One of the main goals of this workshop was to outline a need for a new high intensity and high precision secondary KL beam facility at JLab produced with the 12 GeV electron beam of CEBAF accelerator.« less

  12. Underground physics with DUNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryavtsev, Vitaly A.

    2016-06-09

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches.more » In this study, we will focus on the underground physics with DUNE.« less

  13. Proposed BISOL Facility - a Conceptual Design

    NASA Astrophysics Data System (ADS)

    Ye, Yanlin

    2018-05-01

    In China, a new large-scale nuclear-science research facility, namely the "Beijing Isotope-Separation-On-Line neutron-rich beam facility (BISOL)", has been proposed and reviewed by the governmental committees. This facility aims at both basic science and application goals, and is based on a double-driver concept. On the basic science side, the radioactive ion beams produced from the ISOL device, driven by a research reactor or by an intense deuteron-beam ac- celerator, will be used to study the new physics and technologies at the limit of the nuclear stability in the medium mass region. On the other side regarding to the applications, the facility will be devoted to the material research asso- ciated with the nuclear energy system, by using typically the intense neutron beams produced from the deuteron-accelerator driver. The initial design will be outlined in this report.

  14. Heavy Ion Current Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, Robert A.; Vizkelethy, Gyorgy; McMorrow, Dale; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philipe; Duhanel, Olivier; Phillips, Stanley D.; Sutton, Akil K.; hide

    2009-01-01

    Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT: a) Position correlation[ b) Unique response for different bias schemes; c) Similarities to TPA pulsed-laser data. Heavy ion broad-beam transients provide more realistic device response: a) Feedback using microbeam data; b) Overcome issues of LET and ion range with microbeam. Both micro- and broad-beam data sets yield valuable input for TCAD simulations. Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates.

  15. Automated System Calibration and Verification of the Position Measurements for the Los Alamos Isotope Production Facility and the Switchyard Kicker Facilities

    NASA Astrophysics Data System (ADS)

    Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.

    2004-11-01

    The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.

  16. NSLS-II Preliminary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dierker, S.

    2007-11-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configurationmore » to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopy on a single atom. In order to meet this need, NSLS-II has been designed to provide world-leading brightness and flux and exceptional beam stability. The brightness is defined as the number of photons emitted per second, per photon energy bandwidth, per solid angle, and per unit source size. Brightness is important because it determines how efficiently an intense flux of photons can be refocused to a small spot size and a small divergence. It scales as the ring current and the number of total periods of the undulator field (both of which contribute linearly to the total flux), as well as eing nversely proportional to the horizontal and vertical emittances (the product of beam size and divergence) of the electron beam. Raising the current in the storage ring to obtain even brighter beams is ultimately limited by beam-driven, collective instabilities in the accelerator. Thus, to maximize the brightness, the horizontal and vertical emittances must be made as small as possible. With the concept of using damping wigglers, low-field bending magnets, and a large number of lattice cells to achieve ultra small emittance, the performance of NSLS-II will be nearly at the ultimate limit of storage ring light sources, set by the intrinsic properties of the synchrotron radiation process. The facility will produce x-rays more than 10,000 times brighter than those produced at NSLS today. The facility, with various insertion devices, including three-pole-wigglers and low-field dipole radiations, has the capability of covering a broad range of radiation spectra, from hard x-ray to far infra-red. The superlative character and combination of capabilities will have broad impact on a wide range of disciplines and scientific initiatives in the coming decades, including new studies of small crystals in structural biology, a wide range of nanometer-resolution probes for nanoscience, coherent imaging of the structure and dynamics of disordered materials, greatly increased applicability of inelastic x-ray scattering, and properties of materials under extreme conditions. Commissioned in 1982, the existing National Synchrotron Light Source (NSLS) provides essential scientific tools for 2,300 scientists per year from more than 400 academic, industrial, and government institutions. Their myriad research programs produce about 800 publications per year, with more than 130 appearing in premier journals. It was designed in the 1970s and is now in its third decade of service. It has been continually upgraded over the years, with the brightness increasing fully five orders of magnitude. However, it has reached the theoretical limits of performance given its small circumference and small periodicity, and only a small number of insertion devices are possible.« less

  17. Comprehensive evaluation of broad-beam transmission of patient supports from three fluoroscopy-guided interventional systems.

    PubMed

    DeLorenzo, Matthew C; Yang, Kai; Li, Xinhua; Liu, Bob

    2018-04-01

    The purpose of the study was to measure, evaluate, and model the broad-beam x-ray transmission of the patient supports from representative modern fluoroscopy-guided interventional systems, for patient skin dose calculation. Broad-beam transmission was evaluated by varying incident angle, kVp, added copper (Cu) filter, and x-ray field size for three fluoroscopy systems: General Electric (GE) Innova 4100 with Omega V table and pad, Siemens Axiom Artis with Siemens tabletop "narrow" (CARD) table and pad, and Siemens Zeego with Trumpf TruSystem 7500 table and pad. Field size was measured on the table using a lead ruler for all setups in this study. Exposure rates were measured in service mode using a calibrated Radcal 10 × 6-60 ion chamber above the patient support at the assumed skin location. Broad-beam transmission factors were calculated by the ratio of air kerma rates measured with and without a patient support in the beam path. First, angle dependency was investigated on the GE system, with the chamber at isocenter, for angles of 0°, 15°, 30°, and 40°, for a variety of kVp, added Cu filters, and for two field sizes (small and large). Second, the broad-beam transmission factor at normal incidence was evaluated for all three fluoroscopes by varying kVp, added Cu filter, and field size (small, medium, and large). An analytical equation was created to fit the data as to maximize R 2 and minimize maximum percentage difference across all measurements for each system. For all patient supports, broad-beam transmission factor increased with field size, kVp, and added Cu filtration and decreased with incident angle. Oblique incidence measurements show that the transmission decreased by about 1%, 3%, and 6% for incident angles of 15°, 30°, and 40°, respectively. The broad-beam transmission factors at 0° for the table and table plus pad ranged from 0.73 to 0.96 and from 0.59 to 0.89, respectively. The GE and Siemens transmission factors were comparable, while the Trumpf transmission factors were the lowest. The data were successfully fitted to a function of angle, field size, kVp, and added Cu filtration using nine parameters, with an average R 2 value of 0.977 and maximum percentage difference of 4.08%. This study evaluated the broad-beam transmission for three representative fluoroscopy systems and their dependency on angle, kVp, added Cu filter, and field size. The comprehensive data provided for patient support transmission will facilitate accurate calculation of peak skin dose (PSD) and may potentially be integrated into real-time and retrospective dose monitoring with access to Radiation Dose Structured Reports (RDSR) and radiation event data. © 2018 American Association of Physicists in Medicine.

  18. Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.

    PubMed

    Cornelius, Iwan; Guatelli, Susanna; Fournier, Pauline; Crosbie, Jeffrey C; Sanchez Del Rio, Manuel; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael

    2014-05-01

    Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.

  19. Overview of laser systems for the Orion facility at the AWE.

    PubMed

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

  20. Monte Carlo simulations for the shielding of the future high-intensity accelerator facility FAIR at GSI.

    PubMed

    Radon, T; Gutermuth, F; Fehrenbacher, G

    2005-01-01

    The Gesellschaft für Schwerionenforschung (GSI) is planning a significant expansion of its accelerator facilities. Compared to the present GSI facility, a factor of 100 in primary beam intensities and up to a factor of 10,000 in secondary radioactive beam intensities are key technical goals of the proposal. The second branch of the so-called Facility for Antiproton and Ion Research (FAIR) is the production of antiprotons and their storage in rings and traps. The facility will provide beam energies a factor of approximately 15 higher than presently available at the GSI for all ions, from protons to uranium. The shielding design of the synchrotron SIS 100/300 is shown exemplarily by using Monte Carlo calculations with the FLUKA code. The experimental area serving the investigation of compressed baryonic matter is analysed in the same way. In addition, a dose comparison is made for an experimental area operated with medium energy heavy-ion beams. Here, Monte Carlo calculations are performed by using either heavy-ion primary particles or proton beams with intensities scaled by the mass number of the corresponding heavy-ion beam.

  1. Simulations for the future converter of the e-linac for the TRIUMF ARIEL facility

    NASA Astrophysics Data System (ADS)

    Lebois, M.; Bricault, P.

    2011-09-01

    In the next years, TRIUMF activity will be focused on building a new facility to produce very intense neutron rich radioactive ion beams. Unlike others ISOL facilities, the e-linac primary beam, that will induce the fission, is an intense electron beam (50 MeV energy and 10 mA intensity). This challenging choice, which make this installation unique, despite the ALTO facility, makes an average fission rate of 1013-14fissions/s in the target.This beam is sent on an uranium carbide target (UCx), but due to its power, it is essential to insert a "converter" on the beam path to avoid a target overheating. The purpose of this converter is to convert electrons into Bremsstralhung radiation. The γ rays produce excite the dipole resonance of 23892U (15 MeV) inducing fission. Energy deposition, fission rate and thermal behavior were simulated using Monte Carlo techniques are presented in this paper

  2. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    NASA Astrophysics Data System (ADS)

    Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.

    2011-09-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  3. Beam control of high-power broad-area photonic crystal lasers using ladderlike groove structure

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Lijie; Shu, Shili; Tian, Sicong; Lu, Zefeng; Hou, Guanyu; Lu, Huanyu; Tong, Cunzhu; Wang, Lijun

    2017-06-01

    The high-power broad-area (BA) photonic bandgap crystal (PBC) diode laser is promising as a high-brightness laser source, however, it suffers from poor lateral beam quality owing to the intrinsic drawback of BA lasers. In this paper, a ladderlike groove structure (LLGS) was proposed to improve both the lateral beam quality and emission power of BA PBC lasers. An approximately 15.4% improvement in output power and 25.2% decrease in the lateral beam parameter product (BPP) were realized and the underlying mechanism was discussed. On the basis of the one-dimensional PBC epitaxial structure, a stable vertical far field was demonstrated.

  4. The Alto Tandem and Isol Facility at IPN Orsay

    NASA Astrophysics Data System (ADS)

    Franchoo, Serge

    Alto is an infrastructure for experimental nuclear physics in France that comprises both an on-line isotope-separation facility based on the photofission of uranium and a stable-ion beam facility based on a 14.5-MV tandem accelerator. The isotope-separation on-line section of Alto is dedicated to the production of neutron-rich radioactive ion beams (RIB) from the interaction of the γ-flux induced by a 50-MeV 10-µA electron beam in a uranium-carbide target. It is dimensioned for 1011 fissions per second. The RIB facility is exploited in alternating mode with the tandem-based section of Alto, capable of accelerating both light ions for nuclear astrophysics and heavy ions for γ-spectroscopy. The facility thereby offers the opportunity to deliver beams to a large range of physics programmes from nuclear to interdisciplinary physics. In this article, we present the Alto facility as well as some of the highlights and prospects of the experimental programme.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Hyun, J.; Mihalcea, D.

    A photocathode, immersed in solenoidal magnetic field, can produce canonical-angular-momentum (CAM) dominated or “magnetized” electron beams. Such beams have an application in electron cooling of hadron beams and can also be uncoupled to yield asymmetric-emittance (“flat”) beams. In the present paper we explore the possibilities of the flat beam generation at Fermilab’s Accelerator Science and Technology (FAST) facility. We present optimization of the beam flatness and four-dimensional transverse emittance and investigate the mapping and its limitations of the produced eigen-emittances to conventional emittances using a skew-quadrupole channel. Possible application of flat beams at the FAST facility are also discussed.

  6. ELECTRON BEAM SHAPING AND ITS APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, Aliaksei

    Transverse and longitudinal electron beam shaping is a crucial part of high-brightness electron accelerator operations. In this dissertation, we report on the corresponding beam dynamics research conducted at Fermilab Accelerator Science and Technology facility (FAST) and Argonne Wakeeld Accelerator (AWA). We demonstrate an experimental method for spatial laser and electron beam shaping using microlens arrays (MLAs) at a photoinjector facility. Such a setup was built at AWA and resulted in transverse emittance reduction by a factor of 2. We present transverse emittance partitioning methods that were recently employed at FAST facility. A strongly coupled electron beam was generated in anmore » axial magnetic eld and accelerated in 1.3 GHz SRF cavities to 34 MeV. It was then decoupled in Round-To-Flat beam transformer and beams with emittance asymmetry ratio of 100 were generated. We introduce the new methods of measuring electron beam canonical angular momentum, beam transformer optimization and beam image analysis. We also describe a potential longitudinal space-charge amplier setup for FAST high-energy beamline. As an outcome, a broadband partially coherent radiation in the UV range could be generated.« less

  7. Electron string phenomenon: physics and use

    NASA Astrophysics Data System (ADS)

    Donets, Evgeny D.

    2004-01-01

    Electron string phenomenon arises as a result of phase transition of a state of multiply reflected electron beam to this new discovered state of one component electron plasma and can be easily observed in the reflex mode of EBIS operation. The transition goes via a strong instability, which causes considerable electron energy spread, which in its turn suppresses the instability. Electron string state is a stationary state of hot pure electron plasma, which is heated by injected electron beam and cooled because of electron loses. Electron string is quiet in broad regions of experimental parameters, so that it is used for confinement and ionization of positive ions by electron impact to highly charge states similar to electron beams in EBIS. Application of electron strings instead of electron beams for ion production allows to save about 99% of electric power of electron beam and simultaneously to improve reliability of an ion source considerably. The JINR EBIS `Krion-2' in the string mode of operation is used for production of N7+, Ar16+ and Fe24+ ion beams and their acceleration to relativistic energies on the facility of the JINR super conducting one turn injection synchrotron `Nuklotron'. The tubular electron string possibly can exist and it is under study now theoretically and experiments are prepared now. Estimations show that a Tubular Electron String Ion Source (TESIS) could have up to three orders of magnitude higher ion output then a Linear one (LESIS). In frames of nuclear astrophysics electron strings can be used for research of fusion nuclear reactions at low energies in conditions when both beam and target nuclei do not carry orbital electrons. The project NARITA — Nuclear Astrophysics Researches in an Ion Trap Apparatus is proposed. Polarization effects also can be studied.

  8. Wire Chambers and Cherenkov Detectors at Fermilab Test Beam Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tame Narvaez, Karla

    2017-01-01

    Fermilab Test Beam Facility (FTBF) is dedicated to helping scientists test their prototypes. For this, FTBF has instrumentation that is very useful for the users. However, before a user can test a detector, it is necessary to ensure the facility has the characteristics they need. During this summer, we studied beam properties by collecting Cherenkov and wire chamber data. Analyzed data will be used for updating the general information that FTBF posts on a web page.

  9. The accelerator facility of the Heidelberg Ion-Beam Therapy Centre (HIT)

    NASA Astrophysics Data System (ADS)

    Peters, Andreas

    The following sections are included: * Introduction * Beam parameters * General layout of the HIT facility * The accelerator chain in detail * Operational aspects of a particle therapy facility * 24/7 accelerator operation at 335 days per year * Safety and regulatory aspects * Status and perspectives * References

  10. Response of avian embryonic brain to spatially segmented x-ray microbeams.

    PubMed

    Dilmanian, F A; Morris, G M; Le Duc, G; Huang, X; Ren, B; Bacarian, T; Allen, J C; Kalef-Ezra, J; Orion, I; Rosen, E M; Sandhu, T; Sathé, P; Wu, X Y; Zhong, Z; Shivaprasad, H L

    2001-05-01

    Duck embryo was studied as a model for assessing the effects of microbeam radiation therapy (MRT) on the human infant brain. Because of the high risk of radiation-induced disruption of the developmental process in the immature brain, conventional wide-beam radiotherapy of brain tumors is seldom carried out in infants under the age of three. Other types of treatment for pediatric brain tumors are frequently ineffective. Recent findings from studies in Grenoble on the brain of suckling rats indicate that MRT could be of benefit for the treatment of early childhood tumors. In our studies, duck embryos were irradiated at 3-4 days prior to hatching. Irradiation was carried out using a single exposure of synchrotron-generated X-rays, either in the form of parallel microplanar beams (microbeams), or as non-segmented broad beam. The individual microplanar beams had a width of 27 microm and height of 11 mm, and a center-to-center spacing of 100 microm. Doses to the exposed areas of embryo brain were 40, 80, 160 and 450 Gy (in-slice dose) for the microbeam, and 6, 12 and 18 Gy for the broad beam. The biological end point employed in the study was ataxia. This neurological symptom of radiation damage to the brain developed within 75 days of hatching. Histopathological analysis of brain tissue did not reveal any radiation induced lesions for microbeam doses of 40-160 Gy (in-slice), although some incidences of ataxia were observed in that dose group. However, severe brain lesions did occur in animals in the 450 Gy microbeam dose groups, and mild lesions in the 18 Gy broad beam dose group. These results indicate that embryonic duck brain has an appreciably higher tolerance to the microbeam modality, as compared to the broad beam modality. When the microbeam dose was normalized to the full volume of the irradiated tissue. i.e., the dose averaged over microbeams and the space between the microbeams, brain tolerance was estimated to be about three times higher to microbeam irradiation as compared with broad beam irradiation.

  11. Future Opportunities at the Facility for Rare Isotope Beams

    NASA Astrophysics Data System (ADS)

    Sherrill, Bradley M.

    2018-05-01

    This paper overviews the Facility for Rare Isotope Beams, FRIB, its construction status at the time of the conference, and its scientific program. FRIB is based on a high-power, heavy-ion, superconducting linear accelerator that is designed to deliver at least 400kW at 200 MeV/u for all stable-ion beams and produce a large fraction of all possible isotopes of the elements. A three-stage fragment separator will separate rare isotope beams for use in experiments at high energy or stopped and reaccelerated to up to 10MeV/u. The facility is expected to have first beams in 2021. An overview of the planned scientific program, experimental capabilities, and equipment initiatives are presented.

  12. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colby, Eric R.; Hogan, Mark J.; /SLAC

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As themore » department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.« less

  13. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    DOE PAGES

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; ...

    2015-04-27

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of amore » unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm⁻¹. The response time of the TRIR detection setup is ~40 ns, with a typical sensitivity of ~100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. As a result, this new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.« less

  14. The South African isotope facility project

    NASA Astrophysics Data System (ADS)

    Bark, R. A.; Barnard, A. H.; Conradie, J. L.; de Villiers, J. G.; van Schalkwyk, P. A.

    2018-05-01

    The South African Isotope Facility (SAIF) is a project in which iThemba LABS plans to build a radioactive-ion beam (RIB) facility. The project is divided into the Accelerator Centre of Exotic Isotopes (ACE Isotopes) and the Accelerator Centre for Exotic Beams (ACE Beams). For ACE Isotopes, a high-current, 70 MeV cyclotron will be acquired to take radionuclide production off the existing Separated Sector Cyclotron (SSC). A freed up SSC will then be available for an increased tempo of nuclear physics research and to serve as a driver accelerator for the ACE Beams project, in which protons will be used for the direct fission of Uranium, producing beams of fission fragments. The ACE Beams project has begun with "LeRIB" - a Low Energy RIB facility, now under construction. In a collaboration with INFN Legnaro, the target/ion-source "front-end" will be a copy of the front-end developed for the SPES project. A variety of targets may be inserted into the SPES front-end; a uranium-carbide target has been designed to produce up to 2 × 1013 fission/s using a 70 MeV proton beam of 150 µA intensity.

  15. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy

    2015-01-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  16. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.

  17. Measurement of track structure parameters of low and medium energy helium and carbon ions in nanometric volumes

    NASA Astrophysics Data System (ADS)

    Hilgers, G.; Bug, M. U.; Rabus, H.

    2017-10-01

    Ionization cluster size distributions produced in the sensitive volume of an ion-counting wall-less nanodosimeter by monoenergetic carbon ions with energies between 45 MeV and 150 MeV were measured at the TANDEM-ALPI ion accelerator facility complex of the LNL-INFN in Legnaro. Those produced by monoenergetic helium ions with energies between 2 MeV and 20 MeV were measured at the accelerator facilities of PTB and with a 241Am alpha particle source. C3H8 was used as the target gas. The ionization cluster size distributions were measured in narrow beam geometry with the primary beam passing the target volume at specified distances from its centre, and in broad beam geometry with a fan-like primary beam. By applying a suitable drift time window, the effective size of the target volume was adjusted to match the size of a DNA segment. The measured data were compared with the results of simulations obtained with the PTB Monte Carlo code PTra. Before the comparison, the simulated cluster size distributions were corrected with respect to the background of additional ionizations produced in the transport system of the ionized target gas molecules. Measured and simulated characteristics of the particle track structure are in good agreement for both types of primary particles and for both types of the irradiation geometry. As the range in tissue of the ions investigated is within the typical extension of a spread-out Bragg peak, these data are useful for benchmarking not only ‘general purpose’ track structure simulation codes, but also treatment planning codes used in hadron therapy. Additionally, these data sets may serve as a data base for codes modelling the induction of radiation damages at the DNA-level as they almost completely characterize the ionization component of the nanometric track structure.

  18. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prost, L. R.

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  19. Influence of the nucleus area distribution on the survival fraction after charged particles broad beam irradiation.

    PubMed

    Wéra, A-C; Barazzuol, L; Jeynes, J C G; Merchant, M J; Suzuki, M; Kirkby, K J

    2014-08-07

    It is well known that broad beam irradiation with heavy ions leads to variation in the number of hit(s) received by each cell as the distribution of particles follows the Poisson statistics. Although the nucleus area will determine the number of hit(s) received for a given dose, variation amongst its irradiated cell population is generally not considered. In this work, we investigate the effect of the nucleus area's distribution on the survival fraction. More specifically, this work aims to explain the deviation, or tail, which might be observed in the survival fraction at high irradiation doses. For this purpose, the nucleus area distribution was added to the beam Poisson statistics and the Linear-Quadratic model in order to fit the experimental data. As shown in this study, nucleus size variation, and the associated Poisson statistics, can lead to an upward survival trend after broad beam irradiation. The influence of the distribution parameters (mean area and standard deviation) was studied using a normal distribution, along with the Linear-Quadratic model parameters (α and β). Finally, the model proposed here was successfully tested to the survival fraction of LN18 cells irradiated with a 85 keV µm(- 1) carbon ion broad beam for which the distribution in the area of the nucleus had been determined.

  20. Jefferson Lab Science: Present and Future

    DOE PAGES

    McKeown, Robert D.

    2015-02-12

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  1. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, K. G.; Wetteland, C. J.; Cao, G.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less

  2. Neutron imaging with the short-pulse laser driven neutron source at the TRIDENT Laser Facility

    DOE PAGES

    Guler, Nevzat; Volegov, Petr Lvovich; Favalli, Andrea; ...

    2016-10-17

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at themore » laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ~5x10 9 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5 to 35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ~1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. Finally, these experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the basic acceleration mechanism, which remains an ongoing challenge.« less

  3. Neutron imaging with the short-pulse laser driven neutron source at the TRIDENT Laser Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guler, Nevzat; Volegov, Petr Lvovich; Favalli, Andrea

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at themore » laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ~5x10 9 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5 to 35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ~1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. Finally, these experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the basic acceleration mechanism, which remains an ongoing challenge.« less

  4. Accelerator Physics Working Group Summary

    NASA Astrophysics Data System (ADS)

    Li, D.; Uesugi, T.; Wildnerc, E.

    2010-03-01

    The Accelerator Physics Working Group addressed the worldwide R&D activities performed in support of future neutrino facilities. These studies cover R&D activities for Super Beam, Beta Beam and muon-based Neutrino Factory facilities. Beta Beam activities reported the important progress made, together with the research activity planned for the coming years. Discussion sessions were also organized jointly with other working groups in order to define common ground for the optimization of a future neutrino facility. Lessons learned from already operating neutrino facilities provide key information for the design of any future neutrino facility, and were also discussed in this meeting. Radiation damage, remote handling for equipment maintenance and exchange, and primary proton beam stability and monitoring were among the important subjects presented and discussed. Status reports for each of the facility subsystems were presented: proton drivers, targets, capture systems, and muon cooling and acceleration systems. The preferred scenario for each type of possible future facility was presented, together with the challenges and remaining issues. The baseline specification for the muon-based Neutrino Factory was reviewed and updated where required. This report will emphasize new results and ideas and discuss possible changes in the baseline scenarios of the facilities. A list of possible future steps is proposed that should be followed up at NuFact10.

  5. Nuclear Structure Studies with Stable and Radioactive Beams: The SPES radioactive ion beam project

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; SPES Collaboration; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2015-04-01

    A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced fission on an Uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research centre for radio-isotopes production for medicine and for neutron beams.

  6. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes

    NASA Astrophysics Data System (ADS)

    Barquest, B. R.; Bollen, G.; Mantica, P. F.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. S.

    2017-09-01

    A radiofrequency quadrupole (RFQ) ion beam cooler and buncher has been developed to deliver bunched beams with low transverse emittance, energy spread, and time spread to the BECOLA collinear laser spectroscopy system at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The beam cooler and buncher contains new features which enhance performance, especially for high count rate beams, as well as simplifying construction, maintenance, and operation. The transverse emittance, energy spread, and time spread of the bunched beam, as well as buncher efficiency are reported, showcasing the capabilities of the BECOLA facility to perform collinear laser spectroscopy measurements with bunched rare isotope beams at NSCL and at the future Facility for Rare Isotope Beams (FRIB).

  7. Beam line shielding calculations for an Electron Accelerator Mo-99 production facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2016-05-03

    The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report themore » resulting neutron and photon dose fields.« less

  8. Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching

    DOEpatents

    Hohimer, John P.

    1994-01-01

    A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure.

  9. Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching

    DOEpatents

    Hohimer, J.P.

    1994-06-07

    A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure. 6 figs.

  10. Discrimination of ionic species from broad-beam ion sources

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.

    1993-01-01

    The performance of a broad-beam, three-grid, ion extraction system incorporating radio frequency (RF) mass discrimination was investigated experimentally. This testing demonstrated that the system, based on a modified single-stage Bennett mass spectrometer, can discriminate between ionic species having about a 2-to-1 mass ratio while producing a broad-beam of ions with low kinetic energy (less than 15 eV). Testing was conducted using either argon and krypton ions or atomic and diatomic oxygen ions. A simple one-dimensional model, which ignores magnetic field and space-charge effects, was developed to predict the species separation capabilities as well as the kinetic energies of the extracted ions. The experimental results correlated well with the model predictions. This RF mass discrimination system can be used in applications where both atomic and diatomic ions are produced, but a beam of only one of the species is desired. An example of such an application is a 5 eV atomic oxygen source. This source would produce a beam of atomic oxygen with 5 eV kinetic energy, which would be directed onto a material specimen, to simulate the interaction between the surface of a satellite and the rarefied atmosphere encountered in low-Earth orbit.

  11. Calibration of hard x-ray (15 - 50 keV) optics at the MPE test facility PANTER

    NASA Astrophysics Data System (ADS)

    Bräuninger, Heinrich; Burkert, Wolfgang; Hartner, Gisela D.; Citterio, Oberto; Ghigo, Mauro; Mazzoleni, Francesco; Pareschi, Giovanni; Spiga, Daniele

    2004-02-01

    The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, operates the large X-ray beam line facility PANTER for testing astronomical systems. At PANTER a number of telescopes like EXOSAT, ROSAT, SAX, JET-X, ABRIXAS, XMM and SWIFT operating in the soft energy range (0.02 - 15 keV) have been successfully calibrated. In the present paper we report on an important upgrade recently implemented that enables the calibration of hard X-ray optics (from 15 up to 50 keV). Currently hard X-ray optics based on single and multilayer coating are being developed for several future X-ray missions. The hard X-ray calibrations at PANTER are carried out by a high energy source based on an electron gun and several anodes, able to cover the energy range from 4.5 up to 50 keV. It provides fluxes up to 104 counts/sec/cm2 at the instrument chamber with a stability better than 1%. As detector a pn-CCD camera operating between 0.2 and 50 keV and a collecting area of 36 cm2 is used. Taking into account the high energy resolution of the CCD (145 eV at 6 keV), a very easy way to operate the facility in hard X-ray is in energy-dispersive mode (i.e. with a broad-band beam). A double crystal monochromator is also available providing energies up to 20 keV. In this paper we present the first results obtained by using PANTER for hard X-ray characterizations, performed on prototype multilayer optics developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA.

  12. High intensity neutrino oscillation facilities in Europe

    DOE PAGES

    Edgecock, T. R.; Caretta, O.; Davenne, T.; ...

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ + and μ – beams in a storage ring. The far detector in thismore » case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. Furthermore, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.« less

  13. Development of a collinear laser spectrometer facility at VECC: First test result

    NASA Astrophysics Data System (ADS)

    Ali, Md Sabir; Ray, Ayan; Raja, Waseem; Bandyopadhyay, Arup; Naik, Vaishali; Polley, Asish; Chakrabarti, Alok

    2018-04-01

    We report here the development of collinear laser spectroscopy (CLS) system at VECC for the study of hyperfine spectrum and isotopic shift of stable and unstable isotopes. The facility is first of its kind in the country allowing measurement of hyperfine splitting of atomic levels using atomic beams. The CLS system is installed downstream of the focal plane of the existing isotope separator online (ISOL) facility at VECC and is recently commissioned by successfully resolving the fluorescence spectrum of the hyperfine levels in ^{85,87}Rb. The atomic beams of Rb were produced by charge exchange of 8 keV Rb ion beam which were produced, extracted and transported to the charge exchange cell using the ion sources, extractor and the beam-line magnets of the ISOL facility. The laser propagating opposite to the ion / atom beam direction was allowed to interact with the atom beam and fluorescence spectrum was recorded. The experimental set-up and the experiment conducted are reported in detail. The measures needed to be carried out for improving the sensitivity to a level necessary for studying short-lived exotic nuclei have also been discussed.

  14. Electron cyclotron resonance ion sources in use for heavy ion cancer therapy.

    PubMed

    Tinschert, K; Iannucci, R; Lang, R

    2008-02-01

    The use of electron cyclotron resonance (ECR) ion sources for producing ion beams for heavy ion cancer therapy has been established for more than ten years. After the Heavy Ion Medical Accelerator (HIMAC) at Chiba, Japan started therapy of patients with carbon ions in 1994 the first carbon ion beam for patient treatment at the accelerator facility of GSI was delivered in 1997. ECR ion sources are the perfect tool for providing the required ion beams with good stability, high reliability, and easy maintenance after long operating periods. Various investigations were performed at GSI with different combinations of working gas and auxiliary gas to define the optimal beam conditions for an extended use of further ion species for the dedicated Heidelberg Ion Beam Therapy (HIT) facility installed at the Radiological University Hospital Heidelberg, Germany. Commercially available compact all permanent magnet ECR ion sources operated at 14.5 GHz were chosen for this facility. Besides for (12)C(4+) these ion sources are used to provide beams of (1)H(3)(1+), (3)He(1+), and (16)O(6+). The final commissioning at the HIT facility could be finished at the end of 2006.

  15. Ion Beam Facilities at the National Centre for Accelerator based Research using a 3 MV Pelletron Accelerator

    NASA Astrophysics Data System (ADS)

    Trivedi, T.; Patel, Shiv P.; Chandra, P.; Bajpai, P. K.

    A 3.0 MV (Pelletron 9 SDH 4, NEC, USA) low energy ion accelerator has been recently installed as the National Centre for Accelerator based Research (NCAR) at the Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, India. The facility is aimed to carried out interdisciplinary researches using ion beams with high current TORVIS (for H, He ions) and SNICS (for heavy ions) ion sources. The facility includes two dedicated beam lines, one for ion beam analysis (IBA) and other for ion implantation/ irradiation corresponding to switching magnet at +20 and -10 degree, respectively. Ions with 60 kV energy are injected into the accelerator tank where after stripping positively charged ions are accelerated up to 29 MeV for Au. The installed ion beam analysis techniques include RBS, PIXE, ERDA and channelling.

  16. The Neutrons for Science Facility at SPIRAL-2

    NASA Astrophysics Data System (ADS)

    Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Audouin, L.; Balanzat, E.; Ban-détat, B.; Ban, G.; Barreau, G.; Bauge, E.; Bélier, G.; Bem, P.; Blideanu, V.; Borcea, C.; Bouffard, S.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fallot, M.; Farget, F.; Fischer, U.; Giot, L.; Granier, T.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Jacquot, B.; Jansson, K.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrazek, J.; Negoita, F.; Novak, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Plompen, A. J. M.; Pomp, S.; Ramillon, J. M.; Ridikas, D.; Rossé, B.; Rudolf, G.; Serot, O.; Simakov, S. P.; Simeckova, E.; Smith, A. G.; Sublet, J. C.; Taieb, J.; Tassan-Got, L.; Tarrio, D.; Takibayev, A.; Thfoin, I.; Tsekhanovich, I.; Varignon, C.

    2014-05-01

    The Neutrons For Science (NFS) facility is a component of SPIRAL-2 laboratory under construction at Caen (France). SPIRAL-2 is dedicated to the production of high intensity Radioactive Ions Beams (RIB). It is based on a high-power linear accelerator (LINAG) to accelerate deuterons beams in order to produce neutrons by breakup reactions on a C converter. These neutrons will induce fission in 238U for production of radioactive isotopes. Additionally to the RIB production, the proton and deuteron beams delivered by the accelerator will be used in the NFS facility. NFS is composed of a pulsed neutron beam and irradiation stations for cross-section measurements and material studies. The beams delivered by the LINAG will allow producing intense neutron beams in the 100 keV-40 MeV energy range with either a continuous or quasi-mono-energetic spectrum. At NFS available average fluxes will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV - 40 MeV range. NFS will be a very powerful tool for fundamental physics and application related research in support of the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. The facility and its characteristics are described, and several examples of the first potential experiments are presented.

  17. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    PubMed

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  18. A possible biomedical facility at the European Organization for Nuclear Research (CERN)

    PubMed Central

    Dosanjh, M; Myers, S

    2013-01-01

    A well-attended meeting, called “Brainstorming discussion for a possible biomedical facility at CERN”, was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990

  19. Growth of electron plasma waves above and below f(p) in the electron foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Fung, Shing F.

    1988-01-01

    This paper investigates the conditions required for electron beams to drive wave growth significantly above and below the electron plasma frequency, f(p), by numerically solving the linear dispersion equation. It is shown that kinetic growth well below f(p) may occur over a broad range of frequencies due to the beam instability, when the electron beam is slow, dilute, and relatively cold. Alternatively, a cold or sharp feature at low parallel velocities in the distribution function may drive kinetic growth significantly below f(p). Kinetic broadband growth significantly above f(p) is explained in terms of faster warmer beams. A unified qualitative theory for the narrow-band and broad-band waves is proposed.

