Broad-range PCR: past, present, or future of bacteriology?
Renvoisé, A; Brossier, F; Sougakoff, W; Jarlier, V; Aubry, A
2013-08-01
PCR targeting the gene encoding 16S ribosomal RNA (commonly named broad-range PCR or 16S PCR) has been used for 20 years as a polyvalent tool to study prokaryotes. Broad-range PCR was first used as a taxonomic tool, then in clinical microbiology. We will describe the use of broad-range PCR in clinical microbiology. The first application was identification of bacterial strains obtained by culture but whose phenotypic or proteomic identification remained difficult or impossible. This changed bacterial taxonomy and allowed discovering many new species. The second application of broad-range PCR in clinical microbiology is the detection of bacterial DNA from clinical samples; we will review the clinical settings in which the technique proved useful (such as endocarditis) and those in which it did not (such as characterization of bacteria in ascites, in cirrhotic patients). This technique allowed identifying the etiological agents for several diseases, such as Whipple disease. This review is a synthesis of data concerning the applications, assets, and drawbacks of broad-range PCR in clinical microbiology. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.
ERIC Educational Resources Information Center
Kabat, Hugh F.; And Others
1982-01-01
A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)
Vollmer, Tanja; Störmer, Melanie; Kleesiek, Knut; Dreier, Jens
2008-01-01
In the present study, a novel broad-range real-time PCR was developed for the rapid detection of human pathogenic fungi. The assay targets a part of the 28S large-subunit ribosomal RNA (rDNA) gene. We investigated its application for the most important human pathogenic fungal genera, including Aspergillus, Candida, Cryptococcus, Mucor, Penicillium, Pichia, Microsporum, Trichophyton, and Scopulariopsis. Species were identified in PCR-positive reactions by direct DNA sequencing. A noncompetitive internal control was applied to prevent false-negative results due to PCR inhibition. The minimum detection limit for the PCR was determined to be one 28S rDNA copy per PCR, and the 95% detection limit was calculated to 15 copies per PCR. To assess the clinical applicability of the PCR method, intensive-care patients with artificial respiration and patients with infective endocarditis were investigated. For this purpose, 76 tracheal secretion samples and 70 heart valve tissues were analyzed in parallel by real-time PCR and cultivation. No discrepancies in results were observed between PCR analysis and cultivation methods. Furthermore, the application of the PCR method was investigated for other clinical specimens, including cervical swabs, nail and horny skin scrapings, and serum, blood, and urine samples. The combination of a broad-range real-time PCR and direct sequencing facilitates rapid screening for fungal infection in various clinical specimens. PMID:18385440
Vollmer, Tanja; Störmer, Melanie; Kleesiek, Knut; Dreier, Jens
2008-06-01
In the present study, a novel broad-range real-time PCR was developed for the rapid detection of human pathogenic fungi. The assay targets a part of the 28S large-subunit ribosomal RNA (rDNA) gene. We investigated its application for the most important human pathogenic fungal genera, including Aspergillus, Candida, Cryptococcus, Mucor, Penicillium, Pichia, Microsporum, Trichophyton, and Scopulariopsis. Species were identified in PCR-positive reactions by direct DNA sequencing. A noncompetitive internal control was applied to prevent false-negative results due to PCR inhibition. The minimum detection limit for the PCR was determined to be one 28S rDNA copy per PCR, and the 95% detection limit was calculated to 15 copies per PCR. To assess the clinical applicability of the PCR method, intensive-care patients with artificial respiration and patients with infective endocarditis were investigated. For this purpose, 76 tracheal secretion samples and 70 heart valve tissues were analyzed in parallel by real-time PCR and cultivation. No discrepancies in results were observed between PCR analysis and cultivation methods. Furthermore, the application of the PCR method was investigated for other clinical specimens, including cervical swabs, nail and horny skin scrapings, and serum, blood, and urine samples. The combination of a broad-range real-time PCR and direct sequencing facilitates rapid screening for fungal infection in various clinical specimens.
Zhao, Yingke; Liu, Yue; Chen, Keji
Tetramethylpyrazine, a natural compound from Ligusticum wallichii ( Chuan Xiong ), has been extensively used in China for cardiovascular and cerebrovascular diseases for about 40 years. Because of its effectiveness in multisystems, especially in cardiovascular, its pharmacological action, clinical application, and the structural modification have attracted broad attention. In this paper its mechanisms of action, the clinical status, and synthetic derivatives will be reviewed briefly.
Amniotic therapeutic biomaterials in urology: current and future applications.
Oottamasathien, Siam; Hotaling, James M; Craig, James R; Myers, Jeremy B; Brant, William O
2017-10-01
To examine the rationale and applications of amniotic tissue augmentation in urological surgery. Published literature in English-language was reviewed for basic science and clinical use of amniotic or amnion-chorionic tissue in genitourinary tissues. Basic science and animal studies support the likely benefit of clinical applications of amnion-derived tissues in a variety of urologic interventions. The broad number of properties found in amniotic membrane, coupled with its immunologically privileged status presents a number of future applications in the urological surgical realm. These applications are in their clinical infancy and suggest that further studies are warranted to investigate the use of these products in a systematic fashion.
The National Cancer Institute is soliciting applications for the reissuance of its Clinical Proteomic Tumor Analysis Consortium (CPTAC) program. CPTAC will support broad efforts focused on several cancer types to explore further the complexities of cancer proteomes and their connections to abnormalities in cancer genomes.
Morris, Alan H
2018-02-01
Our education system seems to fail to enable clinicians to broadly understand core physiological principles. The emphasis on reductionist science, including "omics" branches of research, has likely contributed to this decrease in understanding. Consequently, clinicians cannot be expected to consistently make clinical decisions linked to best physiological evidence. This is a large-scale problem with multiple determinants, within an even larger clinical decision problem: the failure of clinicians to consistently link their decisions to best evidence. Clinicians, like all human decision-makers, suffer from significant cognitive limitations. Detailed context-sensitive computer protocols can generate personalized medicine instructions that are well matched to individual patient needs over time and can partially resolve this problem.
Kim, Si Hyun; Jeong, Haeng Soon; Kim, Yeong Hoon; Song, Sae Am; Lee, Ja Young; Oh, Seung Hwan; Kim, Hye Ran; Lee, Jeong Nyeo; Kho, Weon-Gyu; Shin, Jeong Hwan
2012-03-01
The aims of this study were to compare several DNA extraction methods and 16S rDNA primers and to evaluate the clinical utility of broad-range PCR in continuous ambulatory peritoneal dialysis (CAPD) culture fluids. Six type strains were used as model organisms in dilutions from 10(8) to 10(0) colony-forming units (CFU)/mL for the evaluation of 5 DNA extraction methods and 5 PCR primer pairs. Broad-range PCR was applied to 100 CAPD culture fluids, and the results were compared with conventional culture results. There were some differences between the various DNA extraction methods and primer sets with regard to the detection limits. The InstaGene Matrix (Bio-Rad Laboratories, USA) and Exgene Clinic SV kits (GeneAll Biotechnology Co. Ltd, Korea) seem to have higher sensitivities than the others. The results of broad-range PCR were concordant with the results from culture in 97% of all cases (97/100). Two culture-positive cases that were broad-range PCR-negative were identified as Candida albicans, and 1 PCR-positive but culture-negative sample was identified as Bacillus circulans by sequencing. Two samples among 54 broad-range PCR-positive products could not be sequenced. There were differences in the analytical sensitivity of various DNA extraction methods and primers for broad-range PCR. The broad-range PCR assay can be used to detect bacterial pathogens in CAPD culture fluid as a supplement to culture methods.
Jackman, Joshua A; Lee, Jaywon; Cho, Nam-Joon
2016-03-02
Nanomedicine enables unique diagnostic and therapeutic capabilities to tackle problems in clinical medicine. As multifunctional agents with programmable properties, nanomedicines are poised to revolutionize treatment strategies. This promise is especially evident for infectious disease applications, for which the continual emergence, re-emergence, and evolution of pathogens has proven difficult to counter by conventional approaches. Herein, a conceptual framework is presented that envisions possible routes for the development of nanomedicines as superior broad-spectrum antiviral agents against enveloped viruses. With lipid membranes playing a critical role in the life cycle of medically important enveloped viruses including HIV, influenza, and Ebola, cellular and viral membrane interfaces are ideal elements to incorporate into broad-spectrum antiviral strategies. Examples are presented that demonstrate how nanomedicine strategies inspired by lipid membranes enable a wide range of targeting opportunities to gain control of critical stages in the virus life cycle through either direct or indirect approaches involving membrane interfaces. The capabilities can be realized by enabling new inhibitory functions or improving the function of existing drugs through nanotechnology-enabled solutions. With these exciting opportunities, due attention is also given to the clinical translation of nanomedicines for infectious disease applications, especially as pharmaceutical drug-discovery pipelines demand new routes of innovation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Music Therapy with Children: A Review of Clinical Utility and Application to Special Populations.
ERIC Educational Resources Information Center
Yeaw, John David Andrew
This paper reviews the effectiveness of music therapy in treating children with psychiatric and developmental problems. The clinical utility of music therapy is first evaluated by examining the foundational effects of music on affect and behavior. Next, the two broad approaches to music therapy, active and passive music therapy, are discussed.…
Functionalized Nanostructures with Application in Regenerative Medicine
Perán, Macarena; García, María A.; López-Ruiz, Elena; Bustamante, Milán; Jiménez, Gema; Madeddu, Roberto; Marchal, Juan A.
2012-01-01
In the last decade, both regenerative medicine and nanotechnology have been broadly developed leading important advances in biomedical research as well as in clinical practice. The manipulation on the molecular level and the use of several functionalized nanoscaled materials has application in various fields of regenerative medicine including tissue engineering, cell therapy, diagnosis and drug and gene delivery. The themes covered in this review include nanoparticle systems for tracking transplanted stem cells, self-assembling peptides, nanoparticles for gene delivery into stem cells and biomimetic scaffolds useful for 2D and 3D tissue cell cultures, transplantation and clinical application. PMID:22489186
The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification.
Wang, Hui; Shi, Tujin; Qian, Wei-Jun; Liu, Tao; Kagan, Jacob; Srivastava, Sudhir; Smith, Richard D; Rodland, Karin D; Camp, David G
2016-01-01
Mass spectrometry (MS) -based proteomics has become an indispensable tool with broad applications in systems biology and biomedical research. With recent advances in liquid chromatography (LC) and MS instrumentation, LC-MS is making increasingly significant contributions to clinical applications, especially in the area of cancer biomarker discovery and verification. To overcome challenges associated with analyses of clinical samples (for example, a wide dynamic range of protein concentrations in bodily fluids and the need to perform high throughput and accurate quantification of candidate biomarker proteins), significant efforts have been devoted to improve the overall performance of LC-MS-based clinical proteomics platforms. Reviewed here are the recent advances in LC-MS and its applications in cancer biomarker discovery and quantification, along with the potentials, limitations and future perspectives.
The Clinical Use of Robots for Individuals with Autism Spectrum Disorders: A Critical Review
ERIC Educational Resources Information Center
Diehl, Joshua J.; Schmitt, Lauren M.; Villano, Michael; Crowell, Charles R.
2012-01-01
We examined peer-reviewed studies in order to understand the current status of empirically based evidence on the clinical applications of robots in the diagnosis and treatment of Autism Spectrum Disorders (ASD). Studies are organized into four broad categories: (a) the response of individuals with ASD to robots or robot-like behavior in comparison…
Universal mobile electrochemical detector designed for use in resource-limited applications
Nemiroski, Alex; Christodouleas, Dionysios C.; Hennek, Jonathan W.; Kumar, Ashok A.; Maxwell, E. Jane; Fernández-Abedul, Maria Teresa; Whitesides, George M.
2014-01-01
This paper describes an inexpensive, handheld device that couples the most common forms of electrochemical analysis directly to “the cloud” using any mobile phone, for use in resource-limited settings. The device is designed to operate with a wide range of electrode formats, performs on-board mixing of samples by vibration, and transmits data over voice using audio—an approach that guarantees broad compatibility with any available mobile phone (from low-end phones to smartphones) or cellular network (second, third, and fourth generation). The electrochemical methods that we demonstrate enable quantitative, broadly applicable, and inexpensive sensing with flexibility based on a wide variety of important electroanalytical techniques (chronoamperometry, cyclic voltammetry, differential pulse voltammetry, square wave voltammetry, and potentiometry), each with different uses. Four applications demonstrate the analytical performance of the device: these involve the detection of (i) glucose in the blood for personal health, (ii) trace heavy metals (lead, cadmium, and zinc) in water for in-field environmental monitoring, (iii) sodium in urine for clinical analysis, and (iv) a malarial antigen (Plasmodium falciparum histidine-rich protein 2) for clinical research. The combination of these electrochemical capabilities in an affordable, handheld format that is compatible with any mobile phone or network worldwide guarantees that sophisticated diagnostic testing can be performed by users with a broad spectrum of needs, resources, and levels of technical expertise. PMID:25092346
Behavioral economics and empirical public policy.
Hursh, Steven R; Roma, Peter G
2013-01-01
The application of economics principles to the analysis of behavior has yielded novel insights on value and choice across contexts ranging from laboratory animal research to clinical populations to national trends of global impact. Recent innovations in demand curve methods provide a credible means of quantitatively comparing qualitatively different reinforcers as well as quantifying the choice relations between concurrently available reinforcers. The potential of the behavioral economic approach to inform public policy is illustrated with examples from basic research, pre-clinical behavioral pharmacology, and clinical drug abuse research as well as emerging applications to public transportation and social behavior. Behavioral Economics can serve as a broadly applicable conceptual, methodological, and analytical framework for the development and evaluation of empirical public policy. © Society for the Experimental Analysis of Behavior.
Medically related activities of application team program
NASA Technical Reports Server (NTRS)
1971-01-01
Application team methodology identifies and specifies problems in technology transfer programs to biomedical areas through direct contact with users of aerospace technology. The availability of reengineering sources increases impact of the program on the medical community and results in broad scale application of some bioinstrumentation systems. Examples are given that include devices adapted to the rehabilitation of neuromuscular disorders, power sources for artificial organs, and automated monitoring and detection equipment in clinical medicine.
Inci, Fatih; Filippini, Chiara; Baday, Murat; Ozen, Mehmet Ozgun; Calamak, Semih; Durmus, Naside Gozde; Wang, ShuQi; Hanhauser, Emily; Hobbs, Kristen S; Juillard, Franceline; Kuang, Ping Ping; Vetter, Michael L; Carocci, Margot; Yamamoto, Hidemi S; Takagi, Yuko; Yildiz, Umit Hakan; Akin, Demir; Wesemann, Duane R; Singhal, Amit; Yang, Priscilla L; Nibert, Max L; Fichorova, Raina N; Lau, Daryl T-Y; Henrich, Timothy J; Kaye, Kenneth M; Schachter, Steven C; Kuritzkes, Daniel R; Steinmetz, Lars M; Gambhir, Sanjiv S; Davis, Ronald W; Demirci, Utkan
2015-08-11
Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients' homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE(2)RD), which addresses all these impediments on a single platform. The NE(2)RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE(2)RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE(2)RD's broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients' homes.
Inci, Fatih; Filippini, Chiara; Ozen, Mehmet Ozgun; Calamak, Semih; Durmus, Naside Gozde; Wang, ShuQi; Hanhauser, Emily; Hobbs, Kristen S.; Juillard, Franceline; Kuang, Ping Ping; Vetter, Michael L.; Carocci, Margot; Yamamoto, Hidemi S.; Takagi, Yuko; Yildiz, Umit Hakan; Akin, Demir; Wesemann, Duane R.; Singhal, Amit; Yang, Priscilla L.; Nibert, Max L.; Fichorova, Raina N.; Lau, Daryl T.-Y.; Henrich, Timothy J.; Kaye, Kenneth M.; Schachter, Steven C.; Kuritzkes, Daniel R.; Steinmetz, Lars M.; Gambhir, Sanjiv S.; Davis, Ronald W.; Demirci, Utkan
2015-01-01
Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients’ homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE2RD), which addresses all these impediments on a single platform. The NE2RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE2RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE2RD’s broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients’ homes. PMID:26195743
Inhibiting cancer cell hallmark features through nuclear export inhibition.
Sun, Qingxiang; Chen, Xueqin; Zhou, Qiao; Burstein, Ezra; Yang, Shengyong; Jia, Da
2016-01-01
Treating cancer through inhibition of nuclear export is one of the best examples of basic research translation into clinical application. Nuclear export factor chromosomal region maintenance 1 (CRM1; Xpo1 and exportin-1) controls cellular localization and function of numerous proteins that are critical for the development of many cancer hallmarks. The diverse actions of CRM1 are likely to explain the broad ranging anti-cancer potency of CRM1 inhibitors observed in pre-clinical studies and/or clinical trials (phase I-III) on both advanced-stage solid and hematological tumors. In this review, we compare and contrast the mechanisms of action of different CRM1 inhibitors, and discuss the potential benefit of unexplored non-covalent CRM1 inhibitors. This emerging field has uncovered that nuclear export inhibition is well poised as an attractive target towards low-toxicity broad-spectrum potent anti-cancer therapy.
Dumestre, Danielle O; Fraulin, Frankie O G
2017-11-01
Physicians are increasingly using smartphones to take clinical photographs. This study evaluates a smartphone application for clinical photography that prioritizes and facilitates patient security. Ethics approval was obtained to trial a smartphone clinical photography application, PicSafe Medi. Calgary plastic surgeons and residents used the application to obtain informed consent and photograph patients. Surveys gauging the application's usability, consent process, and photograph storage/sharing were then sent to surgeons and patients. Over a 6-month trial period, 15 plastic surgeons and residents used the application to photograph 86 patients. Over half of the patients (57%) completed the survey. The majority of patients (96%) were satisfied with the application's consent process, and all felt their photographs were secure. The majority (93%) of surgeons/residents completed the survey. The application was felt to overcome issues with current photography practices: inadequate consent and storage of photographs (100%), risk to patient confidentiality (92%), and unsecure photograph sharing (93%). Barriers to regular use of the application included need for cellphone service/Internet (54%), sanitary concerns due to the need for patients to sign directly on the phone (46%), inability to obtain proactive/retroactive consent (85%), and difficulty viewing photographs (80%). The majority of surgeons (85%) believe a smartphone application would be suitable for clinical patient photography, but due to its limitations, only 23% would use the trialed application. A smartphone clinical photography application addresses the patient confidentiality risks of current photography methods; however, limitations of the trialed application prevent its broad implementation.
The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Shi, Tujin; Qian, Wei-Jun
2015-12-04
Mass spectrometry-based proteomics has become an indispensable tool in biomedical research with broad applications ranging from fundamental biology, systems biology, and biomarker discovery. Recent advances in LC-MS have made it become a major technology in clinical applications, especially in cancer biomarker discovery and verification. To overcome the challenges associated with the analysis of clinical samples, such as extremely wide dynamic range of protein concentrations in biofluids and the need to perform high throughput and accurate quantification, significant efforts have been devoted to improve the overall performance of LC-MS bases clinical proteomics. In this review, we summarize the recent advances inmore » LC-MS in the aspect of cancer biomarker discovery and quantification, and discuss its potentials, limitations, and future perspectives.« less
Review and classification of variability analysis techniques with clinical applications.
Bravi, Andrea; Longtin, André; Seely, Andrew J E
2011-10-10
Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis.
Review and classification of variability analysis techniques with clinical applications
2011-01-01
Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis. PMID:21985357
Diagnosis of Meningococcal Meningitis by Broad-Range Bacterial PCR with Cerebrospinal Fluid
Kotilainen, Pirkko; Jalava, Jari; Meurman, Olli; Lehtonen, Olli-Pekka; Rintala, Esa; Seppälä, Olli-Pekka; Eerola, Erkki; Nikkari, Simo
1998-01-01
We used broad-range bacterial PCR combined with DNA sequencing to examine prospectively cerebrospinal fluid (CSF) samples from patients with suspected meningitis. Fifty-six CSF samples from 46 patients were studied during the year 1995. Genes coding for bacterial 16S and/or 23S rRNA genes could be amplified from the CSF samples from five patients with a clinical picture consistent with acute bacterial meningitis. For these patients, the sequenced PCR product shared 98.3 to 100% homology with the Neisseria meningitidis sequence. For one patient, the diagnosis was initially made by PCR alone. Of the remaining 51 CSF samples, for 50 (98.0%) samples the negative PCR findings were in accordance with the negative findings by bacterial culture and Gram staining, as well as with the eventual clinical diagnosis for the patient. However, the PCR test failed to detect the bacterial rRNA gene in one CSF sample, the culture of which yielded Listeria monocytogenes. These results invite new research efforts to be focused on the application of PCR with broad-range bacterial primers to improve the etiologic diagnosis of bacterial meningitis. In a clinical setting, Gram staining and bacterial culture still remain the cornerstones of diagnosis. PMID:9665992
Clinical validation of a nanodiamond-embedded thermoplastic biomaterial
Lee, Dong-Keun; Kee, Theodore; Liang, Zhangrui; Hsiou, Desiree; Miya, Darron; Wu, Brian; Osawa, Eiji; Chow, Edward Kai-Hua; Kang, Mo K.; Ho, Dean
2017-01-01
Detonation nanodiamonds (NDs) are promising drug delivery and imaging agents due to their uniquely faceted surfaces with diverse chemical groups, electrostatic properties, and biocompatibility. Based on the potential to harness ND properties to clinically address a broad range of disease indications, this work reports the in-human administration of NDs through the development of ND-embedded gutta percha (NDGP), a thermoplastic biomaterial that addresses reinfection and bone loss following root canal therapy (RCT). RCT served as the first clinical indication for NDs since the procedure sites involved nearby circulation, localized administration, and image-guided treatment progress monitoring, which are analogous to many clinical indications. This randomized, single-blind interventional treatment study evaluated NDGP equivalence with unmodified GP. This progress report assessed one control-arm and three treatment-arm patients. At 3-mo and 6-mo follow-up appointments, no adverse events were observed, and lesion healing was confirmed in the NDGP-treated patients. Therefore, this study is a foundation for the continued clinical translation of NDs and other nanomaterials for a broad spectrum of applications. PMID:29078364
A Vision for Better Health: Mass Spectrometry Imaging for Clinical Diagnostics
Ye, Hui; Gemperline, Erin; Li, Lingjun
2012-01-01
Background Mass spectrometry imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules from small molecules to large proteins by creating detailed distribution maps of selected compounds. Its usefulness in biomarker discovery towards clinical applications has obtained success by correlating the molecular expression of tissues acquired from MSI with well-established histology. Results To date, MSI has demonstrated its versatility in clinical applications, such as biomarker diagnostics of different diseases, prognostics of disease severities and metabolic response to drug treatment, etc. These studies have provided significant insight in clinical studies over the years and current technical advances are further facilitating the improvement of this field. Although the underlying concept is simple, factors such as choice of ionization method, sample preparation, instrumentation and data analysis must be taken into account for successful applications of MSI. Herein, we briefly reviewed these key elements yet focused on the clinical applications of MSI that cannot be addressed by other means. Conclusions Challenges and future perspectives in this field are also discussed to conclude that the ever-growing applications with continuous development of this powerful analytical tool will lead to a better understanding of the biology of diseases and improvements in clinical diagnostics. PMID:23078851
The Promise of Neurotechnology in Clinical Translational Science.
White, Susan W; Richey, John A; Gracanin, Denis; Bell, Martha Ann; LaConte, Stephen; Coffman, Marika; Trubanova, Andrea; Kim, Inyoung
2015-09-01
Neurotechnology is broadly defined as a set of devices used to understand neural processes and applications that can potentially facilitate the brain's ability to repair itself. In the past decade, an increasingly explicit understanding of basic biological mechanisms of brain-related illnesses has produced applications that allow a direct yet noninvasive method to index and manipulate the functioning of the human nervous system. Clinical scientists are poised to apply this technology to assess, treat, and better understand complex socioemotional processes that underlie many forms of psychopathology. In this review, we describe the potential benefits and hurdles, both technical and methodological, of neurotechnology in the context of clinical dysfunction. We also offer a framework for developing and evaluating neurotechnologies that is intended to expedite progress at the nexus of clinical science and neural interface designs by providing a comprehensive vocabulary to describe the necessary features of neurotechnology in the clinic.
The Promise of Neurotechnology in Clinical Translational Science
White, Susan W.; Richey, John A.; Gracanin, Denis; Bell, Martha Ann; LaConte, Stephen; Coffman, Marika; Trubanova, Andrea; Kim, Inyoung
2014-01-01
Neurotechnology is broadly defined as a set of devices used to understand neural processes and applications that can potentially facilitate the brain’s ability to repair itself. In the past decade, an increasingly explicit understanding of basic biological mechanisms of brain-related illnesses has produced applications that allow a direct yet noninvasive method to index and manipulate the functioning of the human nervous system. Clinical scientists are poised to apply this technology to assess, treat, and better understand complex socioemotional processes that underlie many forms of psychopathology. In this review, we describe the potential benefits and hurdles, both technical and methodological, of neurotechnology in the context of clinical dysfunction. We also offer a framework for developing and evaluating neurotechnologies that is intended to expedite progress at the nexus of clinical science and neural interface designs by providing a comprehensive vocabulary to describe the necessary features of neurotechnology in the clinic. PMID:26504676
Azelaic Acid: Evidence-based Update on Mechanism of Action and Clinical Application.
Schulte, Brian C; Wu, Wesley; Rosen, Ted
2015-09-01
Azelaic acid is a complex molecule with many diverse activities. The latter include anti-infective and anti-inflammatory action. The agent also inhibits follicular keratinization and epidermal melanogenesis. Due to the wide variety of biological activities, azelaic acid has been utilized as a management tool in a broad spectrum of disease states and cutaneous disorders. This paper reviews the clinical utility of azelaic acid, noting the quality of the evidence supporting each potential use.
ERIC Educational Resources Information Center
Rafiq, Azhar; Merrell, Ronald C.
2005-01-01
Health care practices continue to evolve with technological advances integrating computer applications and patient information management into telemedicine systems. Telemedicine can be broadly defined as the use of information technology to provide patient care and share clinical information from one geographic location to another. Telemedicine…
Photonic crystals: emerging biosensors and their promise for point-of-care applications.
Inan, Hakan; Poyraz, Muhammet; Inci, Fatih; Lifson, Mark A; Baday, Murat; Cunningham, Brian T; Demirci, Utkan
2017-01-23
Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics. Currently, PC-based biosensors have been employed for detecting a variety of biotargets, such as cells, pathogens, proteins, antibodies, and nucleic acids, with high efficiency and selectivity. In this review, we provide a broad overview of PCs by explaining their structures, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-based biosensors incorporated with emerging technologies, including telemedicine, flexible and wearable sensing, smart materials and metamaterials. Finally, we discuss current challenges associated with existing biosensors, and provide an outlook for PC-based biosensors and their promise at the POC.
10 CFR 33.12 - Applications for specific licenses of broad scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Applications for specific licenses of broad scope. 33.12 Section 33.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.12 Applications for specific licenses of broad scope. A...
10 CFR 33.12 - Applications for specific licenses of broad scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Applications for specific licenses of broad scope. 33.12 Section 33.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.12 Applications for specific licenses of broad scope. A...
10 CFR 33.12 - Applications for specific licenses of broad scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Applications for specific licenses of broad scope. 33.12 Section 33.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.12 Applications for specific licenses of broad scope. A...
10 CFR 33.12 - Applications for specific licenses of broad scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Applications for specific licenses of broad scope. 33.12 Section 33.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.12 Applications for specific licenses of broad scope. A...
10 CFR 33.12 - Applications for specific licenses of broad scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Applications for specific licenses of broad scope. 33.12 Section 33.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.12 Applications for specific licenses of broad scope. A...
Therapeutic hypothermia: applications in pediatric cardiac arrest.
Kochanek, Patrick M; Fink, Ericka L; Bell, Michael J; Bayir, Hülya; Clark, Robert S B
2009-03-01
There is a rich history for the use of therapeutic hypothermia after cardiac arrest in neonatology and pediatrics. Laboratory reports date back to 1824 in experimental perinatal asphyxia. Similarly, clinical reports in pediatric cold water drowning victims represented key initiating work in the field. The application of therapeutic hypothermia in pediatric drowning victims represented some of the seminal clinical use of this modality in modern neurointensive care. Uncontrolled application (too deep and too long) and unique facets of asphyxial cardiac arrest in children (a very difficult insult to affect any benefit) likely combined to result in abandonment of therapeutic hypothermia in the mid to late 1980s. Important studies in perinatal medicine have built upon the landmark clinical trials in adults, and are once again bringing therapeutic hypothermia into standard care for pediatrics. Although more work is needed, particularly in the use of mild therapeutic hypothermia in children, there is a strong possibility that this important therapy will ultimately have broad applications after cardiac arrest and central nervous system (CNS) insults in the pediatric arena.
7T: Physics, safety, and potential clinical applications.
Kraff, Oliver; Quick, Harald H
2017-12-01
With more than 60 installed magnetic resonance imaging (MRI) systems worldwide operating at a magnetic field strength of 7T or higher, ultrahigh-field (UHF) MRI has been established as a platform for clinically oriented research in recent years. Profound technical and methodological developments have helped overcome the inherent physical challenges of UHF radiofrequency (RF) signal homogenization in the human body. The ongoing development of dedicated RF coil arrays was pivotal in realizing UHF body MRI, beyond mere brain imaging applications. Another precondition to clinical application of 7T MRI is the safety testing of implants and the establishment of safety concepts. Against this backdrop, 7T MRI and MR spectroscopy (MRS) recently have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. This article provides an overview of the immanent physical challenges of 7T UHF MRI and discusses recent technical solutions and safety concepts. Furthermore, recent clinically oriented studies are highlighted that span a broad application spectrum from 7T UHF brain to body MRI. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1573-1589. © 2017 International Society for Magnetic Resonance in Medicine.
Medical student appraisal: searching on smartphones.
Khalifian, S; Markman, T; Sampognaro, P; Mitchell, S; Weeks, S; Dattilo, J
2013-01-01
The rapidly growing industry for mobile medical applications provides numerous smartphone resources designed for healthcare professionals. However, not all applications are equally useful in addressing the questions of early medical trainees. Three popular, free, mobile healthcare applications were evaluated along with a Google(TM) web search on both Apple(TM) and Android(TM) devices. Six medical students at a large academic hospital evaluated each application for a one-week period while on various clinical rotations. Google(TM) was the most frequently used search method and presented multimedia resources but was inefficient for obtaining clinical management information. Epocrates(TM) Pill ID feature was praised for its clinical utility. Medscape(TM) had the highest satisfaction of search and excelled through interactive educational features. Micromedex(TM) offered both FDA and off-label dosing for drugs. Google(TM) was the preferred search method for questions related to basic disease processes and multimedia resources, but was inadequate for clinical management. Caution should also be exercised when using Google(TM) in front of patients. Medscape(TM) was the most appealing application due to a broad scope of content and educational features relevant to medical trainees. Students should also be cognizant of how mobile technology may be perceived by their evaluators to avoid false impressions.
Advances in diagnostic and treatment modalities for intracranial tumors.
Dickinson, P J
2014-01-01
Intracranial neoplasia is a common clinical condition in domestic companion animals, particularly in dogs. Application of advances in standard diagnostic and therapeutic modalities together with a broad interest in the development of novel translational therapeutic strategies in dogs has resulted in clinically relevant improvements in outcome for many canine patients. This review highlights the status of current diagnostic and therapeutic approaches to intracranial neoplasia and areas of novel treatment currently in development. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Kobayashi, Naomi; Bauer, Thomas W; Sakai, Hiroshige; Togawa, Daisuke; Lieberman, Isador H; Fujishiro, Takaaki; Procop, Gary W
2006-12-01
We report a case of a culture-negative osteomyelitis in which our newly developed real-time polymerase chain reaction (PCR) could differentiate Staphylococcus aureus from Staphylococcus epidermidis. This is the first report that described the application of this novel assay to an orthopedics clinical sample. This assay may be useful for other clinical culture-negative cases in a combination with a broad-spectrum assay as a rapid microorganism identification method.
Han, Yanfu; Sun, Tianjun; Tao, Ran; Han, Yanqing; Liu, Jing
2017-03-24
Nowadays, wound healing delay due to diabetes is considered to be closely related to the accumulation of advanced glycation end products (AGEs). Although mesenchymal stem cells (MSCs) exhibit positive effects on diabetic wound healing, related mechanisms are still not fully elucidated. It has been reported that MSCs can improve the activity of autophagy in injured tissues, thereby playing an important role in wound healing. The autophagy induced by MSCs may be beneficial to diabetic wound healing via removing AGEs, which provide new ideas for clinical treatment of diabetic wounds with the potential of broad application prospects. In this study, the current research situation and application prospect of umbilical cord-derived MSCs on the clearance of AGEs in diabetic wound were reviewed.
Applicability Analysis of Validation Evidence for Biomedical Computational Models
Pathmanathan, Pras; Gray, Richard A.; Romero, Vicente J.; ...
2017-09-07
Computational modeling has the potential to revolutionize medicine the way it transformed engineering. However, despite decades of work, there has only been limited progress to successfully translate modeling research to patient care. One major difficulty which often occurs with biomedical computational models is an inability to perform validation in a setting that closely resembles how the model will be used. For example, for a biomedical model that makes in vivo clinically relevant predictions, direct validation of predictions may be impossible for ethical, technological, or financial reasons. Unavoidable limitations inherent to the validation process lead to challenges in evaluating the credibilitymore » of biomedical model predictions. Therefore, when evaluating biomedical models, it is critical to rigorously assess applicability, that is, the relevance of the computational model, and its validation evidence to the proposed context of use (COU). However, there are no well-established methods for assessing applicability. In this paper, we present a novel framework for performing applicability analysis and demonstrate its use with a medical device computational model. The framework provides a systematic, step-by-step method for breaking down the broad question of applicability into a series of focused questions, which may be addressed using supporting evidence and subject matter expertise. The framework can be used for model justification, model assessment, and validation planning. While motivated by biomedical models, it is relevant to a broad range of disciplines and underlying physics. Finally, the proposed applicability framework could help overcome some of the barriers inherent to validation of, and aid clinical implementation of, biomedical models.« less
Applicability Analysis of Validation Evidence for Biomedical Computational Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathmanathan, Pras; Gray, Richard A.; Romero, Vicente J.
Computational modeling has the potential to revolutionize medicine the way it transformed engineering. However, despite decades of work, there has only been limited progress to successfully translate modeling research to patient care. One major difficulty which often occurs with biomedical computational models is an inability to perform validation in a setting that closely resembles how the model will be used. For example, for a biomedical model that makes in vivo clinically relevant predictions, direct validation of predictions may be impossible for ethical, technological, or financial reasons. Unavoidable limitations inherent to the validation process lead to challenges in evaluating the credibilitymore » of biomedical model predictions. Therefore, when evaluating biomedical models, it is critical to rigorously assess applicability, that is, the relevance of the computational model, and its validation evidence to the proposed context of use (COU). However, there are no well-established methods for assessing applicability. In this paper, we present a novel framework for performing applicability analysis and demonstrate its use with a medical device computational model. The framework provides a systematic, step-by-step method for breaking down the broad question of applicability into a series of focused questions, which may be addressed using supporting evidence and subject matter expertise. The framework can be used for model justification, model assessment, and validation planning. While motivated by biomedical models, it is relevant to a broad range of disciplines and underlying physics. Finally, the proposed applicability framework could help overcome some of the barriers inherent to validation of, and aid clinical implementation of, biomedical models.« less
Lansky, Alexandra J; Messé, Steven R; Brickman, Adam M; Dwyer, Michael; Bart van der Worp, H; Lazar, Ronald M; Pietras, Cody G; Abrams, Kevin J; McFadden, Eugene; Petersen, Nils H; Browndyke, Jeffrey; Prendergast, Bernard; Ng, Vivian G; Cutlip, Donald E; Kapadia, Samir; Krucoff, Mitchell W; Linke, Axel; Scala Moy, Claudia; Schofer, Joachim; van Es, Gerrit-Anne; Virmani, Renu; Popma, Jeffrey; Parides, Michael K; Kodali, Susheel; Bilello, Michel; Zivadinov, Robert; Akar, Joseph; Furie, Karen L; Gress, Daryl; Voros, Szilard; Moses, Jeffrey; Greer, David; Forrest, John K; Holmes, David; Kappetein, Arie P; Mack, Michael; Baumbach, Andreas
2018-05-14
Surgical and catheter-based cardiovascular procedures and adjunctive pharmacology have an inherent risk of neurological complications. The current diversity of neurological endpoint definitions and ascertainment methods in clinical trials has led to uncertainties in the neurological risk attributable to cardiovascular procedures and inconsistent evaluation of therapies intended to prevent or mitigate neurological injury. Benefit-risk assessment of such procedures should be on the basis of an evaluation of well-defined neurological outcomes that are ascertained with consistent methods and capture the full spectrum of neurovascular injury and its clinical effect. The Neurologic Academic Research Consortium is an international collaboration intended to establish consensus on the definition, classification, and assessment of neurological endpoints applicable to clinical trials of a broad range of cardiovascular interventions. Systematic application of the proposed definitions and assessments will improve our ability to evaluate the risks of cardiovascular procedures and the safety and effectiveness of preventive therapies.
Vavken, Patrick; Ganal-Antonio, Anne Kathleen B.; Quidde, Julia; Shen, Francis H.; Chapman, Jens R.; Samartzis, Dino
2015-01-01
Study Design A broad narrative review. Objectives Outcome assessment in spinal disorders is imperative to help monitor the safety and efficacy of the treatment in an effort to change the clinical practice and improve patient outcomes. The following article, part two of a two-part series, discusses the various outcome tools and instruments utilized to address spinal disorders and their management. Methods A thorough review of the peer-reviewed literature was performed, irrespective of language, addressing outcome research, instruments and tools, and applications. Results Numerous articles addressing the development and implementation of health-related quality-of-life, neck and low back pain, overall pain, spinal deformity, and other condition-specific outcome instruments have been reported. Their applications in the context of the clinical trial studies, the economic analyses, and overall evidence-based orthopedics have been noted. Additional issues regarding the problems and potential sources of bias utilizing outcomes scales and the concept of minimally clinically important difference were discussed. Conclusion Continuing research needs to assess the outcome instruments and tools used in the clinical outcome assessment for spinal disorders. Understanding the fundamental principles in spinal outcome assessment may also advance the field of “personalized spine care.” PMID:26225283
Fogliata, Antonella; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio; Laksar, Sarbani; Tozzi, Angelo; Scorsetti, Marta; Cozzi, Luca
2015-10-31
To evaluate the performance of a broad scope model-based optimisation process for volumetric modulated arc therapy applied to esophageal cancer. A set of 70 previously treated patients in two different institutions, were selected to train a model for the prediction of dose-volume constraints. The model was built with a broad-scope purpose, aiming to be effective for different dose prescriptions and tumour localisations. It was validated on three groups of patients from the same institution and from another clinic not providing patients for the training phase. Comparison of the automated plans was done against reference cases given by the clinically accepted plans. Quantitative improvements (statistically significant for the majority of the analysed dose-volume parameters) were observed between the benchmark and the test plans. Of 624 dose-volume objectives assessed for plan evaluation, in 21 cases (3.3 %) the reference plans failed to respect the constraints while the model-based plans succeeded. Only in 3 cases (<0.5 %) the reference plans passed the criteria while the model-based failed. In 5.3 % of the cases both groups of plans failed and in the remaining cases both passed the tests. Plans were optimised using a broad scope knowledge-based model to determine the dose-volume constraints. The results showed dosimetric improvements when compared to the benchmark data. Particularly the plans optimised for patients from the third centre, not participating to the training, resulted in superior quality. The data suggests that the new engine is reliable and could encourage its application to clinical practice.
Biological Gene Delivery Vehicles: Beyond Viral Vectors
Seow, Yiqi; Wood, Matthew J
2009-01-01
Gene therapy covers a broad spectrum of applications, from gene replacement and knockdown for genetic or acquired diseases such as cancer, to vaccination, each with different requirements for gene delivery. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications today, but both have limitations and risks, including complexity of production, limited packaging capacity, and unfavorable immunological features, which restrict gene therapy applications and hold back the potential for preventive gene therapy. While continuing to improve these vectors, it is important to investigate other options, particularly nonviral biological agents which include bacteria, bacteriophage, virus-like particles (VLPs), erythrocyte ghosts, and exosomes. Exploiting the natural properties of these biological entities for specific gene delivery applications will expand the repertoire of gene therapy vectors available for clinical use. Here, we review the prospects for nonviral biological delivery vehicles as gene therapy agents with focus on their unique evolved biological properties and respective limitations and potential applications. The potential of these nonviral biological entities to act as clinical gene therapy delivery vehicles has already been shown in clinical trials using bacteria-mediated gene transfer and with sufficient development, these entities will complement the established delivery techniques for gene therapy applications. PMID:19277019
Biological gene delivery vehicles: beyond viral vectors.
Seow, Yiqi; Wood, Matthew J
2009-05-01
Gene therapy covers a broad spectrum of applications, from gene replacement and knockdown for genetic or acquired diseases such as cancer, to vaccination, each with different requirements for gene delivery. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications today, but both have limitations and risks, including complexity of production, limited packaging capacity, and unfavorable immunological features, which restrict gene therapy applications and hold back the potential for preventive gene therapy. While continuing to improve these vectors, it is important to investigate other options, particularly nonviral biological agents which include bacteria, bacteriophage, virus-like particles (VLPs), erythrocyte ghosts, and exosomes. Exploiting the natural properties of these biological entities for specific gene delivery applications will expand the repertoire of gene therapy vectors available for clinical use. Here, we review the prospects for nonviral biological delivery vehicles as gene therapy agents with focus on their unique evolved biological properties and respective limitations and potential applications. The potential of these nonviral biological entities to act as clinical gene therapy delivery vehicles has already been shown in clinical trials using bacteria-mediated gene transfer and with sufficient development, these entities will complement the established delivery techniques for gene therapy applications.
[Progress of midfacial fat compartments and related clinical applications].
Wen, Lihong; Wang, Jinhuang; Li, Yang; Liu, Dalie
2018-02-01
To review the research progress of midfacial fat compartments, and to thoroughly understand its current state of the anatomy and the aging morphologic characters of midfacial fat compartments, as well as the current status of clinical applications. The recent literature concerning the midfacial fat compartments and related clinical applications were extensively reviewed and analyzed. Midfacial fat layer has been considered as a fusion and a continuous layer, experiencing a global atrophy when aging. As more anatomical researches have done, recent studies have shown that midfacial fat layer is broadly divided into superficial and deep layers, which are both divided into different fat compartments by fascia, ligaments, or muscles. Midfacial fat compartments tend to atrophy with age, specifically in the deep fat compartments while hypertrophy in the superficial fat compartments. Clinical applications show that fat volumetric restoration with deep medial cheek fat and Ristow's space can restore the appearance of midface effectively. In recent years, the researches of midfacial fat compartments have achieved obvious progress, which will provide new ideas and basis for fat volumetric restoration. Corresponding treatments are selected based on different sites and different layers with different aging changes, reshaping a more youthful midface.
Mitchell, Marion L; Henderson, Amanda; Jeffrey, Carol; Nulty, Duncan; Groves, Michele; Kelly, Michelle; Knight, Sabina; Glover, Pauline
2015-05-01
Objective Structured Clinical Examinations (OSCEs) are widely used in health professional education and should be based on sound pedagogical foundations. The aim of this study is to evaluate the feasibility and utility of using Best Practice Guidelines (BPGs) within an OSCE format in a broad range of tertiary education settings with under-graduate and post-graduate nursing and midwifery students. We evaluated how feasible it was to apply the BPGs to modify OSCEs in a course; students' perspective of the OSCE; and finally, if the BPG-revised OSCEs better prepared students for clinical practice when compared with the original OSCEs. A mixed method with surveys, focus groups and semi-structured interviews evaluated the BPGs within an OSCE. Four maximally different contexts across four sites in Australia were used. Participants included lecturers and undergraduate nursing students in high and low fidelity simulation settings; under-graduate midwifery students; and post-graduate rural and remote area nursing students. 691 students participated in revised OSCEs. Surveys were completed by 557 students; 91 students gave further feedback through focus groups and 14 lecturers participated in interviews. At all sites the BPGs were successfully used to modify and implement OSCEs. Students valued the realistic nature of the modified OSCEs which contributed to students' confidence and preparation for clinical practice. The lecturers considered the revised OSCEs enhanced student preparedness for their clinical placements. The BPGs have a broad applicability to OSCEs in a wide range of educational contexts with improved student outcomes. Students and lecturers identified the revised OSCEs enhanced student preparation for clinical practice. Subsequent examination of the BPGs saw further refinement to a set of eight BPGs that provide a sequential guide to their application in a way that is consistent with best practice curriculum design principles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cardiovascular genetics: technological advancements and applicability for dilated cardiomyopathy.
Kummeling, G J M; Baas, A F; Harakalova, M; van der Smagt, J J; Asselbergs, F W
2015-07-01
Genetics plays an important role in the pathophysiology of cardiovascular diseases, and is increasingly being integrated into clinical practice. Since 2008, both capacity and cost-efficiency of mutation screening of DNA have been increased magnificently due to the technological advancement obtained by next-generation sequencing. Hence, the discovery rate of genetic defects in cardiovascular genetics has grown rapidly and the financial threshold for gene diagnostics has been lowered, making large-scale DNA sequencing broadly accessible. In this review, the genetic variants, mutations and inheritance models are briefly introduced, after which an overview is provided of current clinical and technological applications in gene diagnostics and research for cardiovascular disease and in particular, dilated cardiomyopathy. Finally, a reflection on the future perspectives in cardiogenetics is given.
Case formulation and management using pattern-based formulation (PBF) methodology: clinical case 1.
Fernando, Irosh; Cohen, Martin
2014-02-01
A tool for psychiatric case formulation known as pattern-based formulation (PBF) has been recently introduced. This paper presents an application of this methodology in formulating and managing complex clinical cases. The symptomatology of the clinical presentation has been parsed into individual clinical phenomena and interpreted by selecting explanatory models. The clinical presentation demonstrates how PBF has been used as a clinical tool to guide clinicians' thinking, that takes a structured approach to manage multiple issues using a broad range of management strategies. In doing so, the paper also introduces a number of patterns related to the observed clinical phenomena that can be re-used as explanatory models when formulating other clinical cases. It is expected that this paper will assist clinicians, and particularly trainees, to better understand PBF methodology and apply it to improve their formulation skills.
Photoacoustic tomography and sensing in biomedicine
Li, Changhui; Wang, Lihong V.
2010-01-01
Photoacoustics has been broadly studied in biomedicine, for both human and small animal tissues. Photoacoustics uniquely combines the absorption contrast of light or radio frequency waves with ultrasound resolution. Moreover, it is non-ionizing and non-invasive, and is the fastest growing new biomedical method, with clinical applications on the way. This article provides a brief review of recent developments in photoacoustics in biomedicine, from basic principles to applications. The emphasized areas include the new imaging modalities, hybrid detection methods, photoacoustic contrast agents, and the photoacoustic Doppler effect, as well as translational research topics. PMID:19724102
Anisha, C; Sachidanandan, P; Radhakrishnan, E K
2018-03-01
The bioactivity spectrum of fungal endophytes isolated from Zingiber officinale was analyzed against clinical pathogens and against the phytopathogen Pythium myriotylum, which causes Pythium rot in ginger. One of the isolates GFM13 showed broad bioactivity against various pathogens tested including P. myriotylum. The spore suspension as well as the culture filtrate of the endophytic fungal isolate was found to effectively protect ginger rhizomes from Pythium rot. By molecular identification, the fungal endophyte was identified as Paraconiothyrium sp. The bioactive compound produced by the isolate was separated by bioactivity-guided fractionation and was identified by GC-MS as danthron, an anthraquinone derivative. PCR amplification showed the presence of non-reducing polyketide synthase gene (NR-PKS) in the endophyte GFM13, which is reported to be responsible for the synthesis of anthraquinones in fungi. This is the first report of danthron being produced as the biologically active component of Paraconiothyrium sp. Danthron is reported to have wide pharmaceutical and agronomic applications which include its use as a fungicide in agriculture. The broad-spectrum antimicrobial activity of danthron and the endophytic origin of Paraconiothyrium sp. offer immense applications of the study.
Renewable Energy for Rural Health Clinics (Energia Removable para Centros de Salud Rurales)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, A. C.; Olson, K.
This guide provides a broad understanding of the technical, social, and organizational aspects of health clinic electrification, especially through the use of renewable energy sources. It is intended to be used primarily by decision makers within governments or private agencies to accurately assess their health clinic's needs, select appropriate and cost-effective technologies to meet those needs, and to put into place effective infrastructure to install and maintain the hardware. This is the first in a series of rural applications guidebooks that the National Renewable Energy Laboratory (NREL) Village Power Program is commissioning to couple commercial renewable systems with rural applications.more » The guidebooks are complemented by NREL's Village Power Program's development activities, international pilot projects, and visiting professionals program. For more information on the NREL Village Power Program, visit the Renewables for Sustainable Village Power web site at http://www.rsvp.nrel .gov/rsvp/.« less
Adeno-associated Virus as a Mammalian DNA Vector
SALGANIK, MAX; HIRSCH, MATTHEW L.; SAMULSKI, RICHARD JUDE
2015-01-01
In the nearly five decades since its accidental discovery, adeno-associated virus (AAV) has emerged as a highly versatile vector system for both research and clinical applications. A broad range of natural serotypes, as well as an increasing number of capsid variants, has combined to produce a repertoire of vectors with different tissue tropisms, immunogenic profiles and transduction efficiencies. The story of AAV is one of continued progress and surprising discoveries in a viral system that, at first glance, is deceptively simple. This apparent simplicity has enabled the advancement of AAV into the clinic, where despite some challenges it has provided hope for patients and a promising new tool for physicians. Although a great deal of work remains to be done, both in studying the basic biology of AAV and in optimizing its clinical application, AAV vectors are currently the safest and most efficient platform for gene transfer in mammalian cells. PMID:26350320
Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo.
Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin; Yao, Junjie; Cai, Xin; Maslov, Konstantin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V
2012-08-01
At present, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures that provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high-resolution images, but also is safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast fundamentally limits its ability to provide physiologically specific functional information. By contrast, photoacoustic endoscopy possesses a unique combination of functional optical contrast and high spatial resolution at clinically relevant depths, ideal for imaging soft tissues. With these attributes, photoacoustic endoscopy can overcome the current limitations of ultrasound endoscopy. Moreover, the benefits of photoacoustic imaging do not come at the expense of existing ultrasound functions; photoacoustic endoscopy systems are inherently compatible with ultrasound imaging, thereby enabling multimodality imaging with complementary contrast. Here we present simultaneous photoacoustic and ultrasonic dual-mode endoscopy and show its ability to image internal organs in vivo, thus illustrating its potential clinical application.
Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo
Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin; Yao, Junjie; Cai, Xin; Maslov, Konstantin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.
2013-01-01
Presently, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures which provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high resolution images, it is also safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast fundamentally limits its ability to provide physiologically-specific functional information. By contrast, photoacoustic endoscopy possesses a unique combination of functional optical contrast and high spatial resolution at clinically-relevant depths, ideal for soft tissue imaging. With these attributes, photoacoustic endoscopy can overcome the current limitations of ultrasound endoscopy. Moreover, the benefits of photoacoustic imaging do not come at the expense of existing ultrasound functions; photoacoustic endoscopy systems are inherently compatible with ultrasound imaging, enabling multi-modality imaging with complementary contrast. Here, we present simultaneous photoacoustic and ultrasonic dual-mode endoscopy and demonstrate its ability to image internal organs in vivo, illustrating its potential clinical application. PMID:22797808
Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.
Yu, William W
2008-10-01
Quantum dots (QDs) are generally nanosized inorganic particles. They have distinctive size-dependent optical properties due to their very small size (mostly < 10 nm). QDs are regarded as promising new fluorescent materials for biological labeling and imaging because of their superior properties compared with traditional organic molecular dyes. These properties include high quantum efficiency, long-term photostability and very narrow emission but broad absorption spectra. Recent developments in synthesizing high quality semiconductor QDs (mainly metal-chalcogenide compounds) and forming biocompatible structures for biomedical applications are discussed in this paper. This information may facilitate the research to create new materials/technologies for future clinical applications.
NASA Astrophysics Data System (ADS)
Monroy, Guillermo L.; Won, Jungeun; Spillman, Darold R.; Dsouza, Roshan; Boppart, Stephen A.
2017-12-01
Since the inception of optical coherence tomography (OCT), advancements in imaging system design and handheld probes have allowed for numerous advancements in disease diagnostics and characterization of the structural and optical properties of tissue. OCT system developers continue to reduce form factor and cost, while improving imaging performance (speed, resolution, etc.) and flexibility for applicability in a broad range of fields, and nearly every clinical specialty. An extensive array of components to construct customized systems has also become available, with a range of commercial entities that produce high-quality products, from single components to full systems, for clinical and research use. Many advancements in the development of these miniaturized and portable systems can be linked back to a specific challenge in academic research, or a clinical need in medicine or surgery. Handheld OCT systems are discussed and explored for various applications. Handheld systems are discussed in terms of their relative level of portability and form factor, with mention of the supporting technologies and surrounding ecosystem that bolstered their development. Additional insight from our efforts to implement systems in several clinical environments is provided. The trend toward well-designed, efficient, and compact handheld systems paves the way for more widespread adoption of OCT into point-of-care or point-of-procedure applications in both clinical and commercial settings.
Farrell, John J.; Hujer, Andrea M.; Sampath, Rangarajan; Bonomo, Robert A.
2015-01-01
Broad-range 16S ribosomal RNA gene PCR coupled with Sanger sequencing was originally employed by soil scientists and was subsequently adapted for clinical applications. PCR coupled with electrospray ionization mass spectrometry has also progressed from initial applications in the detection of organisms from environmental samples into the clinical realm and has demonstrated promise in detection of pathogens in clinical specimens obtained from patients with suspected infection but negative cultures. We review studies of multiplex PCR, 16S ribosomal RNA gene PCR and sequencing and PCR coupled with electrospray ionization mass spectrometry for detection of bacteria in specimens that were obtained from patients during or after administration of antibiotic treatment, and examine the role of each for assisting in antimicrobial treatment and stewardship efforts. Following an exploration of the available data in this field we discuss the opportunities that the preliminary investigations reveal, as well as the challenges faced with implementation of these strategies in clinical practice. PMID:25523281
Pragmatic Applications of RE-AIM for Health Care Initiatives in Community and Clinical Settings
Estabrooks, Paul E.
2018-01-01
The RE-AIM (Reach Effectiveness Adoption Implementation Maintenance) planning and evaluation framework has been applied broadly, but users often have difficulty in applying the model because of data collection needs across multiple domains and sources. Questions in the more common “who, what, where, how, when, and why” format may be an effective guide to ensure that individual participants, organization staff, and the perspectives of the setting are considered in planning and evaluation. Such a format can also help users in typical community and clinical settings to identify which outcomes are most valued and to focus limited measurement resources. Translations of RE-AIM that are easy to understand and apply are needed for application in real-world community and clinical settings where research and evaluation resources are limited. The purpose of this article is to provide simplified, pragmatic, user-centered and stakeholder-centered recommendations to increase the use of RE-AIM in community and clinical settings and in translational research. PMID:29300695
Lansky, Alexandra J; Messé, Steven R; Brickman, Adam M; Dwyer, Michael; van der Worp, H Bart; Lazar, Ronald M; Pietras, Cody G; Abrams, Kevin J; McFadden, Eugene; Petersen, Nils H; Browndyke, Jeffrey; Prendergast, Bernard; Ng, Vivian G; Cutlip, Donald E; Kapadia, Samir; Krucoff, Mitchell W; Linke, Axel; Moy, Claudia Scala; Schofer, Joachim; van Es, Gerrit-Anne; Virmani, Renu; Popma, Jeffrey; Parides, Michael K; Kodali, Susheel; Bilello, Michel; Zivadinov, Robert; Akar, Joseph; Furie, Karen L; Gress, Daryl; Voros, Szilard; Moses, Jeffrey; Greer, David; Forrest, John K; Holmes, David; Kappetein, Arie P; Mack, Michael; Baumbach, Andreas
2017-02-14
Surgical and catheter-based cardiovascular procedures and adjunctive pharmacology have an inherent risk of neurological complications. The current diversity of neurological endpoint definitions and ascertainment methods in clinical trials has led to uncertainties in the neurological risk attributable to cardiovascular procedures and inconsistent evaluation of therapies intended to prevent or mitigate neurological injury. Benefit-risk assessment of such procedures should be on the basis of an evaluation of well-defined neurological outcomes that are ascertained with consistent methods and capture the full spectrum of neurovascular injury and its clinical effect. The Neurologic Academic Research Consortium is an international collaboration intended to establish consensus on the definition, classification, and assessment of neurological endpoints applicable to clinical trials of a broad range of cardiovascular interventions. Systematic application of the proposed definitions and assessments will improve our ability to evaluate the risks of cardiovascular procedures and the safety and effectiveness of preventive therapies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
10 CFR 33.16 - Application for other specific licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
....16 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.16 Application for other specific licenses. An application filed pursuant to part 30 of this chapter for a specific license other than one of broad scope will be...
10 CFR 33.16 - Application for other specific licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
....16 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.16 Application for other specific licenses. An application filed pursuant to part 30 of this chapter for a specific license other than one of broad scope will be...
10 CFR 33.16 - Application for other specific licenses.
Code of Federal Regulations, 2013 CFR
2013-01-01
....16 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.16 Application for other specific licenses. An application filed pursuant to part 30 of this chapter for a specific license other than one of broad scope will be...
10 CFR 33.16 - Application for other specific licenses.
Code of Federal Regulations, 2012 CFR
2012-01-01
....16 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.16 Application for other specific licenses. An application filed pursuant to part 30 of this chapter for a specific license other than one of broad scope will be...
