Tari, Leslie W.; Li, Xiaoming; Trzoss, Michael; Bensen, Daniel C.; Chen, Zhiyong; Lam, Thanh; Zhang, Junhu; Lee, Suk Joong; Hough, Grayson; Phillipson, Doug; Akers-Rodriguez, Suzanne; Cunningham, Mark L.; Kwan, Bryan P.; Nelson, Kirk J.; Castellano, Amanda; Locke, Jeff B.; Brown-Driver, Vickie; Murphy, Timothy M.; Ong, Voon S.; Pillar, Chris M.; Shinabarger, Dean L.; Nix, Jay; Lightstone, Felice C.; Wong, Sergio E.; Nguyen, Toan B.; Shaw, Karen J.; Finn, John
2013-01-01
Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. However, growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highly conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models. PMID:24386374
Tari, Leslie W.; Li, Xiaoming; Trzoss, Michael; ...
2013-12-26
Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. Growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highlymore » conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Moreover, lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tari, Leslie W.; Li, Xiaoming; Trzoss, Michael
Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. Growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highlymore » conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Moreover, lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models.« less
Jenke, Dennis; Couch, Tom; Gillum, Amy; Sadain, Salma
2009-01-01
Material/water equilibrium binding constants (Eb) were determined for 14 organic solutes and 17 plastic raw materials that could be used in pharmaceutical product container systems. Correlations between the measured binding constants and the organic solute's octanol/water and hexane/water partition coefficients were obtained. In general, while the materials examined exhibited a wide range of binding characteristics, the tested materials by and large fell within two broad classes: (1) those that were octanol-like in their binding characteristics, and (2) those that were hexane-like. Materials of the same class (e.g., polypropylenes) generally had binding models that were very similar. Rank ordering of the materials in terms of their magnitude of drug binding (least binding to most binding) was as follows: polypropylene < polyethylene < polyamide < styrene-ethylene-butylene-styrene < copolyester ether elastomer approximately equal to amine-terminated poly fatty acid amide polymer. The utilization of the developed models to estimate drug loss via sorption by the container is discussed.
Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
Nielsen, Morten; Lundegaard, Claus; Worning, Peder; Hvid, Christina Sylvester; Lamberth, Kasper; Buus, Søren; Brunak, Søren; Lund, Ole
2004-06-12
Prediction of which peptides will bind a specific major histocompatibility complex (MHC) constitutes an important step in identifying potential T-cell epitopes suitable as vaccine candidates. MHC class II binding peptides have a broad length distribution complicating such predictions. Thus, identifying the correct alignment is a crucial part of identifying the core of an MHC class II binding motif. In this context, we wish to describe a novel Gibbs motif sampler method ideally suited for recognizing such weak sequence motifs. The method is based on the Gibbs sampling method, and it incorporates novel features optimized for the task of recognizing the binding motif of MHC classes I and II. The method locates the binding motif in a set of sequences and characterizes the motif in terms of a weight-matrix. Subsequently, the weight-matrix can be applied to identifying effectively potential MHC binding peptides and to guiding the process of rational vaccine design. We apply the motif sampler method to the complex problem of MHC class II binding. The input to the method is amino acid peptide sequences extracted from the public databases of SYFPEITHI and MHCPEP and known to bind to the MHC class II complex HLA-DR4(B1*0401). Prior identification of information-rich (anchor) positions in the binding motif is shown to improve the predictive performance of the Gibbs sampler. Similarly, a consensus solution obtained from an ensemble average over suboptimal solutions is shown to outperform the use of a single optimal solution. In a large-scale benchmark calculation, the performance is quantified using relative operating characteristics curve (ROC) plots and we make a detailed comparison of the performance with that of both the TEPITOPE method and a weight-matrix derived using the conventional alignment algorithm of ClustalW. The calculation demonstrates that the predictive performance of the Gibbs sampler is higher than that of ClustalW and in most cases also higher than that of the TEPITOPE method.
Rosenberg, Jonathan; Müller, Peter; Lentes, Sabine; Thiele, Martin J; Zeigler, Daniel R; Tödter, Dominik; Paulus, Henry; Brantl, Sabine; Stülke, Jörg; Commichau, Fabian M
2016-09-01
The threonine dehydratase IlvA is part of the isoleucine biosynthesis pathway in the Gram-positive model bacterium Bacillus subtilis. Consequently, deletion of ilvA causes isoleucine auxotrophy. It has been reported that ilvA pseudo-revertants having a derepressed hom-thrCB operon appear in the presence of threonine. Here we have characterized two classes of ilvA pseudo-revertants. In the first class the hom-thrCB operon was derepressed unmasking the threonine dehydratase activity of the threonine synthase ThrC. In the second class of mutants, threonine biosynthesis was more broadly affected. The first class of ilvA pseudo-revertants had a mutation in the Phom promoter (P*hom ), resulting in constitutive expression of the hom-thrCB operon. In the second class of ilvA pseudo-revertants, the thrR gene encoding a putative DNA-binding protein was inactivated, also resulting in constitutive expression of the hom-thrCB operon. Here we demonstrate that ThrR is indeed a DNA-binding transcription factor that regulates the hom-thrCB operon and the thrD aspartokinase gene. DNA binding assays uncovered the DNA-binding site of ThrR and revealed that the repressor competes with the RNA polymerase for DNA binding. This study also revealed that ThrR orthologs are ubiquitous in genomes from the Gram-positive phylum Firmicutes and in some Gram-negative bacteria. © 2016 John Wiley & Sons Ltd.
HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen
Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin; ...
2016-03-25
Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen asmore » a candidate human vaccine prime. Lastly, these methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.« less
HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin
Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen asmore » a candidate human vaccine prime. Lastly, these methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.« less
HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen.
Jardine, Joseph G; Kulp, Daniel W; Havenar-Daughton, Colin; Sarkar, Anita; Briney, Bryan; Sok, Devin; Sesterhenn, Fabian; Ereño-Orbea, June; Kalyuzhniy, Oleksandr; Deresa, Isaiah; Hu, Xiaozhen; Spencer, Skye; Jones, Meaghan; Georgeson, Erik; Adachi, Yumiko; Kubitz, Michael; deCamp, Allan C; Julien, Jean-Philippe; Wilson, Ian A; Burton, Dennis R; Crotty, Shane; Schief, William R
2016-03-25
Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens. Copyright © 2016, American Association for the Advancement of Science.
Plasticity, dynamics, and inhibition of emerging tetracycline-resistance enzymes
Park, Jooyoung; Gasparrini, Andrew J.; Reck, Margaret R.; Symister, Chanez T.; Elliott, Jennifer L.; Vogel, Joseph P.; Wencewicz, Timothy A.; Dantas, Gautam; Tolia, Niraj H.
2017-01-01
While tetracyclines are an important class of antibiotics in agriculture and the clinic, their efficacy is threatened by increasing resistance. Resistance to tetracyclines can occur through efflux, ribosomal protection, or enzymatic inactivation. Surprisingly, tetracycline enzymatic inactivation has remained largely unexplored despite providing the distinct advantage of antibiotic clearance. The tetracycline destructases are a recently-discovered family of tetracycline-inactivating flavoenzymes from pathogens and soil metagenomes with a high potential for broad dissemination. Here, we show tetracycline destructases accommodate tetracycline-class antibiotics in diverse and novel orientations for catalysis, and antibiotic binding drives unprecedented structural dynamics facilitating tetracycline inactivation. We identify a key inhibitor binding mode that locks the flavin adenine dinucleotide cofactor in an inactive state, functionally rescuing tetracycline activity. Our results reveal the potential of a novel tetracycline/tetracycline destructase inhibitor combination therapy strategy to overcome resistance by enzymatic inactivation and restore the use of an important class of antibiotics. PMID:28481346
Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes.
Park, Jooyoung; Gasparrini, Andrew J; Reck, Margaret R; Symister, Chanez T; Elliott, Jennifer L; Vogel, Joseph P; Wencewicz, Timothy A; Dantas, Gautam; Tolia, Niraj H
2017-07-01
Although tetracyclines are an important class of antibiotics for use in agriculture and the clinic, their efficacy is threatened by increasing resistance. Resistance to tetracyclines can occur through efflux, ribosomal protection, or enzymatic inactivation. Surprisingly, tetracycline enzymatic inactivation has remained largely unexplored, despite providing the distinct advantage of antibiotic clearance. The tetracycline destructases are a recently discovered family of tetracycline-inactivating flavoenzymes from pathogens and soil metagenomes that have a high potential for broad dissemination. Here, we show that tetracycline destructases accommodate tetracycline-class antibiotics in diverse and novel orientations for catalysis, and antibiotic binding drives unprecedented structural dynamics facilitating tetracycline inactivation. We identify a key inhibitor binding mode that locks the flavin adenine dinucleotide cofactor in an inactive state, functionally rescuing tetracycline activity. Our results reveal the potential of a new tetracycline and tetracycline destructase inhibitor combination therapy strategy to overcome resistance by enzymatic inactivation and restore the use of an important class of antibiotics.
Tetrahydrocarbazoles are a novel class of potent P-type ATPase inhibitors with antifungal activity
Bublitz, Maike; Kjellerup, Lasse; Cohrt, Karen O’Hanlon; Gordon, Sandra; Mortensen, Anne Louise; Clausen, Johannes D.; Pallin, Thomas David; Hansen, John Bondo; Fuglsang, Anja Thoe; Dalby-Brown, William
2018-01-01
We have identified a series of tetrahydrocarbazoles as novel P-type ATPase inhibitors. Using a set of rationally designed analogues, we have analyzed their structure-activity relationship using functional assays, crystallographic data and computational modeling. We found that tetrahydrocarbazoles inhibit adenosine triphosphate (ATP) hydrolysis of the fungal H+-ATPase, depolarize the fungal plasma membrane and exhibit broad-spectrum antifungal activity. Comparative inhibition studies indicate that many tetrahydrocarbazoles also inhibit the mammalian Ca2+-ATPase (SERCA) and Na+,K+-ATPase with an even higher potency than Pma1. We have located the binding site for this compound class by crystallographic structure determination of a SERCA-tetrahydrocarbazole complex to 3.0 Å resolution, finding that the compound binds to a region above the ion inlet channel of the ATPase. A homology model of the Candida albicans H+-ATPase based on this crystal structure, indicates that the compounds could bind to the same pocket and identifies pocket extensions that could be exploited for selectivity enhancement. The results of this study will aid further optimization towards selective H+-ATPase inhibitors as a new class of antifungal agents. PMID:29293507
PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity
Liu, Geng; Li, Dongli; Li, Zhang; Qiu, Si; Li, Wenhui; Chao, Cheng-chi; Yang, Naibo; Li, Handong; Cheng, Zhen; Song, Xin; Cheng, Le; Zhang, Xiuqing; Wang, Jian; Yang, Huanming
2017-01-01
Abstract Predicting peptide binding affinity with human leukocyte antigen (HLA) is a crucial step in developing powerful antitumor vaccine for cancer immunotherapy. Currently available methods work quite well in predicting peptide binding affinity with HLA alleles such as HLA-A*0201, HLA-A*0101, and HLA-B*0702 in terms of sensitivity and specificity. However, quite a few types of HLA alleles that are present in the majority of human populations including HLA-A*0202, HLA-A*0203, HLA-A*6802, HLA-B*5101, HLA-B*5301, HLA-B*5401, and HLA-B*5701 still cannot be predicted with satisfactory accuracy using currently available methods. Furthermore, currently the most popularly used methods for predicting peptide binding affinity are inefficient in identifying neoantigens from a large quantity of whole genome and transcriptome sequencing data. Here we present a Position Specific Scoring Matrix (PSSM)-based software called PSSMHCpan to accurately and efficiently predict peptide binding affinity with a broad coverage of HLA class I alleles. We evaluated the performance of PSSMHCpan by analyzing 10-fold cross-validation on a training database containing 87 HLA alleles and obtained an average area under receiver operating characteristic curve (AUC) of 0.94 and accuracy (ACC) of 0.85. In an independent dataset (Peptide Database of Cancer Immunity) evaluation, PSSMHCpan is substantially better than the popularly used NetMHC-4.0, NetMHCpan-3.0, PickPocket, Nebula, and SMM with a sensitivity of 0.90, as compared to 0.74, 0.81, 0.77, 0.24, and 0.79. In addition, PSSMHCpan is more than 197 times faster than NetMHC-4.0, NetMHCpan-3.0, PickPocket, sNebula, and SMM when predicting neoantigens from 661 263 peptides from a breast tumor sample. Finally, we built a neoantigen prediction pipeline and identified 117 017 neoantigens from 467 cancer samples of various cancers from TCGA. PSSMHCpan is superior to the currently available methods in predicting peptide binding affinity with a broad coverage of HLA class I alleles. PMID:28327987
Mechanisms of escape from the PGT128 family of anti-HIV broadly neutralizing antibodies.
Krumm, Stefanie A; Mohammed, Hajer; Le, Khoa M; Crispin, Max; Wrin, Terri; Poignard, Pascal; Burton, Dennis R; Doores, Katie J
2016-02-02
Broadly neutralizing antibodies (bnAbs) directed against the mannose-patch on the HIV envelope glycoprotein gp120 have several features that make them desirable targets for vaccine design. The PGT125-131 bnAb family is of particular interest due to its superior breadth and potency. The overlapping epitopes recognized by this family are intricate and neutralization requires interaction with at least two N-linked glycans (N332/N334, N295 or N301) in addition to backbone-mediated contact with the (323)IGDIR(327) motif of the V3 loop. We have recently shown that this bnAb family consists of two distinct antibody classes that can bind alternate arrangements of glycans in the mannose-patch in the absence of N332 thereby limiting viral escape. This led us to further investigate viral resistance and escape mechanisms to the PGT125-131 bnAb family. Using an escape virus isolated from the PGT125-131 donor as a guide, we show that mutating both the V3 core protein epitope and repositioning critical N-linked glycosylation sites are required to restore neutralization sensitivity. Interestingly, neutralization sensitivity could be restored via different routes for the two distinct bnAb classes within the PGT125-131 family, which may have been important in generating the divergence in recognition. We demonstrate that the observed V3 mutations confer neutralization resistance in other virus strains through both gain-of-function and escape studies. Furthermore, we show that the V3 loop is important in facilitating promiscuous binding to glycans within the mannose-patch. These data highlight the importance of the V3 loop in the design of immunogens aimed at inducing broad and potent bnAbs that can bind promiscuously to the mannose-patch.
Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadam, Rameshwar U.; Wilson, Ian A.
The broad-spectrum antiviral drug Arbidol shows efficacy against influenza viruses by targeting the hemagglutinin (HA) fusion machinery. However, the structural basis of the mechanism underlying fusion inhibition by Arbidol has remained obscure, thereby hindering its further development as a specific and optimized influenza therapeutic. We determined crystal structures of Arbidol in complex with influenza virus HA from pandemic 1968 H3N2 and recent 2013 H7N9 viruses. Arbidol binds in a hydrophobic cavity in the HA trimer stem at the interface between two protomers. This cavity is distal to the conserved epitope targeted by broadly neutralizing stem antibodies and is ~16 Åmore » from the fusion peptide. Arbidol primarily makes hydrophobic interactions with the binding site but also induces some conformational rearrangements to form a network of inter- and intraprotomer salt bridges. By functioning as molecular glue, Arbidol stabilizes the prefusion conformation of HA that inhibits the large conformational rearrangements associated with membrane fusion in the low pH of the endosome. This unique binding mode compared with the small-molecule inhibitors of other class I fusion proteins enhances our understanding of how small molecules can function as fusion inhibitors and guides the development of broad-spectrum therapeutics against influenza virus.« less
ApoA-II modulates the association of HDL with class B scavenger receptors SR-BI and CD36.
de Beer, Maria C; Castellani, Lawrence W; Cai, Lei; Stromberg, Arnold J; de Beer, Frederick C; van der Westhuyzen, Deneys R
2004-04-01
The class B scavenger receptors SR-BI and CD36 exhibit a broad ligand binding specificity. SR-BI is well characterized as a HDL receptor that mediates selective cholesteryl ester uptake from HDL. CD36, a receptor for oxidized LDL, also binds HDL and mediates selective cholesteryl ester uptake, although much less efficiently than SR-BI. Apolipoprotein A-II (apoA-II), the second most abundant HDL protein, is considered to be proatherogenic, but the underlying mechanisms are unclear. We previously showed that apoA-II modulates SR-BI-dependent binding and selective uptake of cholesteryl ester from reconstituted HDL. To investigate the effect of apoA-II in naturally occurring HDL on these processes, we compared HDL without apoA-II (from apoA-II null mice) with HDLs containing differing amounts of apoA-II (from C57BL/6 mice and transgenic mice expressing a mouse apoA-II transgene). The level of apoA-II in HDL was inversely correlated with HDL binding and selective cholesteryl ester uptake by both scavenger receptors, particularly CD36. Interestingly, for HDL lacking apoA-II, the efficiency with which CD36 mediated selective uptake reached a level similar to that of SR-BI. These results demonstrate that apoA-II exerts a marked effect on HDL binding and selective lipid uptake by the class B scavenger receptors and establishes a potentially important relationship between apoA-II and CD36.
2012-10-01
previously demonstrated that we can accurately identify bacteria, including Staphylococcus aureus and Mycobacterium tuberculosis , with startling speed... Mycobacterium tuberculosis , with moderate sensitivity and specificity. Existing antibodies perform poorly for identification of broad classes of...and test panel of existing small molecules with potential to bind to bacterial cell walls. 5. Assess technologies develop recombinant antibodies. 6
Zhang, Jianhua; Chen, Yong; Qi, Jianxun; Gao, Feng; Liu, Yanjie; Liu, Jun; Zhou, Xuyu; Kaufman, Jim; Xia, Chun; Gao, George F.
2016-01-01
The major histocompatibility complex (MHC) has genetic associations with many diseases, often due to differences in presentation of antigenic peptides by polymorphic MHC molecules to T lymphocytes of the immune system. In chickens, only a single classical class I molecule in each MHC haplotype is expressed well due to co-evolution with the polymorphic transporters associated with antigen presentation (TAPs), which means that resistance and susceptibility to infectious pathogens are particularly easy to observe. Previously, structures of chicken MHC class I molecule BF2*2101 from B21 haplotype showed an unusually large peptide-binding groove that accommodates a broad spectrum of peptides to present as epitopes to cytotoxic T lymphocytes (CTL), explaining the MHC-determined resistance of B21 chickens to Marek's disease. Here, we report the crystal structure of BF2*0401 from the B4 (also known as B13) haplotype, showing a highly positively-charged surface hitherto unobserved in other MHC molecules, as well as a remarkably narrow groove due to the allele-specific residues with bulky side chains. Together, these properties limit the number of epitope peptides that can bind this class I molecule. However, peptide-binding assays show that in vitro BF2*0401 can bind a wider variety of peptides than are found on the surface of B4 cells. Thus, a combination of the specificities of the polymorphic TAP transporter and the MHC results in a very limited set of BF2*0401 peptides with negatively charged anchors to be presented to T lymphocytes. PMID:23041567
TALE proteins search DNA using a rotationally decoupled mechanism.
Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M
2016-10-01
Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins used extensively for gene editing. Despite recent progress, however, little is known about their sequence search mechanism. Here, we use single-molecule experiments to study TALE search along DNA. Our results show that TALEs utilize a rotationally decoupled mechanism for nonspecific search, despite remaining associated with DNA templates during the search process. Our results suggest that the protein helical structure enables TALEs to adopt a loosely wrapped conformation around DNA templates during nonspecific search, facilitating rapid one-dimensional (1D) diffusion under a range of solution conditions. Furthermore, this model is consistent with a previously reported two-state mechanism for TALE search that allows these proteins to overcome the search speed-stability paradox. Taken together, our results suggest that TALE search is unique among the broad class of sequence-specific DNA-binding proteins and supports efficient 1D search along DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Sheo B.; Kaelin, David E.; Wu, Jin
Bacterial resistance is eroding the clinical utility of existing antibiotics necessitating the discovery of new agents. Bacterial type II topoisomerase is a clinically validated, highly effective, and proven drug target. This target is amenable to inhibition by diverse classes of inhibitors with alternative and distinct binding sites to quinolone antibiotics, thus enabling the development of agents that lack cross-resistance to quinolones. Described here are novel bacterial topoisomerase inhibitors (NBTIs), which are a new class of gyrase and topo IV inhibitors and consist of three distinct structural moieties. The substitution of the linker moiety led to discovery of potent broad-spectrum NBTIsmore » with reduced off-target activity (hERG IC50 > 18 μM) and improved physical properties. AM8191 is bactericidal and selectively inhibits DNA synthesis and Staphylococcus aureus gyrase (IC50 = 1.02 μM) and topo IV (IC50 = 10.4 μM). AM8191 showed parenteral and oral efficacy (ED50) at less than 2.5 mg/kg doses in a S. aureus murine infection model. A cocrystal structure of AM8191 bound to S. aureus DNA-gyrase showed binding interactions similar to that reported for GSK299423, displaying a key contact of Asp83 with the basic amine at position-7 of the linker.« less
West, Anthony P; Schamber, Michael; Gazumyan, Anna; Golijanin, Jovana; Seaman, Michael S; Fätkenheuer, Gerd; Klein, Florian; Nussenzweig, Michel C; Bjorkman, Pamela J
2016-01-01
HIV-1 vaccine design is informed by structural studies elucidating mechanisms by which broadly neutralizing antibodies (bNAbs) recognize and/or accommodate N-glycans on the trimeric envelope glycoprotein (Env). Variability in high-mannose and complex-type Env glycoforms leads to heterogeneity that usually precludes visualization of the native glycan shield. We present 3.5-Å- and 3.9-Å-resolution crystal structures of the HIV-1 Env trimer with fully processed and native glycosylation, revealing a glycan shield of high-mannose and complex-type N-glycans, which we used to define complete epitopes of two bNAbs. Env trimer was complexed with 10-1074 (against the V3-loop) and IOMA, a new CD4-binding site (CD4bs) antibody. Although IOMA derives from VH1-2*02, the germline gene of CD4bs-targeting VRC01-class bNAbs, its light chain lacks the short CDRL3 that defines VRC01-class bNAbs. Thus IOMA resembles 8ANC131-class/VH1-46–derived CD4bs bNAbs, which have normal-length CDRL3s. The existence of bNAbs that combine features of VRC01-class and 8ANC131-class antibodies has implications for immunization strategies targeting VRC01-like bNAbs. PMID:27617431
Binding Properties of a Peptide Derived from β-Lactamase Inhibitory Protein
Rudgers, Gary W.; Huang, Wanzhi; Palzkill, Timothy
2001-01-01
To overcome the antibiotic resistance mechanism mediated by β-lactamases, small-molecule β-lactamase inhibitors, such as clavulanic acid, have been used. This approach, however, has applied selective pressure for mutations that result in β-lactamases no longer sensitive to β-lactamase inhibitors. On the basis of the structure of β-lactamase inhibitor protein (BLIP), novel peptide inhibitors of β-lactamase have been constructed. BLIP is a 165-amino-acid protein that is a potent inhibitor of TEM-1 β-lactamase (Ki = 0.3 nM). The cocrystal structure of TEM-1 β-lactamase and BLIP indicates that residues 46 to 51 of BLIP make critical interactions with the active site of TEM-1 β-lactamase. A peptide containing this six-residue region of BLIP was found to retain sufficient binding energy to interact with TEM-1 β-lactamase. Inhibition assays with the BLIP peptide reveal that, in addition to inhibiting TEM-1 β-lactamase, the peptide also inhibits a class A β-lactamase and a class C β-lactamase that are not inhibited by BLIP. The crystal structures of class A and C β-lactamases and two penicillin-binding proteins (PBPs) reveal that the enzymes have similar three-dimensional structures in the vicinity of the active site. This similarity suggests that the BLIP peptide inhibitor may have a broad range of activity that can be used to develop novel small-molecule inhibitors of various classes of β-lactamases and PBPs. PMID:11709298
A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses
Koehler, Jeffrey W.; Smith, Jeffrey M.; Ripoll, Daniel R.; Spik, Kristin W.; Taylor, Shannon L.; Badger, Catherine V.; Grant, Rebecca J.; Ogg, Monica M.; Wallqvist, Anders; Guttieri, Mary C.; Garry, Robert F.; Schmaljohn, Connie S.
2013-01-01
For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors. PMID:24069485
Kulp, John L.; Cloudsdale, Ian S.; Kulp, John L.
2017-01-01
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition. PMID:28837642
Kulp, John L; Cloudsdale, Ian S; Kulp, John L; Guarnieri, Frank
2017-01-01
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition.
Evolutionary dynamics of enzymes.
Demetrius, L
1995-08-01
This paper codifies and rationalizes the large diversity in reaction rates and substrate specificity of enzymes in terms of a model which postulates that the kinetic properties of present-day enzymes are the consequence of the evolutionary force of mutation and selection acting on a class of primordial enzymes with poor catalytic activity and broad substrate specificity. Enzymes are classified in terms of their thermodynamic parameters, activation enthalpy delta H* and activation entropy delta S*, in their kinetically significant transition states as follows: type 1, delta H* > 0, delta S* < 0; type 2, delta H* < or = 0, delta S* < or = 0; type 3, delta H* > 0, delta S* > 0. We study the evolutionary dynamics of these three classes of enzymes subject to mutation, which acts at the level of the gene which codes for the enzyme and selection, which acts on the organism that contains the enzyme. Our model predicts the following evolutionary trends in the reaction rate and binding specificity for the three classes of molecules. In type 1 enzymes, evolution results in random, non-directional changes in the reaction rate and binding specificity. In type 2 and 3 enzymes, evolution results in a unidirectional increase in both the reaction rate and binding specificity. We exploit these results in order to codify the diversity in functional properties of present-day enzymes. Type 1 molecules will be described by intermediate reaction rates and broad substrate specificity. Type 2 enzymes will be characterized by diffusion-controlled rates and absolute substrate specificity. The type 3 catalysts can be further subdivided in terms of their activation enthalpy into two classes: type 3a (delta H* small) and type 3b (delta H* large). We show that type 3a will be represented by the same functional properties that identify type 2, namely, diffusion-controlled rates and absolute substrate specificity, whereas type 3b will be characterized by non-diffusion-controlled rates and absolute substrate specificity. We infer from this depiction of the three classes of enzymes, a general relation between the two functional properties, reaction rate and substrate specificity, namely, enzymes with diffusion-controlled rates have absolute substrate specificity. By appealing to energetic considerations, we furthermore show that enzymes with diffusion-controlled rates (types 2 and 3a) form a small subset of the class of all enzymes. This codification of present-day enzymes derived from an evolutionary model, essentially relates the structural properties of enzymes, as described by their thermodynamic parameters, to their functional properties, as represented by the reaction rate and substrate specificity.
Investigation of antibacterial mode of action for traditional and amphiphilic aminoglycosides.
Udumula, Venkatareddy; Ham, Young Wan; Fosso, Marina Y; Chan, Ka Yee; Rai, Ravi; Zhang, Jianjun; Li, Jie; Chang, Cheng-Wei Tom
2013-03-15
Aminoglycoside represents a class of versatile and broad spectrum antibacterial agents. In an effort to revive the antibacterial activity against aminoglycoside resistant bacteria, our laboratory has developed two new classes of aminoglycoside, pyranmycin and amphiphilic neomycin (NEOF004). The former resembles the traditional aminoglycoside, neomycin. The latter, albeit derived from neomycin, appears to exert antibacterial action via a different mode of action. In order to discern that these aminoglycoside derivatives have distinct antibacterial mode of action, RNA-binding affinity and fluorogenic dye were employed. These studies, together with our previous investigation, confirm that pyranmycin exhibit the traditional antibacterial mode of action of aminoglycosides by binding toward the bacterial rRNA. On the other hand, the amphiphilic neomycin, NEOF004 disrupts the bacterial cell wall. In a broader perspective, it verifies that structurally modified neomycin can exert different antibacterial mode of action leading to the revival of activity against aminoglycoside resistant bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.
Overview of the status and global strategy for neonicotinoids.
Jeschke, Peter; Nauen, Ralf; Schindler, Michael; Elbert, Alfred
2011-04-13
In recent years, neonicotinoid insecticides have been the fastest growing class of insecticides in modern crop protection, with widespread use against a broad spectrum of sucking and certain chewing pests. As potent agonists, they act selectively on insect nicotinic acetylcholine receptors (nAChRs), their molecular target site. The discovery of neonicotinoids can be considered as a milestone in insecticide research and greatly facilitates the understanding of functional properties of the insect nAChRs. In this context, the crystal structure of the acetylcholine-binding proteins provides the theoretical foundation for designing homology models of the corresponding receptor ligand binding domains within the nAChRs, a useful basis for virtual screening of chemical libraries and rational design of novel insecticides acting on these practically relevant channels. Because of the relatively low risk for nontarget organisms and the environment, the high target specificity of neonicotinoid insecticides, and their versatility in application methods, this important class has to be maintained globally for integrated pest management strategies and insect resistance management programs. Innovative concepts for life-cycle management, jointly with the introduction of generic products, have made neonicotinoids the most important chemical class for the insecticide market.
Ku, Zhiqiang; Zuo, Teng; Kong, Liangliang; Zhang, Chao; Shi, Jinping; Liu, Qingwei; Chen, Tan; Zhang, Yingyi; Jiang, Wen; Zhang, Linqi; Huang, Zhong; Cong, Yao
2016-01-01
Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection. PMID:26938634
Viral receptor-binding site antibodies with diverse germline origins.
Schmidt, Aaron G; Therkelsen, Matthew D; Stewart, Shaun; Kepler, Thomas B; Liao, Hua-Xin; Moody, M Anthony; Haynes, Barton F; Harrison, Stephen C
2015-05-21
Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by 11 different VH genes. Crystal structures show that antibodies in this class engage the hemagglutinin RBS and mimic binding of the receptor, sialic acid, by supplying a critical dipeptide on their projecting, heavy-chain third complementarity determining region. They share contacts with conserved, receptor-binding residues but contact different residues on the RBS periphery, limiting the likelihood of viral escape when several such antibodies are present. These data show that related modes of RBS recognition can arise from different germline origins and mature through diverse affinity maturation pathways. Immunogens focused on an RBS-directed response will thus have a broad range of B cell targets. Copyright © 2015 Elsevier Inc. All rights reserved.
Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials
NASA Astrophysics Data System (ADS)
Choi, Jin-Ho; Cui, Ping; Lan, Haiping; Zhang, Zhenyu
2015-08-01
The exciton is one of the most crucial physical entities in the performance of optoelectronic and photonic devices, and widely varying exciton binding energies have been reported in different classes of materials. Using first-principles calculations within the G W -Bethe-Salpeter equation approach, here we investigate the excitonic properties of two recently discovered layered materials: phosphorene and graphene fluoride. We first confirm large exciton binding energies of, respectively, 0.85 and 2.03 eV in these systems. Next, by comparing these systems with several other representative two-dimensional materials, we discover a striking linear relationship between the exciton binding energy and the band gap and interpret the existence of the linear scaling law within a simple hydrogenic picture. The broad applicability of this novel scaling law is further demonstrated by using strained graphene fluoride. These findings are expected to stimulate related studies in higher and lower dimensions, potentially resulting in a deeper understanding of excitonic effects in materials of all dimensionalities.
Antoine, Thomas; Ott, David; Ebell, Katharina; Hansen, Kerrin; Henry, Luc; Becker, Frank; Hannus, Stefan
2016-06-01
G protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug discovery projects generally benefit from a broad range of experimental approaches for screening compound libraries and for the characterization of binding modes of drug candidates. Owing to the difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-based functional assays and radioligand binding assays. In this study, we used fluorescence cross-correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist represented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous and time-resolved FCCS assay format for a robust, high-throughput determination of receptor-ligand binding affinities and kinetic rate constants for various therapeutically relevant GPCRs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Hwang, Joyce K.; Wang, Chong; Du, Zhou; Meyers, Robin M.; Kepler, Thomas B.; Neuberg, Donna; Kwong, Peter D.; Mascola, John R.; Joyce, M. Gordon; Bonsignori, Mattia; Haynes, Barton F.; Yeap, Leng-Siew; Alt, Frederick W.
2017-01-01
Variable regions of Ig chains provide the antigen recognition portion of B-cell receptors and derivative antibodies. Ig heavy-chain variable region exons are assembled developmentally from V, D, J gene segments. Each variable region contains three antigen-contacting complementarity-determining regions (CDRs), with CDR1 and CDR2 encoded by the V segment and CDR3 encoded by the V(D)J junction region. Antigen-stimulated germinal center (GC) B cells undergo somatic hypermutation (SHM) of V(D)J exons followed by selection for SHMs that increase antigen-binding affinity. Some HIV-1–infected human subjects develop broadly neutralizing antibodies (bnAbs), such as the potent VRC01-class bnAbs, that neutralize diverse HIV-1 strains. Mature VRC01-class bnAbs, including VRC-PG04, accumulate very high SHM levels, a property that hinders development of vaccine strategies to elicit them. Because many VRC01-class bnAb SHMs are not required for broad neutralization, high overall SHM may be required to achieve certain functional SHMs. To elucidate such requirements, we used a V(D)J passenger allele system to assay, in mouse GC B cells, sequence-intrinsic SHM-targeting rates of nucleotides across substrates representing maturation stages of human VRC-PG04. We identify rate-limiting SHM positions for VRC-PG04 maturation, as well as SHM hotspots and intrinsically frequent deletions associated with SHM. We find that mature VRC-PG04 has low SHM capability due to hotspot saturation but also demonstrate that generation of new SHM hotspots and saturation of existing hotspot regions (e.g., CDR3) does not majorly influence intrinsic SHM in unmutated portions of VRC-PG04 progenitor sequences. We discuss implications of our findings for bnAb affinity maturation mechanisms. PMID:28747530
A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo
Freund, Natalia T.; Horwitz, Joshua A.; Nogueira, Lilian; Sievers, Stuart A.; Scharf, Louise; Scheid, Johannes F.; Gazumyan, Anna; Liu, Cassie; Velinzon, Klara; Goldenthal, Ariel; Sanders, Rogier W.; Moore, John P.; Bjorkman, Pamela J.; Seaman, Michael S.; Walker, Bruce D.; Klein, Florian; Nussenzweig, Michel C.
2015-01-01
The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape pathways. We sought to isolate new anti-CD4bs bNAbs with different origins and mechanisms of action. Using a gp120 2CC core as bait, we isolated antibodies encoded by IGVH3-21 and IGVL3-1 genes with long CDRH3s that depend on the presence of the N-linked glycan at position-276 for activity. This binding mode is similar to the previously identified antibody HJ16, however the new antibodies identified herein are more potent and broad. The most potent variant, 179NC75, had a geometric mean IC80 value of 0.42 μg/ml against 120 Tier-2 HIV-1 pseudoviruses in the TZM.bl assay. Although this group of CD4bs glycan-dependent antibodies can be broadly and potently neutralizing in vitro, their in vivo activity has not been tested to date. Here, we report that 179NC75 is highly active when administered to HIV-1-infected humanized mice, where it selects for escape variants that lack a glycan site at position-276. The same glycan was absent from the virus isolated from the 179NC75 donor, implying that the antibody also exerts selection pressure in humans. PMID:26516768
Chemical and genetic wrappers for improved phage and RNA display.
Lamboy, Jorge A; Tam, Phillip Y; Lee, Lucie S; Jackson, Pilgrim J; Avrantinis, Sara K; Lee, Hye J; Corn, Robert M; Weiss, Gregory A
2008-11-24
An Achilles heel inherent to all molecular display formats, background binding between target and display system introduces false positives into screens and selections. For example, the negatively charged surfaces of phage, mRNA, and ribosome display systems bind with unacceptably high nonspecificity to positively charged target molecules, which represent an estimated 35% of proteins in the human proteome. Here we report the first systematic attempt to understand why a broad class of molecular display selections fail, and then solve the underlying problem for both phage and RNA display. Firstly, a genetic strategy was used to introduce a short, charge-neutralizing peptide into the solvent-exposed, negatively charged phage coat. The modified phage (KO7(+)) reduced or eliminated nonspecific binding to the problematic high-pI proteins. In the second, chemical approach, nonspecific interactions were blocked by oligolysine wrappers in the cases of phage and total RNA. For phage display applications, the peptides Lys(n) (where n=16 to 24) emerged as optimal for wrapping the phage. Lys(8), however, provided effective wrappers for RNA binding in assays against the RNA binding protein HIV-1 Vif. The oligolysine peptides blocked nonspecific binding to allow successful selections, screens, and assays with five previously unworkable protein targets.
Hoffmann, Julia; Schneider, Carola; Heinbockel, Lena; Brandenburg, Klaus; Reimer, Rudolph; Gabriel, Gülsah
2014-04-01
Influenza A viruses are a continuous threat to human health as illustrated by the 2009 H1N1 pandemic. Since circulating influenza virus strains become increasingly resistant against currently available drugs, the development of novel antivirals is urgently needed. Here, we have evaluated a recently described new class of broad-spectrum antiviral peptides (synthetic anti-lipopolysaccharide peptides; SALPs) for their potential to inhibit influenza virus replication in vitro and in vivo. We found that particularly SALP PEP 19-2.5 shows high binding affinities for the influenza virus receptor molecule, N-Acetylneuraminic acid, leading to impaired viral attachment and cellular entry. As a result, replication of several influenza virus subtypes (H7N7, H3N2 and 2009 pandemic H1N1) was strongly reduced. Furthermore, mice co-treated with PEP 19-2.5 were protected against an otherwise 100% lethal H7N7 influenza virus infection. These findings show that SALPs exhibit antiviral activity against influenza viruses by blocking virus attachment and entry into host cells. Thus, SALPs present a new class of broad-spectrum antiviral peptides for further development for influenza virus therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
Accurate and Reliable Prediction of the Binding Affinities of Macrocycles to Their Protein Targets.
Yu, Haoyu S; Deng, Yuqing; Wu, Yujie; Sindhikara, Dan; Rask, Amy R; Kimura, Takayuki; Abel, Robert; Wang, Lingle
2017-12-12
Macrocycles have been emerging as a very important drug class in the past few decades largely due to their expanded chemical diversity benefiting from advances in synthetic methods. Macrocyclization has been recognized as an effective way to restrict the conformational space of acyclic small molecule inhibitors with the hope of improving potency, selectivity, and metabolic stability. Because of their relatively larger size as compared to typical small molecule drugs and the complexity of the structures, efficient sampling of the accessible macrocycle conformational space and accurate prediction of their binding affinities to their target protein receptors poses a great challenge of central importance in computational macrocycle drug design. In this article, we present a novel method for relative binding free energy calculations between macrocycles with different ring sizes and between the macrocycles and their corresponding acyclic counterparts. We have applied the method to seven pharmaceutically interesting data sets taken from recent drug discovery projects including 33 macrocyclic ligands covering a diverse chemical space. The predicted binding free energies are in good agreement with experimental data with an overall root-mean-square error (RMSE) of 0.94 kcal/mol. This is to our knowledge the first time where the free energy of the macrocyclization of linear molecules has been directly calculated with rigorous physics-based free energy calculation methods, and we anticipate the outstanding accuracy demonstrated here across a broad range of target classes may have significant implications for macrocycle drug discovery.
Zhang, Mei-Yun; Yuan, Tingting; Li, Jingjing; Rosa Borges, Andrew; Watkins, Jennifer D.; Guenaga, Javier; Yang, Zheng; Wang, Yanping; Wilson, Richard; Li, Yuxing; Polonis, Victoria R.; Pincus, Seth H.; Ruprecht, Ruth M.; Dimitrov, Dimiter S.
2012-01-01
Identification of broadly cross-reactive HIV-1-neutralizing antibodies (bnAbs) may assist vaccine immunogen design. Here we report a novel human monoclonal antibody (mAb), designated m43, which co-targets the gp120 and gp41 subunits of the HIV-1 envelope glycoprotein (Env). M43 bound to recombinant gp140 s from various primary isolates, to membrane-associated Envs on transfected cells and HIV-1 infected cells, as well as to recombinant gp120 s and gp41 fusion intermediate structures containing N-trimer structure, but did not bind to denatured recombinant gp140 s and the CD4 binding site (CD4bs) mutant, gp120 D368R, suggesting that the m43 epitope is conformational and overlaps the CD4bs on gp120 and the N-trimer structure on gp41. M43 neutralized 34% of the HIV-1 primary isolates from different clades and all the SHIVs tested in assays based on infection of peripheral blood mononuclear cells (PBMCs) by replication-competent virus, but was less potent in cell line-based pseudovirus assays. In contrast to CD4, m43 did not induce Env conformational changes upon binding leading to exposure of the coreceptor binding site, enhanced binding of mAbs 2F5 and 4E10 specific for the membrane proximal external region (MPER) of gp41 Envs, or increased gp120 shedding. The overall modest neutralization activity of m43 is likely due to the limited binding of m43 to functional Envs which could be increased by antibody engineering if needed. M43 may represent a new class of bnAbs targeting conformational epitopes overlapping structures on both gp120 and gp41. Its novel epitope and possibly new mechanism(s) of neutralization could helpdesign improved vaccine immunogens and candidate therapeutics. PMID:22970187
Balaguer, Patrick; Delfosse, Vanessa; Grimaldi, Marina; Bourguet, William
Endocrine-disrupting chemicals (EDCs) represent a broad class of exogenous substances that cause adverse effects in the endocrine system mainly by interacting with nuclear hormone receptors (NRs). Humans are generally exposed to low doses of pollutants, and current researches aim at deciphering the mechanisms accounting for the health impact of EDCs at environmental concentrations. Our correlative analysis of structural, interaction and cell-based data has revealed a variety of, sometimes unexpected, binding modes, reflecting a wide range of EDC affinities and specificities. Here, we present a few representative examples to illustrate various means by which EDCs achieve high-affinity binding to NRs. These examples include the binding of the mycoestrogen α-zearalanol to estrogen receptors, the covalent interaction of organotins with the retinoid X- and peroxisome proliferator-activated receptors, and the cooperative binding of two chemicals to the pregnane X receptor. We also discuss some hypotheses that could further explain low-concentration effects of EDCs with weaker affinity towards NRs. Copyright © 2017. Published by Elsevier Masson SAS.
NEAT1 Scaffolds RNA Binding Proteins and the Microprocessor to Globally Enhance Pri-miRNA Processing
Jiang, Li; Shao, Changwei; Wu, Qi-Jia; Chen, Geng; Zhou, Jie; Yang, Bo; Li, Hairi; Gou, Lan-Tao; Zhang, Yi; Wang, Yangming; Yeo, Gene W.; Zhou, Yu; Fu, Xiang-Dong
2018-01-01
Summary MicroRNA biogenesis is known to be modulated by a variety of RNA binding proteins (RBPs), but in most cases, individual RBPs appear to influence the processing of a small subset of target miRNAs. We herein report that the RNA binding NONO/PSF heterodimer binds a large number of expressed pri-miRNAs in HeLa cells to globally enhance pri-miRNA processing by the Drosha/DGCR8 Microprocessor. Because NONO/PSF are key components of paraspeckles organized by the lncRNA NEAT1, we further demonstrate that NEAT1 also has a profound effect on global pri-miRNA processing. Mechanistic dissection reveals that NEAT1 broadly interacts with NONO/PSF as well as many other RBPs, and that multiple RNA segments in NEAT1, including a “pseudo pri-miRNA” near its 3′ end, help attract the Microprocessor. These findings suggest a bird nest model for a large non-coding RNA to orchestrate efficient processing of almost an entire class of small non-coding RNAs in the nucleus. PMID:28846091
Jiang, Li; Shao, Changwei; Wu, Qi-Jia; Chen, Geng; Zhou, Jie; Yang, Bo; Li, Hairi; Gou, Lan-Tao; Zhang, Yi; Wang, Yangming; Yeo, Gene W; Zhou, Yu; Fu, Xiang-Dong
2017-10-01
MicroRNA (miRNA) biogenesis is known to be modulated by a variety of RNA-binding proteins (RBPs), but in most cases, individual RBPs appear to influence the processing of a small subset of target miRNAs. Here, we report that the RNA-binding NONO-PSF heterodimer binds a large number of expressed pri-miRNAs in HeLa cells to globally enhance pri-miRNA processing by the Drosha-DGCR8 Microprocessor. NONO and PSF are key components of paraspeckles organized by the long noncoding RNA (lncRNA) NEAT1. We further demonstrate that NEAT1 also has a profound effect on global pri-miRNA processing. Mechanistic dissection reveals that NEAT1 broadly interacts with the NONO-PSF heterodimer as well as many other RBPs and that multiple RNA segments in NEAT1, including a 'pseudo pri-miRNA' near its 3' end, help attract the Microprocessor. These findings suggest a 'bird nest' model in which an lncRNA orchestrates efficient processing of potentially an entire class of small noncoding RNAs in the nucleus.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... Effectiveness of a Proposed Rule Change To Amend Its Rule Related to Multi-Class Broad- Based Index Option... Rule Change The Exchange proposes to amend its rule related to multi-class broad-based index option... is to (i) clarify that the term ``Multi-Class Broad-Based Index Option Spread Order (Multi-Class...
Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jinghe; Kang, Byong H.; Ishida, Elise
Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permittedmore » it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis.« less
Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β-lactamase inhibition
NASA Astrophysics Data System (ADS)
Brem, Jürgen; van Berkel, Sander S.; Aik, Weishen; Rydzik, Anna M.; Avison, Matthew B.; Pettinati, Ilaria; Umland, Klaus-Daniel; Kawamura, Akane; Spencer, James; Claridge, Timothy D. W.; McDonough, Michael A.; Schofield, Christopher J.
2014-12-01
The use of β-lactam antibiotics is compromised by resistance, which is provided by β-lactamases belonging to both metallo (MBL)- and serine (SBL)-β-lactamase subfamilies. The rhodanines are one of very few compound classes that inhibit penicillin-binding proteins (PBPs), SBLs and, as recently reported, MBLs. Here, we describe crystallographic analyses of the mechanism of inhibition of the clinically relevant VIM-2 MBL by a rhodanine, which reveal that the rhodanine ring undergoes hydrolysis to give a thioenolate. The thioenolate is found to bind via di-zinc chelation, mimicking the binding of intermediates in β-lactam hydrolysis. Crystallization of VIM-2 in the presence of the intact rhodanine led to observation of a ternary complex of MBL, a thioenolate fragment and rhodanine. The crystallographic observations are supported by kinetic and biophysical studies, including 19F NMR analyses, which reveal the rhodanine-derived thioenolate to be a potent broad-spectrum MBL inhibitor and a lead structure for the development of new types of clinically useful MBL inhibitors.
2-Aryl-5-carboxytetrazole as a New Photoaffinity Label for Drug Target Identification.
Herner, András; Marjanovic, Jasmina; Lewandowski, Tracey M; Marin, Violeta; Patterson, Melanie; Miesbauer, Laura; Ready, Damien; Williams, Jon; Vasudevan, Anil; Lin, Qing
2016-11-09
Photoaffinity labels are powerful tools for dissecting ligand-protein interactions, and they have a broad utility in medicinal chemistry and drug discovery. Traditional photoaffinity labels work through nonspecific C-H/X-H bond insertion reactions with the protein of interest by the highly reactive photogenerated intermediate. Herein, we report a new photoaffinity label, 2-aryl-5-carboxytetrazole (ACT), that interacts with the target protein via a unique mechanism in which the photogenerated carboxynitrile imine reacts with a proximal nucleophile near the target active site. In two distinct case studies, we demonstrate that the attachment of ACT to a ligand does not significantly alter the binding affinity and specificity of the parent drug. Compared with diazirine and benzophenone, two commonly used photoaffinity labels, in two case studies ACT showed higher photo-cross-linking yields toward their protein targets in vitro based on mass spectrometry analysis. In the in situ target identification studies, ACT successfully captured the desired targets with an efficiency comparable to the diazirine. We expect that further development of this class of photoaffinity labels will lead to a broad range of applications across target identification, and validation and elucidation of the binding site in drug discovery.
2-Aryl-5-carboxytetrazole as a New Photoaffinity Label for Drug Target Identification
2016-01-01
Photoaffinity labels are powerful tools for dissecting ligand–protein interactions, and they have a broad utility in medicinal chemistry and drug discovery. Traditional photoaffinity labels work through nonspecific C–H/X–H bond insertion reactions with the protein of interest by the highly reactive photogenerated intermediate. Herein, we report a new photoaffinity label, 2-aryl-5-carboxytetrazole (ACT), that interacts with the target protein via a unique mechanism in which the photogenerated carboxynitrile imine reacts with a proximal nucleophile near the target active site. In two distinct case studies, we demonstrate that the attachment of ACT to a ligand does not significantly alter the binding affinity and specificity of the parent drug. Compared with diazirine and benzophenone, two commonly used photoaffinity labels, in two case studies ACT showed higher photo-cross-linking yields toward their protein targets in vitro based on mass spectrometry analysis. In the in situ target identification studies, ACT successfully captured the desired targets with an efficiency comparable to the diazirine. We expect that further development of this class of photoaffinity labels will lead to a broad range of applications across target identification, and validation and elucidation of the binding site in drug discovery. PMID:27740749
Borrego, Francisco; Ulbrecht, Matthias; Weiss, Elisabeth H.; Coligan, John E.; Brooks, Andrew G.
1998-01-01
Human histocompatibility leukocyte antigen (HLA)-E is a nonclassical HLA class I molecule, the gene for which is transcribed in most tissues. It has recently been reported that this molecule binds peptides derived from the signal sequence of HLA class I proteins; however, no function for HLA-E has yet been described. We show that natural killer (NK) cells can recognize target cells expressing HLA-E molecules on the cell surface and this interaction results in inhibition of the lytic process. Furthermore, HLA-E recognition is mediated primarily through the CD94/NKG2-A heterodimer, as CD94-specific, but not killer cell inhibitory receptor (KIR)–specific mAbs block HLA-E–mediated protection of target cells. Cell surface HLA-E could be increased by incubation with synthetic peptides corresponding to residues 3–11 from the signal sequences of a number of HLA class I molecules; however, only peptides which contained a Met at position 2 were capable of conferring resistance to NK-mediated lysis, whereas those having Thr at position 2 had no effect. Interestingly, HLA class I molecules previously correlated with CD94/NKG2 recognition all have Met at residue 4 of the signal sequence (position 2 of the HLA-E binding peptide), whereas those which have been reported not to interact with CD94/NKG2 have Thr at this position. Thus, these data show a function for HLA-E and suggest an alternative explanation for the apparent broad reactivity of CD94/NKG2 with HLA class I molecules; that CD94/NKG2 interacts with HLA-E complexed with signal sequence peptides derived from “protective” HLA class I alleles rather than directly interacting with classical HLA class I proteins. PMID:9480992
NASA Astrophysics Data System (ADS)
Kuipers, Oscar; Vincent, Michel; Brochon, Jean-Claude; Verheij, Bert; de Haas, Gerard; Gallay, Jacques
1990-05-01
Exploration of the effect of ligand-protein interactions on conformational substates and internal dynamics in different regions of phospholipase A2 from porcine pancreas (PLA2), was performed by combining site-directed mutagenesis and time-resolved fluorescence measurements. The single tryptophan residue (Trp-3) in the wild type protein was replaced by a phenylalanine residue, whereafter Trp was substituted either for leucine-31 ,located in the calcium binding loop, or for phenylalanine-94, located at the "back side" of the enzyme, in a-helix E (Dijkstra et al., J. Mol. Biol., 147, 97-123, 1981). Analyses by the Maximum Entropy Method (MIEM) of the total fluorescence intensity decays, provide in each case a distribution of separate lifetime classes, which can be interpreted as reflecting the existence of discrete conformational substates in slow exchange with respect to the time-scale of the decay kinetics. The fluorescence decay of the W94 mutant is dominated by an extremely short excited state lifetime of ~60 ps, probably arising from the presence of two proximate disulfide bridges. Time-resolved fluorescence anisotropy studies show that the Trp residue near the NH2 terminus (Trp-3) undergoes a more limited rotational motion than the Trp-3 1 located in the calcium binding loop. The widest angular rotation is observed at position 94, in a-helix E. Calcium binding displays the strongest influence on the lifetime distribution of Trp-31: a major local conformation corresponding to a lifetime class with a barycenter value of ~5.5 ns and contributing to ~50% of the decay is selected. The conformations giving rise to the short lifetimes ((tau)1 and (tau)2 lifetime classes) become less important. The contribution of the third lifetime class (c3) stays at a constant value of 30%. In the presence of calcium, the amplitude of motion is wider than without the ion. There is virtually no effect of calcium binding on the lifetime distribution of the Trp residue at the 3 or the 94 position. Binding of the monomeric substrate analog n-dodecylphosphocholine (C12PN) in the presence of calcium hardly affects neither the Trp-3 excited state population distribution, nor its rotational dynamics. The binding of C12PN monomers to the W31 mutant further increases the contribution of the t4lifetime class at the expense of c2. A more restricted rotation of the Trp-31 residue is also induced. The binding of the micellar substrate analog n-hexadecylphosphocholine (C16PN) in the presence of calcium is very efficient in modifying the lifetime distribution of Trp-3. Essentially, one major broad lifetime population (centered at ~2.6 ns) is revealed by MEM analysis of the total intensity decay. The internal motion is slowed down and the angle of rotation is much smaller in this conformation. Neither the excited state lifetime distribution of Trp-31 nor its dynamics are affected by micelle binding relative to monomer binding. In conclusion, by placing a single Tip-residue at strategic positions along the peptide chain of PLA2, relevant to the binding of biological ligands, an excellent model system for the study of selective perturbations of conformational substates and internal dynamics is provided.
NASA Astrophysics Data System (ADS)
Kuipers, Oscar; Vincent, Michel; Brochon, Jean-Claude; Verheij, Bert; de Haas, Gerard; Gallay, Jacques
1990-05-01
Exploration of the effect of ligand-protein interactions on conformational substates and internal dynamics in different regions of phospholipase A2 from porcine pancreas (PLA2), was performed by combining site-directed mutagenesis and time-resolved fluorescence measurements. The single tryptophan residue (Trp-3) in the wild type protein was replaced by a phenylalanine residue, whereafter Tip was substituted either for leucine-3 1 ,located in the calcium binding ioop, or for phenylalanine-94, located at the "back side" of the enzyme, in a-helix E (Dijkstra et al., J. Mol. Biol., 147, 97-123, 1981). Analyses by the Maximum Entropy Method (MEM) of the total fluorescence intensity decays, provide in each case a distribution of separate lifetime classes, which can be interpreted as reflecting the existence of discrete conformational substates in slow exchange with respect to the time-scale of the decay kinetics. The fluorescence decay of the W94 mutant is. dominated by an extremely short excited state lifetime of ~60 ps, probably arising from the presence of two proximate disulfide bridges. Time-resolved fluorescence anisotropy studies show that the Trp residue near the NH2 terminus (Trp-3) undergoes a more limited rotational motion than the Trp-3 1 located in the calcium binding loop. The widest angular rotation is observed at position 94, in a-helix E. Calcium binding displays the strongest influence on the lifetime distribution of Trp-3 1: a major local conformation corresponding to a lifetime class with a barycenter value of -5.5 ns and contributing to ~50% of the decay is selected. The conformations giving rise to the short lifetimes (τ1 and τ2 lifetime classes) become less important. The contribution of the third lifetime class (c3) stays at a constant value of 30%. In the presence of calcium, the amplitude of motion is wider than without the ion. There is virtually no effect of calcium binding on the lifetime distribution of the Trp residue at the 3 or the 94 position. Binding of the monomeric substrate analog n-dodecylphosphocholine (C12PN) in the presence of calcium hardly affects neither the Trp-3 excited state population distribution, nor its rotational dynamics. The binding of C12PN monomers to the W31 mutant further increases the contribution of the τ4 lifetime class at the expense of c2. A more restricted rotation of the Trp-3 1 residue is also induced. The binding of the micellar substrate analog n-hexadecylphosphocholine (C16PN) in the presence of calcium is very efficient in modifying the lifetime distribution of Trp-3. Essentially, one major broad lifetime population (centered at ~2.6 ns) is revealed by MEM analysis of the total intensity decay. The internal motion is slowed down and the angle of rotation is much smaller in this conformation. Neither the excited state lifetime distribution of Trp-31 nor its dynamics are affected by micelle binding relative to monomer binding. In conclusion, by placing a single Tip-residue at strategic positions along the peptide chain of PLA2, relevant to the binding of biological ligands, an excellent model system for the study of selective perturbations of conformational substates and internal dynamics is provided.
Infantes, Susana; Lorente, Elena; Barnea, Eilon; Beer, Ilan; Barriga, Alejandro; Lasala, Fátima; Jiménez, Mercedes; Admon, Arie; López, Daniel
2013-04-12
The presentation of short viral peptide antigens by human leukocyte antigen (HLA) class I molecules on cell surfaces is a key step in the activation of cytotoxic T lymphocytes, which mediate the killing of pathogen-infected cells or initiate autoimmune tissue damage. HLA-B27 is a well known class I molecule that is used to study both facets of the cellular immune response. Using mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of HLA-B*2705(+) cells, we identified 200 naturally processed HLA-B*2705 ligands. Our analyses revealed that a change in the position (P) 2 anchor motif was detected in the 3% of HLA-B*2705 ligands identified. B*2705 class I molecules were able to bind these six GlnP2 peptides, which showed significant homology to pathogenic bacterial sequences, with a broad range of affinities. One of these ligands was able to bind with distinct conformations to HLA-B27 subtypes differentially associated with ankylosing spondylitis. These conformational differences could be sufficient to initiate autoimmune damage in patients with ankylosing spondylitis-associated subtypes. Therefore, these kinds of peptides (short, with GlnP2, and similar low affinity to all HLA-B27 subtypes tested but with unlike conformations in differentially ankylosing spondylitis-associated subtypes) must not be excluded from future researches involving potential arthritogenic peptides.
Natural HLA-B*2705 Protein Ligands with Glutamine as Anchor Motif
Infantes, Susana; Lorente, Elena; Barnea, Eilon; Beer, Ilan; Barriga, Alejandro; Lasala, Fátima; Jiménez, Mercedes; Admon, Arie; López, Daniel
2013-01-01
The presentation of short viral peptide antigens by human leukocyte antigen (HLA) class I molecules on cell surfaces is a key step in the activation of cytotoxic T lymphocytes, which mediate the killing of pathogen-infected cells or initiate autoimmune tissue damage. HLA-B27 is a well known class I molecule that is used to study both facets of the cellular immune response. Using mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of HLA-B*2705+ cells, we identified 200 naturally processed HLA-B*2705 ligands. Our analyses revealed that a change in the position (P) 2 anchor motif was detected in the 3% of HLA-B*2705 ligands identified. B*2705 class I molecules were able to bind these six GlnP2 peptides, which showed significant homology to pathogenic bacterial sequences, with a broad range of affinities. One of these ligands was able to bind with distinct conformations to HLA-B27 subtypes differentially associated with ankylosing spondylitis. These conformational differences could be sufficient to initiate autoimmune damage in patients with ankylosing spondylitis-associated subtypes. Therefore, these kinds of peptides (short, with GlnP2, and similar low affinity to all HLA-B27 subtypes tested but with unlike conformations in differentially ankylosing spondylitis-associated subtypes) must not be excluded from future researches involving potential arthritogenic peptides. PMID:23430249
The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam.
Wang, David Yuxin; Abboud, Martine I; Markoulides, Marios S; Brem, Jürgen; Schofield, Christopher J
2016-06-01
Avibactam, which is the first non-β-lactam β-lactamase inhibitor to be introduced for clinical use, is a broad-spectrum serine β-lactamase inhibitor with activity against class A, class C, and, some, class D β-lactamases. We provide an overview of efforts, which extend to the period soon after the discovery of the penicillins, to develop clinically useful non-β-lactam compounds as antibacterials, and, subsequently, penicillin-binding protein and β-lactamase inhibitors. Like the β-lactam inhibitors, avibactam works via a mechanism involving covalent modification of a catalytically important nucleophilic serine residue. However, unlike the β-lactam inhibitors, avibactam reacts reversibly with its β-lactamase targets. We discuss chemical factors that may account for the apparently special nature of β-lactams and related compounds as antibacterials and β-lactamase inhibitors, including with respect to resistance. Avenues for future research including non-β-lactam antibacterials acting similarly to β-lactams are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyko, Konstantin M., E-mail: kmb@inbi.ras.ru; National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182; Gorbacheva, Marina A.