  20. The radioactive beam facility ALTO

    NASA Astrophysics Data System (ADS)

    Essabaa, Saïd; Barré-Boscher, Nicole; Cheikh Mhamed, Maher; Cottereau, Evelyne; Franchoo, Serge; Ibrahim, Fadi; Lau, Christophe; Roussière, Brigitte; Saïd, Abdelhakim; Tusseau-Nenez, Sandrine; Verney, David

    2013-12-01

    The Transnational Access facility ALTO (TNA07-ENSAR/FP7) has been commissioned and received from the French safety authorities, the operation license. It is allowed to run at nominal intensity to produce 1011 fissions/s in a thick uranium carbide target by photo-fission using a 10 μA, 50 MeV electron beam. In addition the recent success in operating the selective laser ion source broadens the physics program with neutron-rich nuclear beams possible at this facility installed at IPN Orsay. The facility also aims at being a test bench for the SPIRAL2 project. In that framework an ambitious R&D program on the target ion source system is being developed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gündoğan, M. Tural, E-mail: mugetural@yahoo.com; Yavaş, Ö., E-mail: yavas@ankara.edu.tr; Kaya, Ç., E-mail: c.kaya@ankara.edu.tr

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC.more » The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.« less

  2. Carbon Beam Radio-Therapy and Research Activities at HIMAC

    NASA Astrophysics Data System (ADS)

    Kanazawa, Mitsutaka

    2007-05-01

    Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R&D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R&D's will be presented together with clinical results and basic research activities at HIMAC.

  3. Proton Therapy Facility Planning From a Clinical and Operational Model.

    PubMed

    Das, Indra J; Moskvin, Vadim P; Zhao, Qingya; Cheng, Chee-Wai; Johnstone, Peter A

    2015-10-01

    This paper provides a model for planning a new proton therapy center based on clinical data, referral pattern, beam utilization and technical considerations. The patient-specific data for the depth of targets from skin in each beam angle were reviewed at our center providing megavoltage photon external beam and proton beam therapy respectively. Further, data on insurance providers, disease sites, treatment depths, snout size and the beam angle utilization from the patients treated at our proton facility were collected and analyzed for their utilization and their impact on the facility cost. The most common disease sites treated at our center are head and neck, brain, sarcoma and pediatric malignancies. From this analysis, it is shown that the tumor depth from skin surface has a bimodal distribution (peak at 12 and 26 cm) that has significant impact on the maximum proton energy, requiring the energy in the range of 130-230 MeV. The choice of beam angles also showed a distinct pattern: mainly at 90° and 270°; this indicates that the number of gantries may be minimized. Snout usage data showed that 70% of the patients are treated with 10 cm snouts. The cost of proton beam therapy depends largely on the type of machine, maximum beam energy and the choice of gantry versus fixed beam line. Our study indicates that for a 4-room center, only two gantry rooms could be needed at the present pattern of the patient cohorts, thus significantly reducing the initial capital cost. In the USA, 95% and 100% of patients can be treated with 200 and 230 MeV proton beam respectively. Use of multi-leaf collimators and pencil beam scanning may further reduce the operational cost of the facility. © The Author(s) 2014.

  4. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  5. CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauger, Christopher M.

    2015-10-29

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of themore » effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.« less

  6. Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma

    NASA Astrophysics Data System (ADS)

    Van Compernolle, B.; Tripathi, S.; Gekelman, W. N.; Colestock, P. L.; Pribyl, P.

    2012-12-01

    The generation of waves by ion ring distributions is of great importance in many instances in space plasmas. They occur naturally in the magnetosphere through the interaction with substorms, or they can be man-made in ionospheric experiments by photo-ionization of neutral atoms injected perpendicular to the earth's magnetic field. The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ≃ 1012 \\ cm-3, B0 = 1000 G - 1800 G, fpe}/f{ce ≃ 1 - 5, Te = 0.25\\ eV, vte ≤ vA). The ion beam \\cite{Tripathi_ionbeam} is a Helium beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfvén velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfvén wave regime, and in a broad spectrum above fci in the lower hybrid frequency range, the focus of this paper. The wave spectra have distinct peaks close to ion cyclotron harmonics, extending out to the 100th harmonic in some cases. The wave generation was studied for various magnetic fields and background plasma densities, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the perpendicular mode structure will be shown. Langmuir probes were used to measure density and temperature evolution due to the beam-plasma interaction. Retarding field energy analyzers captured the ion beam profiles. The work was performed at the LArge Plasma Device at the Basic Plasma Science Facility (BaPSF) at UCLA, funded by DOE/NSF.

  7. Electronic warfare antenna systems - Past and present

    NASA Astrophysics Data System (ADS)

    Yaw, D.

    1981-09-01

    In discussing fixed beam arrays, it is noted that an array may be used to create simultaneous fixed beams or to form asymmetric beams of a desired shape. Attention is also given to arrays and beam control, noting that for some electronic warfare applications combinations of broad and narrow beam antenna response are needed. Other topics include ECM jamming antenna techniques and advanced array systems.

  8. TSR: A storage and cooling ring for HIE-ISOLDE

    NASA Astrophysics Data System (ADS)

    Butler, P. A.; Blaum, K.; Davinson, T.; Flanagan, K.; Freeman, S. J.; Grieser, M.; Lazarus, I. H.; Litvinov, Yu. A.; Lotay, G.; Page, R. D.; Raabe, R.; Siesling, E.; Wenander, F.; Woods, P. J.

    2016-06-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  9. Low emittance lattice for the storage ring of the Turkish Light Source Facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Z.; Aksoy, A.

    2015-06-01

    The TAC (Turkish Accelerator Center) project aims to build an accelerator center in Turkey. The first stage of the project is to construct an Infra-Red Free Electron Laser (IR-FEL) facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is a third generation synchrotron radiation light source that aims to achieve a high brilliance photon beam from a low emittance electron beam at 3 GeV. The electron beam parameters are highly dependent on the magnetic lattice of the storage ring. In this paper a low emittance storage ring for TURKAY is proposed and the beam dynamic properties of the magnetic lattice are investigated. Supported by Turkish Republic Ministry of Development (DPT2006K120470)

  10. HiRadMat at CERN SPS - A test facility with high intensity beam pulses to material samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charitonidis, N.; Fabich, A.; Efthymiopoulos, I.

    2015-07-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in amore » dedicated environment, excluding long-time irradiation studies. The facility is designed for a 10{sup 16} maximum number of protons per year, in order to limit the activation to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and showing examples of upcoming experiments scheduled in the beam period 2014/2015. (authors)« less

  11. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charitonidis, Nikolaos; Efthymiopoulos, Ilias; Fabich, Adrian

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in amore » dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.« less

  12. Status of the nuSTORM Facility and a Possible Extension for Long-Baseline $$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bross, Alan D.; Liu, Ao; Lagrange, Jean-Baptiste

    2015-11-03

    Neutrino beams produced from the decay of muons in a racetrack-like decay ring (the so called Neutrino Factory) provide a powerful way to study neutrino oscillation physics and, in addition, provide unique beams for neutrino interaction studies. The Neutrinos from STORed Muons (nuSTORM) facility uses a neutrino factory-like design. Due to the particular nature of nuSTORM, it can also provide an intense, very pure, muon neutrino beam from pion decay. This so-called “Neo-conventional" muon neutrino beam from nuSTORM makes nuSTORM a hybrid neutrino factory. In this paper we describe the facility and give a detailed description of the neutrino beammore » fluxes that are available and the precision to which these fluxes can be determined. We then present sensitivity plots that indicated how well the facility can perform for short-baseline oscillation searches and show its potential for a neutrino interaction physics program. Finally, we comment on the performance potential of the "Neo-conventional" muon neutrino beam optimized for long- baseline neutrino-oscillation physics.« less

  13. Overview of the Neutrinos from Stored Muons Facility - nuSTORM

    DOE PAGES

    Adey, D.; Appleby, R. B.; Bayes, R.; ...

    2017-07-19

    Neutrino beams produced from the decay of muons in a racetrack-like decay ring (the so called Neutrino Factory) provide a powerful way to study neutrino oscillation physics and, in addition, provide unique beams for neutrino interaction studies. The Neutrinos from STORed Muons (nuSTORM) facility uses a neutrino factory-like design. Due to the particular nature of nuSTORM, it can also provide an intense, very pure, muon neutrino beam from pion decay. This so-called 'Neo-conventional' muon-neutrino beam from nuSTORM makes nuSTORM a hybrid neutrino factory. Here in this paper we describe the facility and give a detailed description of the neutrino beamsmore » that are available and the precision to which they can be characterized. We then show its potential for a neutrino interaction physics program and present sensitivity plots that indicate how well the facility can perform for short-baseline oscillation searches. Lastly, we comment on the performance potential of a 'Neo-conventional' muon neutrino beam optimized for long-baseline neutrino-oscillation physics.« less

  14. Drive beam stabilisation in the CLIC Test Facility 3

    NASA Astrophysics Data System (ADS)

    Malina, L.; Corsini, R.; Persson, T.; Skowroński, P. K.; Adli, E.

    2018-06-01

    The proposed Compact Linear Collider (CLIC) uses a high intensity, low energy drive beam to produce the RF power needed to accelerate a lower intensity main beam with 100 MV/m gradient. This scheme puts stringent requirements on drive beam stability in terms of phase, energy and current. The consequent experimental work was carried out in CLIC Test Facility CTF3. In this paper, we present a novel analysis technique in accelerator physics to find beam drifts and their sources in the vast amount of the continuously gathered signals. The instability sources are identified and adequately mitigated either by hardware improvements or by implementation and commissioning of various feedbacks, mostly beam-based. The resulting drive beam stability is of 0.2°@ 3 GHz in phase, 0.08% in relative beam energy and about 0.2% beam current. Finally, we propose a stabilisation concept for CLIC to guarantee the main beam stability.

  15. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will bemore » installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.« less

  16. Microdosimetric investigation at the therapeutic proton beam facility of CATANA.

    PubMed

    De Nardo, L; Moro, D; Colautti, P; Conte, V; Tornielli, G; Cuttone, G

    2004-01-01

    Proton beams (62 Mev) are used by the Laboratori Nazionali del Sud of the Italian Institute of Nuclear Physics to treat eye melanoma tumours at the therapeutic facility called CATANA. A cylindrical slim tissue-equivalent proportional counter (TEPC) of 2.7 mm external diameter has been used to compare the radiation quality of two spread-out Bragg peaks (SOBP) at the CATANA proton beam.

  17. Nonlinear frequency doubling characteristics of asymmetric vortices of tunable, broad orbital angular momentum spectrum

    NASA Astrophysics Data System (ADS)

    Alam, Sabir Ul; Rao, A. Srinivasa; Ghosh, Anirban; Vaity, Pravin; Samanta, G. K.

    2018-04-01

    We report on a simple experimental scheme to generate and control the orbital angular momentum (OAM) spectrum of the asymmetric vortex beams in a nonlinear frequency conversion process. Using a spiral phase plate (SPP) and adjusting the transverse shift of the SPP with respect to the incident Gaussian beam axis, we have transformed the symmetric (intensity distribution) optical vortex of order l into an asymmetric vortex beam of measured broad spectrum of OAM modes of orders l, l - 1, l - 2, …, 0 (Gaussian mode). While the position of the SPP determines the distribution of the OAM modes, we have also observed that the modal distribution of the vortex beam changes with the shift of the SPP of all orders and finally results in a Gaussian beam (l = 0). Using single-pass frequency doubling of the asymmetric vortices, we have transferred the pump OAM spectra, l, l - 1, l - 2, …, 0, into the broad spectra of higher order OAM modes, 2l, 2l - 1, 2l - 2, …, 0 at green wavelength, owing to OAM conservation in nonlinear processes. We also observed an increase in single-pass conversion efficiency with the increase in asymmetry of the pump vortices producing a higher power vortex beam of mixed OAM modes at a new wavelength than that of the pure OAM mode.

  18. First radioactive beams at ACCULINNA-2 facility and first proposed experiment

    NASA Astrophysics Data System (ADS)

    Bezbakh, A. A.; Beekman, W.; Chudoba, V.; Fomichev, A. S.; Golovkov, M. S.; Gorshkov, A. V.; Grigorenko, L. V.; Kaminski, G.; Krupko, S. A.; Mentel, M.; Nikolskii, E. Yu.; Parfenova, Yu. L.; Plucinski, P.; Sidorchuk, S. I.; Slepnev, R. S.; Sharov, P. G.; Ter-Akopian, G. M.; Zalewski, B.

    2018-04-01

    New fragment separator ACCULINNA-2 was installed at the primary beam line of the U-400M cyclotron in 2016. Recently, first radioactive ion beams were obtained. The design parameters of new facility were experimentally confirmed. Intensity, purity and transverse profile of several secondary beams at the final focal plane were studied. The intensities obtained for the secondary beams of 14B, 12Be, 9;11Li, 6;8He in the fragmentation reaction 15N (49.7 AMeV) + Be (2 mm) are in average 15 times higher in comparison to the ones produced at its forerunner ACCULINNA separator. The ACCULINNA-2 separator will become a backbone facility at the FLNR for the research in the field of light exotic nuclei in the vicinity of the nuclear drip lines. The planned first experiment, aimed for the observation of the 7H nucleus at ACCULINNA-2, is outlined.

  19. Beam test of a superconducting cavity for the Fermilab high-brightness electron photo-injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Hartung, J.P. Carneiro, M. Champion, H. Edwards, J. Fuest, K. Koepke and M. Kuchnir

    1999-05-04

    An electron photo-injector facility has been constructed at Fermilab for the purpose of providing a 14�18 MeV elec-tron beam with high charge per bunch (8 nC), short bunch length (1 mm RMS), and small transverse emittance [1]. The facility was used to commission a second-generation photo-cathode RF gun for the TeSLA Test Facility (TTF) Linac at DESY [2, 3]; in the future, the Fermilab electron beam will be used for R & D in bunch length compres-sion, beam diagnostics, and new acceleration techniques. Acceleration beyond 4 MeV is provided by a 9-cell super-conducting cavity (see Figure 1). The cavity alsomore » provides a longitudinal position-momentum correlation for subse-quent bunch length compression. We report on the RF tests and a first beam test of this cavity.« less

  20. Pseudomorphic In(y)Ga(1-y)As/GaAs/Al(x)Ga(1-x)As single quantum well surface-emitting lasers with integrated 45 deg beam deflectors

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Hoon; Larsson, Anders; Lee, Luke P.

    1991-01-01

    The paper reports on the first demonstration of pseudomorphic InGaAs single quantum well surface-emitting lasers (SELs), with etched vertical mirrors and integrated 45-deg beam deflectors fabricated by ion beam etching. 100-micron-wide broad-area SELs exhibited a threshold current of 320 mA, a total power of 126 mW, and a total external differential quantum efficiency of 0.09 W/A for a 500-micron-long cavity. The perpendicular far-field pattern of broad-area SELs showed a full width at half maximum of about 20 deg. Lasers with various types of cavities fabricated from the same wafer were compared. Broad-area edge-emitting lasers had a threshold current of 200 mA, a total power of 700 mW, and a total external differential quantum efficiency of 0.52 W/A.

  1. Design update and recent results of the Apollon 10 PW facility

    NASA Astrophysics Data System (ADS)

    Le Garrec, B.; Papadopoulos, D. N.; Le Blanc, C.; Zou, J. P.; Chériaux, G.; Georges, P.; Druon, F.; Martin, L.; Fréneaux, L.; Beluze, A.; Lebas, N.; Mathieu, F.; Audebert, P.

    2017-05-01

    In this paper we are giving a summary of the Apollon 10 PW facility laser design together with updated laser performance. The Apollon facility is currently under construction in France. The APOLLON laser system is a laser designed for delivering pulses as short as 15 fs (10-15 s) with an energy exceeding 150 Joules on target. The peak power delivered by this laser system will be 10 Petawatts (1016W). The Apollon laser system will be delivering 4 beams: one 10 PW beam (F1 beam 400 mm diameter), one 1 PW beam (F2 beam 140 mm diameter) and two additional probe beams (F3 and F4) at a repetition rate of 1 shot per minute. The laser system is based on Ti-sapphire amplifiers pumped by frequency doubled solid-state lasers. The repetition rate of the high energy part will be 1 shot per minute. The main beam at the output of the last amplifier will be split and dispatched to two experimental areas. The main laser beam is delivering 30 J before compression at a repetition rate of 1 shot per minute and we are currently increasing to get 100J.

  2. Indian Test Facility (INTF) and its updates

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, M.; Chakraborty, A.; Rotti, C.; Joshi, J.; Patel, H.; Yadav, A.; Shah, S.; Tyagi, H.; Parmar, D.; Sudhir, Dass; Gahlaut, A.; Bansal, G.; Soni, J.; Pandya, K.; Pandey, R.; Yadav, R.; Nagaraju, M. V.; Mahesh, V.; Pillai, S.; Sharma, D.; Singh, D.; Bhuyan, M.; Mistry, H.; Parmar, K.; Patel, M.; Patel, K.; Prajapati, B.; Shishangiya, H.; Vishnudev, M.; Bhagora, J.

    2017-04-01

    To characterize ITER Diagnostic Neutral Beam (DNB) system with full specification and to support IPR’s negative ion beam based neutral beam injector (NBI) system development program, a R&D facility, named INTF is under commissioning phase. Implementation of a successful DNB at ITER requires several challenges need to be overcome. These issues are related to the negative ion production, its neutralization and corresponding neutral beam transport over the path lengths of ∼ 20.67 m to reach ITER plasma. DNB is a procurement package for INDIA, as an in-kind contribution to ITER. Since ITER is considered as a nuclear facility, minimum diagnostic systems, linked with safe operation of the machine are planned to be incorporated in it and so there is difficulty to characterize DNB after onsite commissioning. Therefore, the delivery of DNB to ITER will be benefited if DNB is operated and characterized prior to onsite commissioning. INTF has been envisaged to be operational with the large size ion source activities in the similar timeline, as with the SPIDER (RFX, Padova) facility. This paper describes some of the development updates of the facility.

  3. Operating experience with existing light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, M.Q.

    It is instructive to consider what an explosive growth there has been in the development of light sources using synchrotron radiation. This is well illustrated by the list of facilities given in Table I. In many cases, synchrotron light facilities have been obtained by tacking on parasitic beam lines to rings that were built for high energy physics. Of the twenty-three facilities in this table, however, eleven were built explicitely for this synchrotron radiation. Another seven have by now been converted for use as dedicated facilities leaving only five that share time with high energy physics. These five parasitically operatedmore » facilities are still among our best sources of hard x-rays, however, and their importance to the fields of science where these x-rays are needed must be emphasized. While the number of facilities in this table is impressive, it is even more impressive to add up the total number of user beam lines. Most of these rings are absolutely surrounded by beam lines and finding real estate on the experimental floor of one of these facilities for adding a new experiment looks about as practical as adding a farm in the middle of Manhattan. Nonetheless, the managers of these rings seem to have an attitude of ''always room for one more'' and new experimental beam lines do appear. This situation is necessary because the demand for beam time has exploded at an even faster rate than the development of the facilities. The field is not only growing, it can be expected to continue to grow for some time. Some of the explicit plans for future development will be discussed in the companion paper by Lee Teng.« less

  4. Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Tong, Cunzhu; Wang, Lijie; Zeng, Yugang; Tian, Sicong; Shu, Shili; Zhang, Jian; Wang, Lijun

    2016-11-01

    High-power broad-area (BA) diode lasers often suffer from low beam quality, broad linewidth, and a widened slow-axis far field with increasing current. In this paper, a two-dimensional current-modulated structure is proposed and it is demonstrated that it can reduce not only the far-field sensitivity to the injection current but also the linewidth of the lasing spectra. Injection-insensitive lateral divergence was realized, and the beam parameter product (BPP) was improved by 36.5%. At the same time, the linewidth was decreased by about 45% without significant degradations of emission power and conversion efficiency.

  5. Measurement of the 21Na(p,{gamma})22Mg Reaction with the Dragon Facility at TRIUMF-ISAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.A.; Bishop, S.; D'Auria, J.M.

    2003-08-26

    The DRAGON recoil separator facility, designed to measure the rates of radiative proton and alpha capture reactions important for nuclear astrophysics, is now operational at the TRIUMF-ISAC radioactive beam facility in Vancouver, Canada. We report on first measurements of the 21Na(p,{gamma})22Mg reaction rate with radioactive beams of 21Na.

  6. Remotely-interrogated high data rate free space laser communications link

    DOEpatents

    Ruggiero, Anthony J [Livermore, CA

    2007-05-29

    A system and method of remotely extracting information from a communications station by interrogation with a low power beam. Nonlinear phase conjugation of the low power beam results in a high power encoded return beam that automatically tracks the input beam and is corrected for atmospheric distortion. Intracavity nondegenerate four wave mixing is used in a broad area semiconductor laser in the communications station to produce the return beam.

  7. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xufei, X., E-mail: xiexufei@pku.edu.cn; Fan, T.; Nocente, M.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understandmore » neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.« less

  8. Technical developments for an upgrade of the LEBIT Penning trap mass spectrometry facility for rare isotopes

    NASA Astrophysics Data System (ADS)

    Redshaw, M.; Barquest, B. R.; Bollen, G.; Bustabad, S. E.; Campbell, C. M.; Ferrer, R.; Gehring, A.; Kwiatkowski, A. A.; Lincoln, D. L.; Morrissey, D. J.; Pang, G. K.; Ringle, R.; Schwarz, S.

    2011-07-01

    The LEBIT (Low Energy Beam and Ion Trap) facility is the only Penning trap mass spectrometry (PTMS) facility to utilize rare isotopes produced via fast-beam fragmentation. This technique allows access to practically all elements lighter than uranium, and in particular enables the production of isotopes that are not available or that are difficult to obtain at isotope separation on-line facilities. The preparation of the high-energy rare-isotope beam produced by projectile fragmentation for low-energy PTMS experiments is achieved by gas stopping to slow down and thermalize the fast-beam ions, along with an rf quadrupole cooler and buncher and rf quadrupole ion guides to deliver the beam to the Penning trap. During its first phase of operation LEBIT has been very successful, and new developments are now underway to access rare isotopes even farther from stability, which requires dealing with extremely short lifetimes and low production rates. These developments aim at increasing delivery efficiency, minimizing delivery and measurement time, and maximizing use of available beam time. They include an upgrade to the gas-stopping station, active magnetic field monitoring and stabilization by employing a miniature Penning trap as a magnetometer, the use of stored waveform inverse Fourier transform (SWIFT) to most effectively remove unwanted ions, and charge breeding.

  9. Two-dimensional silicon-based detectors for ion beam therapy

    NASA Astrophysics Data System (ADS)

    Martišíková, M.; Granja, C.; Jakůbek, J.; Hartmann, B.; Telsemeyer, J.; Huber, L.; Brons, S.; Pospíšil, S.; Jäkel, O.

    2012-02-01

    Radiation therapy with ion beams is a highly precise kind of cancer treatment. As ion beams traverse material, the highest ionization density occurs at the end of their path. Due to this Bragg-peak, ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue, in comparison to standard radiation therapy using high energy photons. Ions heavier than protons offer in addition increased biological effectiveness and lower scattering. The Heidelberg Ion Beam Therapy Center (HIT) is a state-of-the-art ion beam therapy facility and the first hospital-based facility in Europe. It provides proton and carbon ion treatments. A synchrotron is used for ion acceleration. For dose delivery to the patient, narrow pencil-like beams are scanned over the target volume.

  10. Activation Levels, Handling, and Storage of Activated Components in the Target Hall at FRIB

    NASA Astrophysics Data System (ADS)

    Georgobiani, D.; Bennett, R.; Bollen, G.; Kostin, M.; Ronningen, R.

    2018-06-01

    The Facility for Rare Isotope Beams (FRIB) is a major new scientific user facility under construction in the United States for nuclear science research with beams of rare isotopes. 400 kW beam operations with heavy ions ranging from oxygen to uranium will create a high radiation environment for many components, particularly for the beam line components located in the target hall, where approximately 100 kW of beam power are dissipated in the target and another 300 kW are dissipated in the beam dump. Detailed studies of the component activation, their remote handling, storage, and transport, have been performed to ensure safe operation levels in this environment. Levels of activation are calculated for the beam line components within the FRIB target hall.

  11. The status of the positron beam facility at NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.

    2011-01-01

    The NEutron induced POsitron source MUniCh NEPOMUC provides a high intensity positron beam with 9·108 moderated positrons per second with a primary beam energy of 1keV. After remoderation, the positron beam is magnetically guided to five experimental setups: a coincident Doppler-broadening spectrometer (CDBS), a positron annihilation induced Auger-electron spectrometer (PAES), a pulsed low-energy positron system (PLEPS) as well as an interface for providing a pulsed beam with further improved brightness. An apparatus for the production of the negatively charged positronium ion Ps- is currently in operation at the open multi-purpose beam port, where additional experiments can be realized. Within this contribution, an overview of the positron beam facility NEPOMUC with its instrumentation at the research reactor FRMII is given.

  12. Research briefing on contemporary problems in plasma science

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is presented of the broad perspective of all plasma science. Detailed discussions are given of scientific opportunities in various subdisciplines of plasma science. The first subdiscipline to be discussed is the area where the contemporary applications of plasma science are the most widespread, low temperature plasma science. Opportunities for new research and technology development that have emerged as byproducts of research in magnetic and inertial fusion are then highlighted. Then follows a discussion of new opportunities in ultrafast plasma science opened up by recent developments in laser and particle beam technology. Next, research that uses smaller scale facilities is discussed, first discussing non-neutral plasmas, and then the area of basic plasma experiments. Discussions of analytic theory and computational plasma physics and of space and astrophysical plasma physics are then presented.

  13. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemann, R.H.; /SLAC

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  14. Alignment system for SGII-Up laser facility

    NASA Astrophysics Data System (ADS)

    Gao, Yanqi; Cui, Yong; Li, Hong; Gong, Lei; Lin, Qiang; Liu, Daizhong; Zhu, Baoqiang; Ma, Weixin; Zhu, Jian; Lin, Zunqi

    2018-03-01

    The SGII-Up laser facility in Shanghai is one of the most important high-power laser facilities in China. It is designed to obtain 24 kJ (3ω) of energy with a square pulse of 3 ns using eight laser beams (two bundles). To satisfy the requirements for the safety, efficiency, and quality, an alignment system is developed for this facility. This alignment system can perform automatic alignment of the preamplifier system, main amplifier system, and harmonic conversion system within 30 min before every shot during the routine operation of the facility. In this article, an overview of the alignment system is first presented. Then, its alignment characteristics are discussed, along with the alignment process. Finally, experimental results, including the alignment results and the facility performance, are reported. The results show that the far-field beam pointing alignment accuracy is better than 3 μrad, and the alignment error of the near-field beam centering is no larger than 1 mm. These satisfy the design requirements very well.

  15. Segmented beryllium target for a 2 MW super beam facility

    DOE PAGES

    Davenne, T.; Caretta, O.; Densham, C.; ...

    2015-09-14

    The Long Baseline Neutrino Facility (LBNF, formerly the Long Baseline Neutrino Experiment) is under design as a next generation neutrino oscillation experiment, with primary objectives to search for CP violation in the leptonic sector, to determine the neutrino mass hierarchy and to provide a precise measurement of θ 23. The facility will generate a neutrino beam at Fermilab by the interaction of a proton beam with a target material. At the ultimate anticipated proton beam power of 2.3 MW the target material must dissipate a heat load of between 10 and 25 kW depending on the target size. This paper presents amore » target concept based on an array of spheres and compares it to a cylindrical monolithic target such as that which currently operates at the T2K facility. Thus simulation results show that the proposed technology offers efficient cooling and lower stresses whilst delivering a neutrino production comparable with that of a conventional solid cylindrical target.« less

  16. An MCNPX2.7.0 study of Bragg peak degradation owing to density heterogeneity patterns for a CGMH therapeutic proton beam

    NASA Astrophysics Data System (ADS)

    Chao, Tsi-Chian; Tsai, Yi-Chun; Chen, Shih-Kuan; Wu, Shu-Wei; Tung, Chuan-Jong; Hong, Ji-Hong; Wang, Chun-Chieh; Lee, Chung-Chi

    2017-08-01

    The purpose of this study was to investigate the density heterogeneity pattern as a factor affecting Bragg peak degradation, including shifts in Bragg peak depth (ZBP), distal range (R80 and R20), and distal fall-off (R80-R20) using Monte Carlo N-Particles, eXtension (MCNPX). Density heterogeneities of different patterns with increasing complexity were placed downstream of commissioned proton beams at the Proton and Radiation Therapy Centre of Chang Gung Memorial Hospital, including one 150 MeV wobbling broad beam (10×10 cm2) and one 150 MeV proton pencil beam (FWHM of cross-plane=2.449 cm, FWHM of in-plane=2.256 cm). MCNPX 2.7.0 was used to model the transport and interactions of protons and secondary particles in density heterogeneity patterns and water using its repeated structure geometry. Different heterogeneity patterns were inserted into a 21×21×20 cm3 phantom. Mesh tally was used to track the dose distribution when the proton beam passed through the different density heterogeneity patterns. The results show that different heterogeneity patterns do cause different Bragg peak degradations owing to multiple Coulomb scattering (MCS) occurring in the density heterogeneities. A trend of increasing R20 and R80-R20 with increasing geometry complexity was observed. This means that Bragg peak degradation is mainly caused by the changes to the proton spectrum owing to MCS in the density heterogeneities. In contrast, R80 did not change considerably with different heterogeneity patterns, which indicated that the energy spectrum has only minimum effects on R80. Bragg peak degradation can occur both for a broad proton beam and a pencil beam, but is less significant for the broad beam.

  17. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, S. J.

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research,more » radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.« less

  18. Scientific Opportunities and Plans for FRIB

    NASA Astrophysics Data System (ADS)

    Bollen, Georg

    2014-09-01

    FRIB, the US's ``Facility for Rare Isotope Beams'' under construction at Michigan State University will be a world-leading rare isotope beam facility. FRIB will be based on a 400 kW, 200 MeV/u heavy ion linac and provide a wide variety of high-quality beams of unstable isotopes at unprecedented intensities, opening exciting research perspectives with fast, stopped, and reaccelerated beams. This talk will summarize the scientific opportunities with FRIB in the areas of nuclear science, nuclear astrophysics, and the test of fundamental interaction and symmetries, as well using isotopes from FRIB for societal benefits. Design features of FRIB and the status of the ongoing construction will be presented. FRIB, the US's ``Facility for Rare Isotope Beams'' under construction at Michigan State University will be a world-leading rare isotope beam facility. FRIB will be based on a 400 kW, 200 MeV/u heavy ion linac and provide a wide variety of high-quality beams of unstable isotopes at unprecedented intensities, opening exciting research perspectives with fast, stopped, and reaccelerated beams. This talk will summarize the scientific opportunities with FRIB in the areas of nuclear science, nuclear astrophysics, and the test of fundamental interaction and symmetries, as well using isotopes from FRIB for societal benefits. Design features of FRIB and the status of the ongoing construction will be presented. This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE.

  19. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    NASA Astrophysics Data System (ADS)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  20. The quality assessment of radial and tangential neutron radiography beamlines of TRR

    NASA Astrophysics Data System (ADS)

    Choopan Dastjerdi, M. H.; Movafeghi, A.; Khalafi, H.; Kasesaz, Y.

    2017-07-01

    To achieve a quality neutron radiographic image in a relatively short exposure time, the neutron radiography beam must be of good quality and relatively high neutron flux. Characterization of a neutron radiography beam, such as determination of the image quality and the neutron flux, is vital for producing quality radiographic images and also provides a means to compare the quality of different neutron radiography facilities. This paper provides a characterization of the radial and tangential neutron radiography beamlines at the Tehran research reactor. This work includes determination of the facilities category according to the American Society for Testing and Materials (ASTM) standards, and also uses the gold foils to determine the neutron beam flux. The radial neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. The tangential beam is a Category IV neutron radiography facility. Gold foil activation experiments show that the measured neutron flux for radial beamline with length-to-diameter ratio (L/D) =150 is 6.1× 106 n cm-2 s-1 and for tangential beamline with (L/D)=115 is 2.4× 104 n cm-2 s-1.

  1. Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV/u proton/deuteron low energy beam transport beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainas, B.; Eliyahu, I.; Weissman, L.

    2012-02-15

    The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton/deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, whichmore » is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum.« less

  2. Development of light ion therapy at the Karolinska Hospital and Institute.

    PubMed

    Svensson, Hans; Ringborg, Ulrik; Näslund, Ingemar; Brahme, Anders

    2004-12-01

    Recent developments in radiation therapy have made it possible to optimize the high dose region to cover almost any target volume and shape at the same time as the dose level to adjacent organs at risk is acceptable. Further implementations of IMRT (Intensity Modulated Radiation Therapy), and inverse treatment planning using already available technologies but also foreseeable improved design of therapy accelerators delivering electron- and photon beams, will bring these advances to the benefit of a broad population of cancer patients. Protons will therefore generally not be needed since in most situations the improvement will be insignificant or moderate due to the large lateral penumbra with deep proton therapy. A further step would be to use He-ions, which have only half the penumbra width of protons and still a fairly low-LET in the spread-out Bragg peak. There is however still a group of patients that cannot be helped by these advances as the tumor might be radioresistant for the presently utilized low ionization density beam qualities. The ultimate step in the therapy development process should therefore be to optimize the beam quality for each tumor-normal tissue situation. To facilitate beam quality optimization light ions are needed. It is argued that in many radioresistant tumors a dose-mean LET of 25-50 eV/nm in the target would be optimum as then tumor cells will be lost in the highest proportion through apoptotic cell kill and the superficial tissues will still be irradiated with a fairly low LET. Light ions using Li, Be, B, and C would then be the ideal choice. In this paper a light ion facility is outlined for the Karolinska University Hospital facilitating both dose distribution and beam quality optimization.

  3. A simple ion implanter for material modifications in agriculture and gemmology

    NASA Astrophysics Data System (ADS)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M. W.; Suwankosum, R.; Rattanarin, S.; Yu, L. D.

    2015-12-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X-Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  4. NA61/SHINE facility at the CERN SPS: beams and detector system

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Andreeva, O.; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bogusz, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Efthymiopoulos, I.; Ereditato, A.; Fabich, A.; Feofilov, G. A.; Fodor, Z.; Fulop, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivashkin, A.; Jokovic, D.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kielczewska, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Koversarski, P.; Kowalski, S.; Krasnoperov, A.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Maletic, D.; Manglunki, D.; Manic, D.; Marchionni, A.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messina, M.; Mrówczyński, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Peryt, W.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Pluta, J.; Popov, B. A.; Posiadala, M.; Puławski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczyński, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Schmidt, K.; Sekiguchi, T.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Sipos, R.; Skrzypczak, E.; Słodkowski, M.; Sosin, Z.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Stroebele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarz, A.; Wyszyński, O.; Zambelli, L.; Zipper, W.

    2014-06-01

    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility — the beams and the detector system — before the CERN Long Shutdown I, which started in March 2013.

  5. Commissioning and initial operation of the Isotope Production Facility at the Los Alamos Neutron Science Center (LANSCE).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K. F.; Alvestad, H. W.; Barkley, W. C.