10 CFR 33.16 - Application for other specific licenses.
Code of Federal Regulations, 2014 CFR
2014-01-01
....16 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.16 Application for other specific licenses. An application filed pursuant to part 30 of this chapter for a specific license other than one of broad scope will be...
Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E; Bailey-Kellogg, Chris
2017-01-01
Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics render them subject to immune surveillance within the patient's body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity.To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure-based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates.
Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E.; Bailey-Kellogg, Chris
2016-01-01
Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics renders them subject to immune surveillance within the patient’s body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity. To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure- based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates. PMID:27914063
Advances in Clinical and Biomedical Applications of Photoacoustic Imaging
Su, Jimmy L.; Wang, Bo; Wilson, Katheryne E.; Bayer, Carolyn L.; Chen, Yun-Sheng; Kim, Seungsoo; Homan, Kimberly A.; Emelianov, Stanislav Y.
2010-01-01
Importance of the field Photoacoustic imaging is an imaging modality that derives image contrast from the optical absorption coefficient of the tissue being imaged. The imaging technique is able to differentiate between healthy and diseased tissue with either deeper penetration or higher resolution than other functional imaging modalities currently available. From a clinical standpoint, photoacoustic imaging has demonstrated safety and effectiveness in diagnosing diseased tissue regions using either endogenous tissue contrast or exogenous contrast agents. Furthermore, the potential of photoacoustic imaging has been demonstrated in various therapeutic interventions ranging from drug delivery and release to image-guided therapy and monitoring. Areas covered in this review This article reviews the current state of photoacoustic imaging in biomedicine from a technological perspective, highlights various biomedical and clinical applications of photoacoustic imaging, and gives insights on future directions. What the reader will gain Readers will learn about the various applications of photoacoustic imaging, as well as the various contrast agents that can be used to assist photoacoustic imaging. This review will highlight both pre-clinical and clinical uses for photoacoustic imaging, as well as discuss some of the challenges that must be addressed to move photoacoustic imaging into the clinical realm. Take home message Photoacoustic imaging offers unique advantages over existing imaging modalities. The imaging field is broad with many exciting applications for detecting and diagnosing diseased tissue or processes. Photoacoustics is also used in therapeutic applications to identify and characterize the pathology and then to monitor the treatment. Although the technology is still in its infancy, much work has been done in the pre-clinical arena, and photoacoustic imaging is fast approaching the clinical setting. PMID:21344060
Smith, Geoffrey P; Williams, Theresa M
2017-01-01
There has been increasing reliance on policy directives as instruments for shaping clinical practice in health care, despite it being widely recognized that there is a significant translation gap between clinical policy and its implementation. Self-Determination Theory, a widely researched and empirically validated theory of human needs' fulfilment and motivation, offers a potentially valuable theoretical framework for understanding not only why the current policy environment has not led to the anticipated improvement in the quality and safety of clinical care but, importantly, also provides guidance about how organizations can create an environment that can nurture behavioural change in the workforce. We describe an alternative approach to clinical policy-making underpinned by Self-Determination Theory, which we believe has broad application for the science of clinical implementation theory.
Agmatine: clinical applications after 100 years in translation.
Piletz, John E; Aricioglu, Feyza; Cheng, Juei-Tang; Fairbanks, Carolyn A; Gilad, Varda H; Haenisch, Britta; Halaris, Angelos; Hong, Samin; Lee, Jong Eun; Li, Jin; Liu, Ping; Molderings, Gerhard J; Rodrigues, Ana Lúcia S; Satriano, Joseph; Seong, Gong Je; Wilcox, George; Wu, Ning; Gilad, Gad M
2013-09-01
Agmatine (decarboxylated arginine) has been known as a natural product for over 100 years, but its biosynthesis in humans was left unexplored owing to long-standing controversy. Only recently has the demonstration of agmatine biosynthesis in mammals revived research, indicating its exceptional modulatory action at multiple molecular targets, including neurotransmitter systems, nitric oxide (NO) synthesis and polyamine metabolism, thus providing bases for broad therapeutic applications. This timely review, a concerted effort by 16 independent research groups, draws attention to the substantial preclinical and initial clinical evidence, and highlights challenges and opportunities, for the use of agmatine in treating a spectrum of complex diseases with unmet therapeutic needs, including diabetes mellitus, neurotrauma and neurodegenerative diseases, opioid addiction, mood disorders, cognitive disorders and cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.
Recent Methods for Purification and Structure Determination of Oligonucleotides.
Zhang, Qiulong; Lv, Huanhuan; Wang, Lili; Chen, Man; Li, Fangfei; Liang, Chao; Yu, Yuanyuan; Jiang, Feng; Lu, Aiping; Zhang, Ge
2016-12-18
Aptamers are single-stranded DNA or RNA oligonucleotides that can interact with target molecules through specific three-dimensional structures. The excellent features, such as high specificity and affinity for target proteins, small size, chemical stability, low immunogenicity, facile chemical synthesis, versatility in structural design and engineering, and accessible for site-specific modifications with functional moieties, make aptamers attractive molecules in the fields of clinical diagnostics and biopharmaceutical therapeutics. However, difficulties in purification and structural identification of aptamers remain a major impediment to their broad clinical application. In this mini-review, we present the recently attractive developments regarding the purification and identification of aptamers. We also discuss the advantages, limitations, and prospects for the major methods applied in purifying and identifying aptamers, which could facilitate the application of aptamers.
Massive Broad Ligament Cellular Leiomyoma with Cystic Change: A Diagnostic Dilemma.
Sharma, Preeti; Zaheer, Sufian; Yadav, Amit Kumar; Mandal, Ashish Kumar
2016-04-01
Leiomyomas are known to arise from uterus, but rarely from broad ligament. Further, cellular leiomyoma of broad ligament is the least common variant reported in literature. The diagnostic dilemma arises when leiomyomas undergo degenerative changes. This poses both clinical and radiological difficulty in differentiating with an ovarian tumour. We present an unusual case of a huge broad ligament mass measuring 29x19x09cm, mimicking an ovarian tumour both clinically and radiologically. Histopathology revealed cellular leiomyoma of broad ligament with cystic and myxoid degeneration hereby being the second case reported in literature. This case is being presented not only because of the rare incidence but also due to its diagnostic confusion with ovarian malignancy on clinical evaluation and radiological findings.
Endotoxemia: methods of detection and clinical correlates.
Hurley, J C
1995-01-01
As an assay for endotoxin, the Limulus amebocyte lysate assay has several desirable properties: sensitivity, specificity, and potential for adaptation to a quantitative format. Several modifications have been developed to enhance its potential for clinical application. The modifications that allow quantitative measurement of endotoxin and also improve its application to blood samples are described in this review. In fluids other than blood, the detection of endotoxin with the Limulus amebocyte lysate assay can be used as an aid to identify the presence of gram-negative bacteria, and the assay has established utility. With blood, however, there are a range of factors that interfere with the detection of endotoxemia and there are disparate views with respect to the diagnostic and prognostic significance of the test results. In general, the clinical significance of the finding of endotoxemia broadly parallels the frequency and importance of gram-negative sepsis in the patient groups studied and a decline in endotoxin levels accompanies clinical improvement. However, with therapies designed to reduce levels of endotoxin, or to antagonize its effects, it is unclear whether clinical improvement occurs as a consequence of changes in the levels of endotoxemia. PMID:7621402
Application of Higuchi's fractal dimension from basic to clinical neurophysiology: A review.
Kesić, Srdjan; Spasić, Sladjana Z
2016-09-01
For more than 20 years, Higuchi's fractal dimension (HFD), as a nonlinear method, has occupied an important place in the analysis of biological signals. The use of HFD has evolved from EEG and single neuron activity analysis to the most recent application in automated assessments of different clinical conditions. Our objective is to provide an updated review of the HFD method applied in basic and clinical neurophysiological research. This article summarizes and critically reviews a broad literature and major findings concerning the applications of HFD for measuring the complexity of neuronal activity during different neurophysiological conditions. The source of information used in this review comes from the PubMed, Scopus, Google Scholar and IEEE Xplore Digital Library databases. The review process substantiated the significance, advantages and shortcomings of HFD application within all key areas of basic and clinical neurophysiology. Therefore, the paper discusses HFD application alone, combined with other linear or nonlinear measures, or as a part of automated methods for analyzing neurophysiological signals. The speed, accuracy and cost of applying the HFD method for research and medical diagnosis make it stand out from the widely used linear methods. However, only a combination of HFD with other nonlinear methods ensures reliable and accurate analysis of a wide range of neurophysiological signals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yager, Joel; Feinstein, Robert E
2017-04-01
Offering a new framework for understanding and studying basic dimensions of normal and abnormal human functioning and mental disorders, the National Institute of Mental Health (NIMH) has initiated the Research Domain Criteria (RDoC) project in which a series of higher order domains, representing major systems of emotion, cognition, motivation, and social behavior, and their constituent operationally defined constructs serve as organizing templates for further research and inquiry, eg, to discover validated biomarkers and endophenotypes. Cutting across traditional DSM diagnoses, the domains are defined as Negative Valence Systems, Positive Valence Systems, Cognitive Systems, Systems for Social Processes, and Arousal/Regulatory Systems. To inform educators, trainees, and practitioners about RDoC, alert them to potential practical applications, and encourage their broad exploration in clinical settings, this article reviews the RDoC domains and their subsystem constructs with regard to potential current clinical considerations and applications. We describe ways in which the RDoC domains and constructs offer transdiagnostic frameworks for complementing traditional practice; suggest clinical questions to help elucidate salient information; and, translating RDoC domains and constructs headings into clinically friendly language, offer a template for the psychiatric review of systems that can serve in clinical notes. © Copyright 2017 Physicians Postgraduate Press, Inc.
Smith, Hadley Stevens; Swint, J Michael; Lalani, Seema R; Yamal, Jose-Miguel; de Oliveira Otto, Marcia C; Castellanos, Stephan; Taylor, Amy; Lee, Brendan H; Russell, Heidi V
2018-05-14
Availability of clinical genomic sequencing (CGS) has generated questions about the value of genome and exome sequencing as a diagnostic tool. Analysis of reported CGS application can inform uptake and direct further research. This scoping literature review aims to synthesize evidence on the clinical and economic impact of CGS. PubMed, Embase, and Cochrane were searched for peer-reviewed articles published between 2009 and 2017 on diagnostic CGS for infant and pediatric patients. Articles were classified according to sample size and whether economic evaluation was a primary research objective. Data on patient characteristics, clinical setting, and outcomes were extracted and narratively synthesized. Of 171 included articles, 131 were case reports, 40 were aggregate analyses, and 4 had a primary economic evaluation aim. Diagnostic yield was the only consistently reported outcome. Median diagnostic yield in aggregate analyses was 33.2% but varied by broad clinical categories and test type. Reported CGS use has rapidly increased and spans diverse clinical settings and patient phenotypes. Economic evaluations support the cost-saving potential of diagnostic CGS. Multidisciplinary implementation research, including more robust outcome measurement and economic evaluation, is needed to demonstrate clinical utility and cost-effectiveness of CGS.
Chemical modification: the key to clinical application of RNA interference?
Corey, David R.
2007-01-01
RNA interference provides a potent and specific method for controlling gene expression in human cells. To translate this potential into a broad new family of therapeutics, it is necessary to optimize the efficacy of the RNA-based drugs. As discussed in this Review, it might be possible to achieve this optimization using chemical modifications that improve their in vivo stability, cellular delivery, biodistribution, pharmacokinetics, potency, and specificity. PMID:18060019
Rebrošová, Katarína; Šiler, Martin; Samek, Ota; Růžička, Filip; Bernatová, Silvie; Ježek, Jan; Zemánek, Pavel; Holá, Veronika
2017-08-01
Raman spectroscopy is an analytical method with a broad range of applications across multiple scientific fields. We report on a possibility to differentiate between two important Gram-positive species commonly found in clinical material - Staphylococcus aureus and Staphylococcus epidermidis - using this rapid noninvasive technique. For this, we tested 87 strains, 41 of S. aureus and 46 of S. epidermidis, directly from colonies grown on a Mueller-Hinton agar plate using Raman spectroscopy. The method paves a way for separation of these two species even on high number of samples and therefore, it can be potentially used in clinical diagnostics.
Clinical Natural Language Processing in languages other than English: opportunities and challenges.
Névéol, Aurélie; Dalianis, Hercules; Velupillai, Sumithra; Savova, Guergana; Zweigenbaum, Pierre
2018-03-30
Natural language processing applied to clinical text or aimed at a clinical outcome has been thriving in recent years. This paper offers the first broad overview of clinical Natural Language Processing (NLP) for languages other than English. Recent studies are summarized to offer insights and outline opportunities in this area. We envision three groups of intended readers: (1) NLP researchers leveraging experience gained in other languages, (2) NLP researchers faced with establishing clinical text processing in a language other than English, and (3) clinical informatics researchers and practitioners looking for resources in their languages in order to apply NLP techniques and tools to clinical practice and/or investigation. We review work in clinical NLP in languages other than English. We classify these studies into three groups: (i) studies describing the development of new NLP systems or components de novo, (ii) studies describing the adaptation of NLP architectures developed for English to another language, and (iii) studies focusing on a particular clinical application. We show the advantages and drawbacks of each method, and highlight the appropriate application context. Finally, we identify major challenges and opportunities that will affect the impact of NLP on clinical practice and public health studies in a context that encompasses English as well as other languages.
Yadavalli, Tejabhiram; Shukla, Deepak
2016-01-01
Nanotechnology is increasingly playing important roles in various fields including virology. The emerging use of metal or metal oxide nanoparticles in virus targeting formulations shows the promise of improved diagnostic or therapeutic ability of the agents while uniquely enhancing the prospects of targeted drug delivery. Although a number of nanoparticles varying in composition, size, shape, and surface properties have been approved for human use, the candidates being tested or approved for clinical diagnosis and treatment of viral infections are relatively less in number. Challenges remain in this domain due to a lack of essential knowledge regarding the in vivo comportment of nanoparticles during viral infections. This review provides a broad overview of recent advances in diagnostic, prophylactic and therapeutic applications of metal and metal oxide nanoparticles in Human Immunodeficiency Virus, Hepatitis virus, influenza virus and Herpes virus infections. Types of nanoparticles commonly used and their broad applications have been explained in this review. PMID:27575283
Mohanna, Kay; Cowpe, Jenny
2014-01-01
Introduction Clinicians are being asked to play a major role leading the NHS. While much is written on about clinical leadership, little research in the medical literature has examined perceptions of the term or mapped the perceived attributes required for success. Objective To capture the views of senior UK healthcare leaders regarding their perception of the term `clinical leadership' and the cultural backdrop in which it is being espoused. Setting UK Healthcare sector Participants Senior UK Healthcare leaders Methods Twenty senior healthcare leaders including a former Health Minister, NHS Executives, NHS Strategic Health Authority, PCT and Acute Trust chief executives and medical directors, Medical Deans and other key actors in the UK medical leadership arena were interviewed between 2010 and 2011 using a semi-structured interview technique. Using grounded theory, themes were identified and subsequently analysed in an attempt to answer the broad questions posed. Main outcome measures Not applicable for a qualitative research project Results A number of themes emerged from this qualitative study. First, there was evidence of changing attitudes among doctors, particularly trainees, towards becoming involved in clinical leadership. However, there was unease over the ambiguity of the term ‘clinical leadership’ and the implications for the future. There was, however, broad agreement as to the perceived attributes and skills required for success in healthcare leadership. Conclusions Clinical leadership is often perceived to be doctor centric and ‘Healthcare Leadership’ may be a more inclusive term. An understanding of the historical medico-political context of the leadership debate is required by all healthcare leaders to fully understand the challenges of changing healthcare culture. Whilst the broad attributes deemed essential for success as a healthcare leaders are not new, significant effort and investment, including a physical Healthcare Academy, are required to best utilise and harmonise the breadth of leadership talent in the NHS. PMID:25013095
Hale, Kelli; Capra, Sandra; Bauer, Judy
2016-12-01
To provide an overview of (1) the consistency of Type 2 Diabetes Clinical Practice Guidelines recommendations on the delivery of nutrition therapy and (2) Clinical Practice Guideline quality. Large international clinical practice guideline repositories, diabetes organisation websites, and electronic databases (Pubmed, Scopus), were searched to identify Clinical Practice Guidelines for adults with type 2 diabetes published 2005 to August 2014. Recommendations on the delivery of nutrition therapy were extracted and inductive content analysis was used to analyse consistency. Two researchers independently assessed guideline quality using the AGREE II tool. Nine topics were identified from the recommendations. Overall the consistency of the recommendations was related to guideline type. Compared with nutrition-specific guidelines, the broad ones had a broader focus and included more patient-focused recommendations. The ten Clinical Practice Guidelines assessed included six broad guidelines and four nutrition specific guidelines. Based on AGREE II analysis, the broad guidelines were higher quality than nutrition-specific ones. Broad Clinical Practice Guidelines were higher quality and included more patient-focused recommendations than nutrition-specific ones. Our findings suggest a need for nutrition-specific guidelines to be modified to include greater patient-focus, or for practitioners delivering nutrition therapy to adopt broad Clinical Practice Guidelines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Collaborative medical informatics research using the Internet and the World Wide Web.
Shortliffe, E. H.; Barnett, G. O.; Cimino, J. J.; Greenes, R. A.; Huff, S. M.; Patel, V. L.
1996-01-01
The InterMed Collaboratory is an interdisciplinary project involving six participating medical institutions. There are two broad mandates for the effort. The first is to further the development, sharing, and demonstration of numerous software and system components, data sets, procedures and tools that will facilitate the collaborations and support the application goals of these projects. The second is to provide a distributed suite of clinical applications, guidelines, and knowledge-bases for clinical, educational, and administrative purposes. To define the interactions among the components, datasets, procedures, and tools that we are producing and sharing, we have identified a model composed of seven tiers, each of which supports the levels above it. In this paper we briefly describe those tiers and the nature of the collaborative process with which we have experimented. PMID:8947641
Workshop on neutron capture therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairchild, R.G.; Bond, V.P.
1986-01-01
Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed tomore » be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.« less
Harden, Samantha M.; Smith, Matthew Lee; Ory, Marcia G.; Smith-Ray, Renae L.; Estabrooks, Paul A.; Glasgow, Russell E.
2018-01-01
The RE-AIM Framework is a planning and evaluation model that has been used in a variety of settings to address various programmatic, environmental, and policy innovations for improving population health. In addition to the broad application and diverse use of the framework, there are lessons learned and recommendations for the future use of the framework across clinical, community, and corporate settings. The purposes of this article are to: (A) provide a brief overview of the RE-AIM Framework and its pragmatic use for planning and evaluation; (B) offer recommendations to facilitate the application of RE-AIM in clinical, community, and corporate settings; and (C) share perspectives and lessons learned about employing RE-AIM dimensions in the planning, implementation, and evaluation phases within these different settings. In this article, we demonstrate how the RE-AIM concepts and elements within each dimension can be applied by researchers and practitioners in diverse settings, among diverse populations and for diverse health topics. PMID:29623270
Mehta, A M; Sonabend, A M; Bruce, J N
2017-04-01
Convection-enhanced delivery (CED) is a promising technique that generates a pressure gradient at the tip of an infusion catheter to deliver therapeutics directly through the interstitial spaces of the central nervous system. It addresses and offers solutions to many limitations of conventional techniques, allowing for delivery past the blood-brain barrier in a targeted and safe manner that can achieve therapeutic drug concentrations. CED is a broadly applicable technique that can be used to deliver a variety of therapeutic compounds for a diversity of diseases, including malignant gliomas, Parkinson's disease, and Alzheimer's disease. While a number of technological advances have been made since its development in the early 1990s, clinical trials with CED have been largely unsuccessful, and have illuminated a number of parameters that still need to be addressed for successful clinical application. This review addresses the physical principles behind CED, limitations in the technique, as well as means to overcome these limitations, clinical trials that have been performed, and future developments.
Clinical Applications of Hallucinogens: A Review
Garcia-Romeu, Albert; Kersgaard, Brennan; Addy, Peter H.
2016-01-01
Hallucinogens fall into several different classes, as broadly defined by pharmacological mechanism of action, and chemical structure. These include psychedelics, entactogens, dissociatives, and other atypical hallucinogens. Although these classes do not share a common primary mechanism of action, they do exhibit important similarities in their ability to occasion temporary but profound alterations of consciousness, involving acute changes in somatic, perceptual, cognitive, and affective processes. Such effects likely contribute to their recreational use. However, a growing body of evidence indicates that these drugs may have therapeutic applications beyond their potential for abuse. This review will present data on several classes of hallucinogens with a particular focus on psychedelics, entactogens, and dissociatives, for which clinical utility has been most extensively documented. Information on each class is presented in turn, tracing relevant historical insights, highlighting similarities and differences between the classes from the molecular to the behavioral level, and presenting the most up-to-date information on clinically oriented research with these substances, with important ramifications for their potential therapeutic value. PMID:27454674
Semantic Technologies for Re-Use of Clinical Routine Data.
Kreuzthaler, Markus; Martínez-Costa, Catalina; Kaiser, Peter; Schulz, Stefan
2017-01-01
Routine patient data in electronic patient records are only partly structured, and an even smaller segment is coded, mainly for administrative purposes. Large parts are only available as free text. Transforming this content into a structured and semantically explicit form is a prerequisite for querying and information extraction. The core of the system architecture presented in this paper is based on SAP HANA in-memory database technology using the SAP Connected Health platform for data integration as well as for clinical data warehousing. A natural language processing pipeline analyses unstructured content and maps it to a standardized vocabulary within a well-defined information model. The resulting semantically standardized patient profiles are used for a broad range of clinical and research application scenarios.
Zhang, Yi-Fan; Tian, Yu; Zhou, Tian-Shu; Araki, Kenji; Li, Jing-Song
2016-01-01
The broad adoption of clinical decision support systems within clinical practice has been hampered mainly by the difficulty in expressing domain knowledge and patient data in a unified formalism. This paper presents a semantic-based approach to the unified representation of healthcare domain knowledge and patient data for practical clinical decision making applications. A four-phase knowledge engineering cycle is implemented to develop a semantic healthcare knowledge base based on an HL7 reference information model, including an ontology to model domain knowledge and patient data and an expression repository to encode clinical decision making rules and queries. A semantic clinical decision support system is designed to provide patient-specific healthcare recommendations based on the knowledge base and patient data. The proposed solution is evaluated in the case study of type 2 diabetes mellitus inpatient management. The knowledge base is successfully instantiated with relevant domain knowledge and testing patient data. Ontology-level evaluation confirms model validity. Application-level evaluation of diagnostic accuracy reaches a sensitivity of 97.5%, a specificity of 100%, and a precision of 98%; an acceptance rate of 97.3% is given by domain experts for the recommended care plan orders. The proposed solution has been successfully validated in the case study as providing clinical decision support at a high accuracy and acceptance rate. The evaluation results demonstrate the technical feasibility and application prospect of our approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
HDGF: a novel jack-of-all-trades in cancer.
Bao, Cihang; Wang, Jianbo; Ma, Wei; Wang, Xintong; Cheng, Yufeng
2014-12-01
HDGF is an important regulator of a broad range of cancer cell activities and plays important roles in cancer cell transformation, apoptosis, angiogenesis and metastasis. Such a divergent influence of HDGF on cancer cell activities derives from its multiple inter- and sub-cellular localizations where it interacts with a range of different binding partners. Interestingly, high levels of HDGF could be detected in patients' serum of some cancers. This review is focused on the role of HDGF in tumorigenesis and metastasis, and provides insight for application in clinical cancer therapy as well as its clinical implications as a prognostic marker in cancer progression.
Clinical Use of PPARγ Ligands in Cancer
Hatton, Jennifer L.; Yee, Lisa D.
2008-01-01
The role of PPARγ in adipocyte differentiation has fueled intense interest in the function of this steroid nuclear receptor for regulation of malignant cell growth and differentiation. Given the antiproliferative and differentiating effects of PPARγ ligands on liposarcoma cells, investigation of PPARγ expression and ligand activation in other solid tumors such as breast, colon, and prostate cancers ensued. The anticancer effects of PPARγ ligands in cell culture and rodent models of a multitude of tumor types suggest broad applicability of these agents to cancer therapy. This review focuses on the clinical use of PPARγ ligands, specifically the thiazolidinediones, for the treatment and prevention of cancer. PMID:19125177
Review of optical coherence tomography in oncology
NASA Astrophysics Data System (ADS)
Wang, Jianfeng; Xu, Yang; Boppart, Stephen A.
2017-12-01
The application of optical coherence tomography (OCT) in the field of oncology has been prospering over the past decade. OCT imaging has been used to image a broad spectrum of malignancies, including those arising in the breast, brain, bladder, the gastrointestinal, respiratory, and reproductive tracts, the skin, and oral cavity, among others. OCT imaging has initially been applied for guiding biopsies, for intraoperatively evaluating tumor margins and lymph nodes, and for the early detection of small lesions that would often not be visible on gross examination, tasks that align well with the clinical emphasis on early detection and intervention. Recently, OCT imaging has been explored for imaging tumor cells and their dynamics, and for the monitoring of tumor responses to treatments. This paper reviews the evolution of OCT technologies for the clinical application of OCT in surgical and noninvasive interventional oncology procedures and concludes with a discussion of the future directions for OCT technologies, with particular emphasis on their applications in oncology.
Lopez-Gordo, M. A.; Sanchez-Morillo, D.; Valle, F. Pelayo
2014-01-01
Electroencephalography (EEG) emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications. PMID:25046013
Povidone iodine in wound healing: A review of current concepts and practices.
Bigliardi, Paul Lorenz; Alsagoff, Syed Abdul Latiff; El-Kafrawi, Hossam Yehia; Pyon, Jai-Kyong; Wa, Chad Tse Cheuk; Villa, Martin Anthony
2017-08-01
Of the many antimicrobial agents available, iodophore-based formulations such as povidone iodine have remained popular after decades of use for antisepsis and wound healing applications due to their favorable efficacy and tolerability. Povidone iodine's broad spectrum of activity, ability to penetrate biofilms, lack of associated resistance, anti-inflammatory properties, low cytotoxicity and good tolerability have been cited as important factors, and no negative effect on wound healing has been observed in clinical practice. Over the past few decades, numerous reports on the use of povidone iodine have been published, however, many of these studies are of differing design, endpoints, and quality. More recent data clearly supports its use in wound healing. Based on data collected through PubMed using specified search criteria based on above topics and clinical experience of the authors, this article will review preclinical and clinical safety and efficacy data on the use of povidone iodine in wound healing and its implications for the control of infection and inflammation, together with the authors' advice for the successful treatment of acute and chronic wounds. Povidone iodine has many characteristics that position it extraordinarily well for wound healing, including its broad antimicrobial spectrum, lack of resistance, efficacy against biofilms, good tolerability and its effect on excessive inflammation. Due to its rapid, potent, broad-spectrum antimicrobial properties, and favorable risk/benefit profile, povidone iodine is expected to remain a highly effective treatment for acute and chronic wounds in the foreseeable future. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Advanced functional polymers for regenerative and therapeutic dentistry.
Lai, W-F; Oka, K; Jung, H-S
2015-07-01
Use of ceramics and polymers continues to dominate clinical procedures in modern dentistry. Polymers have provided the basis for adhesives, tissue void fillers, and artificial replacements for whole teeth. They have been remarkably effective in the clinic at restoration of major dental functions after damage or loss of teeth. With the rapid development of polymer science, dental materials science has significantly lagged behind in harnessing these advanced polymer products. What they offer is new and unique properties superior to traditional polymers and crucially a range of properties that more closely match natural biomaterials. Therefore, we should pursue more vigorously the benefits of advanced polymers in dentistry. In this review, we highlight how the latest generation of advanced polymers will enhance the application of materials in the dental clinic using numerous promising examples. Polymers have a broad range of applications in modern dentistry. Some major applications are to construct frameworks that mimic the precise structure of tissues, to restore tooth organ function, and to deliver bioactive agents to influence cell behavior from the inside. The future of polymers in dentistry must include all these new enhancements to increase biological and clinical effectiveness beyond what can be achieved with traditional biomaterials. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rigorously Assessing Whether the Data Backs the Back School
Vinh, David T.; Johnson, Craig W.; Phelps, Cynthia L.
2003-01-01
A rigorous between-subjects methodology employing independent random samples and having broad clinical applicability was designed and implemented to evaluate the effectiveness of back safety and patient transfer training interventions for both hospital nurses and nursing assistants. Effects upon self-efficacy, cognitive, and affective measures are assessed for each of three back safety procedures. The design solves the problem of obtaining randomly assigned independent controls where all experimental subjects must participate in the training interventions. PMID:14728544
Recent progress in the therapeutic applications of nanotechnology.
Solomon, Melani; D'Souza, Gerard G M
2011-04-01
The field of pharmaceutical and medical nanotechnology has grown rapidly in recent decades and offers much promise for therapeutic advances. This review is intended to serve as a quick summary of the major areas in the therapeutic application of nanotechnology. Nanotechnology for therapeutic application falls into two broad categories of particulate systems and nanoengineered devices. Recent studies appear to focus on the development of multifunctional particles for drug delivery and imaging and the development of nanotechnology-based biosensors for diagnostic applications. Cancer treatment and diagnosis appears to be the principal focus of many of these applications, but nanotechnology is also finding application in tissue engineering and surface engineering of medical implants. Particulate drug delivery systems in general appear to be poised for increased use in the clinic, whereas nanoengineered implants and diagnostic sensors might well be the next major wave in the medical use of nanotechnology.
Graduate admissions in clinical neuropsychology: the importance of undergraduate training.
Karazsia, Bryan T; Stavnezer, Amy Jo; Reeves, Jonathan W
2013-11-01
Discussions of and recommendations for the training of clinical neuropsychologists exist at the doctoral, internship, and post-doctoral level. With few exceptions, the literature on undergraduate preparations in clinical neuropsychology is sparse and lacks empirical evidence. In the present study, graduate-level faculty and current trainees completed surveys about graduate school preparations. Faculty expectations of minimum and ideal undergraduate training were highest for research methods, statistics, and assessment. Preferences for "goodness of fit" also emerged as important admissions factors. These results offer evidence for desirable undergraduate preparations for advanced study in clinical neuropsychology. Although undergraduate training in psychology is intentionally broad, results from this study suggest that students who desire advanced study in clinical neuropsychology need to tailor their experiences to be competitive in the application process. The findings have implications for prospective graduate students, faculty who train and mentor undergraduates, and faculty who serve on admissions committees.
Knowledge as a Service at the Point of Care.
Shellum, Jane L; Freimuth, Robert R; Peters, Steve G; Nishimura, Rick A; Chaudhry, Rajeev; Demuth, Steve J; Knopp, Amy L; Miksch, Timothy A; Milliner, Dawn S
2016-01-01
An electronic health record (EHR) can assist the delivery of high-quality patient care, in part by providing the capability for a broad range of clinical decision support, including contextual references (e.g., Infobuttons), alerts and reminders, order sets, and dashboards. All of these decision support tools are based on clinical knowledge; unfortunately, the mechanisms for managing rules, order sets, Infobuttons, and dashboards are often unrelated, making it difficult to coordinate the application of clinical knowledge to various components of the clinical workflow. Additional complexity is encountered when updating enterprise-wide knowledge bases and delivering the content through multiple modalities to different consumers. We present the experience of Mayo Clinic as a case study to examine the requirements and implementation challenges related to knowledge management across a large, multi-site medical center. The lessons learned through the development of our knowledge management and delivery platform will help inform the future development of interoperable knowledge resources.
Knowledge as a Service at the Point of Care
Shellum, Jane L.; Freimuth, Robert R.; Peters, Steve G.; Nishimura, Rick A.; Chaudhry, Rajeev; Demuth, Steve J.; Knopp, Amy L.; Miksch, Timothy A.; Milliner, Dawn S.
2016-01-01
An electronic health record (EHR) can assist the delivery of high-quality patient care, in part by providing the capability for a broad range of clinical decision support, including contextual references (e.g., Infobuttons), alerts and reminders, order sets, and dashboards. All of these decision support tools are based on clinical knowledge; unfortunately, the mechanisms for managing rules, order sets, Infobuttons, and dashboards are often unrelated, making it difficult to coordinate the application of clinical knowledge to various components of the clinical workflow. Additional complexity is encountered when updating enterprise-wide knowledge bases and delivering the content through multiple modalities to different consumers. We present the experience of Mayo Clinic as a case study to examine the requirements and implementation challenges related to knowledge management across a large, multi-site medical center. The lessons learned through the development of our knowledge management and delivery platform will help inform the future development of interoperable knowledge resources. PMID:28269911
Strategies For Clinical Implementation: Precision Oncology At Three Distinct Institutions.
Nadauld, Lincoln D; Ford, James M; Pritchard, Daryl; Brown, Thomas
2018-05-01
Despite rapid advances in molecular diagnostics and targeted therapeutics, the adoption of precision medicine into clinical oncology workflows has been slow. Questions about clinical utility, inconsistent reimbursement for molecular diagnostics, and limited access to targeted therapies are some of the major hurdles that have hampered clinical adoption. Despite these challenges, providers have invested in precision medicine programs in an ongoing search for innovative care models to deliver improved patient outcomes and achieve economic gains. We describe the precision oncology medicine programs implemented by an integrated delivery system, a community care center, and an academic medical center, to demonstrate the approaches and challenges associated with clinical implementation efforts designed to advance this treatment paradigm. Payer policies that include coverage for broad genomic testing panels would support the broader application of precision medicine, deepen research benefits, and bring targeted therapies to more patients with advanced cancer.
Mastren, Tara; Radchenko, Valery; Bach, Hong T.; ...
2017-06-01
Rhenium-186 g (t 1/2 = 3.72 d) is a β– emitting isotope suitable for theranostic applications. Current production methods rely on reactor production by way of the reaction 185Re(n,γ) 186gRe, which results in low specific activities limiting its use for cancer therapy. Production via charged particle activation of enriched 186W results in a 186gRe product with a much specific activity, allowing it to be used more broadly for targeted radiotherapy applications. Furthermore, this targets the unmet clinical need for more efficient radiotherapeutics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mastren, Tara; Radchenko, Valery; Bach, Hong T.
Rhenium-186 g (t 1/2 = 3.72 d) is a β– emitting isotope suitable for theranostic applications. Current production methods rely on reactor production by way of the reaction 185Re(n,γ) 186gRe, which results in low specific activities limiting its use for cancer therapy. Production via charged particle activation of enriched 186W results in a 186gRe product with a much specific activity, allowing it to be used more broadly for targeted radiotherapy applications. Furthermore, this targets the unmet clinical need for more efficient radiotherapeutics.
The recent progress of isoxazole in medicinal chemistry.
Zhu, Jie; Mo, Jun; Lin, Hong-Zhi; Chen, Yao; Sun, Hao-Peng
2018-05-28
Isoxazole compounds exhibit a wide spectrum of targets and broad biological activities. Developing compounds with heterocycle rings has been one of the trends. The integration of isoxazole ring can offer improved physical-chemical properties. Because of the unique profiles, isoxazole ring becomes a popular moiety in compounds design. In this review article, the major focus has been paid to the applications of isoxazole compounds in treating multiple diseases, including anticancer, antimicrobial, anti-inflammatory, etc. Strategies for compounds design for preclinical, clinical, and FDA approved drugs were discussed. Also, the emphasis has been addressed to the future perspectives and trend for the application. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cardiovascular magnetic resonance in adults with previous cardiovascular surgery.
von Knobelsdorff-Brenkenhoff, Florian; Trauzeddel, Ralf Felix; Schulz-Menger, Jeanette
2014-03-01
Cardiovascular magnetic resonance (CMR) is a versatile non-invasive imaging modality that serves a broad spectrum of indications in clinical cardiology and has proven evidence. Most of the numerous applications are appropriate in patients with previous cardiovascular surgery in the same manner as in non-surgical subjects. However, some specifics have to be considered. This review article is intended to provide information about the application of CMR in adults with previous cardiovascular surgery. In particular, the two main scenarios, i.e. following coronary artery bypass surgery and following heart valve surgery, are highlighted. Furthermore, several pictorial descriptions of other potential indications for CMR after cardiovascular surgery are given.
NASA Astrophysics Data System (ADS)
Hoffman, Kenneth J.; Keithley, Hudson
1994-12-01
There are few systems which aggregate standardized pertinent clinical observations of discrete patient problems and resolutions. The systematic information supplied by clinicians is generally provided to justify reimbursement from insurers. Insurers, by their nature, and expert in modeling health care costs by diagnosis, procedures, and population risk groups. Medically, they rely on clinician generated diagnostic and coded procedure information. Clinicians will document a patient's status at a discrete point in time through narrative. Clinical notes do not support aggregate and systematic analysis of outcome. A methodology exists and has been used by the US Army Drug and Alcohol Program to model the clinical activities, associated costs, and data requirements of an outpatient clinic. This has broad applicability for a comprehensive health care system to which patient costs and data requirements can be established.
NASA Astrophysics Data System (ADS)
Sgrignani, Jacopo; De Luca, Filomena; Torosyan, Hayarpi; Docquier, Jean-Denis; Duan, Da; Novati, Beatrice; Prati, Fabio; Colombo, Giorgio; Grazioso, Giovanni
2016-10-01
β-Lactamases are bacterial enzymes conferring resistance to β-lactam antibiotics in clinically-relevant pathogens, and represent relevant drug targets. Recently, the identification of new boronic acids (i.e. RPX7009) paved the way to the clinical application of these molecules as potential drugs. Here, we screened in silico a library of 1400 boronic acids as potential AmpC β-lactamase inhibitors. Six of the most promising candidates were evaluated in biochemical assays leading to the identification of potent inhibitors of clinically-relevant β-lactamases like AmpC, KPC-2 and CTX-M-15. One of the selected compounds showed nanomolar K i value with the clinically-relevant KPC-2 carbapenemase, while another one exhibited broad spectrum inhibition, being also active on Enterobacter AmpC and the OXA-48 class D carbapenemase.
Valle, Xavier; Alentorn-Geli, Eduard; Tol, Johannes L; Hamilton, Bruce; Garrett, William E; Pruna, Ricard; Til, Lluís; Gutierrez, Josep Antoni; Alomar, Xavier; Balius, Ramón; Malliaropoulos, Nikos; Monllau, Joan Carles; Whiteley, Rodney; Witvrouw, Erik; Samuelsson, Kristian; Rodas, Gil
2017-07-01
Muscle injuries are among the most common injuries in sport and continue to be a major concern because of training and competition time loss, challenging decision making regarding treatment and return to sport, and a relatively high recurrence rate. An adequate classification of muscle injury is essential for a full understanding of the injury and to optimize its management and return-to-play process. The ongoing failure to establish a classification system with broad acceptance has resulted from factors such as limited clinical applicability, and the inclusion of subjective findings and ambiguous terminology. The purpose of this article was to describe a classification system for muscle injuries with easy clinical application, adequate grouping of injuries with similar functional impairment, and potential prognostic value. This evidence-informed and expert consensus-based classification system for muscle injuries is based on a four-letter initialism system: MLG-R, respectively referring to the mechanism of injury (M), location of injury (L), grading of severity (G), and number of muscle re-injuries (R). The goal of the classification is to enhance communication between healthcare and sports-related professionals and facilitate rehabilitation and return-to-play decision making.
Laser therapy in the treatment of urological diseases
NASA Astrophysics Data System (ADS)
Nelius, T.; de Riese, W. T.; Reiher, F.; Filleur, S.; Allhoff, E. P.
2006-02-01
Applications of lasers (light amplification by stimulated emission of radiation) in various disciplines of medicine including Urology are well developed. Urology is among the medical specialties that apply many different types of laser systems to treat a broad spectrum of clinical conditions ranging from genital, bladder and urethral tumors to the treatment of benign prostate hyperplasia (BPH), urethral strictures, and stones. The specific application of various laser systems depends on the characteristics of the laser itself, delivery media for the beams, laser-tissue interaction and the desired effect. These complex conditions require an intensive and continuous exchange of information between non-medical researchers and physicians to verify "what is currently technically possible and what is medically needed". Only this exchange can lead to the development of new laser systems. While lasers have become the treatment of choice in some conditions, they could not, despite excellent clinical results, replace conventional therapy options in others. Nonetheless, the use and the introduction of lasers of different wavelengths forces urologists to keep step with the fast developing laser technology. This paper reviews current indications for clinical laser applications relevant to urology and the advantages and disadvantages of using lasers for the management of various urological lesions.
Information needs of Botswana health care workers and perceptions of wikipedia.
Park, Elizabeth; Masupe, Tiny; Joseph, Joseph; Ho-Foster, Ari; Chavez, Afton; Jammalamadugu, Swetha; Marek, Andrew; Arumala, Ruth; Ketshogileng, Dineo; Littman-Quinn, Ryan; Kovarik, Carrie
2016-11-01
Since the UN Human Rights Council's recognition on the subject in 2011, the right to access the Internet and information is now considered one of the most basic human rights of global citizens [1,2]. Despite this, an information gap between developed and resource-limited countries remains, and there is scant research on actual information needs of workers themselves. The Republic of Botswana represents a fertile ground to address existing gaps in research, policy, and practice, due to its demonstrated gap in access to information and specialists among rural health care workers (HCWs), burgeoning mHealth capacity, and a timely offer from Orange Telecommunications to access Wikipedia for free on mobile platforms for Botswana subscribers. In this study, we sought to identify clinical information needs of HCWs of Botswana and their perception of Wikipedia as a clinical tool. Twenty-eight facilitated focus groups, consisting of 113 HCWs of various cadres based at district hospitals, clinics, and health posts around Botswana, were employed. Transcription and thematic analysis were performed for those groups. Access to the Internet is limited at most facilities. Most HCWs placed high importance upon using Botswana Ministry of Health (MoH) resources for obtaining credible clinical information. However, the clinical applicability of these materials was limited due to discrepancies amongst sources, potentially outdated information, and poor optimization for time-sensitive circumstances. As a result, HCWs faced challenges, such as loss of patient trust and compromises in patient care. Potential solutions posed by HCWs to address these issues included: multifaceted improvements in Internet infrastructure, access to up-to-date information, transfer of knowledge from MoH to HCW, and improving content and applicability of currently available information. Topics of clinical information needs were broad and encompassed: HIV, TB (Tuberculosis), OB/GYN (Obstetrics and Gynecology), and Pediatrics. HCW attitudes towards Wikipedia were variable; some trusted Wikipedia as a reliable point of care information resource whereas others thought that its use should be restricted and monitored by the MoH. There is a demonstrated need for accessible, reliable, and up-to-date information to aid clinical practice in Botswana. Attitudes towards Wikipedia as an open information resource tool are at best, split. Therefore, future studies are necessary to determine the accuracy, currency, and relevancy of Wikipedia articles on the health topics identified by health care workers as areas of information need. More broadly speaking, future efforts should be dedicated to configure a quality-controlled, readily accessible mobile platform based clinical information application tool fitting for Botswana. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
76 FR 9777 - Recent Postings of Broadly Applicable Alternative Test Methods
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... Applicable Alternative Test Methods AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This notice announces the broadly applicable alternative test method approval decisions... technical questions about individual alternative test method decisions, refer to the contact person...
Shafiee, Hadi; Kanakasabapathy, Manoj Kumar; Juillard, Franceline; Keser, Mert; Sadasivam, Magesh; Yuksekkaya, Mehmet; Hanhauser, Emily; Henrich, Timothy J.; Kuritzkes, Daniel R.; Kaye, Kenneth M.; Demirci, Utkan
2015-01-01
We report a biosensing platform for viral load measurement through electrical sensing of viruses on a flexible plastic microchip with printed electrodes. Point-of-care (POC) viral load measurement is of paramount importance with significant impact on a broad range of applications, including infectious disease diagnostics and treatment monitoring specifically in resource-constrained settings. Here, we present a broadly applicable and inexpensive biosensing technology for accurate quantification of bioagents, including viruses in biological samples, such as plasma and artificial saliva, at clinically relevant concentrations. Our microchip fabrication is simple and mass-producible as we print microelectrodes on flexible plastic substrates using conductive inks. We evaluated the microchip technology by detecting and quantifying multiple Human Immunodeficiency Virus (HIV) subtypes (A, B, C, D, E, G, and panel), Epstein-Barr Virus (EBV), and Kaposi’s Sarcoma-associated Herpes Virus (KSHV) in a fingerprick volume (50 µL) of PBS, plasma, and artificial saliva samples for a broad range of virus concentrations between 102 copies/mL and 107 copies/mL. We have also evaluated the microchip platform with discarded, de-identified HIV-infected patient samples by comparing our microchip viral load measurement results with reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) as the gold standard method using Bland-Altman Analysis. PMID:26046668
Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; Cristini, Vittorio; Brinker, Lina M.; Staquicini, Fernanda I.; Cardó-Vila, Marina; D’Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R.; Dogra, Prashant; Melancon, Marites P.; Stafford, R. Jason; Miyazono, Kohei; Gelovani, Juri G.; Kataoka, Kazunori; Brinker, C. Jeffrey; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata
2016-01-01
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications. PMID:26839407
Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata
2016-02-16
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.
Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; ...
2016-02-02
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less
Attention deficits and hyperactivity–impulsivity: What have we learned, what next?
NIGG, JOEL T.
2015-01-01
The domains of self-regulation, self-control, executive function, inattention, and impulsivity cut across broad swathes of normal and abnormal development. Attention-deficit/hyperactivity disorder is a common syndrome that encompasses a portion of these domains. In the past 25 years research on attention-deficit/hyperactivity disorder has been characterized by dramatic advances in genetic, neural, and neuropsychological description of the syndrome as well as clarification of its multidimensional phenotypic structure. The limited clinical applicability of these research findings poses the primary challenge for the next generation. It is likely that clinical breakthroughs will require further refinement in describing heterogeneity or clinical/biological subgroups, renewed focus on the environment in the form of etiological events as well as psychosocial contexts of development, and integration of both with biological understanding. PMID:24342852
Patrick, Christopher J; Hajcak, Greg
2016-03-01
The National Institute of Mental Health's (NIMH) Research Domain Criteria (RDoC) initiative seeks to establish new dimensional conceptions of mental health problems, through the investigation of clinically relevant "process" constructs that have neurobiological as well as psychological referents. This special issue provides a detailed overview of the RDoC framework by NIMH officials Michael Kozak and Bruce Cuthbert, and spotlights RDoC-oriented investigative efforts by leading psychophysiological research groups as examples of how clinical science might be reshaped through application of RDoC principles. Accompanying commentaries highlight key aspects of the work by each group, and discuss reported methods/findings in relation to promises and challenges of the RDoC initiative more broadly. © 2016 Society for Psychophysiological Research.
Clinical manufacturing of CAR T cells: foundation of a promising therapy
Wang, Xiuyan; Rivière, Isabelle
2016-01-01
The treatment of cancer patients with autologous T cells expressing a chimeric antigen receptor (CAR) is one of the most promising adoptive cellular therapy approaches. Reproducible manufacturing of high-quality, clinical-grade CAR-T cell products is a prerequisite for the wide application of this technology. Product quality needs to be built-in within every step of the manufacturing process. We summarize herein the requirements and logistics to be considered, as well as the state of the art manufacturing platforms available. CAR-T cell therapy may be on the verge of becoming standard of care for a few clinical indications. Yet, many challenges pertaining to manufacturing standardization and product characterization remain to be overcome in order to achieve broad usage and eventual commercialization of this therapeutic modality. PMID:27347557
NASA Technical Reports Server (NTRS)
1988-01-01
ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.
Detection of Trypanosoma cruzi by Polymerase Chain Reaction.
Márquez, María Elizabeth; Concepción, Juan Luis; González-Marcano, Eglys; Mondolfi, Alberto Paniz
2016-01-01
American Trypanosomiasis (Chagas disease) is an infectious disease caused by the hemoflagellate parasite Trypanosoma cruzi which is transmitted by reduviid bugs. T. cruzi infection occurs in a broad spectrum of reservoir animals throughout North, Central, and South America and usually evolves into an asymptomatic chronic clinical stage of the disease in which diagnosis is often challenging. This chapter describes the application of polymerase chain reaction (PCR) for the detection of Trypanosoma cruzi DNA including protocols for sample preparation, DNA extraction, and target amplification methods.
Li, Yanmei; Xiang, Qi; Zhang, Qihao; Huang, Yadong; Su, Zhijian
2012-10-01
Antimicrobial peptides (AMPs), which are produced by several species including insects, other animals, micro-organisms and synthesis, are a critical component of the natural defense system. With the growing problem of pathogenic organisms resistant to conventional antibiotics, especially with the emergence of NDM-1, there is increased interest in the pharmacological application of AMPs. They can protect against a broad array of infectious agents, such as bacteria, fungi, parasite, virus and cancer cells. AMPs have a very good future in the application in pharmaceuticals industry and food additive. This review focuses on the AMPs from different origins in these recent years, and discusses their various functions and relative mechanisms of action. It will provide some detailed files for clinical research of pharmaceuticals industry and food additive in application. Copyright © 2012 Elsevier Inc. All rights reserved.
77 FR 8865 - Recent Postings of Broadly Applicable Alternative Test Methods
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... Applicable Alternative Test Methods AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This notice announces the broadly applicable alternative test method approval decisions... INFORMATION CONTACT: An electronic copy of each alternative test method approval document is available on the...
75 FR 7593 - Recent Postings of Broadly Applicable Alternative Test Methods
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... Applicable Alternative Test Methods AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This notice announces the broadly applicable alternative test method approval decisions... electronic copy of each alternative test method approval document is available on EPA's Web site at http...
78 FR 11174 - Recent Postings of Broadly Applicable Alternative Test Methods
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
... Applicable Alternative Test Methods AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This notice announces the broadly applicable alternative test method approval decisions... INFORMATION CONTACT: An electronic copy of each alternative test method approval document is available on the...
Trends in the Design and Development of Specific Aptamers Against Peptides and Proteins.
Tabarzad, Maryam; Jafari, Marzieh
2016-04-01
Aptamers are single stranded oligonucleotides, comparable to monoclonal antibodies (mAbs) in selectivity and affinity and have significant strategic properties in design, development and applications more than mAbs. Ease of design and development, simple chemical modification and the attachment of functional groups, easily handling and more adaptability with analytical methods, small size and adaptation with nanostructures are the valuable characteristics of aptamers in comparison to large protein based ligands. Among a broad range of targets that their specific aptamers developed, proteins and peptides have significant position according to the number of related studies performed so far. Since proteins control many of important physiological and pathological incidents in the living organisms, particularly human beings and because of the benefits of aptamers in clinical and analytical applications, aptamer related technologies in the field of proteins and peptides are under progress, exclusively. Currently, there is only one FDA approved therapeutic aptamer in the pharmaceutical market, which is specific to vascular endothelial growth factor and is prescribed for age related macular degenerative disease. Additionally, there are several aptamers in the different phases of clinical trials. Almost all of these aptamers are specific to clinically important peptide or protein targets. In addition, the application of protein specific aptamers in the design and development of targeted drug delivery systems and diagnostic biosensors is another interesting field of aptamer technology. In this review, significant efforts related to development and applications of aptamer technologies in proteins and peptides sciences were considered to emphasis on the importance of aptamers in medicinal and clinical applications.
The Status of RPE65 Gene Therapy Trials: Safety and Efficacy
Pierce, Eric A.; Bennett, Jean
2015-01-01
Several groups have reported the results of clinical trials of gene augmentation therapy for Leber congenital amaurosis (LCA) because of mutations in the RPE65 gene. These studies have used subretinal injection of adeno-associated virus (AAV) vectors to deliver the human RPE65 cDNA to the retinal pigment epithelial (RPE) cells of the treated eyes. In all of the studies reported to date, this approach has been shown to be both safe and effective. The successful clinical trials of gene augmentation therapy for retinal degeneration caused by mutations in the RPE65 gene sets the stage for broad application of gene therapy to treat retinal degenerative disorders. PMID:25635059
McLaughlin, Lauren; Cruz, C. Russell; Bollard, Catherine M.
2015-01-01
Despite significant advancements in the treatment and outcome of hematologic malignancies, prognosis remains poor for patients who have relapsed or refractory disease. Adoptive T-cell immunotherapy offers novel therapeutics that attempt to utilize the noted graft versus leukemia effect. While CD19 chimeric antigen receptor (CAR)-modified T cells have thus far been the most clinically successful application of adoptive T immunotherapy, further work with antigen specific T cells and CARs that recognize other targets have helped diversify the field to treat a broad spectrum of hematologic malignancies. This article will focus primarily on therapies currently in the clinical trial phase as well as current downfalls or limitations. PMID:26622998
Heuristics in Managing Complex Clinical Decision Tasks in Experts’ Decision Making
Islam, Roosan; Weir, Charlene; Del Fiol, Guilherme
2016-01-01
Background Clinical decision support is a tool to help experts make optimal and efficient decisions. However, little is known about the high level of abstractions in the thinking process for the experts. Objective The objective of the study is to understand how clinicians manage complexity while dealing with complex clinical decision tasks. Method After approval from the Institutional Review Board (IRB), three clinical experts were interviewed the transcripts from these interviews were analyzed. Results We found five broad categories of strategies by experts for managing complex clinical decision tasks: decision conflict, mental projection, decision trade-offs, managing uncertainty and generating rule of thumb. Conclusion Complexity is created by decision conflicts, mental projection, limited options and treatment uncertainty. Experts cope with complexity in a variety of ways, including using efficient and fast decision strategies to simplify complex decision tasks, mentally simulating outcomes and focusing on only the most relevant information. Application Understanding complex decision making processes can help design allocation based on the complexity of task for clinical decision support design. PMID:27275019
Tan, Susanna K.; Milligan, Stephen; Sahoo, Malaya K.; Taylor, Nathaniel
2017-01-01
ABSTRACT Significant interassay variability in the quantification of BK virus (BKV) DNA precludes establishing broadly applicable thresholds for the management of BKV infection in transplantation. The 1st WHO International Standard for BKV (primary standard) was introduced in 2016 as a common calibrator for improving the harmonization of BKV nucleic acid amplification testing (NAAT) and enabling comparisons of biological measurements worldwide. Here, we evaluated the Altona RealStar BKV assay (Altona) and calibrated the results to the international unit (IU) using the Exact Diagnostics BKV verification panel, a secondary standard traceable to the primary standard. The primary and secondary standards on Altona had nearly identical linear regression equations (primary standard, Y = 1.05X − 0.28, R2 = 0.99; secondary standard, Y = 1.04X − 0.26, R2 = 0.99) and conversion factors (primary standard, 1.11 IU/copy; secondary standard, 1.09 IU/copy). A comparison of Altona with a laboratory-developed BKV NAAT assay in IU/ml versus copies/ml using Passing-Bablok regression revealed similar regression lines, no proportional bias, and improvement in the systematic bias (95% confidence interval of intercepts: copies/ml, −0.52 to −1.01; IU/ml, 0.07 to −0.36). Additionally, Bland-Altman analyses revealed a clinically significant reduction of bias when results were reported in IU/ml (IU/ml, −0.10 log10; copies/ml, −0.70 log10). These results indicate that the use of a common calibrator improved the agreement between the two assays. As clinical laboratories worldwide use calibrators traceable to the primary standard to harmonize BKV NAAT results, we anticipate improved interassay comparisons with a potential for establishing broadly applicable quantitative BKV DNA load cutoffs for clinical practice. PMID:28053213
Introduction to Pharmaceutical Biotechnology, Volume 1; Basic techniques and concepts
NASA Astrophysics Data System (ADS)
Bhatia, Saurabh; Goli, Divakar
2018-05-01
Animal biotechnology is a broad field including polarities of fundamental and applied research, as well as DNA science, covering key topics of DNA studies and its recent applications. In Introduction to Pharmaceutical Biotechnology, DNA isolation procedures followed by molecular markers and screening methods of the genomic library are explained. Interesting areas like isolation, sequencing and synthesis of genes, with the broader coverage on synthesis of genes, are also described. The book begins with an introduction to biotechnology and its main branches, explaining both the basic science and the applications of biotechnology-derived pharmaceuticals, with special emphasis on their clinical use. It then moves on to historical development and scope of biotechnology with an overall review of early applications that scientists employed long before the field was defined.
AHRQ series paper 2: principles for developing guidance: AHRQ and the effective health-care program.
Helfand, Mark; Balshem, Howard
2010-05-01
This article describes some of the fundamental principles that have been developed to guide the work of producing comparative effectiveness reviews (CERs). We briefly describe the role stakeholders play in providing important insights that inform the evidence-gathering process, and discuss the critical role of analytic frameworks in illuminating the relationship between surrogate measures and health outcomes, providing an understanding of the context in which clinical decisions are made and the uncertainties that underlie clinical controversies. We describe the Effective Health Care program conceptual model for considering different types of evidence that emphasizes minimizing the risk of bias, but places high-quality, highly applicable evidence about effectiveness at the top of the hierarchy. Finally, we briefly describe areas of future methodological research. CERs have become a foundation for decision-making in clinical practice and health policy. To be useful, CERs must approach the evidence from a patient-centered perspective; explore the clinical logic underlying the rationale for a service; cast a broad net with respect to types of evidence, placing a high value on effectiveness and applicability, in addition to internal validity; and, present benefits and harms for treatments and tests in a consistent way.
Clinical applications of hallucinogens: A review.