2016-09-02
Aminoglycoside phosphotransferases represent a broad class of enzymes that promote bacterial resistance to aminoglycoside antibiotics via the phosphorylation of hydroxyl groups in the latter. Here we report the spatial structure of the 3′-aminoglycoside phosphotransferase of novel VIII class (AphVIII) solved by X-ray diffraction method with a resolution of 2.15 Å. Deep analysis of APHVIII structure and its comparison with known structures of aminoglycoside phosphotransferases of various types reveals that AphVIII has a typical two-domain fold and, however, possesses some unique characteristics that distinguish the enzyme from its known homologues. The most important difference is the presence of the activation loop withmore » unique Ser146 residue. We demonstrate that in the apo-state of the enzyme the activation loop does not interact with other parts of the enzyme and seems to adopt catalytically competent state only after substrate binding. - Highlights: • 3D structure of the novel aminoglycoside phosphotransferase AphVIII was obtained. • AphVIII activation loop is clearly identified in the electron density. • AphVIII has some unique structural features in its substrate C-ring binding pocket.« less
Regulation of calreticulin–major histocompatibility complex (MHC) class I interactions by ATP
Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K.; Arora, Karunesh; Brooks, Charles L.; Raghavan, Malini
2015-01-01
The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin–substrate interactions and as key determinants of PLC dynamics. PMID:26420867
Funke, Todd; Yang, Yan; Han, Huijong; Healy-Fried, Martha; Olesen, Sanne; Becker, Andreas; Schönbrunn, Ernst
2009-01-01
The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the target of the broad spectrum herbicide glyphosate. The genetic engineering of EPSPS led to the introduction of glyphosate-resistant crops worldwide. The genetically engineered corn lines NK603 and GA21 carry distinct EPSPS enzymes. CP4 EPSPS, expressed in NK603 corn and transgenic soybean, cotton, and canola, belongs to class II EPSPS, glyphosate-insensitive variants of this enzyme isolated from certain Gram-positive bacteria. GA21 corn, on the other hand, was created by point mutations of class I EPSPS, such as the enzymes from Zea mays or Escherichia coli, which are sensitive to low glyphosate concentrations. The structural basis of the glyphosate resistance resulting from these point mutations has remained obscure. We studied the kinetic and structural effects of the T97I/P101S double mutation, the molecular basis for GA21 corn, using EPSPS from E. coli. The T97I/P101S enzyme is essentially insensitive to glyphosate (Ki = 2.4 mm) but maintains high affinity for the substrate phosphoenolpyruvate (PEP) (Km = 0.1 mm). The crystal structure at 1.7-Å resolution revealed that the dual mutation causes a shift of residue Gly96 toward the glyphosate binding site, impairing efficient binding of glyphosate, while the side chain of Ile97 points away from the substrate binding site, facilitating PEP utilization. The single site T97I mutation renders the enzyme sensitive to glyphosate and causes a substantial decrease in the affinity for PEP. Thus, only the concomitant mutations of Thr97 and Pro101 induce the conformational changes necessary to produce catalytically efficient, glyphosate-resistant class I EPSPS. PMID:19211556
Funke, Todd; Yang, Yan; Han, Huijong; Healy-Fried, Martha; Olesen, Sanne; Becker, Andreas; Schönbrunn, Ernst
2009-04-10
The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the target of the broad spectrum herbicide glyphosate. The genetic engineering of EPSPS led to the introduction of glyphosate-resistant crops worldwide. The genetically engineered corn lines NK603 and GA21 carry distinct EPSPS enzymes. CP4 EPSPS, expressed in NK603 corn and transgenic soybean, cotton, and canola, belongs to class II EPSPS, glyphosate-insensitive variants of this enzyme isolated from certain Gram-positive bacteria. GA21 corn, on the other hand, was created by point mutations of class I EPSPS, such as the enzymes from Zea mays or Escherichia coli, which are sensitive to low glyphosate concentrations. The structural basis of the glyphosate resistance resulting from these point mutations has remained obscure. We studied the kinetic and structural effects of the T97I/P101S double mutation, the molecular basis for GA21 corn, using EPSPS from E. coli. The T97I/P101S enzyme is essentially insensitive to glyphosate (K(i) = 2.4 mm) but maintains high affinity for the substrate phosphoenolpyruvate (PEP) (K(m) = 0.1 mm). The crystal structure at 1.7-A resolution revealed that the dual mutation causes a shift of residue Gly(96) toward the glyphosate binding site, impairing efficient binding of glyphosate, while the side chain of Ile(97) points away from the substrate binding site, facilitating PEP utilization. The single site T97I mutation renders the enzyme sensitive to glyphosate and causes a substantial decrease in the affinity for PEP. Thus, only the concomitant mutations of Thr(97) and Pro(101) induce the conformational changes necessary to produce catalytically efficient, glyphosate-resistant class I EPSPS.
Rox, a Rifamycin Resistance Enzyme with an Unprecedented Mechanism of Action.
Koteva, Kalinka; Cox, Georgina; Kelso, Jayne K; Surette, Matthew D; Zubyk, Haley L; Ejim, Linda; Stogios, Peter; Savchenko, Alexei; Sørensen, Dan; Wright, Gerard D
2018-04-19
Rifamycin monooxygenases (Rox) are present in a variety of environmental bacteria and are associated with decomposition of the clinically utilized antibiotic rifampin. Here we report the structure and function of a drug-inducible rox gene from Streptomyces venezuelae, which encodes a class A flavoprotein monooxygenase that inactivates a broad range of rifamycin antibiotics. Our findings describe a mechanism of rifamycin inactivation initiated by monooxygenation of the 2-position of the naphthyl group, which subsequently results in ring opening and linearization of the antibiotic. The result is an antibiotic that no longer adopts the basket-like structure essential for binding to the RNA exit tunnel of the target RpoB, thereby providing the molecular logic of resistance. This unique mechanism of enzymatic inactivation underpins the broad spectrum of rifamycin resistance mediated by Rox enzymes and presents a new antibiotic resistance mechanism not yet seen in microbial antibiotic detoxification. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fakhry, Carl Tony; Kulkarni, Prajna; Chen, Ping; Kulkarni, Rahul; Zarringhalam, Kourosh
2017-08-22
Small RNAs (sRNAs) constitute an important class of post-transcriptional regulators that control critical cellular processes in bacteria. Recent research using high-throughput transcriptomic approaches has led to a dramatic increase in the discovery of bacterial sRNAs. However, it is generally believed that the currently identified sRNAs constitute a limited subset of the bacterial sRNA repertoire. In several cases, sRNAs belonging to a specific class are already known and the challenge is to identify additional sRNAs belonging to the same class. In such cases, machine-learning approaches can be used to predict novel sRNAs in a given class. In this work, we develop novel bioinformatics approaches that integrate sequence and structure-based features to train machine-learning models for the discovery of bacterial sRNAs. We show that features derived from recurrent structural motifs in the ensemble of low energy secondary structures can distinguish the RNA classes with high accuracy. We apply this approach to predict new members in two broad classes of bacterial small RNAs: 1) sRNAs that bind to the RNA-binding protein RsmA/CsrA in diverse bacterial species and 2) sRNAs regulated by the master regulator of virulence, ToxT, in Vibrio cholerae. The involvement of sRNAs in bacterial adaptation to changing environments is an increasingly recurring theme in current research in microbiology. It is likely that future research, combining experimental and computational approaches, will discover many more examples of sRNAs as components of critical regulatory pathways in bacteria. We have developed a novel approach for prediction of small RNA regulators in important bacterial pathways. This approach can be applied to specific classes of sRNAs for which several members have been identified and the challenge is to identify additional sRNAs.
Clark, Anthony J; Gindin, Tatyana; Zhang, Baoshan; Wang, Lingle; Abel, Robert; Murret, Colleen S; Xu, Fang; Bao, Amy; Lu, Nina J; Zhou, Tongqing; Kwong, Peter D; Shapiro, Lawrence; Honig, Barry; Friesner, Richard A
2017-04-07
Direct calculation of relative binding affinities between antibodies and antigens is a long-sought goal. However, despite substantial efforts, no generally applicable computational method has been described. Here, we describe a systematic free energy perturbation (FEP) protocol and calculate the binding affinities between the gp120 envelope glycoprotein of HIV-1 and three broadly neutralizing antibodies (bNAbs) of the VRC01 class. The protocol has been adapted from successful studies of small molecules to address the challenges associated with modeling protein-protein interactions. Specifically, we built homology models of the three antibody-gp120 complexes, extended the sampling times for large bulky residues, incorporated the modeling of glycans on the surface of gp120, and utilized continuum solvent-based loop prediction protocols to improve sampling. We present three experimental surface plasmon resonance data sets, in which antibody residues in the antibody/gp120 interface were systematically mutated to alanine. The RMS error in the large set (55 total cases) of FEP tests as compared to these experiments, 0.68kcal/mol, is near experimental accuracy, and it compares favorably with the results obtained from a simpler, empirical methodology. The correlation coefficient for the combined data set including residues with glycan contacts, R 2 =0.49, should be sufficient to guide the choice of residues for antibody optimization projects, assuming that this level of accuracy can be realized in prospective prediction. More generally, these results are encouraging with regard to the possibility of using an FEP approach to calculate the magnitude of protein-protein binding affinities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
A molecular dynamics study of chloride binding by the cryptand SC24
NASA Technical Reports Server (NTRS)
Owenson, B.; MacElroy, R. D.; Pohorille, A.
1988-01-01
The capture of chloride from water by the tetraprotonated form of the spherical macrotricyclic molecule SC24 was studied using molecular dynamics simulation methods. This model ionophore represents a broad class of molecules which remove ions from water. Two binding sites for the chloride were found, one inside and one outside the ligand. These sites are separated by a potential energy barrier of approximately 20 kcal mol-1. The major contribution to this barrier comes from dehydration of the chloride. The large, unfavorable dehydration effect is compensated for by an increase in electrostatic attraction between the oppositely charged chloride and cryptand, and by energetically favorable rearrangements of water structure. Additional assistance in crossing the barrier and completing the dehydration of the ion is provided by the shift of three positively charged hydrogen atoms of the cryptand towards the chloride. This structural rigidity is partially responsible for its selectivity.
Nuclear binding of progesterone in hen oviduct. Binding to multiple sites in vitro.
Pikler, G M; Webster, R A; Spelsberg, T C
1976-01-01
Steroid hormones, including progesterone, are known to bind with high affinity (Kd approximately 1x10(-10)M) to receptor proteins once they enter target cells. This complex (the progesterone-receptor) then undergoes a temperature-and/or salt-dependent activation which allows it to migrate to the cell nucleus and to bind to the deoxyribonucleoproteins. The present studies demonstrate that binding the hormone-receptor complex in vitro to isolated nuclei from the oviducts of laying hens required the same conditions as do other studies of bbinding in vitro reported previously, e.g. the hormone must be complexed to intact and activated receptor. The assay of the nuclear binding by using multiple concentrations of progesterone receptor reveals the presence of more than one class of binding site in the oviduct nuclei. The affinity of each of these classes of binding sites range from Kd approximately 1x10(-9)-1x10(-8)M. Assays using free steroid (not complexed with receptor) show no binding to these sites. The binding to each of the classes of sites, displays a differential stability to increasing ionic concentrations, suggesting primarily an ionic-type interaction for all classes. Only the highest-affinity class of binding site is capable of binding progesterone receptor under physioligical-saline conditions. This class represent 6000-10000 sites per cell nucleus and resembles the sites detected in vivo (Spelsberg, 1976, Biochem. J. 156, 391-398) which cause maximal transcriptional response when saturated with the progesterone receptor. The multiple binding sites for the progesterone receptor either are not present or are found in limited numbers in the nuclei of non-target organs. Differences in extent of binding to the nuclear material between a target tissue (oviduct) and other tissues (spleen or erythrocyte) are markedly dependent on the ionic conditions, and are probably due to binding to different classes of sites in the nuclei. PMID:182147
Ni, Cailing; Zha, Daijun; Ye, Hebo; Hai, Yu; Zhou, Yuntao; Anslyn, Eric V; You, Lei
2018-01-26
Axial chirality is a prevalent and important phenomenon in chemistry. Herein we report a combination of dynamic covalent chemistry and axial chirality for the development of a versatile platform for the binding and chirality sensing of multiple classes of mononucleophiles. An equilibrium between an open aldehyde and its cyclic hemiaminal within biphenyl derivatives enabled the dynamic incorporation of a broad range of alcohols, thiols, primary amines, and secondary amines with high efficiency. Selectivity toward different classes of nucleophiles was also achieved by regulating the distinct reactivity of the system with external stimuli. Through induced helicity as a result of central-to-axial chirality transfer, the handedness and ee values of chiral monoalcohol and monoamine analytes were reported by circular dichroism. The strategies introduced herein should find application in many contexts, including assembly, sensing, and labeling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of MHC class I folding: novel insights into intermediate forms
Simone, Laura C.; Tuli, Amit; Simone, Peter D.; Wang, Xiaojian; Solheim, Joyce C.
2012-01-01
Folding around a peptide ligand is integral to the antigen presentation function of major histocompatibility complex (MHC) class I molecules. Several lines of evidence indicate that the broadly cross-reactive 34-1-2 antibody is sensitive to folding of the MHC class I peptide-binding groove. Here, we show that peptide-loading complex proteins associated with the murine MHC class I molecule Kd are found primarily in association with the 34-1-2+ form. This led us to hypothesize that the 34-1-2 antibody may recognize intermediately, as well as fully, folded MHC class I molecules. In order to further characterize the form(s) of MHC class I molecules recognized by 34-1-2, we took advantage of its cross-reactivity with Ld. Recognition of the open and folded forms of Ld by the 64-3-7 and 30-5-7 antibodies, respectively, has been extensively characterized, providing us with parameters against which to compare 34-1-2 reactivity. We found that the 34-1-2+ Ld molecules displayed characteristics indicative of incomplete folding, including increased tapasin association, endoplasmic reticulum retention, and instability at the cell surface. Moreover, we demonstrate that an Ld-specific peptide induced folding of the 34-1-2+ Ld intermediate. Altogether, these results yield novel insights into the nature of MHC class I molecules recognized by the 34-1-2 antibody. PMID:22329842
The role of nasal corticosteroids in the treatment of rhinitis.
Meltzer, Eli O
2011-08-01
Intranasal corticosteroids (INSs) are the first choice for rhinitis pharmacotherapy. This preference is because of their broad range of actions that result in reductions of proinflammatory mediators, cytokines, and cells. Over the past 30 years, INSs have been modified to improve their pharmacodynamic, pharmacokinetic, and delivery system properties, with attention to improving characteristics such as receptor binding affinity, lipophilicity, low systemic bioavailability, and patient preference. Clinically, they have been shown to be the most effective class of nasal medications for treating allergic rhinitis and nonallergic rhinopathy, with no clear evidence that any specific INS is superior to others. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jahangiri, Soran; Mosey, Nicholas J.
2018-01-01
Nickel hydroxide is a material composed of two-dimensional layers that can be rolled up to form cylindrical nanotubes belonging to a class of inorganic metal hydroxide nanotubes that are candidates for applications in catalysis, energy storage, and microelectronics. The stabilities and other properties of this class of inorganic nanotubes have not yet been investigated in detail. The present study uses self-consistent-charge density-functional tight-binding calculations to examine the stabilities, mechanical properties, and electronic properties of nickel hydroxide nanotubes along with the energetics associated with the adsorption of water by these systems. The tight-binding model was parametrized for this system based on the results of first-principles calculations. The stabilities of the nanotubes were examined by calculating strain energies and performing molecular dynamics simulations. The results indicate that single-walled nickel hydroxide nanotubes are stable at room temperature, which is consistent with experimental investigations. The nanotubes possess size-dependent mechanical properties that are similar in magnitude to those of other inorganic nanotubes. The electronic properties of the nanotubes were also found to be size-dependent and small nickel oxyhydroxide nanotubes are predicted to be semiconductors. Despite this size-dependence, both the mechanical and electronic properties were found to be almost independent of the helical structure of the nanotubes. The calculations also show that water molecules have higher adsorption energies when binding to the interior of the nickel hydroxide nanotubes when compared to adsorption in nanotubes formed from other two-dimensional materials such as graphene. The increased adsorption energy is due to the hydrophilic nature of nickel hydroxide. Due to the broad applications of nickel hydroxide, the nanotubes investigated here are also expected to be used in catalysis, electronics, and clean energy production.
Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil
2014-09-07
Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall accuracy in identification of LBPs from non-LBPs and 92.06% (CV) and 92.90% (IE) (in average) for classification of different LBPs classes. Increasing the number and the range of extracted protein features as well as optimization of the SVM parameters significantly increased the efficiency of LBPs class prediction in comparison to the only previous report in this field. Altogether, the results showed that the SVM algorithm can be run on broad, computationally calculated protein features and offers a promising tool in detection of LBPs classes. The proposed approach has the potential to integrate and improve the common sequence alignment based methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McComas, Casey C.; Palani, Anandan; Chang, Wei
Studies directed at developing a broadly acting non-nucleoside inhibitor of HCV NS5B led to the discovery of a novel structural class of 5-aryl benzofurans that simultaneously interact with both the palm I and palm II binding regions. An initial candidate was potent in vitro against HCV GT1a and GT1b replicons, and induced multi-log reductions in HCV viral load when orally dosed to chronic GT1 infected chimpanzees. However, in vitro potency losses against clinically relevant GT1a variants prompted a further effort to develop compounds with sustained potency across a broader array of HCV genotypes and mutants. Ultimately, a biology and medicinalmore » chemistry collaboration led to the discovery of the development candidate MK-8876. MK-8876 demonstrated a pan-genotypic potency profile and maintained potency against clinically relevant mutants. It demonstrated moderate bioavailability in rats and dogs, but showed low plasma clearance characteristics consistent with once-daily dosing. Herein we describe the efforts which led to the discovery of MK-8876, which advanced into Phase 1 monotherapy studies for evaluation and characterization as a component of an all-oral direct-acting drug regimen for the treatment of chronic HCV infection.« less
ERp57 interacts with conserved cysteine residues in the MHC class I peptide-binding groove.
Antoniou, Antony N; Santos, Susana G; Campbell, Elaine C; Lynch, Sarah; Arosa, Fernando A; Powis, Simon J
2007-05-15
The oxidoreductase ERp57 is a component of the major histocompatibility complex (MHC) class I peptide-loading complex. ERp57 can interact directly with MHC class I molecules, however, little is known about which of the cysteine residues within the MHC class I molecule are relevant to this interaction. MHC class I molecules possess conserved disulfide bonds between cysteines 101-164, and 203-259 in the peptide-binding and alpha3 domain, respectively. By studying a series of mutants of these conserved residues, we demonstrate that ERp57 predominantly associates with cysteine residues in the peptide-binding domain, thus indicating ERp57 has direct access to the peptide-binding groove of MHC class I molecules during assembly.
Harrison, Thomas; Ruiz, Jaime; Sloan, Daniel B.; Ben-Hur, Asa; Boucher, Christina
2016-01-01
Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The P class contains tandem P-type motif sequences, and the PLS class contains alternating P, L and S type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a PLS-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the PLS class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for PLS-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve. PMID:27560805
Wang, Lingle; Wu, Yujie; Deng, Yuqing; Kim, Byungchan; Pierce, Levi; Krilov, Goran; Lupyan, Dmitry; Robinson, Shaughnessy; Dahlgren, Markus K; Greenwood, Jeremy; Romero, Donna L; Masse, Craig; Knight, Jennifer L; Steinbrecher, Thomas; Beuming, Thijs; Damm, Wolfgang; Harder, Ed; Sherman, Woody; Brewer, Mark; Wester, Ron; Murcko, Mark; Frye, Leah; Farid, Ramy; Lin, Teng; Mobley, David L; Jorgensen, William L; Berne, Bruce J; Friesner, Richard A; Abel, Robert
2015-02-25
Designing tight-binding ligands is a primary objective of small-molecule drug discovery. Over the past few decades, free-energy calculations have benefited from improved force fields and sampling algorithms, as well as the advent of low-cost parallel computing. However, it has proven to be challenging to reliably achieve the level of accuracy that would be needed to guide lead optimization (∼5× in binding affinity) for a wide range of ligands and protein targets. Not surprisingly, widespread commercial application of free-energy simulations has been limited due to the lack of large-scale validation coupled with the technical challenges traditionally associated with running these types of calculations. Here, we report an approach that achieves an unprecedented level of accuracy across a broad range of target classes and ligands, with retrospective results encompassing 200 ligands and a wide variety of chemical perturbations, many of which involve significant changes in ligand chemical structures. In addition, we have applied the method in prospective drug discovery projects and found a significant improvement in the quality of the compounds synthesized that have been predicted to be potent. Compounds predicted to be potent by this approach have a substantial reduction in false positives relative to compounds synthesized on the basis of other computational or medicinal chemistry approaches. Furthermore, the results are consistent with those obtained from our retrospective studies, demonstrating the robustness and broad range of applicability of this approach, which can be used to drive decisions in lead optimization.
Chauhan, Varun; Goyal, Kapil; Singh, Mini P
2018-07-01
Infections due to both HSV-1 and HSV-2 constitute an enormous health burden worldwide. Development of vaccine against herpes infections is a WHO supported public health priority. The viral glycoproteins have always been the major hotspots for vaccine designing. The present study was aimed to identify the conserved T and B cell epitopes in the major glycoproteins of both HSV-1 and HSV-2 via rigorous computational approaches. Identification of promiscuous T cell epitopes is of utmost importance in vaccine designing as such epitopes are capable of binding to several allelic forms of HLA and could generate effective immune response in the host. The criteria designed for identification of T and B cell epitopes was that it should be conserved in both HSV-1 and 2, promiscuous, have high affinity towards HLA alleles, should be located on the surface of glycoproteins and not be present in the glycosylation sites. This study led to the identification of 17 HLA Class II and 26 HLA Class I T cell epitopes, 9 linear and some conformational B cell epitopes. The identified T cell epitopes were further subjected to molecular docking analysis to analyze their binding patterns. Altogether we have identified 4 most promising regions in glycoproteins (2-gB, 1-gD, 1-gH) of HSV-1 and 2 which are promiscuous to HLA Class II alleles and have overlapping HLA Class I and B cell epitopes, which could be very useful in generating both arms of immune response in the host i.e. adaptive as well as humoral immunity. Further the authors propose the cross-validation of the identified epitopes in experimental settings for confirming their immunogenicity to support the present findings. Copyright © 2018 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The binding of peptides to classical major histocompatibility complex (MHC) class-I proteins is the single most selective step in antigen presentation. However, the peptide binding specificity of cattle MHC (bovine leucocyte antigen, BoLA) class I (BoLA-I) molecules remains poorly characterized. Her...
Breda, Ardala; Martinelli, Leonardo K. B.; Bizarro, Cristiano V.; Rosado, Leonardo A.; Borges, Caroline B.; Santos, Diógenes S.; Basso, Luiz A.
2012-01-01
The 5-phospho-α-D-ribose 1-diphosphate (PRPP) metabolite plays essential roles in several biosynthetic pathways, including histidine, tryptophan, nucleotides, and, in mycobacteria, cell wall precursors. PRPP is synthesized from α-D-ribose 5-phosphate (R5P) and ATP by the Mycobacterium tuberculosis prsA gene product, phosphoribosylpyrophosphate synthase (MtPRS). Here, we report amplification, cloning, expression and purification of wild-type MtPRS. Glutaraldehyde cross-linking results suggest that MtPRS predominates as a hexamer, presenting varied oligomeric states due to distinct ligand binding. MtPRS activity measurements were carried out by a novel coupled continuous spectrophotometric assay. MtPRS enzyme activity could be detected in the absence of Pi. ADP, GDP and UMP inhibit MtPRS activity. Steady-state kinetics results indicate that MtPRS has broad substrate specificity, being able to accept ATP, GTP, CTP, and UTP as diphosphoryl group donors. Fluorescence spectroscopy data suggest that the enzyme mechanism for purine diphosphoryl donors follows a random order of substrate addition, and for pyrimidine diphosphoryl donors follows an ordered mechanism of substrate addition in which R5P binds first to free enzyme. An ordered mechanism for product dissociation is followed by MtPRS, in which PRPP is the first product to be released followed by the nucleoside monophosphate products to yield free enzyme for the next round of catalysis. The broad specificity for diphosphoryl group donors and detection of enzyme activity in the absence of Pi would suggest that MtPRS belongs to Class II PRS proteins. On the other hand, the hexameric quaternary structure and allosteric ADP inhibition would place MtPRS in Class I PRSs. Further data are needed to classify MtPRS as belonging to a particular family of PRS proteins. The data here presented should help augment our understanding of MtPRS mode of action. Current efforts are toward experimental structure determination of MtPRS to provide a solid foundation for the rational design of specific inhibitors of this enzyme. PMID:22745722
USDA-ARS?s Scientific Manuscript database
Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8positive T-cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presenta...
A Conserved Mode of Protein Recognition and Binding in a ParD−ParE Toxin−Antitoxin Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, Kevin M.; Crosson, Sean
2010-05-06
Toxin-antitoxin (TA) systems form a ubiquitous class of prokaryotic proteins with functional roles in plasmid inheritance, environmental stress response, and cell development. ParDE family TA systems are broadly conserved on plasmids and bacterial chromosomes and have been well characterized as genetic elements that promote stable plasmid inheritance. We present a crystal structure of a chromosomally encoded ParD-ParE complex from Caulobacter crescentus at 2.6 {angstrom} resolution. This TA system forms an {alpha}{sub 2}{beta}{sub 2} heterotetramer in the crystal and in solution. The toxin-antitoxin binding interface reveals extensive polar and hydrophobic contacts of ParD antitoxin helices with a conserved recognition and bindingmore » groove on the ParE toxin. A cross-species comparison of this complex structure with related toxin structures identified an antitoxin recognition and binding subdomain that is conserved between distantly related members of the RelE/ParE toxin superfamily despite a low level of overall primary sequence identity. We further demonstrate that ParD antitoxin is dimeric, stably folded, and largely helical when not bound to ParE toxin. Thus, the paradigmatic model in which antitoxin undergoes a disorder-to-order transition upon toxin binding does not apply to this chromosomal ParD-ParE TA system.« less
Li, Cun; Wang, Zhanhui; Cao, Xingyuan; Beier, Ross C; Zhang, Suxia; Ding, Shuangyang; Li, Xiaowei; Shen, Jianzhong
2008-10-31
This paper describes a novel mixed-bed immunoaffinity column (IAC) method. The IAC was produced by coupling anti-quinolone and anti-sulfonamide broad-specificity monoclonal antibodies to Sepharose 4B for simultaneously isolating 13 quinolones (QNs) and 6 sulfonamides (SAs) from swine and chicken muscle tissues, followed by antibiotic determination using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A new broad-specificity Mab (B1A4E8) toward sulfonamides was produced using sulfamethoxazole as hapten that demonstrated cross-reactivities to 6 SAs in the range of 31-112%. IAC optimized conditions were found that allowed the IAC to be reused for selective binding of both SAs and QNs. Recoveries of all 19 antibiotics from animal muscle ranged from 72.6 to 107.6%, with RSDs below 11.3% and 15.4% for intra-day and inter-day experiments, respectively. The limit of quantification ranged from 0.5 to 3.0ng/g. The strategy used here for a mixed-bed IAC may be used to study other compounds and more than two classes of analytes simultaneously.
A conserved regulatory mechanism in bifunctional biotin protein ligases.
Wang, Jingheng; Beckett, Dorothy
2017-08-01
Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms. © 2017 The Protein Society.
Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10.
Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S; Disney, Matthew D
2016-06-01
RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells.
A Synthetic Glycan Microarray Enables Epitope Mapping of Plant Cell Wall Glycan-Directed Antibodies.
Ruprecht, Colin; Bartetzko, Max P; Senf, Deborah; Dallabernadina, Pietro; Boos, Irene; Andersen, Mathias C F; Kotake, Toshihisa; Knox, J Paul; Hahn, Michael G; Clausen, Mads H; Pfrengle, Fabian
2017-11-01
In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories worldwide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types, and developmental stages. Despite their importance and broad use, the precise binding epitope has been determined for only a few of these antibodies. Here, we use a plant glycan microarray equipped with 88 synthetic oligosaccharides to comprehensively map the epitopes of plant cell wall glycan-directed antibodies. Our results reveal the binding epitopes for 78 arabinogalactan-, rhamnogalacturonan-, xylan-, and xyloglucan-directed antibodies. We demonstrate that, with knowledge of the exact epitopes recognized by individual antibodies, specific glycosyl hydrolases can be implemented into immunological cell wall analyses, providing a framework to obtain structural information on plant cell wall glycans with unprecedented molecular precision. © 2017 American Society of Plant Biologists. All Rights Reserved.
Wang, Yingmei; Wen, Jing; Zhang, Wei
2011-02-01
The migration and invasion inhibitory protein (MIIP) was initially discovered in a yeast two-hybrid screen for proteins that interact and inhibit the migration and invasion-promoting protein insulin-like growth factor binding protein 2 (IGFBP2). Recent studies have shown that MIIP not only modulates IGFBP2 but also regulates microtubule by binding to and inhibiting HDAC6, a class 2 histone deacetylase that deacetylates α-tubulin, heat-shock protein 90 (HSP90), and cortactin. In addition, MIIP also regulates the mitosis checkpoint, another microtubule-associated process. The location of the MIIP gene in chromosomal region 1p36, a commonly deleted region in a broad spectrum of human cancers, and the observation that MIIP attenuates tumorigenesis in a mouse model suggest that it functions as a tumor-suppressor gene. This review summarizes the recent progress in characterizing this novel protein, which regulates cell migration and mitosis, two processes that rely on the highly coordinated dynamics of the microtubule and cytoskeleton systems.
A Transcription Activator-Like Effector (TALE) Toolbox for Genome Engineering
Sanjana, Neville E.; Cong, Le; Zhou, Yang; Cunniff, Margaret M.; Feng, Guoping; Zhang, Feng
2013-01-01
Transcription activator-like effectors (TALEs) are a class of naturally occurring DNA binding proteins found in the plant pathogen Xanthomonas sp. The DNA binding domain of each TALE consists of tandem 34-amino acid repeat modules that can be rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Here we describe a toolbox for rapid construction of custom TALE transcription factors (TALE-TFs) and nucleases (TALENs) using a hierarchical ligation procedure. This toolbox facilitates affordable and rapid construction of custom TALE-TFs and TALENs within one week and can be easily scaled up to construct TALEs for multiple targets in parallel. We also provide details for testing the activity in mammalian cells of custom TALE-TFs and TALENs using, respectively, qRT-PCR and Surveyor nuclease. The TALE toolbox described here will enable a broad range of biological applications. PMID:22222791
Allosteric regulation of rhomboid intramembrane proteolysis.
Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne
2014-09-01
Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. © 2014 The Authors.
Allosteric regulation of rhomboid intramembrane proteolysis
Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne
2014-01-01
Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. PMID:25009246
Andries, K; Dewindt, B; Snoeks, J; Willebrords, R; van Eemeren, K; Stokbroekx, R; Janssen, P A
1992-01-01
Pirodavir (R 77975) is the prototype of a novel class of broad-spectrum antipicornavirus compounds. Although its predecessor, R 61837, a substituted phenyl-pyridazinamine, was effective in inhibiting 80% of 100 serotypes tested (EC80) at concentrations above 32 micrograms/ml, pirodavir inhibits the same percentage of viruses at 0.064 micrograms/ml. Whereas R 61837 was active almost exclusively against rhinovirus serotypes of antiviral group B, pirodavir is broad spectrum in that it is highly active against both group A and group B rhinovirus serotypes. Pirodavir is also effective in inhibiting 16 enteroviruses, with an EC80 of 1.3 micrograms/ml. Susceptible rhinovirus serotypes were rendered noninfectious by direct contact with the antiviral compound. Their infectivity was not restored by dilution of virus-drug complexes, but was regained by organic solvent extraction of the compound for most serotypes. Neutralized viruses became stabilized to acid and heat, strongly suggesting a direct interaction of the compounds with viral capsid proteins. Mutants resistant to R 61837 (up to 85 times the MIC) were shown to bear some cross-resistance (up to 23 times the MIC) to the new compound, indicating that pirodavir also binds into the hydrophobic pocket beneath the canyon floor of rhinoviruses. Pirodavir acts at an early stage of the viral replication cycle (up to 40 min after infection) and reduces the yield of selected rhinoviruses 1,000- to 100,000-fold in a single round of replication. The mode of action appears to be serotype specific, since pirodavir was able to inhibit the adsorption of human rhinovirus 9 but not that of human rhinovirus 1A. Pirodavir is a novel capsid-binding antipicornavirus agent with potent in vitro activity against both group A and group B rhinovirus serotypes. PMID:1317142
Kessler, Jan H; Mommaas, Bregje; Mutis, Tuna; Huijbers, Ivo; Vissers, Debby; Benckhuijsen, Willemien E; Schreuder, Geziena M Th; Offringa, Rienk; Goulmy, Els; Melief, Cornelis J M; van der Burg, Sjoerd H; Drijfhout, Jan W
2003-02-01
We report the development, validation, and application of competition-based peptide binding assays for 13 prevalent human leukocyte antigen (HLA) class I alleles. The assays are based on peptide binding to HLA molecules on living cells carrying the particular allele. Competition for binding between the test peptide of interest and a fluorescein-labeled HLA class I binding peptide is used as read out. The use of cell membrane-bound HLA class I molecules circumvents the need for laborious biochemical purification of these molecules in soluble form. Previously, we have applied this principle for HLA-A2 and HLA-A3. We now describe the assays for HLA-A1, HLA-A11, HLA-A24, HLA-A68, HLA-B7, HLA-B8, HLA-B14, HLA-B35, HLA-B60, HLA-B61, and HLA-B62. Together with HLA-A2 and HLA-A3, these alleles cover more than 95% of the Caucasian population. Several allele-specific parameters were determined for each assay. Using these assays, we identified novel HLA class I high-affinity binding peptides from HIVpol, p53, PRAME, and minor histocompatibility antigen HA-1. Thus these convenient and accurate peptide-binding assays will be useful for the identification of putative cytotoxic T lymphocyte epitopes presented on a diverse array of HLA class I molecules.
Negatively Cooperative Binding of High Density Lipoprotein to the HDL Receptor SR-BI†
Nieland, Thomas J.F.; Xu, Shangzhe; Penman, Marsha; Krieger, Monty
2011-01-01
Scavenger receptor class B, type I (SR-BI) is a high-density lipoprotein (HDL) receptor, which also binds low density lipoprotein (LDL), and mediates the cellular selective uptake of cholesteryl esters from lipoproteins. SR-BI also is a co-receptor for hepatitis C virus and a signaling receptor that regulates cell metabolism. Many investigators have reported that lipoproteins bind to SR-BI via a single class of independent (not interacting), high affinity binding sites (one site model). We have re-investigated the ligand concentration dependence of 125I-HDL binding to SR-BI and SR-BI-mediated specific uptake of [3H]CE from [3H]CE-HDL using an expanded range of ligand concentrations (<1 µg protein/ml, lower than previously reported). Scatchard and non-linear least squares model fitting analyses of the binding and uptake data were both inconsistent with a single class of independent binding sites binding univalent lipoprotein ligands. The data are best fit by models in which SR-BI has either two independent classes of binding sites, or one class of sites exhibiting negative cooperativity due to either classic allostery or ensemble effects (‘ lattice model’). Similar results were observed for LDL. Application of the ‘infinite dilution’ dissociation rate method established that the binding of 125I-HDL to SR-BI at 4 °C exhibits negative cooperativity. The unexpected complexity of the interactions of lipoproteins with SR-BI should be taken into account when interpreting the results of experiments that explore the mechanism(s) by which SR-BI mediates ligand binding, lipid transport and cell signaling. PMID:21254782
Extracellular small RNAs: what, where, why?
Hoy, Anna M.; Buck, Amy H.
2012-01-01
miRNAs (microRNAs) are a class of small RNA that regulate gene expression by binding to mRNAs and modulating the precise amount of proteins that get expressed in a cell at a given time. This form of gene regulation plays an important role in developmental systems and is critical for the proper function of numerous biological pathways. Although miRNAs exert their functions inside the cell, these and other classes of RNA are found in body fluids in a cell-free form that is resistant to degradation by RNases. A broad range of cell types have also been shown to secrete miRNAs in association with components of the RISC (RNA-induced silencing complex) and/or encapsulation within vesicles, which can be taken up by other cells. In the present paper, we provide an overview of the properties of extracellular miRNAs in relation to their capacity as biomarkers, stability against degradation and mediators of cell–cell communication. PMID:22817753
Viral peptides-MHC interaction: Binding probability and distance from human peptides.
Santoni, Daniele
2018-05-23
Identification of peptides binding to MHC class I complex can play a crucial role in retrieving potential targets able to trigger an immune response. Affinity binding of viral peptides can be estimated through effective computational methods that in the most of cases are based on machine learning approach. Achieving a better insight into peptide features that impact on the affinity binding rate is a challenging issue. In the present work we focused on 9-mer peptides of Human immunodeficiency virus type 1 and Human herpes simplex virus 1, studying their binding to MHC class I. Viral 9-mers were partitioned into different classes, where each class is characterized by how far (in terms of mutation steps) the peptides belonging to that class are from human 9-mers. Viral 9-mers were partitioned in different classes, based on the number of mutation steps they are far from human 9-mers. We showed that the overall binding probability significantly differs among classes, and it typically increases as the distance, computed in terms of number of mutation steps from the human set of 9-mers, increases. The binding probability is particularly high when considering viral 9-mers that are far from all human 9-mers more than three mutation steps. A further evidence, providing significance to those special viral peptides and suggesting a potential role they can play, comes from the analysis of their distribution along viral genomes, as it revealed they are not randomly located, but they preferentially occur in specific genes. Copyright © 2018 Elsevier B.V. All rights reserved.
Klimochkin, Yuri N; Shiryaev, Vadim A; Petrov, Pavel V; Radchenko, Eugene V; Palyulin, Vladimir A; Zefirov, Nikolay S
2016-01-01
The influenza A virus M2 proton channel plays a critical role in its life cycle. However, known M2 inhibitors have lost their clinical efficacy due to the spread of resistant mutant channels. Thus, the search for broad-spectrum M2 channel inhibitors is of great importance. The goal of the present work was to develop a general approach supporting the design of ligands interacting with multiple labile targets and to propose on its basis the potential broad-spectrum inhibitors of the M2 proton channel. The dynamic dimer-of-dimers structures of the three primary M2 target variants, wild-type, S31N and V27A, were modeled by molecular dynamics and thoroughly analyzed in order to define the inhibitor binding sites. The potential inhibitor structures were identified by molecular docking and their binding was verified by molecular dynamics simulation. The binding sites of the M2 proton channel inhibitors were analyzed, a number of potential broad-spectrum inhibitors were identified and the binding modes and probable mechanisms of action of one promising compound were clarified. Using the molecular dynamics and molecular docking techniques, we have refined the dynamic dimer-ofdimers structures of the WT, S31N and V27A variants of the M2 proton channel of the influenza A virus, analyzed the inhibitor binding sites, identified a number of potential broad-spectrum inhibitor structures targeting them, and clarified the binding modes and probable mechanisms of action of one promising compound. The proposed approach is also suitable for the design of ligands interacting with other multiple labile targets.
The MTA family proteins as novel histone H3 binding proteins.
Wu, Meng; Wang, Lina; Li, Qian; Li, Jiwen; Qin, Jun; Wong, Jiemin
2013-01-03
The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.
The MTA family proteins as novel histone H3 binding proteins
2013-01-01
Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail. PMID:23286669
Wu, You-Qiang; Qu, Hongchang; Sfyroera, Georgia; Tzekou, Apostolia; Kay, Brian K.; Nilsson, Bo; Ekdahl, Kristina Nilsson; Ricklin, Daniel; Lambris, John D.
2011-01-01
Exposure of nonself surfaces such as those of biomaterials or transplanted cells and organs to host blood frequently triggers innate immune responses, thereby affecting both their functionality and tolerability. Activation of the alternative pathway of complement plays a decisive role in this unfavorable reaction. Whereas previous studies demonstrated that immobilization of physiological regulators of complement activation (RCA) can attenuate this foreign body-induced activation, simple and efficient approaches for coating artificial surfaces with intact RCA are still missing. The conjugation of small molecular entities that capture RCA with high affinity is an intriguing alternative, as this creates a surface with autoregulatory activity upon exposure to blood. We therefore screened two variable cysteine-constrained phage-displayed peptide libraries for factor H-binding peptides. We discovered three peptide classes that differed with respect to their main target binding areas. Peptides binding to the broad middle region of factor H (domains 5–18) were of particular interest, as they do not interfere with either regulatory or binding activities. One peptide in this group (5C6) was further characterized and showed high factor H-capturing activity while retaining its functional integrity. Most importantly, when 5C6 was coated to a model polystyrene surface and exposed to human lepirudin-anticoagulated plasma, the bound peptide captured factor H and substantially inhibited complement activation by the alternative pathway. Our study therefore provides a promising and novel approach to produce therapeutic materials with enhanced biocompatibility. PMID:21339361
2010-01-01
Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/. PMID:20089173
Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-120 interface
Huang, Jinghe; Kang, Byong H.; Pancera, Marie; Lee, Jeong Hyun; Tong, Tommy; Feng, Yu; Georgiev, Ivelin S.; Chuang, Gwo-Yu; Druz, Aliaksandr; Doria-Rose, Nicole A.; Laub, Leo; Sliepen, Kwinten; van Gils, Marit J.; de la Peña, Alba Torrents; Derking, Ronald; Klasse, Per-Johan; Migueles, Stephen A.; Bailer, Robert T.; Alam, Munir; Pugach, Pavel; Haynes, Barton F.; Wyatt, Richard T.; Sanders, Rogier W.; Binley, James M.; Ward, Andrew B.; Mascola, John R.; Kwong, Peter D.; Connors, Mark
2014-01-01
The isolation of human monoclonal antibodies (mAbs) is providing important insights regarding the specificities that underlie broad neutralization of HIV-1 (reviewed in1). Here we report a broad and extremely potent HIV-specific mAb, termed 35O22, which binds novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with an IC50<50 μg/ml. The median IC50 of neutralized viruses was 0.033 μg/ml, among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed it to bind a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current mAb-based approaches to immunotherapies, prophylaxis, and vaccine design. PMID:25186731
He, Qianru; Man, Lili; Ji, Yuhua; Zhang, Shuqiang; Jiang, Maorong; Ding, Fei; Gu, Xiaosong
2012-06-01
Peripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve. Of them, 100 proteins showed differential expressions between both nerves, and some of them were validated by quantitative real time RT-PCR, Western blot analysis, and immunohistochemistry. In the light of functional categorization, the differentially expressed proteins in sensory and motor nerves, belonging to a broad range of classes, were related to a diverse array of biological functions, which included cell adhesion, cytoskeleton, neuronal plasticity, neurotrophic activity, calcium-binding, signal transduction, transport, enzyme catalysis, lipid metabolism, DNA-binding, synaptosome function, actin-binding, ATP-binding, extracellular matrix, and commitment to other lineages. The relatively higher expressed proteins in either sensory or motor nerve were tentatively discussed in combination with their specific molecular characteristics. It is anticipated that the database generated in this study will provide a solid foundation for further comprehensive investigation of functional differences between sensory and motor nerves, including the specificity of their regeneration.
Ultrasensitivity and sharp threshold theorems for multisite systems
NASA Astrophysics Data System (ADS)
Dougoud, M.; Mazza, C.; Vinckenbosch, L.
2017-02-01
This work studies the ultrasensitivity of multisite binding processes where ligand molecules can bind to several binding sites. It considers more particularly recent models involving complex chemical reactions in allosteric phosphorylation processes and for transcription factors and nucleosomes competing for binding on DNA. New statistics-based formulas for the Hill coefficient and the effective Hill coefficient are provided and necessary conditions for a system to be ultrasensitive are exhibited. It is first shown that the ultrasensitivity of binding processes can be approached using sharp-threshold theorems which have been developed in applied probability theory and statistical mechanics for studying sharp threshold phenomena in reliability theory, random graph theory and percolation theory. Special classes of binding process are then introduced and are described as density dependent birth and death process. New precise large deviation results for the steady state distribution of the process are obtained, which permits to show that switch-like ultrasensitive responses are strongly related to the multi-modality of the steady state distribution. Ultrasensitivity occurs if and only if the entropy of the dynamical system has more than one global minimum for some critical ligand concentration. In this case, the Hill coefficient is proportional to the number of binding sites, and the system is highly ultrasensitive. The classical effective Hill coefficient I is extended to a new cooperativity index I q , for which we recommend the computation of a broad range of values of q instead of just the standard one I = I 0.9 corresponding to the 10%-90% variation in the dose-response. It is shown that this single choice can sometimes mislead the conclusion by not detecting ultrasensitivity. This new approach allows a better understanding of multisite ultrasensitive systems and provides new tools for the design of such systems.
Andreatta, Massimo; Karosiene, Edita; Rasmussen, Michael; Stryhn, Anette; Buus, Søren; Nielsen, Morten
2015-11-01
A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .
Norovirus Escape from Broadly Neutralizing Antibodies Is Limited to Allostery-Like Mechanisms
Kolawole, Abimbola O.; Smith, Hong Q.; Svoboda, Sophia A.; Lewis, Madeline S.; Sherman, Michael B.; Lynch, Gillian C.; Pettitt, B. Montgomery
2017-01-01
ABSTRACT Ideal antiviral vaccines elicit antibodies (Abs) with broad strain recognition that bind to regions that are difficult to mutate for escape. Using 10 murine norovirus (MNV) strains and 5 human norovirus (HuNoV) virus-like particles (VLPs), we identified monoclonal antibody (MAb) 2D3, which broadly neutralized all MNV strains tested. Importantly, escape mutants corresponding to this antibody were very slow to develop and were distal to those raised against our previously studied antibody, A6.2. To understand the atomic details of 2D3 neutralization, we determined the cryo-electron microscopy (cryo-EM) structure of the 2D3/MNV1 complex. Interestingly, 2D3 binds to the top of the P domain, very close to where A6.2 binds, but the only escape mutations identified to date fall well outside the contact regions of both 2D3 and A6.2. To determine how mutations in distal residues could block antibody binding, we used molecular dynamics flexible fitting simulations of the atomic structures placed into the density map to examine the 2D3/MNV1 complex and these mutations. Our findings suggest that the escape mutant, V339I, may stabilize a salt bridge network at the P-domain dimer interface that, in an allostery-like manner, affects the conformational relaxation of the P domain and the efficiency of binding. They further highlight the unusual antigenic surface bound by MAb 2D3, one which elicits cross-reactive antibodies but which the virus is unable to alter to escape neutralization. These results may be leveraged to generate norovirus (NoV) vaccines containing broadly neutralizing antibodies. IMPORTANCE The simplest and most common way for viruses to escape antibody neutralization is by mutating residues that are essential for antibody binding. Escape mutations are strongly selected for by their effect on viral fitness, which is most often related to issues of protein folding, particle assembly, and capsid function. The studies presented here demonstrated that a broadly neutralizing antibody to mouse norovirus binds to an exposed surface but that the only escape mutants that arose were distal to the antibody binding surface. To understand this finding, we performed an in silico analysis that suggested that those escape mutations blocked antibody binding by affecting structural plasticity. This kind of antigenic region—one that gives rise to broadly neutralizing antibodies but that the virus finds difficult to escape from—is therefore ideal for vaccine development. PMID:29062895
Genetic dissection of the consensus sequence for the class 2 and class 3 flagellar promoters
Wozniak, Christopher E.; Hughes, Kelly T.
2008-01-01
Summary Computational searches for DNA binding sites often utilize consensus sequences. These search models make assumptions that the frequency of a base pair in an alignment relates to the base pair’s importance in binding and presume that base pairs contribute independently to the overall interaction with the DNA binding protein. These two assumptions have generally been found to be accurate for DNA binding sites. However, these assumptions are often not satisfied for promoters, which are involved in additional steps in transcription initiation after RNA polymerase has bound to the DNA. To test these assumptions for the flagellar regulatory hierarchy, class 2 and class 3 flagellar promoters were randomly mutagenized in Salmonella. Important positions were then saturated for mutagenesis and compared to scores calculated from the consensus sequence. Double mutants were constructed to determine how mutations combined for each promoter type. Mutations in the binding site for FlhD4C2, the activator of class 2 promoters, better satisfied the assumptions for the binding model than did mutations in the class 3 promoter, which is recognized by the σ28 transcription factor. These in vivo results indicate that the activator sites within flagellar promoters can be modeled using simple assumptions but that the DNA sequences recognized by the flagellar sigma factor require more complex models. PMID:18486950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraser, Wesley C.; Brown, Michael E.; Glass, Florian, E-mail: wesley.fraser@nrc.ca
2015-05-01
Here, we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 (WFC3) Test of Surfaces in the Outer Solar System. Twelve targets were re-observed with the WFC3 in the optical and NIR wavebands designed to complement those used during the first visit. Additionally, all of the observations originally presented by Fraser and Brown were reanalyzed through the same updated photometry pipeline. A re-analysis of the optical and NIR color distribution reveals a bifurcated optical color distribution and only two identifiable spectral classes, each of which occupies a broad range of colors and has correlatedmore » optical and NIR colors, in agreement with our previous findings. We report the detection of significant spectral variations on five targets which cannot be attributed to photometry errors, cosmic rays, point-spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have a broad range of dynamical classes and absolute magnitudes, exhibit a broad range of apparent magnitude variations, and are found in both compositional classes. The spectrally variable objects with sufficiently accurate colors for spectral classification maintain their membership, belonging to the same class at both epochs. 2005 TV189 exhibits a sufficiently broad difference in color at the two epochs that span the full range of colors of the neutral class. This strongly argues that the neutral class is one single class with a broad range of colors, rather than the combination of multiple overlapping classes.« less
Common functionally important motions of the nucleotide-binding domain of Hsp70.
Gołaś, Ewa I; Czaplewski, Cezary; Scheraga, Harold A; Liwo, Adam
2015-02-01
The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones involved in protein folding, aggregate prevention, and protein disaggregation. They consist of the substrate-binding domain (SBD) that binds client substrates, and the nucleotide-binding domain (NBD), whose cycles of nucleotide hydrolysis and exchange underpin the activity of the chaperone. To characterize the structure-function relationships that link the binding state of the NBD to its conformational behavior, we analyzed the dynamics of the NBD of the Hsp70 chaperone from Bos taurus (PDB 3C7N:B) by all-atom canonical molecular dynamics simulations. It was found that essential motions within the NBD fall into three major classes: the mutual class, reflecting tendencies common to all binding states, and the ADP- and ATP-unique classes, which reflect conformational trends that are unique to either the ADP- or ATP-bound states, respectively. "Mutual" class motions generally describe "in-plane" and/or "out-of-plane" (scissor-like) rotation of the subdomains within the NBD. This result is consistent with experimental nuclear magnetic resonance data on the NBD. The "unique" class motions target specific regions on the NBD, usually surface loops or sites involved in nucleotide binding and are, therefore, expected to be involved in allostery and signal transmission. For all classes, and especially for those of the "unique" type, regions of enhanced mobility can be identified; these are termed "hot spots," and their locations generally parallel those found by NMR spectroscopy. The presence of magnesium and potassium cations in the nucleotide-binding pocket was also found to influence the dynamics of the NBD significantly. © 2014 Wiley Periodicals, Inc.
Arai, Kazune; Kashiwazaki, Aki; Fujiwara, Yoko; Tsuchiya, Hiroyoshi; Sakai, Nobuya; Shibata, Katsushi; Koshimizu, Taka-aki
2015-02-15
A group of synthetic substance P (SP) antagonists, such as [Arg(6),D-Trp(7,9),N(Me)Phe(8)]-substance P(6-11) and [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]-substance P, bind to a range of distinct G-protein-coupled receptor (GPCR) family members, including V1a vasopressin receptors, and they competitively inhibit agonist binding. This extended accessibility enabled us to identify a GPCR subset with a partially conserved binding site structure. By combining pharmacological data and amino acid sequence homology matrices, a pharmacological lineage of GPCRs that are sensitive to these two SP antagonists was constructed. We found that sensitivity to the SP antagonists was not limited to the Gq-protein-coupled V1a and V1b receptors; Gs-coupled V2 receptors and oxytocin receptors, which couple with both Gq and Gi, also demonstrated sensitivity. Unexpectedly, a dendrogram based on the amino acid sequences of 222 known GPCRs showed that a group of receptors sensitive to the SP antagonists are located in close proximity to vasopressin/oxytocin receptors. Gonadotropin-releasing peptide receptors, located near the vasopressin receptors in the dendrogram, were also sensitive to the SP analogs, whereas α1B adrenergic receptors, located more distantly from the vasopressin receptors, were not sensitive. Our finding suggests that pharmacological lineage analysis is useful in selecting subsets of candidate receptors that contain a conserved binding site for a ligand with broad-spectrum binding abilities. The knowledge that the binding site of the two broad-spectrum SP analogs partially overlaps with that of distinct peptide agonists is valuable for understanding the specificity/broadness of peptide ligands. Copyright © 2015 Elsevier B.V. All rights reserved.
Beyer, Dieter; Kroll, Hein-Peter; Endermann, Rainer; Schiffer, Guido; Siegel, Stephan; Bauser, Marcus; Pohlmann, Jens; Brands, Michael; Ziegelbauer, Karl; Haebich, Dieter; Eymann, Christine; Brötz-Oesterhelt, Heike
2004-01-01
Phenylalanyl (Phe)-tRNA synthetase (Phe-RS) is an essential enzyme which catalyzes the transfer of phenylalanine to the Phe-specific transfer RNA (tRNAPhe), a key step in protein biosynthesis. Phenyl-thiazolylurea-sulfonamides were identified as a novel class of potent inhibitors of bacterial Phe-RS by high-throughput screening and chemical variation of the screening hit. The compounds inhibit Phe-RS of Escherichia coli, Haemophilus influenzae, Streptococcus pneumoniae, and Staphylococcus aureus, with 50% inhibitory concentrations in the nanomolar range. Enzyme kinetic measurements demonstrated that the compounds bind competitively with respect to the natural substrate Phe. All derivatives are highly selective for the bacterial Phe-RS versus the corresponding mammalian cytoplasmic and human mitochondrial enzymes. Phenyl-thiazolylurea-sulfonamides displayed good in vitro activity against Staphylococcus, Streptococcus, Haemophilus, and Moraxella strains, reaching MICs below 1 μg/ml. The antibacterial activity was partly antagonized by increasing concentrations of Phe in the culture broth in accordance with the competitive binding mode. Further evidence that inhibition of tRNAPhe charging is the antibacterial principle of this compound class was obtained by proteome analysis of Bacillus subtilis. Here, the phenyl-thiazolylurea-sulfonamides induced a protein pattern indicative of the stringent response. In addition, an E. coli strain carrying a relA mutation and defective in stringent response was more susceptible than its isogenic relA+ parent strain. In vivo efficacy was investigated in a murine S. aureus sepsis model and a S. pneumoniae sepsis model in rats. Treatment with the phenyl-thiazolylurea-sulfonamides reduced the bacterial titer in various organs by up to 3 log units, supporting the potential value of Phe-RS as a target in antibacterial therapy. PMID:14742205
Capodagli, Glenn C.; Lee, Stephen A.; Boehm, Kyle J.; ...
2014-11-12
Staphylococcus aureus is one of the most common nosocomial sources of soft-tissue and skin infections and has more recently become prevalent in the community setting as well. Since the use of penicillins to combat S. aureus infections in the 1940s, the bacterium has been notorious for developing resistances to antibiotics, such as methicillin-resistant Staphylococcus aureus (MRSA). With the persistence of MRSA as well as many other drug resistant bacteria and parasites, there is a growing need to focus on new pharmacological targets. Recently, class II fructose 1,6-bisphosphate aldolases (FBAs) have garnered attention to fill this role. Regrettably, scarce biochemical datamore » and no structural data are currently available for the class II FBA found in MRSA (SaFBA). With the recent finding of a flexible active site zinc-binding loop (Z-Loop) in class IIa FBAs and its potential for broad spectrum class II FBA inhibition, the lack of information regarding this feature of class IIb FBAs, such as SaFBA, has been limiting for further Z-loop inhibitor development. Therefore, we elucidated the crystal structure of SaFBA to 2.1 Å allowing for a more direct structural analysis of SaFBA. Furthermore, we determined the KM for one of SaFBA’s substrates, fructose 1,6-bisphosphate, as well as performed mode of inhibition studies for an inhibitor that takes advantage of the Z-loop’s flexibility. Altogether the data offers insight into a class IIb FBA from a pervasively drug resistant bacterium and a comparison of Z-loops and other features between the different subtypes of class II FBAs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capodagli, Glenn C.; Lee, Stephen A.; Boehm, Kyle J.
Staphylococcus aureus is one of the most common nosocomial sources of soft-tissue and skin infections and has more recently become prevalent in the community setting as well. Since the use of penicillins to combat S. aureus infections in the 1940s, the bacterium has been notorious for developing resistances to antibiotics, such as methicillin-resistant Staphylococcus aureus (MRSA). With the persistence of MRSA as well as many other drug resistant bacteria and parasites, there is a growing need to focus on new pharmacological targets. Recently, class II fructose 1,6-bisphosphate aldolases (FBAs) have garnered attention to fill this role. Regrettably, scarce biochemical datamore » and no structural data are currently available for the class II FBA found in MRSA (SaFBA). With the recent finding of a flexible active site zinc-binding loop (Z-Loop) in class IIa FBAs and its potential for broad spectrum class II FBA inhibition, the lack of information regarding this feature of class IIb FBAs, such as SaFBA, has been limiting for further Z-loop inhibitor development. Therefore, we elucidated the crystal structure of SaFBA to 2.1 Å allowing for a more direct structural analysis of SaFBA. Furthermore, we determined the KM for one of SaFBA’s substrates, fructose 1,6-bisphosphate, as well as performed mode of inhibition studies for an inhibitor that takes advantage of the Z-loop’s flexibility. Altogether the data offers insight into a class IIb FBA from a pervasively drug resistant bacterium and a comparison of Z-loops and other features between the different subtypes of class II FBAs.« less
Capodagli, Glenn C; Lee, Stephen A; Boehm, Kyle J; Brady, Kristin M; Pegan, Scott D
2014-12-09
Staphylococcus aureus is one of the most common nosocomial sources of soft-tissue and skin infections and has more recently become prevalent in the community setting as well. Since the use of penicillins to combat S. aureus infections in the 1940s, the bacterium has been notorious for developing resistances to antibiotics, such as methicillin-resistant Staphylococcus aureus (MRSA). With the persistence of MRSA as well as many other drug resistant bacteria and parasites, there is a growing need to focus on new pharmacological targets. Recently, class II fructose 1,6-bisphosphate aldolases (FBAs) have garnered attention to fill this role. Regrettably, scarce biochemical data and no structural data are currently available for the class II FBA found in MRSA (SaFBA). With the recent finding of a flexible active site zinc-binding loop (Z-Loop) in class IIa FBAs and its potential for broad spectrum class II FBA inhibition, the lack of information regarding this feature of class IIb FBAs, such as SaFBA, has been limiting for further Z-loop inhibitor development. Therefore, we elucidated the crystal structure of SaFBA to 2.1 Å allowing for a more direct structural analysis of SaFBA. Furthermore, we determined the KM for one of SaFBA's substrates, fructose 1,6-bisphosphate, as well as performed mode of inhibition studies for an inhibitor that takes advantage of the Z-loop's flexibility. Together the data offers insight into a class IIb FBA from a pervasively drug resistant bacterium and a comparison of Z-loops and other features between the different subtypes of class II FBAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shiva; Pioszak, Augen; Zhang, Chenghai
2012-02-21
Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology ofmore » the ECD and a distinct mode of ligand recognition. Here we report a 1.9 {angstrom} crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.« less
A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pejchal, Robert; Doores, Katie J.; Walker, Laura M.
The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man{sub 9} at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short {beta}-strand segment ofmore » the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.« less
Groll, Michael; Larionov, Oleg V.; Huber, Robert; de Meijere, Armin
2006-01-01
Most class I MHC ligands are generated from the vast majority of cellular proteins by proteolysis within the ubiquitin–proteasome pathway and are presented on the cell surface by MHC class I molecules. Here, we present the crystallographic analysis of yeast 20S proteasome in complex with the inhibitor homobelactosin C. The structure reveals a unique inhibitor-binding mode and provides information about the composition of proteasomal primed substrate-binding sites. IFN-γ inducible substitution of proteasomal constitutive subunits by immunosubunits modulates characteristics of generated peptides, thus producing fragments with higher preference for binding to MHC class I molecules. The structural data for the proteasome:homobelactosin C complex provide an explanation for involvement of immunosubunits in antigen generation and open perspectives for rational design of ligands, inhibiting exclusively constitutive proteasomes or immunoproteasomes. PMID:16537370
Structure of a Pheromone Receptor-Associated Mhc Molecule With An Open And Empty Groove
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, R.; Huey-Tubman, K.E.; Dulac, C.
2006-10-06
Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-bindingmore » MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.« less
Recognition of peptide–MHC class I complexes by activating killer immunoglobulin-like receptors
Stewart, C. Andrew; Laugier-Anfossi, Fanny; Vély, Frédéric; Saulquin, Xavier; Riedmuller, Jenifer; Tisserant, Agnès; Gauthier, Laurent; Romagné, François; Ferracci, Géraldine; Arosa, Fernando A.; Moretta, Alessandro; Sun, Peter D.; Ugolini, Sophie; Vivier, Eric
2005-01-01
Inhibitory receptors for MHC class I molecules increase the threshold of lymphocyte activation. Natural Killer (NK) cells express a large number of such inhibitory receptors, including the human killer Ig-like receptors (KIR). However, activating members of the KIR family have poorly defined ligands and functions. Here we describe the use of activating KIR tetramer reagents as probes to detect their ligands. Infection of cells with Epstein–Barr virus leads to expression of a detectable ligand for the activating receptor KIR2DS1. In this case, KIR2DS1 interacts with up-regulated peptide–MHC class I complexes on Epstein–Barr virus-infected cells in a transporter associated with antigen processing (TAP)-dependent manner. In tetramer-based cellular assays and direct affinity measurements, this interaction with MHC class I is facilitated by a broad spectrum of peptides. KIR2DS1 and its inhibitory homologue, KIR2DL1, share sensitivity to peptide sequence alterations at positions 7 and 8. These results fit a model in which activating and inhibitory receptors recognize the same sets of self-MHC class I molecules, differing only in their binding affinities. Importantly, KIR2DS1 is not always sufficient to trigger NK effector responses when faced with cognate ligand, consistent with fine control during NK cell activation. We discuss how our results for KIR2DS1 and parallel studies on KIR2DS2 relate to the association between activating KIR genes and susceptibility to autoimmune disorders. PMID:16141329
Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors.
Stewart, C Andrew; Laugier-Anfossi, Fanny; Vély, Frédéric; Saulquin, Xavier; Riedmuller, Jenifer; Tisserant, Agnès; Gauthier, Laurent; Romagné, François; Ferracci, Géraldine; Arosa, Fernando A; Moretta, Alessandro; Sun, Peter D; Ugolini, Sophie; Vivier, Eric
2005-09-13
Inhibitory receptors for MHC class I molecules increase the threshold of lymphocyte activation. Natural Killer (NK) cells express a large number of such inhibitory receptors, including the human killer Ig-like receptors (KIR). However, activating members of the KIR family have poorly defined ligands and functions. Here we describe the use of activating KIR tetramer reagents as probes to detect their ligands. Infection of cells with Epstein-Barr virus leads to expression of a detectable ligand for the activating receptor KIR2DS1. In this case, KIR2DS1 interacts with up-regulated peptide-MHC class I complexes on Epstein-Barr virus-infected cells in a transporter associated with antigen processing (TAP)-dependent manner. In tetramer-based cellular assays and direct affinity measurements, this interaction with MHC class I is facilitated by a broad spectrum of peptides. KIR2DS1 and its inhibitory homologue, KIR2DL1, share sensitivity to peptide sequence alterations at positions 7 and 8. These results fit a model in which activating and inhibitory receptors recognize the same sets of self-MHC class I molecules, differing only in their binding affinities. Importantly, KIR2DS1 is not always sufficient to trigger NK effector responses when faced with cognate ligand, consistent with fine control during NK cell activation. We discuss how our results for KIR2DS1 and parallel studies on KIR2DS2 relate to the association between activating KIR genes and susceptibility to autoimmune disorders.