    The recently completed 100-MeV H{sup +} Isotope Production Facility (IPF) at the LANSCE will provide radioisotopes for medical research and diagnosis, for basic research and for commercial use. A change to the LANSCE accelerator facility allowed for the installation of the IPF. Three components make up the LANSCE accelerator: an injector that accelerates the H{sup +} beam to 750-KeV, a drift-tube linac (DTL) that increases the beam energy to 100-MeV, and a side-coupled cavity linac (SCCL) that accelerates the beam to 800-MeV. The transition region, a space between the DTL and the SCCL, was modified to permit the insertion ofmore » a kicker magnet (23{sup o} kick angle) for the purpose of extracting a portion of the 100-MeV H{sup +} beam. A new beam line was installed to transport the extracted H{sup +} beam to the radioisotope production target chamber. This paper will describe the commissioning and initial operating experiences of IPF.« less

  6. Ion traps for precision experiments at rare-isotope-beam facilities

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Anna

    2016-09-01

    Ion traps first entered experimental nuclear physics when the ISOLTRAP team demonstrated Penning trap mass spectrometry of radionuclides. From then on, the demand for ion traps has grown at radioactive-ion-beam (RIB) facilities since beams can be tailored for the desired experiment. Ion traps have been deployed for beam preparation, from bunching (thereby allowing time coincidences) to beam purification. Isomerically pure beams needed for nuclear-structure investigations can be prepared for trap-assisted or in-trap decay spectroscopy. The latter permits studies of highly charged ions for stellar evolution, which would be impossible with traditional experimental nuclear-physics methods. Moreover, the textbook-like conditions and advanced ion manipulation - even of a single ion - permit high-precision experiments. Consequently, the most accurate and precise mass measurements are now performed in Penning traps. After a brief introduction to ion trapping, I will focus on examples which showcase the versatility and utility of the technique at RIB facilities. I will demonstrate how this atomic-physics technique has been integrated into nuclear science, accelerator physics, and chemistry. DOE.

  7. A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania

    NASA Astrophysics Data System (ADS)

    Burducea, I.; Straticiuc, M.; Ghiță, D. G.; Moșu, D. V.; Călinescu, C. I.; Podaru, N. C.; Mous, D. J. W.; Ursu, I.; Zamfir, N. V.

    2015-09-01

    A 3 MV Tandetron™ accelerator system has been installed and commissioned at the "Horia Hulubei" National Institute for Physics and Nuclear Engineering - IFIN-HH, Măgurele, Romania. The main purpose of this machine is to strengthen applied nuclear physics research ongoing in our institute for more than four decades. The accelerator system was developed by High Voltage Engineering Europa B.V. (HVE) and comprises three high energy beam lines. The first beam line is dedicated to ion beam analysis (IBA) techniques: Rutherford Backscattering Spectrometry - RBS, Nuclear Reaction Analysis - NRA, Particle Induced X-ray and γ-ray Emission - PIXE and PIGE and micro-beam experiments - μ-PIXE. The second beam line is dedicated to high energy ion implantation experiments and the third beam line was designed mainly for nuclear cross-sections measurements used in nuclear astrophysics. A unique feature, the first time in operation at an accelerator facility is the Na charge exchange canal (CEC), which is used to obtain high intensity beams of He- of at least 3 μA. The results of the acceptance tests demonstrate the huge potential of this new facility in various fields, from IBA to radiation hardness studies and from medical or environmental applications to astrophysics. The main features of the accelerator are presented in this paper.

  8. Patient handling system for carbon ion beam scanning therapy

    PubMed Central

    Shirai, Toshiyuki; Takei, Yuka; Furukawa, Takuji; Inaniwa, Taku; Matsuzaki, Yuka; Kumagai, Motoki; Murakami, Takeshi; Noda, Koji

    2012-01-01

    Our institution established a new treatment facility for carbon ion beam scanning therapy in 2010. The major advantages of scanning beam treatment compared to the passive beam treatment are the following: high dose conformation with less excessive dose to the normal tissues, no bolus compensator and patient collimator/ multi‐leaf collimator, better dose efficiency by reducing the number of scatters. The new facility was designed to solve several problems encountered in the existing facility, at which several thousand patients were treated over more than 15 years. Here, we introduce the patient handling system in the new treatment facility. The new facility incorporates three main systems, a scanning irradiation system (S‐IR), treatment planning system (TPS), and patient handling system (PTH). The PTH covers a wide range of functions including imaging, geometrical/position accuracy including motion management (immobilization, robotic arm treatment bed), layout of the treatment room, treatment workflow, software, and others. The first clinical trials without respiratory gating have been successfully started. The PTH allows a reduction in patient stay in the treatment room to as few as 7 min. The PTH plays an important role in carbon ion beam scanning therapy at the new institution, particularly in the management of patient handling, application of image‐guided therapy, and improvement of treatment workflow, and thereby allows substantially better treatment at minimum cost. PACS numbers: 87.56.‐v; 87.57.‐s; 87.55.‐x PMID:23149784

  9. Sensor-guided threat countermeasure system

    DOEpatents

    Stuart, Brent C.; Hackel, Lloyd A.; Hermann, Mark R.; Armstrong, James P.

    2012-12-25

    A countermeasure system for use by a target to protect against an incoming sensor-guided threat. The system includes a laser system for producing a broadband beam and means for directing the broadband beam from the target to the threat. The countermeasure system comprises the steps of producing a broadband beam and directing the broad band beam from the target to blind or confuse the incoming sensor-guided threat.

  10. Toward a fourth-generation x-ray source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monction, D. E.

    1999-05-19

    The field of synchrotron radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research that is possible with them. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the optical laser. Theoretical workmore » over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission (SASE) in flee-electron lasers. A major facility of this type based upon a superconducting linac could produce a cost-effective facility that spans wave-lengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotrons facilities, immense new scientific opportunities would result from fourth-generation sources.« less

  11. Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams.

    PubMed

    Sánchez-Doblado, F; Andreo, P; Capote, R; Leal, A; Perucha, M; Arráns, R; Núñez, L; Mainegra, E; Lagares, J I; Carrasco, E

    2003-07-21

    Absolute dosimetry with ionization chambers of the narrow photon fields used in stereotactic techniques and IMRT beamlets is constrained by lack of electron equilibrium in the radiation field. It is questionable that stopping-power ratio in dosimetry protocols, obtained for broad photon beams and quasi-electron equilibrium conditions, can be used in the dosimetry of narrow fields while keeping the uncertainty at the same level as for the broad beams used in accelerator calibrations. Monte Carlo simulations have been performed for two 6 MV clinical accelerators (Elekta SL-18 and Siemens Mevatron Primus), equipped with radiosurgery applicators and MLC. Narrow circular and Z-shaped on-axis and off-axis fields, as well as broad IMRT configured beams, have been simulated together with reference 10 x 10 cm2 beams. Phase-space data have been used to generate 3D dose distributions which have been compared satisfactorily with experimental profiles (ion chamber, diodes and film). Photon and electron spectra at various depths in water have been calculated, followed by Spencer-Attix (delta = 10 keV) stopping-power ratio calculations which have been compared to those used in the IAEA TRS-398 code of practice. For water/air and PMMA/air stopping-power ratios, agreements within 0.1% have been obtained for the 10 x 10 cm2 fields. For radiosurgery applicators and narrow MLC beams, the calculated s(w,air) values agree with the reference within +/-0.3%, well within the estimated standard uncertainty of the reference stopping-power ratios (0.5%). Ionization chamber dosimetry of narrow beams at the photon qualities used in this work (6 MV) can therefore be based on stopping-power ratios data in dosimetry protocols. For a modulated 6 MV broad beam used in clinical IMRT, s(w,air) agrees within 0.1% with the value for 10 x 10 cm2, confirming that at low energies IMRT absolute dosimetry can also be based on data for open reference fields. At higher energies (24 MV) the difference in s(w,air) was up to 1.1%, indicating that the use of protocol data for narrow beams in such cases is less accurate than at low energies, and detailed calculations of the dosimetry parameters involved should be performed if similar accuracy to that of 6 MV is sought.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adey, D.; Appleby, R. B.; Bayes, R.

    Neutrino beams produced from the decay of muons in a racetrack-like decay ring (the so called Neutrino Factory) provide a powerful way to study neutrino oscillation physics and, in addition, provide unique beams for neutrino interaction studies. The Neutrinos from STORed Muons (nuSTORM) facility uses a neutrino factory-like design. Due to the particular nature of nuSTORM, it can also provide an intense, very pure, muon neutrino beam from pion decay. This so-called 'Neo-conventional' muon-neutrino beam from nuSTORM makes nuSTORM a hybrid neutrino factory. Here in this paper we describe the facility and give a detailed description of the neutrino beamsmore » that are available and the precision to which they can be characterized. We then show its potential for a neutrino interaction physics program and present sensitivity plots that indicate how well the facility can perform for short-baseline oscillation searches. Lastly, we comment on the performance potential of a 'Neo-conventional' muon neutrino beam optimized for long-baseline neutrino-oscillation physics.« less

  13. High current polarized electron source

    NASA Astrophysics Data System (ADS)

    Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.

    2018-05-01

    Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.

  14. High Intensity Tests of the NuMI Beam Monitoring Ionization Chambers

    NASA Astrophysics Data System (ADS)

    Zwaska, Robert

    2002-04-01

    The NuMI facility at Fermilab will generate an intense beam of neutrinos directed toward Soudan, MN, 735 km away. Components of the planned beam monitoring system will be exposed to fluences of up to 8 x 10^9 charge particles / cm^2 and 6 x 10^10 neutrons / cm^2 in an 8.6 us beam spill. These fluences will be measured by an array of Helium ionization chambers. We tested a pair of chambers with 8 GeV protons at the Fermilab Booster accelerator, and with high intensity neutron sources at the Texas Experimental Nuclear Facility.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    We summarize activities concerning the Fermilab polarized beams. They include a description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the production at large x, and experiments with polarized beams during the next fixed-target period. 8 refs., 9 figs.

  16. Development of Technology for Image-Guided Proton Therapy

    DTIC Science & Technology

    2011-10-01

    testing proton RBE in the Penn proton beam facility  Assemble equipment and develop data analysis software  Install and test tablet PCs...production  Use dual-energy CT and MRI to determine the composition of materials Year 4 ending 9/30/2011  Measurement of RBE for protons using the...Penn proton beam facility  Measure LET for scattered and scanned beams  Enter forms on tablet PCs Phase 5 Scope of Work Year 1 ending 9

  17. Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. Themore » technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.« less

  18. Effect of fluoroscopic X-ray beam spectrum on air-kerma measurement accuracy: implications for establishing correction coefficients on interventional fluoroscopes with KAP meters.

    PubMed

    Wunderle, Kevin A; Rakowski, Joseph T; Dong, Frank F

    2016-05-08

    The first goal of this study was to investigate the accuracy of the displayed reference plane air kerma (Ka,r) or air kerma-area product (Pk,a) over a broad spectrum of X-ray beam qualities on clinically used interventional fluoroscopes incorporating air kerma-area product meters (KAP meters) to measure X-ray output. The second goal was to investigate the accuracy of a correction coefficient (CC) determined at a single beam quality and applied to the measured Ka,r over a broad spectrum of beam qualities. Eleven state-of-the-art interventional fluoroscopes were evaluated, consisting of eight Siemens Artis zee and Artis Q systems and three Philips Allura FD systems. A separate calibrated 60 cc ionization chamber (external chamber) was used to determine the accuracy of the KAP meter over a broad range of clinically used beam qualities. For typical adult beam qualities, applying a single CC deter-mined at 100 kVp with copper (Cu) in the beam resulted in a deviation of < 5% due to beam quality variation. This result indicates that applying a CC determined using The American Association of Physicists in Medicine Task Group 190 protocol or a similar protocol provides very good accuracy as compared to the allowed ± 35% deviation of the KAP meter in this limited beam quality range. For interventional fluoroscopes dedicated to or routinely used to perform pediatric interventions, using a CC established with a low kVp (~ 55-60 kVp) and large amount of Cu filtration (~ 0.6-0.9 mm) may result in greater accuracy as compared to using the 100 kVp values. KAP meter responses indicate that fluoroscope vendors are likely normalizing or otherwise influencing the KAP meter output data. Although this may provide improved accuracy in some instances, there is the potential for large discrete errors to occur, and these errors may be difficult to identify.

  19. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method.

    PubMed

    Tao, Hua; Veetil, Suhas P; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2015-08-01

    Air conditioning systems can lead to dynamic phase change in the laser beams of high-power laser facilities for the inertial confinement fusion, and this kind of phase change cannot be measured by most of the commonly employed Hartmann wavefront sensor or interferometry due to some uncontrollable factors, such as too large laser beam diameters and the limited space of the facility. It is demonstrated that this problem can be solved using a scheme based on modulation coherent imaging, and thus the influence of the air conditioning system on the performance of the high-power facility can be evaluated directly.

  20. The ISOLDE facility

    NASA Astrophysics Data System (ADS)

    Catherall, R.; Andreazza, W.; Breitenfeldt, M.; Dorsival, A.; Focker, G. J.; Gharsa, T. P.; J, Giles T.; Grenard, J.-L.; Locci, F.; Martins, P.; Marzari, S.; Schipper, J.; Shornikov, A.; Stora, T.

    2017-09-01

    The ISOLDE facility has undergone numerous changes over the last 17 years driven by both the physics and technical community with a common goal to improve on beam variety, beam quality and safety. Improvements have been made in civil engineering and operational equipment while continuing developments aim to ensure operations following a potential increase in primary beam intensity and energy. This paper outlines the principal technical changes incurred at ISOLDE by building on a similar publication of the facility upgrades by Kugler (2000 Hyperfine Interact. 129 23-42). It also provides an insight into future perspectives through a brief summary issues addressed in the HIE-ISOLDE design study Catherall et al (2013 Nucl. Instrum. Methods Phys. Res. B 317 204-207).

  1. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeda, N., E-mail: umeda.naotaka@jaea.go.jp; Kojima, A.; Kashiwagi, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mmmore » to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.« less

  2. The drift chamber array at the external target facility in HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Sun, Y. Z.; Sun, Z. Y.; Wang, S. T.; Duan, L. M.; Sun, Y.; Yan, D.; Tang, S. W.; Yang, H. R.; Lu, C. G.; Ma, P.; Yu, Y. H.; Zhang, X. H.; Yue, K.; Fang, F.; Su, H.

    2018-06-01

    A drift chamber array at the External Target Facility in HIRFL-CSR has been constructed for three-dimensional particle tracking in high-energy radioactive ion beam experiments. The design, readout, track reconstruction program and calibration procedures for the detector are described. The drift chamber array was tested in a 311 AMeV 40Ar beam experiment. The detector performance based on the measurements of the beam test is presented. A spatial resolution of 230 μm is achieved.

  3. An ion source module for the Beijing Radioactive Ion-beam Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, B., E-mail: cui@ciae.ac.cn; Huang, Q.; Tang, B.

    2014-02-15

    An ion source module is developed for Beijing Radioactive Ion-beam Facility. The ion source module is designed to meet the requirements of remote handling. The connection and disconnection of the electricity, cooling and vacuum between the module and peripheral units can be executed without on-site manual work. The primary test of the target ion source has been carried out and a Li{sup +} beam has been extracted. Details of the ion source module and its primary test results are described.

  4. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback

    PubMed Central

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-01-01

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources. PMID:28287175

  5. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback.

    PubMed

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-03-13

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources.

  6. Shielding properties of lead-free protective clothing and their impact on radiation doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlattl, Helmut; Zankl, Maria; Eder, Heinrich

    2007-11-15

    The shielding properties of two different lead-free materials--tin and a compound of 80% tin and 20% bismuth--for protective clothing are compared with those of lead for three typical x-ray spectra generated at tube voltages of 60, 75, and 120 kV. Three different quantities were used to compare the shielding capability of the different materials: (1) Air-kerma attenuation factors in narrow-beam geometry, (2) air-kerma attenuation factors in broad-beam geometry, and (3) ratios of organ and effective doses in the human body for a whole-body irradiation with a parallel beam directed frontally at the body. The thicknesses of tin (0.45 mm) andmore » the tin/bismuth compound (0.41 mm) to be compared against lead correspond to a lead equivalence value of 0.35 mm for the 75 kV spectrum. The narrow-beam attenuation factors for 0.45 mm tin are 54% and 32% lower than those for 0.35 mm lead for 60 and 120 kV; those for 0.41 mm tin/bismuth are 12% and 32% lower, respectively. The decrease of the broad-beam air-kerma attenuation factors compared to lead is 74%, 46%, and 41% for tin and 42%, 26%, and 33% for tin/bismuth and the spectra at 60, 75, and 120 kV, respectively. Therefore, it is recommended that the characterization of the shielding potential of a material should be done by measurements in broad-beam geometry. Since the secondary radiation that is mainly responsible for the shielding reduction in broad-beam geometry is of low penetrability, only more superficially located organs receive significantly enhanced doses. The increase for the dose to the glandular breast tissue (female) compared to being shielded by lead is 143%, 37%, and 45% when shielded by tin, and 35%, 15%, and 39% when shielded by tin/bismuth for 60, 75, and 120 kV, respectively. The effective dose rises by 60%, 6%, and 38% for tin, and 14%, 3% and, 35% for tin/bismuth shielding, respectively.« less

  7. Fermilab | Science | Particle Accelerators | Advanced Superconducting Test

    Science.gov Websites

    Accelerators for science and society Particle Physics 101 Science of matter, energy, space and time How Technology (FAST) Facility is America's only test bed for cutting-edge, record high-intensity particle beams in the United States as a particle beam research facility based on superconducting radio-frequency

  8. Measurements and analyses of the distribution of the radioactivity induced by the secondary neutrons produced by 17-MeV protons in compact cyclotron facility

    NASA Astrophysics Data System (ADS)

    Matsuda, Norihiro; Izumi, Yuichi; Yamanaka, Yoshiyuki; Gandou, Toshiyuki; Yamada, Masaaki; Oishi, Koji

    2017-09-01

    Measurements of reaction rates by secondary neutrons produced from beam losses by 17-MeV protons are conducted at a compact cyclotron facility with the foil activation method. The experimentally obtained distribution of the reaction rates of 197Au (n, γ) 198Au on the concrete walls suggests that a target and an electrostatic deflector as machine components for beam extraction of the compact cyclotron are principal beam loss points. The measurements are compared with calculations by the Monte Carlo code: PHITS. The calculated results based on the beam losses are good agreements with the measured ones within 21%. In this compact cyclotron facility, exponential attenuations with the distance from the electrostatic deflector in the distributions of the measured reaction rates were observed, which was looser than that by the inverse square of distance.

  9. Physics opportunities with meson beams

    DOE PAGES

    Briscoe, William J.; Doring, Michael; Haberzettl, Helmut; ...

    2015-10-20

    Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledgemore » in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. Furthermore, the present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.« less

  10. Physics opportunities with meson beams

    NASA Astrophysics Data System (ADS)

    Briscoe, William J.; Döring, Michael; Haberzettl, Helmut; Manley, D. Mark; Naruki, Megumi; Strakovsky, Igor I.; Swanson, Eric S.

    2015-10-01

    Over the past two decades, meson photo- and electroproduction data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even non-existent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state-of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

  11. Integrated development facility for the calibration of low-energy charged particle flight instrumentation

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. M.

    1986-01-01

    The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.

  12. Electrical-thermal-structural finite element simulation and experimental study of a plasma ion source for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Manzolaro, M.; Meneghetti, G.; Andrighetto, A.; Vivian, G.

    2016-03-01

    The production target and the ion source constitute the core of the selective production of exotic species (SPES) facility. In this complex experimental apparatus for the production of radioactive ion beams, a 40 MeV, 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The transfer line enables the unstable isotopes generated by the 238U fissions in the target to reach the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work, the plasma ion source currently adopted for the SPES facility is analyzed in detail by means of electrical, thermal, and structural numerical models. Next, theoretical results are compared with the electric potential difference, temperature, and displacement measurements. Experimental tests with stable ion beams are also presented and discussed.

  13. Research of beam conditioning technologies on SG-III laser facility

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Su, Jingqin; Yuan, Haoyu; Li, Ping; Tian, Xiaocheng; Wang, Jianjun; Dong, Jun; Zhang, Ying; Yuan, Qiang; Wang, Yuancheng; Zhou, Wei; Peng, Zhitao; Wang, Fang; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo; Zhang, Xiaomin

    2014-12-01

    Multi-FM SSD and CPP was experimentally studied in high fluence and will be equipped on all the beams of SG-III laser facility. The output spectrum of the cascade phase modulators are stable and the residual amplitude modulation is small. FM-to-AM effect caused by free-space propagation after using smoothing by spectral dispersion is theoretically analyzed. Results indicate inserting a dispersion grating in places with larger beam aperture could alleviate the FM-to- AM effect, suggesting minimizing free-space propagation and adopting image relay. Experiments taken on SG-III laser facility indicate when the number of color cycles (Nc) adopts 1, imposing of SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of the preamplifier and main amplifier with 30-TDL pinhole size. The nonuniformity of the focal spot using Multi-FM SSD and CPP drops to 0.26, comparing to 0.84 only using CPP. The experiments solve some key technical problems using SSD and CPP on SG-III laser facility, and provide a flexible platform for laser-plasma interaction experiments. Combined beam smoothing and polarization smoothing are also analyzed. Simulation results indicate through adjusting dispersion directions of one-dimensional SSD beams in a quad, two-dimensional SSD could be obtained. The near field and far field properties of beams using polarization smoothing were also studied, including birefringent wedge and polarization control plate (PCP). By using PCP, cylindrical vector beams could be obtained. New solutions will be provided to solve the LPI problem encountered in indirect drive laser fusion.

  14. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  15. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  16. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    NASA Astrophysics Data System (ADS)

    Raubenheimer, T. O.

    2001-10-01

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

  17. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    PubMed

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  18. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    PubMed Central

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments. PMID:23824122

  19. The control system of the multi-strip ionization chamber for the HIMM

    NASA Astrophysics Data System (ADS)

    Li, Min; Yuan, Y. J.; Mao, R. S.; Xu, Z. G.; Li, Peng; Zhao, T. C.; Zhao, Z. L.; Zhang, Nong

    2015-03-01

    Heavy Ion Medical Machine (HIMM) is a carbon ion cancer treatment facility which is being built by the Institute of Modern Physics (IMP) in China. In this facility, transverse profile and intensity of the beam at the treatment terminals will be measured by the multi-strip ionization chamber. In order to fulfill the requirement of the beam position feedback to accomplish the beam automatic commissioning, less than 1 ms reaction time of the Data Acquisition (DAQ) of this detector must be achieved. Therefore, the control system and software framework for DAQ have been redesigned and developed with National Instruments Compact Reconfigurable Input/Output (CompactRIO) instead of PXI 6133. The software is Labview-based and developed following the producer-consumer pattern with message mechanism and queue technology. The newly designed control system has been tested with carbon beam at the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring (HIRFL-CSR) and it has provided one single beam profile measurement in less than 1 ms with 1 mm beam position resolution. The fast reaction time and high precision data processing during the beam test have verified the usability and maintainability of the software framework. Furthermore, such software architecture is easy-fitting to applications with different detectors such as wire scanner detector.

  20. An external milli-beam for archaeometric applications on the AGLAE IBA facility of the Louvre museum

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Dran, J.-C.; Hamon, H.; Moignard, B.; Salomon, J.

    1998-03-01

    External beam lines have been built on numerous IBA facilities for the analysis of works of art to avoid sampling and vacuum potentially detrimental to the integrity of such precious objects. On the other hand, growing interest lies on microprobe systems which provide a high lateral resolution but which usually work under vacuum. Until recently, the AGLAE facility was equipped with separate external beam and microprobe lines. The need of a better spatial resolution in the external beam mode has led us to combine them into a single system which exhibits numerous advantages and allows the analysis of small heterogeneities like inclusions in gemstones or tiny components of composite samples. The triplet of quadrupole lenses bought from Oxford is used to focus the beam. By using a 0.75 μm thick Al foil as the exit window, blowing a helium flow around the beam spot and reducing the window-sample distance below 3 mm, a beam size of about 30 μm can be reached. The experimental setup includes two Si(Li), a HPGe and a Si surface barrier detectors for the simultaneous implementation of PIXE, NRA and RBS. The full description of this device is given as well as a few applications to highlight its capability.

  1. Evolution of a beam dynamics model for the transport line in a proton therapy facility

    NASA Astrophysics Data System (ADS)

    Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.

    2017-12-01

    During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.

  2. Deterministic Nanopatterning of Diamond Using Electron Beams.

    PubMed

    Bishop, James; Fronzi, Marco; Elbadawi, Christopher; Nikam, Vikram; Pritchard, Joshua; Fröch, Johannes E; Duong, Ngoc My Hanh; Ford, Michael J; Aharonovich, Igor; Lobo, Charlene J; Toth, Milos

    2018-03-27

    Diamond is an ideal material for a broad range of current and emerging applications in tribology, quantum photonics, high-power electronics, and sensing. However, top-down processing is very challenging due to its extreme chemical and physical properties. Gas-mediated electron beam-induced etching (EBIE) has recently emerged as a minimally invasive, facile means to dry etch and pattern diamond at the nanoscale using oxidizing precursor gases such as O 2 and H 2 O. Here we explain the roles of oxygen and hydrogen in the etch process and show that oxygen gives rise to rapid, isotropic etching, while the addition of hydrogen gives rise to anisotropic etching and the formation of topographic surface patterns. We identify the etch reaction pathways and show that the anisotropy is caused by preferential passivation of specific crystal planes. The anisotropy can be controlled by the partial pressure of hydrogen and by using a remote RF plasma source to radicalize the precursor gas. It can be used to manipulate the geometries of topographic surface patterns as well as nano- and microstructures fabricated by EBIE. Our findings constitute a comprehensive explanation of the anisotropic etch process and advance present understanding of electron-surface interactions.

  3. Beam-Plasma Interaction Experiments on the Princeton Advanced Test Stand

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I. D.; Davidson, R. C.

    2011-10-01

    The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the fundamental physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a 100 keV ion beam source mounted on a six-foot-long vacuum chamber with numerous ports for diagnostic access. A 100 keV Ar+ beam is launched into a volumetric plasma, which is produced by a ferroelectric plasma source (FEPS). Beam diagnostics upstream and downstream of the FEPS allow for detailed studies of the effects that the plasma has on the beam. This setup is designed for studying the dependence of charge and current neutralization and beam emittance growth on the beam and plasma parameters. This work reports initial measurements of beam quality produced by the extraction electrodes that were recently installed on the PATS device. The transverse beam phase space is measured with double-slit emittance scanners, and the experimental results are compared to WARP simulations of the extraction system. This research is supported by the U.S. Department of Energy.

  4. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    NASA Astrophysics Data System (ADS)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  5. The role of iron in neurodegenerative disorders: insights and opportunities with synchrotron light

    PubMed Central

    Collingwood, Joanna F.; Davidson, Mark R.

    2014-01-01

    There is evidence for iron dysregulation in many forms of disease, including a broad spectrum of neurodegenerative disorders. In order to advance our understanding of the pathophysiological role of iron, it is helpful to be able to determine in detail the distribution of iron as it relates to metabolites, proteins, cells, and tissues, the chemical state and local environment of iron, and its relationship with other metal elements. Synchrotron light sources, providing primarily X-ray beams accompanied by access to longer wavelengths such as infra-red, are an outstanding tool for multi-modal non-destructive analysis of iron in these systems. The micro- and nano-focused X-ray beams that are generated at synchrotron facilities enable measurement of iron and other transition metal elements to be performed with outstanding analytic sensitivity and specificity. Recent developments have increased the scope for methods such as X-ray fluorescence mapping to be used quantitatively rather than semi-quantitatively. Burgeoning interest, coupled with technical advances and beamline development at synchrotron facilities, has led to substantial improvements in resources and methodologies in the field over the past decade. In this paper we will consider how the field has evolved with regard to the study of iron in proteins, cells, and brain tissue, and identify challenges in sample preparation and analysis. Selected examples will be used to illustrate the contribution, and future potential, of synchrotron X-ray analysis for the characterization of iron in model systems exhibiting iron dysregulation, and for human cases of neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, Friedreich’s ataxia, and amyotrophic lateral sclerosis. PMID:25191270

  6. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP.

    PubMed

    Hu, W; Li, W; Chen, J

    2017-10-01

    Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future. © 2017 The Society for Applied Microbiology.

  7. New x-ray parallel beam facility XPBF 2.0 for the characterization of silicon pore optics

    NASA Astrophysics Data System (ADS)

    Krumrey, Michael; Müller, Peter; Cibik, Levent; Collon, Max; Barrière, Nicolas; Vacanti, Giuseppe; Bavdaz, Marcos; Wille, Eric

    2016-07-01

    A new X-ray parallel beam facility (XPBF 2.0) has been installed in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II in Berlin to characterize silicon pore optics (SPOs) for the future X-ray observatory ATHENA. As the existing XPBF which is operated since 2005, the new beamline provides a pencil beam of very low divergence, a vacuum chamber with a hexapod system for accurate positioning of the SPO to be investigated, and a vertically movable CCD-based camera system to register the direct and the reflected beam. In contrast to the existing beamline, a multilayer-coated toroidal mirror is used for beam monochromatization at 1.6 keV and collimation, enabling the use of beam sizes between about 100 μm and at least 5 mm. Thus the quality of individual pores as well as the focusing properties of large groups of pores can be investigated. The new beamline also features increased travel ranges for the hexapod to cope with larger SPOs and a sample to detector distance of 12 m corresponding to the envisaged focal length of ATHENA.

  8. Radiation effects program

    NASA Astrophysics Data System (ADS)

    1985-09-01

    No existing LINAC Based Beam Heating facility comes within a factor of ten of the needs of a high heating rate thermodynamic properties research facility. The facility could be built at the Naval Research Lab. for a cost in the neighborhood of 2 million dollars. The 10 MeV electron beam would not produce any serious radioactivity but would provide unprecedented beam power for such other applications as food processing, sewer treatment, materials curing, radiation hardness assurance, etc. One can always achieve lower current densities by scattering the beam and moving the device under test further away from the scatterer. In this case one must rely on the TLD readings to indicate the dose rate at the point of interest. For general utility with the beam covering about four TLD's fairly evenly one can claim that the NRL LINAC can produce a maximum dose rate of about 6 x 10 to the 10th power rads (Si) per second for a pulse length of 1.5 microseconds, and about 1.4 x 10 to the 11th power rads (Si) per second in a 50 nanosecond pulse. In both cases the beam area is about 0.4 square centimeters.

  9. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  10. Performance of the 2 × 4-cell superconducting linac module for the THz-FEL facility

    NASA Astrophysics Data System (ADS)

    Kui, Zhou; Chenglong, Lao; Dai, Wu; Xing, Luo; Jianxin, Wang; Dexin, Xiao; Lijun, Shan; Tianhui, He; Xuming, Shen; Sifen, Lin; Linde, Yang; Hanbin, Wang; Xingfan, Yang; Ming, Li; Xiangyang, Lu

    2018-07-01

    A high average power THz radiation facility has been developed by the China Academy of Engineering Physics. It is the first CW THz user facility based on superconducting accelerator technology in China. The superconducting linac module, which contains two 4-cell 1.3 GHz TESLA-like superconducting radio frequency cavities, is a major component of this facility. The expected electron energy gain is 6-8 MeV with a field gradient of 8-10 MV/m. The design and fabrication of the linac module is complete. This paper discusses its assembly and results from cyromodule tests and beam commissioning. At 2 K, the cryomodule works smoothly and stably. Both cavities have achieved effective field gradients of 10 MV/m. In beam loading experiments, 8 MeV, 5 mA electron beams with an energy spread less than 0.2% have been produced, which satisfies our requirements.

  11. Parasitic production of slow RI-beam from a projectile fragment separator by ion guide Laser Ion Source (PALIS)

    NASA Astrophysics Data System (ADS)

    Sonoda, Tetsu

    2009-10-01

    The projectile fragment separator BigRIPS of RIBF at RIKEN provides a wide variety of short-lived radioactive isotope (RI) ions without restrictions on their lifetime or chemical properties. A universal slow RI-beam facility (SLOWRI) to decelerate the beams from BigRIPS using an RF-carpet ion guide has been proposed as a principal facility of RIBF. However, beam time at such a modern accelerator facility is always limited and operational costs are high. We therefore propose an additional scheme as a complementary option to SLOWRI to drastically enhance the usability of such an expensive facility. In BigRIPS, a single primary beam produces thousands of isotopes but only one isotope is used for an experiment while the other >99.99% of isotopes are simply dumped in the slits or elsewhere in the fragment separator. We plan to locate a compact gas cell with 1 bar Ar at the slits. The thermalized ions in the cell will be quickly neutralized and transported to the exit by gas flow and resonantly re-ionized by lasers. Such low energy RI-beams will always be provided without any restriction to the main experiment. It will allow us to run parasitic experiments for precision atomic or decay spectroscopy, mass measurements. Furthermore, the resonance ionization in the cell itself can be used for high-sensitive laser spectroscopy, which will expand our knowledge of the ground state property of unstable nuclei.

  12. Astrophysics at RIA (ARIA) Working Group

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    2006-07-01

    The Astrophysics at RIA (ARIA) Working Group has been established to develop and promote the nuclear astrophysics research anticipated at the Rare Isotope Accelerator (RIA). RIA is a proposed next-generation nuclear science facility in the U.S. that will enable significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical sites. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities.

  13. SU-E-T-590: Optimizing Magnetic Field Strengths with Matlab for An Ion-Optic System in Particle Therapy Consisting of Two Quadrupole Magnets for Subsequent Simulations with the Monte-Carlo Code FLUKA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, K; Weber, U; Simeonov, Y

    Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular andmore » thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system.« less

  14. Los Alamos National Laboratory Facility Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Ronald Owen

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H + and H - beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  15. Fermilab Test Beam Facility Annual Report. FY 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, A.

    2015-01-01

    Fermilab Test Beam Facility (FTBF) operations are summarized for FY 2014. It is one of a series of publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  16. The national ignition facility: path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2007-08-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the US nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  17. Inertial Confinement Fusion quarterly report, January-March 1998, volume 8, number 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruer, W

    1998-03-31

    The coupling of laser light with plasmas is one of the key physics issues for the use of high-power lasers for inertial fusion, high-energy-density physics, and scientific stockpile stewardship. The coupling physics is extremely rich and challenging, particularly in the large plasmas to be accessed on the National Ignition Facility (NIF). The coupling mechanisms span the gamut from classical inverse bremsstrahlung absorption to a variety of nonlinear optical processes. These include stimulated Raman scattering (SRS) from electron plasma waves, stimulated Brillouin scattering (SBS) from ion sound waves, resonant decay into electron plasma and ion sound waves, and laser beam filamentation.more » These processes depend on laser intensity and produce effects such as changes in the efficiency and location of the energy deposition or generation of a component of very energetic electrons, which can preheat capsules. Coupling physics issues have an extremely high leverage. The coupling models are clearly very important ingredients for detailed calculations of laser-irradiated target behavior. Improved understanding and models enable a more efficient use of laser facilities, which becomes even more important as these facilities become larger and more expensive. Advances in the understanding also allow a more timely and cost-effective identification of new applications of high-power lasers, such as for generation of high-temperature hohlraums and compact x-ray sources, or for discovery of advanced fusion schemes. Finally, the interaction of intense electromagnetic waves with ionized media is a fundamental topic of interest to numerous areas of applied science and is an excellent test bed for advancing plasma science and computational modeling of complex phenomena. This issue of the ICF Quarterly Report is dedicated to laser--plasma interactions. The eight articles present a cross section of the broad progress in understanding the key interaction issues, such as laser beam bending, spraying, and scattering, as well as scaling the Nova results to NIF.« less

  18. Undersea Laser Communication with Narrow Beams

    DTIC Science & Technology

    2015-09-29

    Abstract Laser sources enable highly efficient optical communications links due to their ability to be focused into very directive beam profiles...Recent atmospheric and space optical links have demonstrated robust laser communications links at high rate with techniques that are applicable to the...undersea environment. These techniques contrast to the broad-angle beams utilized in most reported demonstrations of undersea optical communications

  19. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubenheimer, Tor O

    2001-10-02

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  20. Physics goals for the planned next linear collider engineering test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtlandt L Bohn et al.