Garcia-Romeu, Albert; Kersgaard, Brennan; Addy, Peter H
2016-08-01
Hallucinogens fall into several different classes, as broadly defined by pharmacological mechanism of action, and chemical structure. These include psychedelics, entactogens, dissociatives, and other atypical hallucinogens. Although these classes do not share a common primary mechanism of action, they do exhibit important similarities in their ability to occasion temporary but profound alterations of consciousness, involving acute changes in somatic, perceptual, cognitive, and affective processes. Such effects likely contribute to their recreational use. However, a growing body of evidence indicates that these drugs may have therapeutic applications beyond their potential for abuse. This review will present data on several classes of hallucinogens with a particular focus on psychedelics, entactogens, and dissociatives, for which clinical utility has been most extensively documented. Information on each class is presented in turn, tracing relevant historical insights, highlighting similarities and differences between the classes from the molecular to the behavioral level, and presenting the most up-to-date information on clinically oriented research with these substances, with important ramifications for their potential therapeutic value. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Xing, Yun; Smith, Andrew M; Agrawal, Amit; Ruan, Gang; Nie, Shuming
2006-01-01
Semiconductor quantum dots (QDs) are a new class of fluorescent labels with broad applications in biomedical imaging, disease diagnostics, and molecular and cell biology. In comparison with organic dyes and fluorescent proteins, quantum dots have unique optical and electronic properties such as size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. Recent advances have led to multifunctional nanoparticle probes that are highly bright and stable under complex in vitro and in vivo conditions. New designs involve encapsulating luminescent QDs with amphiphilic block copolymers, and linking the polymer coating to tumor-targeting ligands and drug-delivery functionalities. These improved QDs have opened new possibilities for real-time imaging and tracking of molecular targets in living cells, for multiplexed analysis of biomolecular markers in clinical tissue specimens, and for ultrasensitive imaging of malignant tumors in living animal models. In this article, we briefly discuss recent developments in bioaffinity QD probes and their applications in molecular profiling of individual cancer cells and clinical tissue specimens. PMID:17722280
10 CFR 33.13 - Requirements for the issuance of a Type A specific license of broad scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of broad scope. 33.13 Section 33.13 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.13 Requirements for the issuance of a Type A specific license of broad scope. An application for a Type A specific license of broad...
10 CFR 33.13 - Requirements for the issuance of a Type A specific license of broad scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of broad scope. 33.13 Section 33.13 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.13 Requirements for the issuance of a Type A specific license of broad scope. An application for a Type A specific license of broad...
10 CFR 33.14 - Requirements for the issuance of a Type B specific license of broad scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of broad scope. 33.14 Section 33.14 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.14 Requirements for the issuance of a Type B specific license of broad scope. An application for a Type B specific license of broad...
10 CFR 33.13 - Requirements for the issuance of a Type A specific license of broad scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of broad scope. 33.13 Section 33.13 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.13 Requirements for the issuance of a Type A specific license of broad scope. An application for a Type A specific license of broad...
10 CFR 33.14 - Requirements for the issuance of a Type B specific license of broad scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of broad scope. 33.14 Section 33.14 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.14 Requirements for the issuance of a Type B specific license of broad scope. An application for a Type B specific license of broad...
10 CFR 33.14 - Requirements for the issuance of a Type B specific license of broad scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of broad scope. 33.14 Section 33.14 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.14 Requirements for the issuance of a Type B specific license of broad scope. An application for a Type B specific license of broad...
10 CFR 33.14 - Requirements for the issuance of a Type B specific license of broad scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of broad scope. 33.14 Section 33.14 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.14 Requirements for the issuance of a Type B specific license of broad scope. An application for a Type B specific license of broad...
10 CFR 33.14 - Requirements for the issuance of a Type B specific license of broad scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of broad scope. 33.14 Section 33.14 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.14 Requirements for the issuance of a Type B specific license of broad scope. An application for a Type B specific license of broad...
10 CFR 33.15 - Requirements for the issuance of a Type C specific license of broad scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of broad scope. 33.15 Section 33.15 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.15 Requirements for the issuance of a Type C specific license of broad scope. An application for a Type C specific license of broad...
10 CFR 33.13 - Requirements for the issuance of a Type A specific license of broad scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of broad scope. 33.13 Section 33.13 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.13 Requirements for the issuance of a Type A specific license of broad scope. An application for a Type A specific license of broad...
10 CFR 33.15 - Requirements for the issuance of a Type C specific license of broad scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of broad scope. 33.15 Section 33.15 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.15 Requirements for the issuance of a Type C specific license of broad scope. An application for a Type C specific license of broad...
10 CFR 33.15 - Requirements for the issuance of a Type C specific license of broad scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of broad scope. 33.15 Section 33.15 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.15 Requirements for the issuance of a Type C specific license of broad scope. An application for a Type C specific license of broad...
10 CFR 33.13 - Requirements for the issuance of a Type A specific license of broad scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of broad scope. 33.13 Section 33.13 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.13 Requirements for the issuance of a Type A specific license of broad scope. An application for a Type A specific license of broad...
Niendorf, Thoralf; Paul, Katharina; Oezerdem, Celal; Graessl, Andreas; Klix, Sabrina; Huelnhagen, Till; Hezel, Fabian; Rieger, Jan; Waiczies, Helmar; Frahm, Jens; Nagel, Armin M; Oberacker, Eva; Winter, Lukas
2016-09-01
The objective of this study was to document and review advances and groundbreaking progress in cardiac and body MR at ultrahigh fields (UHF, B0 ≥ 7.0 T) with the goal to attract talent, clinical adopters, collaborations and resources to the biomedical and diagnostic imaging communities. This review surveys traits, advantages and challenges of cardiac and body MR at 7.0 T. The considerations run the gamut from technical advances to clinical opportunities. Key concepts, emerging technologies, practical considerations, frontier applications and future directions of UHF body and cardiac MR are provided. Examples of UHF cardiac and body imaging strategies are demonstrated. Their added value over the kindred counterparts at lower fields is explored along with an outline of research promises. The achievements of cardiac and body UHF-MR are powerful motivators and enablers, since extra speed, signal and imaging capabilities may be invested to overcome the fundamental constraints that continue to hamper traditional cardiac and body MR applications. If practical obstacles, concomitant physics effects and technical impediments can be overcome in equal measure, sophisticated cardiac and body UHF-MR will help to open the door to new MRI and MRS approaches for basic research and clinical science, with the lessons learned at 7.0 T being transferred into broad clinical use including diagnostics and therapy guiding at lower fields. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Patient similarity for precision medicine: a systematic review.
Parimbelli, E; Marini, S; Sacchi, L; Bellazzi, R
2018-06-01
Evidence-based medicine is the most prevalent paradigm adopted by physicians. Clinical practice guidelines typically define a set of recommendations together with eligibility criteria that restrict their applicability to a specific group of patients. The ever-growing size and availability of health-related data is currently challenging the broad definitions of guideline-defined patient groups. Precision medicine leverages on genetic, phenotypic, or psychosocial characteristics to provide precise identification of patient subsets for treatment targeting. Defining a patient similarity measure is thus an essential step to allow stratification of patients into clinically-meaningful subgroups. The present review investigates the use of patient similarity as a tool to enable precision medicine. 279 articles were analyzed along four dimensions: data types considered, clinical domains of application, data analysis methods, and translational stage of findings. Cancer-related research employing molecular profiling and standard data analysis techniques such as clustering constitute the majority of the retrieved studies. Chronic and psychiatric diseases follow as the second most represented clinical domains. Interestingly, almost one quarter of the studies analyzed presented a novel methodology, with the most advanced employing data integration strategies and being portable to different clinical domains. Integration of such techniques into decision support systems constitutes and interesting trend for future research. Copyright © 2018. Published by Elsevier Inc.
Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications
NASA Astrophysics Data System (ADS)
Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming
2013-06-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.
Semiconductor quantum dots for bioimaging and biodiagnostic applications.
Kairdolf, Brad A; Smith, Andrew M; Stokes, Todd H; Wang, May D; Young, Andrew N; Nie, Shuming
2013-01-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.
Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications
Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming
2013-01-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future. PMID:23527547
Metabolic intervention to affect myocardial recovery following ischemia.
Pasque, M K; Wechsler, A S
1984-01-01
Myocardial recovery during reperfusion following ischemia is critical to patient survival in a broad spectrum of clinical settings. Myocardial functional recovery following ischemia correlates well with recovery of myocardial adenosine triphosphate (ATP). Adenosine triphosphate recovery is uniformly incomplete during reperfusion following moderate ischemic injury and is therefore subject to manipulation by metabolic intervention. By definition ATP recovery is limited either by (1) energy availability and application in the phosphorylation of adenosine monophosphate (AMP) to ATP or (2) availability of AMP for this conversion. Experimental data suggest that substrate energy and the mechanisms required for its application in the creation of high energy phosphate bonds (AMP conversion to ATP) are more than adequate during reperfusion following moderate ischemic injury. Adenosine monophosphate availability, however, is inadequate following ischemia due to loss of diffusable adenine nucleotide purine metabolites. These purine precursors are necessary to fuel adenine nucleotide salvage pathways. Metabolic interventions that enhance AMP recovery rather than those that improve substrate energy availability during reperfusion are therefore recommended. The mechanisms of various metabolic interventions are discussed in this framework along with the rationale for or against their clinical application. PMID:6428332
Mobile Technology for the Practice of Pathology.
Hartman, Douglas J
2016-03-01
Recently, several technological advances have been introduced to mobile phones leading some people to refer to them as "smartphones." These changes have led to widespread consumer adoption. A similar adoption has occurred within the medical field and this revolution is changing the practice of medicine, including pathology. Several mobile applications have been published for dermatology, orthopedics, ophthalmology, neurosurgery, and clinical pathology. The applications are wide ranging, including mobile technology to increase patient engagement, self-monitoring by patients, clinical algorithm calculation, facilitation between experts to resource-poor environments. These advances have been received with mixed reviews. For anatomic pathology, mobile technology applications can be broken into 4 broad categories: (a) educational uses, (b) microscope with mobile phone, (c) mobile phone as microscope/acquisition device, and (d) miscellaneous. Using a mobile phone as an acquisition device paired with a microscope seems to be the most interesting current application because of the need for expert consultation with resource-poor environments. However, several emerging uses for mobile technology may become more prominent as the technology matures including image analysis, alternative light sources, and increased opportunities for clinician and patient engagement. The flexibility represented by mobile technology represents a burgeoning field in pathology informatics.
Adibuzzaman, Mohammad; DeLaurentis, Poching; Hill, Jennifer; Benneyworth, Brian D
2017-01-01
Recent advances in data collection during routine health care in the form of Electronic Health Records (EHR), medical device data (e.g., infusion pump informatics, physiological monitoring data, and insurance claims data, among others, as well as biological and experimental data, have created tremendous opportunities for biological discoveries for clinical application. However, even with all the advancement in technologies and their promises for discoveries, very few research findings have been translated to clinical knowledge, or more importantly, to clinical practice. In this paper, we identify and present the initial work addressing the relevant challenges in three broad categories: data, accessibility, and translation. These issues are discussed in the context of a widely used detailed database from an intensive care unit, Medical Information Mart for Intensive Care (MIMIC III) database.
The Clinical Use of Robots for Individuals with Autism Spectrum Disorders: A Critical Review
Diehl, Joshua J.; Schmitt, Lauren M.; Villano, Michael; Crowell, Charles R.
2011-01-01
We examined peer-reviewed studies in order to understand the current status of empirically-based evidence on the clinical applications of robots in the diagnosis and treatment of Autism Spectrum Disorders (ASD). Studies are organized into four broad categories: (a) the response of individuals with ASD to robots or robot-like behavior in comparison to human behavior, (b) the use of robots to elicit behaviors, (c) the use of robots to model, teach, and/or practice a skill, and (d) the use of robots to provide feedback on performance. A critical review of the literature revealed that most of the findings are exploratory and have methodological limitations that make it difficult to draw firm conclusions about the clinical utility of robots. Finally, we outline the research needed to determine the incremental validity of this technique. PMID:22125579
NASA Astrophysics Data System (ADS)
Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.
2017-07-01
Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.
Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J
2017-07-07
Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.
Applications of ultrasensitive magnetic measurement technologies (invited) (abstract)
NASA Astrophysics Data System (ADS)
Hirschkoff, Eugene C.
1993-05-01
The development of reliable, easy-to-use magnetic measurement systems with significantly enhanced levels of sensitivity has opened up a number of broad new areas of application for magnetic sensing. Magnetometers based on optical pumping offer sensitivities at the picotesla level, while those that utilize superconducting quantum interference devices can operate at the femtotesla level. These systems are finding applications in areas as diverse as geophysical exploration, communications, and medical diagnostics. This review briefly surveys the capabilities and application areas for a number of magnetic sensing technologies. The emphasis then focuses on the application of the most sensitive of these to the field of medical diagnostics and functional imaging. Protocols for specific applications to noninvasive presurgical planning and to the noninvasive assay of cortical dysfunction in diseases ranging from epilepsy to migraine and schizophrenia will be described in detail. Data will be presented reporting independent validation of these techniques in ten patients who subsequently underwent surgery. Routine and reliable utilization of this ultrasensitive magnetic sensing technology in the clinic is now feasible and practical.
Biology and clinical application of CAR T cells for B cell malignancies.
Davila, Marco L; Sadelain, Michel
2016-07-01
Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma and B cell acute lymphoblastic leukemia, including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors.
Mixture-based gatekeeping procedures in adaptive clinical trials.
Kordzakhia, George; Dmitrienko, Alex; Ishida, Eiji
2018-01-01
Clinical trials with data-driven decision rules often pursue multiple clinical objectives such as the evaluation of several endpoints or several doses of an experimental treatment. These complex analysis strategies give rise to "multivariate" multiplicity problems with several components or sources of multiplicity. A general framework for defining gatekeeping procedures in clinical trials with adaptive multistage designs is proposed in this paper. The mixture method is applied to build a gatekeeping procedure at each stage and inferences at each decision point (interim or final analysis) are performed using the combination function approach. An advantage of utilizing the mixture method is that it enables powerful gatekeeping procedures applicable to a broad class of settings with complex logical relationships among the hypotheses of interest. Further, the combination function approach supports flexible data-driven decisions such as a decision to increase the sample size or remove a treatment arm. The paper concludes with a clinical trial example that illustrates the methodology by applying it to develop an adaptive two-stage design with a mixture-based gatekeeping procedure.
Biology and clinical application of CAR T Cells for B cell malignancies
Davila, Marco L; Sadelain, Michel
2017-01-01
Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma (NHL) and B cell acute lymphoblastic leukemia (B-ALL), including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors. PMID:27262700
Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms.
Jin, Tian; Guo, Heng; Yao, Lei; Xie, Huikai; Jiang, Huabei; Xi, Lei
2018-04-01
Photoacoustic microscopy (PAM) provides a fundamentally new tool for a broad range of studies of biological structures and functions. However, the use of PAM has been largely limited to small vertebrates due to the large size/weight and the inconvenience of the equipment. Here, we describe a portable optical-resolution photoacoustic microscopy (pORPAM) system for 3-dimensional (3D) imaging of small-to-large rodents and humans with a high spatiotemporal resolution and a large field of view. We show extensive applications of pORPAM to multiscale animals including mice and rabbits. In addition, we image the 3D vascular networks of human lips, and demonstrate the feasibility of pORPAM to observe the recovery process of oral ulcer and cancer-associated capillary loops in human oral cavities. This technology is promising for broad biomedical studies from fundamental biology to clinical diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthetic membrane-targeted antibiotics.
Vooturi, S K; Firestine, S M
2010-01-01
Antimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.
Li, Jun; Zhao, Futao
2015-07-01
The aim of this review was to take a look at the anti-inflammatory functions of Houttuynia cordata Thunb. (HCT) that have been illustrated in the literature and to explore new fields in which HCT could be used in the future. The use of HCT has been described in broad inflammatory domains, where it has exhibited a variety of activities, including antiviral, antibacterial, antiparasitic and immunostimulant activity, with high efficiency, mild features and definite therapeutic effects. The numerous anti-inflammatory functions of HCT have demonstrated that HCT has wide application prospects. New uses of HCT and the full extent of its utilization await further investigation. The basic pathological change of rheumatoid arthritis (RA) is synovial proliferation which leads to joint destruction in the long-term. There are types of drugs that have been used clinically for patients with RA, however, due to their side-effects or high prices their broad usage is limited. A safe and low-cost drug is urgently required to be developed for the clinical usage of patients with RA. Thus, HCT has the potential to be a good candidate in the treatment of rheumatoid arthritis.
LI, JUN; ZHAO, FUTAO
2015-01-01
The aim of this review was to take a look at the anti-inflammatory functions of Houttuynia cordata Thunb. (HCT) that have been illustrated in the literature and to explore new fields in which HCT could be used in the future. The use of HCT has been described in broad inflammatory domains, where it has exhibited a variety of activities, including antiviral, antibacterial, antiparasitic and immunostimulant activity, with high efficiency, mild features and definite therapeutic effects. The numerous anti-inflammatory functions of HCT have demonstrated that HCT has wide application prospects. New uses of HCT and the full extent of its utilization await further investigation. The basic pathological change of rheumatoid arthritis (RA) is synovial proliferation which leads to joint destruction in the long-term. There are types of drugs that have been used clinically for patients with RA, however, due to their side-effects or high prices their broad usage is limited. A safe and low-cost drug is urgently required to be developed for the clinical usage of patients with RA. Thus, HCT has the potential to be a good candidate in the treatment of rheumatoid arthritis. PMID:26170903
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-07
...The Food and Drug Administration (FDA) is announcing a 2-day public hearing to obtain input from interested persons on FDA's scope and direction in modernizing the regulations, policies, and practices that apply to the conduct of clinical trials of FDA-regulated products. Clinical trials are a critical source of evidence to inform medical policy and practice, and effective regulatory oversight is needed to ensure that human subjects are protected and resulting clinical trial data are credible and accurate. FDA is aware of concerns within the clinical trial community that certain regulations and policies applicable to the conduct of clinical trials may result in inefficiencies or increased cost and may not facilitate the use of innovative methods and technological advances to improve clinical trial quality. The Agency is involved in an effort to modernize the regulatory framework that governs clinical trials and approaches to good clinical practice (GCP). The purpose of this hearing is to solicit public input from a broad group of stakeholders on the scope and direction of this effort, including encouraging the use of innovative models that may enhance the effectiveness and efficiency of the clinical trial enterprise.
A Review of Wearable Sensor Systems for Monitoring Body Movements of Neonates
Chen, Hongyu; Xue, Mengru; Mei, Zhenning; Bambang Oetomo, Sidarto; Chen, Wei
2016-01-01
Characteristics of physical movements are indicative of infants’ neuro-motor development and brain dysfunction. For instance, infant seizure, a clinical signal of brain dysfunction, could be identified and predicted by monitoring its physical movements. With the advance of wearable sensor technology, including the miniaturization of sensors, and the increasing broad application of micro- and nanotechnology, and smart fabrics in wearable sensor systems, it is now possible to collect, store, and process multimodal signal data of infant movements in a more efficient, more comfortable, and non-intrusive way. This review aims to depict the state-of-the-art of wearable sensor systems for infant movement monitoring. We also discuss its clinical significance and the aspect of system design. PMID:27983664
Berner, Eta S.; Detmer, Don E.; Simborg, Donald
2005-01-01
For over thirty years, there have been predictions that the widespread clinical use of computers was imminent. Yet the “wave” has never broken. In this article, two broad time periods are examined: the 1960's to the 1980's and the 1980's to the present. Technology immaturity, health administrator focus on financial systems, application “unfriendliness,” and physician resistance were all barriers to acceptance during the early time period. Although these factors persist, changes in clinicians' economics, more computer literacy in the general population, and, most importantly, changes in government policies and increased support for clinical computing suggest that the wave may break in the next decade. PMID:15492029
Hope in human attachment and spiritual connection.
Allen, Jon G
2013-01-01
Using Karl Menninger's and Paul Pruyser's seminal writings, the author reviews the tradition of thought about hope at The Menninger Clinic and discusses the application of this tradition to patient education. From the perspective of contemporary attachment theory and research, he expands on Paul Pruyser's view of hope as based on an experience of benevolent connection. Such connection can be found-and disrupted-in attachment to God and in spirituality more broadly. The article concludes with commentary on the challenges clinicians face in making use of religion and spirituality as a resource for fostering hope.
Calabrese, Edward J
2008-01-01
Evidence is presented which supports the conclusion that the hormetic dose–response model is the most common and fundamental in the biological and biomedical sciences, being highly generalizable across biological model, endpoint measured and chemical class and physical agent. The paper provides a broad spectrum of applications of the hormesis concept for clinical medicine including anxiety, seizure, memory, stroke, cancer chemotherapy, dermatological processes such as hair growth, osteoporosis, ocular diseases, including retinal detachment, statin effects on cardiovascular function and tumour development, benign prostate enlargement, male sexual behaviours/dysfunctions, and prion diseases. PMID:18662293
Targeted methods for quantitative analysis of protein glycosylation
Goldman, Radoslav; Sanda, Miloslav
2018-01-01
Quantification of proteins by LC-MS/MS-MRM has become a standard method with broad projected clinical applicability. MRM quantification of protein modifications is, however, far less utilized, especially in the case of glycoproteins. This review summarizes current methods for quantitative analysis of protein glycosylation with a focus on MRM methods. We describe advantages of this quantitative approach, analytical parameters that need to be optimized to achieve reliable measurements, and point out the limitations. Differences between major classes of N- and O-glycopeptides are described and class-specific glycopeptide assays are demonstrated. PMID:25522218
Environmental factors associated with asthma.
Walker, Bailus; Stokes, Lynette D.; Warren, Rueben
2003-01-01
Asthma, a disease of attacks and remission, continues to account for substantial morbidity and direct economic costs. Numerous studies--epidemiologic, toxicologic and clinical--present evidence for a broad spectrum of environmental risk factors associated with asthma. This review summarizes current thinking on a subset of these factors. Knowledge of potential environmental determinants of asthma is important to both the patient and healthcare professional in the application of multiple modalities of medical and environmental intervention for management of the development, and exacerbation of this chronic inflammatory disorder of the airways. PMID:12760611
Leiomyoma of broad ligament mimicking ovarian malignancy- report of a unique case.
Mallick, D; Saha, M; Chakrabarti, S; Chakraborty, J
2014-01-01
Tumors of the broad ligament are uncommon. Leiomyoma, which is the commonest female genital neoplasm, is also the most common solid tumor of the broad ligament. Leiomyomas affect 30% of all women of reproductive age but the incidence of broad-ligament leiomyoma is <1%. These benign tumors are usually asymptomatic. A case is being described where a 52 year old presented with gradual abdominal swelling which was clinically and radiologically diagnosed as ovarian malignancy. On abdominal and bimanual palpation a soft cystic mass was noted in the right pelvic region. CA 125 was mildly raised. CEA, CA 19.9 levels were within normal limit. The radiological diagnosis was ovarian cyst with possibility of malignant changes. Staging laparotomy and histopathological examination of the resected specimen revealed a right sided broad ligament leiomyoma with cystic changes. The degenerative changes in the leiomyoma lead to the clinical and radiological diagnostic confusion. Thus, though uncommon, broad ligament leiomyoma should be considered during evaluation of adnexal masses for optimal patient management. The above description of leiomyoma in the broad ligament is a highly unique case and thus deserves appropriate attention.
Polyethylenimine-based micro/nanoparticles as vaccine adjuvants
Shen, Chen; Li, Jun; Zhang, Yi; Li, Yuce; Shen, Guanxin; Zhu, Jintao; Tao, Juan
2017-01-01
Vaccines have shown great success in treating and preventing tumors and infections, while adjuvants are always demanded to ensure potent immune responses. Polyethylenimine (PEI), as one of the well-studied cationic polymers, has been used as a transfection reagent for decades. However, increasing evidence has shown that PEI-based particles are also capable of acting as adjuvants. In this paper, we briefly review the physicochemical properties and the broad applications of PEI in different fields, and elaborate on the intracellular processes of PEI-based vaccines. In addition, we sum up the proof of their in vivo and clinical applications. We also highlight some mechanisms proposed for the intrinsic immunoactivation function of PEI, followed by the challenges and future perspectives of the applications of PEI in the vaccines, as well as some strategies to elicit the desirable immune responses. PMID:28814862
Truong, Dennis Q; Hüber, Mathias; Xie, Xihe; Datta, Abhishek; Rahman, Asif; Parra, Lucas C; Dmochowski, Jacek P; Bikson, Marom
2014-01-01
Computational models of brain current flow during transcranial electrical stimulation (tES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), are increasingly used to understand and optimize clinical trials. We propose that broad dissemination requires a simple graphical user interface (GUI) software that allows users to explore and design montages in real-time, based on their own clinical/experimental experience and objectives. We introduce two complimentary open-source platforms for this purpose: BONSAI and SPHERES. BONSAI is a web (cloud) based application (available at neuralengr.com/bonsai) that can be accessed through any flash-supported browser interface. SPHERES (available at neuralengr.com/spheres) is a stand-alone GUI application that allow consideration of arbitrary montages on a concentric sphere model by leveraging an analytical solution. These open-source tES modeling platforms are designed go be upgraded and enhanced. Trade-offs between open-access approaches that balance ease of access, speed, and flexibility are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Advances in repairing the degenerate retina by rod photoreceptor transplantation☆
Pearson, Rachael A.
2014-01-01
Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. The past decade has seen a number of landmark achievements in this field, which together provide strong justification for continuing investigation into photoreceptor replacement strategies. These include proof of principle for restoring vision by rod-photoreceptor transplantation in mice with congenital stationary night blindness and advances in stem cell biology, which have led to the generation of complete optic structures in vitro from embryonic stem cells. The latter represents enormous potential for generating suitable and renewable donor cells with which to achieve the former. However, there are still challenges presented by the degenerating recipient retinal environment that must be addressed as we move to translating these technologies towards clinical application. PMID:24412415
Zakaria, Rosita; Allen, Katrina J; Koplin, Jennifer J; Roche, Peter; Greaves, Ronda F
2016-12-01
Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; "blood spot" and "mass spectrometry"; while excluding "newborn"; and "neonate". In addition, databases were restricted to English language and human specific. There was no time period limit applied. As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required.
Sánchez-Doblado, F; Andreo, P; Capote, R; Leal, A; Perucha, M; Arráns, R; Núñez, L; Mainegra, E; Lagares, J I; Carrasco, E
2003-07-21
Absolute dosimetry with ionization chambers of the narrow photon fields used in stereotactic techniques and IMRT beamlets is constrained by lack of electron equilibrium in the radiation field. It is questionable that stopping-power ratio in dosimetry protocols, obtained for broad photon beams and quasi-electron equilibrium conditions, can be used in the dosimetry of narrow fields while keeping the uncertainty at the same level as for the broad beams used in accelerator calibrations. Monte Carlo simulations have been performed for two 6 MV clinical accelerators (Elekta SL-18 and Siemens Mevatron Primus), equipped with radiosurgery applicators and MLC. Narrow circular and Z-shaped on-axis and off-axis fields, as well as broad IMRT configured beams, have been simulated together with reference 10 x 10 cm2 beams. Phase-space data have been used to generate 3D dose distributions which have been compared satisfactorily with experimental profiles (ion chamber, diodes and film). Photon and electron spectra at various depths in water have been calculated, followed by Spencer-Attix (delta = 10 keV) stopping-power ratio calculations which have been compared to those used in the IAEA TRS-398 code of practice. For water/air and PMMA/air stopping-power ratios, agreements within 0.1% have been obtained for the 10 x 10 cm2 fields. For radiosurgery applicators and narrow MLC beams, the calculated s(w,air) values agree with the reference within +/-0.3%, well within the estimated standard uncertainty of the reference stopping-power ratios (0.5%). Ionization chamber dosimetry of narrow beams at the photon qualities used in this work (6 MV) can therefore be based on stopping-power ratios data in dosimetry protocols. For a modulated 6 MV broad beam used in clinical IMRT, s(w,air) agrees within 0.1% with the value for 10 x 10 cm2, confirming that at low energies IMRT absolute dosimetry can also be based on data for open reference fields. At higher energies (24 MV) the difference in s(w,air) was up to 1.1%, indicating that the use of protocol data for narrow beams in such cases is less accurate than at low energies, and detailed calculations of the dosimetry parameters involved should be performed if similar accuracy to that of 6 MV is sought.
Injectable, cellular-scale optoelectronics with applications for wireless optogenetics.
Kim, Tae-il; McCall, Jordan G; Jung, Yei Hwan; Huang, Xian; Siuda, Edward R; Li, Yuhang; Song, Jizhou; Song, Young Min; Pao, Hsuan An; Kim, Rak-Hwan; Lu, Chaofeng; Lee, Sung Dan; Song, Il-Sun; Shin, Gunchul; Al-Hasani, Ream; Kim, Stanley; Tan, Meng Peun; Huang, Yonggang; Omenetto, Fiorenzo G; Rogers, John A; Bruchas, Michael R
2013-04-12
Successful integration of advanced semiconductor devices with biological systems will accelerate basic scientific discoveries and their translation into clinical technologies. In neuroscience generally, and in optogenetics in particular, the ability to insert light sources, detectors, sensors, and other components into precise locations of the deep brain yields versatile and important capabilities. Here, we introduce an injectable class of cellular-scale optoelectronics that offers such features, with examples of unmatched operational modes in optogenetics, including completely wireless and programmed complex behavioral control over freely moving animals. The ability of these ultrathin, mechanically compliant, biocompatible devices to afford minimally invasive operation in the soft tissues of the mammalian brain foreshadow applications in other organ systems, with potential for broad utility in biomedical science and engineering.
Metabolic acidosis in an infant associated with permethrin toxicity.
Goksugur, Sevil B; Karatas, Zehra; Goksugur, Nadir; Bekdas, Mervan; Demircioglu, Fatih
2015-01-01
Pyrethroids are broad-spectrum insecticides. Permethrin intoxication due to topical application has not been documented in humans. We report a 20-month-old infant who had used 5% permethrin lotion topically for scabies treatment. Approximately 60 mL (20 mL/day) was used and after the third application he developed agitation, nausea, vomiting, respiratory distress, tachycardia, and metabolic acidosis. His clinical symptoms and metabolic acidosis normalized within 20 hours. His follow-up was unremarkable. Toxicity of permethrin is rare, and although permethrin is a widely and safely used topical agent in the treatment of scabies and lice, inappropriate use may rarely cause toxicity. Moreover, in cases of unexplained metabolic acidosis, topically applied medications should be carefully investigated. © 2014 Wiley Periodicals, Inc.
Fraley, Stephanie I; Hardick, Justin; Masek, Billie J; Jo Masek, Billie; Athamanolap, Pornpat; Rothman, Richard E; Gaydos, Charlotte A; Carroll, Karen C; Wakefield, Teresa; Wang, Tza-Huei; Yang, Samuel
2013-10-01
Comprehensive profiling of nucleic acids in genetically heterogeneous samples is important for clinical and basic research applications. Universal digital high-resolution melt (U-dHRM) is a new approach to broad-based PCR diagnostics and profiling technologies that can overcome issues of poor sensitivity due to contaminating nucleic acids and poor specificity due to primer or probe hybridization inaccuracies for single nucleotide variations. The U-dHRM approach uses broad-based primers or ligated adapter sequences to universally amplify all nucleic acid molecules in a heterogeneous sample, which have been partitioned, as in digital PCR. Extensive assay optimization enables direct sequence identification by algorithm-based matching of melt curve shape and Tm to a database of known sequence-specific melt curves. We show that single-molecule detection and single nucleotide sensitivity is possible. The feasibility and utility of U-dHRM is demonstrated through detection of bacteria associated with polymicrobial blood infection and microRNAs (miRNAs) associated with host response to infection. U-dHRM using broad-based 16S rRNA gene primers demonstrates universal single cell detection of bacterial pathogens, even in the presence of larger amounts of contaminating bacteria; U-dHRM using universally adapted Lethal-7 miRNAs in a heterogeneous mixture showcases the single copy sensitivity and single nucleotide specificity of this approach.
Sibley, Christopher D; Peirano, Gisele; Church, Deirdre L
2012-04-01
Clinical microbiology laboratories worldwide have historically relied on phenotypic methods (i.e., culture and biochemical tests) for detection, identification and characterization of virulence traits (e.g., antibiotic resistance genes, toxins) of human pathogens. However, limitations to implementation of molecular methods for human infectious diseases testing are being rapidly overcome allowing for the clinical evaluation and implementation of diverse technologies with expanding diagnostic capabilities. The advantages and limitation of molecular techniques including real-time polymerase chain reaction, partial or whole genome sequencing, molecular typing, microarrays, broad-range PCR and multiplexing will be discussed. Finally, terminal restriction fragment length polymorphism (T-RFLP) and deep sequencing are introduced as technologies at the clinical interface with the potential to dramatically enhance our ability to diagnose infectious diseases and better define the epidemiology and microbial ecology of a wide range of complex infections. Copyright © 2012 Elsevier B.V. All rights reserved.
Cell-based therapies and imaging in cardiology.
Bengel, Frank M; Schachinger, Volker; Dimmeler, Stefanie
2005-12-01
Cell therapy for cardiac repair has emerged as one of the most exciting and promising developments in cardiovascular medicine. Evidence from experimental and clinical studies is increasing that this innovative treatment will influence clinical practice in the future. But open questions and controversies with regard to the basic mechanisms of this therapy continue to exist and emphasise the need for specific techniques to visualise the mechanisms and success of therapy in vivo. Several non-invasive imaging approaches which aim at tracking of transplanted cells in the heart have been introduced. Among these are direct labelling of cells with radionuclides or paramagnetic agents, and the use of reporter genes for imaging of cell transplantation and differentiation. Initial studies have suggested that these molecular imaging techniques have great potential. Integration of cell imaging into studies of cardiac cell therapy holds promise to facilitate further growth of the field towards a broadly clinically useful application.
Bioinspired second harmonic generation
NASA Astrophysics Data System (ADS)
Sonay, Ali Y.; Pantazis, Periklis
2017-07-01
Second harmonic generation (SHG) is a microscopic technique applicable to a broad spectrum of biological and medical imaging due to its excellent photostability, high signal-to-noise ratio (SNR) and narrow emission profile. Current SHG microscopy techniques rely on two main contrast modalities. These are endogenous SHG generated by tissue structures, which is clinically relevant but cannot be targeted to another location, or SHG nanoprobes, inorganic nanocrystals that can be directed to proteins and cells of interest, but cannot be applied for clinical imaging due to their chemical composition. Here we analyzed SHG signal generated by large-scale peptide assemblies. Our results show the sequence of peptides play an important role on both the morphology and SHG signal of the peptide assemblies. Changing peptide sequence allows confinement of large number of peptides to smaller voxels, generating intense SHG signal. With miniaturization of these peptides and their proper functionalization strategies, such bioinspired nanoparticles would emerge as valuable tools for clinical imaging.
Yao, Jiangwei; Rock, Charles O.
2016-01-01
Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single-base-pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed pathogen-specific antibiotics have the potential to overcome this liability. PMID:26931811
Levis, Denise M; Westbrook, Kyresa
2013-01-01
Many health organizations and practitioners in the United States promote preconception health (PCH) to consumers. However, summaries and evaluations of PCH promotional activities are limited. We conducted a content analysis of PCH health education materials collected from local-, state-, national-, and federal-level partners by using an existing database of partners, outreach to maternal and child health organizations, and a snowball sampling technique. Not applicable. Not applicable. Thirty-two materials were included for analysis, based on inclusion/exclusion criteria. A codebook guided coding of materials' characteristics (type, authorship, language, cost), use of marketing and behavioral strategies to reach the target population (target audience, message framing, call to action), and inclusion of PCH subject matter (clinical-behavioral components). The self-assessment of PCH behaviors was the most common material (28%) to appear in the sample. Most materials broadly targeted women, and there was a near-equal distribution in targeting by pregnancy planning status segments (planners and nonplanners). "Practicing PCH benefits the baby's health" was the most common message frame used. Materials contained a wide range of clinical-behavioral components. Strategic targeting of subgroups of consumers is an important but overlooked strategy. More research is needed around PCH components, in terms of packaging and increasing motivation, which could guide use and placement of clinical-behavioral components within promotional materials.
Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics
Goel, Shreya; Chen, Feng; Cai, Weibo
2013-01-01
Copper sulfide (CuS) nanoparticles have attracted increasing attention from biomedical researchers across the globe, because of their intriguing properties which have been mainly explored for energy- and catalysis-related applications to date. This focused review article aims to summarize the recent progress made in the synthesis and biomedical applications of various CuS nanoparticles. After a brief introduction to CuS nanoparticles in the first section, we will provide a concise outline of the various synthetic routes to obtain different morphologies of CuS nanoparticles, which can influence their properties and potential applications. CuS nanoparticles have found broad applications in vitro, especially in the detection of biomolecules, chemicals, and pathogens which will be illustrated in detail. The in vivo uses of CuS nanoparticles have also been investigated in preclinical studies, including molecular imaging with various techniques, cancer therapy based on the photothermal properties of CuS, as well as drug delivery and theranostic applications. Research on CuS nanoparticles will continue to thrive over the next decade, and tremendous opportunities lie ahead for potential biomedical/clinical applications of CuS nanoparticles. PMID:24106015
TU-EF-210-01: HIFU, Drug Delivery, and Immunotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrara, K.
The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less
TU-EF-210-04: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farahani, K.
The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less
TU-EF-210-03: Real-Time Ablation Monitoring and Lesion Quantification Using Harmonic Motion Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konofagou, E.
2015-06-15
The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less
TU-EF-210-00: Therapeutic Strategies and Image Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less
TU-EF-210-02: MRg Hyperthermia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, R.
2015-06-15
The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less
Heart-type fatty acid-binding protein in cardiovascular disease: A systemic review.
Otaki, Yoichiro; Watanabe, Tetsu; Kubota, Isao
2017-11-01
Fatty acid-binding proteins, whose clinical applications have been studied, are a family of proteins that reflect tissue injury. Heart-type fatty acid-binding protein (H-FABP) is a marker of ongoing myocardial damage and useful for early diagnosis of acute myocardial infarction (AMI). In the past decade, compared to other cardiac enzymes, H-FABP has shown more promise as an early detection marker for AMI. However, the role of H-FABP is being re-examined due to recent refinement in the search for newer biomarkers, and greater understanding of the role of high-sensitivity troponin. We discuss the current role of H-FABP as an early marker for AMI in the era of high sensitive troponin. H-FABP is highlighted as a prognostic marker for a broad spectrum of fatal diseases, viz., AMI, heart failure, arrhythmia, and pulmonary embolism that could be associated with poor clinical outcomes. Because the cut-off value of what constitutes an abnormal H-FABP potentially differs for each cardiovascular event and depends on the clinical setting, an optimal cut-off value has not been clearly established. Of note, several factors such as age, gender, and cardiovascular risk factors, which affect H-FABP levels need to be considered in this context. In this review, we discuss the clinical applications of H-FABP as a prognostic marker in various clinical settings. Copyright © 2017 Elsevier B.V. All rights reserved.
The Imaging and Medical Beam Line at the Australian Synchrotron
NASA Astrophysics Data System (ADS)
Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin
2010-07-01
As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.
Weber, Georg F; Warren, Jeremy; Shoma, Hitoshi; Chen, Tao; Halim, Abdel; Chakravarty, Geetika
2012-08-01
Biomarkers are biological agents used as indicators of biological states. In clinical applications, biomarkers reflect the presence, severity, or progression of disease states. They may also predict risk or responsiveness of a disease to a given treatment. There has been increasingly intense research interest in biomarkers, yet their translation into routine clinical use is lagging. To stimulate communication and cross-fertilization, the 2nd World Congress on Biomarkers & Clinical Research was held in Baltimore, MD, USA in 2011. The symposium covered a broad range of basic and applied biomarker research with the intent to facilitate bench-to-bedside developments. Sessions discussed DNA-based, proteomic, and blood-borne markers. The presentations covered biomarkers for cancer, other various diseases, and toxicological agents. Other topics included biomarker data assimilation, validation, standardization and quality control, as well as molecular imaging and informatics. New high-throughput assays, model systems and emerging technologies give reasons to hope for further rapid progress in the field.
Han, Haopeng; Moritz, Raphael; Oberacker, Eva; Waiczies, Helmar; Niendorf, Thoralf; Winter, Lukas
2017-10-18
Magnetic resonance imaging (MRI) is the mainstay of diagnostic imaging, a versatile instrument for clinical science and the subject of intense research interest. Advancing clinical science, research and technology of MRI requires high fidelity measurements in quantity, location and time of the given physical property. To meet this goal a broad spectrum of commercial measurement systems has been made available. These instruments frequently share in common that they are costly and typically employ closed proprietary hardware and software. This shortcoming makes any adjustment for a specified application difficult if not prohibitive. Recognizing this limitation this work presents COSI Measure, an automated open source measurement system that provides submillimetre resolution, robust configuration and a large working volume to support a versatile range of applications. The submillimetre fidelity and reproducibility/backlash performance were evaluated experimentally. Magnetic field mapping of a single ring Halbach magnet, a 3.0 T and a 7.0 T MR scanner as well as temperature mapping of a radio frequency coil were successfully conducted. Due to its open source nature and versatile construction, the system can be easily modified for other applications. In a resource limited research setting, COSI Measure makes efficient use of laboratory space, financial resources and collaborative efforts.
Buckel, Whitney R; Stenehjem, Edward; Sorensen, Jeff; Dean, Nathan; Webb, Brandon
2017-02-01
Guidelines recommend a switch from intravenous to oral antibiotics once patients who are hospitalized with pneumonia achieve clinical stability. However, little evidence guides the selection of an oral antibiotic for patients with health care-associated pneumonia, especially where no microbiological diagnosis is made. To compare outcomes between patients who were transitioned to broad- versus narrow-spectrum oral antibiotics after initially receiving broad-spectrum intravenous antibiotic coverage. We performed a secondary analysis of an existing database of adults with community-onset pneumonia admitted to seven Utah hospitals. We identified 220 inpatients with microbiology-negative health care-associated pneumonia from 2010 to 2012. After excluding inpatient deaths and treatment failures, 173 patients remained in which broad-spectrum intravenous antibiotics were transitioned to an oral regimen. We classified oral regimens as broad-spectrum (fluoroquinolone) versus narrow-spectrum (usually a β-lactam). We compared demographic and clinical characteristics between groups. Using a multivariable regression model, we adjusted outcomes by severity (electronically calculated CURB-65), comorbidity (Charlson Index), time to clinical stability, and length of intravenous therapy. Age, severity, comorbidity, length of intravenous therapy, and clinical response were similar between the two groups. Observed 30-day readmission (11.9 vs. 21.4%; P = 0.26) and 30-day all-cause mortality (2.3 vs. 5.3%; P = 0.68) were also similar between the narrow and broad oral antibiotic groups. In multivariable analysis, we found no statistically significant differences for adjusted odds of 30-day readmission (adjusted odds ratio, 0.56; 95% confidence interval, 0.06-5.2; P = 0.61) or 30-day all-cause mortality (adjusted odds ratio, 0.55; 95% confidence interval, 0.19-1.6; P = 0.26) between narrow and broad oral antibiotic groups. On the basis of analysis of a limited number of patients observed retrospectively, our findings suggest that it may be safe to switch from broad-spectrum intravenous antibiotic coverage to a narrow-spectrum oral antibiotic once clinical stability is achieved for hospitalized patients with health care-associated pneumonia when no microbiological diagnosis is made. A larger retrospective study with propensity matching or regression-adjusted test of equivalence or ideally a prospective comparative effectiveness study will be necessary to confirm our observations.
A Framework for Comprehensive Health Terminology Systems in the United States
Chute, Christopher G.; Cohn, Simon P.; Campbell, James R.
1998-01-01
Health care in the United States has become an information-intensive industry, yet electronic health records represent patient data inconsistently for lack of clinical data standards. Classifications that have achieved common acceptance, such as the ICD-9-CM or ICD, aggregate heterogeneous patients into broad categories, which preclude their practical use in decision support, development of refined guidelines, or detailed comparison of patient outcomes or benchmarks. This document proposes a framework for the integration and maturation of clinical terminologies that would have practical applications in patient care, process management, outcome analysis, and decision support. Arising from the two working groups within the standards community—the ANSI (American National Standards Institute) Healthcare Informatics Standards Board Working Group and the Computer-based Patient Records Institute Working Group on Codes and Structures—it outlines policies regarding 1) functional characteristics of practical terminologies, 2) terminology models that can broaden their applications and contribute to their sustainability, 3) maintenance attributes that will enable terminologies to keep pace with rapidly changing health care knowledge and process, and 4) administrative issues that would facilitate their accessibility, adoption, and application to improve the quality and efficiency of American health care. PMID:9824798
Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy.
Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika
2015-11-24
Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.
Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy
Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika
2015-01-01
Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar. PMID:26610516
Holmes, Morgan; Bodie, Kelly; Porter, Geoffrey; Sullivan, Victoria; Tarasuk, Joy; Trembley, Jodie; Trudeau, Maureen
2010-01-01
Optimizing human and physical resources is a major concern for cancer care decision-makers and practitioners. This issue is particularly acute in the context of ambulatory out patient chemotherapy clinics, especially when - as is the case almost everywhere in the industrialized world - the number of people requiring systemic therapy is increasing while budgets, staffing and physical space remain static. Recent initiatives at three hospital-based chemotherapy units - in Halifax, Toronto and Kingston - shed light on the value of process analysis and reorganization for using existing human and physical resources to their full potential, improving patient flow and enhancing patient satisfaction. The steps taken in these settings are broadly applicable to other healthcare settings and would likely result in similar benefits in those environments.
Features of ciguatera fish poisoning cases in Hong Kong 2004-2007.
Wong, Chun-Kwan; Hung, Patricia; Lee, Kellie L H; Mok, Tina; Chung, Thomas; Kam, Kai-Man
2008-12-01
To review the clinical features and laboratory investigations of ciguatera patients in Hong Kong between 2004 and 2007 in order to show the timely sampling of implicated fish from ciguatera victims and application of validated mouse bioassay for confirming suspected clinical cases of ciguatera. Diagnosis of the ciguatera victims was based on history of coral fish consumption and clinical presentations stated in official guidelines for clinical diagnosis of ciguatera fish poisoning in Hong Kong. Food remnants of coral fish samples were collected swiftly from ciguatera victims between 2004 and 2007 for ciguatoxins (CTXs) analysis. Major clinical symptoms in ciguatera patients included gastrointestinal and neurological effects including limb numbness and diarrhoea, which developed at 0.5 to 15 hours after consumption of fish. In most cases, neurological symptoms were more common than gastrointestinal symptoms. A broad range of attack rate (10%-100%) was observed in each ciguatera outbreak. Validated mouse bioassay on ether extracts of the food remnant samples confirmed that all were CTXs-positive (<0.5 - 4.3 MU/20 mg ether extract) and directly linked to the corresponding ciguatera cases. Consistency between clinical and laboratory analysis for ciguatera poisoning illustrates the application of laboratory mouse bioassay in a timely fashion for confirming ciguatera poisoning cases and implementing effective public health measures. With further improvement in laboratory techniques, features of ciguatera fish poisoning cases can be better defined. Further studies are needed to determine the risk of each class of CTXs (Pacific-, Indian- and Caribbean-CTXs) in Hong Kong.
Hypersensitivity linked to exposure of broad bean protein(s) in allergic patients and BALB/c mice.
Kumar, Dinesh; Kumar, Sandeep; Verma, Alok K; Sharma, Akanksha; Tripathi, Anurag; Chaudhari, Bhushan P; Kant, Surya; Das, Mukul; Jain, Swatantra K; Dwivedi, Premendra D
2014-01-01
Broad bean (Vicia faba L.), a common vegetable, belongs to the family Fabaceae and is consumed worldwide. Limited studies have been done on allergenicity of broad beans. The aim of this study was to determine if broad bean proteins have the ability to elicit allergic responses due to the presence of clinically relevant allergenic proteins. Simulated gastric fluid (SGF) assay and immunoglobulin E (IgE) immunoblotting were carried out to identify pepsin-resistant and IgE-binding proteins. The allergenicity of broad beans was assessed in allergic patients, BALB/c mice, splenocytes, and RBL-2H3 cells. Eight broad bean proteins of approximate molecular weight 70, 60, 48, 32, 23, 19, 15, and 10 kDa that remained undigested in SGF, showed IgE-binding capacity as well. Of 127 allergic patients studied, broad bean allergy was evident in 16 (12%). Mice sensitized with broad bean showed increased levels of histamine, total and specific IgE, and severe signs of systemic anaphylaxis compared with controls. Enhanced levels of histamine, prostaglandin D2, cysteinyl leukotriene, and β-hexosaminidase release were observed in the primed RBL-2H3 cells following broad bean exposure. The levels of interleukin IL-4, IL-5, IL-13 and regulated on activation, normal T-cell expressed and secreted were found enhanced in broad bean-treated splenocytes culture supernatant compared with controls. This study inferred that broad bean proteins have the ability to elicit allergic responses due to the presence of clinically relevant allergenic proteins. Copyright © 2014 Elsevier Inc. All rights reserved.
NIRS in clinical neurology - a 'promising' tool?
Obrig, Hellmuth
2014-01-15
Near-infrared spectroscopy (NIRS) has become a relevant research tool in neuroscience. In special populations such as infants and for special tasks such as walking, NIRS has asserted itself as a low resolution functional imaging technique which profits from its ease of application, portability and the option to co-register other neurophysiological and behavioral data in a 'near natural' environment. For clinical use in neurology this translates into the option to provide a bed-side oximeter for the brain, broadly available at comparatively low costs. However, while some potential for routine brain monitoring during cardiac and vascular surgery and in neonatology has been established, NIRS is largely unknown to clinical neurologists. The article discusses some of the reasons for this lack of use in clinical neurology. Research using NIRS in three major neurologic diseases (cerebrovascular disease, epilepsy and headache) is reviewed. Additionally the potential to exploit the established position of NIRS as a functional imaging tool with regard to clinical questions such as preoperative functional assessment and neurorehabilitation is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Parameswaran, Krishnan R; Rosen, David I; Allen, Mark G; Ganz, Alan M; Risby, Terence H
2009-02-01
Cavity-enhanced tunable diode laser absorption spectroscopy is an attractive method for measuring small concentrations of gaseous species. Ethane is a breath biomarker of lipid peroxidation initiated by reactive oxygen species. A noninvasive means of quickly quantifying oxidative stress status has the potential for broad clinical application. We present a simple, compact system using off-axis integrated cavity output spectroscopy with an interband cascade laser and demonstrate its use in real-time measurements of breath ethane. We demonstrate a detection sensitivity of 0.48 ppb/Hz(1/2).
Assessment of the five-factor model of personality.
Widiger, T A; Trull, T J
1997-04-01
The five-factor model (FFM) of personality is obtaining construct validation, recognition, and practical consideration across a broad domain of fields, including clinical psychology, industrial-organizational psychology, and health psychology. As a result, an array of instruments have been developed and existing instruments are being modified to assess the FFM. In this article, we present an overview and critique of five such instruments (the Goldberg Big Five Markers, the revised NEO Personality Inventory, the Interpersonal Adjective Scales-Big Five, the Personality Psychopathology-Five, and the Hogan Personality Inventory), focusing in particular on their representation of the lexical FFM and their practical application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoofnagle, Andrew N.; Whiteaker, Jeffrey R.; Carr, Steven A.
2015-12-30
The Clinical Proteomic Tumor Analysis Consortium (1) (CPTAC) of the National Cancer Institute (NCI) is a comprehensive and coordinated effort to accelerate the understanding of the molecular basis of cancer through the application of robust technologies and workflows for the quantitative measurements of proteins. The Assay Development Working Group of the CPTAC Program aims to foster broad uptake of targeted mass spectrometry-based assays employing isotopically labeled peptides for confident assignment and quantification, including multiple reaction monitoring (MRM; also referred to as Selected Reaction Monitoring), parallel reaction monitoring (PRM), and other targeted methods.
Baquet, C R
1997-01-01
Greater attention has been given recently to information technology and telecommunication reforms and their use for the improvement of health care service delivery. Broadly defined, telemedicine is the use of advanced telecommunications technologies for the purposes of making diagnoses, conducting research, transferring patient data, and/or improving disease management and treatment in remote areas. The emphasis is on use of telecommunications technologies at remote sites. This article provides a brief overview of telemedicine, its potential clinical applications, and the various benefits and leading issues surrounding it. It also describes selected telemedicine projects conducted at the University of Maryland School of Medicine in Baltimore.
Evans Blue Dye: A Revisit of Its Applications in Biomedicine.
Yao, Linpeng; Xue, Xing; Yu, Peipei; Ni, Yicheng; Chen, Feng
2018-01-01
Evans blue (EB) dye has owned a long history as a biological dye and diagnostic agent since its first staining application by Herbert McLean Evans in 1914. Due to its high water solubility and slow excretion, as well as its tight binding to serum albumin, EB has been widely used in biomedicine, including its use in estimating blood volume and vascular permeability, detecting lymph nodes, and localizing the tumor lesions. Recently, a series of EB derivatives have been labeled with PET isotopes and can be used as theranostics with a broad potential due to their improved half-life in the blood and reduced release. Some of EB derivatives have even been used in translational applications in clinics. In addition, a novel necrosis-avid feature of EB has recently been reported in some preclinical animal studies. Given all these interesting and important advances in EB study, a comprehensive revisiting of EB has been made in its biomedical applications in the review.
Optical Coherence Tomography: Basic Concepts and Applications in Neuroscience Research
2017-01-01
Optical coherence tomography is a micrometer-scale imaging modality that permits label-free, cross-sectional imaging of biological tissue microstructure using tissue backscattering properties. After its invention in the 1990s, OCT is now being widely used in several branches of neuroscience as well as other fields of biomedical science. This review study reports an overview of OCT's applications in several branches or subbranches of neuroscience such as neuroimaging, neurology, neurosurgery, neuropathology, and neuroembryology. This study has briefly summarized the recent applications of OCT in neuroscience research, including a comparison, and provides a discussion of the remaining challenges and opportunities in addition to future directions. The chief aim of the review study is to draw the attention of a broad neuroscience community in order to maximize the applications of OCT in other branches of neuroscience too, and the study may also serve as a benchmark for future OCT-based neuroscience research. Despite some limitations, OCT proves to be a useful imaging tool in both basic and clinical neuroscience research. PMID:29214158
Malec, James F.; Altman, Irwin M.; Swick, Shannon
2011-01-01
Abstract The precise measurement of patient outcomes depends upon clearly articulated constructs and refined clinical assessment instruments that work equally well for all subgroups within a population. This is a challenging task in those with acquired brain injury (ABI) because of the marked heterogeneity of the disorder and subsequent outcomes. Alhough essential, the iterative process of instrument refinement is often neglected. This present study was undertaken to examine validity, reliability, dimensionality and item estimate invariance of the Mayo-Portland Adaptability Inventory – 4 (MPAI-4), an outcome measure for persons with ABI. The sampled population included 603 persons with traumatic ABI participating in a home- and community-based rehabilitation program. Results indicated that the MPAI-4 is a valid, reliable measure of outcome following traumatic ABI, which measures a broad but unitary core construct of outcome after ABI. Further, the MPAI-4 is composed of items that are unbiased toward selected subgroups except where differences could be expected [e.g., more chronic traumatic brain injury (TBI) patients are better able to negotiate demands of transportation than more acute TBI patients]. We address the trade-offs between strict unidimensionality and clinical applicability in measuring outcome, and illustrate the advantages and disadvantages of applying single-parameter measurement models to broad constructs. PMID:21332409
Kean, Jacob; Malec, James F; Altman, Irwin M; Swick, Shannon
2011-05-01
The precise measurement of patient outcomes depends upon clearly articulated constructs and refined clinical assessment instruments that work equally well for all subgroups within a population. This is a challenging task in those with acquired brain injury (ABI) because of the marked heterogeneity of the disorder and subsequent outcomes. Although essential, the iterative process of instrument refinement is often neglected. This present study was undertaken to examine validity, reliability, dimensionality and item estimate invariance of the Mayo-Portland Adaptability Inventory - 4 (MPAI-4), an outcome measure for persons with ABI. The sampled population included 603 persons with traumatic ABI participating in a home- and community-based rehabilitation program. Results indicated that the MPAI-4 is a valid, reliable measure of outcome following traumatic ABI, which measures a broad but unitary core construct of outcome after ABI. Further, the MPAI-4 is composed of items that are unbiased toward selected subgroups except where differences could be expected [e.g., more chronic traumatic brain injury (TBI) patients are better able to negotiate demands of transportation than more acute TBI patients]. We address the trade-offs between strict unidimensionality and clinical applicability in measuring outcome, and illustrate the advantages and disadvantages of applying single-parameter measurement models to broad constructs.
Zischler, Johannes; Krapf, Philipp; Richarz, Raphael; Zlatopolskiy, Boris D; Neumaier, Bernd
2016-09-01
The application of the "minimalist" approach to Cu-mediated radiofluorination allows the efficient preparation of (18)F-labeled arenes regardless of their electronic properties. The implementation of this methodology on a commercially available synthesis module (hotbox(three), Scintomics, Germany) enabled the automated production of 4-[(18)F]fluoroanisole as well as the clinically relevant PET-tracers, 4-[(18)F]FPhe and [(18)F]DAA1106, in radiochemical yields of 41-61% and radiochemical purities of >95% within 30-60min. These results demonstrated the high efficacy and versatility of the developed method that will open up opportunities for a broad application of Cu-mediated radiofluorination in PET-chemistry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Fang; Liu, Tao; Qian, Weijun
2011-07-22
Liquid chromatography-mass spectrometry (LC-MS)-based quantitative proteomics has become increasingly applied for a broad range of biological applications due to growing capabilities for broad proteome coverage and good accuracy in quantification. Herein, we review the current LC-MS-based quantification methods with respect to their advantages and limitations, and highlight their potential applications.