Herrou, Julien; Willett, Jonathan W; Czyż, Daniel M; Babnigg, Gyorgy; Kim, Youngchang; Crosson, Sean
2017-03-01
Brucella abortus σ E1 is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon, bab1_0223-bab1_0226 , is among the most highly activated gene sets in the σ E1 regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription of yehZYXW is activated by the general stress sigma factor σ S in Enterobacteriaceae , which suggests a functional role for this transport system in bacterial stress response across the classes Alphaproteobacteria and Gammaproteobacteria We present evidence that B. abortus YehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σ E1 -null strain. The sole in vitro phenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li + ion concentrations. A crystal structure of B. abortus YehZ revealed a class II periplasmic binding protein fold with significant structural homology to Archaeoglobus fulgidus ProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers. IMPORTANCE Brucella abortus σ E1 regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the majority of genes regulated by σ E1 remain undefined. We present a functional/structural analysis of a conserved putative membrane transport system (YehZYXW) whose expression is strongly activated by σ E1 Though annotated as a quaternary ammonium osmolyte uptake system, experimental physiological studies and measured ligand-binding properties of the periplasmic binding protein (PBP), YehZ, are inconsistent with this function. A crystal structure of B. abortus YehZ provides molecular insight into differences between bona fide quaternary ammonium osmolyte importers and YehZ-related proteins, which form a distinct phylogenetic and functional group of PBPs. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrou, Julien; Willett, Jonathan W.; Czyż, Daniel M.
ABSTRACT Brucella abortusσ E1is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon,bab1_0223-bab1_0226, is among the most highly activated gene sets in the σ E1regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription ofyehZYXWis activated by the general stress sigma factor σ SinEnterobacteriaceae, which suggests a functional role for this transport systemmore » in bacterial stress response across the classesAlphaproteobacteriaandGammaproteobacteria. We present evidence thatB. abortusYehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σ E1-null strain. The solein vitrophenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li +ion concentrations. A crystal structure ofB. abortusYehZ revealed a class II periplasmic binding protein fold with significant structural homology toArchaeoglobus fulgidusProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers. IMPORTANCEBrucella abortusσ E1regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the majority of genes regulated by σ E1remain undefined. We present a functional/structural analysis of a conserved putative membrane transport system (YehZYXW) whose expression is strongly activated by σ E1. Though annotated as a quaternary ammonium osmolyte uptake system, experimental physiological studies and measured ligand-binding properties of the periplasmic binding protein (PBP), YehZ, are inconsistent with this function. A crystal structure ofB. abortusYehZ provides molecular insight into differences between bona fide quaternary ammonium osmolyte importers and YehZ-related proteins, which form a distinct phylogenetic and functional group of PBPs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrou, Julien; Willett, Jonathan W.; Czyż, Daniel M.
ABSTRACT Brucella abortusσ E1is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon,bab1_0223-bab1_0226, is among the most highly activated gene sets in the σ E1regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription ofyehZYXWis activated by the general stress sigma factor σ SinEnterobacteriaceae, which suggests a functional role for this transport systemmore » in bacterial stress response across the classesAlphaproteobacteriaandGammaproteobacteria. We present evidence thatB. abortusYehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σ E1-null strain. The solein vitrophenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li +ion concentrations. A crystal structure ofB. abortusYehZ revealed a class II periplasmic binding protein fold with significant structural homology toArchaeoglobus fulgidusProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers. IMPORTANCEBrucella abortusσ E1regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the majority of genes regulated by σ E1remain undefined. We present a functional/structural analysis of a conserved putative membrane transport system (YehZYXW) whose expression is strongly activated by σ E1. Though annotated as a quaternary ammonium osmolyte uptake system, experimental physiological studies and measured ligand-binding properties of the periplasmic binding protein (PBP), YehZ, are inconsistent with this function. A crystal structure ofB. abortusYehZ provides molecular insight into differences between bona fide quaternary ammonium osmolyte importers and YehZ-related proteins, which form a distinct phylogenetic and functional group of PBPs.« less
Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group.
Lobera, Mercedes; Madauss, Kevin P; Pohlhaus, Denise T; Wright, Quentin G; Trocha, Mark; Schmidt, Darby R; Baloglu, Erkan; Trump, Ryan P; Head, Martha S; Hofmann, Glenn A; Murray-Thompson, Monique; Schwartz, Benjamin; Chakravorty, Subhas; Wu, Zining; Mander, Palwinder K; Kruidenier, Laurens; Reid, Robert A; Burkhart, William; Turunen, Brandon J; Rong, James X; Wagner, Craig; Moyer, Mary B; Wells, Carrow; Hong, Xuan; Moore, John T; Williams, Jon D; Soler, Dulce; Ghosh, Shomir; Nolan, Michael A
2013-05-01
In contrast to studies on class I histone deacetylase (HDAC) inhibitors, the elucidation of the molecular mechanisms and therapeutic potential of class IIa HDACs (HDAC4, HDAC5, HDAC7 and HDAC9) is impaired by the lack of potent and selective chemical probes. Here we report the discovery of inhibitors that fill this void with an unprecedented metal-binding group, trifluoromethyloxadiazole (TFMO), which circumvents the selectivity and pharmacologic liabilities of hydroxamates. We confirm direct metal binding of the TFMO through crystallographic approaches and use chemoproteomics to demonstrate the superior selectivity of the TFMO series relative to a hydroxamate-substituted analog. We further apply these tool compounds to reveal gene regulation dependent on the catalytic active site of class IIa HDACs. The discovery of these inhibitors challenges the design process for targeting metalloenzymes through a chelating metal-binding group and suggests therapeutic potential for class IIa HDAC enzyme blockers distinct in mechanism and application compared to current HDAC inhibitors.
Toxic shock syndrome toxin 1 binds to major histocompatibility complex class II molecules.
Scholl, P; Diez, A; Mourad, W; Parsonnet, J; Geha, R S; Chatila, T
1989-01-01
Toxic shock syndrome toxin 1 (TSST-1) is a 22-kDa exotoxin produced by strains of Staphylococcus aureus and implicated in the pathogenesis of toxic shock syndrome. In common with other staphylococcal exotoxins, TSST-1 has diverse immunological effects. These include the induction of interleukin 2 receptor expression, interleukin 2 synthesis, proliferation of human T lymphocytes, and stimulation of interleukin 1 synthesis by human monocytes. In the present study, we demonstrate that TSST-1 binds with saturation kinetics and with a dissociation constant of 17-43 nM to a single class of binding sites on human mononuclear cells. There was a strong correlation between the number of TSST-1 binding sites and the expression of major histocompatibility complex class II molecules, and interferon-gamma induced the expression of class II molecules as well as TSST-1 binding sites on human skin-derived fibroblasts. Monoclonal antibodies to HLA-DR, but not to HLA-DP or HLA-DQ, strongly inhibited TSST-1 binding. Affinity chromatography of 125I-labeled cell membranes over TSST-1-agarose resulted in the recovery of two bands of 35 kDa and 31 kDa that comigrated, respectively, with the alpha and beta chains of HLA-DR and that could be immunoprecipitated with anti-HLA-DR monoclonal antibodies. Binding of TSST-1 was demonstrated to HLA-DR and HLA-DQ L-cell transfectants. These results indicate that major histocompatibility complex class II molecules represent the major binding site for TSST-1 on human cells. Images PMID:2542966
The fifth class of Gα proteins
Oka, Yuichiro; Saraiva, Luis R.; Kwan, Yen Yen; Korsching, Sigrun I.
2009-01-01
All α-subunits of vertebrate heterotrimeric G proteins have been classified into 4 major classes, Gs, Gi, Gq, and G12, which possess orthologs already in sponges, one of the earliest animal phyla to evolve. Here we report the discovery of the fifth class of Gα protein, Gv, ancient like the other 4 classes, with members already in sponges, and encoded by 1–2 gnav genes per species. Gv is conserved across the animal kingdom including vertebrates, arthropods, mollusks, and annelids, but has been lost in many lineages such as nematodes, fruit fly, jawless fish, and tetrapods, concordant with a birth-and-death mode of evolution. All Gv proteins contain 5 G-box motifs characteristic of GTP-binding proteins and the expected acylation consensus sites in the N-terminal region. Sixty amino acid residues are conserved only among Gv, suggesting that they may constitute interaction sites for Gv-specific partner molecules. Overall Gv homology is high, on average 70% amino acid identity among vertebrate family members. The dN/dS analysis of teleost gnav genes reveals evolution under stringent negative selection. Genomic structure of vertebrate gnav genes is well conserved and different from those of the other 4 classes. The predicted full ORF of zebrafish gnav1 was confirmed by isolation from cDNA. RT-PCR analysis showed broad expression of gnav1 in adult zebrafish and in situ hybridization demonstrated a more restricted expression in larval tissues including the developing inner ear. The discovery of this fifth class of Gα proteins changes our understanding of G protein evolution. PMID:19164534
Novel Structures of Self-Associating Stapled Peptides
Bhattacharya, Shibani; Zhang, Hongtao; Cowburn, David; Debnath, Asim K.
2012-01-01
Hydrocarbon stapling of peptides is a powerful technique to transform linear peptides into cell-permeable helical structures that can bind to specific biological targets. In this study, we have used high resolution solution NMR techniques complemented by Dynamic Light Scattering to characterize extensively a family of hydrocarbon stapled peptides with known inhibitory activity against HIV-1 capsid assembly to evaluate the various factors that modulate activity. The helical peptides share a common binding motif but differ in charge, the length and position of the staple. An important outcome of the study was to show the peptides share a propensity to self-associate into organized polymeric structures mediated predominantly by hydrophobic interactions between the olefinic chain and the aromatic side-chains from the peptide. We have also investigated in detail the structural significance of the length and position of the staple, and of olefinic bond isomerization in stabilizing the helical conformation of the peptides as potential factors driving polymerization. This study presents the numerous challenges of designing biologically active stapled peptides and the conclusions have broad implications for optimizing a promising new class of compounds in drug discovery. PMID:22170623
Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies
NASA Astrophysics Data System (ADS)
Shivatare, Sachin S.; Chang, Shih-Huang; Tsai, Tsung-I.; Tseng, Susan Yu; Shivatare, Vidya S.; Lin, Yih-Shyan; Cheng, Yang-Yu; Ren, Chien-Tai; Lee, Chang-Chun David; Pawar, Sujeet; Tsai, Charng-Sheng; Shih, Hao-Wei; Zeng, Yi-Fang; Liang, Chi-Hui; Kwong, Peter D.; Burton, Dennis R.; Wu, Chung-Yi; Wong, Chi-Huey
2016-04-01
A new class of broadly neutralizing antibodies (bNAbs) from HIV donors has been reported to target the glycans on gp120—a glycoprotein found on the surface of the virus envelope—thus renewing hope of developing carbohydrate-based HIV vaccines. However, the version of gp120 used in previous studies was not from human T cells and so the glycosylation pattern could be somewhat different to that found in the native system. Moreover, some antibodies recognized two different glycans simultaneously and this cannot be detected with the commonly used glycan microarrays on glass slides. Here, we have developed a glycan microarray on an aluminium-oxide-coated glass slide containing a diverse set of glycans, including homo- and mixed N-glycans (high-mannose, hybrid and complex types) that were prepared by modular chemo-enzymatic methods to detect the presence of hetero-glycan binding behaviours. This new approach allows rapid screening and identification of optimal glycans recognized by neutralizing antibodies, and could speed up the development of HIV-1 vaccines targeting cell surface glycans.
Conserved neutralizing epitope at globular head of hemagglutinin in H3N2 influenza viruses.
Iba, Yoshitaka; Fujii, Yoshifumi; Ohshima, Nobuko; Sumida, Tomomi; Kubota-Koketsu, Ritsuko; Ikeda, Mariko; Wakiyama, Motoaki; Shirouzu, Mikako; Okada, Jun; Okuno, Yoshinobu; Kurosawa, Yoshikazu; Yokoyama, Shigeyuki
2014-07-01
Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular receptor. Since mutations are readily introduced into such epitopes, this type of antibody shows narrow strain specificity. Recently, however, broadly neutralizing antibodies have been isolated. Most of these bind either to conserved sites in the stem region or to the sialic acid-binding pocket itself. In the present study, we identified a new neutralizing epitope in the head region recognized by a broadly neutralizing human antibody against H3N2. This epitope may be useful for design of vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Conserved Neutralizing Epitope at Globular Head of Hemagglutinin in H3N2 Influenza Viruses
Iba, Yoshitaka; Fujii, Yoshifumi; Ohshima, Nobuko; Sumida, Tomomi; Kubota-Koketsu, Ritsuko; Ikeda, Mariko; Wakiyama, Motoaki; Shirouzu, Mikako; Okada, Jun; Okuno, Yoshinobu; Yokoyama, Shigeyuki
2014-01-01
ABSTRACT Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. IMPORTANCE Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular receptor. Since mutations are readily introduced into such epitopes, this type of antibody shows narrow strain specificity. Recently, however, broadly neutralizing antibodies have been isolated. Most of these bind either to conserved sites in the stem region or to the sialic acid-binding pocket itself. In the present study, we identified a new neutralizing epitope in the head region recognized by a broadly neutralizing human antibody against H3N2. This epitope may be useful for design of vaccines. PMID:24719430
Theoretical Analysis of Allosteric and Operator Binding for Cyclic-AMP Receptor Protein Mutants
NASA Astrophysics Data System (ADS)
Einav, Tal; Duque, Julia; Phillips, Rob
2018-02-01
Allosteric transcription factors undergo binding events both at their inducer binding sites as well as at distinct DNA binding domains, and it is often difficult to disentangle the structural and functional consequences of these two classes of interactions. In this work, we compare the ability of two statistical mechanical models - the Monod-Wyman-Changeux (MWC) and the Koshland-N\\'emethy-Filmer (KNF) models of protein conformational change - to characterize the multi-step activation mechanism of the broadly acting cyclic-AMP receptor protein (CRP). We first consider the allosteric transition resulting from cyclic-AMP binding to CRP, then analyze how CRP binds to its operator, and finally investigate the ability of CRP to activate gene expression. In light of these models, we examine data from a beautiful recent experiment that created a single-chain version of the CRP homodimer, thereby enabling each subunit to be mutated separately. Using this construct, six mutants were created using all possible combinations of the wild type subunit, a D53H mutant subunit, and an S62F mutant subunit. We demonstrate that both the MWC and KNF models can explain the behavior of all six mutants using a small, self-consistent set of parameters. In comparing the results, we find that the MWC model slightly outperforms the KNF model in the quality of its fits, but more importantly the parameters inferred by the MWC model are more in line with structural knowledge of CRP. In addition, we discuss how the conceptual framework developed here for CRP enables us to not merely analyze data retrospectively, but has the predictive power to determine how combinations of mutations will interact, how double mutants will behave, and how each construct would regulate gene expression.
Discrete structural features among interface residue-level classes.
Sowmya, Gopichandran; Ranganathan, Shoba
2015-01-01
Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs.
Discrete structural features among interface residue-level classes
2015-01-01
Background Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Results Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Conclusions Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs. PMID:26679043
The first crystal structures of a family 19 class IV chitinase: the enzyme from Norway spruce.
Ubhayasekera, Wimal; Rawat, Reetika; Ho, Sharon Wing Tak; Wiweger, Malgorzata; Von Arnold, Sara; Chye, Mee-Len; Mowbray, Sherry L
2009-10-01
Chitinases help plants defend themselves against fungal attack, and play roles in other processes, including development. The catalytic modules of most plant chitinases belong to glycoside hydrolase family 19. We report here x-ray structures of such a module from a Norway spruce enzyme, the first for any family 19 class IV chitinase. The bi-lobed structure has a wide cleft lined by conserved residues; the most interesting for catalysis are Glu113, the proton donor, and Glu122, believed to be a general base that activate a catalytic water molecule. Comparisons to class I and II enzymes show that loop deletions in the class IV proteins make the catalytic cleft shorter and wider; from modeling studies, it is predicted that only three N-acetylglucosamine-binding subsites exist in class IV. Further, the structural comparisons suggest that the family 19 enzymes become more closed on substrate binding. Attempts to solve the structure of the complete protein including the associated chitin-binding module failed, however, modeling studies based on close relatives indicate that the binding module recognizes at most three N-acetylglucosamine units. The combined results suggest that the class IV enzymes are optimized for shorter substrates than the class I and II enzymes, or alternatively, that they are better suited for action on substrates where only small regions of chitin chain are accessible. Intact spruce chitinase is shown to possess antifungal activity, which requires the binding module; removing this module had no effect on measured chitinase activity.
Structure of the glucagon receptor in complex with a glucagon analogue.
Zhang, Haonan; Qiao, Anna; Yang, Linlin; Van Eps, Ned; Frederiksen, Klaus S; Yang, Dehua; Dai, Antao; Cai, Xiaoqing; Zhang, Hui; Yi, Cuiying; Cao, Can; He, Lingli; Yang, Huaiyu; Lau, Jesper; Ernst, Oliver P; Hanson, Michael A; Stevens, Raymond C; Wang, Ming-Wei; Reedtz-Runge, Steffen; Jiang, Hualiang; Zhao, Qiang; Wu, Beili
2018-01-03
Class B G-protein-coupled receptors (GPCRs), which consist of an extracellular domain (ECD) and a transmembrane domain (TMD), respond to secretin peptides to play a key part in hormonal homeostasis, and are important therapeutic targets for a variety of diseases. Previous work has suggested that peptide ligands bind to class B GPCRs according to a two-domain binding model, in which the C-terminal region of the peptide targets the ECD and the N-terminal region of the peptide binds to the TMD binding pocket. Recently, three structures of class B GPCRs in complex with peptide ligands have been solved. These structures provide essential insights into peptide ligand recognition by class B GPCRs. However, owing to resolution limitations, the specific molecular interactions for peptide binding to class B GPCRs remain ambiguous. Moreover, these previously solved structures have different ECD conformations relative to the TMD, which introduces questions regarding inter-domain conformational flexibility and the changes required for receptor activation. Here we report the 3.0 Å-resolution crystal structure of the full-length human glucagon receptor (GCGR) in complex with a glucagon analogue and partial agonist, NNC1702. This structure provides molecular details of the interactions between GCGR and the peptide ligand. It reveals a marked change in the relative orientation between the ECD and TMD of GCGR compared to the previously solved structure of the inactive GCGR-NNC0640-mAb1 complex. Notably, the stalk region and the first extracellular loop undergo major conformational changes in secondary structure during peptide binding, forming key interactions with the peptide. We further propose a dual-binding-site trigger model for GCGR activation-which requires conformational changes of the stalk, first extracellular loop and TMD-that extends our understanding of the previously established two-domain peptide-binding model of class B GPCRs.
Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses.
Bergmann, Tobias; Lindvall, Mikaela; Moore, Erin; Moore, Eugene; Sidney, John; Miller, Donald; Tallmadge, Rebecca L; Myers, Paisley T; Malaker, Stacy A; Shabanowitz, Jeffrey; Osterrieder, Nikolaus; Peters, Bjoern; Hunt, Donald F; Antczak, Douglas F; Sette, Alessandro
2017-05-01
Quantitative peptide-binding motifs of MHC class I alleles provide a valuable tool to efficiently identify putative T cell epitopes. Detailed information on equine MHC class I alleles is still very limited, and to date, only a single equine MHC class I allele, Eqca-1*00101 (ELA-A3 haplotype), has been characterized. The present study extends the number of characterized ELA class I specificities in two additional haplotypes found commonly in the Thoroughbred breed. Accordingly, we here report quantitative binding motifs for the ELA-A2 allele Eqca-16*00101 and the ELA-A9 allele Eqca-1*00201. Utilizing analyses of endogenously bound and eluted ligands and the screening of positional scanning combinatorial libraries, detailed and quantitative peptide-binding motifs were derived for both alleles. Eqca-16*00101 preferentially binds peptides with aliphatic/hydrophobic residues in position 2 and at the C-terminus, and Eqca-1*00201 has a preference for peptides with arginine in position 2 and hydrophobic/aliphatic residues at the C-terminus. Interestingly, the Eqca-16*00101 motif resembles that of the human HLA A02-supertype, while the Eqca-1*00201 motif resembles that of the HLA B27-supertype and two macaque class I alleles. It is expected that the identified motifs will facilitate the selection of candidate epitopes for the study of immune responses in horses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Leopold; Giang, Erick; Nieusma, Travis
Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold β sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structuresmore » differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.« less
Informative priors based on transcription factor structural class improve de novo motif discovery.
Narlikar, Leelavati; Gordân, Raluca; Ohler, Uwe; Hartemink, Alexander J
2006-07-15
An important problem in molecular biology is to identify the locations at which a transcription factor (TF) binds to DNA, given a set of DNA sequences believed to be bound by that TF. In previous work, we showed that information in the DNA sequence of a binding site is sufficient to predict the structural class of the TF that binds it. In particular, this suggests that we can predict which locations in any DNA sequence are more likely to be bound by certain classes of TFs than others. Here, we argue that traditional methods for de novo motif finding can be significantly improved by adopting an informative prior probability that a TF binding site occurs at each sequence location. To demonstrate the utility of such an approach, we present priority, a powerful new de novo motif finding algorithm. Using data from TRANSFAC, we train three classifiers to recognize binding sites of basic leucine zipper, forkhead, and basic helix loop helix TFs. These classifiers are used to equip priority with three class-specific priors, in addition to a default prior to handle TFs of other classes. We apply priority and a number of popular motif finding programs to sets of yeast intergenic regions that are reported by ChIP-chip to be bound by particular TFs. priority identifies motifs the other methods fail to identify, and correctly predicts the structural class of the TF recognizing the identified binding sites. Supplementary material and code can be found at http://www.cs.duke.edu/~amink/.
Cofactor specificity motifs and the induced fit mechanism in class I ketol-acid reductoisomerases.
Cahn, Jackson K B; Brinkmann-Chen, Sabine; Spatzal, Thomas; Wiig, Jared A; Buller, Andrew R; Einsle, Oliver; Hu, Yilin; Ribbe, Markus W; Arnold, Frances H
2015-06-15
Although most sequenced members of the industrially important ketol-acid reductoisomerase (KARI) family are class I enzymes, structural studies to date have focused primarily on the class II KARIs, which arose through domain duplication. In the present study, we present five new crystal structures of class I KARIs. These include the first structure of a KARI with a six-residue β2αB (cofactor specificity determining) loop and an NADPH phosphate-binding geometry distinct from that of the seven- and 12-residue loops. We also present the first structures of naturally occurring KARIs that utilize NADH as cofactor. These results show insertions in the specificity loops that confounded previous attempts to classify them according to loop length. Lastly, we explore the conformational changes that occur in class I KARIs upon binding of cofactor and metal ions. The class I KARI structures indicate that the active sites close upon binding NAD(P)H, similar to what is observed in the class II KARIs of rice and spinach and different from the opening of the active site observed in the class II KARI of Escherichia coli. This conformational change involves a decrease in the bending of the helix that runs between the domains and a rearrangement of the nicotinamide-binding site. © The Authors Journal Compilation © 2015 Biochemical Society.
Kramer, Ryan M.; Shende, Varad R.; Motl, Nicole; Pace, C. Nick; Scholtz, J. Martin
2012-01-01
Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be used to obtain comparative solubility measurements and, in some cases, estimations of solubility in buffer alone. Protein precipitants fall into three broad classes: salts, long-chain polymers, and organic solvents. Here, we compare the use of representatives from two classes of precipitants, ammonium sulfate and polyethylene glycol 8000, by measuring the solubility of seven proteins. We find that increased negative surface charge correlates strongly with increased protein solubility and may be due to strong binding of water by the acidic amino acids. We also find that the solubility results obtained for the two different precipitants agree closely with each other, suggesting that the two precipitants probe similar properties that are relevant to solubility in buffer alone. PMID:22768947
Binder, Stefan; Stoll, Katrin; Stoll, Birgit
2013-01-01
It is well recognized that flowering plants maintain a particularly broad spectrum of factors to support gene expression in mitochondria. Many of these factors are pentatricopeptide repeat (PPR) proteins that participate in virtually all processes dealing with RNA. One of these processes is the post-transcriptional generation of mature 5′ termini of RNA. Several PPR proteins are required for efficient 5′ maturation of mitochondrial mRNA and rRNA. These so-called RNA PROCESSING FACTORs (RPF) exclusively represent P-class PPR proteins, mainly composed of canonical PPR motifs without any extra domains. Applying the recent PPR-nucleotide recognition code, binding sites of RPF are predicted on the 5′ leader sequences. The sequence-specific interaction of an RPF with one or a few RNA substrates probably directly or indirectly recruits an as-yet-unidentified endonuclease to the processing site(s). The identification and characterization of RPF is a major step toward the understanding of the role of 5′ end maturation in flowering plant mitochondria. PMID:24184847
Bottomley, Matthew J.; Lo Surdo, Paola; Di Giovine, Paolo; Cirillo, Agostino; Scarpelli, Rita; Ferrigno, Federica; Jones, Philip; Neddermann, Petra; De Francesco, Raffaele; Steinkühler, Christian; Gallinari, Paola; Carfí, Andrea
2008-01-01
Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR·HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions. PMID:18614528
Bottomley, Matthew J; Lo Surdo, Paola; Di Giovine, Paolo; Cirillo, Agostino; Scarpelli, Rita; Ferrigno, Federica; Jones, Philip; Neddermann, Petra; De Francesco, Raffaele; Steinkühler, Christian; Gallinari, Paola; Carfí, Andrea
2008-09-26
Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR.HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions.
Weisshaar, Marco; Cox, Robert; Morehouse, Zachary; Kumar Kyasa, Shiva; Yan, Dan; Oberacker, Phil; Mao, Shuli; Golden, Jennifer E; Lowen, Anice C; Natchus, Michael G; Plemper, Richard K
2016-08-15
Influenza A virus (IAV) infections cause major morbidity and mortality, generating an urgent need for novel antiviral therapeutics. We recently established a dual myxovirus high-throughput screening protocol that combines a fully replication-competent IAV-WSN strain and a respiratory syncytial virus reporter strain for the simultaneous identification of IAV-specific, paramyxovirus-specific, and broad-spectrum inhibitors. In the present study, this protocol was applied to a screening campaign to assess a diverse chemical library with over 142,000 entries. Focusing on IAV-specific hits, we obtained a hit rate of 0.03% after cytotoxicity testing and counterscreening. Three chemically distinct hit classes with nanomolar potency and favorable cytotoxicity profiles were selected. Time-of-addition, minigenome, and viral entry studies demonstrated that these classes block hemagglutinin (HA)-mediated membrane fusion. Antiviral activity extends to an isolate from the 2009 pandemic and, in one case, another group 1 subtype. Target identification through biolayer interferometry confirmed binding of all hit compounds to HA. Resistance profiling revealed two distinct escape mechanisms: primary resistance, associated with reduced compound binding, and secondary resistance, associated with unaltered binding. Secondary resistance was mediated, unusually, through two different pairs of cooperative mutations, each combining a mutation eliminating the membrane-proximal stalk N-glycan with a membrane-distal change in HA1 or HA2. Chemical synthesis of an analog library combined with in silico docking extracted a docking pose for the hit classes. Chemical interrogation spotlights IAV HA as a major druggable target for small-molecule inhibition. Our study identifies novel chemical scaffolds with high developmental potential, outlines diverse routes of IAV escape from entry inhibition, and establishes a path toward structure-aided lead development. This study is one of the first to apply a fully replication-competent third-generation IAV reporter strain to a large-scale high-throughput screen (HTS) drug discovery campaign, allowing multicycle infection and screening in physiologically relevant human respiratory cells. A large number of potential druggable targets was thus chemically interrogated, but mechanistic characterization, positive target identification, and resistance profiling demonstrated that three chemically promising and structurally distinct hit classes selected for further analysis all block HA-mediated membrane fusion. Viral escape from inhibition could be achieved through primary and secondary resistance mechanisms. In silico docking predicted compound binding to a microdomain located at the membrane-distal site of the prefusion HA stalk that was also previously suggested as a target site for chemically unrelated HA inhibitors. This study identifies an unexpected chemodominance of the HA stalk microdomain for small-molecule inhibitors in IAV inhibitor screening campaigns and highlights a novel mechanism of cooperative resistance to IAV entry blockers. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Weisshaar, Marco; Cox, Robert; Morehouse, Zachary; Kumar Kyasa, Shiva; Yan, Dan; Oberacker, Phil; Mao, Shuli; Lowen, Anice C.; Natchus, Michael G.
2016-01-01
ABSTRACT Influenza A virus (IAV) infections cause major morbidity and mortality, generating an urgent need for novel antiviral therapeutics. We recently established a dual myxovirus high-throughput screening protocol that combines a fully replication-competent IAV-WSN strain and a respiratory syncytial virus reporter strain for the simultaneous identification of IAV-specific, paramyxovirus-specific, and broad-spectrum inhibitors. In the present study, this protocol was applied to a screening campaign to assess a diverse chemical library with over 142,000 entries. Focusing on IAV-specific hits, we obtained a hit rate of 0.03% after cytotoxicity testing and counterscreening. Three chemically distinct hit classes with nanomolar potency and favorable cytotoxicity profiles were selected. Time-of-addition, minigenome, and viral entry studies demonstrated that these classes block hemagglutinin (HA)-mediated membrane fusion. Antiviral activity extends to an isolate from the 2009 pandemic and, in one case, another group 1 subtype. Target identification through biolayer interferometry confirmed binding of all hit compounds to HA. Resistance profiling revealed two distinct escape mechanisms: primary resistance, associated with reduced compound binding, and secondary resistance, associated with unaltered binding. Secondary resistance was mediated, unusually, through two different pairs of cooperative mutations, each combining a mutation eliminating the membrane-proximal stalk N-glycan with a membrane-distal change in HA1 or HA2. Chemical synthesis of an analog library combined with in silico docking extracted a docking pose for the hit classes. Chemical interrogation spotlights IAV HA as a major druggable target for small-molecule inhibition. Our study identifies novel chemical scaffolds with high developmental potential, outlines diverse routes of IAV escape from entry inhibition, and establishes a path toward structure-aided lead development. IMPORTANCE This study is one of the first to apply a fully replication-competent third-generation IAV reporter strain to a large-scale high-throughput screen (HTS) drug discovery campaign, allowing multicycle infection and screening in physiologically relevant human respiratory cells. A large number of potential druggable targets was thus chemically interrogated, but mechanistic characterization, positive target identification, and resistance profiling demonstrated that three chemically promising and structurally distinct hit classes selected for further analysis all block HA-mediated membrane fusion. Viral escape from inhibition could be achieved through primary and secondary resistance mechanisms. In silico docking predicted compound binding to a microdomain located at the membrane-distal site of the prefusion HA stalk that was also previously suggested as a target site for chemically unrelated HA inhibitors. This study identifies an unexpected chemodominance of the HA stalk microdomain for small-molecule inhibitors in IAV inhibitor screening campaigns and highlights a novel mechanism of cooperative resistance to IAV entry blockers. PMID:27252534
Singh, Sheo B; Kaelin, David E; Meinke, Peter T; Wu, Jin; Miesel, Lynn; Tan, Christopher M; Olsen, David B; Lagrutta, Armando; Fukuda, Hideyuki; Kishii, Ryuta; Takei, Masaya; Takeuchi, Tomoko; Takano, Hisashi; Ohata, Kohei; Kurasaki, Haruaki; Nishimura, Akinori; Shibata, Takeshi; Fukuda, Yasumichi
2015-09-01
Oxabicyclooctane linked novel bacterial topoisomerase inhibitors (NBTIs) are new class of recently reported broad-spectrum antibacterial agents. They target bacterial DNA gyrase and topoisomerase IV and bind to a site different than quinolones. They show no cross-resistance to known antibiotics and provide opportunity to combat drug-resistant bacteria. A structure activity relationship of the C-2 substituted ether analogs of 1,5-naphthyridine oxabicyclooctane-linked NBTIs are described. Synthesis and antibacterial activities of a total of 63 analogs have been summarized representing alkyl, cyclo alkyl, fluoro alkyl, hydroxy alkyl, amino alkyl, and carboxyl alkyl ethers. All compounds were tested against three key strains each of Gram-positive and Gram-negative bacteria as well as for hERG binding activities. Many key compounds were also tested for the functional hERG activity. Six compounds were evaluated for efficacy in a murine bacteremia model of Staphylococcus aureus infection. Significant tolerance for the ether substitution (including polar groups such as amino and carboxyl) at C-2 was observed for S. aureus activity however the same was not true for Enterococcus faecium and Gram-negative strains. Reduced clogD generally showed reduced hERG activity and improved in vivo efficacy but was generally associated with decreased overall potency. One of the best compounds was hydroxy propyl ether (16), which mainly retained the potency, spectrum and in vivo efficacy of AM8085 associated with the decreased hERG activity and improved physical property. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chutiwitoonchai, Nopporn; Mano, Takafumi; Kakisaka
An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 bindsmore » at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function. - Highlights: •DP2392-E10 inhibits replication of a broad range of influenza A subtypes. •DP2392-E10 inhibits nuclear exports of NP and NEP via their NP-NES3 and NEP-NES2 domains, respectively. •DP2392-E10 is predicted to directly bind CRM1 in the region near the HEAT9 and HEAT10 repeats.« less
Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jinghe; Kang, Byong H.; Pancera, Marie
The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref. 1). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with a half-maximum inhibitory concentration (IC 50) <50 μg ml -1. The median IC 50 of neutralized viruses was 0.033 μg ml -1, among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and amore » reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed that it bound to a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current monoclonal-antibody-based approaches to immunotherapies, prophylaxis and vaccine design.« less
Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lummis, S.C.R.; Johnston, G.A.R.; Nicoletti, G.
1991-01-01
Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligandmore » spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.« less
Size of nesting female Broad-snouted Caimans (Caiman latirostris Daudin 1802).
Leiva, P M L; Simoncini, M S; Portelinha, T C G; Larriera, A; Piña, C I
2018-03-12
The southern distribution of the Broad-snouted Caiman (Caiman latirostris Daudin 1802) in Argentina occurs in Santa Fe Province, where its population has been under management by "Proyecto Yacaré" since 1990. From 1997 to 2016, we captured 77 nesting female Broad-snouted Caimans in Santa Fe Province. Our results suggest that previously defined size classes for Broad-snouted Caiman do not adequately describe the reproductively mature female segment of the population. Here we propose to change size ranges for general size classes for Broad-snouted Caiman. In addition, we have observed that reintroduced reproductive females by Proyecto Yacaré represent about 32% of captured females. These results indicate that reintroduced females by the management program are surviving and reproducing in the wild at least up to 20 years.
Izzo, Nicholas J.; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F.; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M.
2014-01-01
Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1–42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors - i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD models and sustain improvement long-term, representing a novel mechanism of action for disease-modifying Alzheimer's therapeutics. PMID:25390368
Izzo, Nicholas J; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M
2014-01-01
Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1-42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors--i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD models and sustain improvement long-term, representing a novel mechanism of action for disease-modifying Alzheimer's therapeutics.
Attenni, Barbara; Ontoria, Jesus M; Cruz, Jonathan C; Rowley, Michael; Schultz-Fademrecht, Carsten; Steinkühler, Christian; Jones, Philip
2009-06-01
Histone deacetylase (HDAC) inhibition causes hyperacetylation of histones leading to differentiation, growth arrest and apoptosis of malignant cells, representing a new strategy in cancer therapy. Many of the known HDAC inhibitors (HDACi) that are in clinical trials possess a hydroxamic acid, that is a strong Zn(2+) binding group, thereby inhibiting some of the class I and class II isoforms. Herein we describe the identification of a selective class I HDAC inhibitor bearing a primary carboxamide moiety as zinc binding group. This HDACi displays good antiproliferative activity against multiple cancer cell lines, and demonstrates efficacy in a xenograft model comparable to vorinostat.
Lee, Sungwook; Park, Boyoun; Kang, Kwonyoon
2009-01-01
In contrast to the fairly well-characterized mechanism of assembly of MHC class I-peptide complexes, the disassembly mechanism by which peptide-loaded MHC class I molecules are released from the peptide-loading complex and exit the endoplasmic reticulum (ER) is poorly understood. Optimal peptide binding by MHC class I molecules is assumed to be sufficient for triggering exit of peptide-filled MHC class I molecules from the ER. We now show that protein disulfide isomerase (PDI) controls MHC class I disassembly by regulating dissociation of the tapasin-ERp57 disulfide conjugate. PDI acts as a peptide-dependent molecular switch; in the peptide-bound state, it binds to tapasin and ERp57 and induces dissociation of the tapasin-ERp57 conjugate. In the peptide-free state, PDI is incompetent to bind to tapasin or ERp57 and fails to dissociate the tapasin-ERp57 conjugates, resulting in ER retention of MHC class I molecules. Thus, our results indicate that even after optimal peptide loading, MHC class I disassembly does not occur by default but, rather, is a regulated process involving PDI-mediated interactions within the peptide-loading complex. PMID:19477919
Amyloid Precursor-like Protein 2 Association with HLA Class I Molecules
Tuli, Amit; Sharma, Mahak; Wang, Xiaojian; Simone, Laura C.; Capek, Haley L.; Cate, Steven; Hildebrand, William H.; Naslavsky, Naava; Caplan, Steve; Solheim, Joyce C.
2009-01-01
Amyloid precursor-like protein 2 (APLP2) is a ubiquitously expressed protein. The previously demonstrated functions for APLP2 include binding to the mouse major histocompatibility complex (MHC) class I molecule H-2Kd and down regulating its cell surface expression. In this study, we have investigated the interaction of APLP2 with the human leukocyte antigen (HLA) class I molecule in human tumor cell lines. APLP2 was readily detected in pancreatic, breast, and prostate tumor lines, although it was found only in very low amounts in lymphoma cell lines. In a pancreatic tumor cell line, HLA class I was extensively co-localized with APLP2 in vesicular compartments following endocytosis of HLA class I molecules. In pancreatic, breast, and prostate tumor lines, APLP2 was bound to the HLA class I molecule. APLP2 was found to bind to HLA-A24, and more strongly to HLA-A2. Increased expression of APLP2 resulted in reduced surface expression of HLA-A2 and HLA-A24. Overall, these studies demonstrate that APLP2 binds to the HLA class I molecule, co-localizes with it in intracellular vesicles, and reduces the level of HLA class I molecule cell surface expression. PMID:19184004
Jahandideh, Samad; Srinivasasainagendra, Vinodh; Zhi, Degui
2012-11-07
RNA-protein interaction plays an important role in various cellular processes, such as protein synthesis, gene regulation, post-transcriptional gene regulation, alternative splicing, and infections by RNA viruses. In this study, using Gene Ontology Annotated (GOA) and Structural Classification of Proteins (SCOP) databases an automatic procedure was designed to capture structurally solved RNA-binding protein domains in different subclasses. Subsequently, we applied tuned multi-class SVM (TMCSVM), Random Forest (RF), and multi-class ℓ1/ℓq-regularized logistic regression (MCRLR) for analysis and classifying RNA-binding protein domains based on a comprehensive set of sequence and structural features. In this study, we compared prediction accuracy of three different state-of-the-art predictor methods. From our results, TMCSVM outperforms the other methods and suggests the potential of TMCSVM as a useful tool for facilitating the multi-class prediction of RNA-binding protein domains. On the other hand, MCRLR by elucidating importance of features for their contribution in predictive accuracy of RNA-binding protein domains subclasses, helps us to provide some biological insights into the roles of sequences and structures in protein-RNA interactions.
Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts.
Sanford, Jeremy R; Wang, Xin; Mort, Matthew; Vanduyn, Natalia; Cooper, David N; Mooney, Sean D; Edenberg, Howard J; Liu, Yunlong
2009-03-01
Metazoan genes are encrypted with at least two superimposed codes: the genetic code to specify the primary structure of proteins and the splicing code to expand their proteomic output via alternative splicing. Here, we define the specificity of a central regulator of pre-mRNA splicing, the conserved, essential splicing factor SFRS1. Cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) identified 23,632 binding sites for SFRS1 in the transcriptome of cultured human embryonic kidney cells. SFRS1 was found to engage many different classes of functionally distinct transcripts including mRNA, miRNA, snoRNAs, ncRNAs, and conserved intergenic transcripts of unknown function. The majority of these diverse transcripts share a purine-rich consensus motif corresponding to the canonical SFRS1 binding site. The consensus site was not only enriched in exons cross-linked to SFRS1 in vivo, but was also enriched in close proximity to splice sites. mRNAs encoding RNA processing factors were significantly overrepresented, suggesting that SFRS1 may broadly influence the post-transcriptional control of gene expression in vivo. Finally, a search for the SFRS1 consensus motif within the Human Gene Mutation Database identified 181 mutations in 82 different genes that disrupt predicted SFRS1 binding sites. This comprehensive analysis substantially expands the known roles of human SR proteins in the regulation of a diverse array of RNA transcripts.
Polymorphic Nucleic Acid Binding of Bioactive Isoquinoline Alkaloids and Their Role in Cancer
Maiti, Motilal; Kumar, Gopinatha Suresh
2010-01-01
Bioactive alkaloids occupy an important position in applied chemistry and play an indispensable role in medicinal chemistry. Amongst them, isoquinoline alkaloids like berberine, palmatine and coralyne of protoberberine group, sanguinarine of the benzophenanthridine group, and their derivatives represent an important class of molecules for their broad range of clinical and pharmacological utility. In view of their extensive occurrence in various plant species and significantly low toxicities, prospective development and use of these alkaloids as effective anticancer agents are matters of great current interest. This review has focused on the interaction of these alkaloids with polymorphic nucleic acid structures (B-form, A-form, Z-form, HL-form, triple helical form, quadruplex form) and their topoisomerase inhibitory activity reported by several research groups using various biophysical techniques like spectrophotometry, spectrofluorimetry, thermal melting, circular dichroism, NMR spectroscopy, electrospray ionization mass spectroscopy, viscosity, isothermal titration calorimetry, differential scanning calorimetry, molecular modeling studies, and so forth, to elucidate their mode and mechanism of action for structure-activity relationships. The DNA binding of the planar sanguinarine and coralyne are found to be stronger and thermodynamically more favoured compared to the buckled structure of berberine and palmatine and correlate well with the intercalative mechanism of sanguinarine and coralyne and the partial intercalation by berberine and palmatine. Nucleic acid binding properties are also interpreted in relation to their anticancer activity. PMID:20814427
Chen, Zhijian; Fimmel, Benjamin; Würthner, Frank
2012-08-14
A series of six perylene bisimides (PBIs) with hydrophilic and hydrophobic side chains at the imide nitrogens were applied for a comparative study of the solvent and structural effects on the aggregation behaviour of this class of dyes. A comparison of the binding constants in tetrachloromethane at room temperature revealed the highest binding constant of about 10(5) M(-1) for a PBI bearing 3,4,5-tridodecyloxyphenyl substituents at the imide nitrogens, followed by 3,4,5-tridodecylphenyl and alkyl-substituted PBIs, whereas no aggregation could be observed in the accessible concentration range for PBIs equipped with bulky 2,6-diisopropylphenyl substituents at the imide nitrogens. The aggregation behaviour of three properly soluble compounds was investigated in 17 different solvents covering a broad polarity range from nonpolar n-hexane to highly polar DMSO and water. Linear free energy relationships (LFER) revealed a biphasic behaviour between Gibbs free energies of aggregation and common empirical solvent polarity scales indicating particularly strong π-π stacking interactions in nonpolar aliphatic and polar alcoholic solvents whilst the weakest binding is observed in dichloromethane and chloroform. Accordingly, PBI aggregation is dominated by electrostatic interactions in nonpolar solvents and by solvophobic interactions in protic solvents. In water, the aggregation constant is increased far beyond LFER expectations pointing at a pronounced hydrophobic effect.
Structural analogs of pyrazole and sulfonamide cannabinoids: Effects on acute food intake in mice
Wiley, Jenny L.; Marusich, Julie A.; Zhang, Yanan; Fulp, Alan; Maitra, Rangan; Thomas, Brian F.; Mahadevan, Anu
2012-01-01
Obesity contributes to a multitude of serious health problems. Given the demonstrated role of the endogenous cannabinoid system in appetite regulation, the purpose of the present study was to evaluate structural analogs of two cannabinoids, rimonabant (cannabinoid CB1 receptor antagonist) and O-2050 (sulfonamide analog of Δ8-tetrahydrocannabinol), that showed appetite suppressant effects in previous studies. Structure–activity relationships of these two lead compounds were examined in several assays, including cannabinoid CB1 and CB2 receptor binding, food intake, and an in vivo test battery (locomotor activity, antinociception, ring immobility, and body temperature) in mice. Rimonabant and O-2050 reliably decreased feeding in mice; however, their analogs decreased feeding only at higher doses, even though some compounds had quite good cannabinoid CB1 binding affinity. Results of the in vivo test battery were inconsistent, with some of the compounds producing effects characteristic of cannabinoid agonists while other compounds were inactive or were antagonists against an active dose of Δ9-tetrahydrocannabinol. These results demonstrate that reduction of food intake is not a characteristic effect of pyrazole and sulfonamide cannabinoid analogs with favorable cannabinoid CB1 binding affinity, suggesting that development of these classes of cannabinoids for the treatment of obesity will require evaluation of their effects in a broad spectrum of pharmacological assays. PMID:22975289
A Screen for Novel Phosphoinositide 3-kinase Effector Proteins*
Dixon, Miles J.; Gray, Alexander; Boisvert, François-Michel; Agacan, Mark; Morrice, Nicholas A.; Gourlay, Robert; Leslie, Nicholas R.; Downes, C. Peter; Batty, Ian H.
2011-01-01
Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). As few molecular targets for PtdIns(3,4)P2 have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P2. A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P2 selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates the presence of a pleckstrin homology domain whose lipid binding character remains to be established. IQ motif containing GAP1 lacks known lipid interacting components and a preliminary analysis here indicates that this may exemplify a novel class of atypical phosphoinositide (aPI) binding domain. PMID:21263009
Carrasco Pro, S; Zimic, M; Nielsen, M
2014-02-01
Major histocompatibility complex (MHC) molecules play a key role in cell-mediated immune responses presenting bounded peptides for recognition by the immune system cells. Several in silico methods have been developed to predict the binding affinity of a given peptide to a specific MHC molecule. One of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available, and also new structures of MHC class I molecules with a bound peptide have been published. In order to test if the NetMHCpan method can be improved by integrating this novel information, we created new pseudo-sequence definitions for the MHC-binding cleft environment from sequence and structural analyses of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train the method, the NetMHCpan method achieved a significant increase in the predictive performance, in particular, of non-human MHCs. This study hence showed that an improved performance of MHC-binding methods can be achieved not only by the accumulation of more MHC-peptide-binding data but also by a refined definition of the MHC-binding environment including information from non-human species. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dual targeting DNA gyrase B (GyrB) and topoisomerse IV (ParE) inhibitors: A review.
Azam, Mohammed Afzal; Thathan, Janarthanan; Jubie, Selvaraj
2015-10-01
GyrB and ParE are type IIA topoisomerases and found in most bacteria. Its function is vital for DNA replication, repair and decatenation. The highly conserved ATP-binding subunits of DNA GyrB and ParE are structurally related and have been recognized as prime candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, no natural product or small molecule inhibitors targeting ATPase catalytic domain of both GyrB and ParE enzymes have succeeded in the clinic. Moreover, no inhibitors of these enzymes with broad-spectrum antibacterial activity against Gram-negative pathogens have been reported. Availability of high resolution crystal structures of GyrB and ParE made it possible for the design of many different classes of inhibitors with dual mechanism of action. Among them benzimidazoles, benzothiazoles, thiazolopyridines, imidiazopyridazoles, pyridines, indazoles, pyrazoles, imidazopyridines, triazolopyridines, pyrrolopyrimidines, pyrimidoindoles as well as related structures are disclosed in literatures. Unfortunately most of these inhibitors are found to be active against Gram-positive pathogens. In the present review we discuss about studies on novel dual targeting ATPase inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.
Cinotto, Peter J.; Reif, Andrew G.; Olson, Leif E.
2005-01-01
The Broad Run watershed lies almost entirely in West Bradford Township, Chester County, Pa., and drains 7.08 square miles to the West Branch Brandywine Creek. Because of the potential effect of encroaching development and other stresses on the Broad Run watershed, West Bradford Township, the Chester County Water Resources Authority, and the Chester County Health Department entered into a cooperative study with the U.S. Geological Survey to complete an annual water budget and stream assessment of overall conditions. The annual water budget quantified the basic parameters of the hydrologic cycle for the climatic conditions present from April 1, 2003, to March 31, 2004. These water-budget data identified immediate needs and (or) deficits that were present within the hydrologic cycle during that period, if present; however, an annual water budget encompassing a single year does not identify long-term trends. The stream assessment was conducted in two parts and assessed the overall condition of the watershed, an overall assessment of the fluvial-geomorphic conditions within the watershed and an overall assessment of the stream-quality conditions. The data collected will document present (2004) conditions and identify potential vulnerabilities to future disturbances. For the annual period from April 1, 2003, to March 31, 2004, determination of an annual water budget indicated that of the 67.8 inches of precipitation that fell on the Broad Run watershed, 38.8 inches drained by way of streamflow to the West Branch Brandywine Creek. Of this 38.8 inches of streamflow, local-minimum hydrograph separation techniques determined that 7.30 inches originated from direct runoff and 31.5 inches originated from base flow. The remaining precipitation went into ground-water storage (1.71 inches) and was lost to evapotranspiration (27.3 inches). Ground-water recharge for this period-35.2 inches-was based on these values and an estimated ground-water evapotranspiration rate of 2 inches. Assessment of fluvial-geomorphic conditions included large-scale mapping of stream classes within the Broad Run watershed and in-depth study of three representative stream reaches also within the Broad Run watershed. Based on the total distance of all stream reaches classified within the Broad Run watershed, 61 percent were classified as C-class, 14 percent as E-class, 13 percent as B-class, 5 percent as F-class, 4 percent as undifferentiated B- and F-class, 2 percent as G-class, and less than 1 percent as A-class. The map of stream classes indicates that the Broad Run watershed currently has no large-scale areas of stream impairment and that, generally, the stream is not entrenched and the main branch of the Broad Run has an available, functioning flood plain. Smaller tributary streams, however, showed signs of localized entrenchment due to site-specific influences such as natural stream-channel evolution, localized channelization, localized contraction due to road and driveway crossings, and (or) increased localized runoff. For example, one small reach along a tributary channel was observed to become entrenched due to runoff originating from a new housing development. Entrenched stream reaches are merely located by large-scale mapping and require individual assessment to determine potential causes of entrenchment and (or) future restorative actions. Three in-depth geomorphic study sites showed that the Broad Run can currently be considered graded or in a state of dynamic equilibrium. The sites did, however, identify certain vulnerabilities to future changes within the watershed. These vulnerabilities included disruption of the present sediment supply, including both increases and (or) reductions in the current sediment loads within the Broad Run; increases in both magnitude and duration of storm-water runoff; encroachment of development onto present flood-plain areas, and (or) alterations to riparian zones. Assessment of stream-quality conditions includ
Avnir, Yuval; Prachanronarong, Kristina L; Zhang, Zhen; Hou, Shurong; Peterson, Eric C; Sui, Jianhua; Zayed, Hatem; Kurella, Vinodh B; McGuire, Andrew T; Stamatatos, Leonidas; Hilbert, Brendan J; Bohn, Markus-Frederik; Kowalik, Timothy F; Jensen, Jeffrey D; Finberg, Robert W; Wang, Jennifer P; Goodall, Margaret; Jefferis, Roy; Zhu, Quan; Kurt Yilmaz, Nese; Schiffer, Celia A; Marasco, Wayne A
2017-12-12
The heavy chain IGHV1-69 germline gene exhibits a high level of polymorphism and shows biased use in protective antibody (Ab) responses to infections and vaccines. It is also highly expressed in several B cell malignancies and autoimmune diseases. G6 is an anti-idiotypic monoclonal Ab that selectively binds to IGHV1-69 heavy chain germline gene 51p1 alleles that have been implicated in these Ab responses and disease processes. Here, we determine the co-crystal structure of humanized G6 (hG6.3) in complex with anti-influenza hemagglutinin stem-directed broadly neutralizing Ab D80. The core of the hG6.3 idiotope is a continuous string of CDR-H2 residues starting with M53 and ending with N58. G6 binding studies demonstrate the remarkable breadth of binding to 51p1 IGHV1-69 Abs with diverse CDR-H3, light chain, and antigen binding specificities. These studies detail the broad expression of the G6 cross-reactive idiotype (CRI) that further define its potential role in precision medicine. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Bonsignori, Mattia; Hwang, Kwan-Ki; Chen, Xi; Tsao, Chun-Yen; Morris, Lynn; Gray, Elin; Marshall, Dawn J.; Crump, John A.; Kapiga, Saidi H.; Sam, Noel E.; Sinangil, Faruk; Pancera, Marie; Yongping, Yang; Zhang, Baoshan; Zhu, Jiang; Kwong, Peter D.; O'Dell, Sijy; Mascola, John R.; Wu, Lan; Nabel, Gary J.; Phogat, Sanjay; Seaman, Michael S.; Whitesides, John F.; Moody, M. Anthony; Kelsoe, Garnett; Yang, Xinzhen; Sodroski, Joseph; Shaw, George M.; Montefiori, David C.; Kepler, Thomas B.; Tomaras, Georgia D.; Alam, S. Munir; Liao, Hua-Xin; Haynes, Barton F.
2011-01-01
V2/V3 conformational epitope antibodies that broadly neutralize HIV-1 (PG9 and PG16) have been recently described. Since an elicitation of previously known broadly neutralizing antibodies has proven elusive, the induction of antibodies with such specificity is an important goal for HIV-1 vaccine development. A critical question is which immunogens and vaccine formulations might be used to trigger and drive the development of memory B cell precursors with V2/V3 conformational epitope specificity. In this paper we identified a clonal lineage of four V2/V3 conformational epitope broadly neutralizing antibodies (CH01 to CH04) from an African HIV-1-infected broad neutralizer and inferred their common reverted unmutated ancestor (RUA) antibodies. While conformational epitope antibodies rarely bind recombinant Env monomers, a screen of 32 recombinant envelopes for binding to the CH01 to CH04 antibodies showed monoclonal antibody (MAb) binding to the E.A244 gp120 Env and to chronic Env AE.CM243; MAbs CH01 and CH02 also bound to transmitted/founder Env B.9021. CH01 to CH04 neutralized 38% to 49% of a panel of 91 HIV-1 tier 2 pseudoviruses, while the RUAs neutralized only 16% of HIV-1 isolates. Although the reverted unmutated ancestors showed restricted neutralizing activity, they retained the ability to bind to the E.A244 gp120 HIV-1 envelope with an affinity predicted to trigger B cell development. Thus, E.A244, B.9021, and AE.CM243 Envs are three potential immunogen candidates for studies aimed at defining strategies to induce V2/V3 conformational epitope-specific antibodies. PMID:21795340
A Triad of Molecular Regions Contribute to the Formation of Two Distinct MHC Class II Conformers
Drake, Lisa A.; Drake, James R.
2016-01-01
MHC class II molecules present antigen-derived peptides to CD4 T cells to drive the adaptive immune response. Previous work has established that class II αβ dimers can adopt two distinct conformations, driven by the differential pairing of transmembrane domain GxxxG dimerization motifs. These class II conformers differ in their ability to be loaded with antigen-derived peptide and to effectively engage CD4 T cells. Motif 1 (M1) paired I-Ak class II molecules are efficiently loaded with peptides derived from the processing of B cell receptor-bound antigen, have unique B cell signaling properties and high T cell stimulation activity. The 11-5.2 mAb selectively binds M1 paired I-Ak class II molecules. However, the molecular determinants of 11-5.2 binding are currently unclear. Here, we report the ability of a human class II transmembrane domain to drive both M1 and M2 class II conformer formation. Protease sensitivity analysis further strengthens the idea that there are conformational differences between the extracellular domains of M1 and M2 paired class II. Finally, MHC class II chain alignments and site directed mutagenesis reveals a triad of molecular regions that contributes to 11-5.2 mAb binding. In addition to transmembrane GxxxG motif domain pairing, 11-5.2 binding is influenced directly by α chain residue Glu-71 and indirectly by the region around the inter-chain salt bridge formed by α chain Arg-52 and β chain Glu-86. These findings provide insight into the complexity of 11-5.2 mAb recognition of the M1 paired I-Ak class II conformer and further highlight the molecular heterogeneity of peptide-MHC class II complexes that drive T cell antigen recognition. PMID:27148821
Phumyen, Achara; Jantasorn, Siriporn; Jumnainsong, Amonrat; Leelayuwat, Chanvit
2014-01-01
Cancer therapy by systemic administration of anticancer drugs, besides the effectiveness shown on cancer cells, demonstrated the side effects and cytotoxicity on normal cells. The targeted drug-carrying nanoparticles may decrease the required drug concentration at the site and the distribution of drugs to normal tissues. Overexpression of major histocompatibility complex class I chain-related A (MICA) in cancer is useful as a targeted molecule for the delivery of doxorubicin to MICA-expressing cell lines. The application of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide (EDC) chemistry was employed to conjugate the major coat protein of bacteriophages carrying anti-MICA and doxorubicin in a mildly acid condition. Doxorubicin (Dox) on phages was determined by double fluorescence of phage particles stained by M13-fluorescein isothiocyanate (FITC) and drug autofluorescence by flow cytometry. The ability of anti-MICA on phages to bind MICA after doxorubicin conjugation was evaluated by indirect enzyme-linked immunosorbent assay. One cervical cancer and four cholangiocarcinoma cell lines expressing MICA were used as models to evaluate targeting activity by cell cytotoxicity test. Flow cytometry and indirect enzyme-linked immunosorbent assay demonstrated that most of the phages (82%) could be conjugated with doxorubicin, and the Dox-carrying phage-displaying anti-MICA (Dox-phage) remained the binding activity against MICA. Dox-phage was more efficient than free drugs in killing all the cell lines tested. The half maximal inhibitory concentration (IC50) values of Dox-phage were lower than those of free drugs at approximately 1.6-6 times depending on MICA expressions and the cell lines tested. Evidently, the application of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide chemistry is effective to conjugate doxorubicin and major coat protein of bacteriophages without destroying binding activity of MICA antibodies. Dox-carrying bacteriophages targeting MICA have been successfully developed and may enable a broad range of applications in cancer-targeting chemotherapy.
2012-06-20
a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a ...previous studies have examined only one of the classes at a time. No study has analyzed these two sets simultaneously, and consequently binding...previous studies have examined only one of the classes at a time. No study has analyzed these two sets simultaneously, and consequently binding
Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR.
Gater, Deborah L; Saurel, Olivier; Iordanov, Iordan; Liu, Wei; Cherezov, Vadim; Milon, Alain
2014-11-18
Cholesterol binding to G protein-coupled receptors (GPCRs) and modulation of their activities in membranes is a fundamental issue for understanding their function. Despite the identification of cholesterol binding sites in high-resolution x-ray structures of the ?2 adrenergic receptor (β2AR) and other GPCRs, the binding affinity of cholesterol for this receptor and exchange rates between the free and bound cholesterol remain unknown. In this study we report the existence of two classes of cholesterol binding sites in β2AR. By analyzing the β2AR unfolding temperature in lipidic cubic phase (LCP) as a function of cholesterol concentration we observed high-affinity cooperative binding of cholesterol with sub-nM affinity constant. In contrast, saturation transfer difference (STD) NMR experiments revealed the existence of a second class of cholesterol binding sites, in fast exchange on the STD NMR timescale. Titration of the STD signal as a function of cholesterol concentration provided a lower limit of 100 mM for their dissociation constant. However, these binding sites are specific for both cholesterol and β2AR, as shown with control experiments using ergosterol and a control membrane protein (KpOmpA). We postulate that this specificity is mediated by the high-affinity bound cholesterol molecules and propose the formation of transient cholesterol clusters around the high-affinity binding sites.
Chutiwitoonchai, Nopporn; Mano, Takafumi; Kakisaka, Michinori; Sato, Hirotaka; Kondoh, Yasumitsu; Osada, Hiroyuki; Kotani, Osamu; Yokoyama, Masaru; Sato, Hironori; Aida, Yoko
2017-07-01
An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 binds at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function. Copyright © 2017 Elsevier Inc. All rights reserved.
Gonzalez, Jonathan; Takeuchi, Hirohiko; Mori, Akira
2016-01-01
Toads are chemically defended by bufadienolides, a class of cardiotonic steroids that exert toxic effects by binding to and disabling the Na+/K+-ATPases of cell membranes. Some predators, including a number of snakes, have evolved resistance to the toxic effects of bufadienolides and prey regularly on toads. Resistance in snakes to the acute effects of these toxins is conferred by at least two amino acid substitutions in the cardiotonic steroid binding pocket of the Na+/K+-ATPase. We surveyed 100 species of snakes from a broad phylogenetic range for the presence or absence of resistance-conferring mutations. We found that such mutations occur in a much wider range of taxa than previously believed. Although all sequenced species known to consume toads exhibited the resistance mutations, many of the species possessing the mutations do not feed on toads, much less specialize on that food source. This suggests that either there is little performance cost associated with these mutations or they provide an unknown benefit. Furthermore, the distribution of the mutation among major clades of advanced snakes suggests that the origin of the mutation reflects evolutionary retention more than dietary constraint. PMID:27852804
A Novel Class of Small Molecule Inhibitors of Hsp90
Yi, Fang; Regan, Lynne
2012-01-01
Unregulated cellular proliferation, caused by mutation or dysregulation of growth-promoting proteins, is an underlying cause of cancer. Many such growth-promoting proteins exhibit an increased dependence on the activity of the chaperone heat-shock protein 90 (Hsp90) for correct folding and maturation in the cell. One can therefore envision that inhibition of Hsp90 would be an effective and broadly applicable strategy for the development of anticancer agents. Hsp90 functions in multichaperone complexes driven by the binding and hydrolysis of ATP. Encouraging results have been obtained by inhibiting Hsp90 with 17-AAG, an active-site binding ATP analog. Here we present the results of a different approach to inhibiting Hsp90 by disrupting its interaction with a cochaperone named Hsp organizing protein (HOP). We have used an AlphaScreen technology based high-throughput in vitro screen to identify compounds that inhibit this interaction. In addition, we demonstrate that these compounds are active in vivo. Treatment of human breast cancer cell lines BT474 and SKBR3 with these compounds decreases the levels of the Hsp90-dependent client protein HER2, with associated cell death. PMID:18785742
Molecular controls of the oxygenation and redox reactions of hemoglobin.