    2001-06-26

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  1. Physics goals for the planned next linear collider engineering test facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohn, C.; Michelotti, L.; Ostiguy, J.-F.

    2001-07-17

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  2. The Scientific program with RIBRAS (Radioactive Ion Beams in Brasil)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenthaeler, R.; Lepine-Szily, A.; Guimaraes, V.

    The Radioactive Ion Beams Facility (RIBRAS) is in operation since 2004 at the Pelletron Accelerator Laboratory of the University of Sao Paulo and consists of two superconducting solenoids capable of producing low energy secondary beams of light exotic nuclei. Measurements of the elastic scattering, breakup and transfer reactions with radioactive projectiles such as {sup 6}He,{sup 8}Li,{sup 7}Be on several targets have been performed. A review of the research program carried on along the last four years using the RIBRAS facility is presented.

  3. Coherent beam combiner for a high power laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  4. Thrust vectoring of broad ion beams for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Collett, C. R.; King, H. J.

    1973-01-01

    Thrust vectoring is shown to increase the attractiveness of ion thrusters for satellite control applications. Incorporating beam deflection into ion thrusters makes it possible to achieve attitude control without adding any thrusters. Two beam vectoring systems are described that can provide up to 10-deg beam deflection in any azimuth. Both systems have been subjected to extended life tests on a 5-cm thruster which resulted in projected life times of from 7500 to 20,000 hours.

  5. A Dual-Beam Irradiation Facility for a Novel Hybrid Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Sabchevski, Svilen Petrov; Idehara, Toshitaka; Ishiyama, Shintaro; Miyoshi, Norio; Tatsukawa, Toshiaki

    2013-01-01

    In this paper we present the main ideas and discuss both the feasibility and the conceptual design of a novel hybrid technique and equipment for an experimental cancer therapy based on the simultaneous and/or sequential application of two beams, namely a beam of neutrons and a CW (continuous wave) or intermittent sub-terahertz wave beam produced by a gyrotron for treatment of cancerous tumors. The main simulation tools for the development of the computer aided design (CAD) of the prospective experimental facility for clinical trials and study of such new medical technology are briefly reviewed. Some tasks for a further continuation of this feasibility analysis are formulated as well.

  6. Cavity beam position monitor system for the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Kim, Y. I.; Ainsworth, R.; Aryshev, A.; Boogert, S. T.; Boorman, G.; Frisch, J.; Heo, A.; Honda, Y.; Hwang, W. H.; Huang, J. Y.; Kim, E.-S.; Kim, S. H.; Lyapin, A.; Naito, T.; May, J.; McCormick, D.; Mellor, R. E.; Molloy, S.; Nelson, J.; Park, S. J.; Park, Y. J.; Ross, M.; Shin, S.; Swinson, C.; Smith, T.; Terunuma, N.; Tauchi, T.; Urakawa, J.; White, G. R.

    2012-04-01

    The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  7. Shielding requirements for constant-potential diagnostic x-ray beams determined by a Monte Carlo calculation.

    PubMed

    Simpkin, D J

    1989-02-01

    A Monte Carlo calculation has been performed to determine the transmission of broad constant-potential x-ray beams through Pb, concrete, gypsum wallboard, steel and plate glass. The EGS4 code system was used with a simple broad-beam geometric model to generate exposure transmission curves for published 70, 100, 120 and 140-kVcp x-ray spectra. These curves are compared to measured three-phase generated x-ray transmission data in the literature and found to be reasonable. For calculation ease the data are fit to an equation previously shown to describe such curves quite well. These calculated transmission data are then used to create three-phase shielding tables for Pb and concrete, as well as other materials not available in Report No. 49 of the NCRP.

  8. Simultaneous CARS and Interferometric Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Danehy, Paul M.; Grinstead, Keith D., Jr.; Tedder, Sarah; Cutler, Andrew D.

    2006-01-01

    This paper reports for the first time the combination of a dual-pump coherent anti-Stokes Raman scattering system with an interferometric Rayleigh scattering system (CARS - IRS) to provide time-resolved simultaneous measurement of multiple properties in combustion flows. The system uses spectrally narrow green (seeded Nd:YAG at 532 nm) and yellow (552.9 nm) pump beams and a spectrally-broad red (607 nm) beam as the Stokes beam. A spectrometer and a planar Fabry-Perot interferometer used in the imaging mode are used to record the spectrally broad CARS spectra and the spontaneous Rayleigh scattering spectra, respectively. Time-resolved simultaneous measurement of temperature, absolute mole fractions of N2, O2, and H2, and two components of velocity in a Hencken burner flame were performed to demonstrate the technique.

  9. Measurements and FLUKA simulations of bismuth and aluminium activation at the CERN Shielding Benchmark Facility (CSBF)

    NASA Astrophysics Data System (ADS)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.

    2018-03-01

    The CERN High Energy AcceleRator Mixed field facility (CHARM) is located in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5 ṡ1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7 ṡ1010 p/s that then impacts on the CHARM target. The shielding of the CHARM facility also includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target. This facility consists of 80 cm of cast iron and 360 cm of concrete with barite concrete in some places. Activation samples of bismuth and aluminium were placed in the CSBF and in the CHARM access corridor in July 2015. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields for these samples. The results estimated by FLUKA Monte Carlo simulations are compared to activation measurements of these samples. The comparison between FLUKA simulations and the measured values from γ-spectrometry gives an agreement better than a factor of 2.

  10. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first broad-band acoustic pulse at a first broad-band frequency range having a first central frequency and a first bandwidth spread; generating a second broad-band acoustic pulse at a second broad-band frequency range different than the first frequency range having a second central frequency and a second bandwidth spread, wherein the first acoustic pulse and second acoustic pulse are generated by at least one transducer arranged on a tool located within the borehole; and transmitting the first and the second broad-band acoustic pulses into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated pulse by a non-linear mixing of the first and second acoustic pulses, wherein the collimated pulse has a frequency equal to the difference in frequencies between the first central frequency and the second central frequency and a bandwidth spread equal to the sum of the first bandwidth spread and the second bandwidth spread.

  11. Targets used in the production of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.

    2004-03-01

    Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.

  12. NRL Review, 2002

    DTIC Science & Technology

    2002-05-01

    technology for polarization-maintaining fiber amplification and an ultrashort pulsed fiber laser to Calmar Optcom. Calmar Optcom will be manufacturing...June 1995. This facility is made up of 56 laser beams and is single pulsed (4 nanosecond pulse ). This facil- ity provides intense radiation for studying...plasma interactions, in- tense laser -electron beam interactions, and intense laser -matter interactions. The division is building a repetitively pulsed (5

  13. A facility to produce an energetic, ground state atomic oxygen beam for the simulation of the Low-Earth Orbit environment

    NASA Technical Reports Server (NTRS)

    Ketsdever, Andrew D.; Weaver, David P.; Muntz, E. P.

    1994-01-01

    Because of the continuing commitment to activity in low-Earth orbit (LEO), a facility is under development to produce energetic atmospheric species, particularly atomic oxygen, with energies ranging from 5 to 80 eV. This relatively high flux facility incorporates an ion engine to produce the corresponding specie ion which is charge exchanged to produce a neutral atomic beam. Ion fluxes of around 10(exp 15) sec(exp -1) with energies of 20-70 eV have been achieved. A geometrically augmented inertially tethered charge exchanger (GAITCE) was designed to provide a large column depth of charge exchange gas while reducing the gas load to the low pressure portion of the atomic beam facility. This is accomplished using opposed containment jets which act as collisional barriers to the escape of the dense gas region formed between the jets. Leak rate gains to the pumping system on the order of 10 were achieved for moderate jet mass flows. This system provides an attractive means for the charge exchange of atomic ions with a variety of gases to produce energetic atomic beams.

  14. An electron beam ion trap and source for re-acceleration of rare-isotope ion beams at TRIUMF

    NASA Astrophysics Data System (ADS)

    Blessenohl, M. A.; Dobrodey, S.; Warnecke, C.; Rosner, M. K.; Graham, L.; Paul, S.; Baumann, T. M.; Hockenbery, Z.; Hubele, R.; Pfeifer, T.; Ames, F.; Dilling, J.; Crespo López-Urrutia, J. R.

    2018-05-01

    Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.

  15. A 62-MeV Proton Beam for the Treatment of Ocular Melanoma at Laboratori Nazionali del Sud-INFN

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Cuttone, G.; Lojacono, P. A.; Lo Nigro, S.; Mongelli, V.; Patti, I. V.; Privitera, G.; Raffaele, L.; Rifuggiato, D.; Sabini, M. G.; Salamone, V.; Spatola, C.; Valastro, L. M.

    2004-06-01

    At the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) in Catania, Italy, the first Italian protontherapy facility, named Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) has been built in collaboration with the University of Catania. It is based on the use of the 62-MeV proton beam delivered by the K=800 Superconducting Cyclotron installed and working at INFN-LNS since 1995. The facility is mainly devoted to the treatment of ocular diseases like uveal melanoma. A beam treatment line in air has been assembled together with a dedicated positioning patient system. The facility has been in operation since the beginning of 2002 and 66 patients have been successfully treated up to now. The main features of CATANA together with the clinical and dosimetric features will be extensively described; particularly, the proton beam line, that has been entirely built at LNS, with all its elements, the experimental transversal and depth dose distributions of the 62-MeV proton beam obtained for a final collimator of 25-mm diameter and the experimental depth dose distributions of a modulated proton beam obtained for the same final collimator. Finally, the clinical results over 1 yr of treatments, describing the features of the treated diseases will be reported.

  16. High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasin, Zafar, E-mail: zafar.yasin@eli-np.ro; Matei, Catalin; Ur, Calin A.

    The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKAmore » and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.« less

  17. Design of an epithermal column for BNCT based on D D fusion neutron facility

    NASA Astrophysics Data System (ADS)

    Durisi, E.; Zanini, A.; Manfredotti, C.; Palamara, F.; Sarotto, M.; Visca, L.; Nastasi, U.

    2007-05-01

    Boron Neutron Capture Therapy (BNCT) is currently performed on patients at nuclear reactors. At the same time the international BNCT community is engaged in the development of alternative facilities for in-hospital treatments. This paper investigates the potential of a novel high-output D-D neutron generator, developed at Lawrence Berkeley National Laboratory (CA, USA), for BNCT. The simulation code MCNP-4C is used to realize an accurate study of the epithermal column in view of the treatment of deep tumours. Different materials and Beam Shaping Assemblies (BSA) are investigated and an optimized configuration is proposed. The neutron beam quality is defined by the standard free beam parameters, calculated averaging over the collimator aperture. The results are discussed and compared with the performances of other facilities.

  18. The first target experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.

    2007-08-01

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.

  19. [Initial experience of proton beam therapy at the new facility of the University of Tsukuba].

    PubMed

    Kagei, Kenji; Tokuuye, Koichi; Sugahara, Shinji; Hata, Masaharu; Igaki, Hiroshi; Hashimoto, Takayuki; Ohara, Kiyoshi; Akine, Yasuyuki

    2004-05-01

    To present the initial experience with proton beam therapy at the new Proton Medical Research Center (PMRC) of the University of Tsukuba. The new facility has a synchrotron with maximum energy of 250MeV and two rotational gantries. We treated 105 patients with 120 lesions with proton beams in the first year, beginning in September 2001. The most common lesion treated was primary liver cancer (40 lesions) followed by lung cancer, head and neck cancers, and prostate cancer. Concurrent X-ray radiotherapy was given for 38 of the 120 lesions. The median follow-up period was 11 months (range, 1-19 months). Of the 105 patients, 97% had Grade 0-2 RTOG/EORTC acute morbidities, while the remaining 3% had Grade 3. Tumor response after irradiation was CR for 35% of the lesions, PR for 25%, SD for 22%, PD for 9%, and not evaluated for 9%. The proton beam therapy conducted at the new facility of the University of Tsukuba was safe and effective.

  20. Performance Characterization of the Production Facility Prototype Helium Flow System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.« less

  1. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, G. V.; Beiersdorfer, P.; Emig, J.

    2008-10-15

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification ofmore » filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.« less

  2. Nuclear resonance fluorescence in U-238 using LaBr detectors for nuclear security

    NASA Astrophysics Data System (ADS)

    Hayakawa, Takehito; Negm, Hani; Ohgaki, Hideaki; Daito, Izuru; Kii, Toshiteru; Zen, Heishun; Omer, Mohamed; Shizuma, Toshiyuki; Hajima, Ryoichi

    2014-09-01

    Recently, a nondestructive measurement method of shielded fissional isotopes such as 235U or 239Pu has been proposed for the nuclear security. These isotopes are measured by using nuclear resonance fluorescence (NRF) with monochromatic energy gamma-ray beams generated by laser Compton-scattering (LCS). We have proposed that one measure scattered gamma-rays from NRF with LCS gamma-ray beams using the LaBr3(Ce) detectors. The LaBr3(Ce) crystals include internal radioisotopes of a meta-stable isotope 138La and alpha decay chains from some actinides as 227Ac. There is a broad pump at about 2 MeV. This pump is considered to be an overlap of alpha-rays from decay chains of some actinides but its detailed structure has not been established. Here we have measured NRF spectra of 238U using the LCS gamma-rays with energy of about 2.5 MeV at the HIgS facility of the Duke University. The background has been evaluated using a simulation code GEAT4. The 9 peaks, 8 NRF gamma-rays plus the Compton scattered gamma-ray of the incident beam, are finally assigned in an energy range of about 200 keV at about 2.5 MeV. The 8 integrated NRF cross-sections measured by LaBr3(Ce) have been consistent with results by an HPGe detector. The three levels are newly assigned using the HPGe detector. Two of them are also measured by LaBr3(Ce).

  3. Characterizing the Performance of the Princeton Advanced Test Stand Ion Source

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.

    2012-10-01

    The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a multicusp RF ion source mounted on a 2 m-long vacuum chamber with numerous ports for diagnostic access. Ar+ beams are extracted from the source plasma with three-electrode (accel-decel) extraction optics. The RF power and extraction voltage (30 - 100 kV) are pulsed to produce 100 μsec duration beams at 0.5 Hz with excellent shot-to-shot repeatability. Diagnostics include Faraday cups, a double-slit emittance scanner, and scintillator imaging. This work reports measurements of beam parameters for a range of beam energies (30 - 50 keV) and currents to characterize the behavior of the ion source and extraction optics. Emittance scanner data is used to calculate the beam trace-space distribution and corresponding transverse emittance. If the plasma density is changing during a beam pulse, time-resolved emittance scanner data has been taken to study the corresponding evolution of the beam trace-space distribution.

  4. Non-polarizing beam splitter design

    NASA Astrophysics Data System (ADS)

    Qi, H. J.; Shao, J. D.; Hong, R. J.; Yi, K.; Fan, Z. X.

    2004-09-01

    In this paper a non-polarizing beam splitter design concept is presented using anisotropic thin films. Transmittance of s- and p-polarized waves can be dealt with separately. This concept can be applied to non-polarizing beam splitter designs of single wavelength and broad-band spectrum at oblique incidence. A few examples of non-polarizing beam splitters (50:50) at the design wavelength of 1064 nm and over the visible spectrum (420 nm 680 nm) are elaborated. Besides, the angular performance of these designs is examined.

  5. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  6. Monte Carlo study of si diode response in electron beams.

    PubMed

    Wang, Lilie L W; Rogers, David W O

    2007-05-01

    Silicon semiconductor diodes measure almost the same depth-dose distributions in both photon and electron beams as those measured by ion chambers. A recent study in ion chamber dosimetry has suggested that the wall correction factor for a parallel-plate ion chamber in electron beams changes with depth by as much as 6%. To investigate diode detector response with respect to depth, a silicon diode model is constructed and the water/silicon dose ratio at various depths in electron beams is calculated using EGSnrc. The results indicate that, for this particular diode model, the diode response per unit water dose (or water/diode dose ratio) in both 6 and 18 MeV electron beams is flat within 2% versus depth, from near the phantom surface to the depth of R50 (with calculation uncertainty <0.3%). This suggests that there must be some other correction factors for ion chambers that counter-balance the large wall correction factor at depth in electron beams. In addition, the beam quality and field-size dependence of the diode model are also calculated. The results show that the water/diode dose ratio remains constant within 2% over the electron energy range from 6 to 18 MeV. The water/diode dose ratio does not depend on field size as long as the incident electron beam is broad and the electron energy is high. However, for a very small beam size (1 X 1 cm(2)) and low electron energy (6 MeV), the water/diode dose ratio may decrease by more than 2% compared to that of a broad beam.

  7. Atmospheric Radiation Measurement Program facilities newsletter, July 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisterson, D. L.; Holdridge, D. J., ed.

    2000-08-03

    For improved safety in and around the ARM SGP CART site, the ARM Program recently purchased and installed an aircraft detection radar system at the central facility near Lamont, Oklahoma. The new system will enhance safety measures already in place at the central facility. The SGP CART site, especially the central facility, houses several instruments employing laser technology. These instruments are designed to be eye-safe and are not a hazard to personnel at the site or pilots of low-flying aircraft over the site. However, some of the specialized equipment brought to the central facility by visiting scientists during scheduled intensivemore » observation periods (IOPs) might use higher-power laser beams that point skyward to make measurements of clouds or aerosols in the atmosphere. If these beams were to strike the eye of a person in an aircraft flying above the instrument, damage to the person's eyesight could result. During IOPs, CART site personnel have obtained Federal Aviation Administration (FAA) approval to temporarily close the airspace directly over the central facility and keep aircraft from flying into the path of the instrument's laser beam. Information about the blocked airspace is easily transmitted to commercial aircraft, but that does not guarantee that the airspace remains completely plane-free. For this reason, during IOPs in which non-eye-safe lasers were in use in the past, ARM technicians watched for low-flying aircraft in and around the airspace over the central facility. If the technicians spotted such an aircraft, they would manually trigger a safety shutter to block the laser beam's path skyward until the plane had cleared the area.« less

  8. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    PubMed

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  9. Guidelines for Planning in Colleges and Universities. Volume 4: Physical Plant Planning, Facilities Studies.

    ERIC Educational Resources Information Center

    Pinnell, Charles; Wacholder, Michael

    The fourth of a five-volume series concerned with higher educational planning provides techniques for the estimation of an institution's facility requirements. The facilities are discussed within the framework of two broad categories--(1) academic program facilities, and (2) residential housing facilities. The academic program facilities provide…

  10. Correction to AD/RHIC-47, Beam Transfer From AGS to RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus, J.; Foelsche, H.

    1988-12-12

    RHIC an acronym for Relativistic Heavy Ion Collider, is a facility for colliding heavy ions with each other, proposed for construction at Brookhaven National Laboratory. This facility and the motivation for building it, have been described. It consists of two intersecting storage rings and the purpose of this note is to describe how these two rings are to be filled with beam.

  11. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    NASA Astrophysics Data System (ADS)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  12. Focusing giga-electronvolt heavy ions to micrometers at the Institute of Modern Physics.

    PubMed

    Sheng, Lina; Du, Guanghua; Guo, Jinlong; Wu, Ruqun; Song, Mingtao; Yuan, Youjin; Xiao, Guoqing

    2013-05-01

    To study the radiation effect of cosmic heavy ions of low fluxes in electronics and living samples, a focusing heavy ion microbeam facility, for ions with energies of several MeV/u up to 100 MeV/u, was constructed in the Institute of Modern Physics of the Chinese Academy of Sciences. This facility has a vertical design and an experiment platform for both in-vacuum analysis and in-air irradiation. Recently, microbeam of (12)C(6+) with energy of 80.55 MeV/u was successfully achieved at this interdisciplinary microbeam facility with a full beam spot size of 3 μm × 5 μm on target in air. Different from ions with energy of several MeV/u, the very high ion energy of hundred MeV/u level induces problems in beam micro-collimation, online beam spot diagnosis, radiation protection, etc. This paper presents the microbeam setup, difficulties in microbeam formation, and the preliminary experiments performed with the facility.

  13. Cross sections for ionization of tetrahydrofuran by protons at energies between 300 and 3000 keV

    NASA Astrophysics Data System (ADS)

    Wang, Mingjie; Rudek, Benedikt; Bennett, Daniel; de Vera, Pablo; Bug, Marion; Buhr, Ticia; Baek, Woon Yong; Hilgers, Gerhard; Rabus, Hans

    2016-05-01

    Double-differential cross sections for ionization of tetrahydrofuran by protons with energies from 300 to 3000 keV were measured at the Physikalisch-Technische Bundesanstalt ion accelerator facility. The electrons emitted at angles between 15∘ and 150∘ relative to the ion-beam direction were detected with an electrostatic hemispherical electron spectrometer. Single-differential and total ionization cross sections have been derived by integration. The experimental results are compared to the semiempirical Hansen-Kocbach-Stolterfoht model as well as to the recently reported method based on the dielectric formalism. The comparison to the latter showed good agreement with experimental data in a broad range of emission angles and energies of secondary electrons. The scaling property of ionization cross sections for tetrahydrofuran was also investigated. Compared to molecules of different size, the ionization cross sections of tetrahydrofuran were found to scale with the number of valence electrons at large impact parameters.

  14. Separated structure functions for exclusive K+Λ and K+Σ0 electroproduction at 5.5 GeV measured with CLAS

    NASA Astrophysics Data System (ADS)

    Carman, D. S.; Park, K.; Raue, B. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Anghinolfi, M.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Fradi, A.; Gabrielyan, M. Y.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Kvaltine, N. D.; Lewis, S.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Martinez, D.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Saylor, N. A.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Y.; Tkachenko, S.; Trivedi, A.; Ungaro, M.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2013-02-01

    We report measurements of the exclusive electroproduction of K+Λ and K+Σ0 final states from an unpolarized proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions σU, σLT, σTT, and σLT' were extracted from the Φ-dependent differential cross sections acquired with a longitudinally polarized 5.499 GeV electron beam. The data span a broad range of momentum transfers Q2 from 1.4 to 3.9 GeV2, invariant energy W from threshold to 2.6 GeV, and nearly the full center-of-mass angular range of the kaon. The separated structure functions provide an unprecedented data sample, which, in conjunction with other meson photo- and electroproduction data, will help to constrain the higher-level analyses being performed to search for missing baryon resonances.

  15. X-ray phase-contrast tomosynthesis of a human ex vivo breast slice with an inverse Compton x-ray source

    NASA Astrophysics Data System (ADS)

    Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Grandl, S.; Sztrókay, A.; Hellerhoff, K.; Mayr, D.; Loewen, R.; Ruth, R. D.; Reiser, M. F.; Pfeiffer, F.

    2016-12-01

    While the performance of conventional x-ray tube sources often suffers from the broad polychromatic spectrum, synchrotrons that could provide highly brilliant x-rays are restricted to large research facilities and impose high investment and maintenance costs. Lately, a new type of compact synchrotron sources has been investigated. These compact light sources (CLS) based on inverse Compton scattering provide quasi-monochromatic hard x-rays. The flux and brilliance yielded by a CLS currently lie between x-ray tube sources and third-generation synchrotrons. The relatively large partially coherent x-ray beam is well suited for the investigation of preclinical applications of grating-based phase-contrast and dark-field imaging. Here we present the first grating-based multimodal tomosynthesis images of a human breast slice acquired at a CLS to investigate the possibilities of improved breast cancer diagnostics.

  16. Spectroscopy of the low-frequency vibrational modes of CH3+ isotopologues

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Thorwirth, Sven; Redlich, Britta; Schlemmer, Stephan

    2018-05-01

    The low-frequency stretching and bending vibrations of the isotopologues CH2D+,CD2H+ and CD3+ have been recorded at low temperature and low resolution. For this, a cryogenic 22-pole trapping machine coupled to an IR beamline of the FELIX free electron laser facility has been used. To record the overview spectra, the laser induced reactions CDm Hn+ + H2 → hν CDm-1 Hn+1+ +HD have been applied for these species. As this scheme is not applicable to CH3+, the latter has been tagged with He and subsequently dissociated by the IR beam. For the resulting CH3+ -He spectrum, broad features are observed below 1000 cm-1 possibly related to vibrational motions involving the He atom. The extracted vibrational band positions for all species are compared to results from high-level quantum-chemical calculations.

  17. Cosmic Microwave Background Polarization Detector with High Efficiency, Broad Bandwidth, and Highly Symmetric Coupling to Transition Edge Sensor Bolometers

    NASA Technical Reports Server (NTRS)

    Wollack, E.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.-T.; Moseley, S. Harvey; Schneider, G.; Stevenson, T.; Travers, D.; U-yen, K.

    2008-01-01

    Four probe antennas transfer signals from waveguide to microstrip lines. The probes not only provide broadband impedance matching, but also thermally isolate waveguide and detector. In addition, we developed a new photonic waveguide choke joint design, with four-fold symmetry, to suppress power leakage at the interface. We have developed facilities to test superconducting circuit elements using a cryogenic microwave probe station, and more complete systems in waveguide. We used the ring resonator shown below to measure a dielectric loss tangent < 7x10(exp -4) over 10 - 45 GHz. We have combined component simulations to predict the overall coupling from waveguide modes to bolometers. The result below shows the planar circuit and waveguide interface can utilize the high beam symmetry of HE11 circular feedhorns with > 99% coupling efficiency over 30% fractional bandwidth.

  18. The national ignition facility: Path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2006-06-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  19. SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Tian, Z; Song, T

    Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accountingmore » for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.« less

  20. Conceptual design of BNCT facility based on the TRR medical room

    NASA Astrophysics Data System (ADS)

    Golshanian, M.; Rajabi, A. A.; Kasesaz, Y.

    2017-10-01

    This paper presents a conceptual design of the Boron Neutron Capture Therapy (BNCT) facility based on the medical room of Tehran Research Reactor (TRR). The medical room is located behind the east wall of the reactor pool. The designed beam line is an in-pool Beam Shaping Assembly (BSA) which is considered between the reactor core and the medical room wall. The final designed BSA can provide 2.96× 109 n/cm2ṡs epithermal neutron flux at the irradiation position with acceptable beam contamination to use as a clinical BNCT.

  1. Gamma-Ray Spectroscopy at TRIUMF-ISAC: the New Frontier of Radioactive Ion Beam Research

    NASA Astrophysics Data System (ADS)

    Ball, G. C.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Bricault, P.; Brown, N.; Chan, S.; Churchman, R.; Colosimo, S.; Coombes, H.; Cross, D.; Demand, G.; Drake, T. E.; Dombsky, M.; Ettenauer, S.; Finlay, P.; Furse, D.; Garnsworthy, A.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hyland, B.; Hackman, G.; Kanungo, R.; Kulp, W. D.; Lassen, J.; Leach, K. G.; Leslie, J. R.; Mattoon, C.; Melconian, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Rand, E.; Sarazin, F.; Svensson, C. E.; Sumithrarachchi, S.; Schumaker, M. A.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Zganjar, E. F.

    2009-03-01

    High-resolution gamma-ray spectroscopy is essential to fully exploit the unique scientific opportunities at the next generation radioactive ion beam facilities such as the TRIUMF Isotope Separator and Accelerator (ISAC). At ISAC the 8π spectrometer and its associated auxiliary detectors is optimize for β-decay studies while TIGRESS an array of segmented clover HPGe detectors has been designed for studies with accelerated beams. This paper gives a brief overview of these facilities and also presents recent examples of the diverse experimental program carried out at the 8π spectrometer.

  2. The Stonehenge technique. A method for aligning coherent bremsstrahlung radiators

    NASA Astrophysics Data System (ADS)

    Livingston, Ken

    2009-05-01

    This paper describes a technique for the alignment of crystal radiators used to produce high energy, linearly polarized photons via coherent bremsstrahlung scattering at electron beam facilities. In these experiments the crystal is mounted on a goniometer which is used to adjust its orientation relative to the electron beam. The angles and equations which relate the crystal lattice, goniometer and electron beam direction are presented here, and the method of alignment is illustrated with data taken at MAMI (the Mainz microtron). A practical guide to setting up a coherent bremsstrahlung facility and installing new crystals using this technique is also included.

  3. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsten, Bruce E.; Barnes, Cris W.; Bishofberger, Kip A.

    2011-01-01

    The proposed Matter-Radiation Interactions in Extremes (MaRIE) facility at the Los Alamos National Laboratory will include a 50-keV X-Ray Free-Electron Laser (XFEL), a significant extension from planned and existing XFEL facilities. To prevent an unacceptably large energy spread arsing from energy diffusion, the electron beam energy should not exceed 20 GeV, which puts a significant constraint on the beam emittance. A 100-pC baseline design is presented along with advanced technology options to increase the photon flux and to decrease the spectral bandwidth through pre-bunching the electron beam.

  4. Measurement of activation of helium gas by 238U beam irradiation at about 11 A MeV

    NASA Astrophysics Data System (ADS)

    Akashio, A.; Tanaka, K.; Imao, H.; Uwamino, Y.

    2017-09-01

    A new helium-gas stripper system has been applied at the 11 A MeV uranium beam of the Radioactive Isotope Beam Factory of the RIKEN accelerator facility. Although the gas stripper is important for the heavy-ion accelerator facility, the residual radiation that is generated is a serious problem for maintenance work. The residual dose was evaluated by using three-layered activation samples of aluminium and bismuth. The γ-rays from produced radionuclides with in-flight fission of the 238U beam and from the material of the chamber activated by neutrons were observed by using a Ge detector and compared with the values calculated by using the Monte-Carlo simulation code PHITS.

  5. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility.

    PubMed

    Marozas, J A; Hohenberger, M; Rosenberg, M J; Turnbull, D; Collins, T J B; Radha, P B; McKenty, P W; Zuegel, J D; Marshall, F J; Regan, S P; Sangster, T C; Seka, W; Campbell, E M; Goncharov, V N; Bowers, M W; Di Nicola, J-M G; Erbert, G; MacGowan, B J; Pelz, L J; Yang, S T

    2018-02-23

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3  Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.

  6. View Factor and Radiation-Hydrodynamic Simulations of Gas-Filled Outer-Quad-Only Hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Meezan, Nathan; Landen, Otto

    2017-10-01

    A cylindrical National Ignition Facility hohlraum irradiated exclusively by NOVA-like outer quads (44 .5° and 50° beams) is proposed to minimize laser plasma interaction (LPI) losses and avoid problems with propagating the inner (23 .5° and 30°) beams. Symmetry and drive are controlled by shortening the hohlraum, using a smaller laser entrance hole (LEH), beam phasing the 44 .5° and 50° beams, and correcting the remaining P4 asymmetry with a capsule shim. Ensembles of time-resolved view factor simulations help narrow the design space of the new configuration, with fine tuning provided by the radiation-hydrodynamic code HYDRA. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    NASA Astrophysics Data System (ADS)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  8. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; Turnbull, D.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.; Zuegel, J. D.; Marshall, F. J.; Regan, S. P.; Sangster, T. C.; Seka, W.; Campbell, E. M.; Goncharov, V. N.; Bowers, M. W.; Di Nicola, J.-M. G.; Erbert, G.; MacGowan, B. J.; Pelz, L. J.; Yang, S. T.

    2018-02-01

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.

  9. Lead Pipe Scale Analysis Using Broad-Beam Argon Ion Milling to Elucidate Drinking Water Corrosion

    EPA Science Inventory

    Herein, we compared the characterization of lead pipe scale removed from a drinking water distribution system using two different cross section methods (conventional polishing and argon ion beam etching). The pipe scale solids were analyzed using scanning electron microscopy (SEM...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putnam, T.M.

    This report presents the objectives, organization, policies, and essential rules and procedures that have been adopted by MP Division and that form the basis of the Health and Safety Program of the Clinton P. Anderson Meson Physics Facility (LAMPF). The facility includes the beam-delivery systems for the Los Alamos Neutron Scattering Center and the Weapons Neutron Research Facility (LANSCE/WNR). The program is designed not only to assure the health and safety of all personnel, including users, in their work at LAMPF, and of MP-Division staff in their work on the LANSCE/WNR beam lines, but also to protect the facility (buildingsmore » and equipment) and the environment. 33 refs., 18 figs., 2 tabs.« less

  11. The University of Texas M.D. Anderson Cancer Center Proton Therapy Facility

    NASA Astrophysics Data System (ADS)

    Smith, Alfred; Newhauser, Wayne; Latinkic, Mitchell; Hay, Amy; McMaken, Bruce; Styles, John; Cox, James

    2003-08-01

    The University of Texas M.D. Anderson Cancer Center (MDACC), in partnership with Sanders Morris Harris Inc., a Texas-based investment banking firm, and The Styles Company, a developer and manager of hospitals and healthcare facilities, is building a proton therapy facility near the MDACC main complex at the Texas Medical Center in Houston, Texas USA. The MDACC Proton Therapy Center will be a freestanding, investor-owned radiation oncology center offering state-of-the-art proton beam therapy. The facility will have four treatment rooms: three rooms will have rotating, isocentric gantries and the fourth treatment room will have capabilities for both large and small field (e.g. ocular melanoma) treatments using horizontal beam lines. There will be an additional horizontal beam room dedicated to physics research and development, radiation biology research, and outside users who wish to conduct experiments using proton beams. The first two gantries will each be initially equipped with a passive scattering nozzle while the third gantry will have a magnetically swept pencil beam scanning nozzle. The latter will include enhancements to the treatment control system that will allow for the delivery of proton intensity modulation treatments. The proton accelerator will be a 250 MeV zero-gradient synchrotron with a slow extraction system. The facility is expected to open for patient treatments in the autumn of 2005. It is anticipated that 675 patients will be treated during the first full year of operation, while full capacity, reached in the fifth year of operation, will be approximately 3,400 patients per year. Treatments will be given up to 2-shifts per day and 6 days per week.

  12. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maunoury, L., E-mail: maunoury@ganil.fr; Delahaye, P.; Dubois, M.

    2014-02-15

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P.more » Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO{sub 2}), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.« less

  13. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    NASA Astrophysics Data System (ADS)

    Maunoury, L.; Delahaye, P.; Angot, J.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C.; Lamy, T.