Zakaria, Rosita; Allen, Katrina J.; Koplin, Jennifer J.; Roche, Peter
2016-01-01
Introduction Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. Methods To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; “blood spot” and “mass spectrometry”; while excluding “newborn”; and “neonate”. In addition, databases were restricted to English language and human specific. There was no time period limit applied. Results As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. Conclusions DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required. PMID:28149263
Julé, Amélie; Furtado, Tamzin; Boggs, Liam; van Loggerenberg, Francois; Ewing, Victoria; Vahedi, Manhaz; Launois, Pascal; Lang, Trudie
2017-01-01
Capacity development for clinical research is held back by a lack of recognition for the skills acquired through involvement in clinical trials and in other varied types of global health research studies. Although some competency frameworks and associated recognised career pathways exist for different clinical research roles, they mostly apply to a single role or study setting. Our experience supports the need for an integrated approach, looking at the many roles in parallel and at all types of clinical research beyond trials. Here, we propose a single, flexible framework which is applicable to the full global health research team, and can be used for recognising staff by highlighting acquired skills and possible progression between various roles. It can also illuminate where capacity needs strengthening and contribute to raising research engagement. Through systematic analysis of existing competency frameworks and current job descriptions covering 11 distinct, broad clinical research roles, we identified and defined 50 key competencies required by the team as a whole and throughout the study life cycle. The competencies are relevant and adaptable to studies that differ in design, geographical location or disease, and fall in five main areas-(1) Ethics, Quality and Risk Management; (2) Study and Site Management; (3) Research Operations; (4) Scientific Thinking; and (5) Professional Skills. A pilot framework and implementation tools are now available online and in paper format. They have the potential to be a new mechanism for enabling research skills development and career progression for all staff engaged in clinical research globally.
Julé, Amélie; Boggs, Liam; van Loggerenberg, Francois; Ewing, Victoria; Vahedi, Manhaz; Launois, Pascal; Lang, Trudie
2017-01-01
Capacity development for clinical research is held back by a lack of recognition for the skills acquired through involvement in clinical trials and in other varied types of global health research studies. Although some competency frameworks and associated recognised career pathways exist for different clinical research roles, they mostly apply to a single role or study setting. Our experience supports the need for an integrated approach, looking at the many roles in parallel and at all types of clinical research beyond trials. Here, we propose a single, flexible framework which is applicable to the full global health research team, and can be used for recognising staff by highlighting acquired skills and possible progression between various roles. It can also illuminate where capacity needs strengthening and contribute to raising research engagement. Through systematic analysis of existing competency frameworks and current job descriptions covering 11 distinct, broad clinical research roles, we identified and defined 50 key competencies required by the team as a whole and throughout the study life cycle. The competencies are relevant and adaptable to studies that differ in design, geographical location or disease, and fall in five main areas—(1) Ethics, Quality and Risk Management; (2) Study and Site Management; (3) Research Operations; (4) Scientific Thinking; and (5) Professional Skills. A pilot framework and implementation tools are now available online and in paper format. They have the potential to be a new mechanism for enabling research skills development and career progression for all staff engaged in clinical research globally. PMID:28589027
Road map for the clinical application of the basophil activation test in food allergy.
Santos, A F; Shreffler, W G
2017-09-01
The diagnosis of IgE-mediated food allergy based solely on the clinical history and the documentation of specific IgE to whole allergen extract or single allergens is often ambiguous, requiring oral food challenges (OFCs), with the attendant risk and inconvenience to the patient, to confirm the diagnosis of food allergy. This is a considerable proportion of patients assessed in allergy clinics. The basophil activation test (BAT) has emerged as having superior specificity and comparable sensitivity to diagnose food allergy, when compared with skin prick test and specific IgE. BAT, therefore, may reduce the number of OFC required for accurate diagnosis, particularly positive OFC. BAT can also be used to monitor resolution of food allergy and the clinical response to immunomodulatory treatments. Given the practicalities involved in the performance of BAT, we propose that it can be applied for selected cases where the history, skin prick test and/or specific IgE are not definitive for the diagnosis of food allergy. In the cases that the BAT is positive, food allergy is sufficiently confirmed without OFC; in the cases that BAT is negative or the patient has non-responder basophils, OFC may still be indicated. However, broad clinical application of BAT demands further standardization of the laboratory procedure and of the flow cytometry data analyses, as well as clinical validation of BAT as a diagnostic test for multiple target allergens and confirmation of its feasibility and cost-effectiveness in multiple settings. © 2017 The Authors. Clinical & Experimental Allergy published by John Wiley & Sons Ltd.
Liver function testing with nuclear medicine techniques is coming of age.
Bennink, Roelof J; Tulchinsky, Mark; de Graaf, Wilmar; Kadry, Zakiyah; van Gulik, Thomas M
2012-03-01
Liver function is a broad term, as the organ participates in a multitude of different physiological and biochemical processes, including metabolic, synthetic, and detoxifying functions. However, it is the function of the hepatocyte that is central to sustaining normal life and dealing with disease states. When the liver begins to fail in severely ill patients, it forecasts a terminal outcome. However, unlike the glomerular filtration rate which clearly quantifies the key renal function, at most practice sites, there is no clinically available quantitative test for liver function. Although it is commonplace to assess indirect evidence of that function (by measuring blood levels of its end products and by-products) and to detect an acute injury (by following rising transaminases), a widely available test that would directly measure hepatocellular function is lacking. This article reviews current knowledge on liver function studies and focuses on those nuclear medicine tests available to study the whole liver and regional liver function. The clinical application driving these tests, prediction of remnant liver function after partial hepatectomy for primary liver malignancy or metastatic disease, is addressed here in detail. The test was recently validated for this specific application and was shown to be better than the current standard of practice (computed tomography volumetry), particularly in patients with hepatic comorbidities like cirrhosis, steatosis, or cholestasis. Furthermore, early assessment of regional liver function increase after preoperative portal vein embolization becomes possible with this technology. The limiting factor to a wider acceptance of this test is based on the lack of clinical software that would allow calculation of liver function parameters. This article provides information that enables a clinical nuclear medicine facility to provide this test using readily available equipment. Furthermore, it addresses emerging clinical applications that are under investigation. Copyright © 2012 Elsevier Inc. All rights reserved.
The detection of oral cancer using differential pathlength spectroscopy
NASA Astrophysics Data System (ADS)
Sterenborg, H. J. C. M.; Kanick, S.; de Visscher, S.; Witjes, M.; Amelink, A.
2010-02-01
The development of optical techniques for non-invasive diagnosis of cancer is an ongoing challenge to biomedical optics. For head and neck cancer we see two main fields of potential application 1) Screening for second primaries in patients with a history of oral cancer. This requires imaging techniques or an approach where a larger area can be scanned quickly. 2) Distinguishing potentially malignant visible primary lesions from benign ones. Here fiberoptic point measurements can be used as the location of the lesion is known. This presentation will focus on point measurement techniques. Various techniques for point measurements have been developed and investigated clinically for different applications. Differential Pathlength Spectroscopy is a recently developed fiberoptic point measurement technique that measures scattered light in a broad spectrum. Due to the specific fiberoptic geometry we measure only scattered photons that have travelled a predetermined pathlength. This allows us to analyse the spectrum mathematically and translate the measured curve into a set of parameters that are related to the microvasculature and to the intracellular morphology. DPS has been extensively evaluated on optical phantoms and tested clinically in various clinical applications. The first measurements in biopsy proven squamous cell carcinoma showed significant changes in both vascular and morphological parameters. Measurements on thick keratinized lesions however failed to generate any vascular signatures. This is related to the sampling depth of the standard optical fibers used. Recently we developed a fiberoptic probe with a ~1 mm sampling depth. Measurements on several leukoplakias showed that with this new probe we sample just below the keratin layer and can obtain vascular signatures. The results of a first set of clinical measurements will be presented and the significance for clinical diagnostics will be discussed.
Robotic surgery in urologic oncology: gathering the evidence.
Skolarus, Ted A; Zhang, Yun; Hollenbeck, Brent K
2010-08-01
In less than a decade, the widespread application of robotic technology to the field of urologic oncology has permanently altered the way urologists approach malignancy. The short-term benefits of minimally invasive surgery using robotic assistance (i.e., decreased blood loss, improved convalescence and ergonomic appeal), as well as a broad marketing campaign, have helped the technology gain traction in the field of urology. Although the long-term benefits of its use in urologic surgery are less clear and the costs of robotic surgery are consistently greater than those of other approaches, the numbers of prostate, kidney and bladder cancer cases continue to rise. Identifying transferable surgical processes of care that matter most for each of the robotic cases in urologic oncology (e.g., prostatectomy, cystectomy and partial nephrectomy) is a next step toward broadly improving the quality of urologic cancer care. To this end, urologic professional societies and their surgeons should aim to identify underwriters for and participate in large clinical registries and surgical quality collaboratives.
Lee, Cody S.; Bishop, Elliot S.; Zhang, Ruyi; Yu, Xinyi; Farina, Evan M.; Yan, Shujuan; Zhao, Chen; Zheng, Zongyue; Shu, Yi; Wu, Xingye; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Yang, Chao; Wu, Ke; Wu, Ying; Ho, Sherwin; Athiviraham, Aravind; Lee, Michael J.; Wolf, Jennifer Moriatis; Reid, Russell R.; He, Tong-Chuan
2017-01-01
With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2,000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and pre-clinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine. PMID:28944281
How can nanotechnology help the fight against breast cancer?
Avitabile, Elisabetta; Bedognetti, Davide; Ciofani, Gianni; Bianco, Alberto; Delogu, Lucia Gemma
2018-06-19
In this review we provide a broad overview on the use of nanotechnology for the fight against breast cancer (BC). Nowadays, detection, diagnosis, treatment, and prevention may be possible thanks to the application of nanotechnology to clinical practice. Taking into consideration the different forms of BC and the disease status, nanomaterials can be designed to meet the most forefront objectives of modern therapy and diagnosis. We have analyzed in detail three main groups of nanomaterial applications for BC treatment and diagnosis. We have identified several types of drugs successfully conjugated with nanomaterials. We have analyzed the main important imaging techniques and all nanomaterials used to help the non-invasive, early detection of the lesions. Moreover, we have examined theranostic nanomaterials as unique tools, combining imaging, detection, and therapy for BC. This state of the art review provides a useful guide depicting how nanotechnology can be used to overcome the current barriers in BC clinical practice, and how it will shape the future scenario of treatments, prevention, and diagnosis, revolutionizing the current approaches, e.g., reducing the suffering related to chemotherapy.
Effective progression of nuclear magnetic resonance-detected fragment hits.
Eaton, Hugh L; Wyss, Daniel F
2011-01-01
Fragment-based drug discovery (FBDD) has become increasingly popular over the last decade as an alternate lead generation tool to HTS approaches. Several compounds have now progressed into the clinic which originated from a fragment-based approach, demonstrating the utility of this emerging field. While fragment hit identification has become much more routine and may involve different screening approaches, the efficient progression of fragment hits into quality lead series may still present a major bottleneck for the broadly successful application of FBDD. In our laboratory, we have extensive experience in fragment-based NMR screening (SbN) and the subsequent iterative progression of fragment hits using structure-assisted chemistry. To maximize impact, we have applied this approach strategically to early- and high-priority targets, and those struggling for leads. Its application has yielded a clinical candidate for BACE1 and lead series in about one third of the SbN/FBDD projects. In this chapter, we will give an overview of our strategy and focus our discussion on NMR-based FBDD approaches. Copyright © 2011 Elsevier Inc. All rights reserved.
Functional Nanostructures for Effective Delivery of Small Interfering RNA Therapeutics
Hong, Cheol Am; Nam, Yoon Sung
2014-01-01
Small interfering RNA (siRNA) has proved to be a powerful tool for target-specific gene silencing via RNA interference (RNAi). Its ability to control targeted gene expression gives new hope to gene therapy as a treatment for cancers and genetic diseases. However, siRNA shows poor pharmacological properties, such as low serum stability, off-targeting, and innate immune responses, which present a significant challenge for clinical applications. In addition, siRNA cannot cross the cell membrane for RNAi activity because of its anionic property and stiff structure. Therefore, the development of a safe, stable, and efficient system for the delivery of siRNA therapeutics into the cytoplasm of targeted cells is crucial. Several nanoparticle platforms for siRNA delivery have been developed to overcome the major hurdles facing the therapeutic uses of siRNA. This review covers a broad spectrum of non-viral siRNA delivery systems developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and discusses their characteristics and opportunities for clinical applications of therapeutic siRNA. PMID:25285170
Antimicrobial properties of honey.
Israili, Zafar H
2014-01-01
Honey has been widely accepted as food and medicine by all generations, traditions, and civilizations, both ancient and modern. For at least 2700 years, honey has been used by humans to treat a variety of ailments through topical application, but only recently have the antiseptic and antimicrobial properties of honey been discovered. Honey has been reported to be effective in a number of human pathologies. Clinical studies have demonstrated that application of honey to severely infected cutaneous wounds rapidly clears infection from the wound and improves tissue healing. A large number of in vitro and limited clinical studies have confirmed the broad-spectrum antimicrobial (antibacterial, antifungal, antiviral, and antimycobacterial) properties of honey, which may be attributed to the acidity (low pH), osmotic effect, high sugar concentration, presence of bacteriostatic and bactericidal factors (hydrogen peroxide, antioxidants, lysozyme, polyphenols, phenolic acids, flavonoids, methylglyoxal, and bee peptides), and increase in cytokine release, and to immune modulating and anti-inflammatory properties of honey; the antimicrobial action involves several mechanisms. Despite a large amount of data confirming the antimicrobial activity of honey, there are no studies that support the systemic use of honey as an antibacterial agent.
Functionalized graphene oxide for clinical glucose biosensing in urine and serum samples
Veerapandian, Murugan; Seo, Yeong-Tai; Shin, Hyunkyung; Yun, Kyusik; Lee, Min-Ho
2012-01-01
A novel clinical glucose biosensor fabricated using functionalized metalloid-polymer (silver-silica coated with polyethylene glycol) hybrid nanoparticles on the surface of a graphene oxide nanosheet is reported. The cyclic voltammetric response of glucose oxidase modification on the surface of a functionalized graphene oxide electrode showed a surface-confined reaction and an effective redox potential near zero volts, with a wide linearity of 0.1–20 mM and a sensitivity of 7.66 μA mM−1 cm−2. The functionalized graphene oxide electrode showed a better electrocatalytic response toward oxidation of H2O2 and reduction of oxygen. The practical applicability of the functionalized graphene oxide electrode was demonstrated by measuring the peak current against multiple urine and serum samples from diabetic patients. This new hybrid nanoarchitecture combining a three-dimensional metalloid-polymer hybrid and two-dimensional graphene oxide provided a thin solid laminate on the electrode surface. The easy fabrication process and retention of bioactive immobilized enzymes on the functionalized graphene oxide electrode could potentially be extended to detection of other biomolecules, and have broad applications in electrochemical biosensing. PMID:23269871
Functionalized graphene oxide for clinical glucose biosensing in urine and serum samples.
Veerapandian, Murugan; Seo, Yeong-Tai; Shin, Hyunkyung; Yun, Kyusik; Lee, Min-Ho
2012-01-01
A novel clinical glucose biosensor fabricated using functionalized metalloid-polymer (silver-silica coated with polyethylene glycol) hybrid nanoparticles on the surface of a graphene oxide nanosheet is reported. The cyclic voltammetric response of glucose oxidase modification on the surface of a functionalized graphene oxide electrode showed a surface-confined reaction and an effective redox potential near zero volts, with a wide linearity of 0.1-20 mM and a sensitivity of 7.66 μA mM(-1) cm(-2). The functionalized graphene oxide electrode showed a better electrocatalytic response toward oxidation of H(2)O(2) and reduction of oxygen. The practical applicability of the functionalized graphene oxide electrode was demonstrated by measuring the peak current against multiple urine and serum samples from diabetic patients. This new hybrid nanoarchitecture combining a three-dimensional metalloid-polymer hybrid and two-dimensional graphene oxide provided a thin solid laminate on the electrode surface. The easy fabrication process and retention of bioactive immobilized enzymes on the functionalized graphene oxide electrode could potentially be extended to detection of other biomolecules, and have broad applications in electrochemical biosensing.
Advances in repairing the degenerate retina by rod photoreceptor transplantation.
Pearson, Rachael A
2014-01-01
Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. The past decade has seen a number of landmark achievements in this field, which together provide strong justification for continuing investigation into photoreceptor replacement strategies. These include proof of principle for restoring vision by rod-photoreceptor transplantation in mice with congenital stationary night blindness and advances in stem cell biology, which have led to the generation of complete optic structures in vitro from embryonic stem cells. The latter represents enormous potential for generating suitable and renewable donor cells with which to achieve the former. However, there are still challenges presented by the degenerating recipient retinal environment that must be addressed as we move to translating these technologies towards clinical application. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.
Valenta, Rudolf; Campana, Raffaela; Focke-Tejkl, Margit; Niederberger, Verena
2016-01-01
In the past, the development of more effective, safe, convenient, broadly applicable, and easy to manufacture vaccines for allergen-specific immunotherapy (AIT) has been limited by the poor quality of natural allergen extracts. Progress made in the field of molecular allergen characterization has now made it possible to produce defined vaccines for AIT and eventually for preventive allergy vaccination based on recombinant DNA technology and synthetic peptide chemistry. Here we review the characteristics of recombinant and synthetic allergy vaccines that have reached clinical evaluation and discuss how molecular vaccine approaches can make AIT more safe and effective and thus more convenient. Furthermore, we discuss how new technologies can facilitate the reproducible manufacturing of vaccines of pharmaceutical grade for inhalant, food, and venom allergens. Allergy vaccines in clinical trials based on recombinant allergens, recombinant allergen derivatives, and synthetic peptides allow us to target selectively different immune mechanisms, and certain of those show features that might make them applicable not only for therapeutic but also for prophylactic vaccination. PMID:26853127
Review of optical breast imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola
2016-09-01
Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.
Evaluation of DICOM viewer software for workflow integration in clinical trials
NASA Astrophysics Data System (ADS)
Haak, Daniel; Page, Charles E.; Kabino, Klaus; Deserno, Thomas M.
2015-03-01
The digital imaging and communications in medicine (DICOM) protocol is nowadays the leading standard for capture, exchange and storage of image data in medical applications. A broad range of commercial, free, and open source software tools supporting a variety of DICOM functionality exists. However, different from patient's care in hospital, DICOM has not yet arrived in electronic data capture systems (EDCS) for clinical trials. Due to missing integration, even just the visualization of patient's image data in electronic case report forms (eCRFs) is impossible. Four increasing levels for integration of DICOM components into EDCS are conceivable, raising functionality but also demands on interfaces with each level. Hence, in this paper, a comprehensive evaluation of 27 DICOM viewer software projects is performed, investigating viewing functionality as well as interfaces for integration. Concerning general, integration, and viewing requirements the survey involves the criteria (i) license, (ii) support, (iii) platform, (iv) interfaces, (v) two-dimensional (2D) and (vi) three-dimensional (3D) image viewing functionality. Optimal viewers are suggested for applications in clinical trials for 3D imaging, hospital communication, and workflow. Focusing on open source solutions, the viewers ImageJ and MicroView are superior for 3D visualization, whereas GingkoCADx is advantageous for hospital integration. Concerning workflow optimization in multi-centered clinical trials, we suggest the open source viewer Weasis. Covering most use cases, an EDCS and PACS interconnection with Weasis is suggested.
Tari, Leslie W.; Li, Xiaoming; Trzoss, Michael; Bensen, Daniel C.; Chen, Zhiyong; Lam, Thanh; Zhang, Junhu; Lee, Suk Joong; Hough, Grayson; Phillipson, Doug; Akers-Rodriguez, Suzanne; Cunningham, Mark L.; Kwan, Bryan P.; Nelson, Kirk J.; Castellano, Amanda; Locke, Jeff B.; Brown-Driver, Vickie; Murphy, Timothy M.; Ong, Voon S.; Pillar, Chris M.; Shinabarger, Dean L.; Nix, Jay; Lightstone, Felice C.; Wong, Sergio E.; Nguyen, Toan B.; Shaw, Karen J.; Finn, John
2013-01-01
Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. However, growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highly conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models. PMID:24386374
In Defense of a Social Value Requirement for Clinical Research
Wendler, David; Rid, Annette
2017-01-01
Many guidelines and commentators endorse the view that clinical research is ethically acceptable only when it has social value, in the sense of collecting data which might be used to improve health. A version of this social value requirement is included in the Declaration of Helsinki and the Nuremberg Code, and is codified in many national research regulations. At the same time, there have been no systematic analyses of why social value is an ethical requirement for clinical research. Recognizing this gap in the literature, recent articles by Alan Wertheimer and David Resnik argue that the extant justifications for the social value requirement are unpersuasive. Both authors conclude, contrary to almost all current guidelines and regulations, that it can be acceptable across a broad range of cases to conduct clinical research which is known prospectively to have no social value. The present paper assesses this conclusion by critically evaluating the ethical and policy considerations relevant to the claim that clinical research must have social value. This analysis supports the standard view that social value is an ethical requirement for the vast majority of clinical research studies and should be mandated by applicable guidelines and policies. PMID:28060427
In Defense of a Social Value Requirement for Clinical Research.
Wendler, David; Rid, Annette
2017-02-01
Many guidelines and commentators endorse the view that clinical research is ethically acceptable only when it has social value, in the sense of collecting data which might be used to improve health. A version of this social value requirement is included in the Declaration of Helsinki and the Nuremberg Code, and is codified in many national research regulations. At the same time, there have been no systematic analyses of why social value is an ethical requirement for clinical research. Recognizing this gap in the literature, recent articles by Alan Wertheimer and David Resnik argue that the extant justifications for the social value requirement are unpersuasive. Both authors conclude, contrary to almost all current guidelines and regulations, that it can be acceptable across a broad range of cases to conduct clinical research which is known prospectively to have no social value. The present article assesses this conclusion by critically evaluating the ethical and policy considerations relevant to the claim that clinical research must have social value. This analysis supports the standard view that social value is an ethical requirement for the vast majority of clinical research studies and should be mandated by applicable guidelines and policies. © 2017 John Wiley & Sons Ltd.
Gas-phase broadband spectroscopy using active sources: progress, status, and applications
Cossel, Kevin C.; Waxman, Eleanor M.; Finneran, Ian A.; Blake, Geoffrey A.; Ye, Jun; Newbury, Nathan R.
2017-01-01
Broadband spectroscopy is an invaluable tool for measuring multiple gas-phase species simultaneously. In this work we review basic techniques, implementations, and current applications for broadband spectroscopy. We discuss components of broad-band spectroscopy including light sources, absorption cells, and detection methods and then discuss specific combinations of these components in commonly-used techniques. We finish this review by discussing potential future advances in techniques and applications of broad-band spectroscopy. PMID:28630530
Improving clinical trials in the critically ill.
Angus, Derek C; Mira, Jean-Paul; Vincent, Jean-Louis
2010-02-01
To propose ways in which clinical trials in intensive care can be improved. An international roundtable conference was convened focused on improvement in three broad areas: translation of new knowledge from bench to bedside; design and conduct of clinical trials; and clinical trial infrastructure and environment. The roundtable recommendations were: improvement in clinical trials is a multistep process from better preclinical studies to better clinical trial methodology; new technologies should be used to improve models of critical illness; diseasomes and theragnostics will aid inpatient population selection and more appropriate targeting of interventions; broader study end points should include morbidity as well as mortality; more multicenter studies should be conducted by national and international networks or clinical trials groups; and better collaboration is needed with the industry. There was broad agreement among the roundtable participants regarding a number of explicit opportunities for the improvement of clinical trials in critical care.
Jayatilleke, Nishamali; Kolliakou, Anna; Ball, Michael; Gorrell, Genevieve; Roberts, Angus; Stewart, Robert
2017-01-01
Objectives We sought to use natural language processing to develop a suite of language models to capture key symptoms of severe mental illness (SMI) from clinical text, to facilitate the secondary use of mental healthcare data in research. Design Development and validation of information extraction applications for ascertaining symptoms of SMI in routine mental health records using the Clinical Record Interactive Search (CRIS) data resource; description of their distribution in a corpus of discharge summaries. Setting Electronic records from a large mental healthcare provider serving a geographic catchment of 1.2 million residents in four boroughs of south London, UK. Participants The distribution of derived symptoms was described in 23 128 discharge summaries from 7962 patients who had received an SMI diagnosis, and 13 496 discharge summaries from 7575 patients who had received a non-SMI diagnosis. Outcome measures Fifty SMI symptoms were identified by a team of psychiatrists for extraction based on salience and linguistic consistency in records, broadly categorised under positive, negative, disorganisation, manic and catatonic subgroups. Text models for each symptom were generated using the TextHunter tool and the CRIS database. Results We extracted data for 46 symptoms with a median F1 score of 0.88. Four symptom models performed poorly and were excluded. From the corpus of discharge summaries, it was possible to extract symptomatology in 87% of patients with SMI and 60% of patients with non-SMI diagnosis. Conclusions This work demonstrates the possibility of automatically extracting a broad range of SMI symptoms from English text discharge summaries for patients with an SMI diagnosis. Descriptive data also indicated that most symptoms cut across diagnoses, rather than being restricted to particular groups. PMID:28096249
Armored DNA in recombinant Baculoviruses as controls in molecular genetic assays.
Freystetter, Andrea; Paar, Christian; Stekel, Herbert; Berg, Jörg
2017-10-01
The widespread use of molecular PCR-based assays in analytical and clinical laboratories brings about the need for test-specific, stable, and reliable external controls (EC) as well as standards and internal amplification controls (IC), in order to arrive at consistent test results. In addition, there is also a growing need to produce and provide stable, well-characterized molecular controls for quality assurance programs. In this study, we describe a novel approach to generate armored double-stranded DNA controls, which are encapsulated in baculovirus (BV) particles of the species Autographa californica multiple nucleopolyhedrovirus. We used the well-known BacPAK™ Baculovirus Expression System (Takara-Clontech), removed the polyhedrin promoter used for protein expression, and generated recombinant BV-armored DNAs. The obtained BV-armored DNAs were readily extracted by standard clinical DNA extraction methods, showed favorable linearity and performance in our clinical PCR assays, were resistant to DNase I digestion, and exhibited marked stability in human plasma and serum. BV-armored DNA ought to be used as ECs, quantification standards, and ICs in molecular assays, with the latter application allowing for the entire monitoring of clinical molecular assays for sample adequacy. BV-armored DNA may also be used to produce double-stranded DNA reference materials for, e.g., quality assurance programs. The ease to produce BV-armored DNA should make this approach feasible for a broad spectrum of molecular applications. Finally, as BV-armored DNAs are non-infectious to mammals, they may be even more conveniently shipped than clinical specimen.
Automated Broad-Range Molecular Detection of Bacteria in Clinical Samples
Hoogewerf, Martine; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.
2016-01-01
Molecular detection methods, such as quantitative PCR (qPCR), have found their way into clinical microbiology laboratories for the detection of an array of pathogens. Most routinely used methods, however, are directed at specific species. Thus, anything that is not explicitly searched for will be missed. This greatly limits the flexibility and universal application of these techniques. We investigated the application of a rapid universal bacterial molecular identification method, IS-pro, to routine patient samples received in a clinical microbiology laboratory. IS-pro is a eubacterial technique based on the detection and categorization of 16S-23S rRNA gene interspace regions with lengths that are specific for each microbial species. As this is an open technique, clinicians do not need to decide in advance what to look for. We compared routine culture to IS-pro using 66 samples sent in for routine bacterial diagnostic testing. The samples were obtained from patients with infections in normally sterile sites (without a resident microbiota). The results were identical in 20 (30%) samples, IS-pro detected more bacterial species than culture in 31 (47%) samples, and five of the 10 culture-negative samples were positive with IS-pro. The case histories of the five patients from whom these culture-negative/IS-pro-positive samples were obtained suggest that the IS-pro findings are highly clinically relevant. Our findings indicate that an open molecular approach, such as IS-pro, may have a high added value for clinical practice. PMID:26763956
The Imaging and Medical Beam Line at the Australian Synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausermann, Daniel; Hall, Chris; Maksimenko, Anton
2010-07-23
As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the 'Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stemmore » cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1 - monochromatic and white - to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.« less
Broad-Spectrum Molecular Detection of Fungal Nucleic Acids by PCR-Based Amplification Techniques.
Czurda, Stefan; Lion, Thomas
2017-01-01
Over the past decade, the incidence of life-threatening invasive fungal infections has dramatically increased. Infections caused by hitherto rare and emerging fungal pathogens are associated with significant morbidity and mortality among immunocompromised patients. These observations render the coverage of a broad range of clinically relevant fungal pathogens highly important. The so-called panfungal or, perhaps more correctly, broad-range nucleic acid amplification techniques do not only facilitate sensitive detection of all clinically relevant fungal species but are also rapid and can be applied to analyses of any patient specimens. They have therefore become valuable diagnostic tools for sensitive screening of patients at risk of invasive fungal infections. This chapter summarizes the currently available molecular technologies employed in testing of a wide range of fungal pathogens, and provides a detailed workflow for patient screening by broad-spectrum nucleic acid amplification techniques.
Current progress on aptamer-targeted oligonucleotide therapeutics
Dassie, Justin P; Giangrande, Paloma H
2014-01-01
Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted. PMID:24304250
SPECT/CT in imaging foot and ankle pathology-the demise of other coregistration techniques.
Mohan, Hosahalli K; Gnanasegaran, Gopinath; Vijayanathan, Sanjay; Fogelman, Ignac
2010-01-01
Disorders of the ankle and foot are common and given the complex anatomy and function of the foot, they present a significant clinical challenge. Imaging plays a crucial role in the management of these patients, with multiple imaging options available to the clinician. The American College of radiology has set the appropriateness criteria for the use of the available investigating modalities in the management of foot and ankle pathologies. These are broadly classified into anatomical and functional imaging modalities. Recently, single-photon emission computed tomography and/or computed tomography scanners, which can elegantly combine functional and anatomical images have been introduced, promising an exciting and important development. This review describes our clinical experience with single-photon emission computed tomography and/or computed tomography and discusses potential applications of these techniques.
A clinically applicable adjuvant for an atherosclerosis vaccine in mice.
Kobiyama, Kouji; Vassallo, Melanie; Mitzi, Jessica; Winkels, Holger; Pei, Hong; Kimura, Takayuki; Miller, Jacqueline; Wolf, Dennis; Ley, Klaus
2018-06-22
Vaccination with MHC-II-restricted peptides from Apolipoprotein B (ApoB) with complete and incomplete Freund's adjuvant (CFA/IFA) is known to protect mice from atherosclerosis. This vaccination induces antigen-specific IgG1 and IgG2c antibody responses and a robust CD4 T cell response in lymph nodes. However, CFA/IFA cannot be used in humans. To find a clinically applicable adjuvant, we tested the effect of vaccinating Apoe-deficient mice with ApoB peptide P6 (TGAYSNASSTESASY). In a broad screening experiment, Addavax, a squalene oil similar to MF59, was the only adjuvant that showed similar efficacy as CFA/IFA. This was confirmed in a confirmation experiment for both the aortic arch and whole aorta analyzed by en face analysis after atherosclerotic lesion staining. Mechanistically, restimulated peritoneal cells from mice immunized with P6 in Addavax released significant amounts of IL-10. Unlike P6 in CFA/IFA, vaccination with P6 in Addavax did not induce any detectable IgG1 or IgG2c antibodies to P6. These data suggest that squalene-based adjuvants such as MF59 are good candidate adjuvants for developing a clinically effective atherosclerosis vaccine. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Alladi, Suvarna; Arnold, Robert; Mitchell, Joanna; Nestor, Peter J; Hodges, John R
2006-04-01
We explored the applicability of recently proposed research criteria for mild cognitive impairment (MCI) in a memory clinic and changes in case definition related to which memory tests are used and the status of general cognitive function in MCI. A total of 166 consecutive GP referrals to the Cambridge Memory Clinic underwent comprehensive neuropsychological and psychiatric evaluation. Of 166 cases, 42 were excluded (significant depression 8, established dementia 29 and other disorders 5). Of 124 non-demented, non-depressed patients, 72 fulfilled Petersen's criteria for amnestic MCI based upon verbal memory performance [the Rey Auditory Verbal Learning Test (RAVLT)] and 90 met criteria if performance on verbal and/or non-verbal memory tests [the Rey figure recall or the Paired Associates Learning test (PAL)] was considered. Of the 90 broadly defined MCI cases, only 25 had pure amnesia: other subtle semantic and/or attention deficits were typically present. A further 12 were classed as non-amnestic MCI and 22 as 'worried well'. Definition of MCI varies considerably dependent upon the tests used for case definition. The majority have other cognitive deficits despite normal performance on the Mini-mental State Examination (MMSE) and intact activities of daily living (ADL) and fit within multi-domain MCI. Pure amnesic MCI is rare.
Mesenchymal Stromal Cells for Antineoplastic Drug Loading and Delivery.
Petrella, Francesco; Rimoldi, Isabella; Rizzo, Stefania; Spaggiari, Lorenzo
2017-11-23
Mesenchymal stromal cells are a population of undifferentiated multipotent adult cells possessing extensive self-renewal properties and the potential to differentiate into a variety of mesenchymal lineage cells. They express broad anti-inflammatory and immunomodulatory activity on the immune system and after transplantation can interact with the surrounding microenvironment, promoting tissue healing and regeneration. For this reason, mesenchymal stromal cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Another clinical application of mesenchymal stromal cells is the targeted delivery of chemotherapeutic agents to neoplastic cells, maximizing the cytotoxic activity against cancer cells and minimizing collateral damage to non-neoplastic tissues. Mesenchymal stem cells are home to the stroma of several primary and metastatic neoplasms and hence can be used as vectors for targeted delivery of antineoplastic drugs to the tumour microenvironment, thereby reducing systemic toxicity and maximizing antitumour effects. Paclitaxel and gemcitabine are the chemotherapeutic drugs best loaded by mesenchymal stromal cells and delivered to neoplastic cells, whereas other agents, like pemetrexed, are not internalized by mesenchymal stromal cells and therefore are not suitable for advanced antineoplastic therapy. This review focuses on the state of the art of advanced antineoplastic cell therapy and its future perspectives, emphasizing in vitro and in vivo preclinical results and future clinical applications.
Ferini-Strambi, Luigi; Marelli, Sara; Galbiati, Andrea
2016-08-01
Restless legs syndrome/Willis Ekbom disease (RLS/WED) is a sensorimotor disorder characterized by unpleasant sensations in the legs accompanied by an urge to move them, that typically occurs and tend to worsen in the evening/night or during period of inactivity. Standard medications for RLS/WED are dopamine agonists and calcium channel α-2-δ ligands. The clinical spectrum of RLS/WED is very broad, ranging from individuals suffering from the disease during limited periods up to those severely affected, with daily symptoms. In such cases a long-acting drug like rotigotine should be considered. The clinical pharmacology and efficacy of rotigotine was examined to evaluate the evidence supporting its use in RLS/WED. The rotigotine transdermal patch provides constant delivery of the drug, maintaining a stable plasma concentration over 24 hours by means of a single daily application. Several randomized, double-blind, placebo-controlled trials have demonstrated the efficacy of rotigotine in improving moderate-to-severe RLS/WED symptoms. Rotigotine is generally well tolerated. The most common adverse effects were application-site reactions, dose-dependent, more frequently reported in the first period of treatment. Incidence of augmentation in RLS/WED patients treated with oral dopamine agonists is higher when compared with the use of transdermal rotigotine.
Medical student perspective: working toward specific and actionable clinical clerkship feedback.
Moss, Haley A; Derman, Peter B; Clement, R Carter
2012-01-01
Feedback on the wards is an important component of medical student education. Medical schools have incorporated formalized feedback mechanisms such as clinical encounter cards and standardized patient encounters into clinical curricula. However, the system could be further improved as medical students frequently feel uncomfortable requesting feedback, and are often dissatisfied with the quality of the feedback they receive. This article explores the shortcomings of the existing medical student feedback system and examines the relevant literature in an effort to shed light on areas in which the system can be enhanced. The discussion focuses on resident-provided feedback but is broadly applicable to delivering feedback in general. A review of the organizational psychology and business administration literature on fostering effective feedback was performed. These insights were then applied to the setting of medical education. Providing effective feedback requires training and forethought. Feedback itself should be specific and actionable. Utilizing these strategies will help medical students and educators get the most out of existing feedback systems.
Rabins, Peter; Appleby, Brian S; Brandt, Jason; DeLong, Mahlon R; Dunn, Laura B; Gabriëls, Loes; Greenberg, Benjamin D; Haber, Suzanne N; Holtzheimer, Paul E; Mari, Zoltan; Mayberg, Helen S; McCann, Evelyn; Mink, Sallie P; Rasmussen, Steven; Schlaepfer, Thomas E; Vawter, Dorothy E; Vitek, Jerrold L; Walkup, John; Mathews, Debra J H
2009-09-01
A 2-day consensus conference was held to examine scientific and ethical issues in the application of deep brain stimulation for treating mood and behavioral disorders, such as major depression, obsessive-compulsive disorder, and Tourette syndrome. The primary objectives of the conference were to (1) establish consensus among participants about the design of future clinical trials of deep brain stimulation for disorders of mood, behavior, and thought and (2) develop standards for the protection of human subjects participating in such studies. Conference participants identified 16 key points for guiding research in this growing field. The adoption of the described guidelines would help to protect the safety and rights of research subjects who participate in clinical trials of deep brain stimulation for disorders of mood, behavior, and thought and have further potential to benefit other stakeholders in the research process, including clinical researchers and device manufactures. That said, the adoption of the guidelines will require broad and substantial commitment from many of these same stakeholders.
Rips, J
1997-12-01
The findings of ACTG 076 have already resulted in local, state, and federal legislative initiatives targeted at pregnant and post-partum women and their newborns. This article advises clinicians and administrations on setting up successful voluntary prenatal HIV counseling and testing programs for early detection of HIV infection, and complying with the burgeoning array of legislative directives. Over the past several years their have been attempts to optimize and evaluate testing programs--perinatal ZDV counseling and administration of ZDV--and to link HIV-infected women with care in academic, community, and municipal hospitals. The suggestions are, therefore, broad enough to be applicable to a full array of clinical practices, from a private single provider office to a large hospital-based prenatal clinic. It is hoped that the models presented in this article can be replicated in diverse settings, and that readers can avoid the pitfalls and barriers sometimes encountered.
Advances and challenges in biosensor-based diagnosis of infectious diseases
Sin, Mandy LY; Mach, Kathleen E; Wong, Pak Kin; Liao, Joseph C
2014-01-01
Rapid diagnosis of infectious diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in biosensor technologies have potential to deliver point-of-care diagnostics that match or surpass conventional standards in regards to time, accuracy and cost. Broadly classified as either label-free or labeled, modern biosensors exploit micro- and nanofabrication technologies and diverse sensing strategies including optical, electrical and mechanical transducers. Despite clinical need, translation of biosensors from research laboratories to clinical applications has remained limited to a few notable examples, such as the glucose sensor. Challenges to be overcome include sample preparation, matrix effects and system integration. We review the advances of biosensors for infectious disease diagnostics and discuss the critical challenges that need to be overcome in order to implement integrated diagnostic biosensors in real world settings. PMID:24524681
Murray, Patrick T; Mehta, Ravindra L; Shaw, Andrew; Ronco, Claudio; Endre, Zoltan; Kellum, John A; Chawla, Lakhmir S; Cruz, Dinna; Ince, Can; Okusa, Mark D
2014-03-01
Over the last decade there has been considerable progress in the discovery and development of biomarkers of kidney disease, and several have now been evaluated in different clinical settings. Although there is a growing literature on the performance of various biomarkers in clinical studies, there is limited information on how these biomarkers would be utilized by clinicians to manage patients with acute kidney injury (AKI). Recognizing this gap in knowledge, we convened the 10th Acute Dialysis Quality Initiative meeting to review the literature on biomarkers in AKI and their application in clinical practice. We asked an international group of experts to assess four broad areas for biomarker utilization for AKI: risk assessment, diagnosis, and staging; differential diagnosis; prognosis and management; and novel physiological techniques including imaging. This article provides a summary of the key findings and recommendations of the group, to equip clinicians to effectively use biomarkers in AKI.
The unregulated commercialization of stem cell treatments: a global perspective.
Sipp, Douglas
2011-12-01
Research into the biological properties and clinical potential of stem cells has spurred strong public investment, industry development, media coverage, and patient interest in recent years. To date, however, few clinical applications of demonstrated safety and efficacy have been developed with the exception of uses of hematopoietic stem cells in the treatment of diseases of the blood and immune systems. This lack of an evidence basis notwithstanding, hundreds of companies and private clinics around the world now sell putative stem cell treatments for an enormously broad range of medical and quality-of-life conditions. This represents a major challenge for legitimate scientists working in the field, for authorities seeking to protect their constituencies, and for patients and consumers targeted by such companies' marketing strategies. In this review, I provide an overview of the global industry in pseudomedical stem cell treatments, with an investigation of claims in a single disease area (amyotrophic lateral sclerosis), and make recommendations for the introduction and enforcement of appropriate regulatory responses to this problem.
Current situation and challenge of registry in China.
Zhang, Yang; Feng, Yuji; Qu, Zhi; Qi, Yali; Zhan, Siyan
2014-09-01
Increasing emphasis has been placed on registries for an organized system used in developing clinical research to improve health care. China has sufficient data that can be applied broadly, but the heterogeneity and irregularity of registries limit their applicability. This article aims to describe the status of registries in China and the related challenges. Patient registries for observational studies were retrieved from the International Clinical Trials Registry to quantitatively evaluate the number of comparatively high-quality registries in China. A literature search was also performed to provide support and updates. A total of 64 patient registries were retrieved from ClinicalTrials.gov using disease, product, and health service as criteria. The sample sizes ranged from 15 to 30,400, with only 12 registries marked as completed. This article describes and compares the detailed information in many aspects. The efficient use of registries has already made considerable progress in China; however, registries still require standardization, high-quality transition, and coordinated development.
MOON-test - determination of motor performance in the pediatric oncology.
Götte, M; Kesting, S; Albrecht, C; Worth, A; Bös, K; Boos, J
2013-05-01
Pediatric cancer patients suffer from various negative consequences due to the disease, the medical therapy and the inactivity during the intensive treatment. Only few studies have systematically identified the adverse effects of cancer on motor performance in childhood. To determine the motor performance of pediatric cancer patients, a motor performance test was developed which is applicable for this specific patient group. Eight test items with reference values for healthy children were merged to the MOON-test (test for motor performance in the oncology). MOON was tested for feasibility and acceptance in 33 patients aged 4-18 years. Feasibility was confirmed for children with different types of cancer (hematological malignancies and solid tumors) and with amputation, endoprosthesis, during aplasia as well as reduced general condition. Furthermore the patients showed a broad acceptance. Based on the study findings, the use of MOON-test as a standardized motor performance diagnostic tool in clinical routine of oncological acute clinics as well as rehabilitation clinics can be recommended.· © Georg Thieme Verlag KG Stuttgart · New York.
Vizirianakis, Ioannis S; Mystridis, George A; Avgoustakis, Konstantinos; Fatouros, Dimitrios G; Spanakis, Marios
2016-04-01
The existing tumor heterogeneity and the complexity of cancer cell biology critically demand powerful translational tools with which to support interdisciplinary efforts aiming to advance personalized cancer medicine decisions in drug development and clinical practice. The development of physiologically based pharmacokinetic (PBPK) models to predict the effects of drugs in the body facilitates the clinical translation of genomic knowledge and the implementation of in vivo pharmacology experience with pharmacogenomics. Such a direction unequivocally empowers our capacity to also make personalized drug dosage scheme decisions for drugs, including molecularly targeted agents and innovative nanoformulations, i.e. in establishing pharmacotyping in prescription. In this way, the applicability of PBPK models to guide individualized cancer therapeutic decisions of broad clinical utility in nanomedicine in real-time and in a cost-affordable manner will be discussed. The latter will be presented by emphasizing the need for combined efforts within the scientific borderlines of genomics with nanotechnology to ensure major benefits and productivity for nanomedicine and personalized medicine interventions.
Maduraiveeran, Govindhan; Sasidharan, Manickam; Ganesan, Vellaichamy
2018-04-30
Introduction of novel functional nanomaterials and analytical technologies signify a foremost possibility for the advance of electrochemical sensor and biosensor platforms/devices for a broad series of applications including biological, biomedical, biotechnological, clinical and medical diagnostics, environmental and health monitoring, and food industries. The design of sensitive and selective electrochemical biological sensor platforms are accomplished conceivably by offering new surface modifications, microfabrication techniques, and diverse nanomaterials with unique properties for in vivo and in vitro medical analysis via relating a sensibly planned electrode/solution interface. The advantageous attributes such as low-cost, miniaturization, energy efficient, easy fabrication, online monitoring, and the simultaneous sensing capability are the driving force towards continued growth of electrochemical biosensing platforms, which have fascinated the interdisciplinary research arenas spanning chemistry, material science, biological science, and medical industries. The electrochemical biosensor platforms have potential applications in the early-stage detection and diagnosis of disease as stout and tunable diagnostic and therapeutic systems. The key aim of this review is to emphasize the newest development in the design of sensing and biosensing platforms based on functional nanomaterials for biological and biomedical applications. High sensitivity and selectivity, fast response, and excellent durability in biological media are all critical aspects which will also be wisely addressed. Potential applications of electrochemical sensor and biosensor platforms based on advanced functional nanomaterials for neuroscience diagnostics, clinical, point-of-care diagnostics and medical industries are also concisely presented. Copyright © 2017 Elsevier B.V. All rights reserved.
InP (Indium Phosphide): Into the future
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W., Jr.
1989-01-01
Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.
Alsharif, Naser Z; Galt, Kimberly A
2008-04-15
To evaluate an instructional model for teaching clinically relevant medicinal chemistry. An instructional model that uses Bloom's cognitive and Krathwohl's affective taxonomy, published and tested concepts in teaching medicinal chemistry, and active learning strategies, was introduced in the medicinal chemistry courses for second-professional year (P2) doctor of pharmacy (PharmD) students (campus and distance) in the 2005-2006 academic year. Student learning and the overall effectiveness of the instructional model were assessed. Student performance after introducing the instructional model was compared to that in prior years. Student performance on course examinations improved compared to previous years. Students expressed overall enthusiasm about the course and better understood the value of medicinal chemistry to clinical practice. The explicit integration of the cognitive and affective learning objectives improved student performance, student ability to apply medicinal chemistry to clinical practice, and student attitude towards the discipline. Testing this instructional model provided validation to this theoretical framework. The model is effective for both our campus and distance-students. This instructional model may also have broad-based applications to other science courses.
Is tapentadol different from classical opioids? A review of the evidence
Langford, Richard M; Knaggs, Roger; Farquhar-Smith, Paul; Dickenson, Anthony H
2016-01-01
Tapentadol is a single molecule able to deliver analgesia by two distinct mechanisms, a feature which differentiates it from many other analgesics. Pre-clinical data demonstrate two mechanisms of action: mu-opioid receptor agonist activity and noradrenaline re-uptake inhibition. From these, one may predict that tapentadol would be applicable across a broad spectrum of pain from nociceptive to neuropathic. The evidence in animal models suggests that norepinephrine re-uptake inhibition (NRI) is a key mechanism and may even predominate over opioid actions in chronic (and especially neuropathic) pain states, reinforcing that tapentadol is different to classical opioids and may, therefore, be an a priori choice for the treatment of neuropathic and mixed pain. The clinical studies and subsequent practice experience and surveillance support the concept of opioid and non-opioid mechanisms of action. The reduced incidence of some of the typical opioid-induced side effects, compared to equianalgesic doses of classical opioids, supports the hypothesis that tapentadol analgesia is only partially mediated by opioid agonist mechanisms. Both the pre-clinical and clinical profiles appear to be differentiated from those of classical opioids. PMID:27867511
Is tapentadol different from classical opioids? A review of the evidence.
Langford, Richard M; Knaggs, Roger; Farquhar-Smith, Paul; Dickenson, Anthony H
2016-11-01
Tapentadol is a single molecule able to deliver analgesia by two distinct mechanisms, a feature which differentiates it from many other analgesics. Pre-clinical data demonstrate two mechanisms of action: mu-opioid receptor agonist activity and noradrenaline re-uptake inhibition. From these, one may predict that tapentadol would be applicable across a broad spectrum of pain from nociceptive to neuropathic. The evidence in animal models suggests that norepinephrine re-uptake inhibition (NRI) is a key mechanism and may even predominate over opioid actions in chronic (and especially neuropathic) pain states, reinforcing that tapentadol is different to classical opioids and may, therefore, be an a priori choice for the treatment of neuropathic and mixed pain. The clinical studies and subsequent practice experience and surveillance support the concept of opioid and non-opioid mechanisms of action. The reduced incidence of some of the typical opioid-induced side effects, compared to equianalgesic doses of classical opioids, supports the hypothesis that tapentadol analgesia is only partially mediated by opioid agonist mechanisms. Both the pre-clinical and clinical profiles appear to be differentiated from those of classical opioids.
Personalized Medicine for ARDS: The 2035 Research Agenda
Beitler, Jeremy R.; Goligher, Ewan C.; Schmidt, Matthieu; Spieth, Peter M.; Zanella, Alberto; Martin-Loeches, Ignacio; Calfee, Carolyn S.; Cavalcanti, Alexandre B.
2016-01-01
Survival from ARDS has increased substantially in the last twenty years as a result of key advances in lung-protective ventilation and resuscitation. Similarly, clinical practice improvements have contributed to an impressive decline in nosocomial ARDS incidence. Personalizing mechanical ventilation for further lung protection is a top research priority for the years ahead. However, the ARDS research agenda must be broader in scope. The clinical syndrome of ARDS includes a heterogeneous assemblage of pathophysiological processes leading to lung injury. Further understanding of these varied, complex biological underpinnings of ARDS pathogenesis is needed to inform therapeutic discovery and tailor management strategy to the individual patient. While some therapies may be applicable broadly to all ARDS patients, others may benefit only certain biologically distinct subsets. The twenty-year ARDSne(x)t research agenda calls for bringing personalized medicine to ARDS, asking simultaneously both whether a treatment affords clinically meaningful benefit and for whom. This expanded scope necessitates acquisition of highly granular biological, physiological, and clinical data as the new standard across studies. Tremendous investment in research infrastructure and global collaboration will be vital to fulfilling this agenda. PMID:27040103
Motionless phase stepping in X-ray phase contrast imaging with a compact source
Miao, Houxun; Chen, Lei; Bennett, Eric E.; Adamo, Nick M.; Gomella, Andrew A.; DeLuca, Alexa M.; Patel, Ajay; Morgan, Nicole Y.; Wen, Han
2013-01-01
X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications. PMID:24218599
Nanoscale platforms for messenger RNA delivery.
Li, Bin; Zhang, Xinfu; Dong, Yizhou
2018-05-04
Messenger RNA (mRNA) has become a promising class of drugs for diverse therapeutic applications in the past few years. A series of clinical trials are ongoing or will be initiated in the near future for the treatment of a variety of diseases. Currently, mRNA-based therapeutics mainly focuses on ex vivo transfection and local administration in clinical studies. Efficient and safe delivery of therapeutically relevant mRNAs remains one of the major challenges for their broad applications in humans. Thus, effective delivery systems are urgently needed to overcome this limitation. In recent years, numerous nanoscale biomaterials have been constructed for mRNA delivery in order to protect mRNA from extracellular degradation and facilitate endosomal escape after cellular uptake. Nanoscale platforms have expanded the feasibility of mRNA-based therapeutics, and enabled its potential applications to protein replacement therapy, cancer immunotherapy, therapeutic vaccines, regenerative medicine, and genome editing. This review focuses on recent advances, challenges, and future directions in nanoscale platforms designed for mRNA delivery, including lipid and lipid-derived nanoparticles, polymer-based nanoparticles, protein derivatives mRNA complexes, and other types of nanomaterials. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures. © 2018 Wiley Periodicals, Inc.
Towns, Megan; Rosenbaum, Peter; Palisano, Robert; Wright, F Virginia
2018-02-01
This literature review addressed four questions. (1) In which populations other than cerebral palsy (CP) has the Gross Motor Function Classification System (GMFCS) been applied? (2) In what types of study, and why was it used? (3) How was it modified to facilitate these applications? (4) What justifications and evidence of psychometric adequacy were used to support its application? A search of PubMed, MEDLINE, and Embase databases (January 1997 to April 2017) using the terms: 'GMFCS' OR 'Gross Motor Function Classification System' yielded 2499 articles. 118 met inclusion criteria and reported children/adults with 133 health conditions/clinical descriptions other than CP. Three broad GMFCS applications were observed: as a categorization tool, independent variable, or outcome measure. While the GMFCS is widely used for children with health conditions/clinical description other than CP, researchers rarely provided adequate justification for these uses. We offer recommendations for development/validation of other condition-specific classification systems and discuss the potential need for a generic gross motor function classification system. The Gross Motor Function Classification System should not be used outside cerebral palsy or as an outcome measure. The authors provide recommendations for development and validation of condition-specific or generic classification systems. © 2017 Mac Keith Press.
Graphene Materials in Antimicrobial Nanomedicine: Current Status and Future Perspectives.
Karahan, Hüseyin Enis; Wiraja, Christian; Xu, Chenjie; Wei, Jun; Wang, Yilei; Wang, Liang; Liu, Fei; Chen, Yuan
2018-03-05
Graphene materials (GMs), such as graphene, graphene oxide (GO), reduced GO (rGO), and graphene quantum dots (GQDs), are rapidly emerging as a new class of broad-spectrum antimicrobial agents. This report describes their state-of-the-art and potential future covering both fundamental aspects and biomedical applications. First, the current understanding of the antimicrobial mechanisms of GMs is illustrated, and the complex picture of underlying structure-property-activity relationships is sketched. Next, the different modes of utilization of antimicrobial GMs are explained, which include their use as colloidal dispersions, surface coatings, and photothermal/photodynamic therapy agents. Due to their practical relevance, the examples where GMs function as synergistic agents or release platforms for metal ions and/or antibiotic drugs are also discussed. Later, the applicability of GMs in the design of wound dressings, infection-protective coatings, and antibiotic-like formulations ("nanoantibiotics") is assessed. Notably, to support our assessments, the existing clinical applications of conventional carbon materials are also evaluated. Finally, the key hurdles of the field are highlighted, and several possible directions for future investigations are proposed. We hope that the roadmap provided here will encourage researchers to tackle remaining challenges toward clinical translation of promising research findings and help realize the potential of GMs in antimicrobial nanomedicine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analytical Protein Microarrays: Advancements Towards Clinical Applications
Sauer, Ursula
2017-01-01
Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems. PMID:28146048
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qinhua; Johnson, Ted W.; Bailey, Simon
2014-02-27
Crizotinib (1), an anaplastic lymphoma kinase (ALK) receptor tyrosine kinase inhibitor approved by the U.S. Food and Drug Administration in 2011, is efficacious in ALK and ROS positive patients. Under pressure of crizotinib treatment, point mutations arise in the kinase domain of ALK, resulting in resistance and progressive disease. The successful application of both structure-based and lipophilic-efficiency-focused drug design resulted in aminopyridine 8e, which was potent across a broad panel of engineered ALK mutant cell lines and showed suitable preclinical pharmacokinetics and robust tumor growth inhibition in a crizotinib-resistant cell line (H3122-L1196M).
Accelerating Advanced MRI Reconstructions on GPUs
Stone, S.S.; Haldar, J.P.; Tsao, S.C.; Hwu, W.-m.W.; Sutton, B.P.; Liang, Z.-P.
2008-01-01
Computational acceleration on graphics processing units (GPUs) can make advanced magnetic resonance imaging (MRI) reconstruction algorithms attractive in clinical settings, thereby improving the quality of MR images across a broad spectrum of applications. This paper describes the acceleration of such an algorithm on NVIDIA’s Quadro FX 5600. The reconstruction of a 3D image with 1283 voxels achieves up to 180 GFLOPS and requires just over one minute on the Quadro, while reconstruction on a quad-core CPU is twenty-one times slower. Furthermore, relative to the true image, the error exhibited by the advanced reconstruction is only 12%, while conventional reconstruction techniques incur error of 42%. PMID:21796230
Fragile X syndrome neurobiology translates into rational therapy.
Braat, Sien; Kooy, R Frank
2014-04-01
Causal genetic defects have been identified for various neurodevelopmental disorders. A key example in this respect is fragile X syndrome, one of the most frequent genetic causes of intellectual disability and autism. Since the discovery of the causal gene, insights into the underlying pathophysiological mechanisms have increased exponentially. Over the past years, defects were discovered in pathways that are potentially amendable by pharmacological treatment. These findings have inspired the initiation of clinical trials in patients. The targeted pathways converge in part with those of related neurodevelopmental disorders raising hopes that the treatments developed for this specific disorder might be more broadly applicable. Copyright © 2014 Elsevier Ltd. All rights reserved.
Accelerating Advanced MRI Reconstructions on GPUs.
Stone, S S; Haldar, J P; Tsao, S C; Hwu, W-M W; Sutton, B P; Liang, Z-P
2008-10-01
Computational acceleration on graphics processing units (GPUs) can make advanced magnetic resonance imaging (MRI) reconstruction algorithms attractive in clinical settings, thereby improving the quality of MR images across a broad spectrum of applications. This paper describes the acceleration of such an algorithm on NVIDIA's Quadro FX 5600. The reconstruction of a 3D image with 128(3) voxels achieves up to 180 GFLOPS and requires just over one minute on the Quadro, while reconstruction on a quad-core CPU is twenty-one times slower. Furthermore, relative to the true image, the error exhibited by the advanced reconstruction is only 12%, while conventional reconstruction techniques incur error of 42%.
[Advances of portable electrocardiogram monitor design].
Ding, Shenping; Wang, Yinghai; Wu, Weirong; Deng, Lingli; Lu, Jidong
2014-06-01
Portable electrocardiogram monitor is an important equipment in the clinical diagnosis of cardiovascular diseases due to its portable, real-time features. It has a broad application and development prospects in China. In the present review, previous researches on the portable electrocardiogram monitors have been arranged, analyzed and summarized. According to the characteristics of the electrocardiogram (ECG), this paper discusses the ergonomic design of the portable electrocardiogram monitor, including hardware and software. The circuit components and software modules were parsed from the ECG features and system functions. Finally, the development trend and reference are provided for the portable electrocardiogram monitors and for the subsequent research and product design.