Bonaventura, Celia; Henkens, Robert; Alayash, Abdu I; Banerjee, Sambuddha; Crumbliss, Alvin L
2013-06-10
The broad classes of O(2)-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O(2)-binding functions. The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes.
Bassenden, Angelia V; Rodionov, Dmitry; Shi, Kun; Berghuis, Albert M
2016-05-20
Widespread use and misuse of antibiotics has allowed for the selection of resistant bacteria capable of avoiding the effects of antibiotics. The primary mechanism for resistance to aminoglycosides, a broad-spectrum class of antibiotics, is through covalent enzymatic modification of the drug, waning their bactericidal effect. Tobramycin and gentamicin are two medically important aminoglycosides targeted by several different resistance factors, including aminoglycoside 2″-nucleotidyltransferase [ANT(2″)], the primary cause of aminoglycoside resistance in North America. We describe here two crystal structures of ANT(2″), each in complex with AMPCPP, Mn(2+), and either tobramycin or gentamicin. Together these structures outline ANT(2″)'s specificity for clinically used substrates. Importantly, these structures complete our structural knowledge for the set of enzymes that most frequently confer clinically observed resistance to tobramycin and gentamicin. Comparison of tobramycin and gentamicin binding to enzymes in this resistome, as well as to the intended target, the bacterial ribosome, reveals surprising diversity in observed drug-target interactions. Analysis of the diverse binding modes informs that there are limited opportunities for developing aminoglycoside analogs capable of evading resistance.
Mohammadi, Shabnam; Gompert, Zachariah; Gonzalez, Jonathan; Takeuchi, Hirohiko; Mori, Akira; Savitzky, Alan H
2016-11-16
Toads are chemically defended by bufadienolides, a class of cardiotonic steroids that exert toxic effects by binding to and disabling the Na + /K + -ATPases of cell membranes. Some predators, including a number of snakes, have evolved resistance to the toxic effects of bufadienolides and prey regularly on toads. Resistance in snakes to the acute effects of these toxins is conferred by at least two amino acid substitutions in the cardiotonic steroid binding pocket of the Na + /K + -ATPase. We surveyed 100 species of snakes from a broad phylogenetic range for the presence or absence of resistance-conferring mutations. We found that such mutations occur in a much wider range of taxa than previously believed. Although all sequenced species known to consume toads exhibited the resistance mutations, many of the species possessing the mutations do not feed on toads, much less specialize on that food source. This suggests that either there is little performance cost associated with these mutations or they provide an unknown benefit. Furthermore, the distribution of the mutation among major clades of advanced snakes suggests that the origin of the mutation reflects evolutionary retention more than dietary constraint. © 2016 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meissner, Torsten B.; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215; Li, Amy
Highlights: Black-Right-Pointing-Pointer NLRC5 requires an intact NLS for its function as MHC class I transactivator. Black-Right-Pointing-Pointer Nuclear presence of NLRC5 is required for MHC class I induction. Black-Right-Pointing-Pointer Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known,more » NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.« less
Rational design of class I MHC ligands
NASA Astrophysics Data System (ADS)
Rognan, D.; Scapozza, L.; Folkers, G.; Daser, Angelika
1995-04-01
From the knowledge of the three-dimensional structure of a class I MHC protein, several non natural peptides were designed in order to either optimize the interactions of one secondary anchor amino acid with its HLA binding pocket or to substitute the non interacting part with spacer residues. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro reconstitution assay. As predicted, the non natural peptides present an enhanced binding to the HLA-B27 molecule with respect to their natural parent peptides. This study constitutes the first step towards the rational design of non peptidic MHC ligands that should be very promising tools for the selective immunotherapy of autoimmune diseases.
Nielsen, Morten; Lundegaard, Claus; Lund, Ole
2007-01-01
Background Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion The SMM-align method was shown to outperform other state of the art MHC class II prediction methods. The method predicts quantitative peptide:MHC binding affinity values, making it ideally suited for rational epitope discovery. The method has been trained and evaluated on the, to our knowledge, largest benchmark data set publicly available and covers the nine HLA-DR supertypes suggested as well as three mouse H2-IA allele. Both the peptide benchmark data set, and SMM-align prediction method (NetMHCII) are made publicly available. PMID:17608956
Nielsen, Morten; Lundegaard, Claus; Lund, Ole
2007-07-04
Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. The SMM-align method was shown to outperform other state of the art MHC class II prediction methods. The method predicts quantitative peptide:MHC binding affinity values, making it ideally suited for rational epitope discovery. The method has been trained and evaluated on the, to our knowledge, largest benchmark data set publicly available and covers the nine HLA-DR supertypes suggested as well as three mouse H2-IA allele. Both the peptide benchmark data set, and SMM-align prediction method (NetMHCII) are made publicly available.
NASA Technical Reports Server (NTRS)
Beharka, A. A.; Armstrong, J. W.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)
1994-01-01
Macrophages from C2D transgenic mice deficient in the expression of major histocompatibility complex (MHC) class II proteins were used to identify binding sites for superantigens distinct from the MHC class II molecule. Iodinated staphylococcal enterotoxins A and B (SEA and SEB) and exfoliative toxins A and B (ETA and ETB) bound to C2D macrophages in a concentration-dependent and competitive manner. All four toxins increased F-actin concentration within 30 s of their addition to C2D macrophages, indicating that signal transduction occurred in response to toxin in the absence of class II MHC. Furthermore, ETA, ETB, SEA, and, to a lesser extent, SEB induced C2D macrophages to produce interleukin 6. Several molecular species on C2D macrophages with molecular masses of 140, 97, 61, 52, 43, and 37 kDa bound SEA in immunoprecipitation experiments. These data indicate the presence of novel, functionally active toxin binding sites on murine macrophages distinct from MHC class II molecules.
Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S; Mkhize, Nonhlanhla N; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D; Labuschagne, Phillip; Louder, Mark K; Bailer, Robert T; Abdool Karim, Salim S; Mascola, John R; Williamson, Carolyn; Moore, Penny L; Kwong, Peter D; Morris, Lynn
2016-11-15
All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site. Copyright © 2016 Wibmer et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.
ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report themore » isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site.« less
Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Abdool Karim, Salim S.; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.
2016-01-01
ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCE The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site. PMID:27581986
Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous, anthropogenic chemicals found in the environment. In the present study, computational methods are used to evaluate their potential estrogenicity and the contribution chemicals in this class make to environmental e...
Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove
McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany; Remesh, Soumya G; Kaever, Thomas; Bardet, Wilfried; Jackson, Kenneth; McLeod, Rima; Sette, Alessandro; Nielsen, Morten; Zajonc, Dirk M; Blader, Ira J; Peters, Bjoern; Hildebrand, William
2016-01-01
HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T-cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected cells and characterize the peptide ligands using LCMS. We identify 195 T. gondii encoded ligands originating from both secreted and cytoplasmic proteins. Surprisingly, T. gondii ligands are significantly longer than uninfected host ligands, and these longer pathogen-derived peptides maintain a canonical N-terminal binding core yet exhibit a C-terminal extension of 1–30 amino acids. Structural analysis demonstrates that binding of extended peptides opens the HLA class I F’ pocket, allowing the C-terminal extension to protrude through one end of the binding groove. In summary, we demonstrate that unrealized structural flexibility makes MHC class I receptive to parasite-derived ligands that exhibit unique C-terminal peptide extensions. DOI: http://dx.doi.org/10.7554/eLife.12556.001 PMID:26824387
Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II recepter HLA-DR1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullen, M.; Haan, K.M.; Longnecker, R.
Epstein-Barr virus (EBV) causes infectious mononucleosis, establishes long-term latent infections, and is associated with a variety of human tumors. The EBV gp42 glycoprotein binds MHC class II molecules, playing a critical role in infection of B lymphocytes. EBV gp42 belongs to the C-type lectin superfamily, with homology to NK receptors of the immune system. We report the crystal structure of gp42 bound to the human MHC class II molecule HLA-DR1. The gp42 binds HLA-DR1 using a surface site that is distinct from the canonical lectin and NK receptor ligand binding sites. At the canonical ligand binding site, gp42 forms amore » large hydrophobic groove, which could interact with other ligands necessary for EBV entry, providing a mechanism for coupling MHC recognition and membrane fusion.« less
Li, Ding; Luong, Tuong Thi Mai; Dan, Wen-Jia; Ren, Yanliang; Nien, Hoang Xuan; Zhang, An-Ling; Gao, Jin-Ming
2018-01-15
Several recently identified antifungal compounds share the backbone structure of acetophenones. The aim of the present study was to develop new isobutyrophenone analogs as new antifungal agents. A series of new 2,4-dihydroxy-5-methyl isobutyrophenone derivatives were prepared and characterized by 1 H, 13 C NMR and MS spectroscopic data. These products were evaluated for in vitro antifungal activities against seven plant fungal pathogens by the mycelial growth inhibitory rate assay. Compounds 3, 4a, 5a, 5b, 5e, 5f and 5g showed a broad-spectrum high antifungal activity. On the other hand, for the first time, these compounds were also assayed as potential inhibitors against Class II fructose-1,6-bisphosphate aldolase (Fba) from the rice blast fungus, Magnaporthe grisea. Compounds 5e and 5g were found to exhibit the inhibition constants (Ki) for 15.12 and 14.27 μM, respectively, as the strongest competitive inhibitors against Fba activity. The possible binding-modes of compounds 5e and 5g were further analyzed by molecular docking algorithms. The results strongly suggested that compound 5g could be a promising lead for the discovery of new fungicides via targeting Class II Fba. Copyright © 2017 Elsevier Ltd. All rights reserved.
VDAC1 as pharmacological target in cancer and neurodegeneration: focus on its role in apoptosis.
NASA Astrophysics Data System (ADS)
Magrì, Andrea; Reina, Simona; De Pinto, Vito
2018-04-01
Cancer and neurodegeneration are different classes of diseases that share the involvement of mitochondria in their pathogenesis. Whereas the high glycolytic rate (the so-called Warburg metabolism) and the suppression of apoptosis are key elements for the establishment and maintenance of cancer cells, mitochondrial dysfunction and increased cell death mark neurodegeneration. As a main actor in the regulation of cell metabolism and apoptosis, VDAC may represent the common point between these two broad families of pathologies. Located in the outer mitochondrial membrane, VDAC forms channels that control the flux of ions and metabolites across the mitochondrion thus mediating the organelle's cross-talk with the rest of the cell. Furthermore, the interaction with both pro-apoptotic and anti-apoptotic factors makes VDAC a gatekeeper for mitochondria-mediated cell death and survival signaling pathways. Unfortunately, the lack of an evident druggability of this protein, since it has no defined binding or active sites, makes the quest for VDAC interacting molecules a difficult tale. Pharmacologically active molecules of different classes have been proposed to hit cancer and neurodegeneration. In this work, we provide an exhaustive and detailed survey of all the molecules, peptides and microRNAs that exploit VDAC in the treatment of the two examined classes of pathologies. The mechanism of action and the potential or effectiveness of each compound are discussed.
The relationship between target-class and the physicochemical properties of antibacterial drugs
Mugumbate, Grace; Overington, John P.
2015-01-01
The discovery of novel mechanism of action (MOA) antibacterials has been associated with the concept that antibacterial drugs occupy a differentiated region of physicochemical space compared to human-targeted drugs. With, in broad terms, antibacterials having higher molecular weight, lower log P and higher polar surface area (PSA). By analysing the physicochemical properties of about 1700 approved drugs listed in the ChEMBL database, we show, that antibacterials for whose targets are riboproteins (i.e., composed of a complex of RNA and protein) fall outside the conventional human ‘drug-like’ chemical space; whereas antibacterials that modulate bacterial protein targets, generally comply with the ‘rule-of-five’ guidelines for classical oral human drugs. Our analysis suggests a strong target-class association for antibacterials—either protein-targeted or riboprotein-targeted. There is much discussion in the literature on the failure of screening approaches to deliver novel antibacterial lead series, and linkage of this poor success rate for antibacterials with the chemical space properties of screening collections. Our analysis suggests that consideration of target-class may be an underappreciated factor in antibacterial lead discovery, and that in fact bacterial protein-targets may well have similar binding site characteristics to human protein targets, and questions the assumption that larger, more polar compounds are a key part of successful future antibacterial discovery. PMID:25975639
Structural and Evolutionary Aspects of Antenna Chromophore Usage by Class II Photolyases*
Kiontke, Stephan; Gnau, Petra; Haselsberger, Reinhard; Batschauer, Alfred; Essen, Lars-Oliver
2014-01-01
Light-harvesting and resonance energy transfer to the catalytic FAD cofactor are key roles for the antenna chromophores of light-driven DNA photolyases, which remove UV-induced DNA lesions. So far, five chemically diverse chromophores have been described for several photolyases and related cryptochromes, but no correlation between phylogeny and used antenna has been found. Despite a common protein topology, structural analysis of the distantly related class II photolyase from the archaeon Methanosarcina mazei (MmCPDII) as well as plantal orthologues indicated several differences in terms of DNA and FAD binding and electron transfer pathways. For MmCPDII we identify 8-hydroxydeazaflavin (8-HDF) as cognate antenna by in vitro and in vivo reconstitution, whereas the higher plant class II photolyase from Arabidopsis thaliana fails to bind any of the known chromophores. According to the 1.9 Å structure of the MmCPDII·8-HDF complex, its antenna binding site differs from other members of the photolyase-cryptochrome superfamily by an antenna loop that changes its conformation by 12 Å upon 8-HDF binding. Additionally, so-called N- and C-motifs contribute as conserved elements to the binding of deprotonated 8-HDF and allow predicting 8-HDF binding for most of the class II photolyases in the whole phylome. The 8-HDF antenna is used throughout the viridiplantae ranging from green microalgae to bryophyta and pteridophyta, i.e. mosses and ferns, but interestingly not in higher plants. Overall, we suggest that 8-hydroxydeazaflavin is a crucial factor for the survival of most higher eukaryotes which depend on class II photolyases to struggle with the genotoxic effects of solar UV exposure. PMID:24849603
Follin, Elna; Karlsson, Maria; Lundegaard, Claus; Nielsen, Morten; Wallin, Stefan; Paulsson, Kajsa; Westerdahl, Helena
2013-04-01
The major histocompatibility complex (MHC) genes are the most polymorphic genes found in the vertebrate genome, and they encode proteins that play an essential role in the adaptive immune response. Many songbirds (passerines) have been shown to have a large number of transcribed MHC class I genes compared to most mammals. To elucidate the reason for this large number of genes, we compared 14 MHC class I alleles (α1-α3 domains), from great reed warbler, house sparrow and tree sparrow, via phylogenetic analysis, homology modelling and in silico peptide-binding predictions to investigate their functional and genetic relationships. We found more pronounced clustering of the MHC class I allomorphs (allele specific proteins) in regards to their function (peptide-binding specificities) compared to their genetic relationships (amino acid sequences), indicating that the high number of alleles is of functional significance. The MHC class I allomorphs from house sparrow and tree sparrow, species that diverged 10 million years ago (MYA), had overlapping peptide-binding specificities, and these similarities across species were also confirmed in phylogenetic analyses based on amino acid sequences. Notably, there were also overlapping peptide-binding specificities in the allomorphs from house sparrow and great reed warbler, although these species diverged 30 MYA. This overlap was not found in a tree based on amino acid sequences. Our interpretation is that convergent evolution on the level of the protein function, possibly driven by selection from shared pathogens, has resulted in allomorphs with similar peptide-binding repertoires, although trans-species evolution in combination with gene conversion cannot be ruled out.
Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener.
Smith, Cartney E; Kong, Hyunjoon
2014-04-08
Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads.
Cross-Linkable Liposomes Stabilize a Magnetic Resonance Contrast-Enhancing Polymeric Fastener
2015-01-01
Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads. PMID:24635565
Evolutionary analysis of a novel zinc ribbon in the N-terminal region of threonine synthase.
Kaur, Gurmeet; Subramanian, Srikrishna
2017-10-18
Threonine synthase (TS) catalyzes the terminal reaction in the biosynthetic pathway of threonine and requires pyridoxal phosphate as a cofactor. TSs share a common catalytic domain with other fold type II PALP dependent enzymes. TSs are broadly grouped into two classes based on their sequence, quaternary structure, and enzyme regulation. We report the presence of a novel zinc ribbon domain in the N-terminal region preceding the catalytic core in TS. The zinc ribbon domain is present in TSs belonging to both classes. Our sequence analysis reveals that archaeal TSs possess all zinc chelating residues to bind a metal ion that are lacking in the structurally characterized homologs. Phylogenetic analysis suggests that TSs with an N-terminal zinc ribbon likely represents the ancestral state of the enzyme while TSs without a zinc ribbon must have diverged later in specific lineages. The zinc ribbon and its N- and C-terminal extensions are important for enzyme stability, activity and regulation. It is likely that the zinc ribbon domain is involved in higher order oligomerization or mediating interactions with other biomolecules leading to formation of larger metabolic complexes.
Is Your Accounting Class a Flip or Flop?
ERIC Educational Resources Information Center
Weisenfeld, Leslie
2017-01-01
The flipped class allows the instructor to put materials online that would normally be provided in the traditional lecture format and frees up class time for hands-on learning activities. This paper provides a broad overview of what is required outside of the class via an electronic platform such as Blackboard (Bb) and what is done during class.…
Is there a link between selectivity and binding thermodynamics profiles?
Tarcsay, Ákos; Keserű, György M
2015-01-01
Thermodynamics of ligand binding is influenced by the interplay between enthalpy and entropy contributions of the binding event. The impact of these binding free energy components, however, is not limited to the primary target only. Here, we investigate the relationship between binding thermodynamics and selectivity profiles by combining publicly available data from broad off-target assay profiling and the corresponding thermodynamics measurements. Our analysis indicates that compounds binding their primary targets with higher entropy contributions tend to hit more off-targets compared with those ligands that demonstrated enthalpy-driven binding. Copyright © 2014 Elsevier Ltd. All rights reserved.
Slack, Robert J; Russell, Linda J; Barton, Nick P; Weston, Cathryn; Nalesso, Giovanna; Thompson, Sally-Anne; Allen, Morven; Chen, Yu Hua; Barnes, Ashley; Hodgson, Simon T; Hall, David A
2013-01-01
Chemokine receptor antagonists appear to access two distinct binding sites on different members of this receptor family. One class of CCR4 antagonists has been suggested to bind to a site accessible from the cytoplasm while a second class did not bind to this site. In this report, we demonstrate that antagonists representing a variety of structural classes bind to two distinct allosteric sites on CCR4. The effects of pairs of low-molecular weight and/or chemokine CCR4 antagonists were evaluated on CCL17- and CCL22-induced responses of human CCR4+ T cells. This provided an initial grouping of the antagonists into sets which appeared to bind to distinct binding sites. Binding studies were then performed with radioligands from each set to confirm these groupings. Some novel receptor theory was developed to allow the interpretation of the effects of the antagonist combinations. The theory indicates that, generally, the concentration-ratio of a pair of competing allosteric modulators is maximally the sum of their individual effects while that of two modulators acting at different sites is likely to be greater than their sum. The low-molecular weight antagonists could be grouped into two sets on the basis of the functional and binding experiments. The antagonistic chemokines formed a third set whose behaviour was consistent with that of simple competitive antagonists. These studies indicate that there are two allosteric regulatory sites on CCR4. PMID:25505571
Hypersensitivity linked to exposure of broad bean protein(s) in allergic patients and BALB/c mice.
Kumar, Dinesh; Kumar, Sandeep; Verma, Alok K; Sharma, Akanksha; Tripathi, Anurag; Chaudhari, Bhushan P; Kant, Surya; Das, Mukul; Jain, Swatantra K; Dwivedi, Premendra D
2014-01-01
Broad bean (Vicia faba L.), a common vegetable, belongs to the family Fabaceae and is consumed worldwide. Limited studies have been done on allergenicity of broad beans. The aim of this study was to determine if broad bean proteins have the ability to elicit allergic responses due to the presence of clinically relevant allergenic proteins. Simulated gastric fluid (SGF) assay and immunoglobulin E (IgE) immunoblotting were carried out to identify pepsin-resistant and IgE-binding proteins. The allergenicity of broad beans was assessed in allergic patients, BALB/c mice, splenocytes, and RBL-2H3 cells. Eight broad bean proteins of approximate molecular weight 70, 60, 48, 32, 23, 19, 15, and 10 kDa that remained undigested in SGF, showed IgE-binding capacity as well. Of 127 allergic patients studied, broad bean allergy was evident in 16 (12%). Mice sensitized with broad bean showed increased levels of histamine, total and specific IgE, and severe signs of systemic anaphylaxis compared with controls. Enhanced levels of histamine, prostaglandin D2, cysteinyl leukotriene, and β-hexosaminidase release were observed in the primed RBL-2H3 cells following broad bean exposure. The levels of interleukin IL-4, IL-5, IL-13 and regulated on activation, normal T-cell expressed and secreted were found enhanced in broad bean-treated splenocytes culture supernatant compared with controls. This study inferred that broad bean proteins have the ability to elicit allergic responses due to the presence of clinically relevant allergenic proteins. Copyright © 2014 Elsevier Inc. All rights reserved.
How to Illustrate Ligand-Protein Binding in a Class Experiment: An Elementary Fluorescent Assay.
ERIC Educational Resources Information Center
Marty, Alain; And Others
1986-01-01
Describes an experiment (taking approximately five hours) which illustrates the binding of a small molecule to a protein. By using an appropriate fluorescent ligand and a given protein, the fluorescent probe technique is applied to measure the number of bonding sites, and number of site classes, and their association constants. (JN)
Peptide selection by class I molecules of the major histocompatibility complex.
Elliott, T; Smith, M; Driscoll, P; McMichael, A
1993-12-01
Class I molecules of the major histocompatibility complex (MHC) bind peptides derived from cytoplasmic proteins. Comparison of over 100 such peptides reveals the importance of the carboxy-terminal residue in selective binding. Recent evidence implicates the proteases and transporters of the processing pathway in providing peptides with the correct residues at the carboxyl terminus.
Zhao, Hanjun; Zhou, Jie; Zhang, Ke; Chu, Hin; Liu, Dabin; Poon, Vincent Kwok-Man; Chan, Chris Chung-Sing; Leung, Ho-Chuen; Fai, Ng; Lin, Yong-Ping; Zhang, Anna Jin-Xia; Jin, Dong-Yan; Yuen, Kwok-Yung; Zheng, Bo-Jian
2016-01-01
A safe, potent and broad-spectrum antiviral is urgently needed to combat emerging respiratory viruses. In light of the broad antiviral activity of β-defensins, we tested the antiviral activity of 11 peptides derived from mouse β-defensin-4 and found that a short peptide, P9, exhibited potent and broad-spectrum antiviral effects against multiple respiratory viruses in vitro and in vivo, including influenza A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV. The antiviral activity of P9 was attributed to its high-affinity binding to viral glycoproteins, as well as the abundance of basic amino acids in its composition. After binding viral particles through viral surface glycoproteins, P9 entered into cells together with the viruses via endocytosis and prevented endosomal acidification, which blocked membrane fusion and subsequent viral RNA release. This study has paved the avenue for developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities. PMID:26911565
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.
2014-10-02
molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate.more » The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.« less
Trolle, Thomas; McMurtrey, Curtis P; Sidney, John; Bardet, Wilfried; Osborn, Sean C; Kaever, Thomas; Sette, Alessandro; Hildebrand, William H; Nielsen, Morten; Peters, Bjoern
2016-02-15
HLA class I-binding predictions are widely used to identify candidate peptide targets of human CD8(+) T cell responses. Many such approaches focus exclusively on a limited range of peptide lengths, typically 9 aa and sometimes 9-10 aa, despite multiple examples of dominant epitopes of other lengths. In this study, we examined whether epitope predictions can be improved by incorporating the natural length distribution of HLA class I ligands. We found that, although different HLA alleles have diverse length-binding preferences, the length profiles of ligands that are naturally presented by these alleles are much more homogeneous. We hypothesized that this is due to a defined length profile of peptides available for HLA binding in the endoplasmic reticulum. Based on this, we created a model of HLA allele-specific ligand length profiles and demonstrate how this model, in combination with HLA-binding predictions, greatly improves comprehensive identification of CD8(+) T cell epitopes. Copyright © 2016 by The American Association of Immunologists, Inc.
A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans
Colpitts, Che C.
2014-01-01
ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID:24789779
Improving the Manager’s Ability to Identify Alternative Technologies.
1980-03-01
TABLES 1, Estimated Sources of Funds for R&D by Broad---------14 Industry Classes, 1980 2. Characteristics of the Prospector ---------------- -59 7 4II...thirds of that total outlay. Table I depicts estimated sources of funds for R&D by broad industry classes in 1980. 13 .17 TABLE 1 ESTIMATED SOURCES ...information about research in progress. The Exchange is the major national source $ for unclassified information on current and recently completed research in
Nagano, Yukio; Furuhashi, Hirofumi; Inaba, Takehito; Sasaki, Yukiko
2001-01-01
Complementary DNA encoding a DNA-binding protein, designated PLATZ1 (plant AT-rich sequence- and zinc-binding protein 1), was isolated from peas. The amino acid sequence of the protein is similar to those of other uncharacterized proteins predicted from the genome sequences of higher plants. However, no paralogous sequences have been found outside the plant kingdom. Multiple alignments among these paralogous proteins show that several cysteine and histidine residues are invariant, suggesting that these proteins are a novel class of zinc-dependent DNA-binding proteins with two distantly located regions, C-x2-H-x11-C-x2-C-x(4–5)-C-x2-C-x(3–7)-H-x2-H and C-x2-C-x(10–11)-C-x3-C. In an electrophoretic mobility shift assay, the zinc chelator 1,10-o-phenanthroline inhibited DNA binding, and two distant zinc-binding regions were required for DNA binding. A protein blot with 65ZnCl2 showed that both regions are required for zinc-binding activity. The PLATZ1 protein non-specifically binds to A/T-rich sequences, including the upstream region of the pea GTPase pra2 and plastocyanin petE genes. Expression of the PLATZ1 repressed those of the reporter constructs containing the coding sequence of luciferase gene driven by the cauliflower mosaic virus (CaMV) 35S90 promoter fused to the tandem repeat of the A/T-rich sequences. These results indicate that PLATZ1 is a novel class of plant-specific zinc-dependent DNA-binding protein responsible for A/T-rich sequence-mediated transcriptional repression. PMID:11600698
Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases
Haupt, V. Joachim; Schroeder, Michael; Labudde, Dirk
2018-01-01
The origin of the machinery that realizes protein biosynthesis in all organisms is still unclear. One key component of this machinery are aminoacyl tRNA synthetases (aaRS), which ligate tRNAs to amino acids while consuming ATP. Sequence analyses revealed that these enzymes can be divided into two complementary classes. Both classes differ significantly on a sequence and structural level, feature different reaction mechanisms, and occur in diverse oligomerization states. The one unifying aspect of both classes is their function of binding ATP. We identified Backbone Brackets and Arginine Tweezers as most compact ATP binding motifs characteristic for each Class. Geometric analysis shows a structural rearrangement of the Backbone Brackets upon ATP binding, indicating a general mechanism of all Class I structures. Regarding the origin of aaRS, the Rodin-Ohno hypothesis states that the peculiar nature of the two aaRS classes is the result of their primordial forms, called Protozymes, being encoded on opposite strands of the same gene. Backbone Brackets and Arginine Tweezers were traced back to the proposed Protozymes and their more efficient successors, the Urzymes. Both structural motifs can be observed as pairs of residues in contemporary structures and it seems that the time of their addition, indicated by their placement in the ancient aaRS, coincides with the evolutionary trace of Proto- and Urzymes. PMID:29659563
Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein
Chen, Edwin; Salinas, Nichole D.; Huang, Yining; ...
2016-05-18
Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifsmore » in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. In conclusion, the identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.« less
Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Edwin; Salinas, Nichole D.; Huang, Yining
Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifsmore » in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. In conclusion, the identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.« less
Vaillant, Andrew
2016-09-01
Antiviral polymers are a well-studied class of broad spectrum viral attachment/entry inhibitors whose activity increases with polymer length and with increased amphipathic (hydrophobic) character. The newest members of this class of compounds are nucleic acid polymers whose activity is derived from the sequence independent properties of phosphorothioated oligonucleotides as amphipathic polymers. Although the antiviral mechanisms and broad spectrum antiviral activity of nucleic acid polymers mirror the functionality of other members of this class, they exert in addition a unique post entry activity in hepatitis B infection which inhibits the release of HBsAg from infected hepatocytes. This review provides a general overview of the antiviral polymer class with a focus on nucleic acid polymers and their development as therapeutic agents for the treatment of hepatitis B/hepatitis D. This article forms part of a symposium in Antiviral Research on ''An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B.''. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.
Kume, Satoshi; Lee, Young-Ho; Nakatsuji, Masatoshi; Teraoka, Yoshiaki; Yamaguchi, Keisuke; Goto, Yuji; Inui, Takashi
2014-03-18
The hydrophobic cavity of lipocalin-type prostaglandin D synthase (L-PGDS) has been suggested to accommodate various lipophilic ligands through hydrophobic effects, but its energetic origin remains unknown. We characterized 18 buffer-independent binding systems between human L-PGDS and lipophilic ligands using isothermal titration calorimetry. Although the classical hydrophobic effect was mostly detected, all complex formations were driven by favorable enthalpic gains. Gibbs energy changes strongly correlated with the number of hydrogen bond acceptors of ligand. Thus, the broad binding capability of L-PGDS for ligands should be viewed as hydrophilic interactions delicately tuned by enthalpy-entropy compensation using combined effects of hydrophilic and hydrophobic interactions. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
de Lange, Orlando; Schreiber, Tom; Schandry, Niklas; Radeck, Jara; Braun, Karl Heinz; Koszinowski, Julia; Heuer, Holger; Strauß, Annett; Lahaye, Thomas
2013-08-01
Ralstonia solanacearum is a devastating bacterial phytopathogen with a broad host range. Ralstonia solanacearum injected effector proteins (Rips) are key to the successful invasion of host plants. We have characterized Brg11(hrpB-regulated 11), the first identified member of a class of Rips with high sequence similarity to the transcription activator-like (TAL) effectors of Xanthomonas spp., collectively termed RipTALs. Fluorescence microscopy of in planta expressed RipTALs showed nuclear localization. Domain swaps between Brg11 and Xanthomonas TAL effector (TALE) AvrBs3 (avirulence protein triggering Bs3 resistance) showed the functional interchangeability of DNA-binding and transcriptional activation domains. PCR was used to determine the sequence of brg11 homologs from strains infecting phylogenetically diverse host plants. Brg11 localizes to the nucleus and activates promoters containing a matching effector-binding element (EBE). Brg11 and homologs preferentially activate promoters containing EBEs with a 5' terminal guanine, contrasting with the TALE preference for a 5' thymine. Brg11 and other RipTALs probably promote disease through the transcriptional activation of host genes. Brg11 and the majority of homologs identified in this study were shown to activate similar or identical target sequences, in contrast to TALEs, which generally show highly diverse target preferences. This information provides new options for the engineering of plants resistant to R. solanacearum. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Spatially Resolved Sensitivity of Single-Particle Plasmon Sensors
2018-01-01
The high sensitivity of localized surface plasmon resonance sensors to the local refractive index allows for the detection of single-molecule binding events. Though binding events of single objects can be detected by their induced plasmon shift, the broad distribution of observed shifts remains poorly understood. Here, we perform a single-particle study wherein single nanospheres bind to a gold nanorod, and relate the observed plasmon shift to the binding location using correlative microscopy. To achieve this we combine atomic force microscopy to determine the binding location, and single-particle spectroscopy to determine the corresponding plasmon shift. As expected, we find a larger plasmon shift for nanospheres binding at the tip of a rod compared to its sides, in good agreement with numerical calculations. However, we also find a broad distribution of shifts even for spheres that were bound at a similar location to the nanorod. Our correlative approach allows us to disentangle effects of nanoparticle dimensions and binding location, and by comparison to numerical calculations we find that the biggest contributor to this observed spread is the dispersion in nanosphere diameter. These experiments provide insight into the spatial sensitivity and signal-heterogeneity of single-particle plasmon sensors and provides a framework for signal interpretation in sensing applications. PMID:29520315
Functional assignment to JEV proteins using SVM.
Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep
2008-01-01
Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).
Functional assignment to JEV proteins using SVM
Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep
2008-01-01
Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP). PMID:19052658
Molecular modeling of class I and II alleles of the major histocompatibility complex in Salmo salar.
Cárdenas, Constanza; Bidon-Chanal, Axel; Conejeros, Pablo; Arenas, Gloria; Marshall, Sergio; Luque, F Javier
2010-12-01
Knowledge of the 3D structure of the binding groove of major histocompatibility (MHC) molecules, which play a central role in the immune response, is crucial to shed light into the details of peptide recognition and polymorphism. This work reports molecular modeling studies aimed at providing 3D models for two class I and two class II MHC alleles from Salmo salar (Sasa), as the lack of experimental structures of fish MHC molecules represents a serious limitation to understand the specific preferences for peptide binding. The reliability of the structural models built up using bioinformatic tools was explored by means of molecular dynamics simulations of their complexes with representative peptides, and the energetics of the MHC-peptide interaction was determined by combining molecular mechanics interaction energies and implicit continuum solvation calculations. The structural models revealed the occurrence of notable differences in the nature of residues at specific positions in the binding groove not only between human and Sasa MHC proteins, but also between different Sasa alleles. Those differences lead to distinct trends in the structural features that mediate the binding of peptides to both class I and II MHC molecules, which are qualitatively reflected in the relative binding affinities. Overall, the structural models presented here are a valuable starting point to explore the interactions between MHC receptors and pathogen-specific interactions and to design vaccines against viral pathogens.
Viola, Ivana L; Uberti Manassero, Nora G; Ripoll, Rodrigo; Gonzalez, Daniel H
2011-04-01
The TCP domain is a DNA-binding domain present in plant transcription factors that modulate different processes. In the present study, we show that Arabidopsis class I TCP proteins are able to interact with a dyad-symmetric sequence composed of two GTGGG half-sites. TCP20 establishes symmetric interactions with the 5' half of each strand, whereas TCP11 interacts mainly with the 3' half. SELEX (systematic evolution of ligands by exponential enrichment) experiments with TCP15 and TCP20 indicated that these proteins have similar, although not identical, DNA-binding preferences and are able to interact with non-palindromic binding sites of the type GTGGGNCCNN. TCP11 shows a different DNA-binding specificity, with a preference for the sequence GTGGGCCNNN. The distinct DNA-binding properties of TCP11 are due to the presence of a threonine residue at position 15 of the TCP domain, a position that is occupied by an arginine residue in most TCP proteins. TCP11 also forms heterodimers with TCP15 that have increased DNA-binding efficiency. The expression in plants of a repressor form of TCP11 demonstrated that this protein is a developmental regulator that influences the growth of leaves, stems and petioles, and pollen development. The results suggest that changes in DNA-binding preferences may be one of the mechanisms through which class I TCP proteins achieve functional specificity.
Bulashevska, Alla; Stein, Martin; Jackson, David; Eils, Roland
2009-12-01
Accurate computational methods that can help to predict biological function of a protein from its sequence are of great interest to research biologists and pharmaceutical companies. One approach to assume the function of proteins is to predict the interactions between proteins and other molecules. In this work, we propose a machine learning method that uses a primary sequence of a domain to predict its propensity for interaction with small molecules. By curating the Pfam database with respect to the small molecule binding ability of its component domains, we have constructed a dataset of small molecule binding and non-binding domains. This dataset was then used as training set to learn a Bayesian classifier, which should distinguish members of each class. The domain sequences of both classes are modelled with Markov chains. In a Jack-knife test, our classification procedure achieved the predictive accuracies of 77.2% and 66.7% for binding and non-binding classes respectively. We demonstrate the applicability of our classifier by using it to identify previously unknown small molecule binding domains. Our predictions are available as supplementary material and can provide very useful information to drug discovery specialists. Given the ubiquitous and essential role small molecules play in biological processes, our method is important for identifying pharmaceutically relevant components of complete proteomes. The software is available from the author upon request.
Bradley, M E; Dombrecht, B; Manini, J; Willis, J; Vlerick, D; De Taeye, S; Van den Heede, K; Roobrouck, A; Grot, E; Kent, T C; Laeremans, T; Steffensen, S; Van Heeke, G; Brown, Z; Charlton, S J; Cromie, K D
2015-02-01
Chemokines and chemokine receptors are key modulators in inflammatory diseases and malignancies. Here, we describe the identification and pharmacologic characterization of nanobodies selectively blocking CXCR2, the most promiscuous of all chemokine receptors. Two classes of selective monovalent nanobodies were identified, and detailed epitope mapping showed that these bind to distinct, nonoverlapping epitopes on the CXCR2 receptor. The N-terminal-binding or class 1 monovalent nanobodies possessed potencies in the single-digit nanomolar range but lacked complete efficacy at high agonist concentrations. In contrast, the extracellular loop-binding or class 2 monovalent nanobodies were of lower potency but were more efficacious and competitively inhibited the CXCR2-mediated functional response in both recombinant and neutrophil in vitro assays. In addition to blocking CXCR2 signaling mediated by CXCL1 (growth-related oncogene α) and CXCL8 (interleukin-8), both classes of nanobodies displayed inverse agonist behavior. Bivalent and biparatopic nanobodies were generated, respectively combining nanobodies from the same or different classes via glycine/serine linkers. Interestingly, receptor mutation and competition studies demonstrated that the biparatopic nanobodies were able to avidly bind epitopes within one or across two CXCR2 receptor molecules. Most importantly, the biparatopic nanobodies were superior over their monovalent and bivalent counterparts in terms of potency and efficacy. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Papenfuss, Anthony T; Feng, Zhi-Ping; Krasnec, Katina; Deakin, Janine E; Baker, Michelle L; Miller, Robert D
2015-07-22
Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two rounds of genome duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised that there may be divergent, as yet unannotated or uncharacterised class I genes. Application of a novel method of sensitive genome searching of available vertebrate genome sequences revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove. We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific to marsupials and monotremes. This family was present in the ancestral mammal and is found in extant marsupials and monotremes, but has been lost from the eutherian lineage. The function of this family is as yet unknown, however, their predicted structure may be consistent with presentation of antigens to T-cells.
Ascough, Stephanie; Ingram, Rebecca J.; Chu, Karen K.; Reynolds, Catherine J.; Musson, Julie A.; Doganay, Mehmet; Metan, Gökhan; Ozkul, Yusuf; Baillie, Les; Sriskandan, Shiranee; Moore, Stephen J.; Gallagher, Theresa B.; Dyson, Hugh; Williamson, E. Diane; Robinson, John H.; Maillere, Bernard; Boyton, Rosemary J.; Altmann, Daniel M.
2014-01-01
Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified. PMID:24788397
Dzuris, John L.; Sidney, John; Horton, Helen; Correa, Rose; Carter, Donald; Chesnut, Robert W.; Watkins, David I.; Sette, Alessandro
2001-01-01
Major histocompatibility complex class II molecules encoded by two common rhesus macaque alleles Mamu-DRB1*0406 and Mamu-DRB*w201 have been purified, and quantitative binding assays have been established. The structural requirements for peptide binding to each molecule were characterized by testing panels of single-substitution analogs of the two previously defined epitopes HIV Env242 (Mamu-DRB1*0406 restricted) and HIV Env482 (Mamu-DRB*w201 restricted). Anchor positions of both macaque DR molecules were spaced following a position 1 (P1), P4, P6, P7, and P9 pattern. The specific binding motif associated with each molecule was distinct, but largely overlapping, and was based on crucial roles of aromatic and/or hydrophobic residues at P1, P6, and P9. Based on these results, a tentative Mamu class II DR supermotif was defined. This pattern is remarkably similar to a previously defined human HLA-DR supermotif. Similarities in binding motifs between human HLA and macaque Mamu-DR molecules were further illustrated by testing a panel of more than 60 different single-substitution analogs of the HLA-DR-restricted HA 307–319 epitope for binding to Mamu-DRB*w201 and HLA-DRB1*0101. The Mamu-DRB1*0406 and -DRB*w201 binding capacity of a set of 311 overlapping peptides spanning the entire simian immunodeficiency virus (SIV) genome was also evaluated. Ten peptides capable of binding both molecules were identified, together with 19 DRB1*0406 and 43 DRB*w201 selective binders. The Mamu-DR supermotif was found to be present in about 75% of the good binders and in 50% of peptides binding with intermediate affinity but only in approximately 25% of the peptides which did not bind either Mamu class II molecule. Finally, using flow cytometric detection of antigen-induced intracellular gamma interferon, we identify a new CD4+ T-lymphocyte epitope encoded within the Rev protein of SIV. PMID:11602736
Redox modulation of plant developmental regulators from the class I TCP transcription factor family.
Viola, Ivana L; Güttlein, Leandro N; Gonzalez, Daniel H
2013-07-01
TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR1 (TCP) transcription factors participate in plant developmental processes associated with cell proliferation and growth. Most members of class I, one of the two classes that compose the family, have a conserved cysteine at position 20 (Cys-20) of the TCP DNA-binding and dimerization domain. We show that Arabidopsis (Arabidopsis thaliana) class I proteins with Cys-20 are sensitive to redox conditions, since their DNA-binding activity is inhibited after incubation with the oxidants diamide, oxidized glutathione, or hydrogen peroxide or with nitric oxide-producing agents. Inhibition can be reversed by treatment with the reductants dithiothreitol or reduced glutathione or by incubation with the thioredoxin/thioredoxin reductase system. Mutation of Cys-20 in the class I protein TCP15 abolished its redox sensitivity. Under oxidizing conditions, covalently linked dimers were formed, suggesting that inactivation is associated with the formation of intermolecular disulfide bonds. Inhibition of class I TCP protein activity was also observed in vivo, in yeast (Saccharomyces cerevisiae) cells expressing TCP proteins and in plants after treatment with redox agents. This inhibition was correlated with modifications in the expression of the downstream CUC1 gene in plants. Modeling studies indicated that Cys-20 is located at the dimer interface near the DNA-binding surface. This places this residue in the correct orientation for intermolecular disulfide bond formation and explains the sensitivity of DNA binding to the oxidation of Cys-20. The redox properties of Cys-20 and the observed effects of cellular redox agents both in vitro and in vivo suggest that class I TCP protein action is under redox control in plants.
Viola, Ivana L.; Güttlein, Leandro N.; Gonzalez, Daniel H.
2013-01-01
TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR1 (TCP) transcription factors participate in plant developmental processes associated with cell proliferation and growth. Most members of class I, one of the two classes that compose the family, have a conserved cysteine at position 20 (Cys-20) of the TCP DNA-binding and dimerization domain. We show that Arabidopsis (Arabidopsis thaliana) class I proteins with Cys-20 are sensitive to redox conditions, since their DNA-binding activity is inhibited after incubation with the oxidants diamide, oxidized glutathione, or hydrogen peroxide or with nitric oxide-producing agents. Inhibition can be reversed by treatment with the reductants dithiothreitol or reduced glutathione or by incubation with the thioredoxin/thioredoxin reductase system. Mutation of Cys-20 in the class I protein TCP15 abolished its redox sensitivity. Under oxidizing conditions, covalently linked dimers were formed, suggesting that inactivation is associated with the formation of intermolecular disulfide bonds. Inhibition of class I TCP protein activity was also observed in vivo, in yeast (Saccharomyces cerevisiae) cells expressing TCP proteins and in plants after treatment with redox agents. This inhibition was correlated with modifications in the expression of the downstream CUC1 gene in plants. Modeling studies indicated that Cys-20 is located at the dimer interface near the DNA-binding surface. This places this residue in the correct orientation for intermolecular disulfide bond formation and explains the sensitivity of DNA binding to the oxidation of Cys-20. The redox properties of Cys-20 and the observed effects of cellular redox agents both in vitro and in vivo suggest that class I TCP protein action is under redox control in plants. PMID:23686421
Jappe, Emma Christine; Kringelum, Jens; Trolle, Thomas; Nielsen, Morten
2018-02-15
Peptides that bind to and are presented by MHC class I and class II molecules collectively make up the immunopeptidome. In the context of vaccine development, an understanding of the immunopeptidome is essential, and much effort has been dedicated to its accurate and cost-effective identification. Current state-of-the-art methods mainly comprise in silico tools for predicting MHC binding, which is strongly correlated with peptide immunogenicity. However, only a small proportion of the peptides that bind to MHC molecules are, in fact, immunogenic, and substantial work has been dedicated to uncovering additional determinants of peptide immunogenicity. In this context, and in light of recent advancements in mass spectrometry (MS), the existence of immunological hotspots has been given new life, inciting the hypothesis that hotspots are associated with MHC class I peptide immunogenicity. We here introduce a precise terminology for defining these hotspots and carry out a systematic analysis of MS and in silico predicted hotspots. We find that hotspots defined from MS data are largely captured by peptide binding predictions, enabling their replication in silico. This leads us to conclude that hotspots, to a great degree, are simply a result of promiscuous HLA binding, which disproves the hypothesis that the identification of hotspots provides novel information in the context of immunogenic peptide prediction. Furthermore, our analyses demonstrate that the signal of ligand processing, although present in the MS data, has very low predictive power to discriminate between MS and in silico defined hotspots. © 2018 John Wiley & Sons Ltd.
Giblin, P A; Leahy, D J; Mennone, J; Kavathas, P B
1994-03-01
The CD8 dimer interacts with the alpha 3 domain of major histocompatibility complex class I molecules through two immunoglobulin variable-like domains. In this study a crystal structure-informed mutational analysis has been performed to identify amino acids in the CD8 alpha/alpha homodimer that are likely to be involved in binding to class I. Several key residues are situated on the top face of the dimer within loops analogous to the complementarity-determining regions (CDRs) of immunoglobulin. In addition, other important amino acids are located in the A and B beta-strands on the sides of the dimer. The potential involvement of amino acids on both the top and the side faces of the molecule is consistent with a bivalent model for the interaction between a single CD8 alpha/alpha homodimer and two class I molecules and may have important implications for signal transduction in class I-expressing cells. This study also demonstrates a role for the positive surface potential of CD8 in class I binding and complements previous work demonstrating the importance of a negatively charged loop on the alpha 3 domain of class I for CD8 alpha/alpha-class I interaction. We propose a model whereby residues located on the CDR-like loops of the CD8 homodimer interact with the alpha 3 domain of MHC class I while amino acids on the side of the molecule containing the A and B beta-strands contact the alpha 2 domain of class I.
Torres, Leticia M.; Lima, Barbara A. S.; Sousa, Taís N.; Alves, Jéssica R. S.; Rocha, Roberto S.; Fontes, Cor J. F.; Sanchez, Bruno A. M.; Adams, John H.; Brito, Cristiana F. A.; Pires, Douglas E. V.; Ascher, David B.; Sell, Ana Maria; Carvalho, Luzia H.
2016-01-01
Background The human malaria parasite Plasmodium vivax infects red blood cells through a key pathway that requires interaction between Duffy binding protein II (DBPII) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). A high proportion of P. vivax-exposed individuals fail to develop antibodies that inhibit DBPII-DARC interaction, and genetic factors that modulate this humoral immune response are poorly characterized. Here, we investigate if DBPII responsiveness could be HLA class II-linked. Methodology/Principal Findings A community-based open cohort study was carried out in an agricultural settlement of the Brazilian Amazon, in which 336 unrelated volunteers were genotyped for HLA class II (DRB1, DQA1 and DQB1 loci), and their DBPII immune responses were monitored over time (baseline, 6 and 12 months) by conventional serology (DBPII IgG ELISA-detected) and functional assays (inhibition of DBPII–erythrocyte binding). The results demonstrated an increased susceptibility of the DRB1*13:01 carriers to develop and sustain an anti-DBPII IgG response, while individuals with the haplotype DRB1*14:02-DQA1*05:03-DQB1*03:01 were persistent non-responders. HLA class II gene polymorphisms also influenced the functional properties of DBPII antibodies (BIAbs, binding inhibitory antibodies), with three alleles (DRB1*07:01, DQA1*02:01 and DQB1*02:02) comprising a single haplotype linked with the presence and persistence of the BIAbs response. Modelling the structural effects of the HLA-DRB1 variants revealed a number of differences in the peptide-binding groove, which is likely to lead to altered antigen binding and presentation profiles, and hence may explain the differences in subject responses. Conclusions/Significance The current study confirms the heritability of the DBPII antibody response, with genetic variation in HLA class II genes influencing both the development and persistence of IgG antibody responses. Cellular studies to increase knowledge of the binding affinities of DBPII peptides for class II molecules linked with good or poor antibody responses might lead to the development of strategies for controlling the type of helper T cells activated in response to DBPII. PMID:27959918
Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance.
Zhou, Xiaogang; Liao, Haicheng; Chern, Mawsheng; Yin, Junjie; Chen, Yufei; Wang, Jianping; Zhu, Xiaobo; Chen, Zhixiong; Yuan, Can; Zhao, Wen; Wang, Jing; Li, Weitao; He, Min; Ma, Bingtian; Wang, Jichun; Qin, Peng; Chen, Weilan; Wang, Yuping; Liu, Jiali; Qian, Yangwen; Wang, Wenming; Wu, Xianjun; Li, Ping; Zhu, Lihuang; Li, Shigui; Ronald, Pamela C; Chen, Xuewei
2018-03-20
Crops carrying broad-spectrum resistance loci provide an effective strategy for controlling infectious disease because these loci typically confer resistance to diverse races of a pathogen or even multiple species of pathogens. Despite their importance, only a few crop broad-spectrum resistance loci have been reported. Here, we report the identification and characterization of the rice bsr-k1 (broad-spectrum resistance Kitaake-1) mutant, which confers broad-spectrum resistance against Magnaporthe oryzae and Xanthomonas oryzae pv oryzae with no major penalty on key agronomic traits. Map-based cloning reveals that Bsr-k1 encodes a tetratricopeptide repeats (TPRs)-containing protein, which binds to mRNAs of multiple OsPAL ( OsPAL1-7 ) genes and promotes their turnover. Loss of function of the Bsr-k1 gene leads to accumulation of OsPAL1-7 mRNAs in the bsr-k1 mutant. Furthermore, overexpression of OsPAL1 in wild-type rice TP309 confers resistance to M. oryzae , supporting the role of OsPAL1 Our discovery of the bsr-k1 allele constitutes a significant conceptual advancement and provides a valuable tool for breeding broad-spectrum resistant rice. Copyright © 2018 the Author(s). Published by PNAS.
Xia, Zhen; Huynh, Tien; Kang, Seung-gu; Zhou, Ruhong
2012-03-21
Antibodies binding to conserved epitopes can provide a broad range of neutralization to existing influenza subtypes and may also prevent the propagation of potential pandemic viruses by fighting against emerging strands. Here we propose a computational framework to study structural binding patterns and detailed molecular mechanisms of viral surface glycoprotein hemagglutinin (HA) binding with a broad spectrum of neutralizing monoclonal antibody fragments (Fab). We used rigorous free-energy perturbation (FEP) methods to calculate the antigen-antibody binding affinities, with an aggregate underlying molecular-dynamics simulation time of several microseconds (∼2 μs) using all-atom, explicit-solvent models. We achieved a high accuracy in the validation of our FEP protocol against a series of known binding affinities for this complex system, with <0.5 kcal/mol errors on average. We then introduced what to our knowledge are novel mutations into the interfacial region to further study the binding mechanism. We found that the stacking interaction between Trp-21 in HA2 and Phe-55 in the CDR-H2 of Fab is crucial to the antibody-antigen association. A single mutation of either W21A or F55A can cause a binding affinity decrease of ΔΔG > 4.0 kcal/mol (equivalent to an ∼1000-fold increase in the dissociation constant K(d)). Moreover, for group 1 HA subtypes (which include both the H1N1 swine flu and the H5N1 bird flu), the relative binding affinities change only slightly (< ±1 kcal/mol) when nonpolar residues at the αA helix of HA mutate to conservative amino acids of similar size, which explains the broad neutralization capability of antibodies such as F10 and CR6261. Finally, we found that the hydrogen-bonding network between His-38 (in HA1) and Ser-30/Gln-64 (in Fab) is important for preserving the strong binding of Fab against group 1 HAs, whereas the lack of such hydrogen bonds with Asn-38 in most group 2 HAs may be responsible for the escape of antibody neutralization. These large-scale simulations may provide new insight into the antigen-antibody binding mechanism at the atomic level, which could be essential for designing more-effective vaccines for influenza. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevtsov, M. B.; Streeter, S. D.; Thresh, S.-J.
2015-02-01
The structure of the new class of controller proteins (exemplified by C.Csp231I) in complex with its 21 bp DNA-recognition sequence is presented, and the molecular basis of sequence recognition in this class of proteins is discussed. An unusual extended spacer between the dimer binding sites suggests a novel interaction between the two C-protein dimers. In a wide variety of bacterial restriction–modification systems, a regulatory ‘controller’ protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class ofmore » controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal.« less
Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms.
Kelson, Andrew B; Carnevali, Maia; Truong-Le, Vu
2013-10-01
Microbes have evolved elaborate iron-acquisition systems to sequester iron from the host environment using siderophores and heme uptake systems. Gallium(III) is structurally similar to iron(III), except that it cannot be reduced under physiological conditions, therefore gallium has the potential to serve as an iron analog, and thus an anti-microbial. Because Ga(III) can bind to virtually any complex that binds Fe(III), simple gallium salts as well as more complex siderophores and hemes are potential carriers to deliver Ga(III) to the microbes. These gallium complexes represent a new class of anti-infectives that is different in mechanism of action from conventional antibiotics. Simple gallium salts such as gallium nitrate, maltolate, and simple gallium siderophore complexes such as gallium citrate have shown good antibacterial activities. The most studied complex has been gallium citrate, which exhibits broad activity against many Gram negative bacteria at ∼1-5μg/ml MICs, strong biofilm activity, low drug resistance, and efficacy in vivo. Using the structural features of specific siderophore and heme made by pathogenic bacteria and fungi, researchers have begun to evaluate new gallium complexes to target key pathogens. This review will summarize potential iron-acquisition system targets and recent research on gallium-based anti-infectives. Copyright © 2013 Elsevier Ltd. All rights reserved.
Molecular Controls of the Oxygenation and Redox Reactions of Hemoglobin
Henkens, Robert; Alayash, Abdu I.; Banerjee, Sambuddha; Crumbliss, Alvin L.
2013-01-01
Abstract Significance: The broad classes of O2-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O2-binding functions. Recent Advances: The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. Critical Issues: An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. Future Directions: This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes. Antioxid. Redox Signal. 18, 2298–2313. PMID:23198874
Lu, Genmin; DeGuzman, Francis R; Hollenbach, Stanley J; Karbarz, Mark J; Abe, Keith; Lee, Gail; Luan, Peng; Hutchaleelaha, Athiwat; Inagaki, Mayuko; Conley, Pamela B; Phillips, David R; Sinha, Uma
2013-04-01
Inhibitors of coagulation factor Xa (fXa) have emerged as a new class of antithrombotics but lack effective antidotes for patients experiencing serious bleeding. We designed and expressed a modified form of fXa as an antidote for fXa inhibitors. This recombinant protein (r-Antidote, PRT064445) is catalytically inactive and lacks the membrane-binding γ-carboxyglutamic acid domain of native fXa but retains the ability of native fXa to bind direct fXa inhibitors as well as low molecular weight heparin-activated antithrombin III (ATIII). r-Antidote dose-dependently reversed the inhibition of fXa by direct fXa inhibitors and corrected the prolongation of ex vivo clotting times by such inhibitors. In rabbits treated with the direct fXa inhibitor rivaroxaban, r-Antidote restored hemostasis in a liver laceration model. The effect of r-Antidote was mediated by reducing plasma anti-fXa activity and the non-protein bound fraction of the fXa inhibitor in plasma. In rats, r-Antidote administration dose-dependently and completely corrected increases in blood loss resulting from ATIII-dependent anticoagulation by enoxaparin or fondaparinux. r-Antidote has the potential to be used as a universal antidote for a broad range of fXa inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roig, Benjamin; Blanton, Michael R.; Ross, Nicholas P.
2014-02-01
Many classes of active galactic nuclei (AGNs) have been observed and recorded since the discovery of Seyfert galaxies. In this paper, we examine the sample of luminous galaxies in the Baryon Oscillation Spectroscopic Survey. We find a potentially new observational class of AGNs, one with strong and broad Mg II λ2799 line emission, but very weak emission in other normal indicators of AGN activity, such as the broad-line Hα, Hβ, and the near-ultraviolet AGN continuum, leading to an extreme ratio of broad Hα/Mg II flux relative to normal quasars. Meanwhile, these objects' narrow-line flux ratios reveal AGN narrow-line regions withmore » levels of activity consistent with the Mg II fluxes and in agreement with that of normal quasars. These AGN may represent an extreme case of the Baldwin effect, with very low continuum and high equivalent width relative to typical quasars, but their ratio of broad Mg II to broad Balmer emission remains very unusual. They may also be representative of a class of AGN where the central engine is observed indirectly with scattered light. These galaxies represent a small fraction of the total population of luminous galaxies (≅ 0.1%), but are more likely (about 3.5 times) to have AGN-like nuclear line emission properties than other luminous galaxies. Because Mg II is usually inaccessible for the population of nearby galaxies, there may exist a related population of broad-line Mg II emitters in the local universe which is currently classified as narrow-line emitters (Seyfert 2 galaxies) or low ionization nuclear emission-line regions.« less
Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis
Dorner, Mariah E; McMunn, Ryan D; Bartholow, Thomas G; Calhoon, Brecken E; Conlon, Michelle R; Dulli, Jessica M; Fehling, Samuel C; Fisher, Cody R; Hodgson, Shane W; Keenan, Shawn W; Kruger, Alyssa N; Mabin, Justin W; Mazula, Daniel L; Monte, Christopher A; Olthafer, Augustus; Sexton, Ashley E; Soderholm, Beatrice R; Strom, Alexander M; Hati, Sanchita
2015-01-01
Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes. PMID:26130403
Medical Complexity among Children with Special Health Care Needs: A Two-Dimensional View.
Coller, Ryan J; Lerner, Carlos F; Eickhoff, Jens C; Klitzner, Thomas S; Sklansky, Daniel J; Ehlenbach, Mary; Chung, Paul J
2016-08-01
To identify subgroups of U.S. children with special health care needs (CSHCN) and characterize key outcomes. Secondary analysis of 2009-2010 National Survey of CSHCN. Latent class analysis grouped individuals into substantively meaningful classes empirically derived from measures of pediatric medical complexity. Outcomes were compared among latent classes with weighted logistic or negative binomial regression. LCA identified four unique CSHCN subgroups: broad functional impairment (physical, cognitive, and mental health) with extensive health care (Class 1), broad functional impairment alone (Class 2), predominant physical impairment requiring family-delivered care (Class 3), and physical impairment alone (Class 4). CSHCN from Class 1 had the highest ED visit rates (IRR 3.3, p < .001) and hospitalization odds (AOR: 12.0, p < .001) and lowest odds of a medical home (AOR: 0.17, p < .001). CSHCN in Class 3, despite experiencing more shared decision making and medical home attributes, had more ED visits and missed school than CSHCN in Class 2 (p < .001); the latter, however, experienced more cost-related difficulties, care delays, and parents having to stop work (p < .001). Recognizing distinct impacts of cognitive and mental health impairments and health care delivery needs on CSHCN outcomes may better direct future intervention efforts. © Health Research and Educational Trust.
Characterization of the binding of 8-anilinonaphthalene sulphonate to rat class Mu GST M1-1
Kinsley, Nichole; Sayed, Yasien; Armstrong, Richard N.; Dirr, Heini W.
2008-01-01
Molecular docking and ANS-displacement experiments indicated that 8-anilinonaphthalene sulphonate (ANS) binds the hydrophobic site (H-site) in the active site of dimeric class Mu rGST M1-1. The naphthalene moiety provides most of the van der Waals contacts at the ANS-binding interface while the anilino group is able to sample different rotamers. The energetics of ANS binding were studied by isothermal titration calorimetry (ITC) over the temperature range of 5–30 °C. Binding is both enthalpically and entropically driven and displays a stoichiometry of one ANS molecule per subunit (or H-site). ANS binding is linked to the uptake of 0.5 protons at pH 6.5. Enthalpy of binding depends linearly upon temperature yielding a ΔCp of −80 ± 4 cal K−1 mol−1 indicating the burial of solvent-exposed nonpolar surface area upon ANS-protein complex formation. While ion-pair interactions between the sulfonate moiety of ANS and protein cationic groups may be significant for other ANS-binding proteins, the binding of ANS to rGST M1-1 is primarily hydrophobic in origin. The binding properties are compared with those of other GSTs and ANS-binding proteins. PMID:18703268
Rosenfeld, M R; Dvorkin, B; Klein, P N; Makman, M H
1982-03-04
Rat striatum contains two populations of dopaminergic [3H]spiroperidol binding sites. The two populations are similar in their affinities for chlorpromazine and dopamine. Only one population, that with a somewhat higher affinity for spiroperidol itself, exhibits high affinity for the selective D2 antagonists molindone, metoclopramide and domperidone. Hence, this population may represent D2 receptor sites. The other larger population may represent either a separate class of receptor sites or a different form of D2 receptor sites.
Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Feng; Stanevich, Vitali; Wlodarchak, Nathan
Proper activation of protein phosphatase 2A (PP2A) catalytic subunit is central for the complex PP2A regulation and is crucial for broad aspects of cellular function. The crystal structure of PP2A bound to PP2A phosphatase activator (PTPA) and ATPγS reveals that PTPA makes broad contacts with the structural elements surrounding the PP2A active site and the adenine moiety of ATP. PTPA-binding stabilizes the protein fold of apo-PP2A required for activation, and orients ATP phosphoryl groups to bind directly to the PP2A active site. This allows ATP to modulate the metal-binding preferences of the PP2A active site and utilize the PP2A activemore » site for ATP hydrolysis. In vitro, ATP selectively and drastically enhances binding of endogenous catalytic metal ions, which requires ATP hydrolysis and is crucial for acquisition of pSer/Thr-specific phosphatase activity. Furthermore, both PP2A- and ATP-binding are required for PTPA function in cell proliferation and survival. Our results suggest novel mechanisms of PTPA in PP2A activation with structural economy and a unique ATP-binding pocket that could potentially serve as a specific therapeutic target.« less
NASA Astrophysics Data System (ADS)
Negri, Matthias; Recanatini, Maurizio; Hartmann, Rolf W.