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  14. Future carbon beams at SPIRAL1 facility: which method is the most efficient?

    PubMed

    Maunoury, L; Delahaye, P; Angot, J; Dubois, M; Dupuis, M; Frigot, R; Grinyer, J; Jardin, P; Leboucher, C; Lamy, T

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  15. Full-beam performances of a PET detector with synchrotron therapeutic proton beams.

    PubMed

    Piliero, M A; Pennazio, F; Bisogni, M G; Camarlinghi, N; Cerello, P G; Del Guerra, A; Ferrero, V; Fiorina, E; Giraudo, G; Morrocchi, M; Peroni, C; Pirrone, G; Sportelli, G; Wheadon, R

    2016-12-07

    Treatment quality assessment is a crucial feature for both present and next-generation ion therapy facilities. Several approaches are being explored, based on prompt radiation emission or on PET signals by [Formula: see text]-decaying isotopes generated by beam interactions with the body. In-beam PET monitoring at synchrotron-based ion therapy facilities has already been performed, either based on inter-spill data only, to avoid the influence of the prompt radiation, or including both in-spill and inter-spill data. However, the PET images either suffer of poor statistics (inter-spill) or are more influenced by the background induced by prompt radiation (in-spill). Both those problems are expected to worsen for accelerators with improved duty cycle where the inter-spill interval is reduced to shorten the treatment time. With the aim of assessing the detector performance and developing techniques for background reduction, a test of an in-beam PET detector prototype was performed at the CNAO synchrotron-based ion therapy facility in full-beam acquisition modality. Data taken with proton beams impinging on PMMA phantoms showed the system acquisition capability and the resulting activity distribution, separately reconstructed for the in-spill and the inter-spill data. The coincidence time resolution for in-spill and inter-spill data shows a good agreement, with a slight deterioration during the spill. The data selection technique allows the identification and rejection of most of the background originated during the beam delivery. The activity range difference between two different proton beam energies (68 and 72 MeV) was measured and found to be in sub-millimeter agreement with the expected result. However, a slightly longer (2 mm) absolute profile length is obtained for in-spill data when compared to inter-spill data.

  16. A proton irradiation test facility for space research in Ankara, Turkey

    NASA Astrophysics Data System (ADS)

    Gencer, Ayşenur; Yiǧitoǧlu, Merve; Bilge Demirköz, Melahat; Efthymiopoulos, Ilias

    2016-07-01

    Space radiation often affects the electronic components' performance during the mission duration. In order to ensure reliable performance, the components must be tested to at least the expected dose that will be received in space, before the mission. Accelerator facilities are widely used for such irradiation tests around the world. Turkish Atomic Energy Authority (TAEA) has a 15MeV to 30MeV variable proton cyclotron in Ankara and the facility's main purpose is to produce radioisotopes in three different rooms for different target systems. There is also an R&D room which can be used for research purposes. This paper will detail the design and current state of the construction of a beamline to perform Single Event Effect (SEE) tests in Ankara for the first time. ESA ESCC No.25100 Standard Single Event Effect Test Method and Guidelines is being considered for these SEE tests. The proton beam kinetic energy must be between 20MeV and 200MeV according to the standard. While the proton energy is suitable for SEE tests, the beam size must be 15.40cm x 21.55cm and the flux must be between 10 ^{5} p/cm ^{2}/s to at least 10 ^{8} p/cm ^{2}/s according to the standard. The beam size at the entrance of the R&D room is mm-sized and the current is variable between 10μA and 1.2mA. Therefore, a defocusing beam line has been designed to enlarge the beam size and reduce the flux value. The beam line has quadrupole magnets to enlarge the beam size and the collimators and scattering foils are used for flux reduction. This facility will provide proton fluxes between 10 ^{7} p/cm ^{2}/s and 10 ^{10} p/cm ^{2}/s for the area defined in the standard when completed. Also for testing solar cells developed for space, the proton beam energy will be lowered below 10MeV. This project has been funded by Ministry of Development in Turkey and the beam line construction will finish in two years and SEE tests will be performed for the first time in Turkey.

  17. Measurements and FLUKA Simulations of Bismuth, Aluminium and Indium Activation at the upgraded CERN Shielding Benchmark Facility (CSBF)

    NASA Astrophysics Data System (ADS)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.; Yashima, H.

    2018-06-01

    The CERN High energy AcceleRator Mixed field (CHARM) facility is situated in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5·1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7·1010 protons per second. The extracted proton beam impacts on a cylindrical copper target. The shielding of the CHARM facility includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target that allows deep shielding penetration benchmark studies of various shielding materials. This facility has been significantly upgraded during the extended technical stop at the beginning of 2016. It consists now of 40 cm of cast iron shielding, a 200 cm long removable sample holder concrete block with 3 inserts for activation samples, a material test location that is used for the measurement of the attenuation length for different shielding materials as well as for sample activation at different thicknesses of the shielding materials. Activation samples of bismuth, aluminium and indium were placed in the CSBF in September 2016 to characterize the upgraded version of the CSBF. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields of bismuth isotopes (206 Bi, 205 Bi, 204 Bi, 203 Bi, 202 Bi, 201 Bi) from 209 Bi, 24 Na from 27 Al and 115 m I from 115 I for these samples. The production yields estimated by FLUKA Monte Carlo simulations are compared to the production yields obtained from γ-spectroscopy measurements of the samples taking the beam intensity profile into account. The agreement between FLUKA predictions and γ-spectroscopy measurements for the production yields is at a level of a factor of 2.

  18. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit

    PubMed Central

    Jakobsen, Lasse; Surlykke, Annemarie

    2010-01-01

    Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases off-axis echoes. However, high directionality has context-specific disadvantages: at close range the detection space will be vastly reduced, making a broad beam favorable. Hence, a flexible system would be very advantageous. We investigated whether bats can dynamically change directionality of their biosonar during aerial pursuit of insects. We trained five Myotis daubentonii and one Eptesicus serotinus to capture tethered mealworms and recorded their echolocation signals with a multimicrophone array. The results show that the bats broaden the echolocation beam drastically in the terminal phase of prey pursuit. M. daubentonii increased the half-amplitude angle from approximately 40° to approximately 90° horizontally and from approximately 45° to more than 90° vertically. The increase in beam width is achieved by lowering the frequency by roughly one octave from approximately 55 kHz to approximately 27.5 kHz. The E. serotinus showed beam broadening remarkably similar to that of M. daubentonii. Our results demonstrate dynamic control of beam width in both species. Hence, we propose directionality as an explanation for the frequency decrease observed in the buzz of aerial hawking vespertilionid bats. We predict that future studies will reveal dynamic control of beam width in a broad range of acoustically communicating animals. PMID:20643943

  19. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit.

    PubMed

    Jakobsen, Lasse; Surlykke, Annemarie

    2010-08-03

    Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases off-axis echoes. However, high directionality has context-specific disadvantages: at close range the detection space will be vastly reduced, making a broad beam favorable. Hence, a flexible system would be very advantageous. We investigated whether bats can dynamically change directionality of their biosonar during aerial pursuit of insects. We trained five Myotis daubentonii and one Eptesicus serotinus to capture tethered mealworms and recorded their echolocation signals with a multimicrophone array. The results show that the bats broaden the echolocation beam drastically in the terminal phase of prey pursuit. M. daubentonii increased the half-amplitude angle from approximately 40 degrees to approximately 90 degrees horizontally and from approximately 45 degrees to more than 90 degrees vertically. The increase in beam width is achieved by lowering the frequency by roughly one octave from approximately 55 kHz to approximately 27.5 kHz. The E. serotinus showed beam broadening remarkably similar to that of M. daubentonii. Our results demonstrate dynamic control of beam width in both species. Hence, we propose directionality as an explanation for the frequency decrease observed in the buzz of aerial hawking vespertilionid bats. We predict that future studies will reveal dynamic control of beam width in a broad range of acoustically communicating animals.

  20. A small electron beam ion trap/source facility for electron/neutral–ion collisional spectroscopy in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang

    2018-01-01

    Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.

  1. Direct measurement of resonance strengths in 34S(α ,γ )38Ar at astrophysically relevant energies using the DRAGON recoil separator

    NASA Astrophysics Data System (ADS)

    Connolly, D.; O'Malley, P. D.; Akers, C.; Chen, A. A.; Christian, G.; Davids, B.; Erikson, L.; Fallis, J.; Fulton, B. R.; Greife, U.; Hager, U.; Hutcheon, D. A.; Ilyushkin, S.; Laird, A. M.; Mahl, A.; Ruiz, C.

    2018-03-01

    Background: Nucleosynthesis of mid-mass elements is thought to occur under hot and explosive astrophysical conditions. Radiative α capture on 34S has been shown to impact nucleosynthesis in several such conditions, including core and shell oxygen burning, explosive oxygen burning, and type Ia supernovae. Purpose: Broad uncertainties exist in the literature for the strengths of three resonances within the astrophysically relevant energy range (ECM=1.94 -3.42 MeV at T =2.2 GK ). Further, there are several states in 38Ar within this energy range which have not been previously measured. This work aimed to remeasure the resonance strengths of states for which broad uncertainty existed as well as to measure the resonance strengths and energies of previously unmeasured states. Methods: Resonance strengths and energies of eight narrow resonances (five of which had not been previously studied) were measured in inverse kinematics with the DRAGON facility at TRIUMF by impinging an isotopically pure beam of 34S ions on a windowless 4He gas target. Prompt γ emissions of de-exciting 38Ar recoils were detected in an array of bismuth germanate scintillators in coincidence with recoil nuclei, which were separated from unreacted beam ions by an electromagnetic mass separator and detected by a time-of-flight system and a multianode ionization chamber. Results: The present measurements agree with previous results. Broad uncertainty in the resonance strength of the ECM=2709 keV resonance persists. Resonance strengths and energies were determined for five low-energy resonances which had not been studied previously, and their strengths were determined to be significantly weaker than those of previously measured resonances. Conclusions: The five previously unmeasured resonances were found not to contribute significantly to the total thermonuclear reaction rate. A median total thermonuclear reaction rate calculated using data from the present work along with existing literature values using the STARLIB rate calculator agrees with the NON-SMOKER statistical model calculation as well as the REACLIB and STARLIB library rates at explosive and nonexplosive oxygen-burning temperatures (T =3 -4 GK and T =1.5 -2.7 GK , respectively).

  2. ATTO SECOND ELECTRON BEAMS GENERATION AND CHARACTERIZATION EXPERIMENT AT THE ACCELERATOR TEST FACILITY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZOLOTOREV, M.; ZHOLENTS, A.; WANG, X.J.

    2002-02-01

    We are proposing an Atto-second electron beam generation and diagnostics experiment at the Brookhaven Accelerator Test facility (ATF) using 1 {micro}m Inverse Free Electron Laser (IFEL). The proposed experiment will be carried out by an BNL/LBNL collaboration, and it will be installed at the ATF beam line II. The proposed experiment will employ a one-meter long undulator with 1.8 cm period (VISA undulator). The electron beam energy will be 63 MeV with emittance less than 2 mm-mrad and energy spread less than 0.05%. The ATF photocathode injector driving laser will be used for energy modulation by Inverse Free Electron Lasermore » (IFEL). With 10 MW laser peak power, about 2% total energy modulation is expected. The energy modulated electron beam will be further bunched through either a drift space or a three magnet chicane into atto-second electron bunches. The attosecond electron beam bunches will be analyzed using the coherent transition radiation (CTR).« less

  3. First test of BNL electron beam ion source with high current density electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, themore » EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.« less

  4. Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Dran, J.-C.; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J.

    2000-03-01

    The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 μm thick Si 3N 4 foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 μm is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 μm. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.

  5. Transverse beam motion on the second axis of the dual axis radiographic hydrodynamic test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caporaso, G J; Chen, Y J; Fawley, W M

    1999-03-23

    The accelerator on the second-axis of the Dual-Axis Radiographic Hydrodynamic Test (DARHT-II) facility will generate a 20 MeV, 2-4 kA, 2 µs long electron beam with an energy variation {<=} ± 0.5%. Four short current pulses with various lengths will be selected out of this 2 µs long current pulse and delivered to an x-ray converter target. The DARHT-II radiographic resolution requires these electron pulses to be focused to sub-millimeter spots on Bremsstrahlung targets with peak-to-peak transverse beam motion less than a few hundred microns. We have modeled the transverse beam motion, including the beam breakup instability, corkscrew motion, transversemore » resistive wall instability and beam induced transverse deflection in the kicker system, from the DARHT-II injector exit to the x-ray converter target. Simulations show that the transverse motion at the x-ray converters satisfies the DARHT-II radiographic requirements.« less

  6. Tenth value layers for 60Co gamma rays and for 4, 6, 10, 15, and 18 MV x rays in concrete for beams of cone angles between 0 degrees and 14 degrees calculated by Monte Carlo simulation.

    PubMed

    Jaradat, Adnan K; Biggs, Peter J

    2007-05-01

    The calculation of shielding barrier thicknesses for radiation therapy facilities according to the NCRP formalism is based on the use of broad beams (that is, the maximum possible field sizes). However, in practice, treatment fields used in radiation therapy are, on average, less than half the maximum size. Indeed, many contemporary treatment techniques call for reduced field sizes to reduce co-morbidity and the risk of second cancers. Therefore, published tenth value layers (TVLs) for shielding materials do not apply to these very small fields. There is, hence, a need to determine the TVLs for various beam modalities as a function of field size. The attenuation of (60)Co gamma rays and photons of 4, 6, 10, 15, and 18 MV bremsstrahlung x ray beams by concrete has been studied using the Monte Carlo technique (MCNP version 4C2) for beams of half-opening angles of 0 degrees , 3 degrees , 6 degrees , 9 degrees , 12 degrees , and 14 degrees . The distance between the x-ray source and the distal surface of the shielding wall was fixed at 600 cm, a distance that is typical for modern radiation therapy rooms. The maximum concrete thickness varied between 76.5 cm and 151.5 cm for (60)Co and 18 MV x rays, respectively. Detectors were placed at 630 cm, 700 cm, and 800 cm from the source. TVLs have been determined down to the third TVL. Energy spectra for 4, 6, 10, 15, and 18 MV x rays for 10 x 10 cm(2) and 40 x 40 cm(2) field sizes were used to generate depth dose curves in water that were compared with experimentally measured values.

  7. Final Report for "Design calculations for high-space-charge beam-to-RF conversion".

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David N Smithe

    2008-10-17

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference “cut-cell” boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimummore » energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT’s, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of “stair-step” geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and other defense applications.« less

  8. Marshall Space Flight Center's Solar Wind Facility

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Whittlesey, P. L.

    2017-01-01

    Historically, NASA's Marshall Space Flight Center (MSFC) has operated a Solar Wind Facility (SWF) to provide long term particle and photon exposure to material samples. The requirements on the particle beam details were not stringent as the cumulative fluence level is the test goal. Motivated by development of the faraday cup instrument on the NASA Solar Probe Plus (SPP) mission, the MSFC SWF has been upgraded to included high fidelity particle beams providing broadbeam ions, broadbeam electrons, and narrow beam protons or ions, which cover a wide dynamic range of solar wind velocity and flux conditions. The large vacuum chamber with integrated cryo-shroud, combined with a 3-axis positioning system, provides an excellent platform for sensor development and qualification. This short paper provides some details of the SWF charged particle beams characteristics in the context of the Solar Probe Plus program requirements. Data will be presented on the flux and energy ranges as well as beam stability.

  9. Status of the New Surface Muon Beamline at J-PARC MUSE

    NASA Astrophysics Data System (ADS)

    Strasser, P.; Koda, A.; Kojima, K. M.; Ito, T. U.; Fujimori, H.; Irie, Y.; Aoki, M.; Nakatsugawa, Y.; Higemoto, W.; Hiraishi, M.; Li, H.; Okabe, H.; Takeshita, S.; Shimomura, K.; Kawamura, N.; Kadono, R.; Miyake, Y.

    A new surface muon beamline (S-line) dedicated to condensed matter physics experiments is being constructed at the Muon Science Facility (MUSE) located in the Materials and Life Science Facility (MLF) building at J-PARC. This beamline designed to provide high-intensity surface muons with a momentum of 28 MeV/c will comprise four beam legs and four experimental areas that will share the double-pulsed muon beam. The key feature is a new kicker system comprising two electric kickers to deliver the muon beam to the four experimental areas ensuring an optimum and seamless sharing of the double-pulsed muon beam. At present, only one experimental area (S1) has been completed and is now open to the user program since February 2017. An overview of the different aspects of this new surface muon beamline and the present status of the beam commissioning are presented.

  10. High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility

    NASA Astrophysics Data System (ADS)

    Cauchi, Marija; Aberle, O.; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cornelis, K.; Dallocchio, A.; Deboy, D.; Lari, L.; Redaelli, S.; Rossi, A.; Salvachua, B.; Mollicone, P.; Sammut, N.

    2014-02-01

    The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC). The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat) facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

  11. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O.

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  12. Upgrading the Neutron Radiography Facility in South Africa (SANRAD): Concrete Shielding Design Characteristics

    NASA Astrophysics Data System (ADS)

    de Beer, F. C.; Radebe, M. J.; Schillinger, B.; Nshimirimana, R.; Ramushu, M. A.; Modise, T.

    A common denominator of all neutron radiography (NRAD) facilities worldwide is that the perimeter of the experimental chamber of the facility is a radiation shielding structure which,in some cases, also includes flight tube and filter chamber structures. These chambers are normally both located on the beam port floor outside the biological shielding of the neutron source. The main function of the NRAD-shielding structure isto maintain a radiological safe working environment in the entire beam hall according to standards set by individual national radiological safety regulations. In addition, the shielding's integrity and capability should not allow, during NRAD operations, an increase in radiation levels in the beam port hall and thus negatively affectadjacent scientific facilities (e.g. neutron diffraction facilities).As a bonus, the shielding for the NRAD facility should also prevent radiation scattering towards the detector plane and doing so, thus increase thecapability of obtaining better quantitative results. This paper addresses Monte Carlo neutron-particletransport simulations to theoretically optimize the shielding capabilities of the biological barrierfor the SANRAD facility at the SAFARI-1 nuclear research reactor in South Africa. The experimental process to develop the shielding, based on the principles of the ANTARES facility, is described. After casting, the homogeneity distribution of these concrete mix materials is found to be near perfect and first order experimental radiation shielding characteristicsthrough film badge (TLD) exposure show acceptable values and trends in neutron- and gamma-ray attenuation.

  13. Prototyping Control and Data Acquisition for the ITER Neutral Beam Test Facility

    NASA Astrophysics Data System (ADS)

    Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton; Paolucci, Francesco; Sartori, Filippo; Barbato, Paolo; Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico

    2013-10-01

    The ITER Neutral Beam Test Facility will be the project's R&D facility for heating neutral beam injectors (HNB) for fusion research operating with H/D negative ions. Its mission is to develop technology to build the HNB prototype injector meeting the stringent HNB requirements (16.5 MW injection power, -1 MeV acceleration energy, 40 A ion current and one hour continuous operation). Two test-beds will be built in sequence in the facility: first SPIDER, the ion source test-bed, to optimize the negative ion source performance, second MITICA, the actual prototype injector, to optimize ion beam acceleration and neutralization. The SPIDER control and data acquisition system is under design. To validate the main architectural choices, a system prototype has been assembled and performance tests have been executed to assess the prototype's capability to meet the control and data acquisition system requirements. The prototype is based on open-source software frameworks running under Linux. EPICS is the slow control engine, MDSplus is the data handler and MARTe is the fast control manager. The prototype addresses low and high-frequency data acquisition, 10 kS/s and 10 MS/s respectively, camera image acquisition, data archiving, data streaming, data retrieval and visualization, real time fast control with 100 μs control cycle and supervisory control.

  14. PERLE. Powerful energy recovery linac for experiments. Conceptual design report

    NASA Astrophysics Data System (ADS)

    Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.

    2018-06-01

    A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.

  15. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    PubMed

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed.

  16. The RIB facility EXOTIC and its experimental program at INFN-LNL

    NASA Astrophysics Data System (ADS)

    Parascandolo, Concetta

    2018-05-01

    In this contribution, I will present a review about the EXOTIC facility and the research field accessible by using its Radioactive Ion Beams. The EXOTIC facility, installed at the INFN-Laboratori Nazionali di Legnaro, is devoted to the in-flight production of light Radioactive Ion Beams in the energy range between 3-5 MeV/nucleon. The scientific activity performed at EXOTIC concerns different aspects of nuclear physics and nuclear astrophysics, such as, the investigation of reaction mechanisms and nuclear structure, resonant scattering experiments and measurements of nuclear reaction cross sections of astrophysical interest.

  17. Three-axis electron-beam test facility

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.; Ebihara, B. T.

    1981-01-01

    An electron beam test facility, which consists of a precision multidimensional manipulator built into an ultra-high-vacuum bell jar, was designed, fabricated, and operated at Lewis Research Center. The position within the bell jar of a Faraday cup which samples current in the electron beam under test, is controlled by the manipulator. Three orthogonal axes of motion are controlled by stepping motors driven by digital indexers, and the positions are displayed on electronic totalizers. In the transverse directions, the limits of travel are approximately + or - 2.5 cm from the center with a precision of 2.54 micron (0.0001 in.); in the axial direction, approximately 15.0 cm of travel are permitted with an accuracy of 12.7 micron (0.0005 in.). In addition, two manually operated motions are provided, the pitch and yaw of the Faraday cup with respect to the electron beam can be adjusted to within a few degrees. The current is sensed by pulse transformers and the data are processed by a dual channel box car averager with a digital output. The beam tester can be operated manually or it can be programmed for automated operation. In the automated mode, the beam tester is controlled by a microcomputer (installed at the test site) which communicates with a minicomputer at the central computing facility. The data are recorded and later processed by computer to obtain the desired graphical presentations.

  18. Optimizing charge breeding techniques for ISOL facilities in Europe: Conclusions from the EMILIE project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delahaye, P., E-mail: delahaye@ganil.fr; Jardin, P.; Maunoury, L.

    The present paper summarizes the results obtained from the past few years in the framework of the Enhanced Multi-Ionization of short-Lived Isotopes for Eurisol (EMILIE) project. The EMILIE project aims at improving the charge breeding techniques with both Electron Cyclotron Resonance Ion Sources (ECRIS) and Electron Beam Ion Sources (EBISs) for European Radioactive Ion Beam (RIB) facilities. Within EMILIE, an original technique for debunching the beam from EBIS charge breeders is being developed, for making an optimal use of the capabilities of CW post-accelerators of the future facilities. Such a debunching technique should eventually resolve duty cycle and time structuremore » issues which presently complicate the data-acquisition of experiments. The results of the first tests of this technique are reported here. In comparison with charge breeding with an EBIS, the ECRIS technique had lower performance in efficiency and attainable charge state for metallic ion beams and also suffered from issues related to beam contamination. In recent years, improvements have been made which significantly reduce the differences between the two techniques, making ECRIS charge breeding more attractive especially for CW machines producing intense beams. Upgraded versions of the Phoenix charge breeder, originally developed by LPSC, will be used at SPES and GANIL/SPIRAL. These two charge breeders have benefited from studies undertaken within EMILIE, which are also briefly summarized here.« less

  19. Wavefront control of high-power laser beams in the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Zacharias, Richard A.; Bliss, Erlan S.; Winters, Scott; Sacks, Richard A.; Feldman, Mark; Grey, Andrew; Koch, Jeffrey A.; Stolz, Christopher J.; Toeppen, John S.; Van Atta, Lewis; Woods, Bruce W.

    2000-04-01

    The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic-manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).

  20. Gantry for medical particle therapy facility

    DOEpatents

    Trbojevic, Dejan

    2013-04-23

    A particle therapy gantry for delivering a particle beam to a patient includes a beam tube having a curvature defining a particle beam path and a plurality of superconducting, variable field magnets sequentially arranged along the beam tube for guiding the particle beam along the particle path. In a method for delivering a particle beam to a patient through a gantry, a particle beam is guided by a plurality of variable field magnets sequentially arranged along a beam tube of the gantry and the beam is alternately focused and defocused with alternately arranged focusing and defocusing variable field magnets.

  1. Gantry for medical particle therapy facility

    DOEpatents

    Trbojevic, Dejan [Wading River, NY

    2012-05-08

    A particle therapy gantry for delivering a particle beam to a patient includes a beam tube having a curvature defining a particle beam path and a plurality of fixed field magnets sequentially arranged along the beam tube for guiding the particle beam along the particle path. In a method for delivering a particle beam to a patient through a gantry, a particle beam is guided by a plurality of fixed field magnets sequentially arranged along a beam tube of the gantry and the beam is alternately focused and defocused with alternately arranged focusing and defocusing fixed field magnets.

  2. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter.

    PubMed

    Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  3. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  4. Novel approaches to increasing the brightness of broad area lasers

    NASA Astrophysics Data System (ADS)

    Crump, P.; Winterfeldt, M.; Decker, J.; Ekterai, M.; Fricke, J.; Knigge, S.; Maaßdorf, A.; Erbert, G.

    2016-03-01

    Progress in studies to increase the lateral brightness Blat of broad area lasers is reviewed. Blat=Pout/BPPlat is maximized by developing designs and technology for lowest lateral beam parameter product, BPPlat, at highest optical output power Pout. This can be achieved by limiting the number of guided lateral modes and by improving the beam quality of low-order lateral modes. Important effects to address include process and packaging induced wave-guiding, lateral carrier accumulation and the thermal lens profile. A careful selection of vertical design is also shown to be important, as are advanced techniques to filter out higher order modes.

  5. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet

    2014-05-15

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  6. Use of a corrugated beam pipe as a passive deflector for bunch length measurements

    NASA Astrophysics Data System (ADS)

    Seok, Jimin; Chung, Moses; Kang, Heung-Sik; Min, Chang-Ki; Na, Donghyun

    2018-02-01

    We report the experimental demonstration of bunch length measurements using a corrugated metallic beam pipe as a passive deflector. The corrugated beam pipe has been adopted for reducing longitudinal chirping after the bunch compressors in several XFEL facilities worldwide. In the meantime, there have been attempts to measure the electron bunch's longitudinal current profile using the dipole wakefields generated in the corrugated pipe. Nevertheless, the bunch shape reconstructed from the nonlinearly deflected beam suffers from significant distortion, particularly near the head of the bunch. In this paper, we introduce an iterative process to improve the resolution of the bunch shape reconstruction. The astra and elegant simulations have been performed for pencil beam and cigar beam cases, in order to verify the effectiveness of the reconstruction process. To overcome the undesirable effects of transverse beam spreads, a measurement scheme involving both the corrugated beam pipe and the spectrometer magnet has been employed, both of which do not require a dedicated (and likely very expensive) rf system. A proof-of-principle experiment was carried out at Pohang Accelerator Laboratory (PAL) Injector Test Facility (ITF), and its results are discussed together with a comparison with the rf deflector measurement.

  7. A neutron diagnostic for high current deuterium beams.

    PubMed

    Rebai, M; Cavenago, M; Croci, G; Dalla Palma, M; Gervasini, G; Ghezzi, F; Grosso, G; Murtas, F; Pasqualotto, R; Cippo, E Perelli; Tardocchi, M; Tollin, M; Gorini, G

    2012-02-01

    A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45°. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.

  8. A neutron diagnostic for high current deuterium beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebai, M.; Perelli Cippo, E.; Cavenago, M.

    2012-02-15

    A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thinmore » polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habs, D.; Guenther, M. M.; Jentschel, M.

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here wemore » describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.« less

  10. The NASA high power carbon dioxide laser: A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1976-01-01

    A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  11. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  12. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE PAGES

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; ...

    2017-03-06

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  13. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility

    DOE PAGES

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; ...

    2018-02-22

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Direct-drive implosions at the National Ignition Facility were conducted to reduce CBET by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams over the equatorial region of the target. For the first time, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% increase in themore » average ablation pressure.« less

  14. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Direct-drive implosions at the National Ignition Facility were conducted to reduce CBET by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams over the equatorial region of the target. For the first time, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% increase in themore » average ablation pressure.« less

  15. Bunch Compression of Flat Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.; Edstrom Jr., D.

    Flat beams can be produced via a linear manipulation of canonical-angular-momentum (CAM) dominated beams using a set of skew-quadrupole magnets. Recently, such beams were produced at Fermilab Accelerator Science and Technology (FAST) facility 1. In this paper we report the results of flat beam compression study in a magnetic chicane at an energy E ~ 32 MeV. Additionally, we investigate the effect of energy chirp in the round-to-flat beam transform. The experimental results are compared with numerical simulations.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, S.; Sites, J.R.

    A Kaufman-type broad beam ion source, used for sputtering and etching purposes, has been operated with Ar, Kr,O/sub 2/ and N/sub 2/ gas inputs over a wide range of beam energies (200-1200 eV) and gas flow rates (1-10 sccm). The maximum ion beam current density for each gas saturates at about 2.5 mA/sq. cm. as gas flow is increased. The discharge threshold voltage necessary to produce a beam and the beam efficiency (beam current/molecular current), however, varied considerably. Kr had the lowest threshold and highest efficiency, Ar next, then N/sub 2/ and O/sub 2/. The ion beam current varied onlymore » weakly with beam energy for low gas flow rates, but showed a factor of two increase when the gas flow was higher.« less

  17. Scaling the spectral beam combining channel by multiple diode laser stacks in an external cavity

    NASA Astrophysics Data System (ADS)

    Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao; Lei, Fuchuan; Yu, Junhong; Tan, Hao

    2017-04-01

    Spectral beam combining of a broad area diode laser is a promising technique for direct diode laser applications. We present an experimental study of three mini-bar stacks in an external cavity on spectral beam combining in conjunction with spatial beam combining. At the pump current of 70 A, a CW output power of 579 W, spectral bandwidth of 18.8 nm and electro-optical conversion efficiency of 47% are achieved. The measured M 2 values of spectral beam combining are 18.4 and 14.7 for the fast and the slow axis, respectively. The brightness of the spectral beam combining output is 232 MW · cm-2 · sr-1.

  18. The second-order theory of electromagnetic hot ion beam instabilities. [in interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Tokar, R. L.

    1985-01-01

    The present investigation is concerned with the application of a second-order theory for electromagnetic instabilities in a collisionless plasma to two modes which resonate with hot ion beams. The application of the theory is strictly limited to the linear growth phase. However, the application of the theory may be extended to obtain a description of the beam at postsaturation if the wave-beam resonance is sufficiently broad in velocity space. Under the considered limitations, it is shown that, as in the cold beam case, the fluctuating fields do not gain appreciable momentum and that the primary exchange of momentum is between the beam and main component.

  19. Development of a gas-pressurized high-pressure μSR setup at the RIKEN-RAL Muon Facility

    NASA Astrophysics Data System (ADS)

    Watanabe, I.; Ishii, Y.; Kawamata, T.; Suzuki, T.; Pratt, F. L.; Done, R.; Chowdhury, M.; Goodway, C.; Dreyer, J.; Smith, C.; Southern, M.

    2009-04-01

    The development and testing of a gas-pressurized μSR setup for the RIKEN-RAL Muon Facility is reported. In collaboration with the high-pressure group of the ISIS Facility at the Rutherford Appleton Laboratory, a gas-pressurized setup for a pulsed muon beam at the RIKEN-RAL Muon Facility has been constructed in 2008. The sample is pressurized by helium gas and the designed maximum pressure is 6.4 kbar. The high-pressure cell can be cooled down to 2 K using an existing cryostat. Tests were made injecting the double-pulsed muon beam into a high-purity sample of Sn powder, which confirmed that the maximum pressure achieved at 2 K was close to the designed pressure.

  20. The Abcd Formula of Phase Definition in Optical Interferometry: Combined Effect of Air Dispersion and Broad Passband

    NASA Astrophysics Data System (ADS)

    Mathar, Richard J.

    Long-baseline interferometry detects fringes created by superposition of two beams of light collected by two telescopes pointing into a common direction. The external path difference is commonly compensated by adding a variable optical path length (delay) through air for one beam such that the optical path difference between the beams remains close to zero near the detector. The ABCD formula assigns a (wrapped) phase to the signals A to D of an interference pattern shifted by multiples of 90 degrees in phase. We study the interplay between a broad spectral passband of the optics and the dispersion of the air in the compensating delay, which leads to small deviations between the ABCD phase and the reduced, monochromatic group-delay representation of the wave packets. This adds dispersion to the effects that have been discussed for evacuated interferometers before (Milman 2005).

  1. The Race To X-ray Microbeam and Nanobeam Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ice, Gene E; Budai, John D; Pang, Judy

    2011-01-01

    X-ray microbeams are an emerging characterization tool with transformational implications for broad areas of science ranging from materials structure and dynamics, geophysics and environmental science to biophysics and protein crystallography. In this review, we discuss the race toward sub-10 nm- x-ray beams with the ability to penetrate tens to hundreds of microns into most materials and with the ability to determine local (crystal) structure. Examples of science enabled by current micro/nanobeam technologies are presented and we provide a perspective on future directions. Applications highlighted are chosen to illustrate the important features of various submicron beam strategies and to highlight themore » directions of current and future research. While it is clear that x-ray microprobes will impact science broadly, the practical limit for hard x-ray beam size, the limit to trace element sensitivity, and the ultimate limitations associated with near-atomic structure determinations are the subject of ongoing research.« less

  2. National Ignition Facility main laser stray light analysis and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, R E; Miller, J L; Peterson, G

    1998-06-26

    Stray light analysis has been carried out for the main laser section of the National Ignition Facility main laser section using a comprehensive non-sequential ray trace model supplemented with additional ray trace and diffraction propagation modeling. This paper describes the analysis and control methodology, gives examples of ghost paths and required tilted lenses, baffles, absorbers, and beam dumps, and discusses analysis of stray light "pencil beams" in the system.

  3. Beam Position Monitoring in the CSU Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  4. Standardisation of the ion beam facility at Chandigarh cyclotron for simultaneous PIXE and PESA analysis

    NASA Astrophysics Data System (ADS)

    Verma, Shivcharan; Mohanty, Biraja P.; Singh, Karn P.; Kumar, Ashok

    2018-02-01

    The proton beam facility at variable energy cyclotron (VEC) Panjab University, Chandigarh, India is being used for Particle Induced X-ray Emission (PIXE) analysis of different environmental, biological and industrial samples. The PIXE method, however, does not provide any information of low Z elements like carbon, nitrogen, oxygen and fluorine. As a result of the increased need for rapid and multi-elemental analysis of biological and environmental samples, the PIXE facility was upgraded and standardized to facilitate simultaneous measurements using PIXE and Proton Elastic Scattering Analysis (PESA). Both PIXE and PESA techniques were calibrated and standardized individually. Finally, the set up was tested by carrying out simultaneous PIXE and PESA measurements using a 2 mm diameter proton beam of 2.7 MeV on few multilayered thin samples. The results obtained show excellent agreement between PIXE and PESA measurements and confirm adequate sensitivity and precision of the experimental set up.