DNA testing in neurologic diseases.
O'Brien, D P; Leeb, T
2014-01-01
DNA testing is available for a growing number of hereditary diseases in neurology and other specialties. In addition to guiding breeding decisions, DNA tests are important tools in the diagnosis of diseases, particularly in conditions for which clinical signs are relatively nonspecific. DNA testing also can provide valuable insight into the risk of hereditary disease when decisions about treating comorbidities are being made. Advances in technology and bioinformatics will make broad screening for potential disease-causing mutations available soon. As DNA tests come into more common use, it is critical that clinicians understand the proper application and interpretation of these test results. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Tari, Leslie W.; Li, Xiaoming; Trzoss, Michael; ...
2013-12-26
Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. Growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highlymore » conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Moreover, lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tari, Leslie W.; Li, Xiaoming; Trzoss, Michael
Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. Growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highlymore » conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Moreover, lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models.« less
10 CFR 33.15 - Requirements for the issuance of a Type C specific license of broad scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.15 Requirements for the... this chapter; and (b) The applicant submits a statement that byproduct material will be used only by... bachelor level, or equivalent training and experience, in the physical or biological sciences or in...
Phosphoproteomics reveals ALK promote cell progress via RAS/ JNK pathway in neuroblastoma.
Chen, Kai; Lv, Fan; Xu, Guofeng; Zhang, Min; Wu, Yeming; Wu, Zhixiang
2016-11-15
Emerging evidence suggests receptor tyrosine kinase ALK as a promising therapeutic target in neuroblastoma. However, clinical trials reveal that a limited proportion of ALK-positive neuroblastoma patients experience clinical benefits from Crizotinib, a clinically approved specific inhibitor of ALK. The precise molecular mechanisms of aberrant ALK activity in neuroblastoma remain elusive, limiting the clinical application of ALK as a therapeutic target in neuroblastoma. Here, we describe a deep quantitative phosphoproteomic approach in which Crizotinib-treated neuroblastoma cell lines bearing aberrant ALK are used to investigate downstream regulated phosphoproteins. We identified more than 19,500-and quantitatively analyzed approximately 10,000-phosphorylation sites from each cell line, ultimately detecting 450-790 significantly-regulated phosphorylation sites. Multiple layers of bioinformatic analysis of the significantly-regulated phosphoproteins identified RAS/JNK as a downstream signaling pathway of ALK, independent of the ALK variant present. Further experiments demonstrated that ALK/JNK signaling could be inactivated by either ALK- or JNK-specific inhibitors, resulting in cell growth inhibition by induction of cell cycle arrest and cell apoptosis. Our study broadly defines the phosphoproteome in response to ALK inhibition and provides a resource for further clinical investigation of ALK as therapeutic target for the treatment of neuroblastoma.
Novel Serial Positive Enrichment Technology Enables Clinical Multiparameter Cell Sorting
Tschulik, Claudia; Piossek, Christine; Bet, Jeannette; Yamamoto, Tori N.; Schiemann, Matthias; Neuenhahn, Michael; Martin, Klaus; Schlapschy, Martin; Skerra, Arne; Schmidt, Thomas; Edinger, Matthias; Riddell, Stanley R.; Germeroth, Lothar; Busch, Dirk H.
2012-01-01
A general obstacle for clinical cell preparations is limited purity, which causes variability in the quality and potency of cell products and might be responsible for negative side effects due to unwanted contaminants. Highly pure populations can be obtained best using positive selection techniques. However, in many cases target cell populations need to be segregated from other cells by combinations of multiple markers, which is still difficult to achieve – especially for clinical cell products. Therefore, we have generated low-affinity antibody-derived Fab-fragments, which stain like parental antibodies when multimerized via Strep-tag and Strep-Tactin, but can subsequently be removed entirely from the target cell population. Such reagents can be generated for virtually any antigen and can be used for sequential positive enrichment steps via paramagnetic beads. First protocols for multiparameter enrichment of two clinically relevant cell populations, CD4high/CD25high/CD45RAhigh ‘regulatory T cells’ and CD8high/CD62Lhigh/CD45RAneg ‘central memory T cells’, have been established to determine quality and efficacy parameters of this novel technology, which should have broad applicability for clinical cell sorting as well as basic research. PMID:22545138
Rubel, Oliver; Bowen, Benjamin P
2018-01-01
Mass spectrometry imaging (MSI) is a transformative imaging method that supports the untargeted, quantitative measurement of the chemical composition and spatial heterogeneity of complex samples with broad applications in life sciences, bioenergy, and health. While MSI data can be routinely collected, its broad application is currently limited by the lack of easily accessible analysis methods that can process data of the size, volume, diversity, and complexity generated by MSI experiments. The development and application of cutting-edge analytical methods is a core driver in MSI research for new scientific discoveries, medical diagnostics, and commercial-innovation. However, the lack of means to share, apply, and reproduce analyses hinders the broad application, validation, and use of novel MSI analysis methods. To address this central challenge, we introduce the Berkeley Analysis and Storage Toolkit (BASTet), a novel framework for shareable and reproducible data analysis that supports standardized data and analysis interfaces, integrated data storage, data provenance, workflow management, and a broad set of integrated tools. Based on BASTet, we describe the extension of the OpenMSI mass spectrometry imaging science gateway to enable web-based sharing, reuse, analysis, and visualization of data analyses and derived data products. We demonstrate the application of BASTet and OpenMSI in practice to identify and compare characteristic substructures in the mouse brain based on their chemical composition measured via MSI.
Updating the OMERACT filter: core areas as a basis for defining core outcome sets.
Kirwan, John R; Boers, Maarten; Hewlett, Sarah; Beaton, Dorcas; Bingham, Clifton O; Choy, Ernest; Conaghan, Philip G; D'Agostino, Maria-Antonietta; Dougados, Maxime; Furst, Daniel E; Guillemin, Francis; Gossec, Laure; van der Heijde, Désirée M; Kloppenburg, Margreet; Kvien, Tore K; Landewé, Robert B M; Mackie, Sarah L; Matteson, Eric L; Mease, Philip J; Merkel, Peter A; Ostergaard, Mikkel; Saketkoo, Lesley Ann; Simon, Lee; Singh, Jasvinder A; Strand, Vibeke; Tugwell, Peter
2014-05-01
The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes that are universal to all studies of the effects of intervention effects. There is no published outline for instrument choice or development that is aimed at measuring outcome, was derived from broad consensus over its underlying philosophy, or includes a structured and documented critique. Therefore, a new proposal for defining core areas of measurement ("Filter 2.0 Core Areas of Measurement") was presented at OMERACT 11 to explore areas of consensus and to consider whether already endorsed core outcome sets fit into this newly proposed framework. Discussion groups critically reviewed the extent to which case studies of current OMERACT Working Groups complied with or negated the proposed framework, whether these observations had a more general application, and what issues remained to be resolved. Although there was broad acceptance of the framework in general, several important areas of construction, presentation, and clarity of the framework were questioned. The discussion groups and subsequent feedback highlighted 20 such issues. These issues will require resolution to reach consensus on accepting the proposed Filter 2.0 framework of Core Areas as the basis for the selection of Core Outcome Domains and hence appropriate Core Outcome Sets for clinical trials.
NASA Astrophysics Data System (ADS)
Graham, David W.; Knapp, Charles W.; Christensen, Bent T.; McCluskey, Seánín; Dolfing, Jan
2016-02-01
Debate exists about whether agricultural versus medical antibiotic use drives increasing antibiotic resistance (AR) across nature. Both sectors have been inconsistent at antibiotic stewardship, but it is unclear which sector has most influenced acquired AR on broad scales. Using qPCR and soils archived since 1923 at Askov Experimental Station in Denmark, we quantified four broad-spectrum β-lactam AR genes (ARG; blaTEM, blaSHV, blaOXA and blaCTX-M) and class-1 integron genes (int1) in soils from manured (M) versus inorganic fertilised (IF) fields. “Total” β-lactam ARG levels were significantly higher in M versus IF in soils post-1940 (paired-t test; p < 0.001). However, dominant individual ARGs varied over time; blaTEM and blaSHV between 1963 and 1974, blaOXA slightly later, and blaCTX-M since 1988. These dates roughly parallel first reporting of these genes in clinical isolates, suggesting ARGs in animal manure and humans are historically interconnected. Archive data further show when non-therapeutic antibiotic use was banned in Denmark, blaCTX-M levels declined in M soils, suggesting accumulated soil ARGs can be reduced by prudent antibiotic stewardship. Conversely, int1 levels have continued to increase in M soils since 1990, implying direct manure application to soils should be scrutinized as part of future stewardship programs.
Laser assisted drug delivery: a review of an evolving technology.
Sklar, Lindsay R; Burnett, Christopher T; Waibel, Jill S; Moy, Ronald L; Ozog, David M
2014-04-01
Topically applied drugs have a relatively low cutaneous bioavailability. This article reviews the existing applications of laser assisted drug delivery, a means by which the permeation of topically applied agents can be enhanced into the skin. The existing literature suggests that lasers are a safe and effective means of enhancing the delivery of topically applied agents through the skin. The types of lasers most commonly studied in regards to drug delivery are the carbon dioxide (CO2 ) and erbium:yttrium-aluminum-garnet (Er:YAG) lasers. Both conventional ablative and fractional ablative modalities have been utilized and are summarized herein. The majority of the existing studies on laser assisted drug delivery have been performed on animal models and additional human studies are needed. Laser assisted drug delivery is an evolving technology with potentially broad clinical applications. Multiple studies demonstrate that laser pretreatment of the skin can increase the permeability and depth of penetration of topically applied drug molecules for both local cutaneous and systemic applications. © 2014 Wiley Periodicals, Inc.
Regueiro-Ren, Alicia; Liu, Zheng; Chen, Yan; Sin, Ny; Sit, Sing-Yuen; Swidorski, Jacob J; Chen, Jie; Venables, Brian L; Zhu, Juliang; Nowicka-Sans, Beata; Protack, Tricia; Lin, Zeyu; Terry, Brian; Samanta, Himadri; Zhang, Sharon; Li, Zhufang; Beno, Brett R; Huang, Xiaohua S; Rahematpura, Sandhya; Parker, Dawn D; Haskell, Roy; Jenkins, Susan; Santone, Kenneth S; Cockett, Mark I; Krystal, Mark; Meanwell, Nicholas A; Hanumegowda, Umesh; Dicker, Ira B
2016-06-09
HIV-1 maturation inhibition (MI) has been clinically validated as an approach to the control of HIV-1 infection. However, identifying an MI with both broad polymorphic spectrum coverage and good oral exposure has been challenging. Herein, we describe the design, synthesis, and preclinical characterization of a potent, orally active, second generation HIV-1 MI, BMS-955176 (2), which is currently in Phase IIb clinical trials as part of a combination antiretroviral regimen.
Potential non-oncological applications of histone deacetylase inhibitors.
Ververis, Katherine; Karagiannis, Tom C
2011-01-01
Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac hypertrophy and asthma.
Potential non-oncological applications of histone deacetylase inhibitors
Ververis, Katherine; Karagiannis, Tom C
2011-01-01
Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac hypertrophy and asthma. PMID:22046487
LaBarbera, Andrew R
2016-09-01
The US Academies of Sciences and Medicine, the Royal Society, and the Chinese Academy of Sciences convened a summit of experts in biology, medicine, law, ethics, sociology, and journalism, in December 2015 to review the state of the art in gene editing technology and discuss the medical and social ramifications of the technologies. The summit concluded with the following consensus recommendations: (1) intensive basic and preclinical research in animal and human models should proceed with appropriate legal and ethical oversight; (2) clinical applications in somatic cells must be rigorously evaluated within existing and evolving regulatory frameworks for gene therapy; (3) it would be irresponsible to proceed with any clinical use of germline editing until relevant safety and efficacy issues have been resolved and there is broad societal consensus about such a use; and (4) the international community should strive to establish generally acceptable uses of human germline editing.
Botkin, Jeffrey R.; Belmont, John W.; Berg, Jonathan S.; Berkman, Benjamin E.; Bombard, Yvonne; Holm, Ingrid A.; Levy, Howard P.; Ormond, Kelly E.; Saal, Howard M.; Spinner, Nancy B.; Wilfond, Benjamin S.; McInerney, Joseph D.
2015-01-01
In 1995, the American Society of Human Genetics (ASHG) and American College of Medical Genetics and Genomics (ACMG) jointly published a statement on genetic testing in children and adolescents. In the past 20 years, much has changed in the field of genetics, including the development of powerful new technologies, new data from genetic research on children and adolescents, and substantial clinical experience. This statement represents current opinion by the ASHG on the ethical, legal, and social issues concerning genetic testing in children. These recommendations are relevant to families, clinicians, and investigators. After a brief review of the 1995 statement and major changes in genetic technologies in recent years, this statement offers points to consider on a broad range of test technologies and their applications in clinical medicine and research. Recommendations are also made for record and communication issues in this domain and for professional education. PMID:26140447
Chloride channels as drug targets
Verkman, Alan S.; Galietta, Luis J. V.
2013-01-01
Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558
NASA Astrophysics Data System (ADS)
Ottomeyer, Megan
Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.
Applications of Electronic Health Information in Public Health: Uses, Opportunities & Barriers
Tomines, Alan; Readhead, Heather; Readhead, Adam; Teutsch, Steven
2013-01-01
Electronic health information systems can reshape the practice of public health including public health surveillance, disease and injury investigation and control, decision making, quality assurance, and policy development. While these opportunities are potentially transformative, and the federal program for the Meaningful Use (MU) of electronic health records (EHRs) has included important public health components, significant barriers remain. Unlike incentives in the clinical care system, scant funding is available to public health departments to develop the necessary information infrastructure and workforce capacity to capitalize on EHRs, personal health records, or Big Data. Current EHR systems are primarily built to serve clinical systems and practice rather than being structured for public health use. In addition, there are policy issues concerning how broadly the data can be used by public health officials. As these issues are resolved and workable solutions emerge, they should yield a more efficient and effective public health system. PMID:25848571
Adaptive optics imaging of inherited retinal diseases.
Georgiou, Michalis; Kalitzeos, Angelos; Patterson, Emily J; Dubra, Alfredo; Carroll, Joseph; Michaelides, Michel
2017-11-15
Adaptive optics (AO) ophthalmoscopy allows for non-invasive retinal phenotyping on a microscopic scale, thereby helping to improve our understanding of retinal diseases. An increasing number of natural history studies and ongoing/planned interventional clinical trials exploit AO ophthalmoscopy both for participant selection, stratification and monitoring treatment safety and efficacy. In this review, we briefly discuss the evolution of AO ophthalmoscopy, recent developments and its application to a broad range of inherited retinal diseases, including Stargardt disease, retinitis pigmentosa and achromatopsia. Finally, we describe the impact of this in vivo microscopic imaging on our understanding of disease pathogenesis, clinical trial design and outcome metrics, while recognising the limitation of the small cohorts reported to date. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Lawrence, Daniel; Davies, Tracey-Lee; Bagshaw, Ruth; Hewlett, Paul; Taylor, Pamela; Watt, Andrew
2018-02-01
Aims and method Structured clinical judgement tools provide scope for the standardisation of forensic service gatekeeping and also allow identification of heuristics in this decision process. The DUNDRUM-1 triage tool was completed retrospectively for 121 first-time referrals to forensic services in South Wales. Fifty were admitted to medium security, 49 to low security and 22 remained in open conditions. DUNDRUM-1 total scores differed appropriately between different levels of security. However, regression revealed heuristic anchoring on the 'legal process' and 'immediacy of risk due to mental disorder' items. Clinical implications Patient placement was broadly aligned with DUNDRUM-1 recommendations. However, not all triage items informed gatekeeping decisions. It remains to be seen whether decisions anchored in this way are effective. Declaration of interest Dr Mark Freestone gave permission for AUC values from Freestone et al. (2015) to be presented here for comparison.
Principles and applications of polymerase chain reaction in medical diagnostic fields: a review
Valones, Marcela Agne Alves; Guimarães, Rafael Lima; Brandão, Lucas André Cavalcanti; de Souza, Paulo Roberto Eleutério; de Albuquerque Tavares Carvalho, Alessandra; Crovela, Sergio
2009-01-01
Recent developments in molecular methods have revolutionized the detection and characterization of microorganisms in a broad range of medical diagnostic fields, including virology, mycology, parasitology, microbiology and dentistry. Among these methods, Polymerase Chain Reaction (PCR) has generated great benefits and allowed scientific advancements. PCR is an excellent technique for the rapid detection of pathogens, including those difficult to culture. Along with conventional PCR techniques, Real-Time PCR has emerged as a technological innovation and is playing an ever-increasing role in clinical diagnostics and research laboratories. Due to its capacity to generate both qualitative and quantitative results, Real-Time PCR is considered a fast and accurate platform. The aim of the present literature review is to explore the clinical usefulness and potential of both conventional PCR and Real-Time PCR assays in diverse medical fields, addressing its main uses and advances. PMID:24031310
Crowdsourcing in biomedicine: challenges and opportunities
Khare, Ritu; Good, Benjamin M.; Leaman, Robert; Su, Andrew I.
2016-01-01
The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health information seekers, science enthusiasts and domain experts. In this article, we review and highlight recent studies that use crowdsourcing to advance biomedicine. We classify these studies into two broad categories: (i) mining big data generated from a crowd (e.g. search logs) and (ii) active crowdsourcing via specific technical platforms, e.g. labor markets, wikis, scientific games and community challenges. Through describing each study in detail, we demonstrate the applicability of different methods in a variety of domains in biomedical research, including genomics, biocuration and clinical research. Furthermore, we discuss and highlight the strengths and limitations of different crowdsourcing platforms. Finally, we identify important emerging trends, opportunities and remaining challenges for future crowdsourcing research in biomedicine. PMID:25888696
Lyubomirsky, Sonja; Layous, Kristin; Chancellor, Joseph; Nelson, S Katherine
2015-01-01
Our article reviews and celebrates Susan Nolen-Hoeksema's remarkable contributions to psychological and clinical science, focusing on her vast body of theoretical and empirical work and her influence on colleagues and students. Susan spent her career trying to understand how and why a style of regulating emotions called rumination increases vulnerability to depression and exacerbates and perpetuates negative moods. More broadly, we describe research by Susan and her colleagues on the predictors of depression in childhood and adolescence; gender differences in depression and rumination in adolescence and adulthood; roots, correlates, and adverse consequences of ruminative response styles; and rumination as a transdiagnostic risk factor for not only depression but also a host of psychological disorders, including anxiety, substance abuse, and eating disorders. Susan's intellectual legacy is evident in her impressive publication and citation record, the clinical applications of her work, and the flourishing careers of the students she mentored.
Vitamin D/VDR, probiotics, and gastrointestinal diseases
Shang, Mei; Sun, Jun
2016-01-01
Vitamin D is an important factor in regulating inflammation, immune responses, and carcinoma inhibition via action of its receptor, vitamin D receptor (VDR). Recent studies have demonstrated the role of vitamin D/VDR in regulating host-bacterial interactions. Probiotics are beneficial bacteria with the power of supporting or favoring life on the host. In the current review, we will discuss the recent progress on the roles of vitamin D/VDR in gut microbiome and inflammation. We will summarize evidence of probiotics in modulating vitamin D/VDR and balancing gut microbiota in health and gastrointestinal diseases. Moreover, we will review the clinical application of probiotics in prevention and therapy of IBD or colon cancer. Despite of the gains, there remain several barriers to advocate broad use of probiotics in clinical therapy. We will also discuss the limits and future direction in scientific understanding of probiotics, vitamin D/VDR, and host responses. PMID:27915988
Stephenson, William; Donlin, Laura T; Butler, Andrew; Rozo, Cristina; Bracken, Bernadette; Rashidfarrokhi, Ali; Goodman, Susan M; Ivashkiv, Lionel B; Bykerk, Vivian P; Orange, Dana E; Darnell, Robert B; Swerdlow, Harold P; Satija, Rahul
2018-02-23
Droplet-based single-cell RNA-seq has emerged as a powerful technique for massively parallel cellular profiling. While this approach offers the exciting promise to deconvolute cellular heterogeneity in diseased tissues, the lack of cost-effective and user-friendly instrumentation has hindered widespread adoption of droplet microfluidic techniques. To address this, we developed a 3D-printed, low-cost droplet microfluidic control instrument and deploy it in a clinical environment to perform single-cell transcriptome profiling of disaggregated synovial tissue from five rheumatoid arthritis patients. We sequence 20,387 single cells revealing 13 transcriptomically distinct clusters. These encompass an unsupervised draft atlas of the autoimmune infiltrate that contribute to disease biology. Additionally, we identify previously uncharacterized fibroblast subpopulations and discern their spatial location within the synovium. We envision that this instrument will have broad utility in both research and clinical settings, enabling low-cost and routine application of microfluidic techniques.
Targeted Applications of Unmanned Aerial Vehicles (Drones) in Telemedicine.
Bhatt, Kunj; Pourmand, Ali; Sikka, Neal
2018-02-28
Advances in technology have revolutionized the medical field and changed the way healthcare is delivered. Unmanned aerial vehicles (UAVs) are the next wave of technological advancements that have the potential to make a huge splash in clinical medicine. UAVs, originally developed for military use, are making their way into the public and private sector. Because they can be flown autonomously and can reach almost any geographical location, the significance of UAVs are becoming increasingly apparent in the medical field. We conducted a comprehensive review of the English language literature via the PubMed and Google Scholar databases using search terms "unmanned aerial vehicles," "UAVs," and "drone." Preference was given to clinical trials and review articles that addressed the keywords and clinical medicine. Potential applications of UAVs in medicine are broad. Based on articles identified, we grouped UAV application in medicine into three categories: (1) Prehospital Emergency Care; (2) Expediting Laboratory Diagnostic Testing; and (3) Surveillance. Currently, UAVs have been shown to deliver vaccines, automated external defibrillators, and hematological products. In addition, they are also being studied in the identification of mosquito habitats as well as drowning victims at beaches as a public health surveillance modality. These preliminary studies shine light on the possibility that UAVs may help to increase access to healthcare for patients who may be otherwise restricted from proper care due to cost, distance, or infrastructure. As with any emerging technology and due to the highly regulated healthcare environment, the safety and effectiveness of this technology need to be thoroughly discussed. Despite the many questions that need to be answered, the application of drones in medicine appears to be promising and can both increase the quality and accessibility of healthcare.
Aminoff, Michael J
2008-05-13
The training of clinical neurologists is undergoing profound change. Increasing subspecialization within neurology, the widening separation of clinical neurology from other branches of internal medicine, limitations of exposure to training in internal medicine, mandated restrictions in working hours, and attempts to shorten the training period are likely to have adverse effects on the next generation of clinical neurologists. Despite the need for a broad base in general medicine, discussed here, the exposure of neurology trainees to general medical disorders is diminishing. An emphasis on an algorithmic approach to patient management rather than on educating residents to use their reasoning faculties when applying new techniques and knowledge to clinical practice may adversely affect patient care. Neurologists require broad-based training in neurology, internal medicine, and psychiatry, to ensure excellence in clinical practice. It is time to question again whether they are receiving the training that they need.
Strain diversity plays no major role in the varying efficacy of rotavirus vaccines: an overview.
Velasquez, Daniel E; Parashar, Umesh D; Jiang, Baoming
2014-12-01
While a monovalent Rotarix® [RV1] and a pentavalent RotaTeq® [RV5] have been extensively tested and found generally safe and equally efficacious in clinical trials, the question still lingers about the evolving diversity of circulating rotavirus strains over time and their relationship with protective immunity induced by rotavirus vaccines. We reviewed data from clinical trials and observational studies that assessed the efficacy or field effectiveness of rotavirus vaccines against different rotavirus strains worldwide. RV1 provided broad clinical efficacy and field effectiveness against severe diarrhea due to all major circulating strains, including the homotypic G1P[8] and the fully heterotypic G2P[4] strains. Similarly, RV5 provided broad efficacy and effectiveness against RV5 and non-RV5 strains throughout different locations. Rotavirus vaccination provides broad heterotypic protection; however continuing surveillance is needed to track the change of circulating strains and monitor the effectiveness and safety of vaccines. Published by Elsevier B.V.
Plasma medicine—current state of research and medical application
NASA Astrophysics Data System (ADS)
Weltmann, K.-D.; von Woedtke, Th
2017-01-01
Plasma medicine means the direct application of cold atmospheric plasma (CAP) on or in the human body for therapeutic purposes. Further, the field interacts strongly with results gained for biological decontamination. Experimental research as well as first practical application is realized using two basic principles of CAP sources: dielectric barrier discharges (DBD) and atmospheric pressure plasma jets (APPJ). Originating from the fundamental insights that the biological effects of CAP are most probably caused by changes of the liquid environment of cells, and are dominated by reactive oxygen and nitrogen species (ROS, RNS), basic mechanisms of biological plasma activity are identified. It was demonstrated that there is no increased risk of cold plasma application and, above all, there are no indications for genotoxic effects. The most important biological effects of cold atmospheric pressure plasma were identified: (1) inactivation of a broad spectrum of microorganisms including multidrug resistant ones; (2) stimulation of cell proliferation and tissue regeneration with lower plasma treatment intensity (treatment time); (3) inactivation of cells by initialization of programmed cell death (apoptosis) with higher plasma treatment intensity (treatment time). In recent years, the main focus of clinical applications was in the field of wound healing and treatment of infective skin diseases. First CAP sources are CE-certified as medical devices now which is the main precondition to start the introduction of plasma medicine into clinical reality. Plasma application in dentistry and, above all, CAP use for cancer treatment are becoming more and more important research fields in plasma medicine. A further in-depth knowledge of control and adaptation of plasma parameters and plasma geometries is needed to obtain suitable and reliable plasma sources for the different therapeutic indications and to open up new fields of medical application.
Kambouris, Manousos E; Manoussopoulos, Yiannis; Kritikou, Stavroula; Milioni, Aphroditi; Mantzoukas, Spyridon; Velegraki, Aristea
2018-04-01
Agrigenomics is one of the emerging focus areas for omics sciences. Yet, agrigenomics differs from medical omics applications such as pharmacogenomics and precision medicine, by virtue of vastly distributed geography of applications at the intersection of agriculture, nutrition, and genomics research streams. Crucially, agrigenomics can address diagnostics and safety surveillance needs in remote and rural farming communities or decentralized food, crop, and environmental monitoring programs for prompt, selective, and differential identification of pathogens. A case in point is the potato crop that serves as a fundamental nutritional source worldwide. Decentralized potato crop and plant protection facilities are pivotal to minimize unnecessary, preemptive use of broad-spectrum fungicides, thus helping to curtail the costs, environmental burden, and the development of resistance in opportunistic human pathogenic fungi. We report here a polymerase chain reaction-restriction fragment length polymorphism approach that is sensitive and adaptable in detection and broad identification of fungal pathogens in potato crops, with a view to future decentralized agrigenomic surveillance programs. Notably, the fingerprinting patterns obtained by the method fully differentiated 12 fungal species examined in silico, with 10 of them also tested in vitro. The method can be scaled up through improvements in electrophoresis and enzyme panel for adaption to other crops and/or pathogens. We suggest that decentralized and integrated agrosurveillance programs and translational agrigenomic programs can inform future innovations in multidomain biosecurity, particularly across omics applications from agriculture and nutrition to clinical medicine and environmental biosafety.
Zakrewsky, Michael; Banerjee, Amrita; Apte, Sanjana; Kern, Theresa L; Jones, Mattie R; Sesto, Rico E Del; Koppisch, Andrew T; Fox, David T; Mitragotri, Samir
2016-06-01
Antiseptic agents are the primary arsenal to disinfect skin and prevent pathogens spreading within the host as well as into the surroundings; however the Food and Drug Administration published a report in 2015 requiring additional validation of nearly all current antiseptic agents before their continued use can be allowed. This vulnerable position calls for urgent identification of novel antiseptic agents. Recently, the ability of a deep eutectic, Choline And Geranate (CAGE), to treat biofilms of Pseudomonas aeruginosa and Salmonella enterica was demonstrated. Here it is reported that CAGE exhibits broad-spectrum antimicrobial activity against a number of drug-resistant bacteria, fungi, and viruses including clinical isolates of Mycobacterium tuberculosis, Staphylococcus aureus, and Candida albicans as well as laboratory strains of Herpes Simplex Virus. Studies in human keratinocytes and mice show that CAGE affords negligible local or systemic toxicity, and an ≈180-14 000-fold improved efficacy/toxicity ratio over currently used antiseptic agents. Further, CAGE penetrates deep into the dermis and treats pathogens located in deep skin layers as confirmed by the ability of CAGE in vivo to treat Propionibacterium acnes infection. In combination, the results clearly demonstrate CAGE holds promise as a transformative platform antiseptic agent for preventive as well as therapeutic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of Shufeng Jiedu capsules as a broad-spectrum antibacterial.
Bao, Yanyan; Gao, Yingjie; Cui, Xiaolan
2016-02-01
This study sought to investigate the broad-spectrum antibacterial action of an alternative medicine, Shufeng Jiedu capsules (SFJDC). Antibacterial testing was performed to determine whether SFJDC had broad-spectrum antibacterial action in vitro, and testing was performed to verify whether SFJDC prevented death due to a Streptococcus or Staphylococcus aureus infection in mice. Results of antibacterial testing suggested that SFJDC are a broad-spectrum antibacterial and that SFJDC are superior to Lianhua Qingwen capsules as a broad-spectrum antibacterial. Results of testing revealed that SFJDC lowered the mortality rate, it reduced mortality, it increased average survival time, and it increased the lifespan of mice dying due to a Staphylococcus aureus or Streptococcus infection. Thus, SFJDC could become a complement to broad-spectrum antimicrobials in clinical settings.
Garcia, Sofia F; Cella, David; Clauser, Steven B; Flynn, Kathryn E; Lad, Thomas; Lai, Jin-Shei; Reeve, Bryce B; Smith, Ashley Wilder; Stone, Arthur A; Weinfurt, Kevin
2007-11-10
Patient-reported outcomes (PROs), such as symptom scales or more broad-based health-related quality-of-life measures, play an important role in oncology clinical trials. They frequently are used to help evaluate cancer treatments, as well as for supportive and palliative oncology care. To be most beneficial, these PROs must be relevant to patients and clinicians, valid, and easily understood and interpreted. The Patient-Reported Outcomes Measurement Information System (PROMIS) Network, part of the National Institutes of Health Roadmap Initiative, aims to improve appreciably how PROs are selected and assessed in clinical research, including clinical trials. PROMIS is establishing a publicly available resource of standardized, accurate, and efficient PRO measures of major self-reported health domains (eg, pain, fatigue, emotional distress, physical function, social function) that are relevant across chronic illnesses including cancer. PROMIS is also developing measures of self-reported health domains specifically targeted to cancer, such as sleep/wake function, sexual function, cognitive function, and the psychosocial impacts of the illness experience (ie, stress response and coping; shifts in self-concept, social interactions, and spirituality). We outline the qualitative and quantitative methods by which PROMIS measures are being developed and adapted for use in clinical oncology research. At the core of this activity is the formation and application of item banks using item response theory modeling. We also present our work in the fatigue domain, including a short-form measure, as a sample of PROMIS methodology and work to date. Plans for future validation and application of PROMIS measures are discussed.
The Food and Drug Administration and pragmatic clinical trials of marketed medical products
Anderson, Monique L; Griffin, Joseph; Goldkind, Sara F; Zeitler, Emily P; Wing, Liz; Al-Khatib, Sana M; Sherman, Rachel E
2015-01-01
Pragmatic clinical trials (PCTs) can help answer questions of comparative effectiveness for interventions routinely used in medical practice. PCTs may examine outcomes of one or more marketed medical products, and they are heterogeneous in design and risk. The Food and Drug Administration (FDA) is charged with protecting the rights, safety, and welfare of individuals enrolled in clinical investigations, as well as assuring the integrity upon which approval of medical products are made. The FDA has broad jurisdiction over drugs and medical devices (whether or not they are approved for marketing), and as such, clinical investigations of these products are subject to applicable FDA regulations. While many PCTs will meet the criteria for an exemption from the requirements for an investigational new drug application (IND) or investigational device exemption (IDE), in general all clinical investigations of medical products that fall under FDA jurisdiction must adhere to regulations for informed consent and review by an institutional review board (IRB). We are concerned that current FDA requirements for obtaining individual informed consent may deter or delay the conduct of PCTs intended to develop reliable evidence of comparative safety and effectiveness of approved medical products that are regulated by the FDA. Under current regulations, there are no described mechanisms to alter or waive informed consent to make it less burdensome or more practicable for low-risk PCTs. We recommend that the FDA establish a risk-based approach to obtaining informed consent in PCTs that would facilitate the conduct of PCTs without compromising the protection of enrolled individuals or the integrity of the resulting data. PMID:26374684
van der Eerden, M M; Vlaspolder, F; de Graaff, C S; Groot, T; Bronsveld, W; Jansen, H; Boersma, W
2005-01-01
Background: There is much controversy about the ideal approach to the management of community acquired pneumonia (CAP). Recommendations differ from a pathogen directed approach to an empirical strategy with broad spectrum antibiotics. Methods: In a prospective randomised open study performed between 1998 and 2000, a pathogen directed treatment (PDT) approach was compared with an empirical broad spectrum antibiotic treatment (EAT) strategy according to the ATS guidelines of 1993 in 262 hospitalised patients with CAP. Clinical efficacy was primarily determined by the length of hospital stay (LOS). Secondary outcome parameters for clinical efficacy were assessment of therapeutic failure on antibiotics, 30 day mortality, duration of antibiotic treatment, resolution of fever, side effects, and quality of life. Results: Three hundred and three patients were enrolled in the study; 41 were excluded, leaving 262 with results available for analysis. No significant differences were found between the two treatment groups in LOS, 30 day mortality, clinical failure, or resolution of fever. Side effects, although they did not have a significant influence on the outcome parameters, occurred more frequently in patients in the EAT group than in those in the PDT group (60% v 17%, 95% CI –0.5 to –0.3; p<0.001). Conclusions: An EAT strategy with broad spectrum antibiotics for the management of hospitalised patients with CAP has comparable clinical efficacy to a PDT approach. PMID:16061709
NASA Astrophysics Data System (ADS)
von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.
2013-09-01
Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous economic potential. This ambivalent situation fundamentally requires a responsible use of plasma sources, which are specifically designated for biomedical applications. To enable physicians as well as life scientists to decide whether a given plasma source is really suitable for medical applications or biological experiments, a meaningful and mandatory spectrum of indicators has to be compiled to allow for a basic estimation of the potential of this plasma source.
Behnke, Thomas; Mathejczyk, Julia E; Brehm, Robert; Würth, Christian; Gomes, Fernanda Ramos; Dullin, Christian; Napp, Joanna; Alves, Frauke; Resch-Genger, Ute
2013-01-01
Current optical probes including engineered nanoparticles (NPs) are constructed from near infrared (NIR)-emissive organic dyes with narrow absorption and emission bands and small Stokes shifts prone to aggregation-induced self-quenching. Here, we present the new asymmetric cyanine Itrybe with broad, almost environment-insensitive absorption and emission bands in the diagnostic window, offering a unique flexibility of the choice of excitation and detection wavelengths compared to common NIR dyes. This strongly emissive dye was spectroscopically studied in different solvents and encapsulated into differently sized (15, 25, 100 nm) amino-modified polystyrene NPs (PSNPs) via a one-step staining procedure. As proof-of-concept for its potential for pre-/clinical imaging applications, Itrybe-loaded NPs were surface-functionalized with polyethylene glycol (PEG) and the tumor-targeting antibody Herceptin and their binding specificity to the tumor-specific biomarker HER2 was systematically assessed. Itrybe-loaded NPs display strong fluorescence signals in vitro and in vivo and Herceptin-conjugated NPs bind specifically to HER2 as demonstrated in immunoassays as well as on tumor cells and sections from mouse tumor xenografts in vitro. This demonstrates that our design strategy exploiting broad band-absorbing and -emitting dyes yields versatile and bright NIR probes with a high potential for e.g. the sensitive detection and characterization of tumor development and progression. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Grafen, M.; Nalpantidis, K.; Ostendorf, A.; Ihrig, D.; Heise, H. M.
2016-03-01
Blood glucose monitoring systems are important point-of-care devices for the hospital and personalised diabetes technology. FTIR-spectrometers have been successfully employed for the development of continuous bed-side monitoring systems in combination with micro-dialysis. For implementation in miniaturised portable systems, external-cavity quantum cascade lasers (EC-QCL) are suited. An ultra-broadly tunable pulsed EC-QCL system, covering a spectral range from 1920 to 780 cm-1, has been characterised with regard to the spectral emission profiles and wavenumber scale accuracy. The measurement of glucose in aqueous solution is presented and problems with signal linearity using Peltier-cooled MCT-detectors are discussed. The use of larger optical sample pathlengths for attenuating the laser power in transmission measurements has recently been suggested and implemented, but implications for broad mid-infrared measurements have now been investigated. The utilization of discrete wavenumber variables as an alternative for sweep-tune measurements has also been studied and sparse multivariate calibration models intended for clinical chemistry applications are described for glucose and lactate.
29 CFR 1630.1 - Purpose, applicability, and construction.
Code of Federal Regulations, 2012 CFR
2012-07-01
... programs. (4) Broad coverage. The primary purpose of the ADAAA is to make it easier for people with... broad scope of protection under the ADA, the definition of “disability” in this part shall be construed...
Lewandowska, Dagmara W; Zagordi, Osvaldo; Geissberger, Fabienne-Desirée; Kufner, Verena; Schmutz, Stefan; Böni, Jürg; Metzner, Karin J; Trkola, Alexandra; Huber, Michael
2017-08-08
Sequence-specific PCR is the most common approach for virus identification in diagnostic laboratories. However, as specific PCR only detects pre-defined targets, novel virus strains or viruses not included in routine test panels will be missed. Recently, advances in high-throughput sequencing allow for virus-sequence-independent identification of entire virus populations in clinical samples, yet standardized protocols are needed to allow broad application in clinical diagnostics. Here, we describe a comprehensive sample preparation protocol for high-throughput metagenomic virus sequencing using random amplification of total nucleic acids from clinical samples. In order to optimize metagenomic sequencing for application in virus diagnostics, we tested different enrichment and amplification procedures on plasma samples spiked with RNA and DNA viruses. A protocol including filtration, nuclease digestion, and random amplification of RNA and DNA in separate reactions provided the best results, allowing reliable recovery of viral genomes and a good correlation of the relative number of sequencing reads with the virus input. We further validated our method by sequencing a multiplexed viral pathogen reagent containing a range of human viruses from different virus families. Our method proved successful in detecting the majority of the included viruses with high read numbers and compared well to other protocols in the field validated against the same reference reagent. Our sequencing protocol does work not only with plasma but also with other clinical samples such as urine and throat swabs. The workflow for virus metagenomic sequencing that we established proved successful in detecting a variety of viruses in different clinical samples. Our protocol supplements existing virus-specific detection strategies providing opportunities to identify atypical and novel viruses commonly not accounted for in routine diagnostic panels.
Strategies to induce broadly protective antibody responses to viral glycoproteins.
Krammer, F
2017-05-01
Currently, several universal/broadly protective influenza virus vaccine candidates are under development. Many of these vaccines are based on strategies to induce protective antibody responses against the surface glycoproteins of antigenically and genetically diverse influenza viruses. These strategies might also be applicable to surface glycoproteins of a broad range of other important viral pathogens. Areas covered: Common strategies include sequential vaccination with divergent antigens, multivalent approaches, vaccination with glycan-modified antigens, vaccination with minimal antigens and vaccination with antigens that have centralized/optimized sequences. Here we review these strategies and the underlying concepts. Furthermore, challenges, feasibility and applicability to other viral pathogens are discussed. Expert commentary: Several broadly protective/universal influenza virus vaccine strategies will be tested in humans in the coming years. If successful in terms of safety and immunological readouts, they will move forward into efficacy trials. In the meantime, successful vaccine strategies might also be applied to other antigenically diverse viruses of concern.
A contact-free respiration monitor for smart bed and ambulatory monitoring applications.
Hart, Adam; Tallevi, Kevin; Wickland, David; Kearney, Robert E; Cafazzo, Joseph A
2010-01-01
The development of a contact-free respiration monitor has a broad range of clinical applications in the home and hospital setting. Current approaches suffer from a variety of problems including unreliability, low sensitivity, and high cost. This work describes a novel approach to contact-free respiration monitoring that addresses these shortcomings by employing a highly sensitive capacitance sensor to detect variations in capacitive coupling caused by breathing. A prototype system consisting of a synthetic-metallic pad, sensor electronics, and iPhone interface was built and its performance compared experimentally to the gold standard technique (Respiratory Inductance Plethysmography) on both a healthy volunteer and SimMan robotic mannequin. The prototype sensor effectively captured respiratory movements over breathing rates of 5-55 bpm; achieving an average spectral correlation of 0.88 (CI: 0.86-0.90) and 0.95 (CI: 0.95-0.96) to the gold standard using the SimMan and healthy volunteer respectively.
Clinical Adoption of Prognostic Biomarkers The Case for Heart Failure
Kalogeropoulos, Andreas P.; Georgiopoulou, Vasiliki V.; Butler, Javed
2013-01-01
The recent explosion of scientific knowledge and technological progress has led to the discovery of a large array of circulating molecules commonly referred to as biomarkers. Biomarkers in heart failure research have been used to provide pathophysiological insights, aid in establishing the diagnosis, refine prognosis, guide management, and target treatment. However, beyond diagnostic applications of natriuretic peptides, there are currently few widely recognized applications for biomarkers in heart failure. This represents a remarkable discordance considering the number of molecules that have been shown to correlate with outcomes, refine risk prediction, or track disease severity in heart failure in the past decade. In this article, we use a broad framework proposed for cardiovascular risk markers to summarize the current state of biomarker development for heart failure patients. We utilize this framework to identify the challenges of biomarker adoption for risk prediction, disease management, and treatment selection for heart failure and suggest considerations for future research. PMID:22824105
Synthetic biology platform technologies for antimicrobial applications.
Braff, Dana; Shis, David; Collins, James J
2016-10-01
The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels. Copyright © 2016 Elsevier B.V. All rights reserved.
Emerging technologies in medical applications of minimum volume vitrification
Zhang, Xiaohui; Catalano, Paolo N; Gurkan, Umut Atakan; Khimji, Imran; Demirci, Utkan
2011-01-01
Cell/tissue biopreservation has broad public health and socio-economic impact affecting millions of lives. Cryopreservation technologies provide an efficient way to preserve cells and tissues targeting the clinic for applications including reproductive medicine and organ transplantation. Among these technologies, vitrification has displayed significant improvement in post-thaw cell viability and function by eliminating harmful effects of ice crystal formation compared to the traditional slow freezing methods. However, high cryoprotectant agent concentrations are required, which induces toxicity and osmotic stress to cells and tissues. It has been shown that vitrification using small sample volumes (i.e., <1 μl) significantly increases cooling rates and hence reduces the required cryoprotectant agent levels. Recently, emerging nano- and micro-scale technologies have shown potential to manipulate picoliter to nanoliter sample sizes. Therefore, the synergistic integration of nanoscale technologies with cryogenics has the potential to improve biopreservation methods. PMID:21955080
NASA Astrophysics Data System (ADS)
Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.
2011-09-01
Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.
Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.
2011-01-01
Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. PMID:21974603
Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R
2011-09-01
Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. © 2011 American Institute of Physics
Application of Digital Anthropometry for Craniofacial Assessment
Jayaratne, Yasas S. N.; Zwahlen, Roger A.
2014-01-01
Craniofacial anthropometry is an objective technique based on a series of measurements and proportions, which facilitate the characterization of phenotypic variation and quantification of dysmorphology. With the introduction of stereophotography, it is possible to acquire a lifelike three-dimensional (3D) image of the face with natural color and texture. Most of the traditional anthropometric landmarks can be identified on these 3D photographs using specialized software. Therefore, it has become possible to compute new digital measurements, which were not feasible with traditional instruments. The term “digital anthropometry” has been used by researchers based on such systems to separate their methods from conventional manual measurements. Anthropometry has been traditionally used as a research tool. With the advent of digital anthropometry, this technique can be employed in several disciplines as a noninvasive tool for quantifying facial morphology. The aim of this review is to provide a broad overview of digital anthropometry and discuss its clinical applications. PMID:25050146
Success factors for telehealth--a case study.
Moehr, J R; Schaafsma, J; Anglin, C; Pantazi, S V; Grimm, N A; Anglin, S
2006-01-01
To present the lessons learned from an evaluation of a comprehensive telehealth project regarding success factors and evaluation methodology for such projects. A recent experience with the evaluation of new telehealth services in BC, Canada, is summarized. Two domains of clinical applications, as well as educational and administrative uses, and the project environment were evaluated. In order to contribute to the success of the project, the evaluation included formative and summative approaches employing qualitative and quantitative methods with data collection from telehealth events, participants and existing databases. The evaluation had to be carried out under severe budgetary and time constraints. We therefore deliberately chose a broad ranging exploratory approach within a framework provided, and generated questions to be answered on the basis of initial observations and participant driven interviews with progressively more focused and detailed data gathering, including perusal of a variety of existing data sources. A unique feature was an economic evaluation using static simulation models. The evaluation yielded rich and detailed data, which were able to explain a number of unanticipated findings. One clinical application domain was cancelled after 6 months, the other continues. The factors contributing to success include: Focus on chronic conditions which require visual information for proper management. Involvement of established teams in regular scheduled visits or in sessions scheduled well in advance. Problems arose with: Ad hoc applications, in particular under emergency conditions. Applications that disregard established referral patterns. Applications that support only part of a unit's services. The latter leads to the service mismatch dilemma (SMMD) with the end result that even those e-health services provided are not used. The problems encountered were compounded by issues arising from the manner in which the telehealth services had been introduced, in particular the lack of time for preparation and establishment of routine use. Educational applications had significant clinical benefits. Administrative applications generated savings which exceeded the substantial capital investment and made educational and clinical applications available at variable cost. Evaluation under severe constraints can yield rich information. The identified success factors, including provision of an overarching architecture and infrastructure, strong program management, thorough needs analysis and detailing applications to match the identified needs should improve the sustainability of e-health projects. Insights gained: Existing assumptions before the study was conducted: Evaluation has to proceed from identified questions according to a rigorous experimental design. Emergency and trauma services in remote regions can and should be supported via telehealth based on video-conferencing. Educational applications of telehealth directed at providers are beneficial for recruitment and retention of providers in remote areas. Insights gained by the study: An exploratory approach to evaluation using a multiplicity of methods can yield rich and detailed information even under severe constraints. Ad hoc and emergency clinical applications of telehealth can present problems unless they are based on thorough, detailed analyses of environment and need, conform to established practice patterns and rely on established trusting collaborative relationships. Less difficult applications should be introduced before attempting to support use under emergency conditions. Educational applications are of interest beyond the provider community to patients, family and community members, and have clinical value. In large, sparsely populated areas with difficult travel conditions administrative applications by themselves generate savings that compensate for the substantial capital investment for telehealth required for clinical applications.
McCaul, Michael; de Waal, Ben; Hodkinson, Peter; Pigoga, Jennifer L; Young, Taryn; Wallis, Lee A
2018-02-05
Methods on developing new (de novo) clinical practice guidelines (CPGs) have received substantial attention. However, the volume of literature is not matched by research into alternative methods of CPG development using existing CPG documents-a specific issue for guideline development groups in low- and middle-income countries. We report on how we developed a context specific prehospital CPG using an alternative guideline development method. Difficulties experienced and lessons learnt in applying existing global guidelines' recommendations to a national context are highlighted. The project produced the first emergency care CPG for prehospital providers in Africa. It included > 270 CPGs and produced over 1000 recommendations for prehospital emergency care. We encountered various difficulties, including (1) applicability issues: few pre-hospital CPGs applicable to Africa, (2) evidence synthesis: heterogeneous levels of evidence classifications and (3) guideline quality. Learning points included (1) focusing on key CPGs and evidence mapping, (2) searching other resources for CPGs, (3) broad representation on CPG advisory boards and (4) transparency and knowledge translation. Re-inventing the wheel to produce CPGs is not always feasible. We hope this paper will encourage further projects to use existing CPGs in developing guidance to improve patient care in resource-limited settings.
NASA Astrophysics Data System (ADS)
Artyushenko, Viacheslav
2017-02-01
Various biomedical applications of fiber optics in a broad spectral range 0,4-16μm span from endoscopic imaging and Photo Dynamic Diagnostics (PDD) to laser power delivery for minimal invasive laser surgery, tissue coagulation and welding, Photo Dynamic Therapy (PDT), etc. Present review will highlight the latest results in advanced fiber solutions for a precise tissue diagnostics and control of some therapy methods - for so called "theranostic". Spectral fiber sensing for label free analysis of tissue composition helps to differentiate malignant and normal tissue to secure minimal invasive, but complete tumor removal or treatment. All key methods of Raman, fluorescence, diffuse reflection & MIR-absorption spectroscopy will be compared when used for the same spot of tissue - to select the most specific, sensitive and accurate method or to combine them for the synergy enhanced effect. The most informative spectral features for distinct organs/ tumor can be used to design special fiber sensors to be developed for portable and low cost applications with modern IT-features. Examples of multi-spectral tissue diagnostics promising for the future clinical applications will be presented to enable reduced mortality from cancer in the future. Translation of described methods into clinical practice will be discussed in comparison with the other method of optical diagnostics which should enhance modern medicine by less invasive, more precise and more effective methods of therapy to be fused with in-vivo diagnostics sensors & systems.
Whole-brain background-suppressed pCASL MRI with 1D-accelerated 3D RARE Stack-Of-Spirals readout
Vidorreta, Marta; Wang, Ze; Chang, Yulin V.; Wolk, David A.; Fernández-Seara, María A.; Detre, John A.
2017-01-01
Arterial Spin Labeled (ASL) perfusion MRI enables non-invasive, quantitative measurements of tissue perfusion, and has a broad range of applications including brain functional imaging. However, ASL suffers from low signal-to-noise ratio (SNR), limiting image resolution. Acquisitions using 3D readouts are optimal for background-suppression of static signals, but can be SAR intensive and typically suffer from through-plane blurring. In this study, we investigated the use of accelerated 3D readouts to obtain whole-brain, high-SNR ASL perfusion maps and reduce SAR deposition. Parallel imaging was implemented along the partition-encoding direction in a pseudo-continuous ASL sequence with background-suppression and 3D RARE Stack-Of-Spirals readout, and its performance was evaluated in three small cohorts. First, both non-accelerated and two-fold accelerated single-shot versions of the sequence were evaluated in healthy volunteers during a motor-photic task, and the performance was compared in terms of temporal SNR, GM-WM contrast, and statistical significance of the detected activation. Secondly, single-shot 1D-accelerated imaging was compared to a two-shot accelerated version to assess benefits of SNR and spatial resolution for applications in which temporal resolution is not paramount. Third, the efficacy of this approach in clinical populations was assessed by applying the single-shot 1D-accelerated version to a larger cohort of elderly volunteers. Accelerated data demonstrated the ability to detect functional activation at the subject level, including cerebellar activity, without loss in the perfusion signal temporal stability and the statistical power of the activations. The use of acceleration also resulted in increased GM-WM contrast, likely due to reduced through-plane partial volume effects, that were further attenuated with the use of two-shot readouts. In a clinical cohort, image quality remained excellent, and expected effects of age and sex on cerebral blood flow could be detected. The sequence is freely available upon request for academic use and could benefit a broad range of cognitive and clinical neuroscience research. PMID:28837640
Data for Cancer Comparative Effectiveness Research: Past, Present, and Future Potential
Meyer, Anne-Marie; Carpenter, William R; Abernethy, Amy P.; Stürmer, Til; Kosorok, Michael R.
2012-01-01
Background Comparative effectiveness research (CER) can efficiently and rapidly generate new scientific evidence and address knowledge gaps, reduce clinical uncertainty, and guide health care choices. Much of the potential in CER is driven by the application of novel methods to analyze existing data. Despite its potential, several challenges must be identified and overcome so that CER may be improved, accelerated, and expeditiously implemented into the broad spectrum of cancer care and clinical practice. Methods To identify and characterize the challenges to cancer CER, we reviewed the literature and conducted semi-structured interviews with 41 cancer CER researchers at the Agency for Healthcare Research and Quality (AHRQ)'s Developing Evidence to Inform Decisions about Effectiveness (DEcIDE) Cancer CER Consortium. Results A number of datasets for cancer CER were identified and differentiated into an ontology of eight categories, and characterized in terms of strengths, weaknesses, and utility. Several themes emerged during development of this ontology and discussions with CER researchers. Dominant among them was accelerating cancer CER and promoting the acceptance of findings, which will necessitate transcending disciplinary silos to incorporate diverse perspectives and expertise. Multidisciplinary collaboration is required including those with expertise in non-experimental data, outcomes research, clinical trials, epidemiology, generalist and specialty medicine, survivorship, informatics, data, and methods, among others. Conclusions Recommendations highlight the systematic, collaborative identification of critical measures; application of more rigorous study design and sampling methods; policy-level resolution of issues in data ownership, governance, access, and cost; and development and application of consistent standards for data security, privacy, and confidentiality. PMID:22517505
Russ, Alissa L; Saleem, Jason J
2018-02-01
The quality of usability testing is highly dependent upon the associated usability scenarios. To promote usability testing as part of electronic health record (EHR) certification, the Office of the National Coordinator (ONC) for Health Information Technology requires that vendors test specific capabilities of EHRs with clinical end-users and report their usability testing process - including the test scenarios used - along with the results. The ONC outlines basic expectations for usability testing, but there is little guidance in usability texts or scientific literature on how to develop usability scenarios for healthcare applications. The objective of this article is to outline key factors to consider when developing usability scenarios and tasks to evaluate computer-interface based health information technologies. To achieve this goal, we draw upon a decade of our experience conducting usability tests with a variety of healthcare applications and a wide range of end-users, to include healthcare professionals as well as patients. We discuss 10 key factors that influence scenario development: objectives of usability testing; roles of end-user(s); target performance goals; evaluation time constraints; clinical focus; fidelity; scenario-related bias and confounders; embedded probes; minimize risks to end-users; and healthcare related outcome measures. For each factor, we present an illustrative example. This article is intended to aid usability researchers and practitioners in their efforts to advance health information technologies. The article provides broad guidance on usability scenario development and can be applied to a wide range of clinical information systems and applications. Published by Elsevier Inc.
Data for cancer comparative effectiveness research: past, present, and future potential.
Meyer, Anne-Marie; Carpenter, William R; Abernethy, Amy P; Stürmer, Til; Kosorok, Michael R
2012-11-01
Comparative effectiveness research (CER) can efficiently and rapidly generate new scientific evidence and address knowledge gaps, reduce clinical uncertainty, and guide health care choices. Much of the potential in CER is driven by the application of novel methods to analyze existing data. Despite its potential, several challenges must be identified and overcome so that CER may be improved, accelerated, and expeditiously implemented into the broad spectrum of cancer care and clinical practice. To identify and characterize the challenges to cancer CER, the authors reviewed the literature and conducted semistructured interviews with 41 cancer CER researchers at the Agency for Healthcare Research and Quality's Developing Evidence to Inform Decisions about Effectiveness (DEcIDE) Cancer CER Consortium. Several data sets for cancer CER were identified and differentiated into an ontology of 8 categories and were characterized in terms of strengths, weaknesses, and utility. Several themes emerged during the development of this ontology and discussions with CER researchers. Dominant among them was accelerating cancer CER and promoting the acceptance of findings, which will necessitate transcending disciplinary silos to incorporate diverse perspectives and expertise. Multidisciplinary collaboration is required, including those with expertise in nonexperimental data, statistics, outcomes research, clinical trials, epidemiology, generalist and specialty medicine, survivorship, informatics, data, and methods, among others. Recommendations highlight the systematic, collaborative identification of critical measures; application of more rigorous study design and sampling methods; policy-level resolution of issues in data ownership, governance, access, and cost; and development and application of consistent standards for data security, privacy, and confidentiality. Copyright © 2012 American Cancer Society.
Rib stress fractures in pregnancy: a case report and review of literature.
Pouwels, S; Dabekausen, Y A
2017-01-01
Thoracic pain in pregnancy has a broad differential diagnosis. The authors report a young pregnant woman with acute pain in the thoracic region due to a rib fracture after a coughing flare. Physicians must be aware of the broad differential diagnosis (and its clinical consequences) of thoracic pain in pregnancy. Radiographic imaging is not necessary if the clinical signs are obvious. If there is no suspicion for underlying pathology other (expensive) diagnostic tests lose their value. Treatment consists of adequate analgesia and no firther measures need to be taken.
Curro, Frederick; Thompson, Van P; Naftolin, Frederick; Grill, Ashley; Vena, Don; Terracio, Louis; Hashimoto, Mariko; Buchholz, Matthew; McKinstry, Andrea; Cannon, Diane; Alfano, Vincent; Gooden, Thalia; Vernillo, Anthony; Czeisler, Elan
2013-01-01
Data from clinical studies generated by Practice Based Research Networks should be generalizable to the profession. For nationally representative data a broad recruitment of practitioners may pose added risks to IRB's. Infrastructure must assure data integrity while minimizing risk to assure that the clinical results are generalizable. The PEARL Network is an interdisciplinary dental/medical PBRN conducting a broad range of clinical studies. The infrastructure is designed to support the principles of Good Clinical Practice (GCP) and create a data audit trail to ensure data integrity for generalizability. As the PBRN concept becomes of greater interest, membership may expand beyond the local community, and the issue of geography versus risk management becomes of concern to the IRB. The PEARL Network describes how it resolves many of the issues related to recruiting on a National basis while maintaining study compliance to ensure patient safety and minimize risk to the IRB.