2011-09-01
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the last step of the estrogen biosynthesis, namely the reduction of estrone to the biologically potent estradiol. As such it is a potentially attractive drug target for the treatment of estrogen-dependent diseases like breast cancer and endometriosis. 17β-HSD1 belongs to the bisubstrate enzymes and exists as an ensemble of conformations. These principally differ in the region of the βFαG'-loop, suggesting a prominent role in substrate and inhibitor binding. Although several classes of potent non-steroidal 17β-HSD1 inhibitors currently exist, their binding mode is still unclear. We aimed to elucidate the binding mode of bis(hydroxyphenyl)arenes, a highly potent class of 17β-HSD1 inhibitors, and to rank these compounds correctly with respect to their inhibitory potency, two essential aspects in drug design. Ensemble docking experiments resulted in a steroidal binding mode for the closed enzyme conformations and in an alternative mode for the opened and occluded conformers with the inhibitors placed below the NADPH interacting with it synergically via π-π stacking and H-bond formation. Both binding modes were investigated by MD simulations and MM-PBSA binding free energy estimations using as representative member for this class compound 1 (50 nM). Notably, only the alternative binding mode proved stable and was energetically more favorable, while when simulated in the steroidal binding mode compound 1 was displaced from the active site. In parallel, ab initio studies of small NADPH-inhibitor complexes were performed, which supported the importance of the synergistic interaction between inhibitors and cofactor.
Molecular Recognition of Corticotropin releasing Factor by Its G protein-coupled Receptor CRFR1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pioszak, Augen A.; Parker, Naomi R.; Suino-Powell, Kelly
2009-01-15
The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observedmore » for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.« less
1994-01-01
Unlike the highly polymorphic major histocompatibility complex (MHC) class Ia molecules, which present a wide variety of peptides to T cells, it is generally assumed that the nonpolymorphic MHC class Ib molecules may have evolved to function as highly specialized receptors for the presentation of structurally unique peptides. However, a thorough biochemical analysis of one class Ib molecule, the soluble isoform of Qa-2 antigen (H-2SQ7b), has revealed that it binds a diverse array of structurally similar peptides derived from intracellular proteins in much the same manner as the classical antigen-presenting molecules. Specifically, we find that SQ7b molecules are heterodimers of heavy and light chains complexed with nonameric peptides in a 1:1:1 ratio. These peptides contain a conserved hydrophobic residue at the COOH terminus and a combination of one or more conserved residue(s) at P7 (histidine), P2 (glutamine/leucine), and/or P3 (leucine/asparagine) as anchors for binding SQ7b. 2 of 18 sequenced peptides matched cytosolic proteins (cofilin and L19 ribosomal protein), suggesting an intracellular source of the SQ7b ligands. Minimal estimates of the peptide repertoire revealed that at least 200 different naturally processed self-peptides can bind SQ7b molecules. Since Qa-2 molecules associate with a diverse array of peptides, we suggest that they function as effective presenting molecules of endogenously synthesized proteins like the class Ia molecules. PMID:8294869
USING 19F-NMR SPECTROSCOPY TO DETERMINE TRIFLURALIN BINDING TO SOIL
Trifluralin is a widely used herbicide for the control of broad leaf weeds in a variety of crops. Its binding to soil may result in significant losses in herbicidal activity and a delayed pollution problem. To investigate the nature of soil-bound trifluralin residues, 14
Ng, Filomena; Kittelmann, Sandra; Patchett, Mark L; Attwood, Graeme T; Janssen, Peter H; Rakonjac, Jasna; Gagic, Dragana
2016-09-01
Symbiotic associations are ubiquitous in the microbial world and have a major role in shaping the evolution of both partners. One of the most interesting mutualistic relationships exists between protozoa and methanogenic archaea in the fermentative forestomach (rumen) of ruminant animals. Methanogens reside within and on the surface of protozoa as symbionts, and interspecies hydrogen transfer is speculated to be the main driver for physical associations observed between the two groups. In silico analyses of several rumen methanogen genomes have previously shown that up to 5% of genes encode adhesin-like proteins, which may be central to rumen interspecies attachment. We hypothesized that adhesin-like proteins on methanogen cell surfaces facilitate attachment to protozoal hosts. Using phage display technology, we have identified a protein (Mru_1499) from Methanobrevibacter ruminantium M1 as an adhesin that binds to a broad range of rumen protozoa (including the genera Epidinium and Entodinium). This unique adhesin also binds the cell surface of the bacterium Butyrivibrio proteoclasticus, suggesting a broad adhesion spectrum for this protein. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Gul, Ahmet; Erman, Burak
2018-01-16
Prediction of peptide binding on specific human leukocyte antigens (HLA) has long been studied with successful results. We herein describe the effects of entropy and dynamics by investigating the binding stabilities of 10 nanopeptides on various HLA Class I alleles using a theoretical model based on molecular dynamics simulations. The fluctuational entropies of the peptides are estimated over a temperature range of 310-460 K. The estimated entropies correlate well with experimental binding affinities of the peptides: peptides that have higher binding affinities have lower entropies compared to non-binders, which have significantly larger entropies. The computation of the entropies is based on a simple model that requires short molecular dynamics trajectories and allows for approximate but rapid determination. The paper draws attention to the long neglected dynamic aspects of peptide binding, and provides a fast computation scheme that allows for rapid scanning of large numbers of peptides on selected HLA antigens, which may be useful in defining the right peptides for personal immunotherapy.
NASA Astrophysics Data System (ADS)
Gul, Ahmet; Erman, Burak
2018-03-01
Prediction of peptide binding on specific human leukocyte antigens (HLA) has long been studied with successful results. We herein describe the effects of entropy and dynamics by investigating the binding stabilities of 10 nanopeptides on various HLA Class I alleles using a theoretical model based on molecular dynamics simulations. The fluctuational entropies of the peptides are estimated over a temperature range of 310-460 K. The estimated entropies correlate well with experimental binding affinities of the peptides: peptides that have higher binding affinities have lower entropies compared to non-binders, which have significantly larger entropies. The computation of the entropies is based on a simple model that requires short molecular dynamics trajectories and allows for approximate but rapid determination. The paper draws attention to the long neglected dynamic aspects of peptide binding, and provides a fast computation scheme that allows for rapid scanning of large numbers of peptides on selected HLA antigens, which may be useful in defining the right peptides for personal immunotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, J.; Malchiodi, E; Cho, S
2009-01-01
Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors andmore » explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.« less
Predicted structure of MIF/CD74 and RTL1000/CD74 complexes.
Meza-Romero, Roberto; Benedek, Gil; Leng, Lin; Bucala, Richard; Vandenbark, Arthur A
2016-04-01
Macrophage migration inhibitory factor (MIF) is a key cytokine in autoimmune and inflammatory diseases that attracts and then retains activated immune cells from the periphery to the tissues. MIF exists as a homotrimer and its effects are mediated through its primary receptor, CD74 (the class II invariant chain that exhibits a highly structured trimerization domain), present on class II expressing cells. Although a number of binding residues have been identified between MIF and CD74 trimers, their spatial orientation has not been established. Using a docking program in silico, we have modeled binding interactions between CD74 and MIF as well as CD74 and a competitive MIF inhibitor, RTL1000, a partial MHC class II construct that is currently in clinical trials for multiple sclerosis. These analyses revealed 3 binding sites on the MIF trimer that each were predicted to bind one CD74 trimer through interactions with two distinct 5 amino acid determinants. Surprisingly, predicted binding of one CD74 trimer to a single RTL1000 antagonist utilized the same two 5 residue determinants, providing strong suggestive evidence in support of the MIF binding regions on CD74. Taken together, our structural modeling predicts a new MIF(CD74)3 dodecamer that may provide the basis for increased MIF potency and the requirement for ~3-fold excess RTL1000 to achieve full antagonism.
Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin.
Nielsen, A D; Borch, K; Westh, P
2000-06-15
The specific binding to bovine serum albumin (BSA) of anionic and non-ionic surfactants with C12 acyl chains has been studied by high sensitivity isothermal titration calorimetry. This method proved particularly effective in resolving the binding of anionic surfactants into separate classes of sites with different affinity. For sodium dodecylsulfate (SDS) the measured binding curves could be rationalized as association to two classes (high affinity/low affinity) of sites comprising, respectively, three and six similar (i.e. thermodynamically equivalent), independent sites. Changes in the thermodynamic functions enthalpy, standard free energy, standard entropy and heat capacity could be discerned for each class of binding site, as well as for micelle formation. These data suggest that binding to low affinity sites (in analogy with micelle formation) exhibits energetic parameters; in particular, a large negative change in heat capacity, which is characteristic of hydrophobic interactions. The thermodynamics of high affinity binding, on the other hand, is indicative of other dominant forces; most likely electrostatic interactions. Other anionic ligands investigated (laurate and dodecyl benzylsulfonate) showed a behavior similar to SDS, the most significant difference being the high affinity binding of the alkylbenzyl sulfonate. For this ligand, the thermodynamic data is indicative of a more loosely associated complex than for SDS and laurate. BSA was found to bind one or two of the non-ionic surfactants (NIS) hepta- or penta(ethylene glycol) monododecyl ether (C12EO7 and C12EO5) with binding constants about three orders of magnitude lower than for SDS. Hence, the free energy of the surfactant in the weakly bound BSA-NIS complex is only slightly favored over the micellar state. The binding process is characterized by very large exothermic enthalpy changes (larger than for the charged surfactants) and a large, positive increment in heat capacity. These observations cannot be reconciled with a molecular picture based on simple hydrophobic condensation onto non-polar patches on the protein surface.
MHC class II diversity of koala (Phascolarctos cinereus) populations across their range
Lau, Q; Jaratlerdsiri, W; Griffith, J E; Gongora, J; Higgins, D P
2014-01-01
Major histocompatibility complex class II (MHCII) genes code for proteins that bind and present antigenic peptides and trigger the adaptive immune response. We present a broad geographical study of MHCII DA β1 (DAB) and DB β1 (DBB) variants of the koala (Phascolarctos cinereus; n=191) from 12 populations across eastern Australia, with a total of 13 DAB and 7 DBB variants found. We identified greater MHCII variation and, possibly, additional gene copies in koala populations in the north (Queensland and New South Wales) relative to the south (Victoria), confirmed by STRUCTURE analyses and genetic differentiation using analysis of molecular variance. The higher MHCII diversity in the north relative to south could potentially be attributed to (i) significant founder effect in Victorian populations linked to historical translocation of bottlenecked koala populations and (ii) increased pathogen-driven balancing selection and/or local genetic drift in the north. Low MHCII genetic diversity in koalas from the south could reduce their potential response to disease, although the three DAB variants found in the south had substantial sequence divergence between variants. This study assessing MHCII diversity in the koala with historical translocations in some populations contributes to understanding the effects of population translocations on functional genetic diversity. PMID:24690756
Johansson, Mikael; Mecklinger, Axel
2003-10-01
The focus of the present paper is a late posterior negative slow wave (LPN) that has frequently been reported in event-related potential (ERP) studies of memory. An overview of these studies suggests that two broad classes of experimental conditions tend to elicit this component: (a) item recognition tasks associated with enhanced action monitoring demands arising from response conflict and (b) memory tasks that require the binding of items with contextual information specifying the study episode. A combined stimulus- and response-locked analysis of data from two studies mapping onto these classes allowed a temporal and functional decomposition of the LPN. While only the LPN observed in the item recognition task could be attributed to the involvement of a posteriorly distributed response-locked error-related negativity (or error negativity; ERN/Ne) occurring immediately after the response, the source-memory task was associated with a stimulus-locked negative slow wave occurring prior and during response execution that was evident when data were matched for response latencies. We argue that the presence of the former reflects action monitoring due to high levels of response conflict, whereas the latter reflects retrieval processes that may act to reconstruct the prior study episode when task-relevant attribute conjunctions are not readily recovered or need continued evaluation.
Reinhart, Brenda J.; Liu, Tie; Newell, Nicole R.; Magnani, Enrico; Huang, Tengbo; Kerstetter, Randall; Michaels, Scott; Barton, M. Kathryn
2013-01-01
The broadly conserved Class III HOMEODOMAIN LEUCINE ZIPPER (HD-ZIPIII) and KANADI transcription factors have opposing and transformational effects on polarity and growth in all tissues and stages of the plant's life. To obtain a comprehensive understanding of how these factors work, we have identified transcripts that change in response to induced HD-ZIPIII or KANADI function. Additional criteria used to identify high-confidence targets among this set were presence of an adjacent HD-ZIPIII binding site, expression enriched within a subdomain of the shoot apical meristem, mutant phenotype showing defect in polar leaf and/or meristem development, physical interaction between target gene product and HD-ZIPIII protein, opposite regulation by HD-ZIPIII and KANADI, and evolutionary conservation of the regulator–target relationship. We find that HD-ZIPIII and KANADI regulate tissue-specific transcription factors involved in subsidiary developmental decisions, nearly all major hormone pathways, and new actors (such as INDETERMINATE DOMAIN4) in the ad/abaxial regulatory network. Multiple feedback loops regulating HD-ZIPIII and KANADI are identified, as are mechanisms through which HD-ZIPIII and KANADI oppose each other. This work lays the foundation needed to understand the components, structure, and workings of the ad/abaxial regulatory network directing basic plant growth and development. PMID:24076978
Stepanyuk, Galina A; Liu, Zhi-Jie; Markova, Svetlana S; Frank, Ludmila A; Lee, John; Vysotski, Eugene S; Wang, Bi-Cheng
2008-04-01
Bioluminescence in the sea pansy Renilla involves two distinct proteins, a Ca2+-triggered coelenterazine-binding protein (CBP), and Renilla luciferase. CBP contains one tightly bound coelenterazine molecule, which becomes available for reaction with luciferase and O2 only subsequent to Ca2+ binding. CBP belongs to the EF-hand superfamily of Ca2+-binding proteins and contains three "EF-hand" Ca2+-binding sites. The overall spatial structure of recombinant selenomethionine-labeled CBP determined at 1.7 A, is found to approximate the protein scaffold characteristic of the class of Ca2+-regulated photoproteins. Photoproteins however, catalyze molecular oxygen addition to coelenterazine producing a 2-hydroperoxycoelenterazine intermediate, which is stabilized within the binding cavity in the absence of Ca2+. Addition of Ca2+ triggers the bioluminescence reaction. However in CBP this first step of oxygen addition is not allowed. The different amino acid environments and hydrogen bond interactions within the binding cavity, are proposed to account for the different properties of the two classes of proteins.
The CD1 family: serving lipid antigens to T cells since the Mesozoic era.
Zajonc, Dirk M
2016-08-01
Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs).
The CD1 family: serving lipid antigens to T cells since the Mesozoic era
Zajonc, Dirk M.
2016-01-01
Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs). PMID:27368414
BiodMHC: an online server for the prediction of MHC class II-peptide binding affinity.
Wang, Lian; Pan, Danling; Hu, Xihao; Xiao, Jinyu; Gao, Yangyang; Zhang, Huifang; Zhang, Yan; Liu, Juan; Zhu, Shanfeng
2009-05-01
Effective identification of major histocompatibility complex (MHC) molecules restricted peptides is a critical step in discovering immune epitopes. Although many online servers have been built to predict class II MHC-peptide binding affinity, they have been trained on different datasets, and thus fail in providing a unified comparison of various methods. In this paper, we present our implementation of seven popular predictive methods, namely SMM-align, ARB, SVR-pairwise, Gibbs sampler, ProPred, LP-top2, and MHCPred, on a single web server named BiodMHC (http://biod.whu.edu.cn/BiodMHC/index.html, the software is available upon request). Using a standard measure of AUC (Area Under the receiver operating characteristic Curves), we compare these methods by means of not only cross validation but also prediction on independent test datasets. We find that SMM-align, ProPred, SVR-pairwise, ARB, and Gibbs sampler are the five best-performing methods. For the binding affinity prediction of class II MHC-peptide, BiodMHC provides a convenient online platform for researchers to obtain binding information simultaneously using various methods.
USDA-ARS?s Scientific Manuscript database
Plant resistance (R) genes typically encode proteins with nucleotide binding site-leucine rich repeat (NLR) domains. We identified a novel, broad-spectrum rice blast R gene, Ptr, encoding a non-NLR protein with four Armadillo repeats. Ptr was originally identified by fast neutron mutagenesis as a ...
Purrello, M; Di Pietro, C; Rapisarda, A; Viola, A; Corsaro, C; Motta, S; Grzeschik, K H; Sichel, G
1996-01-01
Dr1 is a nuclear protein of 19 kDa that exists in the nucleoplasm as a homotetramer. By binding to TBP (the DNA-binding subunit of TFIID, and also a subunit of SL1 and TFIIIB), the protein blocks class II and class III preinitiation complex assembly, thus repressing the activity of the corresponding promoters. Since transcription of class I genes is unaffected by Dr1. it has been proposed that the protein may coordinate the expression of class I, class II and class III genes. By somatic cell genetics and fluorescence in situ hybridization, we have localized the gene (DR1), present in the genome of higher eukaryotes as a single copy, to human chromosome region 1p21-->p13. The nucleotide sequence conservation of the coding segment of the gene, as determined by Noah's ark blot analysis, and its ubiquitous transcription suggest that Dr1 has an important biological role, which could be related to the negative control of cell proliferation.
Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K
1989-11-01
Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.
In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishino, Tomonori G.; Department of Biotechnology, University of Tokyo, Bunkyo-ku, Tokyo 113-8657; Miyazaki, Masaya
Class IIa histone deacetylases (HDACs) form complexes with a class of transcriptional repressors in the nucleus. While screening for compounds that could block the association of HDAC4 with the BTB domain-containing transcriptional repressor Bach2, we discovered that phorbol 12-myristate 13-acetate (PMA) induced the cytoplasmic retention of HDAC4 mutants lacking a nuclear export signal (NES). Although PMA treatment and PKD overexpression has been proposed to facilitate the nuclear export of class IIa HDACs by creating 14-3-3 binding sites containing phosphoserines, our experiments using HDAC mutants demonstrated that PMA greatly reduces nuclear import. PMA treatment repressed the NLS activity in a mannermore » dependent on 14-3-3 binding. These results suggest that nuclear HDAC4 is not tethered in the nucleus, but instead shuttles between the nucleus and the cytoplasm. Phosphorylation-induced 14-3-3 binding biases the balance of nucleo-cytoplasmic shuttling toward the cytoplasm by inhibiting nuclear import.« less
ERIC Educational Resources Information Center
Morrison, Andrew
2011-01-01
This article is an analysis of middle-class rejection of higher education. The author uses accounts of the educational decision-making of three female students, all identified to be from broadly middle-class backgrounds, from within full-time vocational further education in the United Kingdom, as a means to consider two issues. First, the author…
Bouvier, M; Wiley, D C
1996-01-01
Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides. Images Fig. 2 Fig. 4 PMID:8643447
Nizam, Shadab; Gazara, Rajesh Kumar; Verma, Sandhya; Singh, Kunal; Verma, Praveen Kumar
2014-01-01
Old Yellow Enzyme (OYE1) was the first flavin-dependent enzyme identified and characterized in detail by the entire range of physical techniques. Irrespective of this scrutiny, true physiological role of the enzyme remains a mystery. In a recent study, we systematically identified OYE proteins from various fungi and classified them into three classes viz. Class I, II and III. However, there is no information about the structural organization of Class III OYEs, eukaryotic Class II OYEs and Class I OYEs of filamentous fungi. Ascochyta rabiei, a filamentous phytopathogen which causes Ascochyta blight (AB) in chickpea possesses six OYEs (ArOYE1-6) belonging to the three OYE classes. Here we carried out comparative homology modeling of six ArOYEs representing all the three classes to get an in depth idea of structural and functional aspects of fungal OYEs. The predicted 3D structures of A. rabiei OYEs were refined and evaluated using various validation tools for their structural integrity. Analysis of FMN binding environment of Class III OYE revealed novel residues involved in interaction. The ligand para-hydroxybenzaldehyde (PHB) was docked into the active site of the enzymes and interacting residues were analyzed. We observed a unique active site organization of Class III OYE in comparison to Class I and II OYEs. Subsequently, analysis of stereopreference through structural features of ArOYEs was carried out, suggesting differences in R/S selectivity of these proteins. Therefore, our comparative modeling study provides insights into the FMN binding, active site organization and stereopreference of different classes of ArOYEs and indicates towards functional differences of these enzymes. This study provides the basis for future investigations towards the biochemical and functional characterization of these enigmatic enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Marvin J.; Pelc, Matthew; Kamtekar, Satwik
2010-08-11
The work described herein demonstrates the utility of structure-based drug design (SBDD) in shifting the binding mode of an HTS hit from a DFG-in to a DFG-out binding mode resulting in a class of novel potent CSF-1R kinase inhibitors suitable for lead development.
Azoitei, M.L.; Ban, Y.A.; Kalyuzhny, O.; Guenaga, J.; Schroeter, A.; Porter, J.; Wyatt, R.; Schief, W.R.
2015-01-01
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope-scaffolds are a new class of antigens engineered by transplanting viral epitopes of pre-defined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope-scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody-binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope-scaffolds that display the known epitope of HIV-1 neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope-scaffold that bound 2F5 with sub-nanomolar affinity (KD = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope-scaffold represents a successful example of rational protein backbone engineering and protein-protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. PMID:25043744
Kumar, Sandeep; Mitchell, Mark A; Rup, Bonita; Singh, Satish K
2012-08-01
Aggregation and unwanted immunogenicity are hurdles to avoid in successful commercial development of antibody-based therapeutics. In this article, the relationship between aggregation-prone regions (APRs), capable of forming cross-β motifs/amyloid fibrils, and major histocompatibility complex class II-restricted human leukocyte antigen (HLA)-DR-binding T-cell immune epitopes (TcIEs) is analyzed using amino acid sequences of 25 therapeutic antibodies, 55 TcIEs recognized by T-regulatory cells (tregitopes), 1000 randomly generated 15-residue-long peptides, 2257 human self-TcIEs (autoantigens), and 11 peptides in HLA-peptide cocrystal structures. Sequence analyses from these diverse sources consistently show a high level of correlation between APRs and TcIEs: approximately one-third of TcIEs contain APRs, but the majority of APRs occur within TcIE regions (TcIERs). Tregitopes also contain APRs. Most APR-containing TcIERs can bind multiple HLA-DR alleles, suggesting that aggregation-driven adverse immune responses could impact a broad segment of patient population. This article has identified common molecular sequence-structure loci that potentially contribute toward both manufacturability and safety profiles of the therapeutic antibodies, thereby laying a foundation for simultaneous optimization of these attributes in novel and follow-on candidates. Incidence of APRs within TcIERs is not special to biotherapeutics, self-TcIEs from human proteins, involved in various diseases, also contain predicted APRs and experimentally proven amyloid-fibril-forming peptide sequence portions. Copyright © 2012 Wiley Periodicals, Inc.
Muñoz-Alía, Miguel Angel; Casasnovas, José M; Celma, María Luisa; Carabaña, Juan; Liton, Paloma B; Fernandez-Muñoz, Rafael
2017-05-15
Measles virus (MV) remains a leading cause of vaccine-preventable deaths in children. Protection against MV is associated with neutralizing antibodies that preferentially recognize the viral hemagglutinin (MV-H), and to a lesser extent, the fusion protein (MV-F). Although MV is serologically monotypic, 24 genotypes have been identified. Here we report three neutralization epitopes conserved in the more prevalent circulating MV genotypes, two located in the MV-H receptor binding site (RBS) (antigenic site III) and a third in MV-H/MV-F interphase (antigenic site Ia) which are essential for MV multiplication. In contrast, two MV-H neutralization epitopes, showed a genotype-specific neutralization escape due to a single amino acid change, that we mapped in the "noose" antigenic site, or an enhanced neutralization epitope (antigenic site IIa). The monoclonal antibody (mAb) neutralization potency correlated with its binding affinity and was mainly driven by kinetic dissociation rate (k off ). We developed an immunoassay for mAb binding to MV-H in its native hetero-oligomeric structure with MV-F on the surface of a MV productive steady-state persistently infected (p.i.) human cell lines, and a competitive-binding assay with serum from individuals with past infection by different MV genotypes. Binding assays revealed that a broad neutralization epitope, in RBS antigenic site, a genotype specific neutralization epitopes, in noose and IIa sites, were immunogenic in natural infection and vaccination and may elicit long-lasting humoral immunity that might contribute to explain MV immunogenic stability. These results support the design of improved measles vaccines, broad-spectrum prophylactic or therapeutic antibodies and MV-used in oncolytic therapies. Copyright © 2017 Elsevier B.V. All rights reserved.
A Broad-Spectrum Inhibitor of CRISPR-Cas9.
Harrington, Lucas B; Doxzen, Kevin W; Ma, Enbo; Liu, Jun-Jie; Knott, Gavin J; Edraki, Alireza; Garcia, Bianca; Amrani, Nadia; Chen, Janice S; Cofsky, Joshua C; Kranzusch, Philip J; Sontheimer, Erik J; Davidson, Alan R; Maxwell, Karen L; Doudna, Jennifer A
2017-09-07
CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9. Copyright © 2017 Elsevier Inc. All rights reserved.
A Link between ORC-Origin Binding Mechanisms and Origin Activation Time Revealed in Budding Yeast
Hoggard, Timothy; Shor, Erika; Müller, Carolin A.; Nieduszynski, Conrad A.; Fox, Catherine A.
2013-01-01
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. PMID:24068963
Review: correlations between oxygen affinity and sequence classifications of plant hemoglobins.
Smagghe, Benoit J; Hoy, Julie A; Percifield, Ryan; Kundu, Suman; Hargrove, Mark S; Sarath, Gautam; Hilbert, Jean-Louis; Watts, Richard A; Dennis, Elizabeth S; Peacock, W James; Dewilde, Sylvia; Moens, Luc; Blouin, George C; Olson, John S; Appleby, Cyril A
2009-12-01
Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full-length globins with the classical eight helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobins, the physiological functions of these plant hemoglobins remain unknown. We have reviewed and, in some cases, measured new oxygen binding properties of a large number of Class 1 and 2 plant nonsymbiotic Hbs and leghemoglobins. We found that sequence classification correlates with distinct extents of hexacoordination with the distal histidine and markedly different overall oxygen affinities and association and dissociation rate constants. These results suggest strong selective pressure for the evolution of distinct physiological functions. The leghemoglobins evolved from the Class 2 globins and show no hexacoordination, very high rates of O(2) binding ( approximately 250 muM(-1) s(-1)), moderately high rates of O(2) dissociation ( approximately 5-15 s(-1)), and high oxygen affinity (K(d) or P(50) approximately 50 nM). These properties both facilitate O(2) diffusion to respiring N(2) fixing bacteria and reduce O(2) tension in the root nodules of legumes. The Class 1 plant Hbs show weak hexacoordination (K(HisE7) approximately 2), moderate rates of O(2) binding ( approximately 25 muM(-1) s(-1)), very small rates of O(2) dissociation ( approximately 0.16 s(-1)), and remarkably high O(2) affinities (P(50) approximately 2 nM), suggesting a function involving O(2) and nitric oxide (NO) scavenging. The Class 2 Hbs exhibit strong hexacoordination (K(HisE7) approximately 100), low rates of O(2) binding ( approximately 1 muM(-1) s(-1)), moderately low O(2) dissociation rate constants ( approximately 1 s(-1)), and moderate, Mb-like O(2) affinities (P(50) approximately 340 nM), perhaps suggesting a sensing role for sustained low, micromolar levels of oxygen.
Taneva, Svetla G; Patty, Philipus J; Frisken, Barbara J; Cornell, Rosemary B
2005-07-05
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the rate-limiting step in phosphatidylcholine (PC) synthesis, and its activity is regulated by reversible association with membranes, mediated by an amphipathic helical domain M. Here we describe a new feature of the CCTalpha isoform, vesicle tethering. We show, using dynamic light scattering and transmission electron microscopy, that dimers of CCTalpha can cross-bridge separate vesicles to promote vesicle aggregation. The vesicles contained either class I activators (anionic phospholipids) or the less potent class II activators, which favor nonlamellar phase formation. CCT increased the apparent hydrodynamic radius and polydispersity of anionic phospholipid vesicles even at low CCT concentrations corresponding to only one or two dimers per vesicle. Electron micrographs of negatively stained phosphatidylglycerol (PG) vesicles confirmed CCT-mediated vesicle aggregation. CCT conjugated to colloidal gold accumulated on the vesicle surfaces and in areas of vesicle-vesicle contact. PG vesicle aggregation required both the membrane-binding domain and the intact CCT dimer, suggesting binding of CCT to apposed membranes via the two M domains situated on opposite sides of the dimerization domain. In contrast to the effects on anionic phospholipid vesicles, CCT did not induce aggregation of PC vesicles containing the class II lipids, oleic acid, diacylglycerol, or phosphatidylethanolamine. The different behavior of the two lipid classes reflected differences in measured binding affinity, with only strongly binding phospholipid vesicles being susceptible to CCT-induced aggregation. Our findings suggest a new model for CCTalpha domain organization and membrane interaction, and a potential involvement of the enzyme in cellular events that implicate close apposition of membranes.
Identification of two H3-histamine receptor subtypes
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, R.E. Jr.; Zweig, A.; Shih, N.Y.
The H3-histamine receptor provides feedback inhibition of histamine synthesis and release as well as inhibition of other neurotransmitter release. We have characterized this receptor by radioligand binding studies with the H3 agonist N alpha-(3H)methylhistamine ((3H)NAMHA). The results of (3H)NAMHA saturation binding and NAMHA inhibition of (3H)NAMHA binding were consistent with an apparently single class of receptors (KD = 0.37 nM, Bmax = 73 fmol/mg of protein) and competition assays with other agonists and the antagonists impromidine and dimaprit disclosed only a single class of sites. In contrast, inhibition of (3H)NAMHA binding by the specific high affinity H3 antagonist thioperamide revealedmore » two classes of sites (KiA = 5 nM, BmaxA = 30 fmol/mg of protein; KiB = 68 nM, BmaxB = 48 fmol/mg of protein). Burimamide, another antagonist that, like thioperamide, contains a thiourea group, likewise discriminated between two classes of sites. In addition to differences between some antagonist potencies for the two receptors, there is a differential guanine nucleotide sensitivity of the two. The affinity of the H3A receptor for (3H) NAMHA was reduced less than 2-fold, whereas (3H)NAMHA binding to the H3B receptor was undetectable in the presence of guanosine 5'-O-(3-thiotriphosphate). The distinction between H3A and H3B receptor subtypes, the former a high affinity and the latter a low affinity thioperamide site, draws support from published in vitro data.« less
Tenzer, S; Peters, B; Bulik, S; Schoor, O; Lemmel, C; Schatz, M M; Kloetzel, P-M; Rammensee, H-G; Schild, H; Holzhütter, H-G
2005-05-01
Epitopes presented by major histocompatibility complex (MHC) class I molecules are selected by a multi-step process. Here we present the first computational prediction of this process based on in vitro experiments characterizing proteasomal cleavage, transport by the transporter associated with antigen processing (TAP) and MHC class I binding. Our novel prediction method for proteasomal cleavages outperforms existing methods when tested on in vitro cleavage data. The analysis of our predictions for a new dataset consisting of 390 endogenously processed MHC class I ligands from cells with known proteasome composition shows that the immunological advantage of switching from constitutive to immunoproteasomes is mainly to suppress the creation of peptides in the cytosol that TAP cannot transport. Furthermore, we show that proteasomes are unlikely to generate MHC class I ligands with a C-terminal lysine residue, suggesting processing of these ligands by a different protease that may be tripeptidyl-peptidase II (TPPII).
Aggarwal, Pooja; Das Gupta, Mainak; Joseph, Agnel Praveen; Chatterjee, Nirmalya; Srinivasan, N.; Nath, Utpal
2010-01-01
The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an ∼60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix (bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding domain specific to the plant kingdom. Little is known about how the TCP domain interacts with its target DNA. We report biochemical characterization and DNA binding properties of a TCP member in Arabidopsis thaliana, TCP4. We have shown that the 58-residue domain of TCP4 is essential and sufficient for binding to DNA and possesses DNA binding parameters comparable to canonical bHLH proteins. Using a yeast-based random mutagenesis screen and site-directed mutants, we identified the residues important for DNA binding and dimer formation. Mutants defective in binding and dimerization failed to rescue the phenotype of an Arabidopsis line lacking the endogenous TCP4 activity. By combining structure prediction, functional characterization of the mutants, and molecular modeling, we suggest a possible DNA binding mechanism for this class of transcription factors. PMID:20363772
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothman, R.B.; Jacobson, A.E.; Rice, K.C.
1987-11-01
Previous studies demonstrated that pretreatment of brain membranes with the irreversible mu antagonist, beta-funaltrexamine (beta-FNA), partially eliminated mu binding sites (25,35), consistent with the existence of two mu binding sites distinguished by beta-FNA. This paper tests the hypothesis that the FNA-sensitive and FNA-insensitive mu binding sites have different anatomical distributions in rat brain. Prior to autoradiographic visualization of mu binding sites, (/sup 3/H)oxymorphone, (/sup 3/H)D-ala2-MePhe4, Gly-ol5-enkephalin (DAGO), and (/sup 125/I)D-ala2-Me-Phe4-met(o)-ol)enkephalin (FK33824) were shown to selectively label mu binding sites using slide mounted sections of molded minced rat brain. As found using membranes, beta-FNA eliminated only a portion of mu bindingmore » sites. Autoradiographic visualization of mu binding sites using the mu-selective ligand (/sup 125/I)FK33824 in control and FNA-treated sections of rat brain demonstrated that the proportion of mu binding sites sensitive to beta-FNA varied across regions of the brain, particularly the dorsal thalamus, ventrobasal complex and the hypothalamus, providing anatomical data supporting the existence of two classes of mu binding sites in rat brain.« less
NLRC5: a key regulator of MHC class I-dependent immune responses.
Kobayashi, Koichi S; van den Elsen, Peter J
2012-12-01
The expression of MHC class I molecules is crucial for the initiation and regulation of adaptive immune responses against pathogens. NOD-, LRR- and CARD-containing 5 (NLRC5) was recently identified as a specific transactivator of MHC class I genes (CITA). NLRC5 and the master regulator for MHC class II genes, class II transactivator (CIITA), interact with similar MHC promoter-bound factors. Here, we provide a broad overview of the molecular mechanisms behind MHC class I transcription and the role of the class I transactivator NLRC5 in MHC class I-dependent immune responses.
Escherichia coli mutants impaired in maltodextrin transport.
Wandersman, C; Schwartz, M; Ferenci, T
1979-10-01
Wild-type Escherichia coli K-12 was found to grow equally well on maltose and on maltodextrins containing up to seven glucose residues. Three classes of mutants unable to grow on maltodextrins, but still able to grow on maltose, were investigated in detail. The first class, already known, was composed of phage lambda-resistant mutants, which lack the outer membrane protein coded by gene lamB. These mutants grow on maltose and maltotriose but not at all on maltotetraose and longer maltodextrins which cannot cross the outer membrane. A second class of mutants were affected in malE, the structural gene of the periplasmic maltose binding protein. The maltose binding proteins isolated from the new mutants were altered in their substrate binding properties, but not in a way that could account for the mutant phenotypes. Rather, the results of growth experiments and transport studies suggest that these malE mutants are impaired in their ability to transport maltodextrins across the outer membrane. This implies that the maltose binding protein (in wild-type strains) cooperates with the lambda receptor in permeation through the outer membrane. The last class of mutants described in this paper were affected in malG, or perhaps in an as yet undetected gene close to malG. They were defective in the transfer of maltodextrins from the periplasmic space to the cytoplasm but only slightly affected in the transport of maltose.
Wong-Baeza, Isabel; Ridley, Anna; Shaw, Jackie; Hatano, Hiroko; Rysnik, Oliwia; McHugh, Kirsty; Piper, Christopher; Brackenbridge, Simon; Fernandes, Ricardo; Chan, Anthoni; Bowness, Paul; Kollnberger, Simon
2013-01-01
1Abstract The Human Leukocyte Antigen HLA-B27(B27) is strongly associated with the spondyloarthritides. B27 can be expressed at the cell surface of antigen presenting cells (APC) as both classical β2m-associated B27 and as B27 free heavy chain forms (FHC) including disulphide-bonded heavy chain homodimers (termed B272). B27 FHC forms but not classical B27 bind to KIR3DL2. HLA-A3 which is not associated with spondyloarthritis (SpA) is also a ligand for KIR3DL2. Here we show that B272 and B27 FHC bind more strongly to KIR3DL2 than other HLA-class I, including HLA-A3. B272 tetramers bound KIR3DL2 transfected cells more strongly than HLA-A3. KIR3DL2Fc bound to HLA-B27-transfected cells more strongly than to cells transfected with other HLA-class I. KIR3DL2Fc pulled down multimeric, dimeric and monomeric free heavy chains from HLA-B27 expressing cell lines. Binding to B272 and B27 FHC stimulated greater KIR3DL2 phosphorylation than HLA-A3. B272 and B27 FHC stimulated KIR3DL2CD3ε–transduced T cell IL-2 production to a greater extent than control HLA-class I. KIR3DL2 binding to B27 inhibited NK IFNγ secretion and promoted greater survival of KIR3DL2+CD4 T and NK cells than binding to other HLA-class I. KIR3DL2+ T cells from B27+SpA patients proliferated more in response to antigen presented by syngeneic APC than the same T cell subset from healthy and disease controls. Our results suggest that expansion of KIR3DL2-expressing leukocytes observed in B27+ SpA may be explained by the stronger interaction of KIR3DL2 with B27 FHC. PMID:23440420
Wong-Baeza, Isabel; Ridley, Anna; Shaw, Jackie; Hatano, Hiroko; Rysnik, Oliwia; McHugh, Kirsty; Piper, Christopher; Brackenbridge, Simon; Fernandes, Ricardo; Chan, Anthoni; Bowness, Paul; Kollnberger, Simon
2013-04-01
The human leukocyte Ag HLA-B27 (B27) is strongly associated with the spondyloarthritides. B27 can be expressed at the cell surface of APC as both classical β2-microglobulin-associated B27 and B27 free H chain forms (FHC), including disulfide-bonded H chain homodimers (termed B27(2)). B27 FHC forms, but not classical B27, bind to KIR3DL2. HLA-A3, which is not associated with spondyloarthritis (SpA), is also a ligand for KIR3DL2. In this study, we show that B27(2) and B27 FHC bind more strongly to KIR3DL2 than other HLA-class I, including HLA-A3. B27(2) tetramers bound KIR3DL2-transfected cells more strongly than HLA-A3. KIR3DL2Fc bound to HLA-B27-transfected cells more strongly than to cells transfected with other HLA-class I. KIR3DL2Fc pulled down multimeric, dimeric, and monomeric FHC from HLA-B27-expressing cell lines. Binding to B27(2) and B27 FHC stimulated greater KIR3DL2 phosphorylation than HLA-A3. B27(2) and B27 FHC stimulated KIR3DL2CD3ε-transduced T cell IL-2 production to a greater extent than control HLA-class I. KIR3DL2 binding to B27 inhibited NK IFN-γ secretion and promoted greater survival of KIR3DL2(+) CD4 T and NK cells than binding to other HLA-class I. KIR3DL2(+) T cells from B27(+) SpA patients proliferated more in response to Ag presented by syngeneic APC than the same T cell subset from healthy and disease controls. Our results suggest that expansion of KIR3DL2-expressing leukocytes observed in B27(+) SpA may be explained by the stronger interaction of KIR3DL2 with B27 FHC.
Working Class Gender Relationships and Leisure in the United States, 1890-1920.
ERIC Educational Resources Information Center
Peiss, Kathy
Recent studies of the history of working-class leisure have rested on the conceptualization of leisure as both public and male. A study of the living conditions, recreational activities, and family budgets of white working-class New Yorkers between 1880 and 1920 suggests broad ways in which working women's leisure activities contributed to a…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-05
... Change Relating to Multi-Class Spread Orders November 29, 2013. Pursuant to Section 19(b)(1) of the... Substance of the Proposed Rule Change CBOE proposes to amend its rule related to Multi-Class Broad-Based Index Option Spread Orders (referred to herein as ``Multi-Class Spread Orders''). The text of the...
NASA Astrophysics Data System (ADS)
Lawrenz, Morgan E.; Salter, E. A.; Wierzbicki, Andrzej; Thompson, W. J.
Cyclic nucleotide phosphodiesterases (PDEs) comprise a superfamily of enzymes that hydrolyze the second messengers adenosine and guanosine 3',5'-cyclic monophosphate (cAMP and cGMP) to their noncyclic nucleotides (5'-AMP and 5'-GMP). Selective inhibitors of all 11 gene families of PDEs are being sought based on the different biochemical properties of the different isoforms, including their substrate specificities. The PDE4 gene family consists of cAMP-specific isoforms; selective PDE4 inhibitors such as rolipram have been developed, and related agents are used clinically as anti-inflammatory agents for asthma and COPD. The known crystal structures of PDE4 bound with rolipram and IBMX have allowed us to define plausible binding orientations for a novel class of benzylpyridazinone-based PDE4 inhibitors represented by EMD 94360 and EMD 95832 that are structurally distinct from rolipram. Molecular mechanics modeling with autodocking is used to explore energetically favorable binding orientations within the PDE4 catalytic site. We present two putative orientations for EMD 94360/95832 inhibitor binding. Our estimated interaction energies for rolipram, IBMX, EMD 94360, and EMD 95832 are consistent with the experimental data for their IC50 values. Key binding residues and interactions in these orientations are identified and compared with known binding motifs proposed for rolipram. The experimentally observed improved strength of inhibition exhibited by this novel class of PDE4 inhibitors is explained by the molecular modeling reported here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi
2009-05-15
BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of functionmore » and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.« less
Simakov, Nikolay; Leonard, David A.; Smith, Jeremy C.; ...
2016-09-26
Widespread antibiotic resistance, particularly when mediated by broad-spectrum β-lactamases, has major implications for public health. Substitutions in the active site often allow broad-spectrum enzymes to accommodate diverse types of β-lactams. Substitutions observed outside the active site are thought to compensate for the loss of thermal stability. The OXA-1 clade of class D β-lactamases contains a pair of conserved cysteines located outside the active site that forms a disulfide bond in the periplasm. In this paper, the effect of the distal disulfide bond on the structure and dynamics of OXA-1 was investigated via 4 μs molecular dynamics simulations. The results revealmore » that the disulfide promotes the preorganized orientation of the catalytic residues and affects the conformation of the functionally important Ω loop. Furthermore, principal component analysis reveals differences in the global dynamics between the oxidized and reduced forms, especially in the motions involving the Ω loop. A dynamical network analysis indicates that, in the oxidized form, in addition to its role in ligand binding, the KTG family motif is a central hub of the global dynamics. Finally, as activity of OXA-1 has been measured only in the reduced form, we suggest that accurate assessment of its functional profile would require oxidative conditions mimicking periplasm.« less
CD1-Restricted T Cells at the Crossroad of Innate and Adaptive Immunity.
Pereira, Catia S; Macedo, M Fatima
2016-01-01
Lipid-specific T cells comprise a group of T cells that recognize lipids bound to the MHC class I-like CD1 molecules. There are four isoforms of CD1 that are expressed at the surface of antigen presenting cells and therefore capable of presenting lipid antigens: CD1a, CD1b, CD1c, and CD1d. Each one of these isoforms has distinct structural features and cellular localizations, which promotes binding to a broad range of different types of lipids. Lipid antigens originate from either self-tissues or foreign sources, such as bacteria, fungus, or plants and their recognition by CD1-restricted T cells has important implications in infection but also in cancer and autoimmunity. In this review, we describe the characteristics of CD1 molecules and CD1-restricted lipid-specific T cells, highlighting the innate-like and adaptive-like features of different CD1-restricted T cell subtypes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T Nguyen; S Chang; I Evnouchidou
2011-12-31
ERAP1 trims antigen precursors to fit into MHC class I proteins. To fulfill this function, ERAP1 has unique substrate preferences, trimming long peptides but sparing shorter ones. To identify the structural basis for ERAP1's unusual properties, we determined the X-ray crystal structure of human ERAP1 bound to bestatin. The structure reveals an open conformation with a large interior compartment. An extended groove originating from the enzyme's catalytic center can accommodate long peptides and has features that explain ERAP1's broad specificity for antigenic peptide precursors. Structural and biochemical analyses suggest a mechanism for ERAP1's length-dependent trimming activity, whereby binding of longmore » rather than short substrates induces a conformational change with reorientation of a key catalytic residue toward the active site. ERAP1's unique structural elements suggest how a generic aminopeptidase structure has been adapted for the specialized function of trimming antigenic precursors.« less
Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
Wani, Revati; Murray, Brion W
2017-01-01
Reversible cysteine oxidation is an emerging class of protein post-translational modification (PTM) that regulates catalytic activity, modulates conformation, impacts protein-protein interactions, and affects subcellular trafficking of numerous proteins. Redox PTMs encompass a broad array of cysteine oxidation reactions with different half-lives, topographies, and reactivities such as S-glutathionylation and sulfoxidation. Recent studies from our group underscore the lesser known effect of redox protein modifications on drug binding. To date, biological studies to understand mechanistic and functional aspects of redox regulation are technically challenging. A prominent issue is the lack of tools for labeling proteins oxidized to select chemotype/oxidant species in cells. Predictive computational tools and curated databases of oxidized proteins are facilitating structural and functional insights into regulation of the network of oxidized proteins or redox proteome. In this chapter, we discuss analytical platforms for studying protein oxidation, suggest computational tools currently available in the field to determine redox sensitive proteins, and begin to illuminate roles of cysteine redox PTMs in drug pharmacology.
Bowness, Paul
2015-01-01
Possession of the human leukocyte antigen (HLA) class I molecule B27 is strongly associated with ankylosing spondylitis (AS), but the pathogenic role of HLA-B27 is unknown. Two broad theories most likely explain the role of HLA-B27 in AS pathogenesis. The first is based on the natural immunological function of HLA-B27 of presenting antigenic peptides to cytotoxic T cells. Thus, HLA-B27-restricted immune responses to self-antigens, or arthritogenic peptides, might drive immunopathology. B27 can also "behave badly," misfolding during assembly and leading to endoplasmic reticulum stress and autophagy responses. β2m-free B27 heavy chain structures including homodimers (B272) can also be expressed at the cell surface following endosomal recycling of cell surface heterotrimers. Cell surface free heavy chains and B272 bind to innate immune receptors on T, NK, and myeloid cells with proinflammatory effects. This review describes the natural function of HLA-B27, its disease associations, and the current theories as to its pathogenic role.
Sugar transporters for intercellular exchange and nutrition of pathogens.
Chen, Li-Qing; Hou, Bi-Huei; Lalonde, Sylvie; Takanaga, Hitomi; Hartung, Mara L; Qu, Xiao-Qing; Guo, Woei-Jiun; Kim, Jung-Gun; Underwood, William; Chaudhuri, Bhavna; Chermak, Diane; Antony, Ginny; White, Frank F; Somerville, Shauna C; Mudgett, Mary Beth; Frommer, Wolf B
2010-11-25
Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.
Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules
Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim
2016-01-01
Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762
High-affinity receptors for bombesin-like peptides in normal guinea pig lung membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lach, E.; Trifilieff, A.; Landry, Y.
1991-01-01
The binding of the radiolabeled bombesin analogue ({sup 125}I-Tyr{sup 4})bombesin to guinea-pig lung membranes was investigated. Binding of ({sup 125}I-Tyr{sup 4})bombesin was specific, saturable, reversible and linearly related to the protein concentration. Scatchard analysis of equilibrium binding data at 25C indicated the presence of a single class of non-interacting binding sites for bombesin (B{sub max} = 7.7 fmol/mg protein). The value of the equilibrium dissociation constant (K{sub D} = 90 pM) agrees with a high-affinity binding site. Bombesin and structurally related peptides such as ({sup 125}I-Tyr{sup 4})bombesin, neuromedin B and neuromedin C inhibited the binding of ({sup 125}I-Tyr{sup 4})bombesin inmore » an order of potencies as follows: ({sup 125}I-Tyr{sup 4})bombesin {gt} bombesin {ge} neuromedin C {much gt} neuromedin B. These results indicate that guinea-pig lung membranes possess a single class of bombesin receptors with a high affinity for bombesin and a lower one for neuromedin B.« less
Native Human Monoclonal Antibodies with Potent Cross-Lineage Neutralization of Influenza B Viruses
Vigil, Adam; Estélles, Angeles; Kauvar, Lawrence M.; Johnson, Scott K.
2018-01-01
ABSTRACT Although antibodies that effectively neutralize a broad set of influenza viruses exist in the human antibody repertoire, they are rare. We used a single-cell screening technology to identify rare monoclonal antibodies (MAbs) that recognized a broad set of influenza B viruses (IBV). The screen yielded 23 MAbs with diverse germ line origins that recognized hemagglutinins (HAs) derived from influenza strains of both the Yamagata and Victoria lineages of IBV. Of the 23 MAbs, 3 exhibited low expression in a transient-transfection system, 4 were neutralizers that bound to the HA head region, 11 were stalk-binding nonneutralizers, and 5 were stalk-binding neutralizers, with 4 of these 5 having unique antibody sequences. Of these four unique stalk-binding neutralizing MAbs, all were broadly reactive and neutralizing against a panel of multiple strains spanning both IBV lineages as well as highly effective in treating lethal IBV infections in mice at both 24 and 72 h postinfection. The MAbs in this group were thermostable and bound different epitopes in the highly conserved HA stalk region. These characteristics suggest that these MAbs are suitable for consideration as candidates for clinical studies to address their effectiveness in the treatment of IBV-infected patients. PMID:29507069
Staphylococcal enterotoxins bind H-2Db molecules on macrophages
NASA Technical Reports Server (NTRS)
Beharka, A. A.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)
1995-01-01
We screened a panel of monoclonal antibodies against selected macrophage cell surface molecules for their ability to inhibit enterotoxin binding to major histocompatibility complex class II-negative C2D (H-2b) macrophages. Two monoclonal antibodies, HB36 and TIB126, that are specific for the alpha 2 domain of major histocompatibility complex class I, blocked staphylococcal enterotoxins A and B (SEA and SEB, respectively) binding to C2D macrophages in a specific and concentration-dependent manner. Inhibitory activities were haplotype-specific in that SEA and SEB binding to H-2k or H-2d macrophages was not inhibited by either monoclonal antibody. HB36, but not TIB126, inhibited enterotoxin-induced secretion of cytokines by H-2b macrophages. Lastly, passive protection of D-galactosamine-sensitized C2D mice by injection with HB36 antibody prevented SEB-induced death. Therefore, SEA and SEB binding to the alpha 2 domain of the H-2Db molecule induces biological activity and has physiological consequences.
αV-class integrins exert dual roles on α5β1 integrins to strengthen adhesion to fibronectin
Bharadwaj, Mitasha; Strohmeyer, Nico; Colo, Georgina P.; Helenius, Jonne; Beerenwinkel, Niko; Schiller, Herbert B.; Fässler, Reinhard; Müller, Daniel J.
2017-01-01
Upon binding to the extracellular matrix protein, fibronectin, αV-class and α5β1 integrins trigger the recruitment of large protein assemblies and strengthen cell adhesion. Both integrin classes have been functionally specified, however their specific roles in immediate phases of cell attachment remain uncharacterized. Here, we quantify the adhesion of αV-class and/or α5β1 integrins expressing fibroblasts initiating attachment to fibronectin (≤120 s) by single-cell force spectroscopy. Our data reveals that αV-class integrins outcompete α5β1 integrins. Once engaged, αV-class integrins signal to α5β1 integrins to establish additional adhesion sites to fibronectin, away from those formed by αV-class integrins. This crosstalk, which strengthens cell adhesion, induces α5β1 integrin clustering by RhoA/ROCK/myosin-II and Arp2/3-mediated signalling, whereas overall cell adhesion depends on formins. The dual role of both fibronectin-binding integrin classes commencing with an initial competition followed by a cooperative crosstalk appears to be a basic cellular mechanism in assembling focal adhesions to the extracellular matrix. PMID:28128308
Müller, Joachim; Sidler, Daniel; Nachbur, Ueli; Wastling, Jonathan; Brunner, Thomas; Hemphill, Andrew
2008-10-15
Thiazolides are a novel class of broad-spectrum anti-infective drugs with promising in vitro and in vivo activities against intracellular and extracellular protozoan parasites. The nitrothiazole-analogue nitazoxanide (NTZ; 2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide) represents the thiazolide parent compound, and a number of bromo- and carboxy-derivatives with differing activities have been synthesized. Here we report that NTZ and the bromo-thiazolide RM4819, but not the carboxy-thiazolide RM4825, inhibited proliferation of the colon cancer cell line Caco2 and nontransformed human foreskin fibroblasts (HFF) at or below concentrations the compounds normally exhibit anti-parasitic activity. Thiazolides induced typical signs of apoptosis, such as nuclear condensation, DNA fragmentation and phosphatidylserine exposure. Interestingly, the apoptosis-inducing effect of thiazolides appeared to be cell cycle-dependent and induction of cell cycle arrest substantially inhibited the cell death-inducing activity of these compounds. Using affinity chromatography and mass spectrometry glutathione-S-transferase P1 (GSTP1) from the GST class Pi was identified as a major thiazolide-binding protein. GSTP1 expression was more than 10 times higher in the thiazolide-sensitive Caco2 cells than in the less sensitive HFF cells. The enzymatic activity of recombinant GSTP1 was strongly inhibited by thiazolides. Silencing of GSTP1 using siRNA rendered cells insensitive to RM4819, while overexpression of GSTP1 increased sensitivity to RM4819-induced cell death. Thiazolides may thus represent an interesting novel class of future cancer therapeutics.
In Vivo Validation of Predicted and Conserved T Cell Epitopes in a Swine Influenza Model
Gutiérrez, Andres H.; Loving, Crystal; Moise, Leonard; Terry, Frances E.; Brockmeier, Susan L.; Hughes, Holly R.; Martin, William D.; De Groot, Anne S.
2016-01-01
Swine influenza is a highly contagious respiratory viral infection in pigs that is responsible for significant financial losses to pig farmers annually. Current measures to protect herds from infection include: inactivated whole-virus vaccines, subunit vaccines, and alpha replicon-based vaccines. As is true for influenza vaccines for humans, these strategies do not provide broad protection against the diverse strains of influenza A virus (IAV) currently circulating in U.S. swine. Improved approaches to developing swine influenza vaccines are needed. Here, we used immunoinformatics tools to identify class I and II T cell epitopes highly conserved in seven representative strains of IAV in U.S. swine and predicted to bind to Swine Leukocyte Antigen (SLA) alleles prevalent in commercial swine. Epitope-specific interferon-gamma (IFNγ) recall responses to pooled peptides and whole virus were detected in pigs immunized with multi-epitope plasmid DNA vaccines encoding strings of class I and II putative epitopes. In a retrospective analysis of the IFNγ responses to individual peptides compared to predictions specific to the SLA alleles of cohort pigs, we evaluated the predictive performance of PigMatrix and demonstrated its ability to distinguish non-immunogenic from immunogenic peptides and to identify promiscuous class II epitopes. Overall, this study confirms the capacity of PigMatrix to predict immunogenic T cell epitopes and demonstrate its potential for use in the design of epitope-driven vaccines for swine. Additional studies that match the SLA haplotype of animals with the study epitopes will be required to evaluate the degree of immune protection conferred by epitope-driven DNA vaccines in pigs. PMID:27411061
Van Damme, Els J.M.; Charels, Diana; Roy, Soma; Tierens, Koenraad; Barre, Annick; Martins, José C.; Rougé, Pierre; Van Leuven, Fred; Does, Mirjam; Peumans, Willy J.
1999-01-01
We isolated SN-HLPf (Sambucus nigra hevein-like fruit protein), a hevein-like chitin-binding protein, from mature elderberry fruits. Cloning of the corresponding gene demonstrated that SN-HLPf is synthesized as a chimeric precursor consisting of an N-terminal chitin-binding domain corresponding to the mature elderberry protein and an unrelated C-terminal domain. Sequence comparisons indicated that the N-terminal domain of this precursor has high sequence similarity with the N-terminal domain of class I PR-4 (pathogenesis-related) proteins, whereas the C terminus is most closely related to that of class V chitinases. On the basis of these sequence homologies the gene encoding SN-HLPf can be considered a hybrid between a PR-4 and a class V chitinase gene. PMID:10198114
Identification and quantification of human kidney atrial natriuretic peptide receptors.
Kahana, L; Yechiely, H; Mecz, Y; Lurie, A
1995-04-01
The present study determined 125I-label atrial natriuretic peptide (ANP) binding sites in human kidney glomerular and papillary membranes. The membranes were prepared from non-malignant renal tissue obtained at nephrectomy of patients with renal carcinoma. To evaluate the proportion of ANP receptor classes ANP-R1 (ANPR-A, -B) versus ANP-R2 (ANPR-C), competitive binding studies were performed using [125I]-ANP in the presence of increasing concentrations of ANP or an internally ring-deleted analog, des(Gln116, Ser117, Gly118, Leu119, Gly120)ANP(102-121), called C-ANP, which binds selectively to ANPR-C receptors. Analysis of the competitive binding curve with ANP in glomerular membranes suggested the presence of one group of high-affinity receptors with dissociation constant Kd = 26 +/- 12 pmol/l and density Bmax = 101 +/- 47 nmol/kg protein. A decrease of 10-30% in Bmax with no change in Kd was obtained in the presence of excess (10(-6) mol/l) C-ANP, suggesting the existence of a small amount of a second class of receptors, the ANPR-C class. The densities of ANPR-A, -B versus ANPR-C receptors in human glomeruli, calculated from competitive inhibition experiments, were 75 +/- 42 and 22 +/- 16 nmol/kg protein (N = 8). Autoradiography of the sodium dodecyl sulfate polyacrylamide gel electrophoresis under reducing conditions showed two bands: a highly labeled 130kD band and a weakly labeled 66 kD band, both displaced by ANP. Only the 66-kD band was displaced by the C-ANP analog. Human papilla membrane, as shown by competition binding studies and SDS gel electrophoresis, presented only one class of receptors with Kd = 40 +/- 23 pmol/l (mean +/- SD, N = 3) and Bmax = 17 +/- 6.3 nmol/kg protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Molecular interactions between general anesthetics and the 5HT2B receptor.
Matsunaga, Felipe; Gao, Lu; Huang, Xi-Ping; Saven, Jeffery G; Roth, Bryan L; Liu, Renyu
2015-01-01
Serotonin modulates many processes through a family of seven serotonin receptors. However, no studies have screened for interactions between general anesthetics currently in clinical use and serotonergic G-protein-coupled receptors (GPCRs). Given that both intravenous and inhalational anesthetics have been shown to target other classes of GPCRs, we hypothesized that general anesthetics might interact directly with some serotonin receptors and thus modify their function. Radioligand binding assays were performed to screen serotonin receptors for interactions with propofol and isoflurane as well as for affinity determinations. Docking calculations using the crystal structure of 5-HT2B were performed to computationally confirm the binding assay results and locate anesthetic binding sites. The 5-HT2B class of receptors interacted significantly with both propofol and isoflurane in the primary screen. The affinities for isoflurane and propofol were determined to be 7.78 and .95 μM, respectively, which were at or below the clinical concentrations for both anesthetics. The estimated free energy derived from docking calculations for propofol (-6.70 kcal/mol) and isoflurane (-5.10 kcal/mol) correlated with affinities from the binding assay. The anesthetics were predicted to dock at a pharmacologically relevant binding site of 5HT2B. The molecular interactions between propofol and isoflurane with the 5-HT2B class of receptors were discovered and characterized. This finding implicates the serotonergic GPCRs as potential anesthetic targets.
Calvanese, Luisa; Falcigno, Lucia; Squeglia, Flavia; D'Auria, Gabriella; Berisio, Rita
2017-11-24
Penicillin binding proteins (PBPs) and Serine Threonine kinases (STPKs) are two classes of bacterial enzymes whose involvement in a series of vital processes in bacterial growth and division is well assessed. Many PBPs and STPKs show linked an ancillary domain named PASTA, whose functional role is not completely deciphered so far. It has been proposed that PASTAs are sensor modules that by binding opportune ligands (i.e. muropeptides) activate the cognate proteins to their functions. However, based on recent data, the sensor annotation sounds true for PASTA from STPKs, and false for PASTA from PBPs. Different PASTA domains, belonging or not to different protein classes, sharing or not appreciable sequence identities, always show identical folds. This survey of the structural, binding and dynamic properties of PASTA domains pursues the reasons why identical topologies may turn in different roles. Amino acid compositions, total charges and distribution of the hydrophobic/hydrophilic patches on the surface, significantly vary among PASTAs from STPKs and PBPs and appear to correlate with different functions. A possible criterion to discriminate between PASTA modules of STPKs or PBPs solely based on their sequences is proposed. Possibly reflecting different species as well as functional roles and evolutionary profile, our routine represents a fast even though approximate method to distinguish between PASTA belonging to different classes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Effects of emotion on different phoneme classes
NASA Astrophysics Data System (ADS)
Lee, Chul Min; Yildirim, Serdar; Bulut, Murtaza; Busso, Carlos; Kazemzadeh, Abe; Lee, Sungbok; Narayanan, Shrikanth
2004-10-01
This study investigates the effects of emotion on different phoneme classes using short-term spectral features. In the research on emotion in speech, most studies have focused on prosodic features of speech. In this study, based on the hypothesis that different emotions have varying effects on the properties of the different speech sounds, we investigate the usefulness of phoneme-class level acoustic modeling for automatic emotion classification. Hidden Markov models (HMM) based on short-term spectral features for five broad phonetic classes are used for this purpose using data obtained from recordings of two actresses. Each speaker produces 211 sentences with four different emotions (neutral, sad, angry, happy). Using the speech material we trained and compared the performances of two sets of HMM classifiers: a generic set of ``emotional speech'' HMMs (one for each emotion) and a set of broad phonetic-class based HMMs (vowel, glide, nasal, stop, fricative) for each emotion type considered. Comparison of classification results indicates that different phoneme classes were affected differently by emotional change and that the vowel sounds are the most important indicator of emotions in speech. Detailed results and their implications on the underlying speech articulation will be discussed.
The DEAD-box Protein Dbp2 Functions with the RNA-binding Protein Yra1 to Promote mRNP Assembly
Ma, Wai Kit; Cloutier, Sara C.; Tran, Elizabeth J.