  5. /B(E2) values from low-energy Coulomb excitation at an ISOL facility: the /N=80,82 Te isotopes

    NASA Astrophysics Data System (ADS)

    Barton, C. J.; Caprio, M. A.; Shapira, D.; Zamfir, N. V.; Brenner, D. S.; Gill, R. L.; Lewis, T. A.; Cooper, J. R.; Casten, R. F.; Beausang, C. W.; Krücken, R.; Novak, J. R.

    2003-01-01

    B(E2;0+1→2+1) values for the unstable, neutron-rich nuclei 132,134Te were determined through Coulomb excitation, in inverse kinematics, of accelerated beams of these nuclei. The systematics of measured B(E2) values from the ground state to the first excited state have been extended to the N=82 shell closure in the Te nuclei and have been compared with the predictions of different theories. The measurements were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) using the GRAFIK detector. The success of this approach, which couples a 5.7% efficient through-well NaI(Tl) γ-ray detector with thin foil microchannel plate beam detectors, also demonstrates the feasibility for Coulomb excitation studies of neutron-rich nuclei even further from the valley of beta stability, both at present-generation ISOL facilities and at the proposed Rare Isotope Accelerator.

  6. Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy.

    PubMed

    Suzuki, Kazumichi; Gillin, Michael T; Sahoo, Narayan; Zhu, X Ronald; Lee, Andrew K; Lippy, Denise

    2011-07-01

    To evaluate patient census, equipment clinical availability, maximum daily treatment capacity, use factor for major beam delivery parameters, and treatment process time for actual treatments delivered by proton therapy systems. The authors have been recording all beam delivery parameters, including delivered dose, energy, range, spread-out Bragg peak widths, gantry angles, and couch angles for every treatment field in an electronic medical record system. We analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the use factor of beam delivery parameters, the size of the patient census, and the equipment clinical availability of the facility. The duration of each treatment session from patient walk-in and to patient walk-out of the treatment room was measured for 82 patients with cancers at various sites. The yearly average equipment clinical availability in the last 3 yrs (June 2007-August 2010) was 97%, which exceeded the target of 95%. Approximately 2200 patients had been treated as of August 2010. The major disease sites were genitourinary (49%), thoracic (25%), central nervous system (22%), and gastrointestinal (2%). Beams have been delivered in approximately 8300 treatment fields. The use factor for six beam delivery parameters was also evaluated. Analysis of the treatment process times indicated that approximately 80% of this time was spent for patient and equipment setup. The other 20% was spent waiting for beam delivery and beam on. The total treatment process time can be expressed by a quadratic polynomial of the number of fields per session. The maximum daily treatment capacity of our facility using the current treatment processes was estimated to be 133 +/- 35 patients. This analysis shows that the facility has operated at a high performance level and has treated a large number of patients with a variety of diseases. The use factor of beam delivery parameters varies by disease site. Further improvements in efficiency may be realized in the equipment- and patient-related processes of treatment.

  7. Commissioning of the ECR ion source of the high intensity proton injector of the Facility for Antiproton and Ion Research (FAIR)

    NASA Astrophysics Data System (ADS)

    Tuske, O.; Chauvin, N.; Delferriere, O.; Fils, J.; Gauthier, Y.

    2018-05-01

    The CEA at Saclay is in charge of developing and building the ion source and the low energy line of the proton linac of the FAIR (Facility for Antiproton and Ion Research) accelerator complex located at GSI (Darmstadt) in Germany. The FAIR facility will deliver stable and rare isotope beams covering a huge range of intensities and beam energies for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics, and biophysics. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7 × 1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be delivered by a dedicated 75 mA/70 MeV proton linac. A 2.45 GHz microwave ion source will deliver a 100 mA H+ beam pulsed at 4 Hz with an energy of 95 keV. A 2 solenoids low energy beam transport line allows the injection of the proton beam into the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm. rms). An electrostatic chopper system located between the second solenoid and the RFQ is used to cut the beam macro-pulse from the source to inject 36 μs long beam pulses into the RFQ. At present time, a Ladder-RFQ is under construction at the University of Frankfurt. This article reports the first beam measurements obtained since mid of 2016. Proton beams have been extracted from the ECR ion source and analyzed just after the extraction column on a dedicated diagnostic chamber. Emittance measurements as well as extracted current and species proportion analysis have been performed in different configurations of ion source parameters, such as magnetic field profile, radio frequency power, gas injection, and puller electrode voltage.

  8. The ITER Neutral Beam Test Facility towards SPIDER operation

    NASA Astrophysics Data System (ADS)

    Toigo, V.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Gambetta, G.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Piovan, R.; Recchia, M.; Rizzolo, A.; Sartori, E.; Siragusa, M.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Fröschle, M.; Heinemann, B.; Kraus, W.; Nocentini, R.; Riedl, R.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Cavenago, M.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Hemsworth, R.

    2017-08-01

    SPIDER is one of two projects of the ITER Neutral Beam Test Facility under construction in Padova, Italy, at the Consorzio RFX premises. It will have a 100 keV beam source with a full-size prototype of the radiofrequency ion source for the ITER neutral beam injector (NBI) and also, similar to the ITER diagnostic neutral beam, it is designed to operate with a pulse length of up to 3600 s, featuring an ITER-like magnetic filter field configuration (for high extraction of negative ions) and caesium oven (for high production of negative ions) layout as well as a wide set of diagnostics. These features will allow a reproduction of the ion source operation in ITER, which cannot be done in any other existing test facility. SPIDER realization is well advanced and the first operation is expected at the beginning of 2018, with the mission of achieving the ITER heating and diagnostic NBI ion source requirements and of improving its performance in terms of reliability and availability. This paper mainly focuses on the preparation of the first SPIDER operations—integration and testing of SPIDER components, completion and implementation of diagnostics and control and formulation of operation and research plan, based on a staged strategy.

  9. Broad-beam high-current dc ion source based on a two-stage glow discharge plasma.

    PubMed

    Vizir, A V; Oks, E M; Yushkov, G Yu

    2010-02-01

    We have designed, made, and demonstrated a broad-beam, dc, ion source based on a two-stage, hollow-cathode, and glow discharges plasma. The first-stage discharge (auxiliary discharge) produces electrons that are injected into the cathode cavity of a second-stage discharge (main discharge). The electron injection causes a decrease in the required operating pressure of the main discharge down to 0.05 mTorr and a decrease in required operating voltage down to about 50 V. The decrease in operating voltage of the main discharge leads to a decrease in the fraction of impurity ions in the ion beam extracted from the main gas discharge plasma to less than 0.2%. Another feature of the source is a single-grid accelerating system in which the ion accelerating voltage is applied between the plasma itself and the grid electrode. The source has produced steady-state Ar, O, and N ion beams of about 14 cm diameter and current of more than 2 A at an accelerating voltage of up to 2 kV.

  10. Ridge filter design and optimization for the broad-beam three-dimensional irradiation system for heavy-ion radiotherapy.

    PubMed

    Schaffner, B; Kanai, T; Futami, Y; Shimbo, M; Urakabe, E

    2000-04-01

    The broad-beam three-dimensional irradiation system under development at National Institute of Radiological Sciences (NIRS) requires a small ridge filter to spread the initially monoenergetic heavy-ion beam to a small spread-out Bragg peak (SOBP). A large SOBP covering the target volume is then achieved by a superposition of differently weighted and displaced small SOBPs. Two approaches were studied for the definition of a suitable ridge filter and experimental verifications were performed. Both approaches show a good agreement between the calculated and measured dose and lead to a good homogeneity of the biological dose in the target. However, the ridge filter design that produces a Gaussian-shaped spectrum of the particle ranges was found to be more robust to small errors and uncertainties in the beam application. Furthermore, an optimization procedure for two fields was applied to compensate for the missing dose from the fragmentation tail for the case of a simple-geometry target. The optimized biological dose distributions show that a very good homogeneity is achievable in the target.

  11. Benchmarking Heavy Ion Transport Codes FLUKA, HETC-HEDS MARS15, MCNPX, and PHITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronningen, Reginald Martin; Remec, Igor; Heilbronn, Lawrence H.

    Powerful accelerators such as spallation neutron sources, muon-collider/neutrino facilities, and rare isotope beam facilities must be designed with the consideration that they handle the beam power reliably and safely, and they must be optimized to yield maximum performance relative to their design requirements. The simulation codes used for design purposes must produce reliable results. If not, component and facility designs can become costly, have limited lifetime and usefulness, and could even be unsafe. The objective of this proposal is to assess the performance of the currently available codes PHITS, FLUKA, MARS15, MCNPX, and HETC-HEDS that could be used for designmore » simulations involving heavy ion transport. We plan to access their performance by performing simulations and comparing results against experimental data of benchmark quality. Quantitative knowledge of the biases and the uncertainties of the simulations is essential as this potentially impacts the safe, reliable and cost effective design of any future radioactive ion beam facility. Further benchmarking of heavy-ion transport codes was one of the actions recommended in the Report of the 2003 RIA R&D Workshop".« less

  12. Prospects for a Muon Spin Resonance Facility in the Fermilab MuCool Test Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, John A.; Johnstone, Carol

    This paper investigates the feasibility of re-purposing the MuCool Test Area (MTA) beamline and experimental hall to support a Muon Spin Resonance (MuSR) facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application in the context of the MTA facility. Two scenarios were determined feasible. One, an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that utilizes an existing high- intensity beam absorber and, another, upgraded stage, that implements an optimized production target pile,more » a proximate high-intensity absorber, and optimized secondary muon lines. A unique approach is proposed which chops or strips a macropulse of H$^-$ beam into a micropulse substructure – a muon creation timing scheme – which allows Muon Spin Resonance experiments in a linac environment. With this timing scheme, and attention to target design and secondary beam collection, the MTA can host enabling and competitive Muon Spin Resonance experiments.« less

  13. Focusing giga-electronvolt heavy ions to micrometers at the Institute of Modern Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng Lina; Du Guanghua; Guo Jinlong

    2013-05-15

    To study the radiation effect of cosmic heavy ions of low fluxes in electronics and living samples, a focusing heavy ion microbeam facility, for ions with energies of several MeV/u up to 100 MeV/u, was constructed in the Institute of Modern Physics of the Chinese Academy of Sciences. This facility has a vertical design and an experiment platform for both in-vacuum analysis and in-air irradiation. Recently, microbeam of {sup 12}C{sup 6+} with energy of 80.55 MeV/u was successfully achieved at this interdisciplinary microbeam facility with a full beam spot size of 3 {mu}m Multiplication-Sign 5 {mu}m on target in air.more » Different from ions with energy of several MeV/u, the very high ion energy of hundred MeV/u level induces problems in beam micro-collimation, online beam spot diagnosis, radiation protection, etc. This paper presents the microbeam setup, difficulties in microbeam formation, and the preliminary experiments performed with the facility.« less

  14. A Polarized High-Energy Photon Beam for Production of Exotic Mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senderovich, Igor

    2012-01-01

    This work describes design, prototyping and testing of various components of the Jefferson Lab Hall D photon beamline. These include coherent bremsstrahlung radiators to be used in this facility for generating the photon beam, a fine resolution hodoscope for the facility's tagging spectrometer, and a photon beam position sensor for stabilizing the beam on a collimator. The principal instrumentation project was the hodoscope: its design, implementation and beam testing will be thoroughly described. Studies of the coherent bremsstrahlung radiators involved X-ray characterization of diamond crystals to identify the appropriate line of manufactured radiators and the proper techniques for thinning themmore » to the desired specification of the beamline. The photon beam position sensor project involved completion of a designed detector and its beam test. The results of these shorter studies will also be presented. The second part of this work discusses a Monte Carlo study of a possible photo-production and decay channel in the GlueX experiment that will be housed in the Hall D facility. Specifically, the γ p → Xp → b 1 π → ω π +1 π -1 channel was studied including its Amplitude Analysis. This exercise attempted to generate a possible physics signal, complete with internal angular momentum states, and be able to reconstruct the signal in the detector and find the proper set of JPC quantum numbers through an amplitude fit. Derivation of the proper set of amplitudes in the helicity basis is described, followed by a discussion of the implementation, generation of the data sets, reconstruction techniques, the amplitude fit and results of this study.« less

  15. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  16. Argonne National Laboratory |

    Science.gov Websites

    for next-gen lithium batteries. Spotlight New ion source dramatically improves radioactive beams for Argonne's CARIBU facility A new Electron Beam Ion Source Charge Breeder operated with Argonne's CARIBU and

  17. Thermal shock tests with beryllium coupons in the electron beam facility JUDITH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roedig, M.; Duwe, R.; Schuster, J.L.A.

    1995-09-01

    Several grades of American and Russian beryllium have been tested in high heat flux tests by means of an electron beam facility. For safety reasons, major modifications of the facility had to be fulfilled in advance to the tests. The influence of energy densities has been investigated in the range between 1 and 7 MJ/m{sup 2}. In addition the influence of an increasing number of shots at constant energy density has been studied. For all samples, surface profiles have been measured before and after the experiments. Additional information has been gained from scanning electron microscopy, and from metallography.

  18. TU-G-BRCD-01: Will the High Cost of Proton Therapy Facilities Limit the Availability of Proton Therapy Treatment?

    PubMed

    Maughan, R

    2012-06-01

    The potential dose distribution advantages associated with proton therapy, and particularly with pencil beam scanning (PBS) techniques, have lead to considerable interest in this modality in recent years. However, the large capital expenditure necessary for such a project requires careful financial consideration and business planning. The complexity of the beam delivery systems impacts the capital expenditure and the PBS only systems presently being advocated can reduce these costs. Also several manufacturers are considering "one-room" facilities as less expensive alternatives to multi-room facilities. This presentation includes a brief introduction to beam delivery options (passive scattering, uniform and modulated scanning) and some of the new technologies proposed for providing less expensive proton therapy systems. Based on current experience, data on proton therapy center start-up costs, running costs and the financial challenges associated with making this highly conformal therapy more widely available will be discussed. Issues associated with proton therapy implementation that are key to project success include strong project management, vendor cooperation and collaboration, staff recruitment and training. Time management during facility start up is a major concern, particularly in multi-room systems, where time must be shared between continuing vendor system validation, verification and acceptance testing, and user commissioning and patient treatments. The challenges associated with facility operation during this period and beyond are discussed, focusing on how standardization of process, downtime and smart scheduling can influence operational efficiency. 1. To understand the available choices for proton therapy facilities, the different beam delivery systems and the financial implications associated with these choices. 2. To understand the key elements necessary for successfully implementing a proton therapy program. 3. To understand the challenges associated with on-going facility management to achieve an efficient fully operational system. © 2012 American Association of Physicists in Medicine.

  19. 2014 Annual Report - Argonne Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, James R.; Papka, Michael E.; Cerny, Beth A.

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  20. 2015 Annual Report - Argonne Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, James R.; Papka, Michael E.; Cerny, Beth A.

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  1. Measurement of ion species in high current ECR H⁺/D⁺ ion source for IFMIF (International Fusion Materials Irradiation Facility).

    PubMed

    Shinto, K; Senée, F; Ayala, J-M; Bolzon, B; Chauvin, N; Gobin, R; Ichimiya, R; Ihara, A; Ikeda, Y; Kasugai, A; Kitano, T; Kondo, K; Marqueta, A; Okumura, Y; Takahashi, H; Valette, M

    2016-02-01

    Ion species ratio of high current positive hydrogen/deuterium ion beams extracted from an electron-cyclotron-resonance ion source for International Fusion Materials Irradiation Facility accelerator was measured by the Doppler shift Balmer-α line spectroscopy. The proton (H(+)) ratio at the middle of the low energy beam transport reached 80% at the hydrogen ion beam extraction of 100 keV/160 mA and the deuteron (D(+)) ratio reached 75% at the deuterium ion beam extraction of 100 keV/113 mA. It is found that the H(+) ratio measured by the spectroscopy gives lower than that derived from the phase-space diagram measured by an Allison scanner type emittance monitor. The H(+)/D(+) ratio estimated by the emittance monitor was more than 90% at those extraction currents.

  2. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    PubMed

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Performance of a liquid argon time projection chamber exposed to the CERN West Area Neutrino Facility neutrino beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arneodo, F.; Cavanna, F.; Mitri, I. De

    2006-12-01

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low-multiplicity neutrino interactions.

  5. Neutron skyshine from end stations of the Continuous Electron Beam Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Rai-Ko S.

    1991-12-01

    The MORSE{_}CG code from Oak Ridge National Laboratory was applied to the estimation of the neutron skyshine from three end stations of the Continuous Electron Beam Accelerator Facility (CEBAF), Newport News, VA. Calculations with other methods and an experiment had been directed at assessing the annual neutron dose equivalent at the site boundary. A comparison of results obtained with different methods is given, and the effect of different temperatures and humidities will be discussed.

  6. Neutron skyshine from end stations of the Continuous Electron Beam Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Rai-Ko S.

    1991-12-01

    The MORSE{ }CG code from Oak Ridge National Laboratory was applied to the estimation of the neutron skyshine from three end stations of the Continuous Electron Beam Accelerator Facility (CEBAF), Newport News, VA. Calculations with other methods and an experiment had been directed at assessing the annual neutron dose equivalent at the site boundary. A comparison of results obtained with different methods is given, and the effect of different temperatures and humidities will be discussed.

  7. Preliminary results from the Small Negative Ion Facility (SNIF) at CCFE

    NASA Astrophysics Data System (ADS)

    Zacks, J.; McAdams, R.; Booth, J.; Flinders, K.; Holmes, A. J. T.; Simmonds, M.; Stevens, B.; Stevenson, P.; Surrey, E.; Warder, S.; Whitehead, A.; Young, D.

    2013-02-01

    At Culham Centre for Fusion Energy, a new beam extraction test facility has been built with the purpose of studying and enhancing negative ion beam production and transport. The multipole hydrogen ion source is based on a RF generated plasma using a continuous 5kW power supply operating at the industrial standard frequency of 13.56MHz. The cylindrical source has a diameter of 30cm and a depth of 20cm, with a flat spiral antenna driving the source through a quartz window. The magnet configuration is arranged to produce a dipole filter field across the ion source close to the plasma grid. The plasma load is matched to the RF generator using a Pi matching network. The accelerator uses a single extraction aperture of 14mm diameter, with a biased insert for electron suppression. The accelerator is a triode design with a beam energy of up to 30kV. The beamline consists of a turbomolecular pumped vacuum tank with an instrumented beam dump and ports for additional diagnostics. The ITER Neutral Beam source operates with the enhancement of caesium, which, when scaled up to a reactor, will be heavily consumed. The small size of SNIF allows for fast turn around of modifications and alternative materials to caesium can be tested. A full description of the facility and planned diagnostics is given. Initial results are presented, including measurements and calculations of the plasma load on the RF generator, and beam extraction measurements.

  8. Application of an atomic oxygen beam facility to the investigation of shuttle glow chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, G. S.; Peplinski, D. R.

    1985-01-01

    A facility for the investigation of the interactions of energetic atomic oxygen with solids is described. The facility is comprised of a four chambered, differentially pumped molecular beam apparatus which can be equipped with one of a variety of sources of atomic oxygen. The primary source is a dc arc heated supersonic nozzle source which produces a flux of atomic oxygen in excess of 10 to the 15th power sq cm/sec at the target, at a velocity of 3.5 km/sec. Results of applications of this facility to the study of the reactions of atomic oxygen with carbon and polyimide films are briefly reviewed and compared to data obtained on various flights of the space shuttle. A brief discussion of possible application of this facility to investigation of chemical reactions which might contribute to atmosphere induced vehicle glow is presented.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammigan, K.; Hurh, P.

    The Radiation Damage In Accelerator Target Environments (RaDIATE) collaboration was founded in 2012 and currently consists of over 50 participants and 11 institutions globally. Due to the increasing power of future proton accelerator sources in target facilities, there is a critical need to further understand the physical and thermo-mechanical radiation response of target facility materials. Thus, the primary objective of the RaDIATE collaboration is to draw on existing expertise in the nuclear materials and accelerator targets fields to generate new and useful materials data for application within the accelerator and fission/fusion communities. Current research activities of the collaboration include postmore » irradiation examination (PIE) of decommissioned components from existing beamlines such as the NuMI beryllium beam window and graphite NT-02 target material. PIE of these components includes advanced microstructural analyses (SEM/TEM, EBSD, EDS) and micro-mechanics technique such as nano-indentation, to help characterize any microstructural radiation damage incurred during operation. New irradiation campaigns of various candidate materials at both low and high energy beam facilities are also being pursued. Beryllium helium implantation studies at the University of Surrey as well as high energy proton irradiation of various materials at Brookhaven National Laboratory’s BLIP facility have been initiated. The program also extends to beam-induced thermal shock experiments using high intensity beam pulses at CERN’s HiRadMat facility, followed by advanced PIE activities to evaluate thermal shock resistance of the materials. Preliminary results from ongoing research activities, as well as the future plans of the RaDIATE collaboration R&D program will be discussed.« less

  10. Damage behavior of Nd:glass of high-power disk amplifier medium in ICF Facility

    NASA Astrophysics Data System (ADS)

    He, Shaobo; Chen, Lin; Yuan, Xiaodong; Chen, Yuanbin; Cheng, Xiaofeng; Xie, Xudong; Wang, Wenyi; Zu, Xiaotao

    2016-12-01

    Large aperture Nd:glass disk is often used as the amplifier medium in the inertial confinement fusion (ICF) facilities. The typical size of Nd:glass is up to 810mm×460mm×40mm and more than 3,000 Nd:glass components are needed in the ICF facility. At present, the 3ω fused silica glass and DKDP crystal are mainly responsible for the damage of driver used for ICF. However, with the enlargement of the facility and increase of laser shot number, the laser damage of Nd:glass at 1ω waveband is still an important problem to limit the stable operation of facility and improvement of laser beam quality. In this work, the influence of Nd:glass material itself, mechanical processing, service environment, and laser beam quality on its damage behavior is investigated experimentally and theoretically. The results and conclusions can be summarized as follows: (1) It is very important to control the concentration of platinum impurity particles during melting and the sputtering effect of the cladding materials. (2) The number and length of fractural and brittle scratches should be strictly suppressed during mechanical processing of Nd:glass. (3) The B-integral of high power laser beam should be rigorously controlled. Particularly, the top shape of pulses must be well controlled when operating at high peak laser power. (4) The service environment should be well managed to make sure the cleanness of the surface of Nd:glass better than 100/A level during mounting and running. (5) The service environment and beam quality should be monitored during operation.

  11. Reversible wavefront shaping between Gaussian and Airy beams by mimicking gravitational field

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyang; Liu, Hui; Sheng, Chong; Zhu, Shining

    2018-02-01

    In this paper, we experimentally demonstrate reversible wavefront shaping through mimicking gravitational field. A gradient-index micro-structured optical waveguide with special refractive index profile was constructed whose effective index satisfying a gravitational field profile. Inside the waveguide, an incident broad Gaussian beam is firstly transformed into an accelerating beam, and the generated accelerating beam is gradually changed back to a Gaussian beam afterwards. To validate our experiment, we performed full-wave continuum simulations that agree with the experimental results. Furthermore, a theoretical model was established to describe the evolution of the laser beam based on Landau’s method, showing that the accelerating beam behaves like the Airy beam in the small range in which the linear potential approaches zero. To our knowledge, such a reversible wavefront shaping technique has not been reported before.

  12. Development of NIRS pencil beam scanning system for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Hara, Y.; Mizushima, K.; Saotome, N.; Tansho, R.; Saraya, Y.; Inaniwa, T.; Mori, S.; Iwata, Y.; Shirai, T.; Noda, K.

    2017-09-01

    At Heavy Ion Medical Accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences (NIRS), more than 9000 patients have been successfully treated by carbon ion beams since 1994. The successful results of treatments have led us to construct a new treatment facility equipped with a three-dimensional pencil beam scanning irradiation system, which is one of sophisticated techniques for cancer therapy with high energetic ion beam. This new facility comprises two treatment rooms having fixed beam lines and one treatment room having rotating gantry line. The challenge of this project is to realize treatment of a moving target by scanning irradiation. Thus, to realize this, the development of the fast scanning system is one of the most important issues in this project. After intense commissioning and quality assurance tests, the treatment with scanned ion beam was started in May 2011. After treatment of static target starts, we have developed related technologies. As a result, we can start treatment of moving target and treatment without range shifter plates since 2015. In this paper, the developments of the scanning irradiation system are described.

  13. High intensity proton injector for facility of antiproton and ion research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezov, R., E-mail: r.berezov@gsi.de; Brodhage, R.; Fils, J.

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBTmore » is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.« less

  14. Recent optimization of the beam-optical characteristics of the 6 MV van de Graaff accelerator for high brightness beams at the iThemba LABS NMP facility

    NASA Astrophysics Data System (ADS)

    Conradie, J. L.; Eisa, M. E. M.; Celliers, P. J.; Delsink, J. L. G.; Fourie, D. T.; de Villiers, J. G.; Maine, P. M.; Springhorn, K. A.; Pineda-Vargas, C. A.

    2005-04-01

    With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples.

  15. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, P.D.

    2000-04-25

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusionmore » reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.« less

  16. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, P.D.

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusionmore » reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.« less

  17. Intense beams at the micron level for the Next Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.

    1991-08-01

    High brightness beams with sub-micron dimensions are needed to produce a high luminosity for electron-positron collisions in the Next Linear Collider (NLC). To generate these small beam sizes, a large number of issues dealing with intense beams have to be resolved. Over the past few years many have been successfully addressed but most need experimental verification. Some of these issues are beam dynamics, emittance control, instrumentation, collimation, and beam-beam interactions. Recently, the Stanford Linear Collider (SLC) has proven the viability of linear collider technology and is an excellent test facility for future linear collider studies.

  18. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  19. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  20. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site

    NASA Astrophysics Data System (ADS)

    Gobin, Raphael; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu; Cara, Philippe; Duglué, Daniel; Gex, Dominique; Okumura, Yoshikazu; Marcos Ayala, Juan; Knaster, Juan; Marqueta, Alvaro; Kasugai, Atsushi; O'Hira, Shigeru; Shinto, Katsuhiro; Takahashi, Hiroki

    2016-02-01

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H+ and D+ 100 keV beams) are reported in a second article.

  1. The pixel tracking telescope at the Fermilab Test Beam Facility

    DOE PAGES

    Kwan, Simon; Lei, CM; Menasce, Dario; ...

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm 2more » pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less

  2. Status of the SPES project, a new tool for fundamental and apply science studies with exotic ion beams at LNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napoli, D. R., E-mail: napoli@lnl.infn.it; Andrighetto, A.; Antonini, P.

    SPES, a new accelerator facility for both the production of exotic ion beams and radio-pharmaceuticals, is presently being installed at the Laboratori Nazionali di Legnaro in Italy (LNL). The new cyclotron, which will provide high intensity proton beams for the production of the rare isotopes, has been installed and is now in the commissioning phase. We present here the status of the part of the project devoted to the production and acceleration of fission fragments created in the interaction of an intense proton beam on a production target of UCx. The expected SPES radioactive beams intensities, their quality and theirmore » maximum energies (up to 11 MeV/A for A=130) will permit to perform forefront research in nuclear structure and nuclear dynamics far from the stability valley. Another low energy section of the facility is foreseen for new and challenging research, both in the nuclear physics and in the material science frameworks.« less

  3. A proposed intense slow positron source based on 58Co

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin L.; Denison, Art; Makowitz, Henry; Gidley, Dave; Frieze, Bill; Griffin, Henry; Encarnación, Pedro

    1994-06-01

    Positron beams have proven very useful for condensed matter and surface research. The highest intensity of the current operating positron beams is ˜109 slow e+/second. The goal of our proposal is to build an Intense Slow Positron Source (ISPS) demonstration beam (Phase I) of unprecedented brightness at the Idaho National Engineering Laboratory, INEL (up to 1010 slow e+/s at 5 keV over a <0.03 cm. diameter). This Phase I beam will prove the principles necessary to build a larger facility scale ISPS Phase II beam which will have a potential of 1013 e+/s, or ≳1012 e+/s over 0.03 cm. The INEL is an ideal location for the ISPS because of the fast breeder reactor EBR-II, which is perfectly suited to creating the positron emitting isotope 58Co, and the excellent radioactive materials handling capability and expertise. Sufficient expertise is available at INEL for the construction and operation of a user facility (Phase II).

  4. Research of beam smoothing technologies using CPP, SSD, and PS

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Su, Jingqin; Hu, Dongxia; Li, Ping; Yuan, Haoyu; Zhou, Wei; Yuan, Qiang; Wang, Yuancheng; Tian, Xiaocheng; Xu, Dangpeng; Dong, Jun; Zhu, Qihua

    2015-02-01

    Precise physical experiments place strict requirements on target illumination uniformity in Inertial Confinement Fusion. To obtain a smoother focal spot and suppress transverse SBS in large aperture optics, Multi-FM smoothing by spectral dispersion (SSD) was studied combined with continuous phase plate (CPP) and polarization smoothing (PS). New ways of PS are being developed to improve the laser irradiation uniformity and solve LPI problems in indirect-drive laser fusion. The near field and far field properties of beams using polarization smoothing were studied and compared, including birefringent wedge and polarization control array. As more parameters can be manipulated in a combined beam smoothing scheme, quad beam smoothing was also studies. Simulation results indicate through adjusting dispersion directions of one-dimensional (1-D) SSD beams in a quad, two-dimensional SSD can be obtained. Experiments have been done on SG-III laser facility using CPP and Multi-FM SSD. The research provides some theoretical and experimental basis for the application of CPP, SSD and PS on high-power laser facilities.

  5. Electron beam treatment of textile dyeing wastewater: operation of pilot plant and industrial plant construction.

    PubMed

    Han, B; Kim, J; Kim, Y; Choi, J S; Makarov, I E; Ponomarev, A V

    2005-01-01

    A pilot plant for treating 1000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with an electron beam in this plant, and it gave rise to elaborating the optimal technology of the electron beam treatment of wastewater with increased reliability for instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in the flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day each, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government.

  6. Next Generation H- Ion Sources for the SNS

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Stockli, M. P.; Murray, S. N.; Crisp, D.; Carmichael, J.; Goulding, R. H.; Han, B.; Tarvainen, O.; Pennisi, T.; Santana, M.

    2009-03-01

    The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H- ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H- ion source based on an A1N ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to ˜100 mA (60 Hz, 1 ms) have been observed and sustained currents >60 mA (60 Hz, 1 ms) have been demonstrated on the test stand. Accelerated beam currents of ˜40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H- beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.

  7. Thermostructural characterization and structural elastic property optimization of novel high luminosity LHC collimation materials at CERN

    NASA Astrophysics Data System (ADS)

    Borg, M.; Bertarelli, A.; Carra, F.; Gradassi, P.; Guardia-Valenzuela, J.; Guinchard, M.; Izquierdo, G. Arnau; Mollicone, P.; Sacristan-de-Frutos, O.; Sammut, N.

    2018-03-01

    The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.

  8. Target diagnostics for commissioning the AWE HELEN Laser Facility 100 TW chirped pulse amplification beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eagleton, R. T.; Clark, E. L.; Davies, H. M.

    2006-10-15

    The capability of the HELEN laser at the Atomic Weapons Establishment Aldermaston has been enhanced by the addition of a short-pulse laser beam to augment the twin opposing nanosecond time scale beams. The short-pulse beam utilizes the chirped pulse amplification (CPA) technique and is capable of delivering up to 60 J on target in a 500 fs pulse, around 100 TW, at the fundamental laser wavelength of 1.054 {mu}m. During the commissioning phase a number of diagnostic systems have been fielded, these include: x-ray pinhole imaging of the laser heated spot, charged particle time of flight, thermoluminescent dosimeter array, calibratedmore » radiochromic film, and CR39 nuclear track detector. These diagnostic systems have been used to verify the performance of the CPA beam to achieve a focused intensity of around 10{sup 19} W cm{sup -2} and to underwrite the facility radiological safety system.« less

  9. Development of Thomson scattering system on Shenguang-III prototype laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Tao; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Li, Zhichao

    2015-02-15

    A Thomson scattering diagnostic system, using a 263 nm laser as the probe beam, is designed and implemented on Shenguang-III prototype laser facility. The probe beam is provided by an additional beam line completed recently. The diagnostic system allows simultaneous measurements of both ion feature and red-shifted electron feature from plasmas in a high-temperature (≥2 keV) and high-density (≥10{sup 21} cm{sup −3}) regime. Delicate design is made to satisfy the requirements for successful detection of the electron feature. High-quality ion feature spectra have already been diagnosed via this system in recent experiments with gas-filled hohlraums.

  10. Ion Beam Characterization of a NEXT Multi-Thruster Array Plume

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Foster, John E.; Patterson, Michael J.; Diaz, Esther M.; Van Noord, Jonathan L.; McEwen, Heather K.

    2006-01-01

    Three operational, engineering model, 7-kW ion thrusters and one instrumented, dormant thruster were installed in a cluster array in a large vacuum facility at NASA Glenn Research Center. A series of engineering demonstration tests were performed to evaluate the system performance impacts of operating various multiple-thruster configurations in an array. A suite of diagnostics was installed to investigate multiple-thruster operation impact on thruster performance and life, thermal interactions, and alternative system modes and architectures. The ion beam characterization included measuring ion current density profiles and ion energy distribution with Faraday probes and retarding potential analyzers, respectively. This report focuses on the ion beam characterization during single thruster operation, multiple thruster operation, various neutralizer configurations, and thruster gimbal articulation. Comparison of beam profiles collected during single and multiple thruster operation demonstrated the utility of superimposing single engine beam profiles to predict multi-thruster beam profiles. High energy ions were detected in the region 45 off the thruster axis, independent of thruster power, number of operating thrusters, and facility background pressure, which indicated that the most probable ion energy was not effected by multiple-thruster operation. There were no significant changes to the beam profiles collected during alternate thruster-neutralizer configurations, therefore supporting the viability of alternative system configuration options. Articulation of one thruster shifted its beam profile, whereas the beam profile of a stationary thruster nearby did not change, indicating there were no beam interactions which was consistent with the behavior of a collisionless beam expansion.

  11. Electron beam ion source and electron beam ion trap (invited).

    PubMed

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  12. Status of the 1 MeV Accelerator Design for ITER NBI

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.

    2011-09-01

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  13. Naval Research Laboratory Major Facilities 2008

    DTIC Science & Technology

    2008-10-01

    Development Laboratory • Secure Supercomputing Facility • CBD/Tilghman Island IR Field Evaluation Facility • Ultra-Short-Pulse Laser Effects Research...EMI Test Facility • Proximity Operations Testbed GENERAL INFORMATION • Maps EX EC U TI V E D IR EC TO RA TE Code 1100 – Institute for Nanoscience...facility: atomic force microscope (AFM); benchtop transmission electron microscope (TEM); cascade probe station; critical point dryer ; dual beam focused

  14. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1984-02-16

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  15. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1986-08-19

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

  16. Ponderomotive lower hybrid wave growth in electric fields associated with electron beam injection and transverse ion acceleration

    NASA Astrophysics Data System (ADS)

    Bale, S. D.; Kellogg, P. J.; Erickson, K. N.; Monson, S. J.; Arnoldy, R. L.