Forber, Jan; DiGiacomo, Michelle; Davidson, Patricia; Carter, Bernie; Jackson, Debra
2015-11-01
Approaches to clinical education are highly diverse and becoming increasingly complex to sustain in complex milieu To identify the influences and challenges of providing nurse clinical education in the undergraduate setting and to illustrate emerging solutions. A discursive exploration into the broad and varied body of evidence including peer reviewed and grey literature. Internationally, enabling undergraduate clinical learning opportunities faces a range of challenges. These can be illustrated under two broad themes: (1) legacies from the past and the inherent features of nurse education and (2) challenges of the present, including, population changes, workforce changes, and the disconnection between the health and education sectors. Responses to these challenges are triggering the emergence of novel approaches, such as collaborative models. Ongoing challenges in providing accessible, effective and quality clinical learning experiences are apparent. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions.
Whitlow, Jonathan; Pacelli, Settimio; Paul, Arghya
2017-09-10
With recent advances in the field of nanomedicine, many new strategies have emerged for diagnosing and treating diseases. At the forefront of this multidisciplinary research, carbon nanomaterials have demonstrated unprecedented potential for a variety of regenerative medicine applications including novel drug delivery platforms that facilitate the localized and sustained release of therapeutics. Nanodiamonds (NDs) are a unique class of carbon nanoparticles that are gaining increasing attention for their biocompatibility, highly functional surfaces, optical properties, and robust physical properties. Their remarkable features have established NDs as an invaluable regenerative medicine platform, with a broad range of clinically relevant applications ranging from targeted delivery systems for insoluble drugs, bioactive substrates for stem cells, and fluorescent probes for long-term tracking of cells and biomolecules in vitro and in vivo. This review introduces the synthesis techniques and the various routes of surface functionalization that allow for precise control over the properties of NDs. It also provides an in-depth overview of the current progress made toward the use of NDs in the fields of drug delivery, tissue engineering, and bioimaging. Their future outlook in regenerative medicine including the current clinical significance of NDs, as well as the challenges that must be overcome to successfully translate the reviewed technologies from research platforms to clinical therapies will also be discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Lesions of the Broad Ligament: A Review.
Heller, Debra S
2015-01-01
The differential diagnosis of lesions arising in the broad ligament is quite large. Many of these lesions can be clinically interpreted before surgery as adnexal or uterine neoplasms. Although some lesions are similar to those arising in other müllerian sites, there are unique lesions as well. The lesions are uncommon and may prove challenging to clinicians. The purpose was to review the scope of lesions affecting the broad ligament. A literature review was conducted. A Medline search was performed using the terms broad ligament, mesosalpinx, and mesovarium. A review of the scope of broad ligament lesions is presented to assist in developing a differential diagnosis if a patient with such a lesion is encountered. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.
Wang, Ningqun; Ji, Shaozhen; Zhang, Hao; Mei, Shanshan; Qiao, Lumin; Jin, Xianglan
2017-12-01
The Cistanche species ("Rou Cong Rong" in Chinese) is an endangered wild species growing in arid or semi-arid areas. The dried fleshy stem of Cistanches has been used as a tonic in China for many years. Modern pharmacological studies have since demonstrated that Herba Cistanches possesses broad medicinal functions, especially for use in anti-senescence, anti-oxidation, neuroprotection, anti-inflammation, hepatoprotection, immunomodulation, anti-neoplastic, anti-osteoporosis and the promotion of bone formation. This review summarizes the up-to-date and comprehensive information on Herba Cistanches covering the aspects of the botany, traditional uses, phytochemistry and pharmacology, to lay ground for fully elucidating the potential mechanisms of Herba Cistanches' anti-aging effect and promote its clinical application as an anti-aging herbal medicine.
Complications of Lung Transplantation: A Roentgenographic Perspective.
Tejwani, Vickram; Panchabhai, Tanmay S; Kotloff, Robert M; Mehta, Atul C
2016-06-01
Lung transplantation is now an established treatment for a broad spectrum of end-stage pulmonary diseases. According to the International Society for Heart and Lung Transplantation Registry, more than 50,000 lung transplants have been performed worldwide, with nearly 11,000 lung transplant recipients alive in the United States. With the increasing application of lung transplantation, pulmonologists must be cognizant of common complications unique to the postlung transplant period and the associated radiologic findings. The aim of this review is to describe clinical manifestations and prototypical radiographic features of both common and rare complications encountered in lung transplant recipients. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Oakley, Brian B; Line, J Eric; Berrang, Mark E; Johnson, Jessica M; Buhr, R Jeff; Cox, Nelson A; Hiett, Kelli L; Seal, Bruce S
2012-02-01
Although Campylobacter is an important food-borne human pathogen, there remains a lack of molecular diagnostic assays that are simple to use, cost-effective, and provide rapid results in research, clinical, or regulatory laboratories. Of the numerous Campylobacter assays that do exist, to our knowledge none has been empirically tested for specificity using high-throughput sequencing. Here we demonstrate the power of next-generation sequencing to determine the specificity of a widely cited Campylobacter-specific polymerase chain reaction (PCR) assay and describe a rapid method for direct cell suspension PCR to quickly and easily screen samples for Campylobacter. We present a specific protocol which eliminates the need for time-consuming and expensive genomic DNA extractions and, using a high-processivity polymerase, demonstrate conclusive screening of samples in <1 h. Pyrosequencing results show the assay to be extremely (>99%) sensitive, and spike-back experiments demonstrated a detection threshold of <10(2) CFU mL(-1). Additionally, we present 2 newly designed broad-range bacterial primer sets targeting the 23S rRNA gene that have wide applicability as internal amplification controls. Empirical testing of putative taxon-specific assays using high-throughput sequencing is an important validation step that is now financially feasible for research, regulatory, or clinical applications. Published by Elsevier Inc.
Questionnaire-based assessment of executive functioning: Psychometrics.
Castellanos, Irina; Kronenberger, William G; Pisoni, David B
2018-01-01
The psychometric properties of the Learning, Executive, and Attention Functioning (LEAF) scale were investigated in an outpatient clinical pediatric sample. As a part of clinical testing, the LEAF scale, which broadly measures neuropsychological abilities related to executive functioning and learning, was administered to parents of 118 children and adolescents referred for psychological testing at a pediatric psychology clinic; 85 teachers also completed LEAF scales to assess reliability across different raters and settings. Scores on neuropsychological tests of executive functioning and academic achievement were abstracted from charts. Psychometric analyses of the LEAF scale demonstrated satisfactory internal consistency, parent-teacher inter-rater reliability in the small to large effect size range, and test-retest reliability in the large effect size range, similar to values for other executive functioning checklists. Correlations between corresponding subscales on the LEAF and other behavior checklists were large, while most correlations with neuropsychological tests of executive functioning and achievement were significant but in the small to medium range. Results support the utility of the LEAF as a reliable and valid questionnaire-based assessment of delays and disturbances in executive functioning and learning. Applications and advantages of the LEAF and other questionnaire measures of executive functioning in clinical neuropsychology settings are discussed.
Galt, Kimberly A.
2008-01-01
Objectives To evaluate an instructional model for teaching clinically relevant medicinal chemistry. Methods An instructional model that uses Bloom's cognitive and Krathwohl's affective taxonomy, published and tested concepts in teaching medicinal chemistry, and active learning strategies, was introduced in the medicinal chemistry courses for second-professional year (P2) doctor of pharmacy (PharmD) students (campus and distance) in the 2005-2006 academic year. Student learning and the overall effectiveness of the instructional model were assessed. Student performance after introducing the instructional model was compared to that in prior years. Results Student performance on course examinations improved compared to previous years. Students expressed overall enthusiasm about the course and better understood the value of medicinal chemistry to clinical practice. Conclusion The explicit integration of the cognitive and affective learning objectives improved student performance, student ability to apply medicinal chemistry to clinical practice, and student attitude towards the discipline. Testing this instructional model provided validation to this theoretical framework. The model is effective for both our campus and distance-students. This instructional model may also have broad-based applications to other science courses. PMID:18483599
Frugal Chemoprevention: Targeting Nrf2 with Foods Rich in Sulforaphane
Yang, Li; Palliyaguru, Dushani L.; Kensler, Thomas W.
2015-01-01
With the properties of efficacy, safety, tolerability, practicability and low cost, foods containing bioactive phytochemicals are gaining significant attention as elements of chemoprevention strategies against cancer. Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)butane], a naturally occurring isothiocyanate produced by cruciferous vegetables such as broccoli, is found to be a highly promising chemoprevention agent against not only variety of cancers such as breast, prostate, colon, skin, lung, stomach or bladder carcinogenesis, but also cardiovascular disease, neurodegenerative diseases, and diabetes. For reasons of experimental exigency, pre-clinical studies have focused principally on sulforaphane itself, while clinical studies have relied on broccoli sprout preparations rich in either sulforaphane or its biogenic precursor, glucoraphanin. Substantive subsequent evaluation of sulforaphane pharmacokinetics and pharmacodynamics has been undertaken using either pure compound or food matrices. Sulforaphane affects multiple targets in cells. One key molecular mechanism of action for sulforaphane entails activation of the Nrf2- Keap1 signaling pathway although other actions contribute to the broad spectrum of efficacy in different animal models. This review summarizes the current status of pre-clinical chemoprevention studies with sulforaphane and highlights the progress and challenges for the application of foods rich in sulforaphane and/or glucoraphanin in the arena of clinical chemoprevention. PMID:26970133
Molecular diagnosis of bloodstream infections: planning to (physically) reach the bedside.
Leggieri, N; Rida, A; François, P; Schrenzel, Jacques
2010-08-01
Faster identification of infecting microorganisms and treatment options is a first-ranking priority in the infectious disease area, in order to prevent inappropriate treatment and overuse of broad-spectrum antibiotics. Standard bacterial identification is intrinsically time-consuming, and very recently there has been a burst in the number of commercially available nonphenotype-based techniques and in the documentation of a possible clinical impact of these techniques. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is now a standard diagnostic procedure on cultures and hold promises on spiked blood. Meanwhile, commercial PCR-based techniques have improved with the use of bacterial DNA enrichment methods, the diversity of amplicon analysis techniques (melting curve analysis, microarrays, gel electrophoresis, sequencing and analysis by mass spectrometry) leading to the ability to challenge bacterial culture as the gold standard for providing earlier diagnosis with a better 'clinical' sensitivity and additional prognostic information. Laboratory practice has already changed with MALDI-TOF MS, but a change in clinical practice, driven by emergent nucleic acid-based techniques, will need the demonstration of real-life applicability as well as robust clinical-impact-oriented studies.
Therapeutics incorporating blood constituents.
Charoenphol, Phapanin; Oswalt, Katie; Bishop, Corey J
2018-04-05
Blood deficiency and dysfunctionality can result in adverse events, which can primarily be treated by transfusion of blood or the re-introduction of properly functioning sub-components. Blood constituents can be engineered on the sub-cellular (i.e., DNA recombinant technology) and cellular level (i.e., cellular hitchhiking for drug delivery) for supplementing and enhancing therapeutic efficacy, in addition to rectifying dysfunctioning mechanisms (i.e., clotting). Herein, we report the progress of blood-based therapeutics, with an emphasis on recent applications of blood transfusion, blood cell-based therapies and biomimetic carriers. Clinically translated technologies and commercial products of blood-based therapeutics are subsequently highlighted and perspectives on challenges and future prospects are discussed. Blood-based therapeutics is a burgeoning field and has advanced considerably in recent years. Blood and its constituents, with and without modification (i.e., combinatorial), have been utilized in a broad spectrum of pre-clinical and clinically-translated treatments. This review article summarizes the most up-to-date progress of blood-based therapeutics in the following contexts: synthetic blood substitutes, acellular/non-recombinant therapies, cell-based therapies, and therapeutic sub-components. The article subsequently discusses clinically-translated technologies and future prospects thereof. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The practice of clinical neuropsychology in Australia.
Ponsford, Jennie
2016-11-01
This paper describes the development and practice of clinical neuropsychology in Australia. Clinical Neuropsychology has shown rapid growth in Australia over the past three decades. Comprehensive and specialized training programs are producing high quality graduates who are employed in a broad range of settings or private practice. Australia now has a substantial number of clinical neuropsychologists with specialist training. Whilst the majority of Australian clinical neuropsychologists still undertake assessment predominantly, there are growing opportunities for clinical neuropsychologists in rehabilitation and in a broad range of research contexts. Cultural issues relating to the assessment of Indigenous Australians and immigrants from many countries present significant challenges. Some major contributions have been made in the realms of test development and validation across various age groups. Australian clinical neuropsychologists are also contributing significantly to research in the fields of traumatic brain injury, aging and dementias, epilepsy, memory assessment, rehabilitation, substance abuse, and other psychiatric disorders. Expansion of roles of clinical neuropsychologists, in domains such as rehabilitation and research is seen as essential to underpin continuing growth of employment opportunities for the profession.
A Perspective on the Clinical Translation of Scaffolds for Tissue Engineering
Webber, Matthew J.; Khan, Omar F.; Sydlik, Stefanie A.; Tang, Benjamin C.; Langer, Robert
2016-01-01
Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine. PMID:25201605
Adoptive T Cell Immunotherapy for Patients with Primary Immunodeficiency Disorders.
McLaughlin, Lauren P; Bollard, Catherine M; Keller, Michael
2017-01-01
Primary immunodeficiency disorders (PID) are a group of inborn errors of immunity with a broad range of clinical severity but often associated with recurrent and serious infections. While hematopoietic stem cell transplantation (HSCT) can be curative for some forms of PID, chronic and/or refractory viral infections remain a cause of morbidity and mortality both before and after HSCT. Although antiviral pharmacologic agents exist for many viral pathogens, these are associated with significant costs and toxicities and may not be effective for increasingly drug-resistant pathogens. Thus, the emergence of adoptive immunotherapy with virus-specific T lymphocytes (VSTs) is an attractive option for addressing the underlying impaired T cell immunity in many PID patients. VSTs have been utilized for PID patients following HSCT in many prior phase I trials, and may potentially be beneficial before HSCT in patients with chronic viral infections. We review the various methods of generating VSTs, clinical experience using VSTs for PID patients, and current limitations as well as potential ways to broaden the clinical applicability of adoptive immunotherapy for PID patients.
Optimizing real time fMRI neurofeedback for therapeutic discovery and development
Stoeckel, L.E.; Garrison, K.A.; Ghosh, S.; Wighton, P.; Hanlon, C.A.; Gilman, J.M.; Greer, S.; Turk-Browne, N.B.; deBettencourt, M.T.; Scheinost, D.; Craddock, C.; Thompson, T.; Calderon, V.; Bauer, C.C.; George, M.; Breiter, H.C.; Whitfield-Gabrieli, S.; Gabrieli, J.D.; LaConte, S.M.; Hirshberg, L.; Brewer, J.A.; Hampson, M.; Van Der Kouwe, A.; Mackey, S.; Evins, A.E.
2014-01-01
While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders. PMID:25161891
A perspective on the clinical translation of scaffolds for tissue engineering.
Webber, Matthew J; Khan, Omar F; Sydlik, Stefanie A; Tang, Benjamin C; Langer, Robert
2015-03-01
Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine.
Krause, Beatrix; Cohen Kadosh, Roi
2013-01-01
Learning difficulties in atypical brain development represent serious obstacles to an individual's future achievements and can have broad societal consequences. Cognitive training can improve learning impairments only to a certain degree. Recent evidence from normal and clinical adult populations suggests that transcranial electrical stimulation (TES), a portable, painless, inexpensive, and relatively safe neuroenhancement tool, applied in conjunction with cognitive training can enhance cognitive intervention outcomes. This includes, for instance, numerical processing, language skills and response inhibition deficits commonly associated with profound learning difficulties and attention-deficit hyperactivity disorder (ADHD). The current review introduces the functional principles, current applications and promising results, and potential pitfalls of TES. Unfortunately, research in child populations is limited at present. We suggest that TES has considerable promise as a tool for increasing neuroplasticity in atypically developing children and may be an effective adjunct to cognitive training in clinical settings if it proves safe. The efficacy and both short- and long-term effects of TES on the developing brain need to be critically assessed before it can be recommended for clinical settings. PMID:23770059
7 CFR 3560.555 - Eligibility requirements for off-farm labor housing loans and grants.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Eligibility for loans. Applicants for off-farm labor housing loans must be: (1) A broad-based nonprofit... requirements of § 3560.55, excluding § 3560.55(a)(6). A broad-based nonprofit organization is a nonprofit...
7 CFR 3560.555 - Eligibility requirements for off-farm labor housing loans and grants.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Eligibility for loans. Applicants for off-farm labor housing loans must be: (1) A broad-based nonprofit... requirements of § 3560.55, excluding § 3560.55(a)(6). A broad-based nonprofit organization is a nonprofit...
7 CFR 3560.555 - Eligibility requirements for off-farm labor housing loans and grants.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Eligibility for loans. Applicants for off-farm labor housing loans must be: (1) A broad-based nonprofit... requirements of § 3560.55, excluding § 3560.55(a)(6). A broad-based nonprofit organization is a nonprofit...
Ng, C K; Wu, T C; Chan, W M J; Leung, Y S W; Li, C K P; Tsang, D N C; Leung, G M
2008-10-01
Inappropriate use of antibiotics is one of the important factors attributing to emergence of drug-resistant pathogens. Infection with multidrug-resistant pathogens adversely affects quality of medical care. Queen Elizabeth Hospital, an 1800-bed acute service hospital in Hong Kong. Antibiotics are commonly prescribed for treating acute infections. Reduce inappropriate prescription of broad-spectrum antibiotics and overall antibiotic prescription through implementation of a multidisciplinary antibiotics stewardship programme (ASP). A multidisciplinary programme involving policy and guideline formulation, education and feedback, monthly antibiotic consumption and cost monitoring, antimicrobial susceptibility pattern reporting and concurrent feedbacks for commonly prescribed broad-spectrum antibiotics was implemented in 2004. Predefined logistics to prescribe "restricted" antibiotics were formulated and implemented with collaborative efforts from clinical and non-clinical departments. The programme was supported by management at department and hospital levels. Broad-spectrum antibiotics were prescribed inappropriately in 28.9% (n = 192) clinical scenarios. The ASP reduced the restricted and total antibiotic consumption as well as the antibiotics-related costs. Predefined clinical outcomes were not adversely affected. Economic analysis suggested that the extra human cost in running ASP could be offset by savings from antibiotic expenditure. It is cost-effective to implement a multidisciplinary ASP in acute service hospitals as the programme reduces antibiotic consumption and results in overall cost savings. The quality of medical care is not jeopardized as the important clinical outcomes are not adversely affected. The generalisability and sustainability of ASPs in other clinical contexts warrant further studies to ensure the continuous success of this programme.
Use of locally delivered dequalinium chloride in the treatment of vaginal infections: a review.
Mendling, Werner; Weissenbacher, Ernst Rainer; Gerber, Stefan; Prasauskas, Valdas; Grob, Philipp
2016-03-01
Vaginal infections are responsible for a large proportion of gynaecological outpatient visits. Those are bacterial vaginosis (BV), vulvovaginal candidosis (VVC), aerobic vaginitis (AV) associated with aerobic bacteria, and mixed infections. Usual treatments show similar acceptable short-term efficacy, but frequent recurrences and increasing microbial resistance are unsolved issues. Furthermore, vaginal infections are associated with a variety of serious adverse outcomes in pregnancy and generally have a major impact on quality of life. Identifying the correct therapy can be challenging for the clinician, particularly in mixed infections. Dequalinium chloride (DQC) is an anti-microbial antiseptic agent with a broad bactericidal and fungicidal activity. Systemic absorption after vaginal application of DQC is very low and systemic effects negligible. Vaginal DQC (Fluomizin vaginal tablets) has been shown to have equal clinical efficacy as clindamycin in the treatment of BV. Its broad antimicrobial activity makes it appropriate for the treatment of mixed vaginal infections and in case of uncertain diagnosis. Moreover, resistance of pathogens is unlikely due to its multiple mode of action, and vaginal DQC provides also a reduced risk for post-treatment vaginal infections. Vaginal DQC (10 mg) as 6-day therapy offers a safe and effective option for empiric therapy of different vaginal infections in daily practice. This review summarizes the available and relevant pharmacological and clinical data for the therapy of vaginal infections with vaginal DQC and provides the rationale for its use in daily gynaecologic practice.
The Clinical Translation Gap in Child Health Exercise Research: A Call for Disruptive Innovation
Ashish, Naveen; Bamman, Marcas M.; Cerny, Frank J.; D'Hemecourt, Pierre; Eisenmann, Joey C.; Ericson, Dawn; Fahey, John; Falk, Bareket; Gabriel, Davera; Kahn, Michael G.; Kemper, Han C.G.; Leu, Szu‐Yun; Liem, Robert I.; McMurray, Robert; Nixon, Patricia A.; Olin, J. Tod; Pianosi, Paolo T.; Purucker, Mary; Radom‐Aizik, Shlomit; Taylor, Amy
2014-01-01
Abstract In children, levels of play, physical activity, and fitness are key indicators of health and disease and closely tied to optimal growth and development. Cardiopulmonary exercise testing (CPET) provides clinicians with biomarkers of disease and effectiveness of therapy, and researchers with novel insights into fundamental biological mechanisms reflecting an integrated physiological response that is hidden when the child is at rest. Yet the growth of clinical trials utilizing CPET in pediatrics remains stunted despite the current emphasis on preventative medicine and the growing recognition that therapies used in children should be clinically tested in children. There exists a translational gap between basic discovery and clinical application in this essential component of child health. To address this gap, the NIH provided funding through the Clinical and Translational Science Award (CTSA) program to convene a panel of experts. This report summarizes our major findings and outlines next steps necessary to enhance child health exercise medicine translational research. We present specific plans to bolster data interoperability, improve child health CPET reference values, stimulate formal training in exercise medicine for child health care professionals, and outline innovative approaches through which exercise medicine can become more accessible and advance therapeutics across the broad spectrum of child health. PMID:25109386
The clinical translation gap in child health exercise research: a call for disruptive innovation.
Ashish, Naveen; Bamman, Marcas M; Cerny, Frank J; Cooper, Dan M; D'Hemecourt, Pierre; Eisenmann, Joey C; Ericson, Dawn; Fahey, John; Falk, Bareket; Gabriel, Davera; Kahn, Michael G; Kemper, Han C G; Leu, Szu-Yun; Liem, Robert I; McMurray, Robert; Nixon, Patricia A; Olin, J Tod; Pianosi, Paolo T; Purucker, Mary; Radom-Aizik, Shlomit; Taylor, Amy
2015-02-01
In children, levels of play, physical activity, and fitness are key indicators of health and disease and closely tied to optimal growth and development. Cardiopulmonary exercise testing (CPET) provides clinicians with biomarkers of disease and effectiveness of therapy, and researchers with novel insights into fundamental biological mechanisms reflecting an integrated physiological response that is hidden when the child is at rest. Yet the growth of clinical trials utilizing CPET in pediatrics remains stunted despite the current emphasis on preventative medicine and the growing recognition that therapies used in children should be clinically tested in children. There exists a translational gap between basic discovery and clinical application in this essential component of child health. To address this gap, the NIH provided funding through the Clinical and Translational Science Award (CTSA) program to convene a panel of experts. This report summarizes our major findings and outlines next steps necessary to enhance child health exercise medicine translational research. We present specific plans to bolster data interoperability, improve child health CPET reference values, stimulate formal training in exercise medicine for child health care professionals, and outline innovative approaches through which exercise medicine can become more accessible and advance therapeutics across the broad spectrum of child health. © 2014 Wiley Periodicals, Inc.
A CTSA Agenda to Advance Methods for Comparative Effectiveness Research
Helfand, Mark; Tunis, Sean; Whitlock, Evelyn P.; Pauker, Stephen G.; Basu, Anirban; Chilingerian, Jon; Harrell Jr., Frank E.; Meltzer, David O.; Montori, Victor M.; Shepard, Donald S.; Kent, David M.
2011-01-01
Abstract Clinical research needs to be more useful to patients, clinicians, and other decision makers. To meet this need, more research should focus on patient‐centered outcomes, compare viable alternatives, and be responsive to individual patients’ preferences, needs, pathobiology, settings, and values. These features, which make comparative effectiveness research (CER) fundamentally patient‐centered, challenge researchers to adopt or develop methods that improve the timeliness, relevance, and practical application of clinical studies. In this paper, we describe 10 priority areas that address 3 critical needs for research on patient‐centered outcomes (PCOR): (1) developing and testing trustworthy methods to identify and prioritize important questions for research; (2) improving the design, conduct, and analysis of clinical research studies; and (3) linking the process and outcomes of actual practice to priorities for research on patient‐centered outcomes. We argue that the National Institutes of Health, through its clinical and translational research program, should accelerate the development and refinement of methods for CER by linking a program of methods research to the broader portfolio of large, prospective clinical and health system studies it supports. Insights generated by this work should be of enormous value to PCORI and to the broad range of organizations that will be funding and implementing CER. Clin Trans Sci 2011; Volume 4: 188–198 PMID:21707950
Friedrich, Torben; Rahmann, Sven; Weigel, Wilfried; Rabsch, Wolfgang; Fruth, Angelika; Ron, Eliora; Gunzer, Florian; Dandekar, Thomas; Hacker, Jörg; Müller, Tobias; Dobrindt, Ulrich
2010-10-21
The Enterobacteriaceae comprise a large number of clinically relevant species with several individual subspecies. Overlapping virulence-associated gene pools and the high overall genome plasticity often interferes with correct enterobacterial strain typing and risk assessment. Array technology offers a fast, reproducible and standardisable means for bacterial typing and thus provides many advantages for bacterial diagnostics, risk assessment and surveillance. The development of highly discriminative broad-range microbial diagnostic microarrays remains a challenge, because of marked genome plasticity of many bacterial pathogens. We developed a DNA microarray for strain typing and detection of major antimicrobial resistance genes of clinically relevant enterobacteria. For this purpose, we applied a global genome-wide probe selection strategy on 32 available complete enterobacterial genomes combined with a regression model for pathogen classification. The discriminative power of the probe set was further tested in silico on 15 additional complete enterobacterial genome sequences. DNA microarrays based on the selected probes were used to type 92 clinical enterobacterial isolates. Phenotypic tests confirmed the array-based typing results and corroborate that the selected probes allowed correct typing and prediction of major antibiotic resistances of clinically relevant Enterobacteriaceae, including the subspecies level, e.g. the reliable distinction of different E. coli pathotypes. Our results demonstrate that the global probe selection approach based on longest common factor statistics as well as the design of a DNA microarray with a restricted set of discriminative probes enables robust discrimination of different enterobacterial variants and represents a proof of concept that can be adopted for diagnostics of a wide range of microbial pathogens. Our approach circumvents misclassifications arising from the application of virulence markers, which are highly affected by horizontal gene transfer. Moreover, a broad range of pathogens have been covered by an efficient probe set size enabling the design of high-throughput diagnostics.
Jackson, Richard G; Patel, Rashmi; Jayatilleke, Nishamali; Kolliakou, Anna; Ball, Michael; Gorrell, Genevieve; Roberts, Angus; Dobson, Richard J; Stewart, Robert
2017-01-17
We sought to use natural language processing to develop a suite of language models to capture key symptoms of severe mental illness (SMI) from clinical text, to facilitate the secondary use of mental healthcare data in research. Development and validation of information extraction applications for ascertaining symptoms of SMI in routine mental health records using the Clinical Record Interactive Search (CRIS) data resource; description of their distribution in a corpus of discharge summaries. Electronic records from a large mental healthcare provider serving a geographic catchment of 1.2 million residents in four boroughs of south London, UK. The distribution of derived symptoms was described in 23 128 discharge summaries from 7962 patients who had received an SMI diagnosis, and 13 496 discharge summaries from 7575 patients who had received a non-SMI diagnosis. Fifty SMI symptoms were identified by a team of psychiatrists for extraction based on salience and linguistic consistency in records, broadly categorised under positive, negative, disorganisation, manic and catatonic subgroups. Text models for each symptom were generated using the TextHunter tool and the CRIS database. We extracted data for 46 symptoms with a median F1 score of 0.88. Four symptom models performed poorly and were excluded. From the corpus of discharge summaries, it was possible to extract symptomatology in 87% of patients with SMI and 60% of patients with non-SMI diagnosis. This work demonstrates the possibility of automatically extracting a broad range of SMI symptoms from English text discharge summaries for patients with an SMI diagnosis. Descriptive data also indicated that most symptoms cut across diagnoses, rather than being restricted to particular groups. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Klosterman, E S; Kass, P H; Walsh, D A
2009-08-01
This is the first of two papers that provide extensive data and analysis on the two major approaches to clinical veterinary education, which either provide students with experience of a broad range of species (often defined as omni/general clinical competence), or just a few species (sometimes just one), usually termed 'tracking'. Together the two papers provide a detailed analysis of these two approaches for the first time. The responsibilities of veterinary medicine and veterinary education are rapidly increasing throughoutthe globe. It is critical for all in veterinary education to reassess the approaches that have been used, and evaluate on a school-by-school basis which may best meet its expanding and ever-deepening responsibilities.
The Impact of Data Fragmentation on High-Throughput Clinical Phenotyping
ERIC Educational Resources Information Center
Wei, Weiqi
2012-01-01
Subject selection is essential and has become the rate-limiting step for harvesting knowledge to advance healthcare through clinical research. Present manual approaches inhibit researchers from conducting deep and broad studies and drawing confident conclusions. High-throughput clinical phenotyping (HTCP), a recently proposed approach, leverages…
2018-01-01
Restoration Options – Comparison of Dredging and Aeration – and Broad Application to USACE Projects En vi ro nm en ta l L ab or at or y Victor F. Medina... Projects Victor F. Medina, Kaytee Pokrzywinski, and Edith Martinez-Guerra Environmental Laboratory U.S. Army Engineer Research and Development...Operations Technical Support Program 3909 Halls Ferry Road Vicksburg, MS 39180 Under Project No. TA2017-002, “Evaluation of Koontz Lake (Indiana
Hendriks, Saskia; Dondorp, Wybo; de Wert, Guido; Hamer, Geert; Repping, Sjoerd; Dancet, Eline A F
2015-01-01
Recent progress in the formation of artificial gametes, i.e. gametes generated from progenitors or somatic cells, has led to scientific and societal discussion about their use in medically assisted reproduction. In animals, live births have already been achieved using artificial gametes of varying (cell type) sources and biological research seems to be progressing steadily toward clinical application in humans. Artificial gametes could potentially help not only infertile heterosexual couples of reproductive age of which one or both partners lacks functional gametes, but also post-menopausal women and same-sex couples, to conceive a child who will be genetically related to them. But as clinical application of these new technologies may have wider societal consequences, a proactive consideration of the possible impact seems timely and important. This review aims to contribute to this by providing a systematic overview of the potential consequences of clinical application of artificial gametes anticipated by different stakeholders. The electronic database 'Medline/Pubmed' was systematically searched with medical subject heading terms (MesH) for articles published in English between January 1970 and December 2013. Articles were selected based on eligibility and reference lists of eligible studies were hand searched. The reported potential consequences of clinical application of artificial gametes were extracted from the articles and were grouped into categories by content analysis. Per category, we noted which stakeholders referred to which potential consequences, based on author affiliations and, if applicable, study participants. The systematic search yielded 2424 articles, and 84 studies were included after screening. Nine positive consequences, 21 specific consequences requiring consideration and 22 recommendations referring to clinical application of artificial gametes were documented. All positive consequences, consequences requiring consideration and recommendations could be categorized under the following eight objectives to be safeguarded during clinical application of artificial gametes: (i) timing the implementation of new treatments correctly, (ii) meeting 'plausible demands of patients', (iii) improving and safeguarding public health, (iv) promoting the progress of medical science in the interest of future patients, (v) providing treatments that are morally acceptable for the general public, (vi) controlling medical practice, (vii) offering treatments that allow acquisition of informed consent and (viii) funding treatments fairly. Professionals specialized in biomedical science, science journalists and professionals specialized in ethics all addressed these eight objectives on artificial gametes, whereas professionals specialized in law or political science addressed seven objectives. Although one study reported on the perspective of parents of under-aged patients on three objectives, the perspectives of patients themselves were not reported by the reviewed literature. Of course, clinical introduction of artificial gametes should only be considered on the basis of reassuring outcomes of appropriate preclinical effectiveness and safety studies. In addition, potential users' views on the desirability and acceptability of artificial gametes should be studied before clinical introduction. A societal debate including all stakeholders is needed to determine the relative importance of all arguments in favor of and against the introduction of artificial gametes into clinical practice. More broadly, establishing pre-implementation processes for new medical techniques is relevant for all fields of medicine. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.
2016-05-03
ABSTRACT Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. Themetabolite,protein, andlipidextraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of thismore » protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental,in vitro, and clinical). IMPORTANCEIn systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample.« less
NASA Astrophysics Data System (ADS)
Lin, Yi; Jiang, Miao
2017-01-01
Tree species information is essential for forest research and management purposes, which in turn require approaches for accurate and precise classification of tree species. One such remote sensing technology, terrestrial laser scanning (TLS), has proved to be capable of characterizing detailed tree structures, such as tree stem geometry. Can TLS further differentiate between broad- and needle-leaves? If the answer is positive, TLS data can be used for classification of taxonomic tree groups by directly examining their differences in leaf morphology. An analysis was proposed to assess TLS-represented broad- and needle-leaf structures, followed by a Bayes classifier to perform the classification. Tests indicated that the proposed method can basically implement the task, with an overall accuracy of 77.78%. This study indicates a way of implementing the classification of the two major broad- and needle-leaf taxonomies measured by TLS in accordance to their literal definitions, and manifests the potential of extending TLS applications in forestry.
Alcohol- and light-induced electro-oculographic responses: variability and clinical utility.
Marmor, Michael F; Wu, Kathy H C
2005-01-01
The alcohol-induced electro-oculographic (EOG) response has been proposed by Arden as an indicator of retinal pigment epithelial (RPE) integrity. We have evaluated the consistency of the alcohol-EOG with respect to clinical applicability and compared this response to the ISCEV-standard EOG. We recorded, in a group of normal subjects (n=29, 14 men with mean age 42+/-11 years and 15 women with mean age 36+/-13 years), the alcohol response to a single oral dose of ethanol at 160 mg/kg (as 40 proof vodka, drunk in 15 s after 12 h of fasting), followed by an ISCEV-standard EOG 90 min after alcohol administration. Blood alcohol levels were monitored at regular intervals with a breath analyzer. We found a wide range of amplitudes in both light and alcohol responses among participants, from minimal to large values. Subjects had a wide range of blood alcohol concentrations from 0.02 to 0.10%; near the time of the response peak, but there was no relationship between alcohol levels and peak/baseline ratios. In addition, there was no relationship between alcohol peak/baseline ratio and the Arden ratio. Neither the alcohol nor the light response parameters showed any relationship with age or gender. Some of the inter-individual variability in the EOG response to alcohol may reflect variable absorption of oral alcohol. The alcohol-induced EOG has too broad a range of responses to be useful clinically for the one-time evaluation of individual patients. We have similar concerns regarding clinical applications of the standard light-induced EOG.
Kassem, Abeer Ahmed; Issa, Doaa Ahmed Elsayed; Kotry, Gehan Sherif; Farid, Ragwa Mohamed
2017-01-01
Periodontal disease broadly defines group of conditions in which the supportive structure of the tooth (periodontium) is destroyed. Recent studies suggested that the anti-diabetic drug metformin hydrochloride (MF) has an osteogenic effect and is beneficial for the management of periodontitis. Development of strong mucoadhesive multiple layer film loading small dose of MF for intra-pocket application. Multiple layer film was developed by double casting followed by compression method. Either 6% carboxy methyl cellulose sodium (CMC) or sodium alginate (ALG) constituted the inner drug (0.6%) loaded layer. Thiolated sodium alginate (TSA; 2 or 4%) constituted the outer drug free layers to enhance mucoadhesion and achieve controlled drug release. Optimized formulation was assessed clinically on 20 subjects. Films were uniform, thin and hard enough for easy insertion into periodontal pockets. Based on water uptake and in vitro drug release, CMC based film with 4% TSA as an outer layer was the optimized formulation with enhanced mucoadhesion and controlled drug release (83.73% over 12 h). SEM showed the effective fabrication of the triple layer film in which connective lines between the layers could be observed. FTIR examination suggests possibility of hydrogen bonding between the -NH groups of metformin and -OH groups of CMC. DSC revealed the presence of MF mainly in the amorphous form. Clinical results indicated improvement of all clinical parameters six months post treatment. The results suggested that local application of the mucoadhesive multiple layer films loaded with metformin hydrochloride was able to manage moderate chronic periodontitis.
NK-92: an 'off-the-shelf therapeutic' for adoptive natural killer cell-based cancer immunotherapy.
Suck, Garnet; Odendahl, Marcus; Nowakowska, Paulina; Seidl, Christian; Wels, Winfried S; Klingemann, Hans G; Tonn, Torsten
2016-04-01
Natural killer (NK) cells are increasingly considered as immunotherapeutic agents in particular in the fight against cancers. NK cell therapies are potentially broadly applicable and, different from their T cell counterparts, do not cause graft-versus-host disease. Efficacy and clinical in vitro or in vivo expansion of primary NK cells will however always remain variable due to individual differences of donors or patients. Long-term storage of clinical NK cell lots to allow repeated clinical applications remains an additional challenge. In contrast, the established and well-characterized cell line NK-92 can be easily and reproducibly expanded from a good manufacturing practice (GMP)-compliant cryopreserved master cell bank. Moreover, no cost-intensive cell purification methods are required. To date, NK-92 has been intensively studied. The cells displayed superior cytotoxicity against a number of tumor types tested, which was confirmed in preclinical mouse studies. Subsequent clinical testing demonstrated safety of NK-92 infusions even at high doses. Despite the phase I nature of the trials conducted so far, some efficacy was noted, particularly against lung tumors. Furthermore, to overcome tumor resistance and for specific targeting, NK-92 has been engineered to express a number of different chimeric antigen receptors (CARs), including targeting, for example, CD19 or CD20 (anti-B cell malignancies), CD38 (anti-myeloma) or human epidermal growth factor receptor 2 (HER2; ErbB2; anti-epithelial cancers). The concept of an NK cell line as an allogeneic cell therapeutic produced 'off-the-shelf' on demand holds great promise for the development of effective treatments.
Wang, T; Hu, X; Liang, S; Li, W; Wu, X; Wang, L; Jin, F
2015-01-01
Gut microbiota play a vital role in maintaining the health of the host. Many factors affect gut microbiota; application of broad range antibiotics disturb microbiota, while probiotic application protects the microbiota. To investigate how probiotics alter the physiological and psychological changes induced by antibiotics, we tested the performance of ampicillin-treated rats in the presence or absence of Lactobacillus fermentum strain NS9, in elevated plus maze and Morris water maze. The results showed that NS9 normalised the composition of gut microbiota and alleviated the ampicillin-induced inflammation in the colon. The levels of the mineralocorticoid and N-methyl-D-aspartate receptors were also elevated in the hippocampus of the ampillicin+NS9 treated group. NS9 administration also reduced the anxiety-like behaviour and alleviated the ampicillin-induced impairment in memory retention. These findings suggest that NS9 is beneficial to the host, because it restores the physiological and psychological abnormalities induced by ampicillin. Our results highlight how gut contents regulate the brain, and shed light on the clinical applications of probiotics to treat the side effect of antibiotics and mental disorders.
The history, hotspots, and trends of electrocardiogram.
Yang, Xiang-Lin; Liu, Guo-Zhen; Tong, Yun-Hai; Yan, Hong; Xu, Zhi; Chen, Qi; Liu, Xiang; Zhang, Hong-Hao; Wang, Hong-Bo; Tan, Shao-Hua
2015-07-01
The electrocardiogram (ECG) has broad applications in clinical diagnosis and prognosis of cardiovascular disease. Many researchers have contributed to its progressive development. To commemorate those pioneers, and to better study and promote the use of ECG, we reviewed and present here a systematic introduction about the history, hotspots, and trends of ECG. In the historical part, information including the invention, improvement, and extensive applications of ECG, such as in long QT syndrome (LQTS), angina, and myocardial infarction (MI), are chronologically presented. New technologies and applications from the 1990s are also introduced. In the second part, we use the bibliometric analysis method to analyze the hotspots in the field of ECG-related research. By using total citations and year-specific total citations as our main criteria, four key hotspots in ECG-related research were identified from 11 articles, including atrial fibrillation, LQTS, angina and MI, and heart rate variability. Recent studies in those four areas are also reported. In the final part, we discuss the future trends concerning ECG-related research. The authors believe that improvement of the ECG instrumentation, big data mining for ECG, and the accuracy of diagnosis and application will be areas of continuous concern.
Smart Radiation Therapy Biomaterials.
Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen
2017-03-01
Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.
The history, hotspots, and trends of electrocardiogram
Yang, Xiang-Lin; Liu, Guo-Zhen; Tong, Yun-Hai; Yan, Hong; Xu, Zhi; Chen, Qi; Liu, Xiang; Zhang, Hong-Hao; Wang, Hong-Bo; Tan, Shao-Hua
2015-01-01
The electrocardiogram (ECG) has broad applications in clinical diagnosis and prognosis of cardiovascular disease. Many researchers have contributed to its progressive development. To commemorate those pioneers, and to better study and promote the use of ECG, we reviewed and present here a systematic introduction about the history, hotspots, and trends of ECG. In the historical part, information including the invention, improvement, and extensive applications of ECG, such as in long QT syndrome (LQTS), angina, and myocardial infarction (MI), are chronologically presented. New technologies and applications from the 1990s are also introduced. In the second part, we use the bibliometric analysis method to analyze the hotspots in the field of ECG-related research. By using total citations and year-specific total citations as our main criteria, four key hotspots in ECG-related research were identified from 11 articles, including atrial fibrillation, LQTS, angina and MI, and heart rate variability. Recent studies in those four areas are also reported. In the final part, we discuss the future trends concerning ECG-related research. The authors believe that improvement of the ECG instrumentation, big data mining for ECG, and the accuracy of diagnosis and application will be areas of continuous concern. PMID:26345622
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Tingchao; Tian, Xiaoqing; Lin, Xiaodong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg
Light-emitting nonlinear optical molecules, especially those with large Stokes shifts and broad tunability of their emission wavelength, have attracted considerable attention for various applications including biomedical imaging and fluorescent sensors. However, most fluorescent chromophores have only limited potential for such applications due to small Stokes shifts, narrow tunability of fluorescence emissions, and small optical nonlinearity in highly polar solvents. In this work, we demonstrate that a two-photon absorbing stilbene chromophore exhibits a large two-photon absorption action cross-section (ηδ = 320 GM) in dimethylsulfoxide (DMSO) and shows broad fluorescence tunability (125 nm) by manipulating the polarity of the surrounding medium. Importantly, a very large Stokesmore » shift of up to 227 nm is achieved in DMSO. Thanks to these features, this chromophore can be utilized as a two-photon probe for bioimaging applications and in an ultrasensitive solid-state gas detector.« less
Design of virus-based nanomaterials for medicine, biotechnology, and energy
Wen, Amy M.; Steinmetz, Nicole F.
2016-01-01
Virus-based nanomaterials are versatile materials that naturally self-assemble and have relevance for a broad range of applications including medicine, biotechnology, and energy. This review provides an overview of recent developments in “chemical virology.” Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials. PMID:27152673
Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review.
Tagini, F; Greub, G
2017-11-01
In recent years, whole-genome sequencing (WGS) has been perceived as a technology with the potential to revolutionise clinical microbiology. Herein, we reviewed the literature on the use of WGS for the most commonly encountered pathogens in clinical microbiology laboratories: Escherichia coli and other Enterobacteriaceae, Staphylococcus aureus and coagulase-negative staphylococci, streptococci and enterococci, mycobacteria and Chlamydia trachomatis. For each pathogen group, we focused on five different aspects: the genome characteristics, the most common genomic approaches and the clinical uses of WGS for (i) typing and outbreak analysis, (ii) virulence investigation and (iii) in silico antimicrobial susceptibility testing. Of all the clinical usages, the most frequent and straightforward usage was to type bacteria and to trace outbreaks back. A next step toward standardisation was made thanks to the development of several new genome-wide multi-locus sequence typing systems based on WGS data. Although virulence characterisation could help in various particular clinical settings, it was done mainly to describe outbreak strains. An increasing number of studies compared genotypic to phenotypic antibiotic susceptibility testing, with mostly promising results. However, routine implementation will preferentially be done in the workflow of particular pathogens, such as mycobacteria, rather than as a broadly applicable generic tool. Overall, concrete uses of WGS in routine clinical microbiology or infection control laboratories were done, but the next big challenges will be the standardisation and validation of the procedures and bioinformatics pipelines in order to reach clinical standards.
ERIC Educational Resources Information Center
Weiss, Lawrence G.; Keith, Timothy Z.; Zhu, Jianjun; Chen, Hsinyi
2013-01-01
This discussion article addresses issues related to expansion of the Wechsler model from four to five factors; multiple broad CHC abilities measured by the Arithmetic subtest; advantages and disadvantages of including complex tasks requiring integration of multiple broad abilities when measuring intelligence; limitations of factor analysis, which…
Factors influencing success of clinical genome sequencing across a broad spectrum of disorders
Lise, Stefano; Broxholme, John; Cazier, Jean-Baptiste; Rimmer, Andy; Kanapin, Alexander; Lunter, Gerton; Fiddy, Simon; Allan, Chris; Aricescu, A. Radu; Attar, Moustafa; Babbs, Christian; Becq, Jennifer; Beeson, David; Bento, Celeste; Bignell, Patricia; Blair, Edward; Buckle, Veronica J; Bull, Katherine; Cais, Ondrej; Cario, Holger; Chapel, Helen; Copley, Richard R; Cornall, Richard; Craft, Jude; Dahan, Karin; Davenport, Emma E; Dendrou, Calliope; Devuyst, Olivier; Fenwick, Aimée L; Flint, Jonathan; Fugger, Lars; Gilbert, Rodney D; Goriely, Anne; Green, Angie; Greger, Ingo H.; Grocock, Russell; Gruszczyk, Anja V; Hastings, Robert; Hatton, Edouard; Higgs, Doug; Hill, Adrian; Holmes, Chris; Howard, Malcolm; Hughes, Linda; Humburg, Peter; Johnson, David; Karpe, Fredrik; Kingsbury, Zoya; Kini, Usha; Knight, Julian C; Krohn, Jonathan; Lamble, Sarah; Langman, Craig; Lonie, Lorne; Luck, Joshua; McCarthy, Davis; McGowan, Simon J; McMullin, Mary Frances; Miller, Kerry A; Murray, Lisa; Németh, Andrea H; Nesbit, M Andrew; Nutt, David; Ormondroyd, Elizabeth; Oturai, Annette Bang; Pagnamenta, Alistair; Patel, Smita Y; Percy, Melanie; Petousi, Nayia; Piazza, Paolo; Piret, Sian E; Polanco-Echeverry, Guadalupe; Popitsch, Niko; Powrie, Fiona; Pugh, Chris; Quek, Lynn; Robbins, Peter A; Robson, Kathryn; Russo, Alexandra; Sahgal, Natasha; van Schouwenburg, Pauline A; Schuh, Anna; Silverman, Earl; Simmons, Alison; Sørensen, Per Soelberg; Sweeney, Elizabeth; Taylor, John; Thakker, Rajesh V; Tomlinson, Ian; Trebes, Amy; Twigg, Stephen RF; Uhlig, Holm H; Vyas, Paresh; Vyse, Tim; Wall, Steven A; Watkins, Hugh; Whyte, Michael P; Witty, Lorna; Wright, Ben; Yau, Chris; Buck, David; Humphray, Sean; Ratcliffe, Peter J; Bell, John I; Wilkie, Andrew OM; Bentley, David; Donnelly, Peter; McVean, Gilean
2015-01-01
To assess factors influencing the success of whole genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases across a broad spectrum of disorders in whom prior screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritisation. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease causing variants in 21% of cases, rising to 34% (23/68) for Mendelian disorders and 57% (8/14) in trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, though only four were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis, but also highlight many outstanding challenges. PMID:25985138
Buryska, Tomas; Babkova, Petra; Vavra, Ondrej; Damborsky, Jiri; Prokop, Zbynek
2018-01-15
The haloalkane dehalogenase enzyme DmmA was identified by marine metagenomic screening. Determination of its crystal structure revealed an unusually large active site compared to those of previously characterized haloalkane dehalogenases. Here we present a biochemical characterization of this interesting enzyme with emphasis on its structure-function relationships. DmmA exhibited an exceptionally broad substrate specificity and degraded several halogenated environmental pollutants that are resistant to other members of this enzyme family. In addition to having this unique substrate specificity, the enzyme was highly tolerant to organic cosolvents such as dimethyl sulfoxide, methanol, and acetone. Its broad substrate specificity, high overexpression yield (200 mg of protein per liter of cultivation medium; 50% of total protein), good tolerance to organic cosolvents, and a broad pH range make DmmA an attractive biocatalyst for various biotechnological applications. IMPORTANCE We present a thorough biochemical characterization of the haloalkane dehalogenase DmmA from a marine metagenome. This enzyme with an unusually large active site shows remarkably broad substrate specificity, high overexpression, significant tolerance to organic cosolvents, and activity under a broad range of pH conditions. DmmA is an attractive catalyst for sustainable biotechnology applications, e.g., biocatalysis, biosensing, and biodegradation of halogenated pollutants. We also report its ability to convert multiple halogenated compounds to corresponding polyalcohols. Copyright © 2018 American Society for Microbiology.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Applicability. 40.5 Section 40.5 Judicial Administration DEPARTMENT OF JUSTICE STANDARDS FOR INMATE GRIEVANCE PROCEDURES Minimum Standards for Inmate Grievance Procedures § 40.5 Applicability. The grievance procedure shall be applicable to a broad range of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Applicability. 40.5 Section 40.5 Judicial Administration DEPARTMENT OF JUSTICE STANDARDS FOR INMATE GRIEVANCE PROCEDURES Minimum Standards for Inmate Grievance Procedures § 40.5 Applicability. The grievance procedure shall be applicable to a broad range of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Applicability. 40.5 Section 40.5 Judicial Administration DEPARTMENT OF JUSTICE STANDARDS FOR INMATE GRIEVANCE PROCEDURES Minimum Standards for Inmate Grievance Procedures § 40.5 Applicability. The grievance procedure shall be applicable to a broad range of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Applicability. 40.5 Section 40.5 Judicial Administration DEPARTMENT OF JUSTICE STANDARDS FOR INMATE GRIEVANCE PROCEDURES Minimum Standards for Inmate Grievance Procedures § 40.5 Applicability. The grievance procedure shall be applicable to a broad range of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Applicability. 40.5 Section 40.5 Judicial Administration DEPARTMENT OF JUSTICE STANDARDS FOR INMATE GRIEVANCE PROCEDURES Minimum Standards for Inmate Grievance Procedures § 40.5 Applicability. The grievance procedure shall be applicable to a broad range of...
Mathers, Jonathan; Sitch, Alice; Parry, Jayne
2016-10-01
Medical schools are increasingly using novel tools to select applicants. The UK Clinical Aptitude Test (UKCAT) is one such tool and measures mental abilities, attitudes and professional behaviour conducive to being a doctor using constructs likely to be less affected by socio-demographic factors than traditional measures of potential. Universities are free to use UKCAT as they see fit but three broad modalities have been observed: 'borderline', 'factor' and 'threshold'. This paper aims to provide the first longitudinal analyses assessing the impact of the different uses of UKCAT on making offers to applicants with different socio-demographic characteristics. Multilevel regression was used to model the outcome of applications to UK medical schools during the period 2004-2011 (data obtained from UCAS), adjusted for sex, ethnicity, schooling, parental occupation, educational attainment, year of application and UKCAT use (borderline, factor and threshold). The three ways of using the UKCAT did not differ in their impact on making the selection process more equitable, other than a marked reversal for female advantage when applied in a 'threshold' manner. Our attempt to model the longitudinal impact of the use of the UKCAT in its threshold format found again the reversal of female advantage, but did not demonstrate similar statistically significant reductions of the advantages associated with White ethnicity, higher social class and selective schooling. Our findings demonstrate attenuation of the advantage of being female but no changes in admission rates based on White ethnicity, higher social class and selective schooling. In view of this, the utility of the UKCAT as a means to widen access to medical schools among non-White and less advantaged applicants remains unproven. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Del Fiol, Guilherme; Michelson, Matthew; Iorio, Alfonso; Cotoi, Chris; Haynes, R Brian
2018-06-25
A major barrier to the practice of evidence-based medicine is efficiently finding scientifically sound studies on a given clinical topic. To investigate a deep learning approach to retrieve scientifically sound treatment studies from the biomedical literature. We trained a Convolutional Neural Network using a noisy dataset of 403,216 PubMed citations with title and abstract as features. The deep learning model was compared with state-of-the-art search filters, such as PubMed's Clinical Query Broad treatment filter, McMaster's textword search strategy (no Medical Subject Heading, MeSH, terms), and Clinical Query Balanced treatment filter. A previously annotated dataset (Clinical Hedges) was used as the gold standard. The deep learning model obtained significantly lower recall than the Clinical Queries Broad treatment filter (96.9% vs 98.4%; P<.001); and equivalent recall to McMaster's textword search (96.9% vs 97.1%; P=.57) and Clinical Queries Balanced filter (96.9% vs 97.0%; P=.63). Deep learning obtained significantly higher precision than the Clinical Queries Broad filter (34.6% vs 22.4%; P<.001) and McMaster's textword search (34.6% vs 11.8%; P<.001), but was significantly lower than the Clinical Queries Balanced filter (34.6% vs 40.9%; P<.001). Deep learning performed well compared to state-of-the-art search filters, especially when citations were not indexed. Unlike previous machine learning approaches, the proposed deep learning model does not require feature engineering, or time-sensitive or proprietary features, such as MeSH terms and bibliometrics. Deep learning is a promising approach to identifying reports of scientifically rigorous clinical research. Further work is needed to optimize the deep learning model and to assess generalizability to other areas, such as diagnosis, etiology, and prognosis. ©Guilherme Del Fiol, Matthew Michelson, Alfonso Iorio, Chris Cotoi, R Brian Haynes. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 25.06.2018.
Platelet-rich plasma therapy - future or trend?
2012-01-01
Chronic complex musculoskeletal injuries that are slow to heal pose challenges to physicians and researchers alike. Orthobiologics is a relatively newer science that involves application of naturally found materials from biological sources (for example, cell-based therapies), and offers exciting new possibilities to promote and accelerate bone and soft tissue healing. Platelet-rich plasma (PRP) is an orthobiologic that has recently gained popularity as an adjuvant treatment for musculoskeletal injuries. It is a volume of fractionated plasma from the patient's own blood that contains platelet concentrate. The platelets contain alpha granules that are rich in several growth factors, such as platelet-derived growth factor, transforming growth factor-β, insulin-like growth factor, vascular endothelial growth factor and epidermal growth factor, which play key roles in tissue repair mechanisms. PRP has found application in diverse surgical fields to enhance bone and soft-tissue healing by placing supra-physiological concentrations of autologous platelets at the site of tissue damage. The relative ease of preparation, applicability in the clinical setting, favorable safety profile and possible beneficial outcome make PRP a promising therapeutic approach for future regenerative treatments. However, there is a large knowledge gap in our understanding of PRPs mechanism of action, which has raised skepticism regarding its potential efficacy and use. Thus, the aim of this review is to describe the various factors proposed to contribute to the biological activity of PRP, and the published pre-clinical and clinical evidence to support it. Additionally, we describe the current techniques and technology for PRP preparation, and review the present shortcomings of this therapy that will need to be overcome if it is to gain broad acceptance. PMID:22894643
Paasinen-Sohns, Aino; Koelzer, Viktor H; Frank, Angela; Schafroth, Julian; Gisler, Aline; Sachs, Melanie; Graber, Anne; Rothschild, Sacha I; Wicki, Andreas; Cathomas, Gieri; Mertz, Kirsten D
2017-03-01
Companion diagnostics rely on genomic testing of molecular alterations to enable effective cancer treatment. Here we report the clinical application and validation of the Oncomine Focus Assay (OFA), an integrated, commercially available next-generation sequencing (NGS) assay for the rapid and simultaneous detection of single nucleotide variants, short insertions and deletions, copy number variations, and gene rearrangements in 52 cancer genes with therapeutic relevance. Two independent patient cohorts were investigated to define the workflow, turnaround times, feasibility, and reliability of OFA targeted sequencing in clinical application and using archival material. Cohort I consisted of 59 diagnostic clinical samples from the daily routine submitted for molecular testing over a 4-month time period. Cohort II consisted of 39 archival melanoma samples that were up to 15years old. Libraries were prepared from isolated nucleic acids and sequenced on the Ion Torrent PGM sequencer. Sequencing datasets were analyzed using the Ion Reporter software. Genomic alterations were identified and validated by orthogonal conventional assays including pyrosequencing and immunohistochemistry. Sequencing results of both cohorts, including archival formalin-fixed, paraffin-embedded material stored up to 15years, were consistent with published variant frequencies. A concordance of 100% between established assays and OFA targeted NGS was observed. The OFA workflow enabled a turnaround of 3½ days. Taken together, OFA was found to be a convenient tool for fast, reliable, broadly applicable and cost-effective targeted NGS of tumor samples in routine diagnostics. Thus, OFA has strong potential to become an important asset for precision oncology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Hendriks, Jan; Stojanovic, Ivan; Schasfoort, Richard B M; Saris, Daniël B F; Karperien, Marcel
2018-06-05
There is a large unmet need for reliable biomarker measurement systems for clinical application. Such systems should meet challenging requirements for large scale use, including a large dynamic detection range, multiplexing capacity, and both high specificity and sensitivity. More importantly, these requirements need to apply to complex biological samples, which require extensive quality control. In this paper, we present the development of an enhancement detection cascade for surface plasmon resonance imaging (SPRi). The cascade applies an antibody sandwich assay, followed by neutravidin and a gold nanoparticle enhancement for quantitative biomarker measurements in small volumes of complex fluids. We present a feasibility study both in simple buffers and in spiked equine synovial fluid with four cytokines, IL-1β, IL-6, IFN-γ, and TNF-α. Our enhancement cascade leads to an antibody dependent improvement in sensitivity up to 40 000 times, resulting in a limit of detection as low as 50 fg/mL and a dynamic detection range of more than 7 logs. Additionally, measurements at these low concentrations are highly reliable with intra- and interassay CVs between 2% and 20%. We subsequently showed this assay is suitable for multiplex measurements with good specificity and limited cross-reactivity. Moreover, we demonstrated robust detection of IL-6 and IL-1β in spiked undiluted equine synovial fluid with small variation compared to buffer controls. In addition, the availability of real time measurements provides extensive quality control opportunities, essential for clinical applications. Therefore, we consider this method is suitable for broad application in SPRi for multiplex biomarker detection in both research and clinical settings.