2013-01-01
Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles in formation of RNA and RNP structure in every aspect of RNA metabolism. In an effort to explore the diversity of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein Dbp2 associates with actively transcribing genes and is required for normal gene expression in Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding proteins Yra1, Nab2 and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a model whereby mRNP assembly requires Dbp2 unwinding activity and once the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are conserved in multicellular eukaryotes suggesting that this constitutes a broadly conserved mechanism for stepwise assembly of mature mRNPs in the nucleus. PMID:23721653
Bartl, S; Weissman, I L
1994-01-04
The major histocompatibility complex (MHC) contains a set of linked genes which encode cell surface proteins involved in the binding of small peptide antigens for their subsequent recognition by T lymphocytes. MHC proteins share structural features and the presence and location of polymorphic residues which play a role in the binding of antigens. In order to compare the structure of these molecules and gain insights into their evolution, we have isolated two MHC class IIB genes from the nurse shark, Ginglymostoma cirratum. Two clones, most probably alleles, encode proteins which differ by 13 amino acids located in the putative antigen-binding cleft. The protein structure and the location of polymorphic residues are similar to their mammalian counterparts. Although these genes appear to encode a typical MHC protein, no T-cell-mediated responses have been demonstrated in cartilaginous fish. The nurse shark represents the most phylogenetically primitive organism in which both class IIA [Kasahara, M., Vazquez, M., Sato, K., McKinney, E.C. & Flajnik, M.F. (1992) Proc. Natl. Acad. Sci USA 89, 6688-6692] and class IIB genes, presumably encoding the alpha/beta heterodimer, have been isolated.
Economic viability of access broadband multiservice networks
NASA Astrophysics Data System (ADS)
Castelli, Francesco; Dammicco, Giacinto; Mocci, Ugo
1995-02-01
In this paper the economic viability of alternative architectures for optical access networks providing broad band services to different subscriber classes in a metropolitan environment, is investigated by a specific tool, NEVE (Network Economic Viability Evaluator), developed for broad band multiservice network planning, service evolutionary scenarios assessment, evaluation of tariff strategies and other actions taken at stimulating the demand growth. As the viability target can be achieved in different ways, different studies can be carried out by NEVE. In the paper some of them are discussed, particularly the ones addressed: to evaluate the impact on viability of alternative service scenarios; to determine the critical mass of broad band subscribers and the critical joint service adoption cost; to evaluate cross subsidiary policies among different subscriber classes and services; to perform sensitivity analysis with respect to variations of demand parameters and tariffs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wener, M.H.; Mannik, M.; Schwartz, M.M.
1987-03-01
Sera from 35 patients with biopsy-proven diffuse proliferative (WHO class IV) or membranous (WHO class V) lupus nephritis were analyzed for the presence and size of circulating immune complexes. Elevations of the C1q solid-phase assay (C1qSP) for immune complexes were found in sera from all patients with diffuse proliferative nephritis, with a mean +/- 1 SEM of 166.8 +/- 42.0 micrograms/AHG-equivalents/ml serum, and in 71.4% of the patients with membranous nephritis (83.1 +/- 26.7, p = 0.06). Using the WHO criteria for subclasses of membranous lupus nephritis, we also designated renal biopsies as nonproliferative (WHO classes Va and Vb) ormore » proliferative (WHO classes IV and Vc). Employing the latter groupings, we observed significant differences between C1qSP results of patients with nonproliferative (30.3 +/- 8.8) and proliferative (172.8 +/- 36.8, p less than 0.001) lupus nephritis. These data suggest that the presence of C1q-binding material in serum is pathophysiologically related to proliferative glomerular lesions, and that levels of C1qSP binding reflect renal lesions in SLE patients. Sucrose density gradient ultracentrifugation was performed on each serum, and gradient fractions analyzed for C1qSP-binding and total IgG, using techniques to minimize losses of immune complexes. The predominant peak of C1qSP activity sedimented with the 6.6S monomeric IgG. The 6.6S C1q-binding IgG was increased only in 1 of 10 patients with membranous lupus nephritis without proliferative changes, and was elevated in 16 of 25 patients with proliferative lesions (WHO classes IV and Vc).« less
Ogawara, Hiroshi
2016-09-01
PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.
Dutertre, Martin; Vagner, Stéphan
2017-10-27
Upon DNA damage, cells trigger an early DNA-damage response (DDR) involving DNA repair and cell cycle checkpoints, and late responses involving gene expression regulation that determine cell fate. Screens for genes involved in the DDR have found many RNA-binding proteins (RBPs), while screens for novel RBPs have identified DDR proteins. An increasing number of RBPs are involved in early and/or late DDR. We propose to call this new class of actors of the DDR, which contain an RNA-binding activity, DNA-damage response RNA-binding proteins (DDRBPs). We then discuss how DDRBPs contribute not only to gene expression regulation in the late DDR but also to early DDR signaling, DNA repair, and chromatin modifications at DNA-damage sites through interactions with both long and short noncoding RNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Community College Contributions. Policy Brief 2013-01PB
ERIC Educational Resources Information Center
Mullin, Christopher M.; Phillippe, Kent
2013-01-01
America's community colleges are the brokers of opportunity for a stronger middle class and more prosperous nation. The value of community colleges has repeatedly been detailed in broad brushstrokes. While these broad-brush pictures of the community college contribution are important, the community college is an intricate institution offering…
Enzymes in Commercial Cellulase Preparations Bind Differently to Dioxane Extracted Lignins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarbrough, John M.; Mittal, Ashutosh; Katahira, Rui
Commercial fungal cellulases used in biomass-to-biofuels processes can be grouped into three general classes: native, augmented, and engineered. To evaluate lignin binding affinities of different enzyme activities in various commercial cellulase formulations in order to determine if enzyme losses due to lignin binding can be modulated by using different enzymes of the same activity We used water:dioxane (1:9) to extract lignin from pretreated corn stover. Commercial cellulases were incubated with lignin and the unbound supernatants were evaluated for individual enzyme loss by SDS=PAGE and these were correlated with activity loss using various pNP-sugar substrates. Colorimetric assays for general glycosyl hydrolasemore » activities showed distinct differences in enzyme binding to lignin for each enzyme activity. Native systems demonstrated low binding of endo- and exo-cellulases, high binding of xylanase, and moderate ..beta..-glucosidase binding. Engineered cellulase mixtures exhibited low binding of exo-cellulases, very strong binding of endocellulases and ..beta..- glucosidase, and mixed binding of xylanase activity. The augmented cellulase had low binding of exocellulase, high binding of endocellulase and xylanase, and moderate binding of ..beta..-glucosidase activities. Bound and unbound activities were correlated with general molecular weight ranges of proteins as measured by loss of proteins bands in bound fractions on SDS-PAGE gels. Lignin-bound high molecular weight bands correlated with binding of ..beta..-glucosidase activity. While ..beta..-glucosidases demonstrated high binding in many cases, they have been shown to remain active. Bound low molecular weight bands correlated with xylanase activity binding. Contrary to other literature, exocellulase activity did not show strong lignin binding. The variation in enzyme activity binding between the three classes of cellulases preparations indicate that it is certainly possible to alter the binding of specific glycosyl hydrolase activities. It remains unclear whether loss of endocellulase activity to lignin binding is problematic for biomass conversion.« less
NASA Astrophysics Data System (ADS)
Sun, Yiwen; Zhong, Junlan; Zhang, Cunlin; Zuo, Jian; Pickwell-MacPherson, Emma
2015-03-01
Hemagglutinin (HA) is the main surface glycoprotein of the influenza A virus. The H9N2 subtype influenza A virus is recognized as the most possible pandemic strain as it has crossed the species barrier, infecting swine and humans. We use terahertz spectroscopy to study the hydration shell formation around H9 subtype influenza A virus's HA protein (H9 HA) as well as the detection of antigen binding of H9 HA with the broadly neutralizing monoclonal antibody. We observe a remarkable concentration dependent nonlinear response of the H9 HA, which reveals the formation process of the hydration shell around H9 HA molecules. Furthermore, we show that terahertz dielectric properties of the H9 HA are strongly affected by the presence of the monoclonal antibody F10 and that the terahertz dielectric loss tangent can be used to detect the antibody binding at lower concentrations than the standard ELISA test.
Conformational Plasticity in Broadly Neutralizing HIV-1 Antibodies Triggers Polyreactivity.
Prigent, Julie; Jarossay, Annaëlle; Planchais, Cyril; Eden, Caroline; Dufloo, Jérémy; Kök, Ayrin; Lorin, Valérie; Vratskikh, Oxana; Couderc, Thérèse; Bruel, Timothée; Schwartz, Olivier; Seaman, Michael S; Ohlenschläger, Oliver; Dimitrov, Jordan D; Mouquet, Hugo
2018-05-29
Human high-affinity antibodies to pathogens often recognize unrelated ligands. The molecular origin and the role of this polyreactivity are largely unknown. Here, we report that HIV-1 broadly neutralizing antibodies (bNAbs) are frequently polyreactive, cross-reacting with non-HIV-1 molecules, including self-antigens. Mutating bNAb genes to increase HIV-1 binding and neutralization also results in de novo polyreactivity. Unliganded paratopes of polyreactive bNAbs with improved HIV-1 neutralization exhibit a conformational flexibility, which contributes to enhanced affinity of bNAbs to various HIV-1 envelope glycoproteins and non-HIV antigens. Binding adaptation of polyreactive bNAbs to the divergent ligands mainly involves hydrophophic interactions. Plasticity of bNAbs' paratopes may, therefore, facilitate accommodating divergent viral variants, but it simultaneously triggers promiscuous binding to non-HIV-1 antigens. Thus, a certain level of polyreactivity can be a mark of adaptable antibodies displaying optimal pathogens' recognition. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Novel Broad Spectrum Inhibitors Targeting the Flavivirus Methyltransferase
Liu, Binbin; Banavali, Nilesh K.; Jones, Susan A.; Zhang, Jing; Li, Zhong; Kramer, Laura D.; Li, Hongmin
2015-01-01
The flavivirus methyltransferase (MTase) is an essential enzyme that sequentially methylates the N7 and 2’-O positions of the viral RNA cap, using S-adenosyl-L-methionine (SAM) as a methyl donor. We report here that small molecule compounds, which putatively bind to the SAM-binding site of flavivirus MTase and inhibit its function, were identified by using virtual screening. In vitro methylation experiments demonstrated significant MTase inhibition by 13 of these compounds, with the most potent compound displaying sub-micromolar inhibitory activity. The most active compounds showed broad spectrum activity against the MTase proteins of multiple flaviviruses. Two of these compounds also exhibited low cytotoxicity and effectively inhibited viral replication in cell-based assays, providing further structural insight into flavivirus MTase inhibition. PMID:26098995
Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules
Walker, Johnnie A.; Takasuka, Taichi E.; Deng, Kai; ...
2015-12-21
Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed. CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolyticmore » activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass. In conclusion, we have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass.« less
Kadam, Rameshwar U; Wilson, Ian A
2018-04-17
The influenza virus hemagglutinin (HA) glycoprotein mediates receptor binding and membrane fusion during viral entry in host cells. Blocking these key steps in viral infection has applications for development of novel antiinfluenza therapeutics as well as vaccines. However, the lack of structural information on how small molecules can gain a foothold in the small, shallow receptor-binding site (RBS) has hindered drug design against this important target on the viral pathogen. Here, we report on the serendipitous crystallization-based discovery of a small-molecule N -cyclohexyltaurine, commonly known as the buffering agent CHES, that is able to bind to both group-1 and group-2 HAs of influenza A viruses. X-ray structural characterization of group-1 H5N1 A/Vietnam/1203/2004 (H5/Viet) and group-2 H3N2 A/Hong Kong/1/1968 (H3/HK68) HAs at 2.0-Å and 2.57-Å resolution, respectively, revealed that N -cyclohexyltaurine binds to the heart of the conserved HA RBS. N -cyclohexyltaurine mimics the binding mode of the natural receptor sialic acid and RBS-targeting bnAbs through formation of similar hydrogen bonds and CH-π interactions with the HA. In H3/HK68, N -cyclohexyltaurine also binds to a conserved pocket in the stem region, thereby exhibiting a dual-binding mode in group-2 HAs. These long-awaited structural insights into RBS recognition by a noncarbohydrate-based small molecule enhance our knowledge of how to target this important functional site and can serve as a template to guide the development of novel broad-spectrum small-molecule therapeutics against influenza virus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, M.; Canoll, P.D.; Musacchio, J.M.
1991-01-01
The DM{sub 1}/{sigma}{sub 1} site binds dextromethorphan (DM) and {sigma} receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of ({sup 3}H)dextromethorphan, ({sup 3}H)3- (3-Hydroxyphenyl) -N- (1-propyl) piperidine and (+)-({sup 3}H)1,3-Di-o-tolyl-guanidine (({sup 3}H)DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drugmore » has identical nM K{sub i} values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM{sub 1}{sigma}{sub 1} site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K{sub i} values of 9-13 and 3-4 {mu}M respectively against the three labeled ligands. These results, the broad specificity of the DM{sub 1}/{sigma}{sub 1} binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himanen, J.; Goldgur, Y; Miao, H
2009-01-01
Ephrin (Eph) receptor tyrosine kinases fall into two subclasses (A and B) according to preferences for their ephrin ligands. All published structural studies of Eph receptor/ephrin complexes involve B-class receptors. Here, we present the crystal structures of an A-class complex between EphA2 and ephrin-A1 and of unbound EphA2. Although these structures are similar overall to their B-class counterparts, they reveal important differences that define subclass specificity. The structures suggest that the A-class Eph receptor/ephrin interactions involve smaller rearrangements in the interacting partners, better described by a 'lock-and-key'-type binding mechanism, in contrast to the 'induced fit' mechanism defining the B-class molecules.more » This model is supported by structure-based mutagenesis and by differential requirements for ligand oligomerization by the two subclasses in cell-based Eph receptor activation assays. Finally, the structure of the unligated receptor reveals a homodimer assembly that might represent EphA2-specific homotypic cell adhesion interactions.« less
Calcium-binding proteins and development
NASA Technical Reports Server (NTRS)
Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)
1998-01-01
The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.
Deciphering complex patterns of class-I HLA-peptide cross-reactivity via hierarchical grouping.
Mukherjee, Sumanta; Warwicker, Jim; Chandra, Nagasuma
2015-07-01
T-cell responses in humans are initiated by the binding of a peptide antigen to a human leukocyte antigen (HLA) molecule. The peptide-HLA complex then recruits an appropriate T cell, leading to cell-mediated immunity. More than 2000 HLA class-I alleles are known in humans, and they vary only in their peptide-binding grooves. The polymorphism they exhibit enables them to bind a wide range of peptide antigens from diverse sources. HLA molecules and peptides present a complex molecular recognition pattern, as many peptides bind to a given allele and a given peptide can be recognized by many alleles. A powerful grouping scheme that not only provides an insightful classification, but is also capable of dissecting the physicochemical basis of recognition specificity is necessary to address this complexity. We present a hierarchical classification of 2010 class-I alleles by using a systematic divisive clustering method. All-pair distances of alleles were obtained by comparing binding pockets in the structural models. By varying the similarity thresholds, a multilevel classification was obtained, with 7 supergroups, each further subclassifying to yield 72 groups. An independent clustering performed based only on similarities in their epitope pools correlated highly with pocket-based clustering. Physicochemical feature combinations that best explain the basis of clustering are identified. Mutual information calculated for the set of peptide ligands enables identification of binding site residues contributing to peptide specificity. The grouping of HLA molecules achieved here will be useful for rational vaccine design, understanding disease susceptibilities and predicting risk of organ transplants.
ERIC Educational Resources Information Center
Gridley, C. Robert R.
This teaching guide contains 200 activities that are suitable for openers and demonstrations in biology classes. Details are provided regarding the use of these activities. Some of the broad topics under which the activities are organized include algae, amphibians, bacteria, biologists, crustaceans, dinosaurs, ecology, evolution, flowering plants,…
Deconstructing Cultural Stereotypes through Media Critique.
ERIC Educational Resources Information Center
Power, Karen
Writing is an effective tool for investigating the problem of ethnic stereotyping, that is, grouping people from diverse cultures into broad unrepresentative categories. A first-year composition class addressed ethnic stereotyping using media critique. Class activities divided the process of deconstructing cultural stereotypes into three steps:…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, T. C. Mike
This Phase I (5 quarters) research project was to examine the validity of a new class of boron-containing polymer (B-polymer) frameworks, serving as the adsorbents for the practical onboard H2 storage applications. Three B-polymer frameworks were synthesized and investigated, which include B-poly(butyenylstyrene) (B-PBS) framework (A), B-poly(phenyldiacetyene) (B-PPDA) framework (B), and B-poly(phenyltriacetylene) (B-PPTA) framework (C). They are 2-D polymer structures with the repeating cyclic units that spontaneously form open morphology and the B-doped (p-type) π-electrons delocalized surfaces. The ideal B-polymer framework shall exhibit open micropores (pore size in the range of 1-1.5nm) with high surface area (>3000 m 2/g), and themore » B-dopants in the conjugated framework shall provide high surface energy for interacting with H 2 molecules (an ideal H 2 binding energy in the range of 15-25 kJ/mol). The pore size distribution and H2 binding energy were investigated at both Penn State and NREL laboratories. So far, the experimental results show the successful synthesis of B-polymer frameworks with the relatively well-defined planar (2-D) structures. The intrinsically formed porous morphology exhibits a broad pore size distribution (in the range of 0.5-10 nm) with specific surface area (~1000 m 2/g). The miss-alignment between 2-D layers may block some micropore channels and limit gas diffusion throughout the entire matrix. In addition, the 2-D planar conjugated structure may also allow free π-electrons delocalization throughout the framework, which significantly reduces the acidity of B-moieties (electron-deficiency).The resulting 2-D B-polymer frameworks only exhibit a small increase of H 2 binding energy in the range of 8-9 KJ/mole (quite constant over the whole sorption range).« less
Tyson, Gregory H.; Halavaty, Andrei S.; Kim, Hyunjin; Geissler, Brett; Agard, Mallory; Satchell, Karla J.; Cho, Wonhwa; Anderson, Wayne F.; Hauser, Alan R.
2015-01-01
Bacterial toxins require localization to specific intracellular compartments following injection into host cells. In this study, we examined the membrane targeting of a broad family of bacterial proteins, the patatin-like phospholipases. The best characterized member of this family is ExoU, an effector of the Pseudomonas aeruginosa type III secretion system. Upon injection into host cells, ExoU localizes to the plasma membrane, where it uses its phospholipase A2 activity to lyse infected cells. The targeting mechanism of ExoU is poorly characterized, but it was recently found to bind to the phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a marker for the plasma membrane of eukaryotic cells. We confirmed that the membrane localization domain (MLD) of ExoU had a direct affinity for PI(4,5)P2, and we determined that this binding was required for ExoU localization. Previously uncharacterized ExoU homologs from Pseudomonas fluorescens and Photorhabdus asymbiotica also localized to the plasma membrane and required PI(4,5)P2 for this localization. A conserved arginine within the MLD was critical for interaction of each protein with PI(4,5)P2 and for localization. Furthermore, we determined the crystal structure of the full-length P. fluorescens ExoU and found that it was similar to that of P. aeruginosa ExoU. Each MLD contains a four-helical bundle, with the conserved arginine exposed at its cap to allow for interaction with the negatively charged PI(4,5)P2. Overall, these findings provide a structural explanation for the targeting of patatin-like phospholipases to the plasma membrane and define the MLD of ExoU as a member of a new class of PI(4,5)P2 binding domains. PMID:25505182
Stratifying photo plots into volume classes...by crown closure comparator
Robert C. Aldrich
1967-01-01
As an aid to aerial photo interpretation, a Crown Closure Comparator has been developed. Printed as a positive film transparency, this device shows tree crowns as open dots on a black background. The Comparator is used to stratify I-acre plots into broad volume classes on single aerial photos using 4 crown-diameter and 9 crown-closure classes. It can also be used for...
Class-specific effector functions of therapeutic antibodies.
Pascal, Virginie; Laffleur, Brice; Cogné, Michel
2012-01-01
Physiology usually combines polyclonal antibodies of multiple classes in a single humoral response. Beyond their common ability to bind antigens, these various classes of human immunoglobulins carry specific functions which can each serve specific goals. In many cases, the function of a monoclonal therapeutic antibody may thus be modulated according to the class of its constant domains. Depending on the immunoglobulin class, different functional assays will be used in order to evaluate the functional activity of a monoclonal antibody.
Azoitei, M L; Ban, Y A; Kalyuzhny, O; Guenaga, J; Schroeter, A; Porter, J; Wyatt, R; Schief, William R
2014-10-01
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope-scaffolds are a new class of antigens engineered by transplanting viral epitopes of predefined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope-scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody-binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope-scaffolds that display the known epitope of human immunodeficiency virus 1 (HIV-1) neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope-scaffold that bound 2F5 with subnanomolar affinity (K(D) = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope-scaffold represents a successful example of rational protein backbone engineering and protein-protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. © 2014 Wiley Periodicals, Inc.
ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes.
Diao, Jiajie; Liu, Rong; Rong, Yueguang; Zhao, Minglei; Zhang, Jing; Lai, Ying; Zhou, Qiangjun; Wilz, Livia M; Li, Jianxu; Vivona, Sandro; Pfuetzner, Richard A; Brunger, Axel T; Zhong, Qing
2015-04-23
Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17-SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion.
Broad phonetic class definition driven by phone confusions
NASA Astrophysics Data System (ADS)
Lopes, Carla; Perdigão, Fernando
2012-12-01
Intermediate representations between the speech signal and phones may be used to improve discrimination among phones that are often confused. These representations are usually found according to broad phonetic classes, which are defined by a phonetician. This article proposes an alternative data-driven method to generate these classes. Phone confusion information from the analysis of the output of a phone recognition system is used to find clusters at high risk of mutual confusion. A metric is defined to compute the distance between phones. The results, using TIMIT data, show that the proposed confusion-driven phone clustering method is an attractive alternative to the approaches based on human knowledge. A hierarchical classification structure to improve phone recognition is also proposed using a discriminative weight training method. Experiments show improvements in phone recognition on the TIMIT database compared to a baseline system.
Analysis of secondary structural elements in human microRNA hairpin precursors.
Liu, Biao; Childs-Disney, Jessica L; Znosko, Brent M; Wang, Dan; Fallahi, Mohammad; Gallo, Steven M; Disney, Matthew D
2016-03-01
MicroRNAs (miRNAs) regulate gene expression by targeting complementary mRNAs for destruction or translational repression. Aberrant expression of miRNAs has been associated with various diseases including cancer, thus making them interesting therapeutic targets. The composite of secondary structural elements that comprise miRNAs could aid the design of small molecules that modulate their function. We analyzed the secondary structural elements, or motifs, present in all human miRNA hairpin precursors and compared them to highly expressed human RNAs with known structures and other RNAs from various organisms. Amongst human miRNAs, there are 3808 are unique motifs, many residing in processing sites. Further, we identified motifs in miRNAs that are not present in other highly expressed human RNAs, desirable targets for small molecules. MiRNA motifs were incorporated into a searchable database that is freely available. We also analyzed the most frequently occurring bulges and internal loops for each RNA class and found that the smallest loops possible prevail. However, the distribution of loops and the preferred closing base pairs were unique to each class. Collectively, we have completed a broad survey of motifs found in human miRNA precursors, highly expressed human RNAs, and RNAs from other organisms. Interestingly, unique motifs were identified in human miRNA processing sites, binding to which could inhibit miRNA maturation and hence function.
Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function
Quarta, Giulio; Sin, Ken; Schlick, Tamar
2012-01-01
Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way in which sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we compute energy landscapes, which describe the accessible secondary structures for a range of sequence lengths, to analyze the transcriptional process as a given sequence elongates to full length. In line with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: low-barrier landscape with an ensemble of different conformations in equilibrium before encountering a substrate; barrier-free landscape in which a direct, dominant “downhill” pathway to the minimum free energy structure is apparent; and a barrier-dominated landscape with two isolated conformational states, each associated with a different biological function. Sharing concepts with the “new view” of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved in various riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design. PMID:22359488
Nishita, Y; Abramov, A V; Kosintsev, P A; Lin, L-K; Watanabe, S; Yamazaki, K; Kaneko, Y; Masuda, R
2015-12-01
Major histocompatibility complex (MHC) genes encode proteins that play a critical role in vertebrate immune system and are highly polymorphic. To further understand the molecular evolution of the MHC genes, we compared MHC class II DRB genes between the Japanese weasel (Mustela itatsi), a species endemic to Japan, and the Siberian weasel (Mustela sibirica), a closely related species on the continent. We sequenced a 242-bp region of DRB exon 2, which encodes antigen-binding sites (ABS), and found 24 alleles from 31 M. itatsi individuals and 17 alleles from 21 M. sibirica individuals, including broadly distributed, species-specific and/or geographically restricted alleles. Our results suggest that pathogen-driven balancing selection have acted to maintain the diversity in the DRB genes. For predicted ABS, nonsynonymous substitutions exceeded synonymous substitutions, also indicating positive selection, which was not seen at non-ABS. In a Bayesian phylogenetic tree, two M. sibirica DRB alleles were basal to the rest of the sequences from mustelid species and may represent ancestral alleles. Trans-species polymorphism was evident between many mustelid DRB alleles, especially between M. itatsi and M. sibirica. These two Mustela species divided about 1.7 million years ago, but still share many MHC alleles, indicative of their close phylogenetic relationship. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bergmann, Tobias; Moore, Carrie; Sidney, John; Miller, Donald; Tallmadge, Rebecca; Harman, Rebecca M; Oseroff, Carla; Wriston, Amanda; Shabanowitz, Jeffrey; Hunt, Donald F; Osterrieder, Nikolaus; Peters, Bjoern; Antczak, Douglas F; Sette, Alessandro
2015-11-01
Here we describe a detailed quantitative peptide-binding motif for the common equine leukocyte antigen (ELA) class I allele Eqca-1*00101, present in roughly 25 % of Thoroughbred horses. We determined a preliminary binding motif by sequencing endogenously bound ligands. Subsequently, a positional scanning combinatorial library (PSCL) was used to further characterize binding specificity and derive a quantitative motif involving aspartic acid in position 2 and hydrophobic residues at the C-terminus. Using this motif, we selected and tested 9- and 10-mer peptides derived from the equine herpesvirus type 1 (EHV-1) proteome for their capacity to bind Eqca-1*00101. PSCL predictions were very efficient, with an receiver operating characteristic (ROC) curve performance of 0.877, and 87 peptides derived from 40 different EHV-1 proteins were identified with affinities of 500 nM or higher. Quantitative analysis revealed that Eqca-1*00101 has a narrow peptide-binding repertoire, in comparison to those of most human, non-human primate, and mouse class I alleles. Peripheral blood mononuclear cells from six EHV-1-infected, or vaccinated but uninfected, Eqca-1*00101-positive horses were used in IFN-γ enzyme-linked immunospot (ELISPOT) assays. When we screened the 87 Eqca-1*00101-binding peptides for T cell reactivity, only one Eqca-1*00101 epitope, derived from the intermediate-early protein ICP4, was identified. Thus, despite its common occurrence in several horse breeds, Eqca-1*00101 is associated with a narrow binding repertoire and a similarly narrow T cell response to an important equine viral pathogen. Intriguingly, these features are shared with other human and macaque major histocompatibility complex (MHC) molecules with a similar specificity for D in position 2 or 3 in their main anchor motif.
Bergmann, Tobias; Moore, Carrie; Sidney, John; Miller, Donald; Tallmadge, Rebecca; Harman, Rebecca M.; Oseroff, Carla; Wriston, Amanda; Shabanowitz, Jeffrey; Hunt, Donald F.; Osterrieder, Nikolaus; Peters, Bjoern; Antczak, Douglas F.; Sette, Alessandro
2016-01-01
Here we describe a detailed quantitative peptide-binding motif for the common equine leukocyte antigen (ELA) class I allele Eqca-1*00101, present in roughly 25 % of Thoroughbred horses. We determined a preliminary binding motif by sequencing endogenously bound ligands. Subsequently, a positional scanning combinatorial library (PSCL) was used to further characterize binding specificity and derive a quantitative motif involving aspartic acid in position 2 and hydrophobic residues at the C-terminus. Using this motif, we selected and tested 9- and 10-mer peptides derived from the equine herpesvirus type 1 (EHV-1) proteome for their capacity to bind Eqca-1*00101. PSCL predictions were very efficient, with an receiver operating characteristic (ROC) curve performance of 0.877, and 87 peptides derived from 40 different EHV-1 proteins were identified with affinities of 500 nM or higher. Quantitative analysis revealed that Eqca-1*00101 has a narrow peptide-binding repertoire, in comparison to those of most human, non-human primate, and mouse class I alleles. Peripheral blood mononuclear cells from six EHV-1-infected, or vaccinated but uninfected, Eqca-1*00101-positive horses were used in IFN-γ enzyme-linked immunospot (ELISPOT) assays. When we screened the 87 Eqca-1*00101-binding peptides for T cell reactivity, only one Eqca-1*00101 epitope, derived from the intermediate-early protein ICP4, was identified. Thus, despite its common occurrence in several horse breeds, Eqca-1*00101 is associated with a narrow binding repertoire and a similarly narrow T cell response to an important equine viral pathogen. Intriguingly, these features are shared with other human and macaque major histocompatibility complex (MHC) molecules with a similar specificity for D in position 2 or 3 in their main anchor motif. PMID:26399241
Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas
2016-01-01
Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other's EBEs. Investigation of sequence divergence between RipTAL repeats allows for a reconstruction of repeat array biogenesis, for example through slipped strand mispairing or gene conversion. Using these studies we show how RipTALs of broad host range strains evolved convergently toward a shared target sequence. Finally, we discuss the differences between TALE-likes of plant pathogens in the context of disease ecology.
Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters.
Mukherjee, Arnab; Walker, Joshua; Weyant, Kevin B; Schroeder, Charles M
2013-01-01
Fluorescent reporter proteins based on flavin-binding photosensors were recently developed as a new class of genetically encoded probes characterized by small size and oxygen-independent maturation of fluorescence. Flavin-based fluorescent proteins (FbFPs) address two major limitations associated with existing fluorescent reporters derived from the green fluorescent protein (GFP)-namely, the overall large size and oxygen-dependent maturation of fluorescence of GFP. However, FbFPs are at a nascent stage of development and have been utilized in only a handful of biological studies. Importantly, a full understanding of the performance and properties of FbFPs as a practical set of biological probes is lacking. In this work, we extensively characterize three FbFPs isolated from Pseudomonas putida, Bacillus subtilis, and Arabidopsis thaliana, using in vitro studies to assess probe brightness, oligomeric state, maturation time, fraction of fluorescent holoprotein, pH tolerance, redox sensitivity, and thermal stability. Furthermore, we validate FbFPs as stable molecular tags using in vivo studies by constructing a series of FbFP-based transcriptional constructs to probe promoter activity in Escherichia coli. Overall, FbFPs show key advantages as broad-spectrum biological reporters including robust pH tolerance (4-11), thermal stability (up to 60°C), and rapid maturation of fluorescence (<3 min.). In addition, the FbFP derived from Arabidopsis thaliana (iLOV) emerged as a stable and nonperturbative reporter of promoter activity in Escherichia coli. Our results demonstrate that FbFP-based reporters have the potential to address key limitations associated with the use of GFP, such as pH-sensitive fluorescence and slow kinetics of fluorescence maturation (10-40 minutes for half maximal fluorescence recovery). From this view, FbFPs represent a useful new addition to the fluorescent reporter protein palette, and our results constitute an important framework to enable researchers to implement and further engineer improved FbFP-based reporters with enhanced brightness and tighter flavin binding, which will maximize their potential benefits.
Detergent enhances binding of a secreted HLA-A2 molecule to solid phase peptides.
Tussey, L G; Frelinger, J A
1991-11-01
We have constructed a secreted analogue (sA2) of the human class I molecule HLA-A2. sA2 was affinity purified both in the presence and absence of detergent and the effects of detergent on the magnitude and specificity of A2 binding to solid phase peptides tested. sA2 purified in the presence of detergent and detergent-solubilized A2 are shown to function comparably in the binding of the synthetic peptide M.Y + 57-68, a known T-cell epitope derived from the influenza A matrix protein. The molecules binding to M.Y + 57-68 typically represent 8% to 10% of the added protein. In contrast, less than 1% of sA2 protein purified in the absence of detergent binds M.Y + 57-68. This reduced binding is not due to a change in the affinity of sA2 for M.Y + 57-68. Addition of detergent at various stages of the purification and iodination procedures indicates that the longer the sA2 molecules are exposed to detergent the better they bind. However, the concentration of detergent during the actual binding assay does not appear to be critical. We also find that while the sA2-detergent and the sA2-no detergent molecules differ in the extent to which they bind various peptides, they do not differ in their patterns of binding. We conclude that detergent probably does not influence the specificity of class I/peptide binding but does increase the number of sA2 molecules that can participate in the binding of peptide either by generating and stabilizing "empty" sA2 molecules or by stabilizing a structure that is more amenable to binding peptide.
Pugacheva, Elena M; Rivero-Hinojosa, Samuel; Espinoza, Celso A; Méndez-Catalá, Claudia Fabiola; Kang, Sungyun; Suzuki, Teruhiko; Kosaka-Suzuki, Natsuki; Robinson, Susan; Nagarajan, Vijayaraj; Ye, Zhen; Boukaba, Abdelhalim; Rasko, John E J; Strunnikov, Alexander V; Loukinov, Dmitri; Ren, Bing; Lobanenkov, Victor V
2015-08-14
CTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation. Here we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin. In contrast to the single-motif CTCF target sites (1xCTSes), the 2xCTS elements are preferentially found at active promoters and enhancers, both in cancer and germ cells. 2xCTSes are also enriched in genomic regions that escape histone to protamine replacement in human and mouse sperm. Depletion of the BORIS gene leads to altered transcription of a large number of genes and the differentiation of K562 cells, while the ectopic expression of this CTCF paralog leads to specific changes in transcription in MCF7 cells. We discover two functionally and structurally different classes of CTCF binding regions, 2xCTSes and 1xCTSes, revealed by their predisposition to bind BORIS. We propose that 2xCTSes play key roles in the transcriptional program of cancer and germ cells.
Das, Kalyan; Acton, Thomas; Chiang, Yiwen; Shih, Lydia; Arnold, Eddy; Montelione, Gaetano T.
2004-01-01
The RlmA class of enzymes (RlmAI and RlmAII) catalyzes N1-methylation of a guanine base (G745 in Gram-negative and G748 in Gram-positive bacteria) of hairpin 35 of 23S rRNA. We have determined the crystal structure of Escherichia coli RlmAI at 2.8-Å resolution, providing 3D structure information for the RlmA class of RNA methyltransferases. The dimeric protein structure exhibits features that provide new insights into its molecular function. Each RlmAI molecule has a Zn-binding domain, responsible for specific recognition and binding of its rRNA substrate, and a methyltransferase domain. The asymmetric RlmAI dimer observed in the crystal structure has a well defined W-shaped RNA-binding cleft. Two S-adenosyl-l-methionine substrate molecules are located at the two valleys of the W-shaped RNA-binding cleft. The unique shape of the RNA-binding cleft, different from that of known RNA-binding proteins, is highly specific and structurally complements the 3D structure of hairpin 35 of bacterial 23S rRNA. Apart from the hairpin 35, parts of hairpins 33 and 34 also interact with the RlmAI dimer. PMID:14999102
Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; Nielsen, Morten
2017-11-01
Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes. Copyright © 2017 by The American Association of Immunologists, Inc.
Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J
2016-05-01
Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Gauer, Jacob W.; Knutson, Kristofer J.; Jaworski, Samantha R.; Rice, Anne M.; Rannikko, Anika M.; Lentz, Barry R.; Hinderliter, Anne
2013-01-01
Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca2+) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca2+ in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca2+ differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca2+ affinity to a membrane-associated, higher Ca2+ affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca2+ influx is the basis for the cooperative response of annexin a5 toward Ca2+, and the role of membrane organization in this response. PMID:23746516
Bago, Ruzica; Malik, Nazma; Munson, Michael J; Prescott, Alan R; Davies, Paul; Sommer, Eeva; Shpiro, Natalia; Ward, Richard; Cross, Darren; Ganley, Ian G; Alessi, Dario R
2014-11-01
The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM IC50 in vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50-60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80-90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the PtdIns 5-phosphatases [SHIP1/2 (Src homology 2-domain-containing inositol phosphatase 1/2)] and PtdIns 4-phosphatase [INPP4B (inositol polyphosphate 4-phosphatase type II)]. VPS34-IN1 will be a useful probe to delineate physiological roles of the Vps34. Monitoring SGK3 phosphorylation and activity could be employed as a biomarker of Vps34 activity, in an analogous manner by which Akt is used to probe cellular class I PI3K activity. Combining class I (GDC-0941) and class III (VPS34-IN1) PI3K inhibitors could be used as a strategy to better analyse the roles and regulation of the elusive class II PI3K.
2016-06-14
characterize FVM04 binding to EBOV GP, FVM04 Fab in complex with GP∆Muc was analyzed by negative stain electron microscopy. The binding location of...FVM04 revealed an epitope consistent with the crest region residues derived by mutagenesis studies. The class averages suggest that only one FVM04 Fab ...binds to each GP trimer (Figure 3A-B). It is likely that the binding orientation and proximity to the threefold axis precludes additional FVM04 Fabs
Phenolics and compartmentalization in the sapwood of broad-leaved trees
Kevin T. Smith
1997-01-01
Tree survival depends on the chemistry of phenolic compounds, a broad class of chemicals characterized by a hydroxylated benzene ring. In trees, phenolics occur frequently as polymers, acids, or glycosylated esters and perform diverse functions. For example, lignin, a phenylpropane heteropolymer, provides structural strength to wood. The induced production of phenols...
Structure and substrate-binding mechanism of human Ap4A hydrolase.
Swarbrick, James D; Buyya, Smrithi; Gunawardana, Dilantha; Gayler, Kenwyn R; McLennan, Alexander G; Gooley, Paul R
2005-03-04
Asymmetric diadenosine 5',5'''-P(1),P(4)-tetraphosphate (Ap(4)A) hydrolases play a major role in maintaining homeostasis by cleaving the metabolite diadenosine tetraphosphate (Ap(4)A) back into ATP and AMP. The NMR solution structures of the 17-kDa human asymmetric Ap(4)A hydrolase have been solved in both the presence and absence of the product ATP. The adenine moiety of the nucleotide predominantly binds in a ring stacking arrangement equivalent to that observed in the x-ray structure of the homologue from Caenorhabditis elegans. The binding site is, however, markedly divergent to that observed in the plant/pathogenic bacteria class of enzymes, opening avenues for the exploration of specific therapeutics. Binding of ATP induces substantial conformational and dynamic changes that were not observed in the C. elegans structure. In contrast to the C. elegans homologue, important side chains that play a major role in substrate binding do not have to reorient to accommodate the ligand. This may have important implications in the mechanism of substrate recognition in this class of enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sol-Rolland, J.; Joseph, M.; Rinaldi-Carmona, M.
1991-05-01
A procedure for the isolation of primate skeletal microsomal membranes was initiated. Membranes exhibited specific enzymatic markers such as 5'-nucleotidase, Ca{sup 2}{sup +},Mg({sup 2}{sup +})-adenosine triphosphatase and an ATP-dependent calcium uptake. Baboon skeletal microsomes bound specifically with high-affinity potent Ca{sup 2}{sup +} channel blockers such as dihydropyridine, phenylalkylamine and benzothiazepine derivatives. Scatchard analysis of equilibrium binding assays with ({sup 3}H)(+)-PN 200-110, ({sup 3}H)(-)-desmethoxyverapamil (( {sup 3}H)(-)-D888) and ({sup 3}H)-d-cis-dilitiazem were consistent with a single class of binding sites for the three radioligands. The pharmacological profile of SR 33557, an original compound with calcium antagonist properties, was investigated using radioligand bindingmore » studies. SR 33557 totally inhibited the specific binding of the three main classes of Ca{sup 2}{sup +} channel effectors and interacted allosterically with them. In addition, SR 33557 bound with high affinity to a homogeneous population of binding sites in baboon skeletal muscle.« less
Nature and function of insulator protein binding sites in the Drosophila genome
Schwartz, Yuri B.; Linder-Basso, Daniela; Kharchenko, Peter V.; Tolstorukov, Michael Y.; Kim, Maria; Li, Hua-Bing; Gorchakov, Andrey A.; Minoda, Aki; Shanower, Gregory; Alekseyenko, Artyom A.; Riddle, Nicole C.; Jung, Youngsook L.; Gu, Tingting; Plachetka, Annette; Elgin, Sarah C.R.; Kuroda, Mitzi I.; Park, Peter J.; Savitsky, Mikhail; Karpen, Gary H.; Pirrotta, Vincenzo
2012-01-01
Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alterations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes. PMID:22767387
Broadband Control of Topological Nodes in Electromagnetic Fields
NASA Astrophysics Data System (ADS)
Song, Alex Y.; Catrysse, Peter B.; Fan, Shanhui
2018-05-01
We study topological nodes (phase singularities) in electromagnetic wave interactions with structures. We show that, when the nodes exist, it is possible to bind certain nodes to a specific plane in the structure by a combination of mirror and time-reversal symmetry. Such binding does not rely on any resonances in the structure. As a result, the nodes persist on the plane over a wide wavelength range. As an implication of such broadband binding, we demonstrate that the topological nodes can be used for hiding of metallic objects over a broad wavelength range.
NASA Astrophysics Data System (ADS)
Parry, Christian S.; Gorski, Jack; Stern, Lawrence J.
2003-03-01
The stable binding of processed foreign peptide to a class II major histocompatibility (MHC) molecule and subsequent presentation to a T cell receptor is a central event in immune recognition and regulation. Polymorphic residues on the floor of the peptide binding site form pockets that anchor peptide side chains. These and other residues in the helical wall of the groove determine the specificity of each allele and define a motif. Allele specific motifs allow the prediction of epitopes from the sequence of pathogens. There are, however, known epitopes that do not satisfy these motifs: anchor motifs are not adequate for predicting epitopes as there are apparently major and minor motifs. We present crystallographic studies into the nature of the interactions that govern the binding of these so called nonconforming peptides. We would like to understand the role of the P10 pocket and find out whether the peptides that do not obey the consensus anchor motif bind in the canonical conformation observed in in prior structures of class II MHC-peptide complexes. HLA-DRB3*0101 complexed with peptide crystallized in unit cell 92.10 x 92.10 x 248.30 (90, 90, 90), P41212, and the diffraction data is reliable to 2.2ÅWe are complementing our studies with dynamical long time simulations to answer these questions, particularly the interplay of the anchor motifs in peptide binding, the range of protein and ligand conformations, and water hydration structures.
Kadan, M J; Sturm, S; Anderson, W F; Eglitis, M A
1992-01-01
Four classes of murine leukemia virus (MuLV) which display distinct cellular tropisms and bind to different retrovirus receptors to initiate virus infection have been described. In the present study, we describe a rapid, sensitive immunofluorescence assay useful for characterizing the initial binding of MuLV to cells. By using the rat monoclonal antibody 83A25 (L. H. Evans, R. P. Morrison, F. G. Malik, J. Portis, and W. J. Britt, J. Virol. 64:6176-6183, 1990), which recognizes an epitope of the envelope gp70 molecule common to the different classes of MuLV, it is possible to analyse the binding of ecotropic, amphotropic, or xenotropic MuLV by using only a single combination of primary and secondary antibodies. The MuLV binding detected by this assay is envelope receptor specific and matches the susceptibility to infection determined for cells from a variety of species. The binding of amphotropic MuLV to NIH 3T3 cells was shown to be rapid, saturable, and temperature dependent. Chinese hamster ovary (CHO-K1) cells normally lack the ability to bind ecotropic virus and are not infectible by ecotropic vectors. Expression of the cloned ecotropic retrovirus receptor gene (Rec) in CHO-K1 cells confers high levels of ecotropic virus-specific binding and confers susceptibility to infection. Characterization of MuLV binding to primary cells may provide insight into the infectibility of cells by retroviruses and aid in the selection of appropriate vectors for gene transfer experiments. PMID:1312632
Oxytocin and vasopressin: distinct receptors in myometrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillon, G.; Balestre, M.N.; Roberts, J.M.
1987-06-01
The binding characteristics of (/sup 3/H)oxytocin (( /sup 3/H)OT) and (/sup 3/H)lysine vasopressin (( /sup 3/H)LVP) to nonpregnant human myometrium were investigated. Binding of both radioligands was saturable, time dependent, and reversible. Whereas (/sup 3/H)OT was found to bind to a single class of sites with high affinity (Kd, 1.5 +/- 0.4 (+/- SEM) nM) and low capacity (maximum binding (Bmax), 34 +/- 6 fmol/mg protein), (/sup 3/H)LVP bound to two classes of sites, one with high affinity (Kd, 2.2 +/- 0.1 nM) and low capacity (Bmax, 198 +/- 7 fmol/mg protein) and another with low affinity (Kd, 655 +/-more » 209 nM) and high capacity (Bmax, 5794 +/- 1616 fmol/mg protein). The binding of the labeled peptides also displayed a marked difference in sensitivity to Mg2+ and guanine nucleotides. These differences in binding characteristics as well as the differences in potency of analogs in competing for (/sup 3/H)OT and (/sup 3/H)LVP binding indicate the presence of distinct receptors for OT and vasopressin in human myometrium. Pharmacological characterization of the high affinity binding sites for (/sup 3/H)LVP indicated that these are of the V1 subtype. Although, as suggested by others, vasopressin and OT can bind to the same sites, the presence of distinct receptors for both peptides provides an explanation for the previously reported difference in myometrial responsiveness to OT and vasopressin.« less
Students' Perceptions of Study Modes
ERIC Educational Resources Information Center
Hagel, Pauline; Shaw, Robin N.
2006-01-01
This paper reports on a survey of how Australian undergraduate students perceive the benefits of broad study modes: face-to-face classes, web-based study, and print-based study. Two benefit types were identified through factor analysis: engagement and functionality. Respondents rated face-to-face classes highest on engagement and print-based study…
ERIC Educational Resources Information Center
Russell, James E.; D'Costa, Allison R.; Runck, Clay; Barnes, David W.; Barrera, Alessandra L.; Hurst-Kennedy, Jennifer; Sudduth, Elizabeth B.; Quinlan, Erin L.; Schlueter, Mark
2015-01-01
The traditional undergraduate program of study incorporates a selection of classes that represent a broad spectrum of subdisciplines. Unfortunately, few curricula successfully integrate concepts in all subdisciplines, giving undergraduates the misconception that there is a lack of application or connectedness between class subjects. An integrated…
Agreement Reflexes of Emerging Optionality in Heritage Speaker Spanish
ERIC Educational Resources Information Center
Pascual Cabo, Diego
2013-01-01
This study contributes to current trends of heritage speaker (HS) acquisition research by examining the syntax of psych-predicates in HS Spanish. Broadly defined, psych-predicates communicate states of emotions (e.g., to love) and have traditionally been categorized as belonging to one of three classes: class I--"temere" "to…
Constructing Adulthood in an Age of Uncertainty
ERIC Educational Resources Information Center
Silva, Jennifer M.
2012-01-01
Past research in both the transitions to adulthood literature and cultural sociology more broadly suggests that the working class relies on traditional cultural models in their construction of identity. In the contemporary post-industrial world, however, traditional life pathways are now much less available to working-class men and women. I draw…
Case Studies of Curricular Approaches
ERIC Educational Resources Information Center
Mills, Ann G.; Sutera, Janice
2012-01-01
As students face the transition to after-college life, whether it be to further education or to the workplace, their choice of classes can determine how well they are prepared. Students obtain a broad knowledge of various subjects through general education classes and more specific knowledge through their particular discipline or major, and often…
ERIC Educational Resources Information Center
Purves, Alan C.
1996-01-01
Outlines three forms of electronic portfolio based on a student's work, a class project about a specific topic, and a class seminar on a broad topic. Discusses logistical problems of management, access, and cross-referencing; technical problems of input, access, and copying; and theoretical issues of the lack of realia, of ownership and copyright,…
The human fatty acid-binding protein family: Evolutionary divergences and functions
2011-01-01
Fatty acid-binding proteins (FABPs) are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20) fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied. PMID:21504868
Bentley, Marvin; Decker, Helena; Luisi, Julie
2015-01-01
Identifying the proteins that regulate vesicle trafficking is a fundamental problem in cell biology. In this paper, we introduce a new assay that involves the expression of an FKBP12-rapamycin–binding domain–tagged candidate vesicle-binding protein, which can be inducibly linked to dynein or kinesin. Vesicles can be labeled by any convenient method. If the candidate protein binds the labeled vesicles, addition of the linker drug results in a predictable, highly distinctive change in vesicle localization. This assay generates robust and easily interpretable results that provide direct experimental evidence of binding between a candidate protein and the vesicle population of interest. We used this approach to compare the binding of Kinesin-3 family members with different endosomal populations. We found that KIF13A and KIF13B bind preferentially to early endosomes and that KIF1A and KIF1Bβ bind preferentially to late endosomes and lysosomes. This assay may have broad utility for identifying the trafficking proteins that bind to different vesicle populations. PMID:25624392
Fang, Caiyun; Zhang, Lei; Zhang, Xiaoqin; Lu, Haojie
2015-06-21
Metal binding proteins play many important roles in a broad range of biological processes. Characterization of metal binding proteins is important for understanding their structure and biological functions, thus leading to a clear understanding of metal associated diseases. The present study is the first to investigate the effectiveness of magnetic microspheres functionalized with metal cations (Ca(2+), Cu(2+), Zn(2+) and Fe(3+)) as the absorbent matrix in IMAC technology to enrich metal containing/binding proteins. The putative metal binding proteins in rat liver were then globally characterized by using this strategy which is very easy to handle and can capture a number of metal binding proteins effectively. In total, 185 putative metal binding proteins were identified from rat liver including some known less abundant and membrane-bound metal binding proteins such as Plcg1, Acsl5, etc. The identified proteins are involved in many important processes including binding, catalytic activity, translation elongation factor activity, electron carrier activity, and so on.
Defining Potential Vaccine Targets of Haemophilus ducreyi Trimeric Autotransporter Adhesin DsrA
Fusco, William G.; Choudhary, Neelima R.; Stewart, Shelley M.; Alam, S. Munir; Sempowski, Gregory D.; Elkins, Christopher
2015-01-01
Haemophilus ducreyi is the causative agent of the sexually transmitted genital ulcer disease chancroid. Strains of H. ducreyi are grouped in two classes (I and II) based on genotypic and phenotypic differences, including those found in DsrA, an outer membrane protein belonging to the family of multifunctional trimeric autotransporter adhesins. DsrA is a key serum resistance factor of H. ducreyi that prevents binding of natural IgM at the bacterial surface and functions as an adhesin to fibronectin, fibrinogen, vitronectin, and human keratinocytes. Monoclonal antibodies (MAbs) were developed to recombinant DsrA (DsrAI) from prototypical class I strain 35000HP to define targets for vaccine and/or therapeutics. Two anti-DsrAI MAbs bound monomers and multimers of DsrA from genital and non-genital/cutaneous H. ducreyi strains in a Western blot and reacted to the surface of the genital strains; however, these MAbs did not recognize denatured or native DsrA from class II strains. In a modified extracellular matrix protein binding assay using viable H. ducreyi, one of the MAbs partially inhibited binding of fibronectin, fibrinogen, and vitronectin to class I H. ducreyi strain 35000HP, suggesting a role for anti-DsrA antibodies in preventing binding of H. ducreyi to extracellular matrix proteins. Standard ELISA and surface plasmon resonance using a peptide library representing full-length, mature DsrAI revealed the smallest nominal epitope bound by one of the MAbs to be MEQNTHNINKLS. Taken together, our findings suggest that this epitope is a potential target for an H. ducreyi vaccine. PMID:25897604
Defining Potential Vaccine Targets of Haemophilus ducreyi Trimeric Autotransporter Adhesin DsrA.
Fusco, William G; Choudhary, Neelima R; Stewart, Shelley M; Alam, S Munir; Sempowski, Gregory D; Elkins, Christopher; Leduc, Isabelle
2015-04-01
Haemophilus ducreyi is the causative agent of the sexually transmitted genital ulcer disease chancroid. Strains of H. ducreyi are grouped in two classes (I and II) based on genotypic and phenotypic differences, including those found in DsrA, an outer membrane protein belonging to the family of multifunctional trimeric autotransporter adhesins. DsrA is a key serum resistance factor of H. ducreyi that prevents binding of natural IgM at the bacterial surface and functions as an adhesin to fibronectin, fibrinogen, vitronectin, and human keratinocytes. Monoclonal antibodies (MAbs) were developed to recombinant DsrA (DsrA(I)) from prototypical class I strain 35000HP to define targets for vaccine and/or therapeutics. Two anti-DsrAI MAbs bound monomers and multimers of DsrA from genital and non-genital/cutaneous H. ducreyi strains in a Western blot and reacted to the surface of the genital strains; however, these MAbs did not recognize denatured or native DsrA from class II strains. In a modified extracellular matrix protein binding assay using viable H. ducreyi, one of the MAbs partially inhibited binding of fibronectin, fibrinogen, and vitronectin to class I H. ducreyi strain 35000HP, suggesting a role for anti-DsrA antibodies in preventing binding of H. ducreyi to extracellular matrix proteins. Standard ELISA and surface plasmon resonance using a peptide library representing full-length, mature DsrAI revealed the smallest nominal epitope bound by one of the MAbs to be MEQNTHNINKLS. Taken together, our findings suggest that this epitope is a potential target for an H. ducreyi vaccine.
Nilofer, Christina; Sukhwal, Anshul; Mohanapriya, Arumugam; Kangueane, Pandjassarame
2017-01-01
Several catalysis, cellular regulation, immune function, cell wall assembly, transport, signaling and inhibition occur through Protein- Protein Interactions (PPI). This is possible with the formation of specific yet stable protein-protein interfaces. Therefore, it is of interest to understand its molecular principles using structural data in relation to known function. Several interface features have been documented using known X-ray structures of protein complexes since 1975. This has improved our understanding of the interface using structural features such as interface area, binding energy, hydrophobicity, relative hydrophobicity, salt bridges and hydrogen bonds. The strength of binding between two proteins is dependent on interface size (number of residues at the interface) and thus its corresponding interface area. It is known that large interfaces have high binding energy (sum of (van der Waals) vdW, H-bonds, electrostatics). However, the selective role played by each of these energy components and more especially that of vdW is not explicitly known. Therefore, it is important to document their individual role in known protein-protein structural complexes. It is of interest to relate interface size with vdW, H-bonds and electrostatic interactions at the interfaces of protein structural complexes with known function using statistical and multiple linear regression analysis methods to identify the prominent force. We used the manually curated non-redundant dataset of 278 hetero-dimeric protein structural complexes grouped using known functions by Sowmya et al. (2015) to gain additional insight to this phenomenon using a robust inter-atomic non-covalent interaction analyzing tool PPCheck (Anshul and Sowdhamini, 2015). This dataset consists of obligatory (enzymes, regulator, biological assembly), immune and nonobligatory (enzyme and regulator inhibitors) complexes. Results show that the total binding energy is more for large interfaces. However, this is not true for its individual energy factors. Analysis shows that vdW energies contribute to about 75% ± 11% on average among all complexes and it also increases with interface size (r2 ranging from 0.67 to 0.89 with p<0.01) at 95% confidence limit irrespective of molecular function. Thus, vdW is both dominant and proportional at the interface independent of molecular function. Nevertheless, H bond energy contributes to 15% ± 6.5% on average in these complexes. It also moderately increases with interface size (r2 ranging from 0.43 to 0.61 with p<0.01) only among obligatory and immune complexes. Moreover, there is about 11.3% ± 8.7% contribution by electrostatic energy. It increases with interface size specifically among non-obligatory regulator-inhibitors (r2 = 0.44). It is implied that both H-bonds and electrostatics are neither dominant nor proportional at the interface. Nonetheless, their presence cannot be ignored in binding. Therefore, H-bonds and (or) electrostatic energy having specific role for improved stability in complexes is implied. Thus, vdW is common at the interface stabilized further with selective H-bonds and (or) electrostatic interactions at an atomic level in almost all complexes. Comparison of this observation with residue level analysis of the interface is compelling. The role by H-bonds (14.83% ± 6.5% and r2 = 0.61 with p<0.01) among obligatory and electrostatic energy (8.8% ± 4.77% and r2 = 0.63 with p <0.01) among non-obligatory complexes within interfaces (class A) having more non-polar residues than surface is influencing our inference. However, interfaces (class B) having less non-polar residues than surface show 1.5 fold more electrostatic energy on average. The interpretation of the interface using inter-atomic (vdW, H-bonds, electrostatic) interactions combined with inter-residue predominance (class A and class B) in relation to known function is the key to reveal its molecular principles with new challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Johnnie A.; Takasuka, Taichi E.; Deng, Kai
Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed. CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolyticmore » activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass. In conclusion, we have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass.« less
Conserved and divergent features of the structure and function of La and La-related proteins (LARPs)
Bayfield, Mark A.; Yang, Ruiqing; Maraia, Richard J.
2010-01-01
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3’OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3’OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3’OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNA assembly by hLARP7/PIP7S). Analyses of other LARP family members (i.e., hLARP4, hLARP6) suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs. PMID:20138158
Bayfield, Mark A; Yang, Ruiqing; Maraia, Richard J
2010-01-01
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3'OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3'OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3'OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNP assembly by hLARP7/PIP7S). Analyses of other LARP family members suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA-related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs.
Automated benchmarking of peptide-MHC class I binding predictions.
Trolle, Thomas; Metushi, Imir G; Greenbaum, Jason A; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten
2015-07-01
Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. mniel@cbs.dtu.dk or bpeters@liai.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Saul, F A; Rovira, P; Boulot, G; Damme, E J; Peumans, W J; Truffa-Bachi, P; Bentley, G A
2000-06-15
Urtica dioica agglutinin (UDA), a monomeric lectin extracted from stinging nettle rhizomes, is specific for saccharides containing N-acetylglucosamine (GlcNAc). The lectin behaves as a superantigen for murine T cells, inducing the exclusive proliferation of Vbeta8.3(+) lymphocytes. UDA is unique among known T cell superantigens because it can be presented by major histocompatibility complex (MHC) molecules of both class I and II. The crystal structure of UDA has been determined in the ligand-free state, and in complex with tri-acetylchitotriose and tetra-acetylchitotetraose at 1.66 A, 1.90 A and 1.40 A resolution, respectively. UDA comprises two hevein-like domains, each with a saccharide-binding site. A serine and three aromatic residues at each site form the principal contacts with the ligand. The N-terminal domain binding site can centre on any residue of a chito-oligosaccharide, whereas that of the C-terminal domain is specific for residues at the nonreducing terminus of the ligand. We have shown previously that oligomers of GlcNAc inhibit the superantigenic activity of UDA and that the lectin binds to glycans on the MHC molecule. We show that UDA also binds to glycans on the T cell receptor (TCR). The presence of two saccharide-binding sites observed in the structure of UDA suggests that its superantigenic properties arise from the simultaneous fixation of glycans on the TCR and MHC molecules of the T cell and antigen-presenting cell, respectively. The well defined spacing between the two binding sites of UDA is probably a key factor in determining the specificity for Vbeta8.3(+) lymphocytes.
Hatano, Hiroko; Shaw, Jacqueline; Marquardt, Kaitlin; Zhang, Zhiyong; Gauthier, Laurent; Chanteux, Stephanie; Rossi, Benjamin; Li, Demin; Mitchell, Julie; Kollnberger, Simon
2015-01-01
We have proposed that the killer cell immunoglobulin-like receptor KIR3DL2 binding more strongly to HLA-B27 (B27) β2m-free heavy chain (FHC) dimers regulates lymphocyte function in arthritis and infection. We compared the function of B27 FHC dimers with other class I heavy chains and identified contact residues in KIR3DL2. B27 FHC dimers interacted functionally with KIR3DL2 on NK and reporter cells more strongly than other class I FHC. Mutagenesis identified key residues in the D0 and other immunoglobulin-like domains which were shared and distinct from KIR3DL1, for KIR3DL2 binding to B27 and other class I FHC. We modeled B27 dimer binding to KIR3DL2 and compared experimental mutagenesis data with computational “hot spot” predictions. Modelling predicts the stronger binding of B27 dimers to KIR3DL2 is mediated by non-symmetrical complementary contacts of the D0 and D1 domains with the α1, α2 and α3 domains of both B27 heavy chains. By contrast, the D2 domain primarily contacts residues in the α2 domain of one B27 heavy chain. These findings both provide novel insights about the molecular basis of KIR3DL2 binding to HLA-B27 and other ligands and suggest an important role for KIR3DL2 HLA-B27 interactions in controlling the function of NK cells in HLA-B27+ individuals. PMID:25582852
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Y.C.; Akera, T.
1986-03-05
Characteristics of more than one class of ouabain receptors which appear to exist in ferret heart were examined. In isolated papillary muscle, 1 to 30 nM ouabain produced a positive inotropic effect in the presence of 5 ..mu..M propranolol and 2 ..mu..M phentolamine. Higher concentrations of ouabain (0.1 to 10 ..mu..M) produced an additional and prominent inotropic effect. In partially purified Na, K-ATPase, ouabain caused a monophasic inhibition; however, the concentration-inhibition curve spanned over 5 log units, indicating that ouabain is interacting with more than a single class of the enzyme. Scatchard analysis of specific /sup 3/H-ouabain binding revealed approximatelymore » equal abundance of high and low affinity binding sites. The K/sub D/ value for high affinity sites was approximately 20 nM whereas that for low affinity sites was about 45 times higher. When phosphoenzyme was formed in the presence of (..gamma..-/sup 32/P)-ATP, Mg/sup 2 +/ and Na/sup +/ and subjected to SDS gel electrophoresis, two distinct K/sup +/-sensitive bands with about 100,000 dalton molecular weight were detected. Molecular weight difference between these two bands was approximately 2500 dalton. Phosphorylation of either band was abolished by 1 ..mu..M ouabain suggesting that both bands may correspond to the high-affinity binding sites. These results indicate that high and low affinity ouabain binding sites exists in approximately equal abundance in the ferret heart, and that binding of ouabain to these sites cases Na,K-ATPase inhibition and the positive inotropic effect.« less
Automated benchmarking of peptide-MHC class I binding predictions
Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten
2015-01-01
Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. Contact: mniel@cbs.dtu.dk or bpeters@liai.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25717196
Entropy as a Driver of Selectivity for Inhibitor Binding to Histone Deacetylase 6.