    During electron beam injection, the Echo 7 rocket experiment observed large bursts of transversely accelerated ions. These ions seem to have been energized in the region of the beam or the payload return current. Electric field waveforms (<= 30 kHz) during gun operation show both low frequency fluctuations and broad band power. An analysis of the waveforms shows nonlinear mode coupling between waves near the ion cyclotron frequency and waves above the lower hybrid frequency.

  17. CALUTRON RECEIVERS

    DOEpatents

    Lofgren, E.J.

    1958-09-01

    Improvements are described in isotope separation devices of the calutron type and, in particular, deals with a novel caiutron receiver which passes the optimum portions of the ion beam to a collecting chamber. In broad aspects the receiver provides means for pass delimited pontion of the beam and an elongated collecting pocket disposed to receive ions passed by the beam delimiting means. The collecting pocket is transversely partitioned into a plurality of ion receiving compartments respectively defined by a corresponding plurality of separately removable liner elements.

  18. Large ionospheric disturbances produced by the HAARP HF facility

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; McCarrick, Mike; Michell, Robert G.

    2016-07-01

    The enormous transmitter power, fully programmable antenna array, and agile frequency generation of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska have allowed the production of unprecedented disturbances in the ionosphere. Using both pencil beams and conical (or twisted) beam transmissions, artificial ionization clouds have been generated near the second, third, fourth, and sixth harmonics of the electron gyrofrequency. The conical beam has been used to sustain these clouds for up to 5 h as opposed to less than 30 min durations produced using pencil beams. The largest density plasma clouds have been produced at the highest harmonic transmissions. Satellite radio transmissions at 253 MHz from the National Research Laboratory TACSat4 communications experiment have been severely disturbed by propagating through artificial plasma regions. The scintillation levels for UHF waves passing through artificial ionization clouds from HAARP are typically 16 dB. This is much larger than previously reported scintillations at other HF facilities which have been limited to 3 dB or less. The goals of future HAARP experiments should be to build on these discoveries to sustain plasma densities larger than that of the background ionosphere for use as ionospheric reflectors of radio signals.

  19. Design of a radiation facility for very small specimens used in radiobiology studies

    NASA Astrophysics Data System (ADS)

    Rodriguez, Manuel; Jeraj, Robert

    2008-06-01

    A design of a radiation facility for very small specimens used in radiobiology is presented. This micro-irradiator has been primarily designed to irradiate partial bodies in zebrafish embryos 3-4 mm in length. A miniature x-ray, 50 kV photon beam, is used as a radiation source. The source is inserted in a cylindrical brass collimator that has a pinhole of 1.0 mm in diameter along the central axis to produce a pencil photon beam. The collimator with the source is attached underneath a computer-controlled movable table which holds the specimens. Using a 45° tilted mirror, a digital camera, connected to the computer, takes pictures of the specimen and the pinhole collimator. From the image provided by the camera, the relative distance from the specimen to the pinhole axis is calculated and coordinates are sent to the movable table to properly position the samples in the beam path. Due to its monitoring system, characteristic of the radiation beam, accuracy and precision of specimen positioning, and automatic image-based specimen recognition, this radiation facility is a suitable tool to irradiate partial bodies in zebrafish embryos, cell cultures or any other small specimen used in radiobiology research.

  20. Dark matter beams at LBNF

    DOE PAGES

    Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; ...

    2016-04-08

    High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Zmore » $$^{'}$$ boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z$$^{'}$$ couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab’s Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. As a result, this illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.« less

  1. Melt layer erosion of metallic armour targets during off-normal events in tokamaks

    NASA Astrophysics Data System (ADS)

    Bazylev, B.; Wuerz, H.

    2002-12-01

    Melt layer erosion by melt motion is the dominating erosion mechanism for metallic armours under high heat loads. A 1-D fluid dynamics simulation model for calculation of melt motion was developed and validated against experimental results for tungsten from the e-beam facility JEBIS and beryllium from the e-beam facility JUDITH. The driving force in each case is the gradient of the surface tension. Due to the high velocity which develops in the Be melt considerable droplet splashing occurs.

  2. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondrasek, R.; Levand, A.; Pardo, R.

    2012-02-15

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi {sup 252}Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci {sup 252}Cf source to produce radioactive beamsmore » with intensities up to 10{sup 6} ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for {sup 23}Na{sup 8+}, 15.6% for {sup 84}Kr{sup 17+}, and 13.7% for {sup 85}Rb{sup 19+} with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for {sup 143}Cs{sup 27+} and 14.7% for {sup 143}Ba{sup 27+}. The project has been commissioned with a radioactive beam of {sup 143}Ba{sup 27+} accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.« less

  3. 32 CFR 260.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-controlled property. Cafeteria. A food dispensing facility capable of providing a broad variety of prepared foods and beverages (including hot meals) primarily through the use of a line where the customer serves... facilities are always provided. The DoD Component food dispensing facilities that conduct cafeteria-type...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the {pi}{degree} production at high p{sub {perpendicular}} and in the {Lambda} ({Sigma}{degree}), {pi}{sup {plus minus}}, {pi}{degree} production at large x{sub F}, and {Delta}{sigma}{sub L}(pp, {bar p}p) measurements. 18 refs.

  5. Performance of the NIRS fast scanning system for heavy-ion radiotherapy.

    PubMed

    Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Shirai, Toshiyuki; Takei, Yuka; Takeshita, Eri; Mizushima, Kota; Iwata, Yoshiyuki; Himukai, Takeshi; Mori, Shinichiro; Fukuda, Shigekazu; Minohara, Shinichi; Takada, Eiichi; Murakami, Takeshi; Noda, Koji

    2010-11-01

    A project to construct a new treatment facility, as an extension of the existing HIMAC facility, has been initiated for the further development of carbon-ion therapy at NIRS. This new treatment facility is equipped with a 3D irradiation system with pencil-beam scanning. The challenge of this project is to realize treatment of a moving target by scanning irradiation. To achieve fast rescanning within an acceptable irradiation time, the authors developed a fast scanning system. In order to verify the validity of the design and to demonstrate the performance of the fast scanning prior to use in the new treatment facility, a new scanning-irradiation system was developed and installed into the existing HIMAC physics-experiment course. The authors made strong efforts to develop (1) the fast scanning magnet and its power supply, (2) the high-speed control system, and (3) the beam monitoring. The performance of the system including 3D dose conformation was tested by using the carbon beam from the HIMAC accelerator. The performance of the fast scanning system was verified by beam tests. Precision of the scanned beam position was less than +/-0.5 mm. By cooperating with the planning software, the authors verified the homogeneity of the delivered field within +/-3% for the 3D delivery. This system took only 20 s to deliver the physical dose of 1 Gy to a spherical target having a diameter of 60 mm with eight rescans. In this test, the average of the spot-staying time was considerably reduced to 154 micros, while the minimum staying time was 30 micros. As a result of this study, the authors verified that the new scanning delivery system can produce an accurate 3D dose distribution for the target volume in combination with the planning software.

  6. Combined electron-beam and coagulation purification of molasses distillery slops. Features of the method, technical and economic evaluation of large-scale facility

    NASA Astrophysics Data System (ADS)

    Pikaev, A. K.; Ponomarev, A. V.; Bludenko, A. V.; Minin, V. N.; Elizar'eva, L. M.

    2001-04-01

    The paper summarizes the results obtained from the study on combined electron-beam and coagulation method for purification of molasses distillery slops from distillery produced ethyl alcohol by fermentation of grain, potato, beet and some other plant materials. The method consists in preliminary mixing of industrial wastewater with municipal wastewater, electron-beam treatment of the mixture and subsequent coagulation. Technical and economic evaluation of large-scale facility (output of 7000 m 3 day -1) with two powerful cascade electron accelerators (total maximum beam power of 400 kW) for treatment of the wastewater by the above method was carried out. It was calculated that the cost of purification of the wastes is equal to 0.25 US$ m -3 that is noticeably less than in the case of the existing method.

  7. Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2016-12-01

    In order to have optimum operation and precise control system at particle accelerators, it is required to measure the beam position with the precision of sub-μm. We developed a BPM electronic readout system at Iranian Light Source Facility and it has been experimentally tested at ALBA accelerator facility. The results show the precision of 0.54 μm in beam position measurements. To improve the precision of this beam position monitoring system to sub-μm level, we have studied different de-noising methods such as principal component analysis, wavelet transforms, filtering by FIR, and direct averaging method. An evaluation of the noise reduction was given to testify the ability of these methods. The results show that the noise reduction based on Daubechies wavelet transform is better than other algorithms, and the method is suitable for signal noise reduction in beam position monitoring system.

  8. Fast Switching Magnet for Heavy Ion Beam Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartzell, Josiah

    2017-10-03

    Fast magnets for multiplexing ion beams between different beamlines are technologically challenging and expensive, but there is an ever-growing need to develop such systems for beam separation at research and industrial facilities. For example, The Argonne Tandem Linac Accelerator System (ATLAS) is planning to expand its operations as a multi-user facility and there is a clear need, presently unmet by the industry, for a switching magnet system with the sub-millisecond transient times.In response to this problem, RadiaBeam Technologies is developing a novel pulsed switching magnet system capable of producing a 1.1T peak field over 45 cm length with a shortmore » (<1 ms) rise and fall time. The key enabling innovation in this project is an introduction of a solid-state interposed modulator architecture, which enables to improve magnet performance and reliability and reduce the cost to a practical level.« less

  9. Design of the 15 GHz BPM test bench for the CLIC test facility to perform precise stretched-wire RF measurements

    NASA Astrophysics Data System (ADS)

    Zorzetti, Silvia; Fanucci, Luca; Galindo Muñoz, Natalia; Wendt, Manfred

    2015-09-01

    The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-μm regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method.

  10. Sub-micron resolution rf cavity beam position monitor system at the SACLA XFEL facility

    NASA Astrophysics Data System (ADS)

    Maesaka, H.; Ego, H.; Inoue, S.; Matsubara, S.; Ohshima, T.; Shintake, T.; Otake, Y.

    2012-12-01

    We have developed and constructed a C-band (4.760 GHz) rf cavity beam position monitor (RF-BPM) system for the XFEL facility at SPring-8, SACLA. The demanded position resolution of the RF-BPM is less than 1 μm, because an electron beam and x-rays must be overlapped within 4 μm precision in the undulator section for sufficient FEL interaction between the electrons and x-rays. In total, 57 RF-BPMs, including IQ demodulators and high-speed waveform digitizers for signal processing, were produced and installed into SACLA. We evaluated the position resolutions of 20 RF-BPMs in the undulator section by using a 7 GeV electron beam having a 0.1 nC bunch charge. The position resolution was measured to be less than 0.6 μm, which was sufficient for the XFEL lasing in the wavelength region of 0.1 nm, or shorter.

  11. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  12. Shock wave facilities at Pulter Laboratory of SRI international

    NASA Astrophysics Data System (ADS)

    Murri, W. J.

    1982-04-01

    Shock wave research in the Poulter Laboratory covers two broad areas: dynamic material response and dynamic structural response. Workers in both areas use common facilities. The Laboratory has several guns and the facilities to perform various types of high explosive loading experiments. The use of these facilities and experimental techniques is illustrated with examples from research projects.

  13. Proton therapy detector studies under the experience gained at the CATANA facility

    NASA Astrophysics Data System (ADS)

    Cuttone, G.; Cirrone, G. A. P.; Di Rosa, F.; Lojacono, P. A.; Lo Nigro, S.; Marino, C.; Mongelli, V.; Patti, I. V.; Pittera, S.; Raffaele, L.; Russo, G.; Sabini, M. G.; Salamone, V.; Valastro, L. M.

    2007-10-01

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy.In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility.

  14. BNL accelerator-based radiobiology facilities

    NASA Technical Reports Server (NTRS)

    Lowenstein, D. I.

    2001-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40-3000 MeV/nucleon with maximum beam intensities of 10(10) to 10(11) ions per pulse. The BAF Project will be described and the future AGS and BAF operation plans will be presented.

  15. BNL accelerator-based radiobiology facilities.

    PubMed

    Lowenstein, D I

    2001-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40-3000 MeV/nucleon with maximum beam intensities of 10(10) to 10(11) ions per pulse. The BAF Project will be described and the future AGS and BAF operation plans will be presented.

  16. Nanostructures by ion beams

    NASA Astrophysics Data System (ADS)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  17. Design Status of the LBNF / DUNE Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadimitriou, Vaia; et al.

    The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a wide band beam of neutrinos of sufficient intensity and appropriate energy toward DUNE detectors, placed 4850 feet underground at SURF in South Dakota, about 1,300 km away. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a four-interaction length solid target and produce mesons which are subsequently focused by a set of three magnetic horns into a 194 m long helium-filled decay pipe where they decay intomore » muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spatial and radiological constraints, extensive simulations and the experience gained by operating the NuMI facility at Fermilab. The Beamline facility is designed for initial operation at a proton-beam power of 1.2 MW, with the capability to support an upgrade to about 2.4 MW. LBNF/DUNE obtained CD-1 approval in November 2015 and CD-3a approval in September 2016. We discuss here the Beamline design status and the associated challenges.« less

  18. The RIB production target for the SPES project

    NASA Astrophysics Data System (ADS)

    Monetti, Alberto; Andrighetto, Alberto; Petrovich, Carlo; Manzolaro, Mattia; Corradetti, Stefano; Scarpa, Daniele; Rossetto, Francesco; Martinez Dominguez, Fernando; Vasquez, Jesus; Rossignoli, Massimo; Calderolla, Michele; Silingardi, Roberto; Mozzi, Aldo; Borgna, Francesca; Vivian, Gianluca; Boratto, Enrico; Ballan, Michele; Prete, Gianfranco; Meneghetti, Giovanni

    2015-10-01

    Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.

  19. Progress report of the innovated KIST ion beam facility

    NASA Astrophysics Data System (ADS)

    Kim, Joonkon; Eliades, John A.; Yu, Byung-Yong; Lim, Weon Cheol; Chae, Keun Hwa; Song, Jonghan

    2017-01-01

    The Korea Institute of Science and Technology (KIST, Seoul, Republic of (S.) Korea) ion beam facility consists of three electrostatic accelerators: a 400 kV single ended ion implanter, a 2 MV tandem accelerator system and a 6 MV tandem accelerator system. The 400 kV and 6 MV systems were purchased from High Voltage Engineering Europa (HVEE, Netherlands) and commissioned in 2013, while the 2 MV system was purchased from National Electrostatics Corporation (NEC, USA) in 1995. These systems are used to provide traditional ion beam analysis (IBA), isotope ratio analysis (ex. accelerator mass spectrometry, AMS), and ion implantation/irradiation for domestic industrial and academic users. The main facility is the 6 MV HVEE Tandetron system that has an AMS line currently used for 10Be, 14C, 26Al, 36 Cl, 41Ca and 129I analyses, and three lines for IBA that are under construction. Here, these systems are introduced with their specifications and initial performance results.

  20. The Neutrons for Science Facility at SPIRAL-2

    NASA Astrophysics Data System (ADS)

    Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Audouin, L.; Balanzat, E.; Ban-d'Etat, B.; Ban, G.; Barreau, G.; Bauge, E.; Bélier, G.; Bem, P.; Blideanu, V.; Blomgren, J.; Borcea, C.; Bouffard, S.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fallot, M.; Farget, F.; Fischer, U.; Giot, L.; Granier, T.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Herber, S.; Jacquot, B.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecolley, J. F.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrazek, J.; Negoita, F.; Novak, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Petrascu, M.; Plompen, A. J. M.; Pomp, S.; Ramillon, J. M.; Ridikas, D.; Rossé, B.; Rudolf, G.; Serot, O.; Shcherbakov, O.; Simakov, S. P.; Simeckova, E.; Smith, A. G.; Steckmeyer, J. C.; Sublet, J. C.; Taïeb, J.; Tassan-Got, L.; Takibayev, A.; Tungborn, E.; Thfoin, I.; Tsekhanovich, I.; Varignon, C.; Wieleczko, J. P.

    2011-12-01

    The "Neutrons for Science" (NFS) facility will be a component of SPIRAL-2, the future accelerator dedicated to the production of very intense radioactive ion beams, under construction at GANIL in Caen (France). NFS will be composed of a pulsed neutron beam for in-flight measurements and irradiation stations for cross-section measurements and material studies. Continuous and quasi-monokinetic energy spectra will be available at NFS respectively produced by the interaction of deuteron beam on thick a Be converter and by the 7Li(p,n) reaction on a thin converter. The flux at NFS will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV to 40 MeV range. NFS will be a very powerful tool for physics and fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors.

  1. A polar-drive-ignition design for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, T. J. B.; Marozas, J. A.; Anderson, K. S.

    2012-05-15

    Polar drive [Skupsky et al., Phys. Plasmas 11, 2763 (2004)] will enable direct-drive experiments to be conducted on the National Ignition Facility (NIF) [Miller et al., Opt. Eng. 43, 2841 (2004)], while the facility is configured for x-ray drive. A polar-drive ignition design for the NIF has been developed that achieves a gain of 32 in two-dimensional (2-D) simulations, which include single- and multiple-beam nonuniformities and ice and outer-surface roughness. This design requires both single-beam UV polarization smoothing and one-dimensional (1-D) multi-frequency modulator (MFM) single-beam smoothing to achieve the required laser uniformity. The multi-FM smoothing is employed only during themore » low-intensity portion of the laser pulse, allowing for the use of sufficient smoothing-by-spectral-dispersion bandwidth while maintaining safe laser operations during the high-intensity part of the pulse. This target is robust to all expected sources of perturbations.« less

  2. Science Facilities Bibliography.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    A bibliographic collection on science buildings and facilities is cited with many different reference sources for those concerned with the design, planning, and layout of science facilities. References are given covering a broad scope of information on--(1) physical plant planning, (2) management and safety, (3) building type studies, (4) design…

  3. Modeling of beam customization devices in the pencil-beam splitting algorithm for heavy charged particle radiotherapy.

    PubMed

    Kanematsu, Nobuyuki

    2011-03-07

    A broad-beam-delivery system for radiotherapy with protons or ions often employs multiple collimators and a range-compensating filter, which offer complex and potentially useful beam customization. It is however difficult for conventional pencil-beam algorithms to deal with fine structures of these devices due to beam-size growth during transport. This study aims to avoid the difficulty with a novel computational model. The pencil beams are initially defined at the range-compensating filter with angular-acceptance correction for upstream collimation followed by stopping and scattering. They are individually transported with possible splitting near the aperture edge of a downstream collimator to form a sharp field edge. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will be used in the greater framework of the pencil-beam splitting algorithm for accurate and efficient patient dose calculation.

  4. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spethmann, A., E-mail: spethmann@physik.uni-kiel.de; Trottenberg, T., E-mail: trottenberg@physik.uni-kiel.de; Kersten, H., E-mail: kersten@physik.uni-kiel.de

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forcesmore » and currents onto the same target are compared with each other and with Faraday cup measurements.« less

  5. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  6. Ion-Deposited Polished Coatings

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1986-01-01

    Polished, dense, adherent coatings relatively free of imperfections. New process consists of using broad-beam ion source in evacuated chamber to ion-clean rotating surface that allows grazing incidence of ion beam. This sputter cleans off absorbed gases, organic contaminants, and oxides of mirror surface. In addition to cleaning, surface protrusions sputter-etched away. Process particularly adaptable to polishing of various substrates for optical or esthetic purposes.

  7. Radiotherapy using a laser proton accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masao; Hishikawa, Yoshio; Miyajima, Satoshi; Okazaki, Yoshiko; Sutherland, Kenneth L.; Abe, Mitsuyuki; Bulanov, Sergei V.; Daido, Hiroyuki; Esirkepov, Timur Zh.; Koga, James; Yamagiwa, Mitsuru; Tajima, Toshiki

    2008-06-01

    Laser acceleration promises innovation in particle beam therapy of cancer where an ultra-compact accelerator system for cancer beam therapy can become affordable to a broad range of patients. This is not feasible without the introduction of a technology that is radically different from the conventional accelerator-based approach. Because of its compactness and other novel characteristics, the laser acceleration method provides many enhanced capabilities

  8. Distributed sensing of RC beams with HCFRP sensors

    NASA Astrophysics Data System (ADS)

    Yang, Caiqian; Wu, Zhishen; Ye, Lieping

    2005-05-01

    This paper addresses a novel type of hybrid carbon fiber-reinforced polymer (HCFRP) sensors suitable for the structural health monitoring (SHM) of civil engineering structures. The HCFRP sensors are composed of different types of carbon tows, which are active materials due to their electrical conductivity, piezoresistivity, excellent mechanical properties and resistance to corrosion. The HCFRP sensors are designed to comprise three types of carbon tows-high strength (HS), high modulus (HM) and middle modulus (MM), in order to realize a distributed and broad-based sensing function. Two types of HCFRP sensors, with and without pretreatment, are fabricated and investigated. The HCFRP sensors are bonded with epoxy resins on the bottom concrete surface of RC beam specimens to monitor the average strain, the initiation and propagation of cracks. The experimental results indicate that such kinds of sensors are characterized with broad-based and distributed sensing feasibilities. As a result, the structural health of the RC beams can be monitored and evaluated through characterizing the relationships between the change in electrical resistance of the HCFRP sensors, the average strain and the crack width of the RC beams. In addition, it is also revealed that the damages can also be located by properly adding the number of electrodes.

  9. Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Paulsen, Phillip E.; Steuber, Thomas J.

    1989-01-01

    Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests.

  10. Cryosorption Pumps for a Neutral Beam Injector Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dremel, M.; Mack, A.; Day, C.

    2006-04-27

    We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam ofmore » deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.« less

  11. Target development for diversified irradiations at a medical cyclotron.

    PubMed

    Spellerberg, S; Scholten, B; Spahn, I; Bolten, W; Holzgreve, M; Coenen, H H; Qaim, S M

    2015-10-01

    The irradiation facility at an old medical cyclotron (Ep=17 MeV; Ed=10 MeV) was upgraded by extending the beam line and incorporation of solid state targetry. Tests performed to check the quality of the available beam are outlined. Results on nuclear data measurements and improvement of radiochemical separations are described. Using solid targets, with the proton beam falling at a slanting angle of 20°, a few radionuclides, e.g. (75)Se, (120)I, (124)I, etc. were produced with medium currents (up to 20 µA) in no-carrier-added form in quantities sufficient for local use. The extended irradiation facility has considerably enhanced the utility of the medical cyclotron. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Progress on the accelerator based SPES-BNCT project at INFN Legnaro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, J.; Colautti, P.; Pisent, A.

    2007-02-12

    In the framework of an advanced Exotic Ion Beam facility, named SPES (Study and Production of Exotic Species), that will allow a frontier program both in nuclear and interdisciplinary physics, an intense thermal neutron beam facility, devoted to perform Boron Neutron Capture Therapy (BNCT) experimental treatments on skin melanoma tumor, is currently under construction based on the SPES proton driver. A vast radiobiological investigation in vitro and in vivo has started with the new 10B carriers developed. Special microdosimetric detectors have been constructed to properly measure all the BNCT dose components and their qualities. Both microdosimetric and radiobiological measurements aremore » being performed at the new HYTHOR beam shaping assembly at the Enea-Casaccia TAPIRO reactor.« less

  13. UK's first NHS high-energy proton beam facility.

    PubMed

    Shaw, Phil

    2017-05-01

    With the UK's first high-energy Proton Beam Therapy Centre set to open next year at Manchester's The Christie, young patients with head and neck tumours, cancers close to the skull or spine, or a variety of soft tissue tumours, and adults with cancers difficult to treat using 'conventional' photon-based radiotherapy will, for the first time, be able to receive NHS proton beam therapy (PBT) without having to travel overseas. HEJ editor, Jonathan Baillie, visited the site of The Christie's new £135 million PBT Centre to find out more about the design and construction of a facility which interserve construction director for the North-West, Phil Shaw, describes as one of the most complex and specialist he has worked on.

  14. Determination of lead equivalent values according to IEC 61331-1:2014—Report and short guidelines for testing laboratories

    NASA Astrophysics Data System (ADS)

    Büermann, L.

    2016-09-01

    Materials used for the production of protective devices against diagnostic medical X-radiation described in the international standard IEC 61331-3 need to be specified in terms of their lead attenuation equivalent thickness according to the methods described in IEC 61331-1. In May 2014 the IEC published the second edition of these standards which contain improved methods for the determination of attenuation ratios and the corresponding lead attenuation equivalent thicknesses of lead-reduced or lead-free materials. These methods include the measurement of scattered photons behind the protective material which were hitherto neglected but are becoming more important because of the increasing use of lead-reduced or even lead-free materials. They can offer the same protective effect but are up to 20% lighter and also easier to dispose of. The new method is based on attenuation ratios measured with the so-called ``inverse broad beam condition''. Since the corresponding measurement procedure is new and in some respects more complex than the methods used in the past, it was regarded as being helpful to have a description of how such measurements can reliably be performed. This technical report describes in detail the attenuation ratio measurements and corresponding procedures for the lead equivalent determinations of sample materials using the method with the inverse broad beam condition as carried out at the Physikalisch-Technische Bundesanstalt (PTB). PTB still offers material testing and certification for the German responsible notified body. In addition to the description of the measurements at PTB, a short technical guide is provided for testing laboratories which intend to establish this kind of protective material certification. The guide includes technical recommendations for the testing equipment like X-ray facilities, reference lead sheets and radiation detectors; special procedures for the determination of the lead attenuation equivalent thickness; their uncertainties and the necessary contents of the test certificate.

  15. Passive and active plasma deceleration for the compact disposal of electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonatto, A., E-mail: abonatto@lbl.gov; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 700040-020; Schroeder, C. B.

    2015-08-15

    Plasma-based decelerating schemes are investigated as compact alternatives for the disposal of high-energy beams (beam dumps). Analytical solutions for the energy loss of electron beams propagating in passive and active (laser-driven) schemes are derived. These solutions, along with numerical modeling, are used to investigate the evolution of the electron distribution, including energy chirp and total beam energy. In the active beam dump scheme, a laser-driver allows a more homogeneous beam energy extraction and drastically reduces the energy chirp observed in the passive scheme. These concepts could benefit applications requiring overall compactness, such as transportable light sources, or facilities operating atmore » high beam power.« less

  16. Optical glow spectra arising from low-energy N2, N2(+) and electron bombardment of MgF2 surfaces

    NASA Technical Reports Server (NTRS)

    Qi, J.; Barnes, A. V.; Espy, S. L.; Riehl-Chudoba, M.; Sun, C.-N.; Albridge, R. G.; Tolk, N. H.

    1991-01-01

    Photon emission spectra resulting from the impact of N2, N2(+), and electron beams on magnesium fluoride in an ultrahigh vacuum environment were measured and compared for beam energies in the range 200-2000 eV. Unexpectedly, only the ion- and electron-induced spectra exhibited broad fluorescence. The observed data suggest that the broad fluorescence arising from low-energy ion bombardment is due primarily to the transfer of electronic energy to the surface by resonance or Auger neutralization. Since molecular nitrogen is a major constituent of the atmosphere at orbital altitudes, these measurements bear directly on radiation-induced glow and erosion processes on surfaces of spacecraft in low-earth orbit.

  17. National Ignition Facility Comes to Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, E

    2003-09-01

    First conceived of nearly 15 years ago, the National Ignition Facility (NIF) is up and running and successful beyond almost everyone's expectations. During commissioning of the first four laser beams, the laser system met design specifications for everything from beam quality to energy output. NIF will eventually have 192 laser beams. Yet with just 2% of its final beam configuration complete, NIF has already produced the highest energy laser shots in the world. In July, laser shots in the infrared wavelength using four beams produced a total of 26.5 kilojoules of energy per beam, not only meeting NIF's design energymore » requirement of 20 kilojoules per beam but also exceeding the energy of any other infrared laser beamline. In another campaign, NIF produced over 11.4 kilojoules of energy when the infrared light was converted to green light. An earlier performance campaign of laser light that had been frequency converted from infrared to ultraviolet really proved NIF's mettle. Over 10.4 kilojoules of ultraviolet energy were produced in about 4 billionths of a second. If all 192 beamlines were to operate at these levels, over 2 megajoules of energy would result. That much energy for the pulse duration of several nanoseconds is about 500 trillion watts of power, more than 500 times the US peak generating power.« less

  18. The ideal neutrino beams

    NASA Astrophysics Data System (ADS)

    Lindroos, Mats

    2009-06-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented. The design study will explore the physics reach, the detectors, the feasibility, the safety issues and the cost for each of the options so that the the community can take a decision on what to build when the facilities presently under exploitation and construction have to be replaced.

  19. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobin, R., E-mail: rjgobin@cea.fr; Bogard, D.; Chauvin, N.

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid lowmore » energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.« less

  20. On-ground calibration of AGILE-GRID with a photon beam: results and lessons for the future

    NASA Astrophysics Data System (ADS)

    Cattaneo, P. W.; Rappoldi, A.

    2013-06-01

    On the AGILE satellite, there is the Gamma Ray Imaging Detector (GRID) consisting of a Silicon Tracker (ST), a Cesium Iodide Mini-Calorimeter and an Anti-Coincidence system of plastic scintillator bars. The ST needs a calibration with a γ-ray beam to validate the simulation used to calculate the detector response versus the energy and the direction of the γ rays. A tagged γ-ray beam line was designed at the Beam Test Facility of the Laboratori Nazionali of Frascati, generated by an electron beam through bremsstrahlung in a position-sensitive target. The γ-ray energy is deduced by the difference with the post-bremsstrahlung electron energy [P. W. Cattaneo, et al., Characterization of a tagged γ-ray beam line at the daΦne beam test facility, Nucl. Instr. and Meth. A 674 (2012) 55-66; P. W. Cattaneo, et al., First results about on-ground calibration of the silicon tracker for the agile satellite, Nucl. Instr. and Meth. A 630(1) (2011) 251-257.]. The electron energy is measured by a spectrometer consisting of a dipole magnet and an array of position sensitive silicon strip detectors, the Photon Tagging System (PTS). In this paper the setup and the calibration of AGILE performed in 2005 are described.

  1. Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings.

    PubMed

    Tyan, R C; Sun, P C; Scherer, A; Fainman, Y

    1996-05-15

    We introduce a novel polarizing beam splitter that uses the anisotropic spectral reflectivity (ASR) characteristic of a high-spatial-frequency multilayer binary grating. Such ASR effects allow us to design an optical element that is transparent for TM polarization and reflective for TE polarization. For normally incident light our element acts as a polarization-selective mirror. The properties of this polarizing beam splitter are investigated with rigorous coupled-wave analysis. The design results show that an ASR polarizing beam splitter can provide a high polarization extinction ratio for optical waves from a wide range of incident angles and a broad optical spectral bandwidth.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucholz, J.A.

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the {pi}{degree} production at high p{sub {perpendicular}} and in the {Lambda} ({Sigma}{degree}), {pi}{sup {plus minus}}, {pi}{degree} production at large x{sub F}, and {Delta}{sigma}{sub L}(pp, {bar p}p) measurements. 20 refs., 5 figs.

  4. Gap and stripline combined monitor

    DOEpatents

    Yin, Yan

    1986-01-01

    A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  5. Submacropulse electron-beam dynamics correlated with higher-order modes in Tesla-type superconducting rf cavities

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Thurman-Keup, R.; Edstrom, D.; Ruan, J.; Eddy, N.; Prieto, P.; Napoly, O.; Carlsten, B. E.; Bishofberger, K.

    2018-06-01

    We report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ˜100 kHz in the vertical plane and ˜380 kHz in the horizontal plane with up to 600 -μ m amplitudes were observed in a 3-MHz micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC /b . However, the effects were much reduced at 100 pC /b . The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.

  6. Submacropulse electron-beam dynamics correlated with higher-order modes in Tesla-type superconducting rf cavities

    DOE PAGES

    Lumpkin, A. H.; Thurman-Keup, R.; Edstrom, D.; ...

    2018-06-04

    Here, we report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ~100 kHz in the vertical plane and ~380 kHz in the horizontal plane with up to 600-μm amplitudes were observed in a 3-MHzmore » micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC/b. However, the effects were much reduced at 100 pC/b. The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.« less

  7. Achromatic and uncoupled medical gantry

    DOEpatents

    Tsoupas, Nicholaos [Center Moriches, NY; Kayran, Dmitry [Rocky Point, NY; Litvinenko, Vladimir [Mt. Sinai, NY; MacKay, William W [Wading River, NY

    2011-11-22

    A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.

  8. Beam commissioning for a superconducting proton linac

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; He, Yuan; Jia, Huan; Dou, Wei-ping; Chen, Wei-long; Zhang, X. L.; Liu, Shu-hui; Feng, Chi; Tao, Yue; Wang, Wang-sheng; Wu, Jian-qiang; Zhang, Sheng-hu; Zhao, Hong-Wei

    2016-12-01

    To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS) system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today's nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS) proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW) superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  9. Ion beam development for the needs of the JYFL nuclear physics programme.

    PubMed

    Koivisto, H; Suominen, P; Ropponen, T; Ropponen, J; Koponen, T; Savonen, M; Toivanen, V; Wu, X; Machicoane, G; Stetson, J; Zavodszky, P; Doleans, M; Spädtke, P; Vondrasek, R; Tarvainen, O

    2008-02-01

    The increased requirements towards the use of higher ion beam intensities motivated us to initiate the project to improve the overall transmission of the K130 cyclotron facility. With the facility the transport efficiency decreases rapidly as a function of total beam intensity extracted from the JYFL ECR ion sources. According to statistics, the total transmission efficiency is of the order of 10% for low beam intensities (I(total)< or =0.7 mA) and only about 2% for high beam intensities (I(total)>1.5 mA). Requirements towards the use of new metal ion beams for the nuclear physics experiments have also increased. The miniature oven used for the production of metal ion beams at the JYFL is not able to reach the temperature needed for the requested metal ion beams. In order to fulfill these requirements intensive development work has been performed. An inductively and a resistively heated oven has successfully been developed and both are capable of reaching temperatures of about 2000 degrees C. In addition, sputtering technique has been tested. GEANT4 simulations have been started in order to better understand the processes involved with the bremsstrahlung, which gives an extra heat load to cryostat in the case of superconducting ECR ion source. Parallel with this work, a new advanced ECR heating simulation program has been developed. In this article we present the latest results of the above-mentioned projects.

  10. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  11. Shielding requirements for mammography.

    PubMed

    Simpkin, D J

    1987-09-01

    Shielding requirements for mammography installations have been investigated. To apply the methodologies of NCRP Report No. 49, the scatter-to-incident ratio of a typical mammography beam was measured, and the broad beam transmission was calculated for several representative beam spectra. These calculations were found to compare favorably with published low kVp tungsten-targeted x-ray transmission through a variety of shielding materials. Radiation shielding tables were developed from the calculated transmissions through Pb, concrete, gypsum, steel, plate glass, and water, using a technique which eliminates the "add one HVL" rule. It is concluded that Mo-targeted x-ray beams operated at 35 kVp require half the shielding of W-targeted beams operated at 50 kVp, and that adequate, cost-effective shielding calculations will consider alternatives to Pb.