Effects of Clinical Pathways for Common Outpatient Infections on Antibiotic Prescribing
Jenkins, Timothy C.; Irwin, Amy; Coombs, Letoynia; DeAlleaume, Lauren; Ross, Stephen E.; Rozwadowski, Jeanne; Webster, Brian; Dickinson, L. Miriam; Sabel, Allison L.; MacKenzie, Thomas D.; West, David R.; Price, Connie S.
2013-01-01
Background Antibiotic overuse in the primary care setting is common. Our objective was to evaluate the effect of a clinical pathway-based intervention on antibiotic use. Methods Eight primary care clinics were randomized to receive clinical pathways for upper respiratory infection, acute bronchitis, acute rhinosinusitis, pharyngitis, acute otitis media, urinary tract infection, skin infections, and pneumonia and patient education materials (study group) versus no intervention (control group). Generalized linear mixed effects models were used to assess trends in antibiotic prescriptions for non-pneumonia acute respiratory infections and broad-spectrum antibiotic use for all eight conditions during a 2-year baseline and 1-year intervention period. Results In the study group, antibiotic prescriptions for non-pneumonia acute respiratory infections decreased from 42.7% of cases at baseline to 37.9% during the intervention period (11.2% relative reduction) (p <.0001) and from 39.8% to 38.7%, respectively, in the control group (2.8% relative reduction) (p=0.25). Overall use of broad-spectrum antibiotics in the study group decreased from 26.4% to 22.6% of cases, respectively, (14.4% relative reduction) (p <.0001) and from 20.0% to 19.4%, respectively, in the control group (3.0% relative reduction) (p=0.35). There were significant differences in the trends of prescriptions for acute respiratory infections (p<.0001) and broad-spectrum antibiotic use (p=0.001) between the study and control groups during the intervention period, with greater declines in the study group. Conclusions This intervention was associated with declining antibiotic prescriptions for non-pneumonia acute respiratory infections and use of broad-spectrum antibiotics over the first year. Evaluation of the impact over a longer study period is warranted. PMID:23507206
Impact of Monoenergetic Photon Sources on Nonproliferation Applications Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geddes, Cameron; Ludewigt, Bernhard; Valentine, John
Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications, particularly where passive signatures do not penetrate or are insufficiently accurate. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow angular divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current bremsstrahlung photon sources (e.g., linacs and betatrons) produce photons over a broad range ofmore » energies, thus delivering unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations. Current sources must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they remain at relatively low TRL status. Candidate MPS technologies for nonproliferation applications are now being developed, each of which has different properties (e.g. broad vs. narrow angular divergence). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. This report describes a broad survey of potential applications, identification of high priority applications, and detailed simulations addressing those priority applications. Requirements were derived for each application, and analysis and simulations were conducted to define MPS parameters that deliver benefit. The results can inform targeting of MPS development to deliver strong impact relative to current systems.« less
Wang, Ningqun; Ji, Shaozhen; Zhang, Hao; Mei, Shanshan; Qiao, Lumin; Jin, Xianglan
2017-01-01
The Cistanche species (“Rou Cong Rong” in Chinese) is an endangered wild species growing in arid or semi-arid areas. The dried fleshy stem of Cistanches has been used as a tonic in China for many years. Modern pharmacological studies have since demonstrated that Herba Cistanches possesses broad medicinal functions, especially for use in anti-senescence, anti-oxidation, neuroprotection, anti-inflammation, hepatoprotection, immunomodulation, anti-neoplastic, anti-osteoporosis and the promotion of bone formation. This review summarizes the up-to-date and comprehensive information on Herba Cistanches covering the aspects of the botany, traditional uses, phytochemistry and pharmacology, to lay ground for fully elucidating the potential mechanisms of Herba Cistanches’ anti-aging effect and promote its clinical application as an anti-aging herbal medicine. PMID:29344414
Strategies from a nationwide health information technology implementation: the VA CART story.
Box, Tamára L; McDonell, Mary; Helfrich, Christian D; Jesse, Robert L; Fihn, Stephan D; Rumsfeld, John S
2010-01-01
The VA Cardiovascular Assessment, Reporting, and Tracking (CART) system is a customized electronic medical record system which provides standardized report generation for cardiac catheterization procedures, serves as a national data repository, and is the centerpiece of a national quality improvement program. Like many health information technology projects, CART implementation did not proceed without some barriers and resistance. We describe the nationwide implementation of CART at the 77 VA hospitals which perform cardiac catheterizations in three phases: (1) strategic collaborations; (2) installation; and (3) adoption. Throughout implementation, success required a careful balance of technical, clinical, and organizational factors. We offer strategies developed through CART implementation which are broadly applicable to technology projects aimed at improving the quality, reliability, and efficiency of health care.
Lang, Michael; Zawati, Ma’n H
2018-01-01
Abstract Mobile health applications are increasingly being used as tools of medicine. Outside of the clinic, some of these applications may contribute to diagnoses made absent a physician's care. We argue that this contravenes reservations of diagnosis to healthcare professionals in the law of two Canadian provinces: Quebec and Ontario. On the one hand, the law conceives of diagnosis in relatively broad terms. Drawing an association between symptoms and illness, for example, has been recognized in case law as sufficient. On the other hand, provincial law reserves diagnosis to physicians and other healthcare professionals. We argue that a number of health applications are capable of drawing associations between symptoms and disease and, in doing so, of delivering diagnoses in contravention of the law of Quebec and Ontario. This places mobile health applications in a poorly understood legal space. While prosecution is unlikely, the increasing ubiquity and technological sophistication of health applications promises to make such diagnosis widespread. We suggest that the legal status of such mobile health apps should be given serious attention. While our analysis focuses on the state of the law in Canada's largest provinces, we suggest that our argument will have implications in other jurisdictions. PMID:29707219
Copper sulfide nanodisk as photoacoustic contrast agent for ovarian tumor detection
NASA Astrophysics Data System (ADS)
Wang, Junxin; Hsu, Su-Wen; Tao, Andrea R.; Jokerst, Jesse V.
2017-03-01
Ultrasound is broadly used in the clinics yet is limited in early cancer detection because of its poor contrast between healthy and diseased tissues. Photoacoustic imaging can improve this limitation and has been extensively studied in pre-clinical models. Contrast agents can help improve the accuracy of diagnosis. We recently reported a novel copper sulfide (CuS) nanodisk with strong directionally-localized surface plasmon resonance in the near infrared region. This plasmonic resonance of nanodisks is tunable by changing the size and aspect ratio of CuS nanodisk. Here, we demonstrate this CuS nanodisk is a strong photoacoustic contrast agent. We prepared CuS nanodisks via a solvent-based synthesis followed by surface modification of poly(ethylene glycol) methyl ether thiol for in vivo applications. These CuS nanodisks can be detected at a concentration as low as 26 pM at 920 nm. Their nanosize and strong photoacoustic response make this novel CuS nanodisk a strong candidate for photoacoustic cancer imaging.
Factors precipitating acute ulcerative colitis.
Puri, A S; Chaubal, C C; Midha, Vandana
2014-08-01
Ulcerative colitis is characterized by mucosal inflammation of a variable length of the colon starting from the rectum. The precise etiopathogenesis is unknown but it occurs in genetically susceptible individuals who manifest an abnormal immunological response against gut commensal bacteria. The disease course is-characterized by multiple spontaneous relapses and remissions. Two pathogens namely CMV and C. difficile have been associated with disease exacerbation in specific clinical situations. Whereas C. difficile may produce worsening of the disease in those exposed to broad spectrum antibiotics, CMV reactivation is seen only in patients with moderate to severe steroid refractory disease. The importance of these two super-infections can be gauged by the fact that both the ACG and the ECCO recommend testing for these two pathogens in appropriate clinical situations. The applicability of these guidelines in the Indian scenario has yet to be determined in view of the bacterial and parasitic infections endemic in tropical countries. The guidelines for diagnosis and management of these two super-infections in the presence of ulcerative colitis are discussed in this review.
Athey, Brian D; Braxenthaler, Michael; Haas, Magali; Guo, Yike
2013-01-01
tranSMART is an emerging global open source public private partnership community developing a comprehensive informatics-based analysis and data-sharing cloud platform for clinical and translational research. The tranSMART consortium includes pharmaceutical and other companies, not-for-profits, academic entities, patient advocacy groups, and government stakeholders. The tranSMART value proposition relies on the concept that the global community of users, developers, and stakeholders are the best source of innovation for applications and for useful data. Continued development and use of the tranSMART platform will create a means to enable "pre-competitive" data sharing broadly, saving money and, potentially accelerating research translation to cures. Significant transformative effects of tranSMART includes 1) allowing for all its user community to benefit from experts globally, 2) capturing the best of innovation in analytic tools, 3) a growing 'big data' resource, 4) convergent standards, and 5) new informatics-enabled translational science in the pharma, academic, and not-for-profit sectors.
Dimmock, Nigel J.; Easton, Andrew J.
2015-01-01
Defective interfering (DI) genomes are characterised by their ability to interfere with the replication of the virus from which they were derived, and other genetically compatible viruses. DI genomes are synthesized by nearly all known viruses and represent a vast natural reservoir of antivirals that can potentially be exploited for use in the clinic. This review describes the application of DI virus to protect from virus-associated diseases in vivo using as an example a highly active cloned influenza A DI genome and virus that protects broadly in preclinical trials against different subtypes of influenza A and against non-influenza A respiratory viruses. This influenza A-derived DI genome protects by two totally different mechanisms: molecular interference with influenza A replication and by stimulating innate immunity that acts against non-influenza A viruses. The review considers what is needed to develop DI genomes to the point of entry into clinical trials. PMID:26184282
Crowdsourcing in biomedicine: challenges and opportunities.
Khare, Ritu; Good, Benjamin M; Leaman, Robert; Su, Andrew I; Lu, Zhiyong
2016-01-01
The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health information seekers, science enthusiasts and domain experts. In this article, we review and highlight recent studies that use crowdsourcing to advance biomedicine. We classify these studies into two broad categories: (i) mining big data generated from a crowd (e.g. search logs) and (ii) active crowdsourcing via specific technical platforms, e.g. labor markets, wikis, scientific games and community challenges. Through describing each study in detail, we demonstrate the applicability of different methods in a variety of domains in biomedical research, including genomics, biocuration and clinical research. Furthermore, we discuss and highlight the strengths and limitations of different crowdsourcing platforms. Finally, we identify important emerging trends, opportunities and remaining challenges for future crowdsourcing research in biomedicine. Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.
Bottleneck limitations for microRNA-based therapeutics from bench to the bedside.
Chen, Yan; Zhao, Hongliang; Tan, Zhijun; Zhang, Cuiping; Fu, Xiaobing
2015-03-01
MicroRNAs are endogenous non-coding small RNAs that repress expression of a broad array of target genes. Research into the role and underlying molecular events of microRNAs in disease processes and the potential of microRNAs as drug targets has expanded rapidly. Significant advances have been made in identifying the associations of microRNAs with cancers, viral infections, immune diseases, cardiovascular diseases, wound healing, biological development and other areas of medicine. However, because of intense competition and financial risks, there is a series of stringent criteria and conditions that must be met before microRNA-based therapeutics could be pursued as new drug candidates. In this review, we specifically emphasized the obstacles for bench-based microRNA to the bedside, including common barriers in basic research, application limitations while moving to the clinic at the aspects of vector delivery, off-target effects, toxicity mediation, immunological activation and dosage determination, which should be overcome before microRNA-based therapeutics take their place in the clinic.
del Cerro, Maria Jesus; Abman, Steven; Diaz, Gabriel; Freudenthal, Alexandra Heath; Freudenthal, Franz; Harikrishnan, S.; Haworth, Sheila G.; Ivy, Dunbar; Lopes, Antonio A.; Raj, J. Usha; Sandoval, Julio; Stenmark, Kurt; Adatia, Ian
2011-01-01
Current classifications of pulmonary hypertension have contributed a great deal to our understanding of pulmonary vascular disease, facilitated drug trials, and improved our understanding of congenital heart disease in adult survivors. However, these classifications are not applicable readily to pediatric disease. The classification system that we propose is based firmly in clinical practice. The specific aims of this new system are to improve diagnostic strategies, to promote appropriate clinical investigation, to improve our understanding of disease pathogenesis, physiology and epidemiology, and to guide the development of human disease models in laboratory and animal studies. It should be also an educational resource. We emphasize the concepts of perinatal maladaptation, maldevelopment and pulmonary hypoplasia as causative factors in pediatric pulmonary hypertension. We highlight the importance of genetic, chromosomal and multiple congenital malformation syndromes in the presentation of pediatric pulmonary hypertension. We divide pediatric pulmonary hypertensive vascular disease into 10 broad categories. PMID:21874158
Vitamin D/VDR, Probiotics, and Gastrointestinal Diseases.
Shang, Mei; Sun, Jun
2017-01-01
Vitamin D is an important factor in regulating inflammation, immune responses, and carcinoma inhibition via action of its receptor, vitamin D receptor (VDR). Recent studies have demonstrated the role of vitamin D/VDR in regulating host-bacterial interactions. Probiotics are beneficial bacteria with the power of supporting or favoring life on the host. In the current review, we will discuss the recent progress on the roles of vitamin D/VDR in gut microbiome and inflammation. We will summarize evidence of probiotics in modulating vitamin D/VDR and balancing gut microbiota in health and gastrointestinal diseases. Moreover, we will review the clinical application of probiotics in prevention and therapy of IBD or colon cancer. Despite of the gains, there remain several barriers to advocate broad use of probiotics in clinical therapy. We will also discuss the limits and future direction in scientific understanding of probiotics, vitamin D/VDR, and host responses. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Targeting cancer metabolism: dietary and pharmacological interventions
Vernieri, Claudio; Casola, Stefano; Foiani, Marco; Pietrantonio, Filippo; de Braud, Filippo; Longo, Valter
2016-01-01
Most tumors display oncogene-driven reprogramming of several metabolic pathways, which are crucial to sustain their growth and proliferation. In recent years, both dietary and pharmacological approaches that target deregulated tumor metabolism are beginning to be considered for clinical applications. Dietary interventions exploit the ability of nutrient-restricted conditions to exert broad biological effects, protecting normal cells, organs and systems, while sensitizing a wide variety of cancer cells to cytotoxic therapies. On the other hand, drugs targeting enzymes or metabolites of crucial metabolic pathways can be highly specific and effective, but must be matched with a responsive tumor, which might rapidly adapt. In this Review, we illustrate how dietary and pharmacological therapies differ in their effect on tumor growth, proliferation and metabolism, and discuss the available preclinical and clinical evidence in favor or against each of them. We also indicate, when appropriate, how to optimize future investigations on metabolic therapies on the basis of tumor- and patient-related characteristics. PMID:27872127
NASA Astrophysics Data System (ADS)
Fischer, Rudolf Fritz; Baltes, Christof; Weiss, Kilian; Pazhenkottil, Aju; Rudin, Markus; Boesiger, Peter; Kozerke, Sebastian
2011-07-01
In this work Linear Response Equilibrium (LRE) and Echo-planar spectroscopic imaging (EPSI) are compared in terms of sensitivity per unit time and power deposition. In addition an extended dual repetition time scheme to generate broad stopbands for improved inherent water suppression in LRE is presented. The feasibility of LRE and EPSI for assessing cholesterol esters in human carotid plaques with high spatial resolution of 1.95 × 1.15 × 1.15 mm 3 on a clinical 3T MR system is demonstrated. In simulations and phantom experiments it is shown that LRE has comparable but lower sensitivity per unit time relative to EPSI despite stronger signal generated. This relates to the lower sampling efficiency in LRE relative to EPSI as a result of limited gradient performance on clinical MR systems. At the same time, power deposition of LRE is significantly reduced compared to EPSI making it an interesting niche application for in vivo high field spectroscopic imaging of metabolites within a limited bandwidth.
When the value of gold is zero.
Chase, J Geoffrey; Moeller, Knut; Shaw, Geoffrey M; Schranz, Christoph; Chiew, Yeong Shiong; Desaive, Thomas
2014-06-27
This manuscript presents the concerns around the increasingly common problem of not having readily available or useful "gold standard" measurements. This issue is particularly important in critical care where many measurements used in decision making are surrogates of what we would truly wish to use. However, the question is broad, important and applicable in many other areas.In particular, a gold standard measurement often exists, but is not clinically (or ethically in some cases) feasible. The question is how does one even begin to develop new measurements or surrogates if one has no gold standard to compare with?We raise this issue concisely with a specific example from mechanical ventilation, a core bread and butter therapy in critical care that is also a leading cause of length of stay and cost of care. Our proposed solution centers around a hierarchical validation approach that we believe would ameliorate ethics issues around radiation exposure that make current gold standard measures clinically infeasible, and thus provide a pathway to create a (new) gold standard.
Gilbert, Jessica R.; Symmonds, Mkael; Hanna, Michael G.; Dolan, Raymond J.; Friston, Karl J.; Moran, Rosalyn J.
2016-01-01
Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. PMID:26342528
Belmonte, Frances R; Martin, James L; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A; Kaufman, Brett A
2016-04-28
Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error.
Belmonte, Frances R.; Martin, James L.; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A.; Kaufman, Brett A.
2016-01-01
Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error. PMID:27122135
Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna
2014-12-17
Seaweed-associated heterotrophic bacterial communities were screened to isolate potentially useful antimicrobial strains, which were characterized by phylogenetic analysis. The bacteria were screened for the presence of metabolite genes involved in natural product biosynthetic pathway, and the structural properties of secondary metabolites were correlated with the genes. Bioactivity-guided isolation of polyene antibiotic 7-O-methyl-5'-hydroxy-3'-heptenoate-macrolactin from Bacillus subtilis MTCC10403 associated with seaweed Anthophycus longifolius using mass spectrometry and extensive 2D-NMR studies was carried out. The newly isolated macrolactin compound is a bactericidal antibiotic with broad spectrum activity against human opportunistic clinical pathogens. The biosynthetic pathway of 7-O-methyl-5'-hydroxy-3'-heptenoate-macrolactin by means of a stepwise, decarboxylative condensation pathway established the PKS-assisted biosynthesis of the parent macrolactin and the side-chain 5-hydroxyhept-3-enoate moiety attached to the macrolactin ring system at C-7. Antimicrobial activity analysis combined with the results of amplifying genes encoding for polyketide synthetase and nonribosomal peptide synthetase showed that seaweed-associated bacteria had broad-spectrum antimicrobial activity. The present work may have an impact on the exploitation of macrolactins for pharmaceutical and biotechnological applications.
Older medical students' performances at McGill University.
Feil, D; Kristian, M; Mitchell, N
1998-01-01
To compare admission data and academic performances of medical students younger and older than 25, and to qualify older students' experiences and perceptions in medical school. The authors reviewed 1988-1991 data for applications to the McGill University Faculty of Medicine. Data included GPAs and MCAT scores, as well as ratings for reference letters, autobiographical statements, and interviews. For those same years, the authors measured students' academic performances in the preclinical and clinical years. The authors compared the data by students' age: "younger" students, aged 17 to 24; and "older" students, aged 25 and above. All enrolled students took the Derogatis Stress Profile, and the older students participated in focus groups. The older applicants had lower GPAs and MCAT scores, but higher interview and reference letter ratings. For older accepted students, basic science course scores were lower than those of younger students, but clinical scores did not differ significantly between the groups. The two groups had similar stress levels, although older students tested lower in driven behavior, relaxation potential, attitude posture, and hostility. In focus groups, the older students spoke of learning style differences, loss of social support, and loss of professional identity. Different scores in admission criteria suggest that McGill uses different standards to select older medical students. Older students admitted under different criteria, however, do just as well as do younger students by their clinical years. A broad-based study of admission criteria and outcomes for the older student population is warranted.
The neurocognitive profile of mood disorders - a review of the evidence and methodological issues.
Porter, Richard J; Robinson, Lucy J; Malhi, Gin S; Gallagher, Peter
2015-12-01
Cognitive abnormalities are an established part of the symptomatology of mood disorders. However, questions still exist regarding the exact profile of these deficits in terms of the domains most affected, their origins, and their relationship to clinical subtypes. This review aims to examine the current state of the evidence and to examine ways in which the field may be advanced. Studies examining cognitive function in bipolar disorder (BD) and unipolar major depression (MDD) were examined. Given the number and variability of such studies, particular attention was paid to meta-analyses and to meta-regression analyses which examined the possible mediators of cognitive impairment. Meta-analyses are available for MDD and BD in both depression and euthymia. Several analyses examine mediators. Results do not support the presence of domain specific deficits but rather a moderate deficit across a range of domains in BD and in MDD. The data on clinical mediators is inconsistent, even with regard to the effect of mood state. A two-tiered approach, with the broad-based application of standardized measures on a large-scale, and the refined application of theoretically driven experimental development would significantly further our understanding of neurocognitive processing in mood disorder. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Folate-modified Annonaceous acetogenins nanosuspensions and their improved antitumor efficacy
Hong, Jingyi; Sun, Zhonghao; Li, Yijing; Guo, Yifei; Liao, Yonghong; Liu, Meifeng; Wang, Xiangtao
2017-01-01
Annonaceous acetogenins (ACGs) are a large family of fatty acid derived natural products that are exclusively isolated from the Annonaceae species. Many members of this diverse family have a broad spectrum of biological activities, the most impressive of which is anticancer activity. However, their poor solubility and severe toxicity restrict their clinical application, and their complicated composition hinders their formulation and drug delivery. In this study, β-cyclodextrin was modified with folic acid (FA) and then combined with soybean lecithin to prepare FA-modified ACGs nanosuspensions (FA-ACGs-NSps). The obtained FA-ACGs-NSps had a high drug payload of 57.59% and average particle size of 199.5 nm, and they exhibited sustained drug release within 142 hours. In comparison with ACGs-NSps, FA-ACGs-NSps showed significantly enhanced cytotoxicity and higher cell uptake toward folate receptor-positive 4T1 cell lines. An in vivo study demonstrated that FA-ACGs-NSps more effectively accumulated in tumors and enhanced the antitumor therapeutic efficacy with less toxicity in 4T1 tumor bearing mice. Therefore, FA-ACGs-NSps may be a promising drug delivery system for ACGs to improve their therapeutic window and may be suitable for clinical application to treat folate-positive tumors. PMID:28765708
Magnetic Nanoparticles and microNMR for Diagnostic Applications
Shao, Huilin; Min, Changwook; Issadore, David; Liong, Monty; Yoon, Tae-Jong; Weissleder, Ralph; Lee, Hakho
2012-01-01
Sensitive and quantitative measurements of clinically relevant protein biomarkers, pathogens and cells in biological samples would be invaluable for disease diagnosis, monitoring of malignancy, and for evaluating therapy efficacy. Biosensing strategies using magnetic nanoparticles (MNPs) have recently received considerable attention, since they offer unique advantages over traditional detection methods. Specifically, because biological samples have negligible magnetic background, MNPs can be used to obtain highly sensitive measurements in minimally processed samples. This review focuses on the use of MNPs for in vitro detection of cellular biomarkers based on nuclear magnetic resonance (NMR) effects. This detection platform, termed diagnostic magnetic resonance (DMR), exploits MNPs as proximity sensors to modulate the spin-spin relaxation time of water molecules surrounding the molecularly-targeted nanoparticles. With new developments such as more effective MNP biosensors, advanced conjugational strategies, and highly sensitive miniaturized NMR systems, the DMR detection capabilities have been considerably improved. These developments have also enabled parallel and rapid measurements from small sample volumes and on a wide range of targets, including whole cells, proteins, DNA/mRNA, metabolites, drugs, viruses and bacteria. The DMR platform thus makes a robust and easy-to-use sensor system with broad applications in biomedicine, as well as clinical utility in point-of-care settings. PMID:22272219
Natural Killer Cells for Therapy of Leukemia
Suck, Garnet; Linn, Yeh Ching; Tonn, Torsten
2016-01-01
Summary Clinical application of natural killer (NK) cells against leukemia is an area of intense investigation. In human leukocyte antigen-mismatched allogeneic hematopoietic stem cell transplantations (HSCT), alloreactive NK cells exert powerful anti-leukemic activity in preventing relapse in the absence of graft-versus-host disease, particularly in acute myeloid leukemia patients. Adoptive transfer of donor NK cells post-HSCT or in non-transplant scenarios may be superior to the currently widely used unmanipulated donor lymphocyte infusion. This concept could be further improved through transfusion of activated NK cells. Significant progress has been made in good manufacturing practice (GMP)-compliant large-scale production of stimulated effectors. However, inherent limitations remain. These include differing yields and compositions of the end-product due to donor variability and inefficient means for cryopreservation. Moreover, the impact of the various novel activation strategies on NK cell biology and in vivo behavior are barely understood. In contrast, reproduction of the third-party NK-92 drug from a cryostored GMP-compliant master cell bank is straightforward and efficient. Safety for the application of this highly cytotoxic cell line was demonstrated in first clinical trials. This novel ‘off-the-shelf’ product could become a treatment option for a broad patient population. For specific tumor targeting chimeric-antigen-receptor-engineered NK-92 cells have been designed. PMID:27226791
NASA Astrophysics Data System (ADS)
Gottlieb, Raymond L.
2010-02-01
Syntonic phototherapy is an application of clinical phototherapy that is not well known by most LLLT photobiomodulation researchers and clinicians in spite of its long history. This is because of three main reasons: this approach was beyond the limits of the "reasonable" scientific paradigm, it has not been well researched and it is used mainly by optometrists. Clinical and basic researcher in the last decades about light's impact on cells, tissues, blood, circadian rhythms and mood disorders has broadened the paradigm and increased the acceptance of light as a healing agent. Perhaps now is an appropriate time to describe Syntonic optometric phototherapy with the purpose of exciting research to validate and expand its use. Syntonics uses non-coherent, non-polarized, broad-band light delivered into the eyes to treat brain injury, headache, strabismus, eye pathology, learning disability, mood and developmental syndromes. The eyes permit direct, non-invasive application of light to the retinal blood supply and to non-visual, retinal photoreceptor systems that signal circadian and other brain centers. Patients look at prescribed colors for 20-minutes/day for twenty treatments. Visual field, pupil, and binocular testing, medical history and current symptoms determine the syntonic filter prescription. Presentation describes syntonic theory, phototherapy device, visual field and pupil tests and cases reports with pre- and post-data and case resolution.
Cooperative problem solving with personal mobile information tools in hospitals.
Buchauer, A; Werner, R; Haux, R
1998-01-01
Health-care professionals have a broad range of needs for information and cooperation while working at different points of care (e.g., outpatient departments, wards, and functional units such as operating theaters). Patient-related data and medical knowledge have to be widely available to support high-quality patient care. Furthermore, due to the increased specialization of health-care professionals, efficient collaboration is required. Personal mobile information tools have a considerable potential to realize almost ubiquitous information and collaborative support. They enable to unite the functionality of conventional tools such as paper forms, dictating machines, and pagers into one tool. Moreover, they can extend the support already provided by clinical workstations. An approach is described for the integration of mobile information tools with heterogeneous hospital information systems. This approach includes identification of functions which should be provided on mobile tools. Major functions are the presentation of medical records and reports, electronic mailing to support interpersonal communication, and the provision of editors for structured clinical documentation. To realize those functions on mobile tools, we propose a document-based client-server architecture that enables mobile information tools to interoperate with existing computer-based application systems. Open application systems and powerful, partially wireless, hospital-wide networks are the prerequisites for the introduction of mobile information tools.
Broad-band flared horn with low sidelobes. [applicable to cosmic background radiation measurement
NASA Technical Reports Server (NTRS)
Mather, J. C.
1981-01-01
A circular horn antenna flared like a trumpet is analyzed with the geometrical theory of diffraction and then tested experimentally. Sidelobes are found to be extremely low (-75 dB), in agreement with theory. Low sidelobe performance is predicted to be broad-band and to improve at higher frequencies. The full aperture of the tested horn is approximately 50 wavelengths. Suggestions for even better low sidelobe antennas are made. The applicability of this horn to the measurement of cosmic background radiation is noted.
Construct Validity of Fluency and Implications for the Factorial Structure of Memory
ERIC Educational Resources Information Center
Jewsbury, Paul A.; Bowden, Stephen C.
2017-01-01
Fluency is an important construct in clinical assessment and in cognitive taxonomies. In the Cattell-Horn-Carroll (CHC) model, Fluency is represented by several narrow factors that form a subset of the long-term memory encoding and retrieval (Glr) broad factor. The CHC broad classification of Fluency was evaluated in five data sets, and the CHC…
Won, Helen; Yang, Samuel; Gaydos, Charlotte; Hardick, Justin; Ramachandran, Padmini; Hsieh, Yu-Hsiang; Kecojevic, Alexander; Njanpop-Lafourcade, Berthe-Marie; Mueller, Judith E; Tameklo, Tsidi Agbeko; Badziklou, Kossi; Gessner, Bradford D; Rothman, Richard E
2012-09-01
This study aimed to conduct a pilot evaluation of broad-based multiprobe polymerase chain reaction (PCR) in clinical cerebrospinal fluid (CSF) samples compared to local conventional PCR/culture methods used for bacterial meningitis surveillance. A previously described PCR consisting of initial broad-based detection of Eubacteriales by a universal probe, followed by Gram typing, and pathogen-specific probes was designed targeting variable regions of the 16S rRNA gene. The diagnostic performance of the 16S rRNA assay in "127 CSF samples was evaluated in samples from patients from Togo, Africa, by comparison to conventional PCR/culture methods. Our probes detected Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae. Uniprobe sensitivity and specificity versus conventional PCR were 100% and 54.6%, respectively. Sensitivity and specificity of uniprobe versus culture methods were 96.5% and 52.5%, respectively. Gram-typing probes correctly typed 98.8% (82/83) and pathogen-specific probes identified 96.4% (80/83) of the positives. This broad-based PCR algorithm successfully detected and provided species level information for multiple bacterial meningitis agents in clinical samples. Copyright © 2012 Elsevier Inc. All rights reserved.
Won, Helen; Yang, Samuel; Gaydos, Charlotte; Hardick, Justin; Ramachandran, Padmini; Hsieh, Yu-Hsiang; Kecojevic, Alexander; Njanpop-Lafourcade, Berthe-Marie; Mueller, Judith E.; Tameklo, Tsidi Agbeko; Badziklou, Kossi; Gessner, Bradford D.; Rothman, Richard E.
2012-01-01
This study aimed to conduct a pilot evaluation of broad-based multiprobe polymerase chain reaction (PCR) in clinical cerebrospinal fluid (CSF) samples compared to local conventional PCR/culture methods used for bacterial meningitis surveillance. A previously described PCR consisting of initial broad-based detection of Eubacteriales by a universal probe, followed by Gram typing, and pathogen-specific probes was designed targeting variable regions of the 16S rRNA gene. The diagnostic performance of the 16S rRNA assay in “”127 CSF samples was evaluated in samples from patients from Togo, Africa, by comparison to conventional PCR/culture methods. Our probes detected Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae. Uniprobe sensitivity and specificity versus conventional PCR were 100% and 54.6%, respectively. Sensitivity and specificity of uniprobe versus culture methods were 96.5% and 52.5%, respectively. Gram-typing probes correctly typed 98.8% (82/83) and pathogen-specific probes identified 96.4% (80/83) of the positives. This broad-based PCR algorithm successfully detected and provided species level information for multiple bacterial meningitis agents in clinical samples. PMID:22809694
Towards Clinical Applications of Anti-endotoxin Antibodies; A Re-appraisal of the Disconnect
Hurley, James C.
2013-01-01
Endotoxin is a potent mediator of a broad range of patho-physiological effects in humans. It is present in all Gram negative (GN) bacteria. It would be expected that anti-endotoxin therapies, whether antibody based or not, would have an important adjuvant therapeutic role along with antibiotics and other supportive therapies for GN infections. Indeed there is an extensive literature relating to both pre-clinical and clinical studies of anti-endotoxin antibodies. However, the extent of disconnect between the generally successful pre-clinical studies versus the failures of the numerous large clinical trials of antibody based and other anti-endotoxin therapies is under-appreciated and unexplained. Seeking a reconciliation of this disconnect is not an abstract academic question as clinical trials of interventions to reduce levels of endotoxemia levels are ongoing. The aim of this review is to examine new insights into the complex relationship between endotoxemia and sepsis in an attempt to bridge this disconnect. Several new factors to consider in this reappraisal include the frequency and types of GN bacteremia and the underlying mortality risk in the various study populations. For a range of reasons, endotoxemia can no longer be considered as a single entity. There are old clinical trials which warrant a re-appraisal in light of these recent advances in the understanding of the structure-function relationship of endotoxin. Fundamentally however, the disconnect not only remains, it has enlarged. PMID:24351718
Measuring physicians' productivity in a Veterans' Affairs Medical Center.
Coleman, David L; Moran, Eileen; Serfilippi, Delchi; Mulinski, Paul; Rosenthal, Ronnie; Gordon, Bruce; Mogielnicki, R Peter
2003-07-01
The mission of the Department of Veterans Affairs includes patient care, education, research, and backup to the Department of Defense. Because the measurement of physicians' productivity must reflect both institutional goals and market forces, the authors designed a productivity model that uses measures of clinical workload and academic activities commensurate with the VA's investments in these activities. The productivity model evaluates four domains of physicians' activity: clinical work, education, research, and administration. Examples of the application of the productivity model in the evaluation of VA-paid physician-staff and in the composition of contracts for clinical services are provided. The proposed model is a relatively simple strategy for measuring a broad range of the work of academic physicians in VA medical centers. The model provides incentives for documentation of resident supervision and participation in administrative activities required for effective and efficient clinical care. In addition, the model can aid in determining resource distribution among clinical services and permits comparison with non-VA health care systems. A strategy for modifying the model to incorporate measures of quality of clinical care, research, education, and administration is proposed. The model has been a useful part of the process to ensure the optimum use of resources and to meet clinical and academic institutional goals. The activities and accomplishments used to define physician productivity will have a substantial influence on the character of the medical profession, the vitality of medical education and research, and the cost and quality of health care.
Clinical Application of Pharmacogenetics: Where are We Now?
2014-01-01
Pharmacogenetic (PGx) testing has the potential to improve drug therapy in an individual by informing appropriate drug dosing or drug selection in order to maximize efficacy and safety. Although multiple studies have illustrated the potential benefits of such testing when applied to specific drugs across a broad range of therapy areas, the uptake of PGx testing in routine clinical practice has been relatively limited. Implementation appears to be hampered by the absence of sufficiently strong evidence linking the results of testing with actionable benefits in terms of clinical outcomes. Meanwhile, there are now adequate data to allow dosing recommendations as have been developed by bodies including the Dutch Pharmacogenetics Working Group (DPWG) and the Clinical Pharmacogenetics Implementation Consortium (CPIC) in several settings, including TPMT/thiopurines, CYP2C19/clopidogrel, CYP2D6/codeine, VKORC1-CYP2C9/warfarin, HLA-B*5701/abacavir, SLCO1B1/simvastatin and HLAB*5801/allopurinol. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) and the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) have also recently initiated surveys in order to better understand the extent of, and the role played by, PGx testing in clinical practice. This should help identify where further training and education may be beneficial. To this end, in collaboration with ESPT, the IFCC Pharmacogenetic Laboratory Network has now been formed, with the aim of improving the uptake and quality of PGx testing. PMID:27683445
Aladin, Farah; Einerhand, Alexandra W. C.; Bouma, Janneke; Bezemer, Sandra; Hermans, Pim; Wolvers, Danielle; Bellamy, Kate; Frenken, Leon G. J.; Gray, Jim; Iturriza-Gómara, Miren
2012-01-01
Rotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (referred to as Anti-Rotavirus Proteins or ARP1) derived from a heavy chain antibody of a llama immunised with rotavirus was able to neutralise rotavirus infection in a mouse model system. In the present work we investigated the specificity and neutralising activity of two llama antibody fragments, ARP1 and ARP3, against 13 cell culture adapted rotavirus strains of diverse genotypes. In addition, immunocapture electron microscopy (IEM) was performed to determine binding of ARP1 to clinical isolates and cell culture adapted strains. ARP1 and ARP3 were able to neutralise a broad variety of rotavirus serotypes/genotypes in vitro, and in addition, IEM showed specific binding to a variety of cell adapted strains as well as strains from clinical specimens. These results indicated that these molecules could potentially be used as immunoprophylactic and/or immunotherapeutic products for the prevention and/or treatment of infection of a broad range of clinically relevant rotavirus strains. PMID:22403728
Chen, Kaifu; Chen, Zhong; Wu, Dayong; Zhang, Lili; Lin, Xueqiu; Su, Jianzhong; Rodriguez, Benjamin; Xi, Yuanxin; Xia, Zheng; Chen, Xi; Shi, Xiaobing; Wang, Qianben; Li, Wei
2016-01-01
Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs, and our experimental data from clinical samples, we discovered broad H3K4me3 (wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity together leading to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Broad H3K4me3 conserved across normal cells may represent pan-cancer tumor suppressors, such as P53 and PTEN, whereas cell-type-specific broad H3K4me3 may indicate cell-identity genes and cell-type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 in cancers is associated with repression of tumor suppressors. Together, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of novel tumor suppressors. PMID:26301496
Microneedles for drug and vaccine delivery
Kim, Yeu-Chun; Park, Jung-Hwan; Prausnitz, Mark R.
2012-01-01
Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990’s when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications. PMID:22575858
Rawlins, Matthew D M; Raby, Edward; Sanfilippo, Frank M; Douglass, Rae; Chambers, Jonathan; McLellan, Duncan; Dyer, John R
2018-05-04
To evaluate the impact of the adaptation of an existing electronic referral application for use in antimicrobial stewardship prospective audit and feedback rounds (antimicrobial rounds). Retrospective, single-centre observational study between March 2015 and February 2016. A new quaternary referral centre. Adults referred for antimicrobial rounds outside of the intensive care and haematology units. Adaptation of an electronic referral application used by medical and allied health staff. A questionnaire-style referral form was designed to capture patient clinical details using a combination of free text and dropdown menus. Clinical pharmacists were educated and granted access to the system. The proportion of completed electronic referrals of total round reviews by month for the 12 months after implementation. The time from request to completion of reviews. The impact on adherence to advice provided on rounds. The impact on the institutional usage of broad-spectrum antibiotics: glycopeptides, carbapenems, third and fourth generation cephalosporins, fluoroquinolones and piperacillin/tazobactam. Over the study period, the proportion of electronic referrals of completed antimicrobial round reviews increased from 59% to 88% (P < 0.001); 75.7% of accepted electronic referrals were seen within 48 h of request. The proportion of advice ignored fell from 18% to 8.5% (P < 0.001). Piperacillin/tazobactam, fluoroquinolone and glycopeptide usage decreased. The adaptation of an electronic referral application for antimicrobial rounds was associated with increased adherence to advice and reduction in use in target antibiotics. Our model is now used at other institutions.
Poisoning in goats by the monofluoracetate-containing plant Palicourea aeneofusca (Rubiaceae)
USDA-ARS?s Scientific Manuscript database
The epidemiological, clinical and pathological aspects of a spontaneous outbreak of Palicourea aeneofusca poisoning in goats are reported. The main clinical signs were motor incoordination, generalized muscle tremors, broad-based posture, tachypnea, tachycardia, vocalization and respiratory distress...
Ferreira, Leonardo G; Andricopulo, Adriano D
2017-01-01
Fragment-based drug discovery (FBDD) is a broadly used strategy in structure-guided ligand design, whereby low-molecular weight hits move from lead-like to drug-like compounds. Over the past 15 years, an increasingly important role of the integration of these strategies into industrial and academic research platforms has been successfully established, allowing outstanding contributions to drug discovery. One important factor for the current prominence of FBDD is the better coverage of the chemical space provided by fragment-like libraries. The development of the field relies on two features: (i) the growing number of structurally characterized drug targets and (ii) the enormous chemical diversity available for experimental and virtual screenings. Indeed, fragment-based campaigns have contributed to address major challenges in lead optimization, such as the appropriate physicochemical profile of clinical candidates. This perspective paper outlines the usefulness and applications of FBDD approaches in medicinal chemistry and drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Guidelines for Genome-Scale Analysis of Biological Rhythms.
Hughes, Michael E; Abruzzi, Katherine C; Allada, Ravi; Anafi, Ron; Arpat, Alaaddin Bulak; Asher, Gad; Baldi, Pierre; de Bekker, Charissa; Bell-Pedersen, Deborah; Blau, Justin; Brown, Steve; Ceriani, M Fernanda; Chen, Zheng; Chiu, Joanna C; Cox, Juergen; Crowell, Alexander M; DeBruyne, Jason P; Dijk, Derk-Jan; DiTacchio, Luciano; Doyle, Francis J; Duffield, Giles E; Dunlap, Jay C; Eckel-Mahan, Kristin; Esser, Karyn A; FitzGerald, Garret A; Forger, Daniel B; Francey, Lauren J; Fu, Ying-Hui; Gachon, Frédéric; Gatfield, David; de Goede, Paul; Golden, Susan S; Green, Carla; Harer, John; Harmer, Stacey; Haspel, Jeff; Hastings, Michael H; Herzel, Hanspeter; Herzog, Erik D; Hoffmann, Christy; Hong, Christian; Hughey, Jacob J; Hurley, Jennifer M; de la Iglesia, Horacio O; Johnson, Carl; Kay, Steve A; Koike, Nobuya; Kornacker, Karl; Kramer, Achim; Lamia, Katja; Leise, Tanya; Lewis, Scott A; Li, Jiajia; Li, Xiaodong; Liu, Andrew C; Loros, Jennifer J; Martino, Tami A; Menet, Jerome S; Merrow, Martha; Millar, Andrew J; Mockler, Todd; Naef, Felix; Nagoshi, Emi; Nitabach, Michael N; Olmedo, Maria; Nusinow, Dmitri A; Ptáček, Louis J; Rand, David; Reddy, Akhilesh B; Robles, Maria S; Roenneberg, Till; Rosbash, Michael; Ruben, Marc D; Rund, Samuel S C; Sancar, Aziz; Sassone-Corsi, Paolo; Sehgal, Amita; Sherrill-Mix, Scott; Skene, Debra J; Storch, Kai-Florian; Takahashi, Joseph S; Ueda, Hiroki R; Wang, Han; Weitz, Charles; Westermark, Pål O; Wijnen, Herman; Xu, Ying; Wu, Gang; Yoo, Seung-Hee; Young, Michael; Zhang, Eric Erquan; Zielinski, Tomasz; Hogenesch, John B
2017-10-01
Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.
Guidelines for Genome-Scale Analysis of Biological Rhythms
Hughes, Michael E.; Abruzzi, Katherine C.; Allada, Ravi; Anafi, Ron; Arpat, Alaaddin Bulak; Asher, Gad; Baldi, Pierre; de Bekker, Charissa; Bell-Pedersen, Deborah; Blau, Justin; Brown, Steve; Ceriani, M. Fernanda; Chen, Zheng; Chiu, Joanna C.; Cox, Juergen; Crowell, Alexander M.; DeBruyne, Jason P.; Dijk, Derk-Jan; DiTacchio, Luciano; Doyle, Francis J.; Duffield, Giles E.; Dunlap, Jay C.; Eckel-Mahan, Kristin; Esser, Karyn A.; FitzGerald, Garret A.; Forger, Daniel B.; Francey, Lauren J.; Fu, Ying-Hui; Gachon, Frédéric; Gatfield, David; de Goede, Paul; Golden, Susan S.; Green, Carla; Harer, John; Harmer, Stacey; Haspel, Jeff; Hastings, Michael H.; Herzel, Hanspeter; Herzog, Erik D.; Hoffmann, Christy; Hong, Christian; Hughey, Jacob J.; Hurley, Jennifer M.; de la Iglesia, Horacio O.; Johnson, Carl; Kay, Steve A.; Koike, Nobuya; Kornacker, Karl; Kramer, Achim; Lamia, Katja; Leise, Tanya; Lewis, Scott A.; Li, Jiajia; Li, Xiaodong; Liu, Andrew C.; Loros, Jennifer J.; Martino, Tami A.; Menet, Jerome S.; Merrow, Martha; Millar, Andrew J.; Mockler, Todd; Naef, Felix; Nagoshi, Emi; Nitabach, Michael N.; Olmedo, Maria; Nusinow, Dmitri A.; Ptáček, Louis J.; Rand, David; Reddy, Akhilesh B.; Robles, Maria S.; Roenneberg, Till; Rosbash, Michael; Ruben, Marc D.; Rund, Samuel S.C.; Sancar, Aziz; Sassone-Corsi, Paolo; Sehgal, Amita; Sherrill-Mix, Scott; Skene, Debra J.; Storch, Kai-Florian; Takahashi, Joseph S.; Ueda, Hiroki R.; Wang, Han; Weitz, Charles; Westermark, Pål O.; Wijnen, Herman; Xu, Ying; Wu, Gang; Yoo, Seung-Hee; Young, Michael; Zhang, Eric Erquan; Zielinski, Tomasz; Hogenesch, John B.
2017-01-01
Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them. PMID:29098954
Servati, Amir; Zou, Liang; Wang, Z Jane; Ko, Frank; Servati, Peyman
2017-07-13
Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology.
Chambaron, Stéphanie; Ginhac, Dominique; Perruchet, Pierre
2008-05-01
Serial reaction time tasks and, more generally, the visual-motor sequential paradigms are increasingly popular tools in a variety of research domains, from studies on implicit learning in laboratory contexts to the assessment of residual learning capabilities of patients in clinical settings. A consequence of this success, however, is the increased variability in paradigms and the difficulty inherent in respecting the methodological principles that two decades of experimental investigations have made more and more stringent. The purpose of the present article is to address those problems. We present a user-friendly application that simplifies running classical experiments, but is flexible enough to permit a broad range of nonstandard manipulations for more specific objectives. Basic methodological guidelines are also provided, as are suggestions for using the software to explore unconventional directions of research. The most recent version of gSRT-Soft may be obtained for free by contacting the authors.
Flash scanning the CO2 laser: a revival of the CO2 laser in plastic surgery
NASA Astrophysics Data System (ADS)
Lach, Elliot
1994-09-01
The CO2 laser has broad clinical application yet also presents a number of practical disadvantages. These drawbacks have limited the success and utilization of this laser in plastic surgery. Flashscanner technology has recently been used for char-free CO2 laser surgery of the oropharynx, the external female genital tract, and perirectal mucosa. A commercially available optomechanical flashscanner unit `Swiftlase,' was adapted to a CO2 laser and used for treatment in numerous plastic surgical applications. Conditions and situations that were treated in this study included generalized neurofibromatosis, tuberous sclerosis, rhinophyma, viral warts, breast reconstruction, and deepithelialization prior to microsurgery or local flap transfer and/or skin graft placement. There were no significant wound healing complications. Some patients previously sustained undue scarring from conventional CO2 laser surgery. Conservative, primarily ablative CO2 laser surgery with the Swiftlase has usefulness for treatment of patients in plastic surgery including those that were previously unsuccessfully treated.
[Research progress of cell-scaffold complex in tendon tissue engineering].
Zhu, Ying; Li, Min
2013-04-01
To review the research progress of cell-scaffold complex in the tendon tissue engineering. Recent literature concerning cell-scaffold complex in the tendon tissue engineering was reviewed, the research situation of the cell-scaffold complex was elaborated in the aspects of seed cells, scaffolds, cell culture, and application. In tendon tissue engineering, a cell-scaffold complex is built by appropriate seed cells and engineered scaffolds. Experiments showed that modified seed cells had better therapeutic effects. Further, scaffold functionality could be improved through surface modification, growth factor cure, mechanical stimulation, and contact guidance. Among these methods, mechanical stimulation revealed the most significant results in promoting cell proliferation and function. Through a variety of defect models, it is demonstrated that the use of cell-scaffold complex could achieve satisfactory results for tendon regeneration. The cell-scaffold complex for tendon tissue engineering is a popular research topic. Although it has not yet met the requirement of clinical use, it has broad application prospects.
Enhancing Antibody Fc Heterodimer Formation through Electrostatic Steering Effects
Gunasekaran, Kannan; Pentony, Martin; Shen, Min; Garrett, Logan; Forte, Carla; Woodward, Anne; Ng, Soo Bin; Born, Teresa; Retter, Marc; Manchulenko, Kathy; Sweet, Heather; Foltz, Ian N.; Wittekind, Michael; Yan, Wei
2010-01-01
Naturally occurring IgG antibodies are bivalent and monospecific. Bispecific antibodies having binding specificities for two different antigens can be produced using recombinant technologies and are projected to have broad clinical applications. However, co-expression of multiple light and heavy chains often leads to contaminants and pose purification challenges. In this work, we have modified the CH3 domain interface of the antibody Fc region with selected mutations so that the engineered Fc proteins preferentially form heterodimers. These novel mutations create altered charge polarity across the Fc dimer interface such that coexpression of electrostatically matched Fc chains support favorable attractive interactions thereby promoting desired Fc heterodimer formation, whereas unfavorable repulsive charge interactions suppress unwanted Fc homodimer formation. This new Fc heterodimer format was used to produce bispecific single chain antibody fusions and monovalent IgGs with minimal homodimer contaminants. The strategy proposed here demonstrates the feasibility of robust production of novel Fc-based heterodimeric molecules and hence broadens the scope of bispecific molecules for therapeutic applications. PMID:20400508
Application of PBPK modelling in drug discovery and development at Pfizer.
Jones, Hannah M; Dickins, Maurice; Youdim, Kuresh; Gosset, James R; Attkins, Neil J; Hay, Tanya L; Gurrell, Ian K; Logan, Y Raj; Bungay, Peter J; Jones, Barry C; Gardner, Iain B
2012-01-01
Early prediction of human pharmacokinetics (PK) and drug-drug interactions (DDI) in drug discovery and development allows for more informed decision making. Physiologically based pharmacokinetic (PBPK) modelling can be used to answer a number of questions throughout the process of drug discovery and development and is thus becoming a very popular tool. PBPK models provide the opportunity to integrate key input parameters from different sources to not only estimate PK parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. Using examples from the literature and our own company, we have shown how PBPK techniques can be utilized through the stages of drug discovery and development to increase efficiency, reduce the need for animal studies, replace clinical trials and to increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however, some limitations need to be addressed to realize its application and utility more broadly.
Yu, Xinghua; Cai, Xingke; Cui, Haodong; Lee, Seung-Wuk; Yu, Xue-Feng; Liu, Bilu
2017-11-23
Titanium carbide MXene quantum dots (QDs) were synthesized using an effective fluorine-free method as a biocompatible and highly efficient nanoagent for photothermal therapy (PTT) applications. In contrast to the traditional, hazardous and time-consuming process of HF pretreatment, our fluorine-free method is safe and simple. More importantly, abundant Al oxoanions were found to be modified on the MXene QD surface by the fluorine-free method, which endowed the QDs with strong and broad absorption in the NIR region. As a result, the as-prepared MXene QDs exhibited an extinction coefficient as large as 52.8 Lg -1 cm -1 at 808 nm and a photothermal conversion efficiency as high as 52.2%. Both the values are among the best reported so far. The as-prepared MXene QDs achieved simultaneous photoacoustic (PA) imaging and the remarkable PTT effect of tumors. Moreover, MXene QDs showed great biocompatibility without causing noticeable toxicity in vitro and in vivo, indicating their high potential for clinical applications.
Meyer, Markus R; Maurer, Hans H
2016-07-13
The field of new psychoactive substances (NPS) is highly dynamic and the situation changes from year to year. Therefore, the current review provides a timely update about the latest developments to help analysts keep the pace with NPS distribution. It covers PubMed-listed studies published between January 2014 and January 2016 dealing with the application of liquid chromatography (LC) coupled low- and high-resolution mass spectrometry (MS) for broad screenings for NPS in clinical (CT) and forensic (FT) toxicology. Latest developments and applications are highlighted and selected papers critically discussed. Comprehensive tables summarizing all discussed articles complete the overview. Finally, an outlook on the future of LC coupled MS in CT and FT is provided and readers will learn why low-resolution mass spectrometry might remain the standard for the next couple of years at least for easy-to-use quantitative screening procedures. Copyright © 2016 Elsevier B.V. All rights reserved.
Burkholder, William F; Newell, Evan W; Poidinger, Michael; Chen, Swaine; Fink, Katja
2017-01-01
The inaugural workshop "Deep Sequencing in Infectious Diseases: Immune and Pathogen Repertoires for the Improvement of Patient Outcomes" was held in Singapore on 13-14 October 2016. The aim of the workshop was to discuss the latest trends in using high-throughput sequencing, bioinformatics, and allied technologies to analyze immune and pathogen repertoires and their interplay within the host, bringing together key international players in the field and Singapore-based researchers and clinician-scientists. The focus was in particular on the application of these technologies for the improvement of patient diagnosis, prognosis and treatment, and for other broad public health outcomes. The presentations by scientists and clinicians showed the potential of deep sequencing technology to capture the coevolution of adaptive immunity and pathogens. For clinical applications, some key challenges remain, such as the long turnaround time and relatively high cost of deep sequencing for pathogen identification and characterization and the lack of international standardization in immune repertoire analysis.
Target engagement and drug residence time can be observed in living cells with BRET
Robers, Matthew B.; Dart, Melanie L.; Woodroofe, Carolyn C.; Zimprich, Chad A.; Kirkland, Thomas A.; Machleidt, Thomas; Kupcho, Kevin R.; Levin, Sergiy; Hartnett, James R.; Zimmerman, Kristopher; Niles, Andrew L.; Ohana, Rachel Friedman; Daniels, Danette L.; Slater, Michael; Wood, Monika G.; Cong, Mei; Cheng, Yi-Qiang; Wood, Keith V.
2015-01-01
The therapeutic action of drugs is predicated on their physical engagement with cellular targets. Here we describe a broadly applicable method using bioluminescence resonance energy transfer (BRET) to reveal the binding characteristics of a drug with selected targets within intact cells. Cell-permeable fluorescent tracers are used in a competitive binding format to quantify drug engagement with the target proteins fused to Nanoluc luciferase. The approach enabled us to profile isozyme-specific engagement and binding kinetics for a panel of histone deacetylase (HDAC) inhibitors. Our analysis was directed particularly to the clinically approved prodrug FK228 (Istodax/Romidepsin) because of its unique and largely unexplained mechanism of sustained intracellular action. Analysis of the binding kinetics by BRET revealed remarkably long intracellular residence times for FK228 at HDAC1, explaining the protracted intracellular behaviour of this prodrug. Our results demonstrate a novel application of BRET for assessing target engagement within the complex milieu of the intracellular environment. PMID:26631872
Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead.
Kurapati, Rajendra; Kostarelos, Kostas; Prato, Maurizio; Bianco, Alberto
2016-08-01
Currently, a broad interdisciplinary research effort is pursued on biomedical applications of 2D materials (2DMs) beyond graphene, due to their unique physicochemical and electronic properties. The discovery of new 2DMs is driven by the diverse chemical compositions and tuneable characteristics offered. Researchers are increasingly attracted to exploit those as drug delivery systems, highly efficient photothermal modalities, multimodal therapeutics with non-invasive diagnostic capabilities, biosensing, and tissue engineering. A crucial limitation of some of the 2DMs is their moderate colloidal stability in aqueous media. In addition, the lack of suitable functionalisation strategies should encourage the exploration of novel chemical methodologies with that purpose. Moreover, the clinical translation of these emerging materials will require undertaking of fundamental research on biocompatibility, toxicology and biopersistence in the living body as well as in the environment. Here, a thorough account of the biomedical applications using 2DMs explored today is given. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent trends in analytical methods and separation techniques for drugs of abuse in hair.