Porter, Nicholas J; Wagner, Florence F; Christianson, David W
2018-05-18
Among the metal-dependent histone deacetylases, the class IIb isozyme HDAC6 is remarkable because of its role in the regulation of microtubule dynamics in the cytosol. Selective inhibition of HDAC6 results in microtubule hyperacetylation, leading to cell cycle arrest and apoptosis, which is a validated strategy for cancer chemotherapy and the treatment of other disorders. HDAC6 inhibitors generally consist of a Zn 2+ -binding group such as a hydroxamate, a linker, and a capping group; the capping group is a critical determinant of isozyme selectivity. Surprisingly, however, even "capless" inhibitors exhibit appreciable HDAC6 selectivity. To probe the chemical basis for this selectivity, we now report high-resolution crystal structures of HDAC6 complexed with capless cycloalkyl hydroxamate inhibitors 1-4. Each inhibitor hydroxamate group coordinates to the catalytic Zn 2+ ion with canonical bidentate geometry. Additionally, the olefin moieties of compounds 2 and 4 bind in an aromatic crevice between the side chains of F583 and F643. Reasoning that similar binding could be achieved in the representative class I isozyme HDAC8, we employed isothermal titration calorimetry to study the thermodynamics of inhibitor binding. These measurements indicate that the entropy of inhibitor binding is generally positive for binding to HDAC6 and negative for binding to HDAC8, resulting in ≤313-fold selectivity for binding to HDAC6 relative to HDAC8. Thus, favorable binding entropy contributes to HDAC6 selectivity. Notably, cyclohexenyl hydroxamate 2 represents a promising lead for derivatization with capping groups that may further enhance its impressive 313-fold thermodynamic selectivity for HDAC6 inhibition.
[3H]-nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart.
Matucci, R; Bennardini, F; Sciammarella, M L; Baccaro, C; Stendardi, I; Franconi, F; Giotti, A
1987-04-01
We compared the binding properties of [3H]-nitrendipine in heart membranes from normal guinea-pig heart and from hypoxic or hypoxic and reoxygenated heart. The [3H]-nitrendipine binds a single class of high capacity (Bmax 667.2 +/- 105.2) with high affinity (KD 0.14 +/- 0.02) binding sites. By contrast, in membranes of hypoxic and reoxygenated heart the Bmax decreases significantly while it remains unaffected during hypoxia. Xanthinoxidase activity is increased in hypoxic-reoxygenated hearts.
2010-01-01
Human papillomaviruses (HPVs) are the most common on sexually transmitted viruses in the world. HPVs are responsible for a large spectrum of deseases, both benign and malignant. The certain types of HPV are involved in the development of cervical cancer. In attemps to find additional drugs in the treatment of cervical cancer, inhibitors of the histone deacetylases (HDAC) have received much attention due to their low cytotoxic profiles and the E6/E7 oncogene function of human papilomavirus can be completely by passed by HDAC inhibition. The histone deacetylase inhibitors can induce growth arrest, differentiation and apoptosis of cancer cells. HDAC class I and class II are considered the main targets for cancer. Therefore, the six HDACs class II was modeled and about two inhibitors (SAHA and TSA) were docked using AutoDock4.2, to each of the inhibitor in order to identify the pharmacological properties. Based on the results of docking, SAHA and TSA were able to bind with zinc ion in HDACs models as a drug target. SAHA was satisfied almost all the properties i.e., binding affinity, the Drug-Likeness value and Drug Score with 70% oral bioavailability and the carbonyl group of these compound fits well into the active site of the target where the zinc is present. Hence, SAHA could be developed as potential inhibitors of class II HDACs and valuable cervical cancer drug candidate. PMID:21106123
Lee, Sungwook; Park, Boyoun; Ahn, Kwangseog
2003-01-01
US3 of human cytomegalovirus is an endoplasmic reticulum resident transmembrane glycoprotein that binds to major histocompatibility complex class I molecules and prevents their departure. The endoplasmic reticulum retention signal of the US3 protein is contained in the luminal domain of the protein. To define the endoplasmic reticulum retention sequence in more detail, we have generated a series of deletion and point mutants of the US3 protein. By analyzing the rate of intracellular transport and immunolocalization of the mutants, we have identified Ser58, Glu63, and Lys64 as crucial for retention, suggesting that the retention signal of the US3 protein has a complex spatial arrangement and does not comprise a contiguous sequence of amino acids. We also show that a modified US3 protein with a mutation in any of these amino acids maintains its ability to bind class I molecules; however, such mutated proteins are no longer retained in the endoplasmic reticulum and are not able to block the cell surface expression of class I molecules. These findings indicate that the properties that allow the US3 glycoprotein to be localized in the endoplasmic reticulum and bind major histocompatibility complex class I molecules are located in different parts of the molecule and that the ability of US3 to block antigen presentation is due solely to its ability to retain class I molecules in the endoplasmic reticulum. PMID:12525649
Sperm-binding fibronectin type II-module proteins are genetically linked and functionally related.
Ekhlasi-Hundrieser, Mahnaz; Schäfer, Bettina; Philipp, Ute; Kuiper, Heidi; Leeb, Tosso; Mehta, Meenal; Kirchhoff, Christiane; Töpfer-Petersen, Edda
2007-05-01
Fibronectin type II (Fn2) module-containing proteins in the male genital tract are characterized by different numbers of Fn2 modules. Predominantly two classes exist which are distinct by having either two or four Fn2 modules. Minor variants with three Fn2 modules were also found in the human and the porcine epididymis. To reveal their relationship, mRNAs and proteins of representatives of these classes were studied in human, in Sus scrofa, and in rodents. Adult boars expressed members of both classes, i.e. ELSPBP1 and pB1, in subsequent regions of the epididymis, and both were under androgenic control. Human and rodent epididymides, on the other hand, alternatively contained only representatives of one of these two classes, i.e. ELSPBP1 in the human and two different pB1-related counterparts in rodents. ELSPBP1 and pB1-related genomic sequences were closely linked in chromosomal regions HSA 19q and SSC 6 q11-q21; conserved synteny between these regions is well established. On the other hand, in a syntenic region on mouse chromosome 7, ELSPBP1-related sequences were lacking. Tight binding to the sperm membrane via a choline-mediated mechanism was a common feature of the two classes of Fn2-module proteins, suggesting related function(s). However, differences in their regionalized expression patterns along the male genital tract as well as in association sites on the sperm surface suggested a species-specific sequential order in sperm binding.
Tambunan, Usman Sumo Friend; Wulandari, Evi Kristin
2010-10-15
Human papillomaviruses (HPVs) are the most common on sexually transmitted viruses in the world. HPVs are responsible for a large spectrum of deseases, both benign and malignant. The certain types of HPV are involved in the development of cervical cancer. In attemps to find additional drugs in the treatment of cervical cancer, inhibitors of the histone deacetylases (HDAC) have received much attention due to their low cytotoxic profiles and the E6/E7 oncogene function of human papilomavirus can be completely by passed by HDAC inhibition. The histone deacetylase inhibitors can induce growth arrest, differentiation and apoptosis of cancer cells. HDAC class I and class II are considered the main targets for cancer. Therefore, the six HDACs class II was modeled and about two inhibitors (SAHA and TSA) were docked using AutoDock4.2, to each of the inhibitor in order to identify the pharmacological properties. Based on the results of docking, SAHA and TSA were able to bind with zinc ion in HDACs models as a drug target. SAHA was satisfied almost all the properties i.e., binding affinity, the Drug-Likeness value and Drug Score with 70% oral bioavailability and the carbonyl group of these compound fits well into the active site of the target where the zinc is present. Hence, SAHA could be developed as potential inhibitors of class II HDACs and valuable cervical cancer drug candidate.
Physician prescribing behavior and its impact on patient-level outcomes.
Joyce, Geoffrey F; Carrera, Mariana P; Goldman, Dana P; Sood, Neeraj
2011-12-01
Concerns over rising drug costs, pharmaceutical advertising, and potential conflicts of interest have focused attention on physician prescribing behavior. We examine how broadly physicians prescribe within the 10 most prevalent therapeutic classes, the factors affecting their choices, and the impact of their prescribing behavior on patient-level outcomes. Retrospective study from 2005 to 2007 examining prescribers with at least 5 initial prescriptions within a class from 2005 to 2007. Medical and pharmacy claims are linked to prescriber information from 146 different health plans, reflecting 1975 to 8923 unique providers per drug class. Primary outcomes are the number of distinct drugs in a class initially prescribed by a physician over 1- and 3-year periods, medication possession ratio, and out-of-pocket costs. In 8 of 10 therapeutic classes, the median physician prescribes at least 3 different drugs and fewer than 1 in 6 physicians prescribe only brand drugs. Physicians prescribing only 1 or 2 drugs in a class are more likely to prescribe the most advertised drug. Physicians who prescribe fewer drugs are less likely to see patients with other comorbid conditions and varied formulary designs. Prescribing fewer drugs is associated with lower rates of medication adherence and higher out-ofpocket costs for drugs, but the effects are small and inconsistent across classes. Physicians prescribe more broadly than commonly perceived. Though narrow prescribers are more likely to prescribe highly advertised drugs, few physicians prescribe these drugs exclusively. Narrow prescribing has modest effects on medication adherence and out-of-pocket costs in some classes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaakola, Veli-Pekka; Griffith, Mark T.; Hanson, Michael A.
2009-01-15
The adenosine class of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A{sub 2A} adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extendedmore » conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.« less
Characterization of a gene coding for a type IIo bacterial IgG-binding protein.
Boyle, M D; Weber-Heynemann, J; Raeder, R; Podbielski, A
1995-06-01
Two antigenic classes of non-immune IgG-binding proteins can be expressed by group A streptococci. One antigenic group of proteins is recognized by an antibody prepared against the product of a cloned fcrA gene (anti-FcRA). In this study, the immunogen used to prepare the antibody that defines the second antigenic class was shown to be the product of the emm-like (emmL) gene of M serotype 55 group A isolate, A928. The emmL55 gene expressed in E. coli produced an M(r) approximately 58,000 molecule which bound human IgG1, IgG2, IgG3 and IgG4, as well as horse, rabbit and pig IgG in a non-immune fashion. These properties are characteristic of the previously described type IIo IgG-binding protein isolated from this strain. In addition, the recombinant protein was reactive with human serum albumin and fibrinogen. The emmL 55 gene sequence was analysed and found to have the organization and sequence characteristics of a typical class I emm-like gene.
Customizing G Protein-coupled receptor models for structure-based virtual screening.
de Graaf, Chris; Rognan, Didier
2009-01-01
This review will focus on the construction, refinement, and validation of G Protein-coupled receptor models for the purpose of structure-based virtual screening. Practical tips and tricks derived from concrete modeling and virtual screening exercises to overcome the problems and pitfalls associated with the different steps of the receptor modeling workflow will be presented. These examples will not only include rhodopsin-like (class A), but also secretine-like (class B), and glutamate-like (class C) receptors. In addition, the review will present a careful comparative analysis of current crystal structures and their implication on homology modeling. The following themes will be discussed: i) the use of experimental anchors in guiding the modeling procedure; ii) amino acid sequence alignments; iii) ligand binding mode accommodation and binding cavity expansion; iv) proline-induced kinks in transmembrane helices; v) binding mode prediction and virtual screening by receptor-ligand interaction fingerprint scoring; vi) extracellular loop modeling; vii) virtual filtering schemes. Finally, an overview of several successful structure-based screening shows that receptor models, despite structural inaccuracies, can be efficiently used to find novel ligands.
Abualrous, Esam T; Fritzsche, Susanne; Hein, Zeynep; Al-Balushi, Mohammed S; Reinink, Peter; Boyle, Louise H; Wellbrock, Ursula; Antoniou, Antony N; Springer, Sebastian
2015-04-01
The human MHC class I protein HLA-B*27:05 is statistically associated with ankylosing spondylitis, unlike HLA-B*27:09, which differs in a single amino acid in the F pocket of the peptide-binding groove. To understand how this unique amino acid difference leads to a different behavior of the proteins in the cell, we have investigated the conformational stability of both proteins using a combination of in silico and experimental approaches. Here, we show that the binding site of B*27:05 is conformationally disordered in the absence of peptide due to a charge repulsion at the bottom of the F pocket. In agreement with this, B*27:05 requires the chaperone protein tapasin to a greater extent than the conformationally stable B*27:09 in order to remain structured and to bind peptide. Taken together, our data demonstrate a method to predict tapasin dependence and physiological behavior from the sequence and crystal structure of a particular class I allotype. Also watch the Video Abstract. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetic Polymorphism in Extracellular Regulators of Wnt Signaling Pathway
Sharma, Ashish Ranjan; Seo, Eun-Min; Nam, Ju-Suk
2015-01-01
The Wnt signaling pathway is mediated by a family of secreted glycoproteins through canonical and noncanonical mechanism. The signaling pathways are regulated by various modulators, which are classified into two classes on the basis of their interaction with either Wnt or its receptors. Secreted frizzled-related proteins (sFRPs) are the member of class that binds to Wnt protein and antagonizes Wnt signaling pathway. The other class consists of Dickkopf (DKK) proteins family that binds to Wnt receptor complex. The present review discusses the disease related association of various polymorphisms in Wnt signaling modulators. Furthermore, this review also highlights that some of the sFRPs and DKKs are unable to act as an antagonist for Wnt signaling pathway and thus their function needs to be explored more extensively. PMID:25945348
ABSTRACT In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human (hERα), quai...
Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P.; Lewis, Timothy A.; Maglathin, Rebecca L.; McLean, Thomas H.; Bochkarev, Alexey; Plotnikov, Alexander N.; Vedadi, Masoud; Arrowsmith, Cheryl H.
2008-01-01
Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators. PMID:18285338
Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P; Lewis, Timothy A; Maglathin, Rebecca L; McLean, Thomas H; Bochkarev, Alexey; Plotnikov, Alexander N; Vedadi, Masoud; Arrowsmith, Cheryl H
2008-04-25
Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators.
Improved methods for predicting peptide binding affinity to MHC class II molecules.
Jensen, Kamilla Kjaergaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A; Yan, Zhen; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten
2018-07-01
Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC-II-peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. © 2018 John Wiley & Sons Ltd.
Zhang, Miao; Pascal, John M.; Schumann, Marcel; Armen, Roger S.; Zhang, Ji-fang
2012-01-01
Small- and intermediate-conductance Ca2+-activated potassium channels, activated by Ca2+-bound calmodulin, play an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potentials for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-EBIO class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class. PMID:22929778
Zhang, Miao; Pascal, John M; Schumann, Marcel; Armen, Roger S; Zhang, Ji-Fang
2012-01-01
Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potential for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-ethyl-2-benzimidazolinone (1-EBIO) class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class.
Structure of Ristocetin A in Complex with a Bacterial Cell-wall Mimetic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nahoum, V.; Spector, S; Loll, P
2009-01-01
Antimicrobial drug resistance is a serious public health problem and the development of new antibiotics has become an important priority. Ristocetin A is a class III glycopeptide antibiotic that is used in the diagnosis of von Willebrand disease and which has served as a lead compound for the development of new antimicrobial therapeutics. The 1.0 A resolution crystal structure of the complex between ristocetin A and a bacterial cell-wall peptide has been determined. As is observed for most other glycopeptide antibiotics, it is shown that ristocetin A forms a back-to-back dimer containing concave binding pockets that recognize the cell-wall peptide.more » A comparison of the structure of ristocetin A with those of class I glycopeptide antibiotics such as vancomycin and balhimycin identifies differences in the details of dimerization and ligand binding. The structure of the ligand-binding site reveals a likely explanation for ristocetin A's unique anticooperativity between dimerization and ligand binding.« less
Wu, Ruibo; Lu, Zhenyu; Cao, Zexing; Zhang, Yingkai
2011-04-27
It is of significant biological interest and medical importance to develop class- and isoform-selective histone deacetylase (HDAC) modulators. The impact of the linker component on HDAC inhibition specificity has been revealed but is not understood. Using Born-Oppenheimer ab initio QM/MM MD simulations, a state-of-the-art approach to simulating metallo-enzymes, we have found that the hydroxamic acid remains to be protonated upon its binding to HDAC8, and thus disproved the mechanistic hypothesis that the distinct zinc-hydroxamate chelation modes between two HDAC subclasses come from different protonation states of the hydroxamic acid. Instead, our simulations suggest a novel mechanism in which the chelation mode of hydroxamate with the zinc ion in HDACs is modulated by water access to the linker binding channel. This new insight into the interplay between the linker binding and the zinc chelation emphasizes its importance and gives guidance regarding linker design for the development of new class-IIa-specific HDAC inhibitors.
Dai, Qi; Ren, Aiming; Westholm, Jakub O; Duan, Hong; Patel, Dinshaw J; Lai, Eric C
2015-01-01
Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain ("BEN-solo" factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional properties of this new family of transcription factors. © 2015 Dai et al.; Published by Cold Spring Harbor Laboratory Press.
Dai, Qi; Ren, Aiming; Westholm, Jakub O.; Duan, Hong; Patel, Dinshaw J.
2015-01-01
Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain (“BEN-solo” factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional properties of this new family of transcription factors. PMID:25561495
Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS.
Yao, Zhan; Yaeger, Rona; Rodrik-Outmezguine, Vanessa S; Tao, Anthony; Torres, Neilawattie M; Chang, Matthew T; Drosten, Matthias; Zhao, Huiyong; Cecchi, Fabiola; Hembrough, Todd; Michels, Judith; Baumert, Hervé; Miles, Linde; Campbell, Naomi M; de Stanchina, Elisa; Solit, David B; Barbacid, Mariano; Taylor, Barry S; Rosen, Neal
2017-08-10
Approximately 200 BRAF mutant alleles have been identified in human tumours. Activating BRAF mutants cause feedback inhibition of GTP-bound RAS, are RAS-independent and signal either as active monomers (class 1) or constitutively active dimers (class 2). Here we characterize a third class of BRAF mutants-those that have impaired kinase activity or are kinase-dead. These mutants are sensitive to ERK-mediated feedback and their activation of signalling is RAS-dependent. The mutants bind more tightly than wild-type BRAF to RAS-GTP, and their binding to and activation of wild-type CRAF is enhanced, leading to increased ERK signalling. The model suggests that dysregulation of signalling by these mutants in tumours requires coexistent mechanisms for maintaining RAS activation despite ERK-dependent feedback. Consistent with this hypothesis, melanomas with these class 3 BRAF mutations also harbour RAS mutations or NF1 deletions. By contrast, in lung and colorectal cancers with class 3 BRAF mutants, RAS is typically activated by receptor tyrosine kinase signalling. These tumours are sensitive to the inhibition of RAS activation by inhibitors of receptor tyrosine kinases. We have thus defined three distinct functional classes of BRAF mutants in human tumours. The mutants activate ERK signalling by different mechanisms that dictate their sensitivity to therapeutic inhibitors of the pathway.
ERIC Educational Resources Information Center
Fritsch, Julie M.
2013-01-01
Agricultural education begins with hands-on classroom and laboratory instruction. Because agriculture is such a broad topic, schools typically tailor agriculture class offerings to match the interests of the student population, needs of nearby businesses and industry, or topics relevant to their state's standard assessments. Within most…
The Class I HDAC Inhibitor RGFP963 Enhances Consolidation of Cued Fear Extinction
ERIC Educational Resources Information Center
Bowers, Mallory E.; Xia, Bing; Carreiro, Samantha; Ressler, Kerry J.
2015-01-01
Evidence indicates that broad, nonspecific histone deacetylase (HDAC) inhibition enhances learning and memory, however, the contribution of the various HDACs to specific forms of learning is incompletely understood. Here, we show that the Class I HDAC inhibitor, RGFP963, enhances consolidation of cued fear extinction. However, RGFP966, a strong…
Two Classes of Transitive Verbs: Evidence from Spanish
ERIC Educational Resources Information Center
Armstrong, Grant Warren
2011-01-01
The unaccusativity hypothesis (Burzio 1986; Levin & Rappaport Hovav 1995; Perlmutter 1978) posits that intransitive verbs may be divided into two broad classes: unaccusatives, whose sole argument is an internal argument and unergatives, whose sole argument is an external argument. In this dissertation I explore the idea that there is a similar,…
"I Can't Do Any More Education": Class, Individualisation and Educational Decision-Making
ERIC Educational Resources Information Center
Morrison, Andrew
2008-01-01
This paper, drawing upon a recent study of youth post-compulsory educational and occupational decision-making, argues for a culturalist perspective to understand the persistence of class-based inequalities within VET. The paper begins by outlining two broadly distinct perspectives within current research into youth: an "individualist" approach…
Creosotebush, blackbrush, and interior chaparral shrublands [Chapter 6
Matthew L. Brooks; Todd C. Esque; Tim Duck
2007-01-01
The vegetation, fire regime, and Fire Regime Condition Class descriptions in this paper apply broadly to the Mojave Desert, Colorado Plateau, and southern Great Basin of western North America. More detail on these topics, including estimated percentages within each condition class, is provided for the Mojave-Colorado Plateau ecotone spanning southern Nevada, the...
Data Science for Imbalanced Data: Methods and Applications
ERIC Educational Resources Information Center
Johnson, Reid A.
2016-01-01
Data science is a broad, interdisciplinary field concerned with the extraction of knowledge or insights from data, with the classification of data as a core, fundamental task. One of the most persistent challenges faced when performing classification is the class imbalance problem. Class imbalance refers to when the frequency with which each class…
Moon, Robert W.; Whalley, David; Bowyer, Paul W.; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K.; Howell, Steven A.; Grainger, Munira; Jones, Hayley M.; Ansell, Keith H.; Chapman, Timothy M.; Taylor, Debra L.; Osborne, Simon A.; Baker, David A.; Tatu, Utpal
2015-01-01
Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. PMID:26711771
Green, Judith L; Moon, Robert W; Whalley, David; Bowyer, Paul W; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K; Howell, Steven A; Grainger, Munira; Jones, Hayley M; Ansell, Keith H; Chapman, Timothy M; Taylor, Debra L; Osborne, Simon A; Baker, David A; Tatu, Utpal; Holder, Anthony A
2015-12-28
Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. Copyright © 2016 Green et al.
Binding pose and affinity prediction in the 2016 D3R Grand Challenge 2 using the Wilma-SIE method
NASA Astrophysics Data System (ADS)
Hogues, Hervé; Sulea, Traian; Gaudreault, Francis; Corbeil, Christopher R.; Purisima, Enrico O.
2018-01-01
The Farnesoid X receptor (FXR) exhibits significant backbone movement in response to the binding of various ligands and can be a challenge for pose prediction algorithms. As part of the D3R Grand Challenge 2, we tested Wilma-SIE, a rigid-protein docking method, on a set of 36 FXR ligands for which the crystal structures had originally been blinded. These ligands covered several classes of compounds. To overcome the rigid protein limitations of the method, we used an ensemble of publicly available structures for FXR from the PDB. The use of the ensemble allowed Wilma-SIE to predict poses with average and median RMSDs of 2.3 and 1.4 Å, respectively. It was quite clear, however, that had we used a single structure for the receptor the success rate would have been much lower. The most successful predictions were obtained on chemical classes for which one or more crystal structures of the receptor bound to a molecule of the same class was available. In the absence of a crystal structure for the class, observing a consensus binding mode for the ligands of the class using one or more receptor structures of other classes seemed to be indicative of a reasonable pose prediction. Affinity prediction proved to be more challenging with generally poor correlation with experimental IC50s (Kendall tau 0.3). Even when the 36 crystal structures were used the accuracy of the predicted affinities was not appreciably improved. A possible cause of difficulty is the internal energy strain arising from conformational differences in the receptor across complexes, which may need to be properly estimated and incorporated into the SIE scoring function.
Zhang, Zhen; Palzkill, Timothy
2003-11-14
The hydrolysis of beta-lactam antibiotics by class A beta-lactamases is a common cause of bacterial resistance to these agents. The beta-lactamase inhibitory protein (BLIP) is able to bind and inhibit several class A beta-lactamases, including TEM-1 beta-lactamase and SME-1 beta-lactamase. Although the TEM-1 and SME-1 enzymes share 33% amino acid sequence identity and a similar fold, they differ substantially in surface electrostatic properties and the conformation of a loop-helix region that BLIP binds. Alanine-scanning mutagenesis was performed to identify the residues on BLIP that contribute to its binding affinity for each of these enzymes. The results indicate that the sequence requirements for binding are similar for both enzymes with most of the binding free energy provided by two patches of aromatic residues on the surface of BLIP. Polar residues such as several serines in the interface do not make significant contributions to affinity for either enzyme. In addition, the specificity of binding is significantly altered by mutation of two charged residues, Glu73 and Lys74, that are buried in the structure of the TEM-1.BLIP complex as well as by residues located on two loops that insert into the active site pocket. Based on the results, a E73A/Y50A double mutant was constructed that exhibited a 220,000-fold change in binding specificity for the TEM-1 versus SME-1 enzymes.
Labonté, Eric D.; Howles, Philip N.; Granholm, Norman A.; Rojas, Juan C.; Davies, Joanna P.; Ioannou, Yiannis A.; Hui, David Y.
2007-01-01
Recent studies have documented the importance of Niemann Pick C1-like 1 protein (NPC1L1), a putative physiological target of the drug ezetimibe, in mediating intestinal cholesterol absorption. However, whether NPC1L1 is the high affinity cholesterol binding protein on intestinal brush border membranes is still controversial. In this study, brush border membrane vesicles (BBMV) from wild type and NPC1L1−/− mice were isolated and assayed for micellar cholesterol binding in the presence or absence of ezetimibe. Results confirmed the loss of the high affinity component of cholesterol binding when wild type BBMV preparations were incubated with antiserum against the class B type 1 scavenger receptor (SR-BI) in the reaction mixture similar to previous studies. Subsequently, second order binding of cholesterol was observed with BBMV from wild type and NPC1L1−/− mice. The inclusion of ezetimibe in these in vitro reaction assays resulted in the loss of the high affinity component of cholesterol interaction. Surprisingly, BBMVs from NPC1L1−/− mice maintained active binding of cholesterol. These results documented that SR-BI, not NPC1L1, is the major protein responsible for the initial high affinity cholesterol ligand binding process in the cholesterol absorption pathway. Additionally, ezetimibe may inhibit BBM cholesterol binding through targets such as SR-BI in addition to its inhibition of NPC1L1. PMID:17442616
Banno, Masaki; Komiyama, Yusuke; Cao, Wei; Oku, Yuya; Ueki, Kokoro; Sumikoshi, Kazuya; Nakamura, Shugo; Terada, Tohru; Shimizu, Kentaro
2017-02-01
Several methods have been proposed for protein-sugar binding site prediction using machine learning algorithms. However, they are not effective to learn various properties of binding site residues caused by various interactions between proteins and sugars. In this study, we classified sugars into acidic and nonacidic sugars and showed that their binding sites have different amino acid occurrence frequencies. By using this result, we developed sugar-binding residue predictors dedicated to the two classes of sugars: an acid sugar binding predictor and a nonacidic sugar binding predictor. We also developed a combination predictor which combines the results of the two predictors. We showed that when a sugar is known to be an acidic sugar, the acidic sugar binding predictor achieves the best performance, and showed that when a sugar is known to be a nonacidic sugar or is not known to be either of the two classes, the combination predictor achieves the best performance. Our method uses only amino acid sequences for prediction. Support vector machine was used as a machine learning algorithm and the position-specific scoring matrix created by the position-specific iterative basic local alignment search tool was used as the feature vector. We evaluated the performance of the predictors using five-fold cross-validation. We have launched our system, as an open source freeware tool on the GitHub repository (https://doi.org/10.5281/zenodo.61513). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wang, Yong-Qiang; Melzer, Rainer; Theissen, Günter
2010-10-01
Several lines of evidence suggest that the identity of floral organs in angiosperms is specified by multimeric transcription factor complexes composed of MADS-domain proteins. These bind to specific cis-regulatory elements ('CArG-boxes') of their target genes involving DNA-loop formation, thus constituting 'floral quartets'. Gymnosperms, angiosperms' closest relatives, contain orthologues of floral homeotic genes, but when and how the interactions constituting floral quartets were established during evolution has remained unknown. We have comprehensively studied the dimerization and DNA-binding of several classes of MADS-domain proteins from the gymnosperm Gnetum gnemon. Determination of protein-protein and protein-DNA interactions by yeast two-hybrid, in vitro pull-down and electrophoretic mobility shift assays revealed complex patterns of homo- and heterodimerization among orthologues of floral homeotic class B, class C and class E proteins and B(sister) proteins. Using DNase I footprint assays we demonstrate that both orthologues of class B with C proteins, and orthologues of class C proteins alone, but not orthologues of class B proteins alone can loop DNA in floral quartet-like complexes. This is in contrast to class B and class C proteins from angiosperms, which require other factors such as class E floral homeotic proteins to 'glue' them together in multimeric complexes. Our findings suggest that the evolutionary origin of floral quartet formation is based on the interaction of different DNA-bound homodimers, does not depend on class E proteins, and predates the origin of angiosperms. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.
Mohammed, Fiyaz; Cobbold, Mark; Zarling, Angela L.; Salim, Mahboob; Barrett-Wilt, Gregory A.; Shabanowitz, Jeffrey; Hunt, Donald F.; Engelhard, Victor H.; Willcox, Benjamin E.
2008-01-01
Protein phosphorylation generates a source of phosphopeptides that are presented by major histocompatibility complex (MHC) class I molecules and recognized by T cells. As deregulated phosphorylation is a hallmark of malignant transformation, the differential display of phosphorylated peptides on cancer cells provides an immunological signature of “transformed self”. Here, we demonstrate that phosphorylation can radically increase peptide binding affinity for HLA-A2. To understand this, we solved crystal structures of four phosphopeptide–HLA-A2 complexes. These revealed a novel peptide binding motif centered on a solvent-exposed phosphate anchor. Our findings indicate that deregulated phosphorylation can create neoantigens by promoting MHC binding, or by affecting the antigenic identity of presented epitopes. These results highlight the potential of phosphopeptides as novel targets for cancer immunotherapy. PMID:18836451
Fuller, Jonathan C.; Jackson, Richard M.; Edwards, Thomas A.; Wilson, Andrew J.; Shirts, Michael R.
2012-01-01
The design of novel α-helix mimetic inhibitors of protein-protein interactions is of interest to pharmaceuticals and chemical genetics researchers as these inhibitors provide a chemical scaffold presenting side chains in the same geometry as an α-helix. This conformational arrangement allows the design of high affinity inhibitors mimicking known peptide sequences binding specific protein substrates. We show that GAFF and AutoDock potentials do not properly capture the conformational preferences of α-helix mimetics based on arylamide oligomers and identify alternate parameters matching solution NMR data and suitable for molecular dynamics simulation of arylamide compounds. Results from both docking and molecular dynamics simulations are consistent with the arylamides binding in the p53 peptide binding pocket. Simulations of arylamides in the p53 binding pocket of hDM2 are consistent with binding, exhibiting similar structural dynamics in the pocket as simulations of known hDM2 binders Nutlin-2 and a benzodiazepinedione compound. Arylamide conformations converge towards the same region of the binding pocket on the 20 ns time scale, and most, though not all dihedrals in the binding pocket are well sampled on this timescale. We show that there are two putative classes of binding modes for arylamide compounds supported equally by the modeling evidence. In the first, the arylamide compound lies parallel to the observed p53 helix. In the second class, not previously identified or proposed, the arylamide compound lies anti-parallel to the p53 helix. PMID:22916232
50 CFR 680.20 - Arbitration System.
Code of Federal Regulations, 2011 CFR
2011-10-01
... purposes of Share Matching, Binding Arbitration, and Post Arbitration Opt-in; (2) A provision that... individual provider of information. (vi) The Market Report shall consider the following factors: (A) Current ex-vessel prices, including ex-vessel prices received for crab harvested under Class A IFQ, Class B...
50 CFR 680.20 - Arbitration System.
Code of Federal Regulations, 2010 CFR
2010-10-01
... purposes of Share Matching, Binding Arbitration, and Post Arbitration Opt-in; (2) A provision that... individual provider of information. (vi) The Market Report shall consider the following factors: (A) Current ex-vessel prices, including ex-vessel prices received for crab harvested under Class A IFQ, Class B...
Hawse, William F.; Gloor, Brian E.; Ayres, Cory M.; Kho, Kevin; Nuter, Elizabeth; Baker, Brian M.
2013-01-01
T cells use the αβ T cell receptor (TCR) to recognize antigenic peptides presented by class I major histocompatibility complex proteins (pMHCs) on the surfaces of antigen-presenting cells. Flexibility in both TCRs and peptides plays an important role in antigen recognition and discrimination. Less clear is the role of flexibility in the MHC protein; although recent observations have indicated that mobility in the MHC can impact TCR recognition in a peptide-dependent fashion, the extent of this behavior is unknown. Here, using hydrogen/deuterium exchange, fluorescence anisotropy, and structural analyses, we show that the flexibility of the peptide binding groove of the class I MHC protein HLA-A*0201 varies significantly with different peptides. The variations extend throughout the binding groove, impacting regions contacted by TCRs as well as other activating and inhibitory receptors of the immune system. Our results are consistent with statistical mechanical models of protein structure and dynamics, in which the binding of different peptides alters the populations and exchange kinetics of substates in the MHC conformational ensemble. Altered MHC flexibility will influence receptor engagement, impacting conformational adaptations, entropic penalties associated with receptor recognition, and the populations of binding-competent states. Our results highlight a previously unrecognized aspect of the “altered self” mechanism of immune recognition and have implications for specificity, cross-reactivity, and antigenicity in cellular immunity. PMID:23836912
Lindow, Janet C; Dohrmann, Paul R; McHenry, Charles S
2015-07-03
Biophysical and structural studies have defined many of the interactions that occur between individual components or subassemblies of the bacterial replicase, DNA polymerase III holoenzyme (Pol III HE). Here, we extended our knowledge of residues and interactions that are important for the first step of the replicase reaction: the ATP-dependent formation of an initiation complex between the Pol III HE and primed DNA. We exploited a genetic selection using a dominant negative variant of the polymerase catalytic subunit that can effectively compete with wild-type Pol III α and form initiation complexes, but cannot elongate. Suppression of the dominant negative phenotype was achieved by secondary mutations that were ineffective in initiation complex formation. The corresponding proteins were purified and characterized. One class of mutant mapped to the PHP domain of Pol III α, ablating interaction with the ϵ proofreading subunit and distorting the polymerase active site in the adjacent polymerase domain. Another class of mutation, found near the C terminus, interfered with τ binding. A third class mapped within the known β-binding domain, decreasing interaction with the β2 processivity factor. Surprisingly, mutations within the β binding domain also ablated interaction with τ, suggesting a larger τ binding site than previously recognized. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Busman-Sahay, Kathleen; Sargent, Elizabeth; Harton, Jonathan A.; Drake, James R.
2016-01-01
Previous work has established that binding of the 11-5.2 anti-I-Ak mAb, which recognizes the Ia.2 epitope on I-Ak class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-Ak mAb that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-Ak molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2 bearing subset of I-Ak class II molecules is critically necessary for effective B cell–T cell interactions especially at low antigen doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-Ak class II molecules possessing a β chain-tethered HEL peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2 negative tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous antigen to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II confomer vital to the initiation of MHC class II restricted B cell–T cell interactions. PMID:21543648
First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases.
Borroto, Aldo; Reyes-Garau, Diana; Jiménez, M Angeles; Carrasco, Esther; Moreno, Beatriz; Martínez-Pasamar, Sara; Cortés, José R; Perona, Almudena; Abia, David; Blanco, Soledad; Fuentes, Manuel; Arellano, Irene; Lobo, Juan; Heidarieh, Haleh; Rueda, Javier; Esteve, Pilar; Cibrián, Danay; Martinez-Riaño, Ana; Mendoza, Pilar; Prieto, Cristina; Calleja, Enrique; Oeste, Clara L; Orfao, Alberto; Fresno, Manuel; Sánchez-Madrid, Francisco; Alcamí, Antonio; Bovolenta, Paola; Martín, Pilar; Villoslada, Pablo; Morreale, Antonio; Messeguer, Angel; Alarcon, Balbino
2016-12-21
Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR's CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low-molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC 50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell-mediated autoimmune and inflammatory diseases. Copyright © 2016, American Association for the Advancement of Science.
Thiophene antibacterials that allosterically stabilize DNA-cleavage complexes with DNA gyrase.
Chan, Pan F; Germe, Thomas; Bax, Benjamin D; Huang, Jianzhong; Thalji, Reema K; Bacqué, Eric; Checchia, Anna; Chen, Dongzhao; Cui, Haifeng; Ding, Xiao; Ingraham, Karen; McCloskey, Lynn; Raha, Kaushik; Srikannathasan, Velupillai; Maxwell, Anthony; Stavenger, Robert A
2017-05-30
A paucity of novel acting antibacterials is in development to treat the rising threat of antimicrobial resistance, particularly in Gram-negative hospital pathogens, which has led to renewed efforts in antibiotic drug discovery. Fluoroquinolones are broad-spectrum antibacterials that target DNA gyrase by stabilizing DNA-cleavage complexes, but their clinical utility has been compromised by resistance. We have identified a class of antibacterial thiophenes that target DNA gyrase with a unique mechanism of action and have activity against a range of bacterial pathogens, including strains resistant to fluoroquinolones. Although fluoroquinolones stabilize double-stranded DNA breaks, the antibacterial thiophenes stabilize gyrase-mediated DNA-cleavage complexes in either one DNA strand or both DNA strands. X-ray crystallography of DNA gyrase-DNA complexes shows the compounds binding to a protein pocket between the winged helix domain and topoisomerase-primase domain, remote from the DNA. Mutations of conserved residues around this pocket affect activity of the thiophene inhibitors, consistent with allosteric inhibition of DNA gyrase. This druggable pocket provides potentially complementary opportunities for targeting bacterial topoisomerases for antibiotic development.
Famiglini, Valeria; La Regina, Giuseppe; Coluccia, Antonio; Pelliccia, Sveva; Brancale, Andrea; Maga, Giovanni; Crespan, Emmanuele; Badia, Roger; Riveira-Muñoz, Eva; Esté, José A; Ferretti, Rosella; Cirilli, Roberto; Zamperini, Claudio; Botta, Maurizio; Schols, Dominique; Limongelli, Vittorio; Agostino, Bruno; Novellino, Ettore; Silvestri, Romano
2014-12-11
We synthesized new indolylarylsulfone (IAS) derivatives carrying a heterocyclic tail at the indole-2-carboxamide nitrogen as potential anti-HIV/AIDS agents. Several new IASs yielded EC50 values <1.0 nM against HIV-1 WT and mutant strains in MT-4 cells. The (R)-11 enantiomer proved to be exceptionally potent against the whole viral panel; in the reverse transcriptase (RT) screening assay, it was remarkably superior to NVP and EFV and comparable to ETV. The binding poses were consistent with the one previously described for the IAS non-nucleoside reverse transcriptase inhibitors. Docking studies showed that the methyl group of (R)-11 points toward the cleft created by the K103N mutation, different from the corresponding group of (S)-11. By calculating the solvent-accessible surface, we observed that the exposed area of RT in complex with (S)-11 was larger than the area of the (R)-11 complex. Compounds 6 and 16 and enantiomer (R)-11 represent novel robust lead compounds of the IAS class.
Shechner, David M.; Hacisüleyman, Ezgi; Younger, Scott T.; Rinn, John L.
2016-01-01
Noncoding RNAs (ncRNAs) comprise an important class of regulatory molecules that mediate a vast array of biological processes. This broad functional capacity has also facilitated the design of artificial ncRNAs with novel functions. To further investigate and harness these capabilities, we developed CRISPR-Display (“CRISP-Disp”), a targeted localization method that uses Sp. Cas9 to deploy large RNA cargos to DNA loci. We demonstrate that exogenous RNA domains can be functionally appended onto the CRISPR scaffold at multiple insertion points, allowing the construction of Cas9 complexes with protein-binding cassettes, artificial aptamers, pools of random sequences, and RNAs up to 4.8 kilobases in length, including natural lncRNAs. Unlike most existing CRISPR methods, CRISP-Disp allows simultaneous multiplexing of distinct functions at multiple targets, limited only by the number of available functional RNA motifs. We anticipate that this technology will provide a powerful method with which to ectopically localize functional RNAs and ribonucleoprotein (RNP) complexes at specified genomic loci. PMID:26030444
Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity
Curreli, Francesca; Kwon, Young Do; Zhang, Hongtao; ...
2015-08-24
Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here in this paper, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diversemore » subtypes of clinical isolates (IC 50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergonzi, Celine; Schwab, Michael; Chabriere, Eric
Lactonases comprise a class of enzymes that hydrolyze lactones, including acyl-homoserine lactones (AHLs); the latter are used as chemical signaling molecules by numerous Gram-negative bacteria. Lactonases have therefore been demonstrated to quench AHL-based bacterial communication. In particular, lactonases are capable of inhibiting bacterial behaviors that depend on these chemicals, such as the formation of biofilms or the expression of virulence factors. A novel representative from the metallo-β-lactamase superfamily, named AaL, was isolated from the thermoacidophilic bacteriumAlicyclobacter acidoterrestris. Kinetic characterization proves AaL to be a proficient lactonase, with catalytic efficiencies (k cat/K m) against AHLs in the region of 10 5Mmore » -1s -1. AaL exhibits a very broad substrate specificity. Its structure is expected to reveal the molecular determinants for its substrate binding and specificity, as well as to provide grounds for future protein-engineering projects. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection of AaL at 1.65Å resolution are reported.« less
A Bactericidal Guanidinomethyl Biaryl That Alters the Dynamics of Bacterial FtsZ Polymerization
Kaul, Malvika; Parhi, Ajit K.; Zhang, Yongzheng; LaVoie, Edmond J.; Tuske, Steve; Arnold, Eddy; Kerrigan, John E.; Pilch, Daniel S.
2014-01-01
The prevalence of multidrug resistance among clinically significant bacterial pathogens underscores a critical need for the development of new classes of antibiotics with novel mechanisms of action. Here we describe the synthesis and evaluation of a guanidinomethyl biaryl compound {1-((4′-(tert-butyl)-[1,1′-biphenyl]-3-yl)methyl)guanidine} that targets the bacterial cell division protein FtsZ. In vitro studies with various bacterial FtsZ proteins reveal that the compound alters the dynamics of FtsZ self-polymerization via a stimulatory mechanism, while minimally impacting the polymerization of tubulin, the closest mammalian homologue of FtsZ. The FtsZ binding site of the compound is identified through a combination of computational and mutational approaches. The compound exhibits a broad spectrum of bactericidal activity, including activity against the multidrug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), while also exhibiting a minimal potential to induce resistance. Taken together, our results highlight the compound as a promising new FtsZ-targeting bactericidal agent. PMID:23050700
Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curreli, Francesca; Kwon, Young Do; Zhang, Hongtao
Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here in this paper, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diversemore » subtypes of clinical isolates (IC 50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.« less
An Interaction Landscape of Ubiquitin Signaling.
Zhang, Xiaofei; Smits, Arne H; van Tilburg, Gabrielle B A; Jansen, Pascal W T C; Makowski, Matthew M; Ovaa, Huib; Vermeulen, Michiel
2017-03-02
Intracellular signaling via the covalent attachment of different ubiquitin linkages to protein substrates is fundamental to many cellular processes. Although linkage-selective ubiquitin interactors have been studied on a case-by-case basis, proteome-wide analyses have not been conducted yet. Here, we present ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), a quantitative interaction proteomics method that makes use of chemically synthesized diubiquitin to enrich and identify ubiquitin linkage interactors from crude cell lysates. UbIA-MS reveals linkage-selective diubiquitin interactions in multiple cell types. For example, we identify TAB2 and TAB3 as novel K6 diubiquitin interactors and characterize UCHL3 as a K27-linkage selective interactor that regulates K27 polyubiquitin chain formation in cells. Additionally, we show a class of monoubiquitin and K6 diubiquitin interactors whose binding is induced by DNA damage. We expect that our proteome-wide diubiquitin interaction landscape and established workflows will have broad applications in the ongoing efforts to decipher the complex language of ubiquitin signaling. Copyright © 2017 Elsevier Inc. All rights reserved.
Group Additivity in Ligand Binding Affinity: An Alternative Approach to Ligand Efficiency.
Reynolds, Charles H; Reynolds, Ryan C
2017-12-26
Group additivity is a concept that has been successfully applied to a variety of thermochemical and kinetic properties. This includes drug discovery, where functional group additivity is often assumed in ligand binding. Ligand efficiency can be recast as a special case of group additivity where ΔG/HA is the group equivalent (HA is the number of non-hydrogen atoms in a ligand). Analysis of a large data set of protein-ligand binding affinities (K i ) for diverse targets shows that in general ligand binding is distinctly nonlinear. It is possible to create a group equivalent scheme for ligand binding, but only in the context of closely related proteins, at least with regard to size. This finding has broad implications for drug design from both experimental and computational points of view. It also offers a path forward for a more general scheme to assess the efficiency of ligand binding.
Interaction of a vasopressin antagonist with vasopressin receptors in the septum of the rat brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorsa, D.M.; Brot, M.D.; Shewey, L.M.
1988-01-01
The ability of d(CH2)5-Tyr(Me)-arginine-8-vasopressin, an antagonist of peripheral pressoric (V1-type) vasopressin receptors, to label vasopressin binding sites in the septum of the rat brain was evaluated. Using crude membrane preparations from the septum, /sup 3/H-arginine-8-vasopressin (AVP) specifically labels a single class of binding sites with a Kd of 2.9 nM and maximum binding site concentration of 19.8 fmole/mg protein. /sup 3/H-Antag also labels a single class of membrane sites but with higher affinity (Kd = 0.47 nM) and lower capacity (10.1 fmole/mg protein) than /sup 3/H-AVP. The rank order of potency of various competitor peptides for /sup 3/H-AVP and /supmore » 3/H-Antag binding was similar. Oxytocin was 100-1,000 fold less potent than AVP in competing for binding with both ligands. /sup 3/H-AVP and /sup 3/H-Antag showed similar labeling patterns when incubated with septal tissue slices. Unlabeled Antag also effectively antagonized vasopressin-stimulated phosphatidylinositol hydrolysis in septal tissue slices.« less
Why do we see Broad Lines in X-ray Absorbed, Red AGN?
NASA Astrophysics Data System (ADS)
Wilkes, B. J.; Ghosh, Himel; Cutri, R.; Hines, D.; Nelson, B.; Schmidt, G. D.; Smith, P. S.
2003-05-01
The Two Micron All-Sky Survey (2MASS) red AGN catalog has revealed a previously unknown population whose number density rivals that of optically-selected AGN as found in the many, relatively shallow surveys (e.g. PG, Hamburg). The Chandra X-ray spectra of these red, mostly broad-line AGN are hard. This, combined with their unusually high optical polarization, suggests substantial obscuration (log NH = 21-23 cm-2) toward the nuclear energy source, despite a clear view of the broad emission line region. We have expanded our Chandra-observed sub-sample to include 20 more 2MASS AGN yielding a set of 46 which includes all available optical classes. This sample is thus pre-selected for complex absorption and sufficient to study the relative X-ray and optical obscuration for each AGN class. Those observed to date continue the lack of a relation between the X-ray hardness ratio and optical class noted in our earlier sample. Combining this with X-ray spectral fits where we have sufficient counts and with our multi-wavelength data, we compare the spectral energy distributions with those of normal and other red AGN and investigate possible scenarios for the absorbing material. We gratefully ackowledge the financial support of NASA grant: GO1-2112A
Uncoupling metallonuclease metal ion binding sites via nudge mutagenesis.
Papadakos, Grigorios A; Nastri, Horacio; Riggs, Paul; Dupureur, Cynthia M
2007-05-01
The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 A from both metal ions in the enzyme-substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H-15N heteronuclear single quantum coherence spectra of enzyme-Ca(II) and enzyme-Ca(II)-DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function.
Kumar, Akhil; Srivastava, Gaurava; Srivastava, Swati; Verma, Seema; Negi, Arvind S; Sharma, Ashok
2017-08-01
BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer's disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors. Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.
Evidence for alternative quaternary structure in a bacterial Type III secretion system chaperone
2010-01-01
Background Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg) C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators. Results In this study, we present the 3.3 Å crystal structure of an amino-terminally truncated form (residues 10-155, denoted IpgC10-155) of the class II chaperone IpgC from Shigella flexneri. Our structure demonstrates an alternative quaternary arrangement to that previously described for a carboxy-terminally truncated variant of IpgC (IpgC1-151). Specifically, we observe a rotationally-symmetric "head-to- head" dimerization interface that is far more similar to that previously described for SycD from Yersinia enterocolitica than to IpgC1-151. The IpgC structure presented here displays major differences in the amino terminal region, where extended coil-like structures are seen, as opposed to the short, ordered alpha helices and asymmetric dimerization interface seen within IpgC1-151. Despite these differences, however, both modes of dimerization support chaperone activity, as judged by a copurification assay with a recombinant form of the translocator protein, IpaB. Conclusions From primary to quaternary structure, these results presented here suggest that a symmetric dimerization interface is conserved across bacterial class II chaperones. In light of previous data which have described the structure and function of asymmetric dimerization, our results raise the possibility that class II chaperones may transition between asymmetric and symmetric dimers in response to changes in either biochemical modifications (e.g. proteolytic cleavage) or other biological cues. Such transitions may contribute to the broad range of protein-protein interactions and functions attributed to class II chaperones. PMID:20633281
Starr, James C.; Torgersen, Christian E.
2015-01-01
We compared the assemblage structure, spatial distributions, and habitat associations of mountain whitefish (Prosopium williamsoni) morphotypes and size classes. We hypothesised that morphotypes would have different spatial distributions and would be associated with different habitat features based on feeding behaviour and diet. Spatially continuous sampling was conducted over a broad extent (29 km) in the Calawah River, WA (USA). Whitefish were enumerated via snorkelling in three size classes: small (10–29 cm), medium (30–49 cm), and large (≥50 cm). We identified morphotypes based on head and snout morphology: a pinocchio form that had an elongated snout and a normal form with a blunted snout. Large size classes of both morphotypes were distributed downstream of small and medium size classes, and normal whitefish were distributed downstream of pinocchio whitefish. Ordination of whitefish assemblages with nonmetric multidimensional scaling revealed that normal whitefish size classes were associated with higher gradient and depth, whereas pinocchio whitefish size classes were positively associated with pool area, distance upstream, and depth. Reach-scale generalised additive models indicated that normal whitefish relative density was associated with larger substrate size in downstream reaches (R2 = 0.64), and pinocchio whitefish were associated with greater stream depth in the reaches farther upstream (R2 = 0.87). These results suggest broad-scale spatial segregation (1–10 km), particularly between larger and more phenotypically extreme individuals. These results provide the first perspective on spatial distributions and habitat relationships of polymorphic mountain whitefish.
Angle classification revisited 2: a modified Angle classification.
Katz, M I
1992-09-01
Edward Angle, in his classification of malocclusions, appears to have made Class I a range of abnormality, not a point of ideal occlusion. Current goals of orthodontic treatment, however, strive for the designation "Class I occlusion" to be synonymous with the point of ideal intermeshing and not a broad range. If contemporary orthodontists are to continue to use Class I as a goal, then it is appropriate that Dr. Angle's century-old classification, be modified to be more precise.
Ross, Peter; Holmes, Jennifer C; Gojanovich, Gregory S; Hess, Paul R
2012-12-15
Identifying immunodominant CTL epitopes is essential for studying CD8+ T-cell responses in populations, but remains difficult, as peptides within antigens typically are too numerous for all to be synthesized and screened. Instead, to facilitate discovery, in silico scanning of proteins for sequences that match the motif, or binding preferences, of the restricting MHC class I allele - the largest determinant of immunodominance - can be used to predict likely candidates. The high false positive rate with this analysis ideally requires binding confirmation, which is obtained routinely by an assay using cell lines such as RMA-S that have defective transporter associated with antigen processing (TAP) machinery, and consequently, few surface class I molecules. The stabilization and resultant increased life-span of peptide-MHC complexes on the cell surface by the addition of true binders validates their identity. To determine whether a similar assay could be developed for dogs, we transfected a prevalent class I allele, DLA-88*50801, into RMA-S. In the BARC3 clone, the recombinant heavy chain was associated with murine β2-microglobulin, and importantly, could differentiate motif-matched and -mismatched peptides by surface MHC stabilization. This work demonstrates the potential to use RMA-S cells transfected with canine alleles as a tool for CTL epitope discovery in this species. Copyright © 2012 Elsevier B.V. All rights reserved.
Maas, Megan K; Bray, Bethany C; Noll, Jennie G
2017-11-20
This study used latent class analysis to identify patterns (i.e., classes) across a broad range of online sexual experiences among female adolescents (n = 312) and to explore offline sexual behavior and substance use correlates of as well as maltreatment differences in class membership. The following four classes were identified: Online Abstinent, Online Inclusive, Attractors, and Seekers. Maltreated female adolescents were more likely to be members of the Online Inclusive class and less likely to be members of the Online Abstinent class than nonmaltreated female adolescents. Offline sexual behaviors and substance use differentially predicted class membership. These results suggest online sexual experiences vary greatly and should not be aggregated together as a global risk factor for all female adolescents. © 2017 Society for Research on Adolescence.
hi-class: Horndeski in the Cosmic Linear Anisotropy Solving System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zumalacárregui, Miguel; Bellini, Emilio; Sawicki, Ignacy
We present the public version of hi-class (www.hiclass-code.net), an extension of the Boltzmann code CLASS to a broad ensemble of modifications to general relativity. In particular, hi-class can calculate predictions for models based on Horndeski's theory, which is the most general scalar-tensor theory described by second-order equations of motion and encompasses any perfect-fluid dark energy, quintessence, Brans-Dicke, f ( R ) and covariant Galileon models. hi-class has been thoroughly tested and can be readily used to understand the impact of alternative theories of gravity on linear structure formation as well as for cosmological parameter extraction.
PHYSICIAN PRESCRIBING BEHAVIOR AND ITS IMPACT ON PATIENT-LEVEL OUTCOMES
Joyce, Geoffrey F.; Carrera, Mariana; Goldman, Dana P.; Sood, Neeraj
2013-01-01
OBJECTIVE Concerns over rising drug costs, pharmaceutical advertising and potential conflicts of interest have focused attention on physician prescribing behavior. We examine how broadly physicians prescribe within the ten most prevalent therapeutic classes, the factors affecting their choices, and its impact on patient-level outcomes. STUDY DESIGN Retrospective study from 2005 to 2007 examining prescribers with at least five initial prescriptions within a class from 2005–2007. Medical and pharmacy claims are linked to prescriber information from 146 different health plans, reflecting 1,975 to 8,923 unique providers per drug class. METHODS Primary outcomes are the number of distinct drugs in a class initially prescribed by a physician over 1- and 3-year periods, medication possession ratio, and out of pocket costs. RESULTS In 8 of 10 therapeutic classes, the median physician prescribes at least 3 different drugs and less than one in six physicians prescribes only brand drugs. Physicians prescribing only one or two drugs in a class are more likely to prescribe the most advertised drug. Physicians who prescribe fewer drugs are less likely to see patients with other comorbid conditions and varied formulary designs. Prescribing fewer drugs is associated with lower rates of medication adherence and higher out-of-pocket costs for drugs, but the effects are small and inconsistent across classes. CONCLUSIONS Physicians prescribe more broadly than commonly perceived. Though narrow prescribers are more likely to prescribe highly advertised drugs, few physicians prescribe these drugs exclusively. Narrow prescribing has modest effects on medication adherence and out of pocket costs in some classes. PMID:22216870
Calvo-Begueria, Laura; Cuypers, Bert; Van Doorslaer, Sabine; Abbruzzetti, Stefania; Bruno, Stefano; Berghmans, Herald; Dewilde, Sylvia; Ramos, Javier; Viappiani, Cristiano; Becana, Manuel
2017-01-01
Plant hemoglobins (Hbs) are found in nodules of legumes and actinorhizal plants but also in non-symbiotic organs of monocots and dicots. Non-symbiotic Hbs (nsHbs) have been classified into two phylogenetic groups. Class 1 nsHbs show an extremely high O 2 affinity and are induced by hypoxia and nitric oxide (NO), whereas class 2 nsHbs have moderate O 2 affinity and are induced by cold and cytokinins. The functions of nsHbs are still unclear, but some of them rely on the capacity of hemes to bind diatomic ligands and catalyze the NO dioxygenase (NOD) reaction (oxyferrous Hb + NO → ferric Hb + nitrate). Moreover, NO may nitrosylate Cys residues of proteins. It is therefore important to determine the ligand binding properties of the hemes and the role of Cys residues. Here, we have addressed these issues with the two class 1 nsHbs (LjGlb1-1 and LjGlb1-2) and the single class 2 nsHb (LjGlb2) of Lotus japonicus , which is a model legume used to facilitate the transfer of genetic and biochemical information into crops. We have employed carbon monoxide (CO) as a model ligand and resonance Raman, laser flash photolysis, and stopped-flow spectroscopies to unveil major differences in the heme environments and ligand binding kinetics of the three proteins, which suggest non-redundant functions. In the deoxyferrous state, LjGlb1-1 is partially hexacoordinate, whereas LjGlb1-2 shows complete hexacoordination (behaving like class 2 nsHbs) and LjGlb2 is mostly pentacoordinate (unlike other class 2 nsHbs). LjGlb1-1 binds CO very strongly by stabilizing it through hydrogen bonding, but LjGlb1-2 and LjGlb2 show lower CO stabilization. The changes in CO stabilization would explain the different affinities of the three proteins for gaseous ligands. These affinities are determined by the dissociation rates and follow the order LjGlb1-1 > LjGlb1-2 > LjGlb2. Mutations LjGlb1-1 C78S and LjGlb1-2 C79S caused important alterations in protein dynamics and stability, indicating a structural role of those Cys residues, whereas mutation LjGlb1-1 C8S had a smaller effect. The three proteins and their mutant derivatives exhibited similarly high rates of NO consumption, which were due to NOD activity of the hemes and not to nitrosylation of Cys residues.
Calvo-Begueria, Laura; Cuypers, Bert; Van Doorslaer, Sabine; Abbruzzetti, Stefania; Bruno, Stefano; Berghmans, Herald; Dewilde, Sylvia; Ramos, Javier; Viappiani, Cristiano; Becana, Manuel
2017-01-01
Plant hemoglobins (Hbs) are found in nodules of legumes and actinorhizal plants but also in non-symbiotic organs of monocots and dicots. Non-symbiotic Hbs (nsHbs) have been classified into two phylogenetic groups. Class 1 nsHbs show an extremely high O2 affinity and are induced by hypoxia and nitric oxide (NO), whereas class 2 nsHbs have moderate O2 affinity and are induced by cold and cytokinins. The functions of nsHbs are still unclear, but some of them rely on the capacity of hemes to bind diatomic ligands and catalyze the NO dioxygenase (NOD) reaction (oxyferrous Hb + NO → ferric Hb + nitrate). Moreover, NO may nitrosylate Cys residues of proteins. It is therefore important to determine the ligand binding properties of the hemes and the role of Cys residues. Here, we have addressed these issues with the two class 1 nsHbs (LjGlb1-1 and LjGlb1-2) and the single class 2 nsHb (LjGlb2) of Lotus japonicus, which is a model legume used to facilitate the transfer of genetic and biochemical information into crops. We have employed carbon monoxide (CO) as a model ligand and resonance Raman, laser flash photolysis, and stopped-flow spectroscopies to unveil major differences in the heme environments and ligand binding kinetics of the three proteins, which suggest non-redundant functions. In the deoxyferrous state, LjGlb1-1 is partially hexacoordinate, whereas LjGlb1-2 shows complete hexacoordination (behaving like class 2 nsHbs) and LjGlb2 is mostly pentacoordinate (unlike other class 2 nsHbs). LjGlb1-1 binds CO very strongly by stabilizing it through hydrogen bonding, but LjGlb1-2 and LjGlb2 show lower CO stabilization. The changes in CO stabilization would explain the different affinities of the three proteins for gaseous ligands. These affinities are determined by the dissociation rates and follow the order LjGlb1-1 > LjGlb1-2 > LjGlb2. Mutations LjGlb1-1 C78S and LjGlb1-2 C79S caused important alterations in protein dynamics and stability, indicating a structural role of those Cys residues, whereas mutation LjGlb1-1 C8S had a smaller effect. The three proteins and their mutant derivatives exhibited similarly high rates of NO consumption, which were due to NOD activity of the hemes and not to nitrosylation of Cys residues. PMID:28421084
50 CFR 680.20 - Arbitration System.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the public at large. (iii) The Market Report shall consider the following factors: (A) Current ex-vessel prices, including ex-vessel prices received for crab harvested under Class A IFQ, Class B IFQ, and... purposes of Share Matching, Binding Arbitration, and Post Arbitration Opt-in; (2) A provision that...
50 CFR 680.20 - Arbitration System.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the public at large. (iii) The Market Report shall consider the following factors: (A) Current ex-vessel prices, including ex-vessel prices received for crab harvested under Class A IFQ, Class B IFQ, and... purposes of Share Matching, Binding Arbitration, and Post Arbitration Opt-in; (2) A provision that...
50 CFR 680.20 - Arbitration System.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the public at large. (iii) The Market Report shall consider the following factors: (A) Current ex-vessel prices, including ex-vessel prices received for crab harvested under Class A IFQ, Class B IFQ, and... purposes of Share Matching, Binding Arbitration, and Post Arbitration Opt-in; (2) A provision that...
Johnstone, M. R.; Ross, P. L.; McLaughlin, R. E.; Olivier, N. B.
2014-01-01
Avibactam is a novel non-β-lactam β-lactamase inhibitor that inhibits a wide range of β-lactamases. These include class A, class C, and some class D enzymes, which erode the activity of β-lactam drugs in multidrug-resistant pathogens like Pseudomonas aeruginosa and Enterobacteriaceae spp. Avibactam is currently in clinical development in combination with the β-lactam antibiotics ceftazidime, ceftaroline fosamil, and aztreonam. Avibactam has the potential to be the first β-lactamase inhibitor that might provide activity against class C-mediated resistance, which represents a growing concern in both hospital- and community-acquired infections. Avibactam has an unusual mechanism of action: it is a covalent inhibitor that acts via ring opening, but in contrast to other currently used β-lactamase inhibitors, this reaction is reversible. Here, we present a high-resolution structure of avibactam bound to a class C β-lactamase, AmpC, from P. aeruginosa that provided insight into the mechanism of both acylation and recyclization in this enzyme class and highlighted the differences observed between class A and class C inhibition. Furthermore, variants resistant to avibactam that identified the residues important for inhibition were isolated. Finally, the structural information was used to predict effective inhibition by sequence analysis and functional studies of class C β-lactamases from a large and diverse set of contemporary clinical isolates (P. aeruginosa and several Enterobacteriaceae spp.) obtained from recent infections to understand any preexisting variability in the binding pocket that might affect inhibition by avibactam. PMID:25022578
The present report describes a strategy to refine the current Cramer classification of the TTC concept using a broad database (DB) termed TTC RepDose. Cramer classes 1-3 overlap to some extent, indicating a need for a better separation of structural classes likely to be toxic, mo...