  12. Ion beam technology applications study. [ion impact, implantation, and surface finishing

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Komatsu, G. K.

    1978-01-01

    Specific perceptions and possible ion beam technology applications were obtained as a result of a literature search and contact interviews with various institutions and individuals which took place over a 5-month period. The use of broad beam electron bombardment ion sources is assessed for materials deposition, removal, and alteration. Special techniques examined include: (1) cleaning, cutting, and texturing for surface treatment; (2) crosslinking of polymers, stress relief in deposited layers, and the creation of defect states in crystalline material by ion impact; and (3) ion implantation during epitaxial growth and the deposition of neutral materials sputtered by the ion beam. The aspects, advantages, and disadvantages of ion beam technology and the competitive role of alternative technologies are discussed.

  13. In-air RBS measurements at the LAMFI external beam setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, T. F.; Added, N.; Moro, M. V.

    2014-11-11

    This work describes new developments in the external beam setup of the Laboratory of Material Analysis with Ion Beams of the University of São Paulo (LAMFI-USP). This setup was designed to be a versatile analytical station to analyze a broad range of samples. In recent developments, we seek the external beam Rutherford Backscattering Spectroscopy (RBS) analysis to complement the Particle Induced X-ray Emission (PIXE) measurements. This work presents the initial results of the external beam RBS analysis as well as recent developments to improve the energy resolution RBS measurements, in particular tests to seek for sources of resolution degradation. Thesemore » aspects are discussed and preliminary results of in-air RBS analysis of some test samples are presented.« less

  14. Quasi-Airy beams along tunable propagation trajectories and directions.

    PubMed

    Qian, Yixian; Zhang, Site

    2016-05-02

    We present a theoretical and experimental exhibit that accelerates quasi-Airy beams propagating along arbitrarily appointed parabolic trajectories and directions in free space. We also demonstrate that such quasi-Airy beams can be generated by a tunable phase pattern, where two disturbance factors are introduced. The topological structures of quasi-Airy beams are readily manipulated with tunable phase patterns. Quasi-Airy beams still possess the characteristics of non-diffraction, self-healing to some extent, although they are not the solutions for paraxial wave equation. The experiments show the results are consistent with theoretical predictions. It is believed that the property of propagation along arbitrarily desired parabolic trajectories will provide a broad application in trapping atom and living cell manipulation.

  15. A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute

    NASA Astrophysics Data System (ADS)

    Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.

    2014-08-01

    Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.

  16. Radiography Capabilities for Matter-Radiation Interactions in Extremes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell; Garnett, Robert William; Chapman, Catherine A. B

    The Matter-Radiation Interactions in Extremes (MaRIE) experimental facility will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. This new facility will provide the new tools scientists need to develop next-generation materials that will perform predictably and on-demand for currently unattainable lifetimes in extreme environments. The MaRIE facility is based on upgrades to the existing LANSCE 800-MeV proton linac and a new 12-GeV electron linac and associated X-ray FEL to provide simultaneous multiple probe beams, and new experimental areas. In addition to the high-energy photon probe beam, both electronmore » and proton radiography capabilities will be available at the MaRIE facility. Recently, detailed radiography system studies have been performed to develop conceptual layouts of high-magnification electron and proton radiography systems that can meet the experimental requirements for the expected first experiments to be performed at the facility. A description of the radiography systems, their performance requirements, and a proposed facility layout are presented.« less

  17. Polarized positrons in Jefferson lab electron ion collider (JLEIC)

    NASA Astrophysics Data System (ADS)

    Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong

    2018-05-01

    The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.

  18. BNL ATF II beamlines design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedurin, M.; Jing, Y.; Stratakis, D.

    The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO 2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO 2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, willmore » be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.« less

  19. Spot-welding solid targets for high current cyclotron irradiation

    PubMed Central

    Ellison, Paul A.; Valdovinos, Hector F.; Graves, Stephen A.; Barnhart, Todd E.; Nickles, Robert J.

    2016-01-01

    Zirconium-89 finds broad application for use in positron emission tomography. Its cyclotron production has been limited by the heat transfer from yttrium targets at high beam currents. A spot welding technique allows a three-fold increase in beam current, without affecting 89Zr quality. An yttrium foil, welded to a jet-cooled tantalum support base accommodates a 50 μA proton beam degraded to 14 MeV. The resulting activity yield of 48 ± 4 MBq/(μA·hr) now extends the outreach of 89Zr for a broader distribution. PMID:27771445

  20. Coherence measurement with digital micromirror device.

    PubMed

    Partanen, Henri; Turunen, Jari; Tervo, Jani

    2014-02-15

    We measure the complex-valued spatial coherence function of a multimode broad-area laser diode using Young's classical double slit experiment realized with a digital micromirror device. We use this data to construct the coherent modes of the beam and to simulate its propagation before and after the measurement plane. When comparing the results to directly measured intensity profiles, we find excellent correspondence to the extent that even small details of the beam can be predicted. We also consider the number of measurement points required to model the beam with sufficient accuracy.

  1. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept.

    PubMed

    Gomà, Carles; Safai, Sairos; Vörös, Sándor

    2017-06-21

    This paper describes a novel approach to the reference dosimetry of proton pencil beams based on dose-area product ([Formula: see text]). It depicts the calibration of a large-diameter plane-parallel ionization chamber in terms of dose-area product in a 60 Co beam, the Monte Carlo calculation of beam quality correction factors-in terms of dose-area product-in proton beams, the Monte Carlo calculation of nuclear halo correction factors, and the experimental determination of [Formula: see text] of a single proton pencil beam. This new approach to reference dosimetry proves to be feasible, as it yields [Formula: see text] values in agreement with the standard and well-established approach of determining the absorbed dose to water at the centre of a broad homogeneous field generated by the superposition of regularly-spaced proton pencil beams.

  2. Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki; Sato, Masahiro

    2017-02-01

    Controlling electric and magnetic properties of matter by laser beams is actively explored in the broad region of condensed matter physics, including spintronics and magneto-optics. Here we theoretically propose an application of optical and electron vortex beams carrying intrinsic orbital angular momentum to chiral ferro- and antiferromagnets. We analyze the time evolution of spins in chiral magnets under irradiation of vortex beams by using the stochastic Landau-Lifshitz-Gilbert equation. We show that beam-driven nonuniform temperature leads to a class of ring-shaped magnetic defects, what we call skyrmion multiplex, as well as conventional skyrmions. We discuss the proper beam parameters and the optimal way of applying the beams for the creation of these topological defects. Our findings provide an ultrafast scheme of generating topological magnetic defects in a way applicable to both metallic and insulating chiral (anti-) ferromagnets.

  3. Radiation reaction studies in an all-optical set-up: experimental limitations

    NASA Astrophysics Data System (ADS)

    Samarin, G. M.; Zepf, M.; Sarri, G.

    2018-06-01

    The recent development of ultra-high intensity laser facilities is finally opening up the possibility of studying high-field quantum electrodynamics in the laboratory. Arguably, one of the central phenomena in this area is that of quantum radiation reaction experienced by an ultra-relativistic electron beam as it propagates through the tight focus of a laser beam. In this paper, we discuss the major experimental challenges that are to be faced in order to extract meaningful and quantitative information from this class of experiments using existing and near-term laser facilities.

  4. CATANA protontherapy facility: The state of art of clinical and dosimetric experience

    NASA Astrophysics Data System (ADS)

    Cuttone, G.; Cirrone, G. A. P.; Di Franco, G.; La Monaca, V.; Lo Nigro, S.; Ott, J.; Pittera, S.; Privitera, G.; Raffaele, L.; Reibaldi, A.; Romano, F.; Sabini, M. G.; Salamone, V.; Sanfilippo, M.; Spatola, C.; Valastro, L. M.

    2011-07-01

    After nine years of activity, about 220 patients have been treated at the CATANA Eye Protontherapy facility. A 62MeV proton beam produced by a Superconducting Cyclotron is dedicated to radiotherapy of eye lesions, as uveal melanomas. Research and development work has been done to test different dosimetry devices to be used for reference and relative dosimetry, in order to achieve dose delivering accuracy. The follow-up results demonstrated the efficacy of proton beams and encouraged us in our activity in the fight against cancer.

  5. First steps towards real-time radiography at the NECTAR facility

    NASA Astrophysics Data System (ADS)

    Bücherl, T.; Wagner, F. M.; v. Gostomski, Ch. Lierse

    2009-06-01

    The beam tube SR10 at Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) provides an intense beam of fission neutrons for medical application (MEDAPP) and for radiography and tomography of technical and other objects (NECTAR). The high neutron flux of up to 9.8E+07 cm -2 s -1 (depending on filters and collimation) with a mean energy of about 1.9 MeV at the sample position at the NECTAR facility prompted an experimental feasibility study to investigate the potential for real-time (RT) radiography.

  6. Moderator Demonstration Facility Design and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.

    2017-02-01

    The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL) is implementing a Moderator Demonstration Facility (MDF) to demonstrate the performance characteristics of advanced moderators central to the Second Target Station (STS) for SNS. The MDF will use the "spare" front-end installation within the SNS accelerator support complex – an ion source, radio-frequency quadrupole (RFQ) accelerator, and medium-energy beam transport (MEBT) chopper - to provide a 2.5 MeV proton beam of peak current 50 mA and maximum pulse length of less than 10 s at a repetition rate of no more than 60 Hz to a suitable neutron-producingmore » target to demonstrate those aspects of moderator performance necessary to meet the goals of the STS design e ort. The accelerator beam parameters are not open to variation beyond that described above - they are fixed by the nature of the spare front-end installation (the Integrated Test Stand Facility; ITSF). Accordingly, there are some neutronic challenges in developing prototypic moderator illumination from a very non-prototypic primary neutron source; the spallation source we are attempting to mimic has an extended neutron source volume approximately 40 cm long (in the direction of the proton beam), approximately 10 cm wide (horizontally transverse to the proton beam) and approximately 5 cm high (vertically transverse to the proton beam), and an isotropic evaporation energy spectrum with mean energy above 1 MeV. In contrast, the primary neutron source available from the 7Li(p,n) reaction (the most prolific at 2.5 MeV proton energy by more than an order of magnitude) is strongly anisotropic, with an energy spectrum that is both strongly dependent on emission angle and kinematically limited to less than 700 keV, and the interaction zone between the incident protons and any target material (neutron-producing or not) is intrinsically limited to a few tens of microns. The MDF will be unique and innovative amongst the world’s moderator test facilities in that it will be intended to be very prototypic in terms of "moderator illumination" - the spatial variation of the neutron flux entering the moderator itself - as well as capable of testing so-called high-brightness moderators in a wing configuration.« less

  7. First results of the ITER-relevant negative ion beam test facility ELISE (invited).

    PubMed

    Fantz, U; Franzen, P; Heinemann, B; Wünderlich, D

    2014-02-01

    An important step in the European R&D roadmap towards the neutral beam heating systems of ITER is the new test facility ELISE (Extraction from a Large Ion Source Experiment) for large-scale extraction from a half-size ITER RF source. The test facility was constructed in the last years at Max-Planck-Institut für Plasmaphysik Garching and is now operational. ELISE is gaining early experience of the performance and operation of large RF-driven negative hydrogen ion sources with plasma illumination of a source area of 1 × 0.9 m(2) and an extraction area of 0.1 m(2) using 640 apertures. First results in volume operation, i.e., without caesium seeding, are presented.

  8. Future Facility: FAIR at GSI

    NASA Astrophysics Data System (ADS)

    Rosner, Guenther

    2007-05-01

    The Facility for Antiproton and Ion Research, FAIR, is a new particle accelerator facility to be built at the GSI site in Germany. The research at FAIR will cover a wide range of topics in nuclear and hadron physics, high density plasma and atomic physics, and applications in condensed matter physics and biology. A 1.1 km circumference double ring of rapidly cycling 100 and 300 Tm synchrotrons, will be FAIR's central accelerator system. It will be used to produce, inter alia, high intensity secondary beams of antiprotons and short-lived radioactive nuclei. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experiments are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.

  9. A silicon strip detector array for energy verification and quality assurance in heavy ion therapy.

    PubMed

    Debrot, Emily; Newall, Matthew; Guatelli, Susanna; Petasecca, Marco; Matsufuji, Naruhiro; Rosenfeld, Anatoly B

    2018-02-01

    The measurement of depth dose profiles for range and energy verification of heavy ion beams is an important aspect of quality assurance procedures for heavy ion therapy facilities. The steep dose gradients in the Bragg peak region of these profiles require the use of detectors with high spatial resolution. The aim of this work is to characterize a one dimensional monolithic silicon detector array called the "serial Dose Magnifying Glass" (sDMG) as an independent ion beam energy and range verification system used for quality assurance conducted for ion beams used in heavy ion therapy. The sDMG detector consists of two linear arrays of 128 silicon sensitive volumes each with an effective size of 2mm × 50μm × 100μm fabricated on a p-type substrate at a pitch of 200 μm along a single axis of detection. The detector was characterized for beam energy and range verification by measuring the response of the detector when irradiated with a 290 MeV/u 12 C ion broad beam incident along the single axis of the detector embedded in a PMMA phantom. The energy of the 12 C ion beam incident on the detector and the residual energy of an ion beam incident on the phantom was determined from the measured Bragg peak position in the sDMG. Ad hoc Monte Carlo simulations of the experimental setup were also performed to give further insight into the detector response. The relative response profiles along the single axis measured with the sDMG detector were found to have good agreement between experiment and simulation with the position of the Bragg peak determined to fall within 0.2 mm or 1.1% of the range in the detector for the two cases. The energy of the beam incident on the detector was found to vary less than 1% between experiment and simulation. The beam energy incident on the phantom was determined to be (280.9 ± 0.8) MeV/u from the experimental and (280.9 ± 0.2) MeV/u from the simulated profiles. These values coincide with the expected energy of 281 MeV/u. The sDMG detector response was studied experimentally and characterized using a Monte Carlo simulation. The sDMG detector was found to accurately determine the 12 C beam energy and is suited for fast energy and range verification quality assurance. It is proposed that the sDMG is also applicable for verification of treatment planning systems that rely on particle range. © 2017 American Association of Physicists in Medicine.

  10. Prospects for a Muon Spin Resonance Facility in the MuCool Test Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, John A.

    2017-04-12

    This paper investigates the feasibility of re-purposing the MuCool Test Area beamline and experimental hall to support a Muon Spin Resonance facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application to the MTA facility. Two scenarios were determined feasible. One represents an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that transports the primary beam to an existing high-intensity beam absorber located outside of the hall. Another, upgraded stage, involves an optimized productionmore » target pile and high-intensity absorber installed inside the experimental hall and potentially multiple secondary muon lines. In either scenario, with attention to target design, the MTA can host enabling and competitive Muon Spin Resonance experiments« less

  11. Plant model of KIPT neutron source facility simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system ismore » coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.« less

  12. Production Facility Prototype Blower Installation Report with 1000 Hr Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Olivas, Eric Richard; Dale, Gregory E.

    2016-09-23

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced.« less

  13. Production Facility Prototype Blower Installation Report with 1000 Hour Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Romero, Frank Patrick

    2016-04-01

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.« less

  14. The Neutrons for Science Facility at SPIRAL-2.

    PubMed

    Ledoux, X; Aïche, M; Avrigeanu, M; Avrigeanu, V; Balanzat, E; Ban-d'Etat, B; Ban, G; Bauge, E; Bélier, G; Bém, P; Borcea, C; Caillaud, T; Chatillon, A; Czajkowski, S; Dessagne, P; Doré, D; Fischer, U; Frégeau, M O; Grinyer, J; Guillous, S; Gunsing, F; Gustavsson, C; Henning, G; Jacquot, B; Jansson, K; Jurado, B; Kerveno, M; Klix, A; Landoas, O; Lecolley, F R; Lecouey, J L; Majerle, M; Marie, N; Materna, T; Mrázek, J; Novák, J; Oberstedt, S; Oberstedt, A; Panebianco, S; Perrot, L; Plompen, A J M; Pomp, S; Prokofiev, A V; Ramillon, J M; Farget, F; Ridikas, D; Rossé, B; Serot, O; Simakov, S P; Šimecková, E; Stanoiu, M; Štefánik, M; Sublet, J C; Taïeb, J; Tarrío, D; Tassan-Got, L; Thfoin, I; Varignon, C

    2017-11-21

    The neutrons for science (NFS) facility is a component of SPIRAL-2, the new superconducting linear accelerator built at GANIL in Caen (France). The proton and deuteron beams delivered by the accelerator will allow producing intense neutron fields in the 100 keV-40 MeV energy range. Continuous and quasi-mono-kinetic energy spectra, respectively, will be available at NFS, produced by the interaction of a deuteron beam on a thick Be converter and by the 7Li(p,n) reaction on thin converter. The pulsed neutron beam, with a flux up to two orders of magnitude higher than those of other existing time-of-flight facilities, will open new opportunities of experiments in fundamental research as well as in nuclear data measurements. In addition to the neutron beam, irradiation stations for neutron-, proton- and deuteron-induced reactions will be available for cross-sections measurements and for the irradiation of electronic devices or biological cells. NFS, whose first experiment is foreseen in 2018, will be a very powerful tool for physics, fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Characterization of plasma parameters in shaped PBX-M discharges

    NASA Astrophysics Data System (ADS)

    England, A. C.; Bell, R. E.; Hirshman, S. P.; Kaita, R.; Kugel, H. W.; LeBlanc, B. L.; Lee, D. K.; Okabayashi, M.; Sun, Y.-C.; Takahashi, H.

    1997-09-01

    The Princeton Beta Experiment-Modification (PBX-M) was run both with elliptical and with bean-shaped plasmas during the 1992 and 1993 operating periods. Two deuterium-fed neutral beams were used for auxiliary heating, and during 1992 the average power was 0741-3335/39/9/008/img13. This will be referred to as the lower neutral-beam power (LNBP) period. As many as four deuterium-fed neutral beams were used during 1993, and the average power was 0741-3335/39/9/008/img14. This will be referred to as the medium neutral-beam power (MNBP) period. The neutron source strength, Sn, showed a scaling with injected power 0741-3335/39/9/008/img15, 0741-3335/39/9/008/img16 for both the LMBP and MNBP periods. A much wider range of shaping parameters was studied during the MNBP as compared with the LNBP period. A weak positive dependence on bean shaping was observed for the LNBP, and a stronger positive dependence on shaping was observed for MNBP, viz 0741-3335/39/9/008/img17. High values of Sn were obtained in bean-shaped plasmas for the highest values of 0741-3335/39/9/008/img18 at 0741-3335/39/9/008/img19 for the LNBP. For the MNBP the highest values of Sn and stored energy were obtained at 0741-3335/39/9/008/img19, and the highest values of 0741-3335/39/9/008/img18 were obtained at 0741-3335/39/9/008/img22. The achievement of high Sn is aided by high neutral-beam power, high toroidal field, strong shaping, high electron temperature, and broad profiles. The achievement of high 0741-3335/39/9/008/img18 is aided by low toroidal field, high density, less shaping, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img24. The achievement of high 0741-3335/39/9/008/img25 is aided by strong shaping, high density, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img26. Some comparisons with the previous higher neutral-beam (HNBP) period in 1989 are also made.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.; Edstrom Jr., D.

    Canonical-angular-momentum (CAM) dominated beams can be formed in photoinjectors by applying an axial magnetic field on the photocathode surface. Such a beam possess asymmetric eigenemittances and is characterized by the measure of its magnetization. CAM removal with a set of skew-quadrupole magnets maps the beam eigenemittances to the conventional emittances along each transverse degree of freedom, thereby yielding a flat beam with asymmetric transverse emittance. In this paper, we report on the ex- perimental generation of CAM dominated beam and their subsequent transformation into flat beams at the Fermilab Accelerator Science and Technology (FAST) facility 1. Our results are comparedmore » with numerical simulations and possible applications of the produced beams are discussed.« less

  17. Geometric metasurface enabling polarization independent beam splitting.

    PubMed

    Yoon, Gwanho; Lee, Dasol; Nam, Ki Tae; Rho, Junsuk

    2018-06-21

    A polarization independent holographic beam splitter that generates equal-intensity beams based on geometric metasurface is demonstrated. Although conventional geometric metasurfaces have the advantages of working over a broad frequency range and having intuitive design principles, geometric metasurfaces have the limitation that they only work for circular polarization. In this work, Fourier holography is used to overcome this limitation. A perfect overlap resulting from the origin-symmetry of the encoded image enables polarization independent operation of geometric metasurfaces. The designed metasurface beam splitter is experimentally demonstrated by using hydrogenated amorphous silicon, and the device performs consistent beam splitting regardless of incident polarizations as well as wavelengths. Our device can be applied to generate equal-intensity beams for entangled photon light sources in quantum optics, and the design approach provides a way to develop ultra-thin broadband polarization independent components for modern optics.

  18. Fundamental limits on beam stability at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, G. A.

    1998-06-18

    Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber andmore » girder motion. This paper will investigate the present limitations on orbit correction, and will delve into the upgrades necessary to achieve true sub-micron beam stability.« less

  19. Search for Polarization Effects in the Antiproton Production Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grzonka, D.; Kilian, K.; Ritman, J.

    For the production of a polarized antiproton beam, various methods have been suggested including the possibility that antiprotons may be produced polarized which will be checked experimentally. The polarization of antiprotons produced under typical conditions for antiproton beam preparation will be measured at the CERN/PS. If the production process creates some polarization, a polarized antiproton beam could be prepared by a rather simple modification of the antiproton beam facility. The detection setup and the expected experimental conditions are described.

  20. The High Current RF (HCRF) LINAC Program.

    DTIC Science & Technology

    1992-11-01

    oncept. PrOWm, Magnetice Madulatoof. CRC, DO De I IES. FacilityCrtcl. LA (200k Govl. Funds) CrtclCI CIA PHASE I It - Magntic Switchies Fab. Load Manetic 4...beam is shown in Figure 2.7. Figure 2.6 also shows the evolution of the beam pulse width and energy as it moves through the injector, the buncher and...ACCELERATOR ELECTRON BEAM PULSE FORMATS ( SINGLE -MACROPULSE- TRAIN) I Figure 2.6. HCRF accelerator schematic and electron beam pulsewidth and energy evolution

  1. Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonehara, Katsuya; Abrams, Robert; Dinkel, Holly

    MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at themore » MuCool Test Area at Fermilab.« less

  2. PAL-XFEL cavity beam position monitor pick-up design and beam test

    NASA Astrophysics Data System (ADS)

    Lee, Sojeong; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-01

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  3. Engine component instrumentation development facility at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  4. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; Camsonne, A.; Cardman, L. S.; Clark, J.; Cole, P.; Covert, S.; Cuevas, C.; Dadoun, O.; Dale, D.; Dong, H.; Dumas, J.; Fanchini, E.; Forest, T.; Forman, E.; Freyberger, A.; Froidefond, E.; Golge, S.; Grames, J.; Guèye, P.; Hansknecht, J.; Harrell, P.; Hoskins, J.; Hyde, C.; Josey, B.; Kazimi, R.; Kim, Y.; Machie, D.; Mahoney, K.; Mammei, R.; Marton, M.; McCarter, J.; McCaughan, M.; McHugh, M.; McNulty, D.; Mesick, K. E.; Michaelides, T.; Michaels, R.; Moffit, B.; Moser, D.; Muñoz Camacho, C.; Muraz, J.-F.; Opper, A.; Poelker, M.; Réal, J.-S.; Richardson, L.; Setiniyaz, S.; Stutzman, M.; Suleiman, R.; Tennant, C.; Tsai, C.; Turner, D.; Ungaro, M.; Variola, A.; Voutier, E.; Wang, Y.; Zhang, Y.; PEPPo Collaboration

    2016-05-01

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19 MeV /c , limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  5. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    DOE PAGES

    Abbott, D.; Adderley, P.; Adeyemi, A.; ...

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  6. Setup for in situ deep level transient spectroscopy of semiconductors during swift heavy ion irradiation.

    PubMed

    Kumar, Sandeep; Kumar, Sugam; Katharria, Y S; Safvan, C P; Kanjilal, D

    2008-05-01

    A computerized system for in situ deep level characterization during irradiation in semiconductors has been set up and tested in the beam line for materials science studies of the 15 MV Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. This is a new facility for in situ irradiation-induced deep level studies, available in the beam line of an accelerator laboratory. It is based on the well-known deep level transient spectroscopy (DLTS) technique. High versatility for data manipulation is achieved through multifunction data acquisition card and LABVIEW. In situ DLTS studies of deep levels produced by impact of 100 MeV Si ions on Aun-Si(100) Schottky barrier diode are presented to illustrate performance of the automated DLTS facility in the beam line.

  7. Intermediate energy heavy ions: An emerging multi-disciplinary research tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, J.R.

    1988-10-01

    In the ten years that beams of intermediate energy ({approx}50 MeV/amu{le}E{le}{approx}2 GeV/amu) heavy ions (Z{le}92) have been available, an increasing number of new research areas have been opened up. Pioneering work at the Bevalac at the Lawrence Berkeley Laboratory, still the world's only source of the heaviest beams in this energy range, has led to the establishment of active programs in nuclear physics, atomic physics, cosmic ray physics, as well as biology and medicine, and industrial applications. The great promise for growth of these research areas has led to serious planning for new facilities capable of delivering such beams; severalmore » such facilities are now in construction around the world. 20 refs., 5 figs., 1 tab.« less

  8. Quantitative Single-Ion Irradiation by ASIPP Microbeam

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Fei; Chen, Lian-Yun; Hu, Zhi-Wen; Wang, Xiao-Hua; Zhang, Jun; Li, Jun; Chen, Bin; Hu, Su-Hua; Shi, Zhong-Tao; Wu, Yu; Xu, Ming-Liang; Wu, Li-Jun; Wang, Shao-Hu; Yu, Zeng-Liang

    2004-05-01

    A single-ion microbeam facility has been constructed by the microbeam research group in ASIPP (Institute of Plasma Physics, Chinese Academy of Science). The system was designed to deliver defined numbers of hydrogen ions produced by a van de Graaff accelerator, covering an energy range from 200 keV to 3 MeV, into living cells (5 mum-20 mum diameter) growing in culture on thin plastic films. The beam is collimated by a 1- mum inner diameter HPLC (high performance liquid chromatography) capillary, which forms the micron-dimensional beam-line exit. A microbeam collimator, a scintillation ion counting system and a fast beam shutter, which constitute a precise dosage measuring and controlling system, jointly perform quantitative single-ion irradiation. With this facility, we can presently acquire ion-hitting efficiency close to 95%.

  9. Thermal-electric numerical simulation of a surface ion source for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Manzolaro, Mattia; Meneghetti, Giovanni; Andrighetto, Alberto

    2010-11-01

    In a facility for the production of radioactive ion beams (RIBs), the target system and the ion source are the most critical objects. In the context of the Selective Production of Exotic Species (SPES) project, a proton beam directly impinges a Uranium Carbide production target, generating approximately 10 13 fissions per second. The radioactive isotopes produced by the 238U fissions are then directed to the ion source to acquire a charge state. After that, the radioactive ions obtained are transported electrostatically to the subsequent areas of the facility. In this work the surface ion source at present adopted for the SPES project is studied by means of both analytical and numerical thermal-electric models. The theoretical results are compared with temperature and electric potential difference measurements.

  10. The design of the optical Thomson scattering diagnostic for the National Ignition Facility [The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility

    DOE PAGES

    Datte, P. S.; Ross, J. S.; Froula, D. H.; ...

    2016-09-21

    Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less

  11. The design of the optical Thomson scattering diagnostic for the National Ignition Facility [The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datte, P. S.; Ross, J. S.; Froula, D. H.

    Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less

  12. Diagnostic evaluations of a beam-shielded 8-cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1978-01-01

    An engineering model thruster fitted with a remotely actuated graphite fiber polyimide composite beam shield was tested in a 3- by 6.5-meter vacuum facility for in-situ assessment of beam shield effects on thruster performance. Accelerator drain current neutralizer floating potential and ion beam floating potential increased slightly when the shield was moved into position. A target exposed to the low density regions of the ion beam was used to map the boundaries of energetic fringe ions capable of sputtering. The particle efflux was evaluated by measurement of film deposits on cold, heated, bare, and enclosed glass slides.

  13. An image filtering technique for SPIDER visible tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonnesu, N., E-mail: nicola.fonnesu@igi.cnr.it; Agostini, M.; Brombin, M.

    2014-02-15

    The tomographic diagnostic developed for the beam generated in the SPIDER facility (100 keV, 50 A prototype negative ion source of ITER neutral beam injector) will characterize the two-dimensional particle density distribution of the beam. The simulations described in the paper show that instrumental noise has a large influence on the maximum achievable resolution of the diagnostic. To reduce its impact on beam pattern reconstruction, a filtering technique has been adapted and implemented in the tomography code. This technique is applied to the simulated tomographic reconstruction of the SPIDER beam, and the main results are reported.

  14. A new ion-beam laboratory for materials research at the Slovak University of Technology

    NASA Astrophysics Data System (ADS)

    Noga, Pavol; Dobrovodský, Jozef; Vaňa, Dušan; Beňo, Matúš; Závacká, Anna; Muška, Martin; Halgaš, Radoslav; Minárik, Stanislav; Riedlmajer, Róbert

    2017-10-01

    An ion beam laboratory (IBL) for materials research has been commissioned recently at the Slovak University of Technology within the University Science Park CAMBO located in Trnava. The facility will support research in the field of materials science, physical engineering and nanotechnology. Ion-beam materials modification (IBMM) as well as ion-beam analysis (IBA) are covered and deliverable ion energies are in the range from tens of keV up to tens of MeV. Two systems have been put into operation. First, a high current version of the HVEE 6 MV Tandetron electrostatic tandem accelerator with duoplasmatron and cesium sputtering ion sources, equipped with two end-stations: a high-energy ion implantation and IBA end-station which includes RBS, PIXE and ERDA analytical systems. Second, a 500 kV implanter equipped with a Bernas type ion source and two experimental wafer processing end-stations. The facility itself, operational experience and first IBMM and IBA experiments are presented together with near-future plans and ongoing development of the IBL.

  15. Surface and bulk investigations at the high intensity positron beam facility NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Dollinger, G.; Egger, W.; Kögel, G.; Löwe, B.; Mayer, J.; Pikart, P.; Piochacz, C.; Repper, R.; Schreckenbach, K.; Sperr, P.; Stadlbauer, M.

    2008-10-01

    The NEutron-induced POsitron source MUniCh (NEPOMUC) at the research reactor FRM II delivers a low-energy positron beam ( E = 15-1000 eV) of high intensity in the range between 4 × 10 7 and 5 × 10 8 moderated positrons per second. At present four experimental facilities are in operation at NEPOMUC: a coincident Doppler-broadening spectrometer (CDBS) for defect spectroscopy and investigations of the chemical vicinity of defects, a positron annihilation-induced Auger-electron spectrometer (PAES) for surface studies and an apparatus for the production of the negatively charged positronium ion Ps -. Recently, the pulsed low-energy positron system (PLEPS) has been connected to the NEPOMUC beam line, and first positron lifetime spectra were recorded within short measurement times. A positron remoderation unit which is operated with a tungsten single crystal in back reflection geometry has been implemented in order to improve the beam brilliance. An overview of NEPOMUC's status, experimental results and recent developments at the running spectrometers are presented.

  16. The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Toigo, V.; Piovan, R.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Fiorentin, A.; Gambetta, G.; Gnesotto, F.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Moresco, M.; Ocello, E.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Recchia, M.; Rizzolo, A.; Rostagni, G.; Sartori, E.; Siragusa, M.; Sonato, P.; Sottocornola, A.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Kashiwagi, M.; Hanada, M.; Tobari, H.; Watanabe, K.; Maejima, T.; Kojima, A.; Umeda, N.; Yamanaka, H.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Heinemann, B.; Kraus, W.; Hanke, S.; Hauer, V.; Ochoa, S.; Blatchford, P.; Chuilon, B.; Xue, Y.; De Esch, H. P. L.; Hemsworth, R.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Cavenago, M.; D'Arienzo, M.; Sandri, S.; Tonti, A.

    2017-08-01

    The ITER Neutral Beam Test Facility (NBTF), called PRIMA (Padova Research on ITER Megavolt Accelerator), is hosted in Padova, Italy and includes two experiments: MITICA, the full-scale prototype of the ITER heating neutral beam injector, and SPIDER, the full-size radio frequency negative-ions source. The NBTF realization and the exploitation of SPIDER and MITICA have been recognized as necessary to make the future operation of the ITER heating neutral beam injectors efficient and reliable, fundamental to the achievement of thermonuclear-relevant plasma parameters in ITER. This paper reports on design and R&D carried out to construct PRIMA, SPIDER and MITICA, and highlights the huge progress made in just a few years, from the signature of the agreement for the NBTF realization in 2011, up to now—when the buildings and relevant infrastructures have been completed, SPIDER is entering the integrated commissioning phase and the procurements of several MITICA components are at a well advanced stage.

  17. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishofberger, Kip A.

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introducedmore » briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.« less

  18. Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project

    NASA Astrophysics Data System (ADS)

    Scarpa, D.; Makhathini, L.; Tomaselli, A.; Grassi, D.; Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.

    2014-02-01

    SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.

  19. Target materials for exotic ISOL beams

    NASA Astrophysics Data System (ADS)

    Gottberg, A.

    2016-06-01

    The demand for intensity, purity, reliability and availability of short-lived isotopes far from stability is steadily high, and considerably exceeding the supply. In many cases the ISOL (Isotope Separation On-Line) method can provide beams of high intensity and purity. Limitations in terms of accessible chemical species and minimum half-life are driven mainly by chemical reactions and physical processes inside of the thick target. A wide range of materials are in use, ranging from thin metallic foils and liquids to refractory ceramics, while poly-phasic mixed uranium carbides have become the reference target material for most ISOL facilities world-wide. Target material research and development is often complex and especially important post-irradiation analyses are hindered by the high intrinsic radiotoxicity of these materials. However, recent achievements have proven that these investigations are possible if the effort of different facilities is combined, leading to the development of new material matrices that can supply new beams of unprecedented intensity and beam current stability.

  20. The EDDA experiment at COSY

    NASA Astrophysics Data System (ADS)

    Rohdjess, H.

    1998-01-01

    Polarized and unpolarized proton-proton elastic scattering is investigated with the EDDA-experiment at the Cooler Synchrotron COSY at Jülich to significantly improve the world data base in the beam energy range 500-2500 MeV. Measurements during beam acceleration with thin internal targets and a large acceptance detector produce excitation functions over a broad angular and energy range with unprecedented internal consistency. Data taking with an unpolarized CH2 fiber target and an unpolarized beam have been completed and the derived differential cross sections demonstrate the benefit of this technique. With a polarized atomic beam target recently installed in COSY and a polarized COSY beam—currently under development—the measurements will be extended to analyzing powers and spin correlation parameters.

Top