Baciu, T; Borrull, F; Aguilar, C; Calull, M
2015-01-26
Hair analysis of drugs of abuse has been a subject of growing interest from a clinical, social and forensic perspective for years because of the broad time detection window after intake in comparison to urine and blood analysis. Over the last few years, hair analysis has gained increasing attention and recognition for the retrospective investigation of drug abuse in a wide variety of contexts, shown by the large number of applications developed. This review aims to provide an overview of the state of the art and the latest trends used in the literature from 2005 to the present in the analysis of drugs of abuse in hair, with a special focus on separation analytical techniques and their hyphenation with mass spectrometry detection. The most recently introduced sample preparation techniques are also addressed in this paper. The main strengths and weaknesses of all of these approaches are critically discussed by means of relevant applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Servati, Amir; Wang, Z. Jane; Ko, Frank; Servati, Peyman
2017-01-01
Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology. PMID:28703744
Burkholder, William F.; Newell, Evan W.; Poidinger, Michael; Chen, Swaine; Fink, Katja
2017-01-01
The inaugural workshop “Deep Sequencing in Infectious Diseases: Immune and Pathogen Repertoires for the Improvement of Patient Outcomes” was held in Singapore on 13–14 October 2016. The aim of the workshop was to discuss the latest trends in using high-throughput sequencing, bioinformatics, and allied technologies to analyze immune and pathogen repertoires and their interplay within the host, bringing together key international players in the field and Singapore-based researchers and clinician-scientists. The focus was in particular on the application of these technologies for the improvement of patient diagnosis, prognosis and treatment, and for other broad public health outcomes. The presentations by scientists and clinicians showed the potential of deep sequencing technology to capture the coevolution of adaptive immunity and pathogens. For clinical applications, some key challenges remain, such as the long turnaround time and relatively high cost of deep sequencing for pathogen identification and characterization and the lack of international standardization in immune repertoire analysis. PMID:28620372
Luminescent Quantum Dots as Ultrasensitive Biological Labels
NASA Astrophysics Data System (ADS)
Nie, Shuming
2000-03-01
Highly luminescent semiconductor quantum dots have been covalently coupled to biological molecules for use in ultrasensitive biological detection. This new class of luminescent labels is considerably brighter and more resistant againt photobleaching in comparison with organic dyes. Quantum dots labeled with the protein transferrin undergo receptor-mediated endocytosis (RME) in cultured HeLa cells, and those dots that were conjugated to immunomolecules recognize specific antibodies or antigens. In addition, we show that DNA functionalized quantum dots can be used to target specific genes by hybridization. We expect that quantum dot bioconjugates will have a broad range of biological applications, such as ligand-receptor interactions, real-time monitoring of molecular trafficking inside living cells, multicolor fluorescence in-situ hybridization (FISH), high-sensitivity detection in miniaturized devices (e.g., DNA chips), and fluorescent tagging of combinatorial chemical libraries. A potential clinical application is the use of quantum dots for ultrasensitive viral RNA detection, in which as low as 100 copies of hepatitis C and HIV viruses per ml blood should be detected.
Turvey, Carolyn; Fortney, John
2017-10-16
This article discusses recent applications in telemedicine to promote the goals of population health and population management for people suffering psychiatric disorders. The use of telemedicine to promote collaborative care, self-monitoring and chronic disease management, and population screening has demonstrated broad applicability and effectiveness. Collaborative care using videoconferencing to facilitate mental health specialty consults has demonstrated effectiveness in the treatment of depression, PTSD, and also ADHD in pediatric populations. Mobile health is currently being harnessed to monitor patient symptom trajectories with the goal of using machine learning algorithms to predict illness relapse. Patient portals serve as a bridge between patients and providers. They provide an electronically secure shared space for providers and patients to collaborate and optimize care. To date, research has supported the effectiveness of telemedicine in promoting population health. Future endeavors should focus on developing the most effective clinical protocols for using these technologies to ensure long-term use and maximum effectiveness in reducing population burden of mental health.
Broad-scale assessments of ecological landscapes: developing methods and applications
Carr, Natasha B.; Wood, David J. A.; Bowen, Zachary H.; Haby, Travis S.
2015-01-01
A major component of the BLM Landscape Approach is the Rapid Ecoregional Assessment (REA) program. REAs identify important ecosystems and wildlife habitats at broad spatial scales and determine where these resources are at risk from environmental stressors that can affect the integrity of ecological systems. Building on the lessons learned from completed or current REAs, the BLM, in partnership with the U.S. Geological Survey, will perform systematic comparisons of REA methods to identify the most promising suite of landscape-level analysis tools. In addition, the BLM and USGS will develop practical applications that demonstrate how to incorporate assessment information to address existing management issues, such as cumulative effects of proposed management actions. The outcome of these efforts will be a set of comprehensive technical guidance documents for conducting and applying broad-scale assessments.
Lucidi, Cristina; Di Gregorio, Vincenza; Ceccarelli, Giancarlo; Venditti, Mario; Riggio, Oliviero; Merli, Manuela
2017-01-01
Background Early diagnosis and appropriate treatment of infections in cirrhosis are crucial. As new guidelines in this context, particularly for health care-associated (HCA) infections, would be needed, we performed a trial documenting whether an empirical broad-spectrum antibiotic therapy is more effective than the standard one for these infections. Because of the higher daily cost of broad-spectrum than standard antibiotics, we performed a cost analysis to compare: 1) total drug costs, 2) profitability of hospital admissions. Methods This retrospective observational analysis was performed on patients enrolled in the trial NCT01820026, in which consecutive cirrhotic patients with HCA infections were randomly assigned to a standard vs a broad-spectrum treatment. Antibiotic daily doses, days of treatment, length of hospital stay, and DRG (diagnosis-related group) were recorded from the clinical trial medical records. The profitability of hospitalizations was calculated considering DRG tariffs divided by length of hospital stay. Results We considered 84 patients (42 for each group). The standard therapy allowed to obtain a first-line treatment cost lower than in the broad-spectrum therapy. Anyway, the latter, being related to a lower failure rate (19% vs 57.1%), resulted in cost saving in terms of cumulative antibiotic costs (first- and second-line treatments). The mean cost saving per patient for the broad-spectrum arm was €44.18 (−37.6%), with a total cost saving of about €2,000. Compared to standard group, we observed a statistically significant reduction in hospital stay from 17.8 to 11.8 days (p<0.002) for patients treated with broad-spectrum antibiotics. The distribution of DRG tariffs was similar in the two groups. According to DRG, the shorter length of hospital stay of the broad-spectrum group involved a higher mean profitable daily cost than standard group (€345.61 vs €252.23; +37%). Conclusion Our study supports the idea that the use of a broad-spectrum empirical treatment for HCA infections in cirrhosis would be cost-saving and that hospitals need to be aware of the clinical and economic consequences of a wrong antibiotic treatment in this setting. PMID:28721080
Lucidi, Cristina; Di Gregorio, Vincenza; Ceccarelli, Giancarlo; Venditti, Mario; Riggio, Oliviero; Merli, Manuela
2017-01-01
Early diagnosis and appropriate treatment of infections in cirrhosis are crucial. As new guidelines in this context, particularly for health care-associated (HCA) infections, would be needed, we performed a trial documenting whether an empirical broad-spectrum antibiotic therapy is more effective than the standard one for these infections. Because of the higher daily cost of broad-spectrum than standard antibiotics, we performed a cost analysis to compare: 1) total drug costs, 2) profitability of hospital admissions. This retrospective observational analysis was performed on patients enrolled in the trial NCT01820026, in which consecutive cirrhotic patients with HCA infections were randomly assigned to a standard vs a broad-spectrum treatment. Antibiotic daily doses, days of treatment, length of hospital stay, and DRG (diagnosis-related group) were recorded from the clinical trial medical records. The profitability of hospitalizations was calculated considering DRG tariffs divided by length of hospital stay. We considered 84 patients (42 for each group). The standard therapy allowed to obtain a first-line treatment cost lower than in the broad-spectrum therapy. Anyway, the latter, being related to a lower failure rate (19% vs 57.1%), resulted in cost saving in terms of cumulative antibiotic costs (first- and second-line treatments). The mean cost saving per patient for the broad-spectrum arm was €44.18 (-37.6%), with a total cost saving of about €2,000. Compared to standard group, we observed a statistically significant reduction in hospital stay from 17.8 to 11.8 days ( p <0.002) for patients treated with broad-spectrum antibiotics. The distribution of DRG tariffs was similar in the two groups. According to DRG, the shorter length of hospital stay of the broad-spectrum group involved a higher mean profitable daily cost than standard group (€345.61 vs €252.23; +37%). Our study supports the idea that the use of a broad-spectrum empirical treatment for HCA infections in cirrhosis would be cost-saving and that hospitals need to be aware of the clinical and economic consequences of a wrong antibiotic treatment in this setting.
Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T
2011-01-01
The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Chinen, Javier; Shearer, William T.
2003-01-01
Progress in immunology continues to grow exponentially every year. New applications of this knowledge are being developed for a broad range of clinical conditions. Conversely, the study of primary and secondary immunodeficiencies is helping to elucidate the intricate mechanisms of the immune system. We have selected a few of the most significant contributions to the fields of basic and clinical immunology published between October 2001 and October 2002. Our choice of topics in basic immunology included the description of T-bet as a determinant factor for T(H)1 differentiation, the role of the activation-induced cytosine deaminase gene in B-cell development, the characterization of CD4(+)CD25(+) regulatory T cells, and the use of dynamic imaging to study MHC class II transport and T-cell and dendritic cell membrane interactions. Articles related to clinical immunology that were selected for review include the description of immunodeficiency caused by caspase 8 deficiency; a case series report on X-linked agammaglobulinemia; the mechanism of action, efficacy, and complications of intravenous immunoglobulin; mechanisms of autoimmunity diseases; and advances in HIV pathogenesis and vaccine development. We also reviewed two articles that explore the possible alterations of the immune system caused by spaceflights, a new field with increasing importance as human space expeditions become a reality in the 21st century.
Clinical assessment of social cognitive function in neurological disorders.
Henry, Julie D; von Hippel, William; Molenberghs, Pascal; Lee, Teresa; Sachdev, Perminder S
2016-01-01
Social cognition broadly refers to the processing of social information in the brain that underlies abilities such as the detection of others' emotions and responding appropriately to these emotions. Social cognitive skills are critical for successful communication and, consequently, mental health and wellbeing. Disturbances of social cognition are early and salient features of many neuropsychiatric, neurodevelopmental and neurodegenerative disorders, and often occur after acute brain injury. Its assessment in the clinic is, therefore, of paramount importance. Indeed, the most recent edition of the American Psychiatric Association's Diagnostic and Statistical Manual for Mental Disorders (DSM-5) introduced social cognition as one of six core components of neurocognitive function, alongside memory and executive control. Failures of social cognition most often present as poor theory of mind, reduced affective empathy, impaired social perception or abnormal social behaviour. Standard neuropsychological assessments lack the precision and sensitivity needed to adequately inform treatment of these failures. In this Review, we present appropriate methods of assessment for each of the four domains, using an example disorder to illustrate the value of these approaches. We discuss the clinical applications of testing for social cognitive function, and finally suggest a five-step algorithm for the evaluation and treatment of impairments, providing quantitative evidence to guide the selection of social cognitive measures in clinical practice.
USDA-ARS?s Scientific Manuscript database
A broad-specific and sensitive immunoassay for the detection of sulfonamides was developed by optimizing the conditions of an enzyme-linked immunosorbent assay (ELISA) in regard to different monoclonal antibodies (MAbs), assay format, immunoreagents, and several physicochemical factors (pH, salt, de...
USDA-ARS?s Scientific Manuscript database
A monoclonal antibody (MAb) against 4-(diethoxyphosphorothioyloxy)benzoic acid (hapten 1) was raised and used to develop a broad-specificity competitive indirect enzyme-linked immunosorbent assay (ciELISA) for 14 O,O-diethyl organophosphorus pesticides (OPs). Computer-assisted molecular modeling was...
Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity.
Cho, Sung Hwan; Lee, Seung Won; Yu, Seunggun; Kim, Hyeohn; Chang, Sooho; Kang, Donyoung; Hwang, Ihn; Kang, Han Sol; Jeong, Beomjin; Kim, Eui Hyuk; Cho, Suk Man; Kim, Kang Lib; Lee, Hyungsuk; Shim, Wooyoung; Park, Cheolmin
2017-03-22
The development of pressure sensors that are effective over a broad range of pressures is crucial for the future development of electronic skin applicable to the detection of a wide pressure range from acoustic wave to dynamic human motion. Here, we present flexible capacitive pressure sensors that incorporate micropatterned pyramidal ionic gels to enable ultrasensitive pressure detection. Our devices show superior pressure-sensing performance, with a broad sensing range from a few pascals up to 50 kPa, with fast response times of <20 ms and a low operating voltage of 0.25 V. Since high-dielectric-constant ionic gels were employed as constituent sensing materials, an unprecedented sensitivity of 41 kPa -1 in the low-pressure regime of <400 Pa could be realized in the context of a metal-insulator-metal platform. This broad-range capacitive pressure sensor allows for the efficient detection of pressure from a variety of sources, including sound waves, a lightweight object, jugular venous pulses, radial artery pulses, and human finger touch. This platform offers a simple, robust approach to low-cost, scalable device design, enabling practical applications of electronic skin.
Does clinical equipoise apply to cluster randomized trials in health research?
2011-01-01
This article is part of a series of papers examining ethical issues in cluster randomized trials (CRTs) in health research. In the introductory paper in this series, Weijer and colleagues set out six areas of inquiry that must be addressed if the cluster trial is to be set on a firm ethical foundation. This paper addresses the third of the questions posed, namely, does clinical equipoise apply to CRTs in health research? The ethical principle of beneficence is the moral obligation not to harm needlessly and, when possible, to promote the welfare of research subjects. Two related ethical problems have been discussed in the CRT literature. First, are control groups that receive only usual care unduly disadvantaged? Second, when accumulating data suggests the superiority of one intervention in a trial, is there an ethical obligation to act? In individually randomized trials involving patients, similar questions are addressed by the concept of clinical equipoise, that is, the ethical requirement that, at the start of a trial, there be a state of honest, professional disagreement in the community of expert practitioners as to the preferred treatment. Since CRTs may not involve physician-researchers and patient-subjects, the applicability of clinical equipoise to CRTs is uncertain. Here we argue that clinical equipoise may be usefully grounded in a trust relationship between the state and research subjects, and, as a result, clinical equipoise is applicable to CRTs. Clinical equipoise is used to argue that control groups receiving only usual care are not disadvantaged so long as the evidence supporting the experimental and control interventions is such that experts would disagree as to which is preferred. Further, while data accumulating during the course of a CRT may favor one intervention over another, clinical equipoise supports continuing the trial until the results are likely to be broadly convincing, often coinciding with the planned completion of the trial. Finally, clinical equipoise provides research ethics committees with formal and procedural guidelines that form an important part of the assessment of the benefits and harms of CRTs in health research. PMID:21569349
Ohno, Yoshiyuki
2018-01-01
Drug-drug interactions (DDIs) can affect the clearance of various drugs from the body; however, these effects are difficult to sufficiently evaluate in clinical studies. This article outlines our approach to improving methods for evaluating and providing drug information relative to the effects of DDIs. In a previous study, total exposure changes to many substrate drugs of CYP caused by the co-administration of inhibitor or inducer drugs were successfully predicted using in vivo data. There are two parameters for the prediction: the contribution ratio of the enzyme to oral clearance for substrates (CR), and either the inhibition ratio for inhibitors (IR) or the increase in clearance of substrates produced by induction (IC). To apply these predictions in daily pharmacotherapy, the clinical significance of any pharmacokinetic changes must be carefully evaluated. We constructed a pharmacokinetic interaction significance classification system (PISCS) in which the clinical significance of DDIs was considered in a systematic manner, according to pharmacokinetic changes. The PISCS suggests that many current 'alert' classifications are potentially inappropriate, especially for drug combinations in which pharmacokinetics have not yet been evaluated. It is expected that PISCS would contribute to constructing a reliable system to alert pharmacists, physicians and consumers of a broad range of pharmacokinetic DDIs in order to more safely manage daily clinical practices.
Perceptions of Personalized Medicine in an Academic Health System: Educational Findings.
Vorderstrasse, Allison; Katsanis, Sara Huston; Minear, Mollie A; Yang, Nancy; Rakhra-Burris, Tejinder; Reeves, Jason W; Cook-Deegan, Robert; Ginsburg, Geoffrey S; Ann Simmons, Leigh
Prior reports demonstrate that personalized medicine implementation in clinical care is lacking. Given the program focus at Duke University on personalized medicine, we assessed health care providers' perspectives on their preparation and educational needs to effectively integrate personalized medicine tools and applications into their clinical practices. Data from 78 health care providers who participated in a larger study of personalized and precision medicine at Duke University were analyzed using Qualtrics (descriptive statistics). Individuals age 18 years and older were recruited for the larger study through broad email contacts across the university and health system. All participants completed an online 35-question survey that was developed, pilot-tested, and administered by a team of interdisciplinary researchers and clinicians at the Center for Applied Genomics and Precision Medicine. Overall, providers reported being ill-equipped to implement personalized medicine in clinical practice. Many respondents identified educational resources as critical for strengthening personalized medicine implementation in both research and clinical practice. Responses did not differ significantly between specialists and primary providers or by years since completion of the medical degree. Survey findings support prior calls for provider and patient education in personalized medicine. Respondents identified focus areas in training, education, and research for improving personalized medicine uptake. Given respondents' emphasis on educational needs, now may be an ideal time to address these needs in clinical training and public education programs.
Clinical knowledge governance: the international perspective.
Garde, Sebastian
2013-01-01
As a basis for semantic interoperability, ideally, a Clinical Knowledge Resource for a clinical concept should be defined formally and defined once in a way that all clinical professions and all countries can agree on. Clinical Knowledge Governance is required to create high-quality, reusable Clinical Knowledge Resources and achieve this aim. Traditionally, this is a time-consuming and cumbersome process, relying heavily on face-to-face meetings and being able to get sufficient input from clinicians. However, in a national or even international space, it is required to streamline the processes involved in creating Clinical Knowledge Resources. For this, a Web 2.0 tool that supports online collaboration of clinicians during their creation and publishing of Clinical Knowledge Resources has been developed. This tool is named the Clinical Knowledge Manager (CKM) and supports the development, review and publication of Clinical Knowledge Resources. Also, post-publication activities such as adding terminology bindings, translating the Clinical Knowledge Resource into another language and republishing it are supported. The acceptance of Clinical Knowledge Resources depends on their quality and being able to determine their quality, for example it is important to know that a broad umber of reviewers from various clinical disciplines have been involved in the development of the Clinical Knowledge Resource. We are still far from realizing the vision of a global repository of a great number of reusable, high-quality Clinical Knowledge Resources, which can provide the basis for broad semantic interoperability between systems. However progress towards this aim is being made around the world.
A self-scaling, distributed information architecture for public health, research, and clinical care.
McMurry, Andrew J; Gilbert, Clint A; Reis, Ben Y; Chueh, Henry C; Kohane, Isaac S; Mandl, Kenneth D
2007-01-01
This study sought to define a scalable architecture to support the National Health Information Network (NHIN). This architecture must concurrently support a wide range of public health, research, and clinical care activities. The architecture fulfils five desiderata: (1) adopt a distributed approach to data storage to protect privacy, (2) enable strong institutional autonomy to engender participation, (3) provide oversight and transparency to ensure patient trust, (4) allow variable levels of access according to investigator needs and institutional policies, (5) define a self-scaling architecture that encourages voluntary regional collaborations that coalesce to form a nationwide network. Our model has been validated by a large-scale, multi-institution study involving seven medical centers for cancer research. It is the basis of one of four open architectures developed under funding from the Office of the National Coordinator of Health Information Technology, fulfilling the biosurveillance use case defined by the American Health Information Community. The model supports broad applicability for regional and national clinical information exchanges. This model shows the feasibility of an architecture wherein the requirements of care providers, investigators, and public health authorities are served by a distributed model that grants autonomy, protects privacy, and promotes participation.
The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer
Wei, Fang; Wong, David T.; Su, Wu-Chou
2015-01-01
The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR). The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA) detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer. PMID:26448936
Krause, Beatrix; Cohen Kadosh, Roi
2013-10-01
Learning difficulties in atypical brain development represent serious obstacles to an individual's future achievements and can have broad societal consequences. Cognitive training can improve learning impairments only to a certain degree. Recent evidence from normal and clinical adult populations suggests that transcranial electrical stimulation (TES), a portable, painless, inexpensive, and relatively safe neuroenhancement tool, applied in conjunction with cognitive training can enhance cognitive intervention outcomes. This includes, for instance, numerical processing, language skills and response inhibition deficits commonly associated with profound learning difficulties and attention-deficit hyperactivity disorder (ADHD). The current review introduces the functional principles, current applications and promising results, and potential pitfalls of TES. Unfortunately, research in child populations is limited at present. We suggest that TES has considerable promise as a tool for increasing neuroplasticity in atypically developing children and may be an effective adjunct to cognitive training in clinical settings if it proves safe. The efficacy and both short- and long-term effects of TES on the developing brain need to be critically assessed before it can be recommended for clinical settings. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Emerging Trends in Clinical Research: With Implications for Population Health and Health Policy.
Chin-Yee, Benjamin; Subramanian, S V; Verma, Amol A; Laupacis, Andreas; Razak, Fahad
2018-06-01
Policy Points: Significant advances in clinical medicine that have broader societal relevance may be less accessible to population health researchers and policymakers because of increased specialization within fields. We describe important recent clinical advances and discuss their broader societal impact. These advances include more expansive strategies for disease prevention, the rise of precision medicine, applications of human microbiome research, and new and highly successful treatments for hepatitis C infection. These recent developments in clinical research raise important issues surrounding health care costs and equitable resource allocation that necessitate an ongoing dialogue among the fields of clinical medicine, population health, and health policy. Developments in clinical medicine have important implications for population health, and there is a need for interdisciplinary engagement among clinical medicine, the social sciences, and public health research. The aim of this article is to help bridge the divide between these fields by exploring major recent advances in clinical medicine that have important implications for population health. We reviewed the most cited articles published from 2010 to 2015 in 5 high-impact clinical journals and selected 5 randomized controlled trials and 2 related clinical practice guidelines that are broadly relevant to population health and policy. We discuss the following themes: (1) expanding indications for drug therapy and the inherent medicalization of the population as highlighted by studies and clinical guidelines supporting lower blood pressure targets or widespread statin use; (2) the tension in nutritional research between quantifying the impact of isolated nutrients and studying specific foods and dietary patterns, for example, the role of the Mediterranean diet in the primary prevention of cardiovascular disease; (3) the issue of high medication costs and the challenge of providing equitable access raised by the development of new and effective treatments for hepatitis C infection; (4) emerging clinical applications of research on the human microbiome as illustrated by fecal transplant to treat Clostridium difficile infections; and (5) the promise and limitations of precision medicine as demonstrated by the rise of novel targeted therapies in oncology. These developments in clinical science hold promise for improving individual and population health and raise important questions about resource allocation, the role of prevention, and health disparities. © 2018 Milbank Memorial Fund.
MacPherson, Hugh; Altman, Douglas G; Hammerschlag, Richard; Li, Youping; Wu, Taixiang; White, Adrian; Moher, David
2010-01-01
The STandards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA) were published in five journals in 2001 and 2002. These guidelines, in the form of a checklist and explanations for use by authors and journal editors, were designed to improve reporting of acupuncture trials, particularly the interventions, thereby facilitating their interpretation and replication. Subsequent reviews of the application and impact of STRICTA have highlighted the value of STRICTA as well as scope for improvements and revision. To manage the revision process a collaboration between the STRICTA Group, the CONSORT Group and the Chinese Cochrane Centre was developed in 2008. An expert panel with 47 participants was convened that provided electronic feedback on a revised draft of the checklist. At a subsequent face-to-face meeting in Freiburg, a group of 21 participants further revised the STRICTA checklist and planned dissemination. The new STRICTA checklist, which is an official extension of CONSORT, includes 6 items and 17 subitems. These set out reporting guidelines for the acupuncture rationale, the details of needling, the treatment regimen, other components of treatment, the practitioner background and the control or comparator interventions. In addition, and as part of this revision process, the explanations for each item have been elaborated, and examples of good reporting for each item are provided. In addition, the word ‘controlled’ in STRICTA is replaced by ‘clinical’, to indicate that STRICTA is applicable to a broad range of clinical evaluation designs, including uncontrolled outcome studies and case reports. It is intended that the revised STRICTA checklist, in conjunction with both the main CONSORT statement and extension for non-pharmacological treatment, will raise the quality of reporting of clinical trials of acupuncture. PMID:20615861
32 CFR 203.7 - Eligible applicants.
Code of Federal Regulations, 2010 CFR
2010-07-01
... interests are broadly represented. The applicant must certify that the request represents the wishes of a simple majority of the community members of the RAB or TRC. Certification includes, but is not limited to...
TOPICAL REVIEW: Microsystem technologies for implantable applications
NASA Astrophysics Data System (ADS)
Receveur, Rogier A. M.; Lindemans, Fred W.; de Rooij, Nicolaas F.
2007-05-01
Microsystem technologies (MST) have become the basis of a large industry. The advantages of MST compared to other technologies provide opportunities for application in implantable biomedical devices. This paper presents a general and broad literature review of MST for implantable applications focused on the technical domain. A classification scheme is introduced to order the examples, basic technological building blocks relevant for implantable applications are described and finally a case study on the role of microsystems for one clinical condition is presented. We observe that the microfabricated parts span a wide range for implantable applications in various clinical areas. There are 94 active and 67 commercial 'end items' out of a total of 142. End item refers to the total concept, of which the microsystem may only be a part. From the 105 active end items 18 (13% of total number of end items) are classified as products. From these 18 products, there are only two for chronic use. The number of active end items in clinical, animal and proto phase for chronic use is 17, 13 and 20, respectively. The average year of first publication of chronic end items that are still in the animal or clinical phase is 1994 (n = 7) and 1993 (n = 11), respectively. The major technology market combinations are sensors for cardiovascular, drug delivery for drug delivery and electrodes for neurology and ophthalmology. Together these form 51% of all end items. Pressure sensors form the majority of sensors and there is just one product (considered to be an implantable microsystem) in the neurological area. Micro-machined ceramic packages, glass sealed packages and polymer encapsulations are used. Glass to metal seals are used for feedthroughs. Interconnection techniques such as flip chip, wirebonding or conductive epoxy as used in the semiconductor packaging and assembly industry are also used for manufacturing of implantable devices. Coatings are polymers or metal. As an alternative to implantable primary batteries, rechargeable batteries were introduced or concepts in which energy is provided from the outside based on inductive coupling. Long-term developments aiming at autonomous power are, for example, based on electrostatic conversion of mechanical vibrations. Communication with the implantable device is usually done using an inductive link. A large range of materials commonly used in microfabrication are also used for implantable microsystems.
NASA Astrophysics Data System (ADS)
Guo, Chongshen; Yin, Shu; Yu, Haijun; Liu, Shaoqin; Dong, Qiang; Goto, Takehiro; Zhang, Zhiwen; Li, Yaping; Sato, Tsugio
2013-06-01
Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human cancer. The prepared CsxWO3 nanocrystals displayed strong near-infrared optical absorption with a high molar extinction coefficient (e.g. 4.8 × 1010 M-1 cm-1 at 980 nm), thus generated significant amounts of heat upon excitation with near-infrared light. The PTA study in two human carcinoma cell lines (i.e. A549 lung cancer cells and HeLa ovarian cancer cells) demonstrated that CsxWO3 nanorods can efficiently cause cell death via hyperthermia induced lysosome destruction, cytoskeleton protein degradation, DNA damage and thereafter cellular necrosis or apoptosis. Our study also confirmed the migration of healthy cells migrated from unirradiated areas to dead cell cycle, which is essential for tissue reconstruction and wound healing after photodestruction of tumor tissue. The prompted results reported in the current study imply the promising potential of CsxWO3 nanorods for application in PTA cancer therapy.Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human cancer. The prepared CsxWO3 nanocrystals displayed strong near-infrared optical absorption with a high molar extinction coefficient (e.g. 4.8 × 1010 M-1 cm-1 at 980 nm), thus generated significant amounts of heat upon excitation with near-infrared light. The PTA study in two human carcinoma cell lines (i.e. A549 lung cancer cells and HeLa ovarian cancer cells) demonstrated that CsxWO3 nanorods can efficiently cause cell death via hyperthermia induced lysosome destruction, cytoskeleton protein degradation, DNA damage and thereafter cellular necrosis or apoptosis. Our study also confirmed the migration of healthy cells migrated from unirradiated areas to dead cell cycle, which is essential for tissue reconstruction and wound healing after photodestruction of tumor tissue. The prompted results reported in the current study imply the promising potential of CsxWO3 nanorods for application in PTA cancer therapy. Electronic supplementary information (ESI) available: EDS spectra, XRD patterns, TG plot of CsxWO3 nanorod are provided in the ESI. Additionally, linear correlations between NIR absorbance and CsxWO3-PEGS nanorod concentrations, cytotoxicity results, TEM image of intracellular distribution of CsxWO3-PEGS nanorods and fluorescence images can be found in the ESI. See DOI: 10.1039/c3nr01025b
Broad support for regulating the clinical implementation of future reproductive techniques.
Hendriks, S; Vliegenthart, R; Repping, S; Dancet, E A F
2018-01-01
Do gynaecologists, infertile patients and the general public, consider that regulation of the clinical implementation of stem cell-based fertility treatments is required? There is broad support from gynaecologists, patients and the general public for regulating the clinical implementation of future stem cell-based fertility treatments. There is debate on the need to regulate the clinical implementation of novel techniques. Regulation may hinder their swift adoption and delay benefits for patients, but may prevent the implementation of ineffective or harmful techniques. Stem cell-based fertility treatments, which involve creating oocytes or spermatozoa by manipulating stem cells, are likely to be implemented in clinical practice in the near future and will probably impact future generations as well as the current one. A cross-sectional survey was conducted among gynaecologists working in fertility clinics (n = 179), patients with severe infertility (n = 348) and a representative sample of the general public (n = 1250). The questionnaire was disseminated in the Netherlands in the winter of 2015-2016. The newly developed questionnaire was reviewed by experts and tested among the general public. The questionnaire assessed whether participants wanted each of nine potential negative consequences of the clinical implementation of stem cell-based fertility treatments to be regulated. In addition, the importance of all negative and positive potential consequences, the appropriate regulatory body and its need to consult with advisors from various backgrounds was questioned. In total, 958 respondents completed the questionnaire (response rate: 54%). A large majority of each participant group (>85%) wanted regulation, for at least one potential negative consequence of the clinical implementation of stem cell-based fertility treatments. The majority of all participant groups wanted regulation for serious health risks for intended parents, serious health risks for children and the disposal of human embryos. Regulation for out-of-pocket costs and the burden of treatment received little support. The majority of gynaecologists and the general public, but not the patients, requested regulation for the risk of minor congenital abnormalities, the success rates and the naturalness of treatments. Nevertheless, the majority of patients did consider the former two potential negative consequences important. The majority of all groups preferred a national bioethics committee as the regulatory body. This committee should consult with advisors from various backgrounds and should consider the broader context of potential consequences of the stem cell-based fertility treatments. This empirical study focuses on only three stakeholder groups. This study reports on the perspective of the majority and this is not per definition the morally right perspective. The transferability of our findings to other cultures and other techniques remains unclear. A national bioethics committee, consulting with advisors from various backgrounds, should regulate the clinical implementation of future stem cell-based fertility treatments. Whether this broad support for regulation applies to novel techniques from other fields of medicine should be examined. The Young Academy of the Royal Netherlands Academy of Arts and Sciences. None of the authors has any conflict of interest to declare. Not applicable. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Implications of the concept of minimal risk in research on informed choice in clinical practice
Wada, Kyoko; Nisker, Jeff
2015-01-01
The concept of a minimal risk threshold in research, beneath which exception to informed consent and ethics review processes may occur, has been codified for over 30 years in many national research regulations and by the Council for International Organizations of Medical Sciences. Although minimal risk in research constitutes one of the criteria for allowing waiver of informed consent or modification to the consent process and a large body of literature exists, discussion of a minimal risk threshold in clinical practice has not occurred. One reason for lack of discussion may be that implicit consent is accepted for a wide range of routine clinical practices. Extending the role of minimal risk in research to clinical practice might assist clinicians in identifying circumstances for which implicit consent is indeed sufficient and circumstances in which it is not. Further, concepts from minimal risk in research might assist clinicians regarding when information provision in health promotion is required. We begin by reviewing concepts in both minimal risk in research and informed choice in clinical practice. We then explore how a clinical minimal risk concept may clarify recommendations for information provision in clinical practice and support the patient's informed choice regarding therapeutic and diagnostic procedures and also health promotion. Given that clinical practice involves a broad scope of health information, professional practice guidelines on information provision based on the application of the minimal risk threshold in research could be developed to guide clinicians in what information must be provided to their patients. PMID:26108215
Gerber, Jeffrey S; Ross, Rachael K; Bryan, Matthew; Localio, A Russell; Szymczak, Julia E; Wasserman, Richard; Barkman, Darlene; Odeniyi, Folasade; Conaboy, Kathryn; Bell, Louis; Zaoutis, Theoklis E; Fiks, Alexander G
2017-12-19
Acute respiratory tract infections account for the majority of antibiotic exposure in children, and broad-spectrum antibiotic prescribing for acute respiratory tract infections is increasing. It is not clear whether broad-spectrum treatment is associated with improved outcomes compared with narrow-spectrum treatment. To compare the effectiveness of broad-spectrum and narrow-spectrum antibiotic treatment for acute respiratory tract infections in children. A retrospective cohort study assessing clinical outcomes and a prospective cohort study assessing patient-centered outcomes of children between the ages of 6 months and 12 years diagnosed with an acute respiratory tract infection and prescribed an oral antibiotic between January 2015 and April 2016 in a network of 31 pediatric primary care practices in Pennsylvania and New Jersey. Stratified and propensity score-matched analyses to account for confounding by clinician and by patient-level characteristics, respectively, were implemented for both cohorts. Broad-spectrum antibiotics vs narrow-spectrum antibiotics. In the retrospective cohort, the primary outcomes were treatment failure and adverse events 14 days after diagnosis. In the prospective cohort, the primary outcomes were quality of life, other patient-centered outcomes, and patient-reported adverse events. Of 30 159 children in the retrospective cohort (19 179 with acute otitis media; 6746, group A streptococcal pharyngitis; and 4234, acute sinusitis), 4307 (14%) were prescribed broad-spectrum antibiotics including amoxicillin-clavulanate, cephalosporins, and macrolides. Broad-spectrum treatment was not associated with a lower rate of treatment failure (3.4% for broad-spectrum antibiotics vs 3.1% for narrow-spectrum antibiotics; risk difference for full matched analysis, 0.3% [95% CI, -0.4% to 0.9%]). Of 2472 children enrolled in the prospective cohort (1100 with acute otitis media; 705, group A streptococcal pharyngitis; and 667, acute sinusitis), 868 (35%) were prescribed broad-spectrum antibiotics. Broad-spectrum antibiotics were associated with a slightly worse child quality of life (score of 90.2 for broad-spectrum antibiotics vs 91.5 for narrow-spectrum antibiotics; score difference for full matched analysis, -1.4% [95% CI, -2.4% to -0.4%]) but not with other patient-centered outcomes. Broad-spectrum treatment was associated with a higher risk of adverse events documented by the clinician (3.7% for broad-spectrum antibiotics vs 2.7% for narrow-spectrum antibiotics; risk difference for full matched analysis, 1.1% [95% CI, 0.4% to 1.8%]) and reported by the patient (35.6% for broad-spectrum antibiotics vs 25.1% for narrow-spectrum antibiotics; risk difference for full matched analysis, 12.2% [95% CI, 7.3% to 17.2%]). Among children with acute respiratory tract infections, broad-spectrum antibiotics were not associated with better clinical or patient-centered outcomes compared with narrow-spectrum antibiotics, and were associated with higher rates of adverse events. These data support the use of narrow-spectrum antibiotics for most children with acute respiratory tract infections.
Basic Visual Processes and Learning Disability.
ERIC Educational Resources Information Center
Leisman, Gerald
Representatives of a variety of disciplines concerned with either clinical or research problems in vision and learning disabilities present reviews and reports of relevant research and clinical approaches. Contributions are organized into four broad sections: basic processes, specific disorders, diagnosis of visually based problems in learning,…
Targeting Promoter-Associated Noncoding RNA In Vivo.
Civenni, Gianluca
2017-01-01
There are many classes of noncoding RNAs (ncRNAs), with wide-ranging functionalities (e.g., RNA editing, mediation of mRNA splicing, ribosomal function). MicroRNAs (miRNAs) and long ncRNAs (lncRNAs) are implicated in a wide variety of cellular processes, including the regulation of gene expression. Incorrect expression or mutation of lncRNAs has been reported to be associated with several disease conditions, such a malignant transformation in humans. Importantly, pivotal players in tumorigenesis and cancer progression, such as c-Myc, may be regulated by lncRNA at promoter level. The function of lncRNA can be reduced with antisense oligonucleotides that sequester or degrade mature lncRNAs. In alternative, lncRNA transcription can be blocked by small interference RNA (RNAi), which had acquired, recently, broad interested in clinical applications. In vivo-jetPEI™ is a linear polyethylenimine mediating nucleic acid (DNA, shRNA, siRNA, oligonucelotides) delivery with high efficiency. Different in vivo delivery routes have been validated: intravenous (IV), intraperitoneal (IP), intratumoral, subcutaneous, topical, and intrathecal. High levels of nucleic acid delivery are achieved into a broad range of tissues, such as lung, salivary glands, heart, spleen, liver, and prostate upon systemic administration. In addition, in vivo-jetPEI™ is also an efficient carrier for local gene and siRNA delivery such as intratumoral or topical application on the skin. After systemic injection, siRNA can be detected and the levels can be validated in target tissues by qRT-PCR. Targeting promoter-associated lncRNAs with siRNAs (small interfering RNAs) in vivo is becoming an exciting breakthrough for the treatment of human disease.
Silk materials--a road to sustainable high technology.
Tao, Hu; Kaplan, David L; Omenetto, Fiorenzo G
2012-06-05
This review addresses the use of silk protein as a sustainable material in optics and photonics, electronics and optoelectronic applications. These options represent additional developments for this technology platform that compound the broad utility and impact of this material for medical needs that have been recently described in the literature. The favorable properties of the material certainly make a favorable case for the use of silk, yet serve as a broad inspiration to further develop biological foundries for both the synthesis and processing of Nature's materials for technological applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The therapeutic applications of antimicrobial peptides (AMPs): a patent review.
Kang, Hee-Kyoung; Kim, Cheolmin; Seo, Chang Ho; Park, Yoonkyung
2017-01-01
Antimicrobial peptides (AMPs) are small molecules with a broad spectrum of antibiotic activities against bacteria, yeasts, fungi, and viruses and cytotoxic activity on cancer cells, in addition to anti-inflammatory and immunomodulatory activities. Therefore, AMPs have garnered interest as novel therapeutic agents. Because of the rapid increase in drug-resistant pathogenic microorganisms, AMPs from synthetic and natural sources have been developed using alternative antimicrobial strategies. This article presents a broad analysis of patents referring to the therapeutic applications of AMPs since 2009. The review focuses on the universal trends in the effective design, mechanism, and biological evolution of AMPs.
Saturable nonlinear dielectric waveguide with applications to broad-area semiconductor lasers.
Mehuys, D; Mittelstein, M; Salzman, J; Yariv, A
1987-11-01
Self-focusing in a passive dielectric waveguide with a saturable nonlinearity is studied. The eigensolutions constitute a good approximation to the lateral modes of broad-area semiconductor lasers under low-duty-cycle pulsed conditions. The laser modes are predicted to consist of adjacent filaments coupled in phase, leading to a single-lobed far field, and to be stable with increased current injection above saturation intensity. The ultimate filament spacing is inversely proportional to the threshold gain, and thus wider filaments are expected in low-threshold broad-area lasers.
Characterization and application of a broad bandwidth oscillator for the HELEN laser facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew, J.E.; Stevenson, R.M.; Bett, T.H.
1995-12-31
Preliminary investigations of a potential broad band oscillator for the HELEN laser facility and its proposed upgrade are described. The reasons for the need of broad bandwidth and the choice of commercial technology to achieve it are discussed. The characterization of the device and the diagnostics used for the investigations are described. Small signal amplification of the bandwidth by a glass amplifier was also performed along with investigations of the effect of various bandwidths on the far field beam quality when using random phase plates.
Electrically-pumped, broad-area, single-mode photonic crystal lasers.
Zhu, Lin; Chak, Philip; Poon, Joyce K S; DeRose, Guy A; Yariv, Amnon; Scherer, Axel
2007-05-14
Planar broad-area single-mode lasers, with modal widths of the order of tens of microns, are technologically important for high-power applications and improved coupling efficiency into optical fibers. They may also find new areas of applications in on-chip integration with devices that are of similar size scales, such as for spectroscopy in microfluidic chambers or optical signal processing with micro-electromechanical systems. An outstanding challenge is that broad-area lasers often require external means of control, such as injection-locking or a frequency/spatial filter to obtain single-mode operation. In this paper, we propose and demonstrate effective index-guided, large-area, edge-emitting photonic crystal lasers driven by pulsed electrical current injection at the optical telecommunication wavelength of 1550 nm. By suitable design of the photonic crystal lattice, our lasers operate in a single mode with a 1/e(2) modal width of 25 microm and a length of 600 microm.
Flat field concave holographic grating with broad spectral region and moderately high resolution.
Wu, Jian Fen; Chen, Yong Yan; Wang, Tai Sheng
2012-02-01
In order to deal with the conflicts between broad spectral region and high resolution in compact spectrometers based on a flat field concave holographic grating and line array CCD, we present a simple and practical method to design a flat field concave holographic grating that is capable of imaging a broad spectral region at a moderately high resolution. First, we discuss the principle of realizing a broad spectral region and moderately high resolution. Second, we provide the practical method to realize our ideas, in which Namioka grating theory, a genetic algorithm, and ZEMAX are used to reach this purpose. Finally, a near-normal-incidence example modeled in ZEMAX is shown to verify our ideas. The results show that our work probably has a general applicability in compact spectrometers with a broad spectral region and moderately high resolution.
Translational Challenges in Cardiovascular Tissue Engineering.
Emmert, Maximilian Y; Fioretta, Emanuela S; Hoerstrup, Simon P
2017-04-01
Valvular heart disease and congenital heart defects represent a major cause of death around the globe. Although current therapy strategies have rapidly evolved over the decades and are nowadays safe, effective, and applicable to many affected patients, the currently used artificial prostheses are still suboptimal. They do not promote regeneration, physiological remodeling, or growth (particularly important aspects for children) as their native counterparts. This results in the continuous degeneration and subsequent failure of these prostheses which is often associated with an increased morbidity and mortality as well as the need for multiple re-interventions. To overcome this problem, the concept of tissue engineering (TE) has been repeatedly suggested as a potential technology to enable native-like cardiovascular replacements with regenerative and growth capacities, suitable for young adults and children. However, despite promising data from pre-clinical and first clinical pilot trials, the translation and clinical relevance of such TE technologies is still very limited. The reasons that currently limit broad clinical adoption are multifaceted and comprise of scientific, clinical, logistical, technical, and regulatory challenges which need to be overcome. The aim of this review is to provide an overview about the translational problems and challenges in current TE approaches. It further suggests directions and potential solutions on how these issues may be efficiently addressed in the future to accelerate clinical translation. In addition, a particular focus is put on the current regulatory guidelines and the associated challenges for these promising TE technologies.
ERIC Educational Resources Information Center
Shenkle, Michael Thomas
2017-01-01
In response to stagnant undergraduate completion rates and growing demands for post-secondary accountability, institutions are actively pursuing effective, broadly applicable methods for promoting student success. One notable scarcity in existing research is found in the tailoring of broad academic interventions to better meet the specific needs…
[From scabies room to modern specialty department. 90 years Ludwigshaven Dermatology Clinic].
Voigtländer, V; Boslet, W; Tully, G
2000-12-01
The dermatology clinic Ludwigshafen was founded in 1910. Dr. Siegfried Fuss was head of the clinic for almost 40 years. The clinic's history reflects the rapid industrial growth of the city, the destruction of two world wars and the progress of dermatology during this century. Today, the clinic is an academic teaching hospital affiliated with the University of Mainz with 45 beds and offers a broad spectrum of modern dematological diagnostic procedures and therapies.
Developments in low level light therapy (LLLT) for dentistry.
Carroll, James D; Milward, Michael R; Cooper, Paul R; Hadis, Mohammed; Palin, William M
2014-05-01
Low level light/laser therapy (LLLT) is the direct application of light to stimulate cell responses (photobiomodulation) in order to promote tissue healing, reduce inflammation and induce analgesia. There have been significant studies demonstrating its application and efficacy at many sites within the body and for treatment of a range of musculoskeletal injuries, degenerative diseases and dysfunction, however, its use on oral tissues has, to date, been limited. The purpose of this review is to consider the potential for LLLT in dental and oral applications by providing background information on its mechanism of action and delivery parameters and by drawing parallels with its treatment use in analogous cells and tissues from other sites of the body. A literature search on Medline was performed on laser and light treatments in a range of dental/orofacial applications from 2010 to March 2013. The search results were filtered for LLLT relevance. The clinical papers were then arranged to eight broad dental/orofacial categories and reviewed. The initial search returned 2778 results, when filtered this was reduced to 153. 41 were review papers or editorials, 65 clinical and 47 laboratory studies. Of all the publications, 130 reported a positive effect in terms of pain relief, fast healing or other improvement in symptoms or appearance and 23 reported inconclusive or negative outcomes. Direct application of light as a therapeutic intervention within the oral cavity (rather than photodynamic therapies, which utilize photosensitizing solutions) has thus far received minimal attention. Data from the limited studies that have been performed which relate to the oral cavity indicate that LLLT may be a reliable, safe and novel approach to treating a range of oral and dental disorders and in particular for those which there is an unmet clinical need. The potential benefits of LLLT that have been demonstrated in many healthcare fields and include improved healing, reduced inflammation and pain control, which suggest considerable potential for its use in oral tissues. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Does chlorhexidine prevent dry socket?
Richards, Derek
2012-01-01
The BBO (Bibliografia Brasileira de Odontologia), Biomed Central, Cochrane Library, Directory of Open Access Journals, LILACS, Open-J-Gate, OpenSIGLE, PubMed, Sabinet and Science-Direct databases were searched. Articles were selected for review from the search results on the basis of their compliance with the broad inclusion criteria: relevant to the review question; and prospective two-arm (or more) clinical study. The primary outcome measure was the incidence of AO reported at the patient level. Two reviewers (VY and SM) independently extracted data and assessed the quality of the accepted articles. Individual dichotomous datasets for the control and test group were extracted from each article. Where possible, missing data were calculated from information given in the text or tables. In addition, authors were contacted in order to obtain missing information. Datasets were assessed for their clinical and methodological heterogeneity following Cochrane guidelines. Meta-analysis was conducted with homogeneous datasets. Publication bias was assessed by use of a funnel plot and Egger's regression. Ten randomised trials were included; almost all involved the removal of third molars. Only two of six identified application protocols (single application of chlorhexidine 0.2% gel or multiple application of 0.12% rinse versus placebo) were found to significantly decrease the incidence of AO. Within the limitations of this review, only two of six identified application protocols were found to significantly decrease the incidence of AO. The evidence for both protocols is weak and may be challenged on the grounds of high risk of selection, detection/performance and attrition bias. This systematic review could not identify sufficient evidence supporting the use of chlorhexidine for the prevention of AO. Chlorhexidine seems not to cause any significantly higher adverse reactions than placebo. Future high-quality randomised control trials are needed to provide conclusive evidence on this topic.
Chen, Kaifu; Chen, Zhong; Wu, Dayong; Zhang, Lili; Lin, Xueqiu; Su, Jianzhong; Rodriguez, Benjamin; Xi, Yuanxin; Xia, Zheng; Chen, Xi; Shi, Xiaobing; Wang, Qianben; Li, Wei
2015-10-01
Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs and our experimental data from clinical samples, we discovered broad peaks for trimethylation of histone H3 at lysine 4 (H3K4me3; wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity, which together lead to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Genes with broad H3K4me3 peaks conserved across normal cells may represent pan-cancer tumor suppressors, such as TP53 and PTEN, whereas genes with cell type-specific broad H3K4me3 peaks may represent cell identity genes and cell type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 peaks in cancers is associated with repression of tumor suppressors. Thus, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of new tumor suppressors.
European regulation for therapeutic use of stem cells.
Ferry, Nicolas
2017-01-01
The regulation for the use of stem cells has evolved during the past decade with the aim of ensuring a high standard of quality and safety for human derived products throughout Europe to comply with the provision of the Lisbon treaty. To this end, new regulations have been issued and the regulatory status of stem cells has been revised. Indeed, stem cells used for therapeutic purposes can now be classified as a cell preparation, or as advanced therapy medicinal products depending on the clinical indication and on the procedure of cell preparation. Furthermore, exemptions to the European regulation are applicable for stem cells prepared and used within the hospital. The aim of this review is to give the non-specialized reader a broad overview of this particular regulatory landscape.
Use of methotrexate in the treatment of inflammatory bowel diseases (IBD)
Herfarth, Hans H.; Kappelman, Michael D; Long, Millie D; Isaacs, Kim L
2015-01-01
Low-dose methotrexate (MTX) therapy is a well-recognized therapy for many inflammatory conditions such as rheumatoid arthritis (RA), psoriatic arthritis and psoriasis. More than 20 years ago the clinical efficacy of MTX was also established for steroid dependent Crohn’s disease (CD), but it was never broadly adapted as a treatment modality. More recently, MTX has become increasingly used in the pediatric CD population, both as a single agent as well as a concomitant therapy with anti-tumor necrosis factor-alpha (anti-TNF) treatment. This review outlines important pharmacological aspects for the therapeutic application of MTX and the current status of MTX as mono- or combination therapy in both pediatric and adult patients with IBD including new results of MTX monotherapy in steroid dependent ulcerative colitis (UC). PMID:26457382
Marine Peptides: Bioactivities and Applications
Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho
2015-01-01
Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products. PMID:26132844
NASA Smart Surgical Probe Project
NASA Technical Reports Server (NTRS)
Mah, Robert W.; Andrews, Russell J.; Jeffrey, Stefanie S.; Guerrero, Michael; Papasin, Richard; Koga, Dennis (Technical Monitor)
2002-01-01
Information Technologies being developed by NASA to assist astronaut-physician in responding to medical emergencies during long space flights are being employed for the improvement of women's health in the form of "smart surgical probe". This technology, initially developed for neurosurgery applications, not only has enormous potential for the diagnosis and treatment of breast cancer, but broad applicability to a wide range of medical challenges. For the breast cancer application, the smart surgical probe is being designed to "see" a suspicious lump, determine by its features if it is cancerous, and ultimately predict how the disease may progress. A revolutionary early breast cancer detection tool based on this technology has been developed by a commercial company and is being tested in human clinical trials at the University of California at Davis, School of Medicine. The smart surgical probe technology makes use of adaptive intelligent software (hybrid neural networks/fuzzy logic algorithms) with the most advanced physiologic sensors to provide real-time in vivo tissue characterization for the detection, diagnosis and treatment of tumors, including determination of tumor microenvironment and evaluation of tumor margins. The software solutions and tools from these medical applications will lead to the development of better real-time minimally-invasive smart surgical probes for emergency medical care and treatment of astronauts on long space flights.
Application and microbial preparation of D-valine.
Chen, Ming; Shi, Chao; Zhao, Jing; Gao, Ziqing; Zhang, Chunzhi
2016-10-01
D-Valine is an important organic chiral source and has extensive industrial application, which is used as intermediate for the synthesis of agricultural pesticides, semi-synthetic veterinary antibiotics and pharmaceutical drugs. Its derivatives have shown great activity in clinical use, such as penicillamine for the treatment of immune-deficiency diseases, and actinomycin D for antitumor therapy. Fluvalinate, a pyrethroid pesticide made from D-valine, is a broad-spectrum insecticide with low mammalian toxicity. Valnemulin, a semi-synthetic pleuromutilin derivative synthesized from D-valine, is an antibiotic for animals. Moreover, D-valine is also used in cell culture for selectively inhibiting fibroblasts proliferation. Due to its widespread application, D-valine is gaining more and more attention and some approaches for D-valine preparation have been investigated. In comparison with other approaches, microbial preparation of D-valine is more competitive and promising because of its high stereo selectivity, mild reaction conditions and environmental friendly process. So far, microbial preparation of D-valine can be mainly classified into three categories: microbial asymmetric degradation of DL-valine, microbial stereoselective hydrolysis of N-acyl-DL-valine by D-aminoacylase, and microbial specific hydrolysis of DL-5-isopropylhydantoin by D-hydantoinase coupled with D-carbamoylase. In this paper, the industrial application of D-valine and its microbial preparation are reviewed.
Gorges, Martin; Roselli, Francesco; Müller, Hans-Peter; Ludolph, Albert C.; Rasche, Volker; Kassubek, Jan
2017-01-01
“Resting-state” fMRI has substantially contributed to the understanding of human and non-human functional brain organization by the analysis of correlated patterns in spontaneous activity within dedicated brain systems. Spontaneous neural activity is indirectly measured from the blood oxygenation level-dependent signal as acquired by echo planar imaging, when subjects quietly “resting” in the scanner. Animal models including disease or knockout models allow a broad spectrum of experimental manipulations not applicable in humans. The non-invasive fMRI approach provides a promising tool for cross-species comparative investigations. This review focuses on the principles of “resting-state” functional connectivity analysis and its applications to living animals. The translational aspect from in vivo animal models toward clinical applications in humans is emphasized. We introduce the fMRI-based investigation of the non-human brain’s hemodynamics, the methodological issues in the data postprocessing, and the functional data interpretation from different abstraction levels. The longer term goal of integrating fMRI connectivity data with structural connectomes obtained with tracing and optical imaging approaches is presented and will allow the interrogation of fMRI data in terms of directional flow of information and may identify the structural underpinnings of observed functional connectivity patterns. PMID:28539914
Aspergillus terreus has been difficult to identify in cases of aspergillosis, and clinical identification has been restricted to the broad identification of aspergillosis lesions in affected organs or the detection of fungal carbohydrates. As a result, there is a clinical need to...
Peptides conjugated to silver nanoparticles in biomedicine - a "value-added" phenomenon.
Ramesh, Suhas; Grijalva, Marcelo; Debut, Alexis; de la Torre, Beatriz G; Albericio, Fernando; Cumbal, Luis H
2016-11-15
Nanotechnology is gaining impetus in the present century and particularly the use of nanoparticles (NPs), whose properties are significantly different from the larger matter. These have found wider and potential applications in the fields of medicine, energy, cosmetics, environment and biomedicine. Among the NPs, silver nanoparticles (AgNPs) are of particular interest for scientists and technologists due to their unique physico-chemical and biological properties. Besides, AgNPs by themselves also possess broad-spectrum microbial activity, which has further expanded their application in both academia and industries. On the other hand, research and drug discovery in the field of peptides is surging. Chemistry and biology of peptides have seen a renaissance in this century as many of the peptide-based therapeutics have entered the market and many more are in the different phases of clinical trials. To fuel this, peptides have also found numerous applications in nanotechnology. Taking advantage of these two scenarios, namely, AgNPs and peptides, conjugation of these entities have emerged as a powerful technique and have opened the doors for a new revolution. Keeping this motivation in mind, we here present a mini-review on the combined concept of AgNPs and peptides.
Comprehensive bactericidal activity of an ethanol-based hand gel in 15 seconds.
Kampf, Günter; Hollingsworth, Angela
2008-01-22
Some studies indicate that the commonly recommended 30 s application time for the post contamination treatment of hands may not be necessary as the same effect may be achieved with some formulations in a shorter application time such as 15 s. We evaluated the bactericidal activity of an ethanol-based hand gel (Sterillium Comfort Gel) within 15 s in a time-kill-test against 11 Gram-positive, 16 Gram-negative bacteria and 11 emerging bacterial pathogens. Each strain was evaluated in quadruplicate. The hand gel (85% ethanol, w/w) was found to reduce all 11 Gram-positive and all 16 Gram-negative bacteria by more than 5 log10 steps within 15 s, not only against the ATCC test strains but also against corresponding clinical isolates. In addition, a log10 reduction > 5 was observed against all tested emerging bacterial pathogens. The ethanol-based hand gel was found to have a broad spectrum of bactericidal activity in only 15 s which includes the most common species causing nosocomial infections and the relevant emerging pathogens. Future research will hopefully help to find out if a shorter application time for the post contamination treatment of hands provides more benefits or more risks.
Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies.
Zhang, Zhiqing; Li, Shaowei; Gu, Ying; Xia, Ningshao
2016-11-18
Human immunodeficiency virus type 1 (HIV-1) infection causes acquired immune deficiency syndrome (AIDS), a global epidemic for more than three decades. HIV-1 replication is primarily controlled through antiretroviral therapy (ART) but this treatment does not cure HIV-1 infection. Furthermore, there is increasing viral resistance to ART, and side effects associated with long-term therapy. Consequently, there is a need of alternative candidates for HIV-1 prevention and therapy. Recent advances have discovered multiple broadly neutralizing antibodies against HIV-1. In this review, we describe the key epitopes on the HIV-1 Env protein and the reciprocal broadly neutralizing antibodies, and discuss the ongoing clinical trials of broadly neutralizing and inhibitory antibody therapy as well as antibody combinations, bispecific antibodies, and methods that improve therapeutic efficacy by combining broadly neutralizing antibodies (bNAbs) with latency reversing agents. Compared with ART, HIV-1 therapeutics that incorporate these broadly neutralizing and inhibitory antibodies offer the advantage of decreasing virus load and clearing infected cells, which is a promising prospect in HIV-1 prevention and treatment.
A postmenopausal woman with sciatica from broad ligament leiomyoma: a case report.
Tsai, Ya-Chu May
2016-10-31
Unilateral lower abdominal pain and/or sciatic nerve pain is a common presentation in the elderly population. The prevalence of broad ligament leiomyoma is <1 % with the prevalence declining after the menopause and it is rare for broad ligament leiomyomas to be clinically significant. Thus, we highlight a case of symptomatic broad ligament leiomyoma in a postmenopausal woman whose symptoms improved after definitive treatment. A 62-year-old postmenopausal Macedonian woman was referred to our gynecological department with unexplained pain in her left leg and left iliac fossa region on walking. There was minimal relief with increasing analgesia use prescribed by the family physician. Investigations revealed an ipsilateral adnexal mass and subsequent treatment with laparoscopic broad ligament myomectomy helped to alleviate her symptoms. Our case highlights the importance of staying mindful of alternate diagnoses when presented with a common presentation of iliac fossa pain and pain in the leg. Although broad ligament leiomyomas are benign tumors, the uncommon symptomatic presentation led us to report and focus some attention on this type of tumor.