Hemispheric Interaction, Task Complexity, and Emotional Valence: Evidence from Naturalistic Images
ERIC Educational Resources Information Center
Hughes, Andrew J.; Rutherford, Barbara J.
2013-01-01
Two experiments extend the ecological validity of tests of hemispheric interaction in three novel ways. First, we present a broad class of naturalistic stimuli that have not yet been used in tests of hemispheric interaction. Second, we test whether probable differences in complexity within the class of stimuli are supported by outcomes from…
The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.
Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E
2017-12-05
Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein
Hicar, Mark D.; Chen, Xuemin; Sulli, Chidananda; Barnes, Trevor; Goodman, Jason; Sojar, Hakimuddin; Briney, Bryan; Willis, Jordan; Chukwuma, Valentine U.; Kalams, Spyros A.; Doranz, Benjamin J.; Spearman, Paul; Crowe, James E.
2016-01-01
Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection. PMID:27411063
Matos, Carla; Lima, José L. C.; Reis, Salette; Lopes, António; Bastos, Margarida
2004-01-01
Isothermal titration calorimetry was used to characterize and quantify the partition of indomethacin and acemetacin between the bulk aqueous phase and the membrane of egg phosphatidylcholine vesicles. Significant electrostatic effects were observed due to binding of the charged drugs to the membrane, which implied the use of the Gouy-Chapman theory to calculate the interfacial concentrations. The binding/partition phenomenon was quantified in terms of the partition coefficient (Kp), and/or the equilibrium constant (Kb). Mathematical expressions were developed, either to encompass the electrostatic effects in the partition model, or to numerically relate partition coefficients and binding constants. Calorimetric titrations conducted under a lipid/drug ratio >100:1 lead to a constant heat release and were used to directly calculate the enthalpy of the process, ΔH, and indirectly, ΔG and ΔS. As the lipid/drug ratio decreased, the constancy of reaction enthalpy was tested in the fitting process. Under low lipid/drug ratio conditions simple partition was no longer valid and the interaction phenomenon was interpreted in terms of binding isotherms. A mathematical expression was deduced for quantification of the binding constants and the number of lipid molecules associated with one drug molecule. The broad range of concentrations used stressed the biphasic nature of the interaction under study. As the lipid/drug ratio was varied, the results showed that the interaction of both drugs does not present a unique behavior in all studied regimes: the extent of the interaction, as well as the binding stoichiometry, is affected by the lipid/drug ratio. The change in these parameters reflects the biphasic behavior of the interaction—possibly the consequence of a modification of the membrane's physical properties as it becomes saturated with the drug. PMID:14747330
Lam, L T; Pickeral, O K; Peng, A C; Rosenwald, A; Hurt, E M; Giltnane, J M; Averett, L M; Zhao, H; Davis, R E; Sathyamoorthy, M; Wahl, L M; Harris, E D; Mikovits, J A; Monks, A P; Hollingshead, M G; Sausville, E A; Staudt, L M
2001-01-01
Flavopiridol, a flavonoid currently in cancer clinical trials, inhibits cyclin-dependent kinases (CDKs) by competitively blocking their ATP-binding pocket. However, the mechanism of action of flavopiridol as an anti-cancer agent has not been fully elucidated. Using DNA microarrays, we found that flavopiridol inhibited gene expression broadly, in contrast to two other CDK inhibitors, roscovitine and 9-nitropaullone. The gene expression profile of flavopiridol closely resembled the profiles of two transcription inhibitors, actinomycin D and 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB), suggesting that flavopiridol inhibits transcription globally. We were therefore able to use flavopiridol to measure mRNA turnover rates comprehensively and we found that different functional classes of genes had distinct distributions of mRNA turnover rates. In particular, genes encoding apoptosis regulators frequently had very short half-lives, as did several genes encoding key cell-cycle regulators. Strikingly, genes that were transcriptionally inducible were disproportionately represented in the class of genes with rapid mRNA turnover. The present genomic-scale measurement of mRNA turnover uncovered a regulatory logic that links gene function with mRNA half-life. The observation that transcriptionally inducible genes often have short mRNA half-lives demonstrates that cells have a coordinated strategy to rapidly modulate the mRNA levels of these genes. In addition, the present results suggest that flavopiridol may be more effective against types of cancer that are highly dependent on genes with unstable mRNAs.
The connection Between Plasma Protein Binding and Acute Toxicity as Determined by the LD50 Value.
Svennebring, Andreas
2016-02-01
Preclinical Research A dataset of three drug classes (acids, bases, and neutrals) with LD50 values in mice was analysed to investigate a possible connection between high plasma protein binding and acute toxicity. Initially, it was found that high plasma protein binding was associated with toxicity for acids and neutrals, but after compensating for differences in lipophilicity, plasma protein binding was found not to be associated with toxicity. The therapeutic index established by the quotient between mouse LD50 and the defined daily dose was unaffected by both lipophilicity and plasma protein binding. © 2015 Wiley Periodicals, Inc.
Tollefsen, K-E
2007-09-01
Alkylphenols are well-known endocrine disrupters, mediating effects through the estrogen receptor (ER). Although the estrogenic properties of the alkylphenols are well documented, alternative mechanisms of action are poorly described. In the present work, the interaction of a range of alkyl-substituted phenols and alkyl-substituted non-phenolics with the rainbow trout (Oncorhynchus mykiss) sex steroid-binding protein (rtSBP) were determined by competitive ligand-binding studies. The role of alkyl chain length and branching, substituent position, number of alkylated groups, and the requirement of a phenolic ring structure were assessed. The results showed that the rtSBP binds to most chemical structures tested, although the highest affinity was obtained for mono-substituted alkylphenols with a chain length of four to eight methyl groups. Interestingly, rtSBP binding was also observed for non-phenolic compounds such as 4-t-butylcyclohexanol and 4-t-butylnitrobenzene suggesting that the rtSBP has a broad binding specificity for alkylphenols and alkylated non-phenolics.
Hughes, Austin L.
2015-01-01
Members of the aminopepidase N (APN) gene family of the insect order Lepidoptera (moths and butterflies) bind the naturally insecticidal Cry toxins produced by the bacterium Bacillus thuringiensis. Phylogenetic analysis of amino acid sequences of seven lepidopteran APN classes provided strong support for the hypothesis that lepidopteran APN2 class arose by gene duplication prior to the most recent common ancestor of Lepidoptera and Diptera. The Cry toxin-binding region (BR) of lepidopteran and dipteran APNs was subject to stronger purifying selection within APN classes than was the remainder of the molecule, reflecting conservation of catalytic site and adjoining residues within the BR. Of lepidopteran APN classes, APN2, APN6, and APN8 showed the strongest evidence of functional specialization, both in expression patterns and in the occurrence of conserved derived amino acid residues. The latter three APN classes also shared a convergently evolved conserved residue close to the catalytic site. APN8 showed a particularly strong tendency towards class-specific conserved residues, including one of the catalytic site residues in the BR and ten others in close vicinity to the catalytic site residues. The occurrence of class-specific sequences along with the conservation of enzymatic function is consistent with the hypothesis that the presence of Cry toxins in the environment has been a factor shaping the evolution of this multi-gene family. PMID:24675701
Substrate specificity of bacterial DD-peptidases (penicillin-binding proteins).
Pratt, R F
2008-07-01
The DD-peptidase enzymes (penicillin-binding proteins) catalyze the final transpeptidation reaction of bacterial cell wall (peptidoglycan) biosynthesis. Although there is now much structural information available about these enzymes, studies of their activity as enzymes lag. It is now established that representatives of two low-molecular-mass classes of DD-peptidases recognize elements of peptidoglycan structure and rapidly react with substrates and inhibitors incorporating these elements. No members of other DD-peptidase classes, including the high-molecular-mass enzymes, essential for bacterial growth, appear to interact strongly with any particular elements of peptidoglycan structure. Rational design of inhibitors for these enzymes is therefore challenging.
Simultaneous alignment and clustering of peptide data using a Gibbs sampling approach.
Andreatta, Massimo; Lund, Ole; Nielsen, Morten
2013-01-01
Proteins recognizing short peptide fragments play a central role in cellular signaling. As a result of high-throughput technologies, peptide-binding protein specificities can be studied using large peptide libraries at dramatically lower cost and time. Interpretation of such large peptide datasets, however, is a complex task, especially when the data contain multiple receptor binding motifs, and/or the motifs are found at different locations within distinct peptides. The algorithm presented in this article, based on Gibbs sampling, identifies multiple specificities in peptide data by performing two essential tasks simultaneously: alignment and clustering of peptide data. We apply the method to de-convolute binding motifs in a panel of peptide datasets with different degrees of complexity spanning from the simplest case of pre-aligned fixed-length peptides to cases of unaligned peptide datasets of variable length. Example applications described in this article include mixtures of binders to different MHC class I and class II alleles, distinct classes of ligands for SH3 domains and sub-specificities of the HLA-A*02:01 molecule. The Gibbs clustering method is available online as a web server at http://www.cbs.dtu.dk/services/GibbsCluster.
Lauria, Antonino; Ippolito, Mario; Almerico, Anna Maria
2009-10-01
Inhibiting a protein that regulates multiple signal transduction pathways in cancer cells is an attractive goal for cancer therapy. Heat shock protein 90 (Hsp90) is one of the most promising molecular targets for such an approach. In fact, Hsp90 is a ubiquitous molecular chaperone protein that is involved in folding, activating and assembling of many key mediators of signal transduction, cellular growth, differentiation, stress-response and apoptothic pathways. With the aim to analyze which molecular descriptors have the higher importance in the binding interactions of these classes, we first performed molecular docking experiments on the 187 Hsp90 inhibitors included in the BindingDB, a public database of measured binding affinities. Further, for each frozen conformation obtained from the docking, a set of 250 molecular descriptors was calculated, and the resulting Structure/Descriptors matrix was submitted to Principal Component Analysis. From the factor scores it emerged a good clusterization among similar compounds both in terms of structural class and activity spectrum, while examination of the loadings of the first two factors also allowed to study the classes of descriptors which mainly contribute to each one.
Kamthania, Mohit; Sharma, D K
2015-12-01
Identification of Nipah virus (NiV) T-cell-specific antigen is urgently needed for appropriate diagnostic and vaccination. In the present study, prediction and modeling of T-cell epitopes of Nipah virus antigenic proteins nucleocapsid, phosphoprotein, matrix, fusion, glycoprotein, L protein, W protein, V protein and C protein followed by the binding simulation studies of predicted highest binding scorers with their corresponding MHC class I alleles were done. Immunoinformatic tool ProPred1 was used to predict the promiscuous MHC class I epitopes of viral antigenic proteins. The molecular modelings of the epitopes were done by PEPstr server. And alleles structure were predicted by MODELLER 9.10. Molecular dynamics (MD) simulation studies were performed through the NAMD graphical user interface embedded in visual molecular dynamics. Epitopes VPATNSPEL, NPTAVPFTL and LLFVFGPNL of Nucleocapsid, V protein and Fusion protein have considerable binding energy and score with HLA-B7, HLA-B*2705 and HLA-A2MHC class I allele, respectively. These three predicted peptides are highly potential to induce T-cell-mediated immune response and are expected to be useful in designing epitope-based vaccines against Nipah virus after further testing by wet laboratory studies.
Hattotuwagama, Channa K; Doytchinova, Irini A; Flower, Darren R
2007-01-01
Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.
Maintenance pharmacological immunosuppressive strategies in renal transplantation.
Vella, J. P.; Sayegh, M. H.
1997-01-01
Current maintenance immunosuppressive regimens for transplantation are based on three classes of drugs: corticosteroids, immunophilin-binding agents (eg, cyclosporin and tacrolimus), and antimetabolites (eg, azathioprine and mycophenolate). Drugs from the various classes inhibit the immune system at different points and are thus synergistic when used in combination. PMID:9338020
Nanobody Binding to a Conserved Epitope Promotes Norovirus Particle Disassembly
Koromyslova, Anna D.
2014-01-01
ABSTRACT Human noroviruses are icosahedral single-stranded RNA viruses. The capsid protein is divided into shell (S) and protruding (P) domains, which are connected by a flexible hinge region. There are numerous genetically and antigenically distinct noroviruses, and the dominant strains evolve every other year. Vaccine and antiviral development is hampered by the difficulties in growing human norovirus in cell culture and the continually evolving strains. Here, we show the X-ray crystal structures of human norovirus P domains in complex with two different nanobodies. One nanobody, Nano-85, was broadly reactive, while the other, Nano-25, was strain specific. We showed that both nanobodies bound to the lower region on the P domain and had nanomolar affinities. The Nano-85 binding site mainly comprised highly conserved amino acids among the genetically distinct genogroup II noroviruses. Several of the conserved residues also were recognized by a broadly reactive monoclonal antibody, which suggested this region contained a dominant epitope. Superposition of the P domain nanobody complex structures into a cryoelectron microscopy particle structure revealed that both nanobodies bound at occluded sites on the particles. The flexible hinge region, which contained ∼10 to 12 amino acids, likely permitted a certain degree of P domain movement on the particles in order to accommodate the nanobodies. Interestingly, the Nano-85 binding interaction with intact particles caused the particles to disassemble in vitro. Altogether, these results suggested that the highly conserved Nano-85 binding epitope contained a trigger mechanism for particle disassembly. Principally, this epitope represents a potential site of norovirus vulnerability. IMPORTANCE We characterized two different nanobodies (Nano-85 and Nano-25) that bind to human noroviruses. Both nanobodies bound with high affinities to the lower region of the P domain, which was occluded on intact particles. Nano-25 was specific for GII.10, whereas Nano-85 bound several different GII genotypes, including GII.4, GII.10, and GII.12. We showed that Nano-85 was able to detect norovirus virions in clinical stool specimens using a sandwich enzyme-linked immunosorbent assay. Importantly, we found that Nano-85 binding to intact particles caused the particles to disassemble. We believe that with further testing, Nano-85 not only will work as a diagnostic reagent in norovirus detection systems but also could function as a broadly reactive GII norovirus antiviral. PMID:25520510
Structural, Functional and Evolutionary Aspects of Seed Globulins.
Kesari, Pooja; Neetu; Sharma, Anchal; Katiki, Madhusudhanarao; Kumar, Pramod; Gurjar, Bhola R; Tomar, Shailly; Sharma, Ashwani K; Kumar, Pravindra
2017-01-01
Globulins are a major class of seed storage proteins which were thought to be enzymatically inactive. These proteins belong to the most ancient cupin superfamily. They can be graded into 11S legumin type and 7S vicilin type based on their sedimentation coefficients. Members from both classes share structural homology are thought to have evolved from either one-domain germin predecessor by duplication or by horizontal gene transfer of two-domain gene from bacteria to eukaryotes. Globulins are known to define the nutritional quality of the seeds, however, they are also involved in sucrose binding, desiccation, defense against microbes, hormone binding and oxidative stress etc. Major drawback with globulins is their tendency to bind to IgE. Studying structural-functional behavior of such protein can help in modifying proteins for enhanced functionality in food processing industries. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Valenzuela-Chavira, Ignacio; Contreras-Vergara, Carmen A.; Arvizu-Flores, Aldo A.; Serrano-Posada, Hugo; Lopez-Zavala, Alonso A.; García-Orozco, Karina D.; Hernandez-Paredes, Javier; Rudiño-Piñera, Enrique; Stojanoff, Vivian; Sotelo-Mundo, Rogerio R.; Islas-Osuna, Maria A.
2017-01-01
We studied a mango glutathione S-transferase (GST) (Mangifera indica) bound to glutathione (GSH) and S-hexyl glutathione (GSX). This GST Tau class (MiGSTU) had a molecular mass of 25.5 kDa. MiGSTU Michaelis-Menten kinetic constants were determined for their substrates obtaining a Km, Vmax and kcat for CDNB of 0.792 mM, 80.58 mM·min−1 and 68.49 s−1 respectively and 0.693 mM, 105.32 mM·min−1 and 89.57 s−1, for reduced GSH respectively. MiGSTU had a micromolar affinity towards GSH (5.2 μM) or GSX (7.8 μM). The crystal structure of the MiGSTU in apo or bound to GSH or GSX generated a model that explains the thermodynamic signatures of binding and showed the importance of enthalpic-entropic compensation in ligand binding to Tau-class GST enzymes. PMID:28104507
Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Flower, Darren R
2004-11-21
Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred).
Thermodynamics of T cell receptor – peptide/MHC interactions: progress and opportunities
Armstrong, Kathryn M.; Insaidoo, Francis K.; Baker, Brian M.
2013-01-01
αβ T cell receptors (TCR) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van’t Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize commonly disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but for understanding specifics of individual interactions and the engineering of T cell receptors with desired molecular recognition properties. PMID:18496839
Nishimichi, Norihisa; Kawashima, Nagako; Yokosaki, Yasuyuki
2015-01-01
Identification of epitopes for integrin-blocking monoclonal antibodies (mAbs) has aided our understanding of structure-function relationship of integrins. We mapped epitopes of chicken anti-integrin-α8-subunit-blocking mAbs by mutational analyses, examining regions that harboured all mapped epitopes recognized by mAbs against other α-subunits in the RGD-binding-integrin subfamily. Six mAbs exhibited blocking function, and these mAbs recognized residues on the same W2:41-loop on the top-face of the β-propeller. Loop-tips sufficiently close to W2:41 (<25 Å) contained within a footprint of the mAbs were mutated, and the loop W3:34 on the bottom face was identified as an additional component of the epitope of one antibody, clone YZ5. Binding sequences on the two loops were conserved in virtually all mammals, and that on W3:34 was also conserved in chickens. These indicate 1) YZ5 binds both top and bottom loops, and the binding to W3:34 is by interactions to conserved residues between immunogen and host species, 2) five other blocking mAbs solely bind to W2:41 and 3) the α8 mAbs would cross-react with most mammals. Comparing with the mAbs against the other α-subunits of RGD-integrins, two classes were delineated; those binding to “W3:34 and an top-loop”, and “solely W2:41”, accounting for 82% of published RGD-integrin-mAbs. PMID:26349930
Nishimichi, Norihisa; Kawashima, Nagako; Yokosaki, Yasuyuki
2015-09-09
Identification of epitopes for integrin-blocking monoclonal antibodies (mAbs) has aided our understanding of structure-function relationship of integrins. We mapped epitopes of chicken anti-integrin-α8-subunit-blocking mAbs by mutational analyses, examining regions that harboured all mapped epitopes recognized by mAbs against other α-subunits in the RGD-binding-integrin subfamily. Six mAbs exhibited blocking function, and these mAbs recognized residues on the same W2:41-loop on the top-face of the β-propeller. Loop-tips sufficiently close to W2:41 (<25 Å) contained within a footprint of the mAbs were mutated, and the loop W3:34 on the bottom face was identified as an additional component of the epitope of one antibody, clone YZ5. Binding sequences on the two loops were conserved in virtually all mammals, and that on W3:34 was also conserved in chickens. These indicate 1) YZ5 binds both top and bottom loops, and the binding to W3:34 is by interactions to conserved residues between immunogen and host species, 2) five other blocking mAbs solely bind to W2:41 and 3) the α8 mAbs would cross-react with most mammals. Comparing with the mAbs against the other α-subunits of RGD-integrins, two classes were delineated; those binding to "W3:34 and an top-loop", and "solely W2:41", accounting for 82% of published RGD-integrin-mAbs.
Kim, Jun Young; Arooj, Mahreen; Kim, Siu; Hwang, Swan; Kim, Byeong-Woo; Park, Ki Hun; Lee, Keun Woo
2014-01-01
Stilbene urea derivatives as a novel and competitive class of non-glycosidic α-glucosidase inhibitors are effective for the treatment of type II diabetes and obesity. The main purposes of our molecular modeling study are to explore the most suitable binding poses of stilbene derivatives with analyzing the binding affinity differences and finally to develop a pharmacophore model which would represents critical features responsible for α-glucosidase inhibitory activity. Three-dimensional structure of S. cerevisiae α-glucosidase was built by homology modeling method and the structure was used for the molecular docking study to find out the initial binding mode of compound 12, which is the most highly active one. The initial structure was subjected to molecular dynamics (MD) simulations for protein structure adjustment at compound 12-bound state. Based on the adjusted conformation, the more reasonable binding modes of the stilbene urea derivatives were obtained from molecular docking and MD simulations. The binding mode of the derivatives was validated by correlation analysis between experimental Ki value and interaction energy. Our results revealed that the binding modes of the potent inhibitors were engaged with important hydrogen bond, hydrophobic, and π-interactions. With the validated compound 12-bound structure obtained from combining approach of docking and MD simulation, a proper four featured pharmacophore model was generated. It was also validated by comparison of fit values with the Ki values. Thus, these results will be helpful for understanding the relationship between binding mode and bioactivity and for designing better inhibitors from stilbene derivatives. PMID:24465730
Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families.
Garcia, Mario D; Nouwens, Amanda; Lonhienne, Thierry G; Guddat, Luke W
2017-02-14
Five commercial herbicide families inhibit acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6), which is the first enzyme in the branched-chain amino acid biosynthesis pathway. The popularity of these herbicides is due to their low application rates, high crop vs. weed selectivity, and low toxicity in animals. Here, we have determined the crystal structures of Arabidopsis thaliana AHAS in complex with two members of the pyrimidinyl-benzoate (PYB) and two members of the sulfonylamino-carbonyl-triazolinone (SCT) herbicide families, revealing the structural basis for their inhibitory activity. Bispyribac, a member of the PYBs, possesses three aromatic rings and these adopt a twisted "S"-shaped conformation when bound to A. thaliana AHAS ( At AHAS) with the pyrimidinyl group inserted deepest into the herbicide binding site. The SCTs bind such that the triazolinone ring is inserted deepest into the herbicide binding site. Both compound classes fill the channel that leads to the active site, thus preventing substrate binding. The crystal structures and mass spectrometry also show that when these herbicides bind, thiamine diphosphate (ThDP) is modified. When the PYBs bind, the thiazolium ring is cleaved, but when the SCTs bind, ThDP is modified to thiamine 2-thiazolone diphosphate. Kinetic studies show that these compounds not only trigger reversible accumulative inhibition of AHAS, but also can induce inhibition linked with ThDP degradation. Here, we describe the features that contribute to the extraordinarily powerful herbicidal activity exhibited by four classes of AHAS inhibitors.
Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families
Nouwens, Amanda; Lonhienne, Thierry G.; Guddat, Luke W.
2017-01-01
Five commercial herbicide families inhibit acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6), which is the first enzyme in the branched-chain amino acid biosynthesis pathway. The popularity of these herbicides is due to their low application rates, high crop vs. weed selectivity, and low toxicity in animals. Here, we have determined the crystal structures of Arabidopsis thaliana AHAS in complex with two members of the pyrimidinyl-benzoate (PYB) and two members of the sulfonylamino-carbonyl-triazolinone (SCT) herbicide families, revealing the structural basis for their inhibitory activity. Bispyribac, a member of the PYBs, possesses three aromatic rings and these adopt a twisted “S”-shaped conformation when bound to A. thaliana AHAS (AtAHAS) with the pyrimidinyl group inserted deepest into the herbicide binding site. The SCTs bind such that the triazolinone ring is inserted deepest into the herbicide binding site. Both compound classes fill the channel that leads to the active site, thus preventing substrate binding. The crystal structures and mass spectrometry also show that when these herbicides bind, thiamine diphosphate (ThDP) is modified. When the PYBs bind, the thiazolium ring is cleaved, but when the SCTs bind, ThDP is modified to thiamine 2-thiazolone diphosphate. Kinetic studies show that these compounds not only trigger reversible accumulative inhibition of AHAS, but also can induce inhibition linked with ThDP degradation. Here, we describe the features that contribute to the extraordinarily powerful herbicidal activity exhibited by four classes of AHAS inhibitors. PMID:28137884
Jun, S; Wallen, R V; Goriely, A; Kalionis, B; Desplan, C
1998-11-10
Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix-turn-helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes.
Jun, Susie; Wallen, Robert V.; Goriely, Anne; Kalionis, Bill; Desplan, Claude
1998-01-01
Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix–turn–helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes. PMID:9811867
Nielsen, Morten; Andreatta, Massimo
2016-03-30
Binding of peptides to MHC class I molecules (MHC-I) is essential for antigen presentation to cytotoxic T-cells. Here, we demonstrate how a simple alignment step allowing insertions and deletions in a pan-specific MHC-I binding machine-learning model enables combining information across both multiple MHC molecules and peptide lengths. This pan-allele/pan-length algorithm significantly outperforms state-of-the-art methods, and captures differences in the length profile of binders to different MHC molecules leading to increased accuracy for ligand identification. Using this model, we demonstrate that percentile ranks in contrast to affinity-based thresholds are optimal for ligand identification due to uniform sampling of the MHC space. We have developed a neural network-based machine-learning algorithm leveraging information across multiple receptor specificities and ligand length scales, and demonstrated how this approach significantly improves the accuracy for prediction of peptide binding and identification of MHC ligands. The method is available at www.cbs.dtu.dk/services/NetMHCpan-3.0 .
Structural Basis for Specific Inhibition of tRNA Synthetase by an ATP Competitive Inhibitor.
Fang, Pengfei; Han, Hongyan; Wang, Jing; Chen, Kaige; Chen, Xin; Guo, Min
2015-06-18
Pharmaceutical inhibitors of aminoacyl-tRNA synthetases demand high species and family specificity. The antimalarial ATP-mimetic cladosporin selectively inhibits Plasmodium falciparum LysRS (PfLysRS). How the binding to a universal ATP site achieves the specificity is unknown. Here we report three crystal structures of cladosporin with human LysRS, PfLysRS, and a Pf-like human LysRS mutant. In all three structures, cladosporin occupies the class defining ATP-binding pocket, replacing the adenosine portion of ATP. Three residues holding the methyltetrahydropyran moiety of cladosporin are critical for the specificity of cladosporin against LysRS over other class II tRNA synthetase families. The species-exclusive inhibition of PfLysRS is linked to a structural divergence beyond the active site that mounts a lysine-specific stabilizing response to binding cladosporin. These analyses reveal that inherent divergence of tRNA synthetase structural assembly may allow for highly specific inhibition even through the otherwise universal substrate binding pocket and highlight the potential for structure-driven drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Discovery of HDAC Inhibitors That Lack an Active Site Zn(2+)-Binding Functional Group.
Vickers, Chris J; Olsen, Christian A; Leman, Luke J; Ghadiri, M Reza
2012-06-14
Natural and synthetic histone deacetylase (HDAC) inhibitors generally derive their strong binding affinity and high potency from a key functional group that binds to the Zn(2+) ion within the enzyme active site. However, this feature is also thought to carry the potential liability of undesirable off-target interactions with other metalloenzymes. As a step toward mitigating this issue, here, we describe the design, synthesis, and structure-activity characterizations of cyclic α3β-tetrapeptide HDAC inhibitors that lack the presumed indispensable Zn(2+)-binding group. The lead compounds (e.g., 15 and 26) display good potency against class 1 HDACs and are active in tissue culture against various human cancer cell lines. Importantly, enzymological analysis of 26 indicates that the cyclic α3β-tetrapeptide is a fast-on/off competitive inhibitor of HDACs 1-3 with K i values of 49, 33, and 37 nM, respectively. Our proof of principle study supports the idea that novel classes of HDAC inhibitors, which interact at the active-site opening, but not with the active site Zn(2+), can have potential in drug design.
Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids
NASA Astrophysics Data System (ADS)
Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.
2012-05-01
Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.
Ptushkina, M; von der Haar, T; Vasilescu, S; Frank, R; Birkenhäger, R; McCarthy, J E
1998-01-01
Interaction between the mRNA 5'-cap-binding protein eIF4E and the multiadaptor protein eIF4G has been demonstrated in all eukaryotic translation assemblies examined so far. This study uses immunological, genetic and biochemical methods to map the surface amino acids on eIF4E that contribute to eIF4G binding. Cap-analogue chromatography and surface plasmon resonance (SPR) analyses demonstrate that one class of mutations in these surface regions disrupts eIF4E-eIF4G association, and thereby polysome formation and growth. The residues at these positions in wild-type eIF4E mediate positive cooperativity between the binding of eIF4G to eIF4E and the latter's cap-affinity. Moreover, two of the mutations confer temperature sensitivity in eIF4G binding to eIF4E which correlates with the formation of large numbers of inactive ribosome 80S couples in vivo and the loss of cellular protein synthesis activity. The yeast 4E-binding protein p20 is estimated by SPR to have a ten times lower binding affinity than eIF4G for eIF4E. Investigation of a second class of eIF4E mutations reveals that p20 shares only part of eIF4G's binding site on the cap-binding protein. The results presented provide a basis for understanding how cycling of eIF4E and eIF4G occurs in yeast translation and explains how p20 can act as a fine, but not as a coarse, regulator of protein synthesis. PMID:9707439
2016-04-01
AFCEC-CX-TY-TR-2016-0007 HANDHELD CHEM/ BIOSENSOR USING EXTREME CONFORMATIONAL CHANGES IN DESIGNED BINDING PROTEINS TO ENHANCE SURFACE PLASMON...Include area code) 03/24/2016 Abstract 08/14/2015--03/31/2016 Handheld chem/ biosensor using extreme conformational changes in designed binding...Baltimore, Maryland on 17-21 April 2016. We propose the development of a highly sensitive handheld chem/ biosensor device using a novel class of engineered
Discovery of Novel Nonactive Site Inhibitors of the Prothrombinase Enzyme Complex.
Kapoor, Karan; McGill, Nicole; Peterson, Cynthia B; Meyers, Harold V; Blackburn, Michael N; Baudry, Jerome
2016-03-28
The risk of serious bleeding is a major liability of anticoagulant drugs that are active-site competitive inhibitors targeting the Factor Xa (FXa) prothrombin (PT) binding site. The present work identifies several new classes of small molecule anticoagulants that can act as nonactive site inhibitors of the prothrombinase (PTase) complex composed of FXa and Factor Va (FVa). These new classes of anticoagulants were identified, using a novel agnostic computational approach to identify previously unrecognized binding pockets at the FXa-FVa interface. From about three million docking calculations of 281,128 compounds in a conformational ensemble of FXa heavy chains identified by molecular dynamics (MD) simulations, 97 compounds and their structural analogues were selected for experimental validation, through a series of inhibition assays. The compound selection was based on their predicted binding affinities to FXa and their ability to successfully bind to multiple protein conformations while showing selectivity for particular binding sites at the FXa/FVa interface. From these, thirty-one (31) compounds were experimentally identified as nonactive site inhibitors. Concentration-based assays further identified 10 compounds represented by four small-molecule families of inhibitors that achieve dose-independent partial inhibition of PTase activity in a nonactive site-dependent and self-limiting mechanism. Several compounds were identified for their ability to bind to protein conformations only seen during MD, highlighting the importance of accounting for protein flexibility in structure-based drug discovery approaches.
Probing binding hot spots at protein-RNA recognition sites.
Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad
2016-01-29
We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatelain, P.; Beaufort, P.; Meysmans, L.
1991-01-01
SR 33557 represents a new class of compounds (indolizine sulfone) that inhibit L-type Ca2+ channels. ({sup 3}H)SR 33557 has been shown to bind with high affinity (Kd congruent to 0.36 nM, calculated from saturation isotherms and association/dissociation kinetics) to a single class of sites in a purified preparation of rat cardiac sarcolemmal membranes. The binding was found to be saturable and reversible. The maximal binding capacity was in approximately 1:1 stoichiometry with that of other Ca2+ channel antagonists. Various divalent cations (Mg2+, Mn2+, Ca2+, Ba2+, and Cd2+) were shown to inhibit specific ({sup 3}H)SR 33557 binding, with Cd2+ being themore » most potent. Among several receptor or channel ligands (including omega-conotoxin and Na+ and K+ channel modulators), only the L-type Ca2+ channel antagonists were found to displace ({sup 3}H)SR 33557. However, dihydropyridines, phenylalkylamines, benzothiazepines, and diphenylbutylpiperidines were found to inhibit ({sup 3}H)SR 33557 in a noncompetitive manner as demonstrated by displacement and saturation experiments in addition to dissociation kinetics. From these results, we suggest that SR 33557 binds with high affinity to a unique site on the L-type Ca2+ channel found in rat cardiac sarcolemmal membranes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, T.; Adachi, H.; Noguchi, M.
The authors have examined the effect of carbamylcholine on the binding of cholecystokinin (CCK) to dispersed acini from rat pancreas. The CCK receptor on pancreatic acini possesses two classes of binding sites. Simultaneous addition of carbamylcholine inhibited binding of CCK binding sites. Atropine prevented the inhibitory effect of carbamylcholine, whereas calcium ionophore A23187 did not alter binding of CCK. 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited binding of CCK in the same manner as carbamylcholine. Inhibition by carbamylcholine was reversible and the recovery was time dependent. By contrast, inhibition of binding of CCK by TPA did not reverse after a 60-min incubation without themore » agent. These findings, at least in part, account for the inhibition of the CCK-induced stimulation of amylase secretion by carbamylcholine. The action of TPA on binding of CCK suggests the possible involvement of the activation of protein kinase C in the inhibition of binding.« less
Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors
2014-01-01
Background SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. Results The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. Conclusion Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity. PMID:25678957
Aladin, Farah; Einerhand, Alexandra W. C.; Bouma, Janneke; Bezemer, Sandra; Hermans, Pim; Wolvers, Danielle; Bellamy, Kate; Frenken, Leon G. J.; Gray, Jim; Iturriza-Gómara, Miren
2012-01-01
Rotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (referred to as Anti-Rotavirus Proteins or ARP1) derived from a heavy chain antibody of a llama immunised with rotavirus was able to neutralise rotavirus infection in a mouse model system. In the present work we investigated the specificity and neutralising activity of two llama antibody fragments, ARP1 and ARP3, against 13 cell culture adapted rotavirus strains of diverse genotypes. In addition, immunocapture electron microscopy (IEM) was performed to determine binding of ARP1 to clinical isolates and cell culture adapted strains. ARP1 and ARP3 were able to neutralise a broad variety of rotavirus serotypes/genotypes in vitro, and in addition, IEM showed specific binding to a variety of cell adapted strains as well as strains from clinical specimens. These results indicated that these molecules could potentially be used as immunoprophylactic and/or immunotherapeutic products for the prevention and/or treatment of infection of a broad range of clinically relevant rotavirus strains. PMID:22403728
NASA Astrophysics Data System (ADS)
Marlowe, R. L.; Lukan, A. M.; Lee, S. A.; Anthony, L.; Rupprecht, A.
1996-03-01
Differential scanning calorimetry was used to measure the binding strength between calf-thymus DNA and its primary water of hydration. The specific heat of wet-spun films was found to have a broad endothermic transition near 80 ^oC and a sharp exothermic transition near 250 ^oC. The broad transition is believed to be mainly due to the breaking of the bonds of the strongly bound water of hydration. This transition was found to be reversible, as expected. Kissinger analysis indicates that the activation barrier for breaking the bonds of these water molecules is about 0.6 eV. The sharp transition appeared to be an indication of a thermal decomposition of the DNA. Samples taken above this transition lost mass, showed evidence of having melted, and had turned black in color. This transition is irreversible.
Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xueling; Zhou, Tongqing; Zhu, Jiang
2013-03-04
Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution ofmore » antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.« less
Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian
2017-01-01
Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149
Chang, Andrew L.; McKeague, Maureen; Smolke, Christina D.
2015-01-01
Nucleic acid aptamers find widespread use as targeting and sensing agents in nature and biotechnology. Their ability to bind an extensive range of molecular targets, including small molecules, proteins, and ions, with high affinity and specificity enables their use in diverse diagnostic, therapeutic, imaging, and gene-regulatory applications. Here, we describe methods for characterizing aptamer kinetic and equilibrium binding properties using a surface plasmon resonance-based platform. This aptamer characterization platform is broadly useful for studying aptamer–ligand interactions, comparing aptamer properties, screening functional aptamers during in vitro selection processes, and prototyping aptamers for integration into nucleic acid devices. PMID:25432760
Gao, J; Chou, L W; Auerbach, A
1993-01-01
A combined quantum mechanical and molecular mechanical Monte Carlo simulation method was used to determine the free energy of binding between tetramethylammonium ion (TMA+) and benzene in water. The computed free energy as a function of distance (the potential of mean force) has two minima that represent contact and solvent-separated complexes. These species are separated by a broad barrier of about 3 kJ/mol. The results are in good accord with experimental data and suggest that TMA+ binds to benzene more favorably than to chloride ion, with an association constant of about 0.8 M-1. Images FIGURE 2 PMID:8369448
Wu, Shenping; Liu, Jun; Perz-Edwards, Robert J.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.
2012-01-01
The application of rapidly applied length steps to actively contracting muscle is a classic method for synchronizing the response of myosin cross-bridges so that the average response of the ensemble can be measured. Alternatively, electron tomography (ET) is a technique that can report the structure of the individual members of the ensemble. We probed the structure of active myosin motors (cross-bridges) by applying 0.5% changes in length (either a stretch or a release) within 2 ms to isometrically contracting insect flight muscle (IFM) fibers followed after 5–6 ms by rapid freezing against a liquid helium cooled copper mirror. ET of freeze-substituted fibers, embedded and thin-sectioned, provides 3-D cross-bridge images, sorted by multivariate data analysis into ∼40 classes, distinct in average structure, population size and lattice distribution. Individual actin subunits are resolved facilitating quasi-atomic modeling of each class average to determine its binding strength (weak or strong) to actin. ∼98% of strong-binding acto-myosin attachments present after a length perturbation are confined to “target zones” of only two actin subunits located exactly midway between successive troponin complexes along each long-pitch helical repeat of actin. Significant changes in the types, distribution and structure of actin-myosin attachments occurred in a manner consistent with the mechanical transients. Most dramatic is near disappearance, after either length perturbation, of a class of weak-binding cross-bridges, attached within the target zone, that are highly likely to be precursors of strong-binding cross-bridges. These weak-binding cross-bridges were originally observed in isometrically contracting IFM. Their disappearance following a quick stretch or release can be explained by a recent kinetic model for muscle contraction, as behaviour consistent with their identification as precursors of strong-binding cross-bridges. The results provide a detailed model for contraction in IFM that may be applicable to contraction in other types of muscle. PMID:22761792
Huang, Mengmeng; Mu, Changkao; Wu, Yuehong; Ye, Fei; Wang, Dan; Sun, Cong; Lv, Zhengbing; Han, Bingnan; Wang, Chunlin; Xu, Xue-Wei
2017-11-01
C-type lectins are a superfamily of Ca 2+ -dependent carbohydrate-recognition proteins, which play crucial roles in innate immunity including nonself-recognition and pathogen elimination. In the present study, two single-CRD containing C-type lectins were identified from swimming crab Portunus trituberculatus (designated as PtCTL-2 and PtCTL-3). The open reading frame (ORF) of PtCTL-2 encoded polypeptides of 485 amino acids with a signal peptide and a single carbohydrate-recognition domain (CRD), while PtCTL-3's ORF encoded polypeptides of 241 amino acids with a coiled-coil region and a single-CRD. The key motifs determining carbohydrate binding specificity in PtCTL-2 and PtCTL-3 were EPR (Glu-Pro-Arg) and QPD (Gln-Pro-Asp). EPR is a motif being identified for the first time, whereas QPD is a typical motif in C-type lectins. Different PAMPs binding features of the two recombinant proteins - PtCTL-2 (rPtCTL-2) and PtCTL-3 (rPtCTL-3) have been observed in our experiments. rPtCTL-2 could bind three pathogen-associated molecular patterns (PAMPs) with relatively high affinity, including glucan, lipopolysaccharide (LPS) and peptidoglycan (PGN), while rPtCTL-3 could barely bind any of them. However, rPtCTL-2 could bind seven kinds of microbes and rPtCTL-3 could bind six kinds in microbe binding assay. Moreover, rPtCTL-2 and rPtCTL-3 exhibited similar agglutination activity against Gram-positive bacteria, Gram-negative bacteria and fungi in agglutination assay. All these results illustrated that PtCTL-2 and PtCTL-3 could function as important pattern-recognition receptors (PRR) with broad nonself-recognition spectrum involved in immune defense against invaders. In addition, the results of carbohydrate binding specificity showed that PtCTL-2 with novel key motif had broad carbohydrate binding specificity, while PtCTL-3 with typical key motif possessed different carbohydrate binding specificity from the classical binding rule. Furthermore, PtCTL-2 and PtCTL-3 could also function as opsonin to enhance encapsulation of hemocytes against Ni-NTA beads. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges
Thomas, J. Christopher; Trend, John E.; Rakow, Neal A.; Wendland, Michael S.; Poirier, Richard J.; Paolucci, Dora M.
2011-01-01
A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index) and sensor response are discussed. PMID:22163798
Developing a Creativity and Problem Solving Course in Support of the Information Systems Curriculum
ERIC Educational Resources Information Center
Martz, Ben; Hughes, Jim; Braun, Frank
2016-01-01
This paper looks at and assesses the development and implementation of a problem solving and creativity class for the purpose of providing a basis for a Business Informatics curriculum. The development was fueled by the desire to create a broad based class that 1. Familiarized students to the underlying concepts of problem solving; 2. Introduced…
Eaton, James R. O.; Alenazi, Yara; Singh, Kamayani; Davies, Graham; Geis-Asteggiante, Lucia; Kessler, Benedikt; Robinson, Carol V.; Kawamura, Akane; Bhattacharya, Shoumo
2018-01-01
Tick chemokine-binding proteins (evasins) are an emerging class of biologicals that target multiple chemokines and show anti-inflammatory activities in preclinical disease models. Using yeast surface display, we identified a CCL8-binding evasin, P672, from the tick Rhipicephalus pulchellus. We found that P672 binds CCL8 and eight other CC-class chemokines with a Kd < 10 nm and four other CC chemokines with a Kd between 10 and 100 nm and neutralizes CCL3, CCL3L1, and CCL8 with an IC50 < 10 nm. The CC chemokine–binding profile was distinct from that of evasin 1 (EVA1), which does not bind CCL8. We also show that P672's binding activity can be markedly modulated by the location of a StrepII-His purification tag. Combining native MS and bottom-up proteomics, we further demonstrated that P672 is glycosylated and forms a 1:1 complex with CCL8, disrupting CCL8 homodimerization. Homology modeling of P672 using the crystal structure of the EVA1 and CCL3 complex as template suggested that 44 N-terminal residues of P672 form most of the contacts with CCL8. Replacing the 29 N-terminal residues of EVA1 with the 44 N-terminal residues of P672 enabled this hybrid evasin to bind and neutralize CCL8, indicating that the CCL8-binding properties of P672 reside, in part, in its N-terminal residues. This study shows that the function of certain tick evasins can be manipulated simply by adding a tag. We conclude that homology modeling helps identify regions with transportable chemokine-binding functions within evasins, which can be used to construct hybrid evasins with altered properties. PMID:29487134
Ntumngia, Francis B.; Schloegel, Jesse; Barnes, Samantha J.; McHenry, Amy M.; Singh, Sanjay; King, Christopher L.
2012-01-01
The Duffy binding protein (DBP) is a vital ligand for Plasmodium vivax blood-stage merozoite invasion, making the molecule an attractive vaccine candidate against vivax malaria. Similar to other blood-stage vaccine candidates, DBP allelic variation eliciting a strain-specific immunity may be a major challenge for development of a broadly effective vaccine against vivax malaria. To understand whether conserved epitopes can be the target of neutralizing anti-DBP inhibition, we generated a set of monoclonal antibodies to DBP and functionally analyzed their reactivity to a panel of allelic variants. Quantitative analysis by enzyme-linked immunosorbent assay (ELISA) determined that some monoclonal antibodies reacted strongly with epitopes conserved on all DBP variants tested, while reactivity of others was allele specific. Qualitative analysis characterized by anti-DBP functional inhibition using an in vitro erythrocyte binding inhibition assay indicated that there was no consistent correlation between the endpoint titers and functional inhibition. Some monoclonal antibodies were broadly inhibitory while inhibition of others varied significantly by target allele. These data demonstrate a potential for vaccine-elicited immunization to target conserved epitopes but optimization of DBP epitope target specificity and immunogenicity may be necessary for protection against diverse P. vivax strains. PMID:22215740
Ntumngia, Francis B; Schloegel, Jesse; Barnes, Samantha J; McHenry, Amy M; Singh, Sanjay; King, Christopher L; Adams, John H
2012-03-01
The Duffy binding protein (DBP) is a vital ligand for Plasmodium vivax blood-stage merozoite invasion, making the molecule an attractive vaccine candidate against vivax malaria. Similar to other blood-stage vaccine candidates, DBP allelic variation eliciting a strain-specific immunity may be a major challenge for development of a broadly effective vaccine against vivax malaria. To understand whether conserved epitopes can be the target of neutralizing anti-DBP inhibition, we generated a set of monoclonal antibodies to DBP and functionally analyzed their reactivity to a panel of allelic variants. Quantitative analysis by enzyme-linked immunosorbent assay (ELISA) determined that some monoclonal antibodies reacted strongly with epitopes conserved on all DBP variants tested, while reactivity of others was allele specific. Qualitative analysis characterized by anti-DBP functional inhibition using an in vitro erythrocyte binding inhibition assay indicated that there was no consistent correlation between the endpoint titers and functional inhibition. Some monoclonal antibodies were broadly inhibitory while inhibition of others varied significantly by target allele. These data demonstrate a potential for vaccine-elicited immunization to target conserved epitopes but optimization of DBP epitope target specificity and immunogenicity may be necessary for protection against diverse P. vivax strains.
Ntumngia, Francis B; Pires, Camilla V; Barnes, Samantha J; George, Miriam T; Thomson-Luque, Richard; Kano, Flora S; Alves, Jessica R S; Urusova, Darya; Pereira, Dhelio B; Tolia, Niraj H; King, Christopher L; Carvalho, Luzia H; Adams, John H
2017-10-23
Plasmodium vivax invasion into human reticulocytes is a complex process. The Duffy binding protein (DBP) dimerization with its cognate receptor is vital for junction formation in the invasion process. Due to its functional importance, DBP is considered a prime vaccine candidate, but variation in B-cell epitopes at the dimer interface of DBP leads to induction of strain-limited immunity. We believe that the polymorphic residues tend to divert immune responses away from functionally conserved epitopes important for receptor binding or DBP dimerization. As a proof of concept, we engineered the vaccine DEKnull to ablate the dominant Bc epitope to partially overcome strain-specific immune antibody responses. Additional surface engineering on the next generation immunogen, DEKnull-2, provides an immunogenicity breakthrough to conserved protective epitopes. DEKnull-2 elicits a stronger broadly neutralizing response and reactivity with long-term persistent antibody responses of acquired natural immunity. By using novel engineered DBP immunogens, we validate that the prime targets of protective immunity are conformational epitopes at the dimer interface. These successful results indicate a potential approach that can be used generally to improve efficacy of other malaria vaccine candidates.
Multifarious Roles of Intrinsic Disorder in Proteins Illustrate Its Broad Impact on Plant Biology
Sun, Xiaolin; Rikkerink, Erik H.A.; Jones, William T.; Uversky, Vladimir N.
2013-01-01
Intrinsically disordered proteins (IDPs) are highly abundant in eukaryotic proteomes. Plant IDPs play critical roles in plant biology and often act as integrators of signals from multiple plant regulatory and environmental inputs. Binding promiscuity and plasticity allow IDPs to interact with multiple partners in protein interaction networks and provide important functional advantages in molecular recognition through transient protein–protein interactions. Short interaction-prone segments within IDPs, termed molecular recognition features, represent potential binding sites that can undergo disorder-to-order transition upon binding to their partners. In this review, we summarize the evidence for the importance of IDPs in plant biology and evaluate the functions associated with intrinsic disorder in five different types of plant protein families experimentally confirmed as IDPs. Functional studies of these proteins illustrate the broad impact of disorder on many areas of plant biology, including abiotic stress, transcriptional regulation, light perception, and development. Based on the roles of disorder in the protein–protein interactions, we propose various modes of action for plant IDPs that may provide insight for future experimental approaches aimed at understanding the molecular basis of protein function within important plant pathways. PMID:23362206
Medina-Ramírez, Max; Garces, Fernando; Escolano, Amelia; ...
2017-08-28
Induction of broadly neutralizing antibodies (bNAbs) by HIV-1 envelope glycoprotein immunogens would be a major advance toward an effective vaccine. A critical step in this process is the activation of naive B cells expressing germline (gl) antibody precursors that have the potential to evolve into bNAbs. Here, we reengineered the BG505 SOSIP.664 glycoprotein to engage gl precursors of bNAbs that target either the trimer apex or the CD4-binding site. The resulting BG505 SOSIP.v4.1-GT1 trimer binds multiple bNAb gl precursors in vitro. Immunization experiments in knock-in mice expressing gl-VRC01 or gl-PGT121 show that this trimer activates B cells in vivo, resultingmore » in the secretion of specific antibodies into the sera. A crystal structure of the gl-targeting trimer at 3.2-Å resolution in complex with neutralizing antibodies 35O22 and 9H+109L reveals a native-like conformation and the successful incorporation of design features associated with binding of multiple gl-bNAb precursors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina-Ramírez, Max; Garces, Fernando; Escolano, Amelia
Induction of broadly neutralizing antibodies (bNAbs) by HIV-1 envelope glycoprotein immunogens would be a major advance toward an effective vaccine. A critical step in this process is the activation of naive B cells expressing germline (gl) antibody precursors that have the potential to evolve into bNAbs. Here, we reengineered the BG505 SOSIP.664 glycoprotein to engage gl precursors of bNAbs that target either the trimer apex or the CD4-binding site. The resulting BG505 SOSIP.v4.1-GT1 trimer binds multiple bNAb gl precursors in vitro. Immunization experiments in knock-in mice expressing gl-VRC01 or gl-PGT121 show that this trimer activates B cells in vivo, resultingmore » in the secretion of specific antibodies into the sera. A crystal structure of the gl-targeting trimer at 3.2-Å resolution in complex with neutralizing antibodies 35O22 and 9H+109L reveals a native-like conformation and the successful incorporation of design features associated with binding of multiple gl-bNAb precursors.« less
Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism
NASA Astrophysics Data System (ADS)
Cagno, Valeria; Andreozzi, Patrizia; D'Alicarnasso, Marco; Jacob Silva, Paulo; Mueller, Marie; Galloux, Marie; Le Goffic, Ronan; Jones, Samuel T.; Vallino, Marta; Hodek, Jan; Weber, Jan; Sen, Soumyo; Janeček, Emma-Rose; Bekdemir, Ahmet; Sanavio, Barbara; Martinelli, Chiara; Donalisio, Manuela; Rameix Welti, Marie-Anne; Eleouet, Jean-Francois; Han, Yanxiao; Kaiser, Laurent; Vukovic, Lela; Tapparel, Caroline; Král, Petr; Krol, Silke; Lembo, David; Stellacci, Francesco
2018-02-01
Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (~190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism. These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.
A Novel Chemical Inhibitor of ABA Signaling Targets All ABA Receptors.
Ye, Yajin; Zhou, Lijuan; Liu, Xue; Liu, Hao; Li, Deqiang; Cao, Minjie; Chen, Haifeng; Xu, Lin; Zhu, Jian-Kang; Zhao, Yang
2017-04-01
Abscisic acid (ABA), the most important stress-induced phytohormone, regulates seed dormancy, germination, plant senescence, and the abiotic stress response. ABA signaling is repressed by group A type 2C protein phosphatases (PP2Cs), and then ABA binds to its receptor of the ACTIN RESISTANCE1 (PYR1), PYR1-LIKE (PYL), and REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) family, which, in turn, inhibits PP2Cs and activates downstream ABA signaling. The agonist/antagonist of ABA receptors have the potential to reveal the ABA signaling machinery and to become lead compounds for agrochemicals; however, until now, no broad-spectrum antagonists of ABA receptors blocking all PYR/PYL-PP2C interactions have been identified. Here, using chemical genetics screenings, we identified ABA ANTAGONIST1 (AA1), the first broad-spectrum antagonist of ABA receptors in Arabidopsis ( Arabidopsis thaliana ). Physiological analyses revealed that AA1 is sufficiently active to block ABA signaling. AA1 interfered with all the PYR/PYL-HAB1 interactions, and the diminished PYR/PYL-HAB1 interactions, in turn, restored the activity of HAB1. AA1 binds to all 13 members. Molecular dockings, the non-AA1-bound PYL2 variant, and competitive binding assays demonstrated that AA1 enters into the ligand-binding pocket of PYL2. Using AA1, we tested the genetic relationships of ABA receptors with other core components of ABA signaling, demonstrating that AA1 is a powerful tool with which to sidestep this genetic redundancy of PYR/PYLs. In addition, the application of AA1 delays leaf senescence. Thus, our study developed an efficient broad-spectrum antagonist of ABA receptors and demonstrated that plant senescence can be chemically controlled through AA1, with a simple and easy-to-synthesize structure, allowing its availability and utility as a chemical probe synthesized in large quantities, indicating its potential application in agriculture. © 2017 American Society of Plant Biologists. All Rights Reserved.
A Novel Chemical Inhibitor of ABA Signaling Targets All ABA Receptors1
Ye, Yajin; Liu, Xue; Liu, Hao; Li, Deqiang; Cao, Minjie; Chen, Haifeng; Zhu, Jian-kang
2017-01-01
Abscisic acid (ABA), the most important stress-induced phytohormone, regulates seed dormancy, germination, plant senescence, and the abiotic stress response. ABA signaling is repressed by group A type 2C protein phosphatases (PP2Cs), and then ABA binds to its receptor of the ACTIN RESISTANCE1 (PYR1), PYR1-LIKE (PYL), and REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) family, which, in turn, inhibits PP2Cs and activates downstream ABA signaling. The agonist/antagonist of ABA receptors have the potential to reveal the ABA signaling machinery and to become lead compounds for agrochemicals; however, until now, no broad-spectrum antagonists of ABA receptors blocking all PYR/PYL-PP2C interactions have been identified. Here, using chemical genetics screenings, we identified ABA ANTAGONIST1 (AA1), the first broad-spectrum antagonist of ABA receptors in Arabidopsis (Arabidopsis thaliana). Physiological analyses revealed that AA1 is sufficiently active to block ABA signaling. AA1 interfered with all the PYR/PYL-HAB1 interactions, and the diminished PYR/PYL-HAB1 interactions, in turn, restored the activity of HAB1. AA1 binds to all 13 members. Molecular dockings, the non-AA1-bound PYL2 variant, and competitive binding assays demonstrated that AA1 enters into the ligand-binding pocket of PYL2. Using AA1, we tested the genetic relationships of ABA receptors with other core components of ABA signaling, demonstrating that AA1 is a powerful tool with which to sidestep this genetic redundancy of PYR/PYLs. In addition, the application of AA1 delays leaf senescence. Thus, our study developed an efficient broad-spectrum antagonist of ABA receptors and demonstrated that plant senescence can be chemically controlled through AA1, with a simple and easy-to-synthesize structure, allowing its availability and utility as a chemical probe synthesized in large quantities, indicating its potential application in agriculture. PMID:28193765
Yoshinaga, Sosuke; Sato, Toru; Hirakane, Makoto; Esaki, Kaori; Hamaguchi, Takashi; Haga-Yamanaka, Sachiko; Tsunoda, Mai; Kimoto, Hiroko; Shimada, Ichio; Touhara, Kazushige; Terasawa, Hiroaki
2013-05-31
Exocrine gland-secreting peptide 1 (ESP1) is a sex pheromone that is released in male mouse tear fluids and enhances female sexual receptive behavior. ESP1 is selectively recognized by a specific class C G-protein-coupled receptor (GPCR), V2Rp5, among the hundreds of receptors expressed in vomeronasal sensory neurons (VSNs). The specific sensing mechanism of the mammalian peptide pheromone by the class C GPCR remains to be elucidated. Here we identified the minimal functional region needed to retain VSN-stimulating activity in ESP1 and determined its three-dimensional structure, which adopts a helical fold stabilized by an intramolecular disulfide bridge with extensive charged patches. We then identified the amino acids involved in the activation of VSNs by a structure-based mutational analysis, revealing that the highly charged surface is crucial for the ESP1 activity. We also demonstrated that ESP1 specifically bound to an extracellular region of V2Rp5 by an in vitro pulldown assay. Based on homology modeling of V2Rp5 using the structure of the metabotropic glutamate receptor, we constructed a docking model of the ESP1-V2Rp5 complex in which the binding interface exhibited good electrostatic complementarity. These experimental results, supported by the molecular docking simulations, reveal that charge-charge interactions determine the specificity of ESP1 binding to V2Rp5 in the large extracellular region characteristic of class C GPCRs. The present study provides insights into the structural basis for the narrowly tuned sensing of mammalian peptide pheromones by class C GPCRs.
Novel transcripts of the estrogen receptor α gene in channel catfish
Patino, Reynaldo; Xia, Zhenfang; Gale, William L.; Wu, Chunfa; Maule, Alec G.; Chang, Xiaotian
2000-01-01
Complementary DNA libraries from liver and ovary of an immature female channel catfish were screened with a homologous ERα cDNA probe. The hepatic library yielded two new channel catfish ER cDNAs that encode N-terminal ERα variants of different sizes. Relative to the catfish ERα (medium size; 581 residues) previously reported, these new cDNAs encode Long-ERα (36 residues longer) and Short-ERα (389 residues shorter). The 5′-end of Long-ERα cDNA is identical to that of Medium-ERα but has an additional 503-bp segment with an upstream, in-frame translation-start codon. Recombinant Long-ERα binds estrogen with high affinity (Kd = 3.4 nM), similar to that previously reported for Medium-ERα but lower than reported for catfish ERβ. Short-ERα cDNA encodes a protein that lacks most of the receptor protein and does not bind estrogen. Northern hybridization confirmed the existence of multiple hepatic ERα RNAs that include the size range of the ERα cDNAs obtained from the libraries as well as additional sizes. Using primers for RT-PCR that target locations internal to the protein-coding sequence, we also established the presence of several ERα cDNA variants with in-frame insertions in the ligand-binding and DNA-binding domains and in-frame or out-of-frame deletions in the ligand-binding domain. These internal variants showed patterns of expression that differed between the ovary and liver. Further, the ovarian library yielded a full-length, ERα antisense cDNA containing a poly(A) signal and tail. A limited survey of histological preparations from juvenile catfish by in situ hybridization using directionally synthesized cRNA probes also suggested the expression of ERα antisense RNA in a tissue-specific manner. In conclusion, channel catfish seemingly have three broad classes of ERα mRNA variants: those encoding N-terminal truncated variants, those encoding internal variants (including C-terminal truncated variants), and antisense mRNA. The sense variants may encode functional ERα or related proteins that modulate ERα or ERβ activity. The existence of ER antisense mRNA is reported in this study for the first time. Its role may be to participate in the regulation of ER gene expression.
Biochemistry of plant class IV chitinases and fungal chitinase-modifying proteins
USDA-ARS?s Scientific Manuscript database
Plant class IV chitinases have 2 domains, a small (3 kDa) amino-terminal domain with homology to carbohydrate binding peptides, and a larger (25 kDa) catalytic domain. The biological function of these chitinases is not known. But it is known that some pathogenic fungi secrete chitinase modifying pro...
Language as Social Fabric: Ties That Bind and Separate.
ERIC Educational Resources Information Center
Walters, Keith; And Others
1991-01-01
Asserts that speakers of Black English and their behavior evoke strong responses outside and inside their communities. Asserts that members of the black communities are rarely permitted to describe or defend their language or ways of using it. Offers the essays, comments, and class interactions of an African-American/Linguistics class on language…
A class-A GPCR solubilized under high hydrostatic pressure retains its ligand binding ability
USDA-ARS?s Scientific Manuscript database
The effect of high hydrostatic pressure (HHP) on the solubilization of a class-A G protein-coupled receptor, the silkmoth pheromone biosynthesis-activating neuropeptide receptor (PBANR), was investigated. PBANR was expressed in expresSF+ insect cells as a C-terminal fusion protein with EGFP. The mem...
Efficacies of Cabotegravir and Bictegravir against drug-resistant HIV-1 integrase mutants.
Smith, Steven J; Zhao, Xue Zhi; Burke, Terrence R; Hughes, Stephen H
2018-05-16
Integrase strand transfer inhibitors (INSTIs) are the class of antiretroviral (ARV) drugs most recently approved by the FDA for the treatment of HIV-1 infections. INSTIs block the strand transfer reaction catalyzed by HIV-1 integrase (IN) and have been shown to potently inhibit infection by wild-type HIV-1. Of the three current FDA-approved INSTIs, Dolutegravir (DTG), has been the most effective, in part because treatment does not readily select for resistant mutants. However, recent studies showed that when INSTI-experienced patients are put on a DTG-salvage therapy, they have reduced response rates. Two new INSTIs, Cabotegravir (CAB) and Bictegravir (BIC), are currently in late-stage clinical trials. Both CAB and BIC had much broader antiviral profiles than RAL and EVG against the INSTI-resistant single, double, and triple HIV-1 mutants used in this study. BIC was more effective than DTG against several INSTI-resistant mutants. Overall, in terms of their ability to inhibit a broad range of INSTI-resistant IN mutants, BIC was superior to DTG, and DTG was superior to CAB. Modeling the binding of CAB, BIC, and DTG within the active site of IN suggested that the "left side" of the INSTI pharmacophore (the side away from the viral DNA) was important in determining the ability of the compound to inhibit the IN mutants we tested. Of the two INSTIs in late stage clinical trials, BIC appears to be better able to inhibit the replication of a broad range of IN mutants. BIC retained potency against several of the INSTI-resistant mutants that caused a decrease in susceptibility to DTG.
NASA Technical Reports Server (NTRS)
Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.
1995-01-01
A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.
Semi-empirical quantum evaluation of peptide - MHC class II binding
NASA Astrophysics Data System (ADS)
González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.
2017-01-01
Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.