A VLT VIMOS study of the anomalous BCD Mrk996: mapping the ionized gas kinematics and abundances
NASA Astrophysics Data System (ADS)
James, B. L.; Tsamis, Y. G.; Barlow, M. J.; Westmoquette, M. S.; Walsh, J. R.; Cuisinier, F.; Exter, K. M.
2009-09-01
A study of the blue compact dwarf (BCD) galaxy Mrk996 based on high-resolution optical Very Large Telescope Visible Multi-Object Spectrograph integral field unit spectroscopy is presented. Mrk996 displays multicomponent line emission, with most line profiles consisting of a narrow, central Gaussian [full width at half-maximum (FWHM) ~ 110kms-1] with an underlying broad component (FWHM ~ 400kms-1). The broad HI Balmer component splits into two separate broad components inside a 1.5-arcsec radius from the nucleus; these are attributed to a two-armed minispiral. This spiral-like nucleus rotates in the same sense as the extended narrow line ionized gas but is offset by ~50kms-1 from the systemic velocity of the galaxy. The rotation curve of Mrk996 derived from the Hα narrow component yields a total mass of 5 × 108Msolar within a radius of 3kpc. From the Hα luminosity we infer a global star formation rate of ~2Msolaryr-1. The high excitation energy, high critical density [OIII] λ4363 and [NII] λ5755 lines are only detected from the inner region and exist purely in broad component form, implying unusual excitation conditions. Surface brightness, radial velocity and FWHM maps for several emission components are presented. A separate physical analysis of the broad and narrow emission line regions is undertaken. We derive an upper limit of 10000K for the electron temperature of the narrow line gas, together with an electron density of 170cm-3, typical of normal HII regions. For the broad line component, measured [OIII] and [FeIII] diagnostic line ratios are consistent with a temperature of 11000K and an electron density of 107cm-3. The broad line emission regions show N/H and N/O enrichment factors of ~20 relative to the narrow line regions, but no He/H, O/H, S/H or Ar/H enrichment is inferred. Previous studies indicated that Mrk996 showed anomalously high N/O ratios compared with BCDs of a similar metallicity. Our multicomponent analysis yields a revised metallicity of >=0.5Zsolar (12 + logO/H = 8.37) for both the narrow and broad gas components, significantly higher than previous studies. As a result the narrow line region's N/O ratio is now typical for the galaxy's metallicity. The narrow line component's N/O ratio peaks outside the core region, spatially correlating with ~3-Myr-old stellar populations. The dominant line excitation mechanism is photoionization by the ~3000 Wolf-Rayet stars and ~150000 O-type stars estimated to be present in the core. This is indeed a peculiar BCD, with extremely dense zones of gas in the core, through which stellar outflows and possible shock fronts permeate contributing to the excitation of the broad line emission. Based on observations made with ESO telescopes at the Paranal Observatory under programme ID 078.B-0353(A). E-mail: bj@star.ucl.ac.uk (BLJ); tsamis@iaa.es (YGT)
Evaluating Possible Heating Mechanisms Using the Transition Region Line Profiles of Late-Type Stars
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Linsky, Jeffrey L.; Ayres, Thomas R.
1997-01-01
Our analysis of high-resolution Goddard High-Resolution Spectrograph (GHRS) spectra of late-type stars shows that the Si IV and C IV lines formed near 10(exp 5) K can be decomposed into the sum of two Gaussians, a broad component and a narrow component. We find that the flux contribution of the broad components is correlated with both the C IV and X-ray surface fluxes. For main-sequence stars, the widths of the narrow components suggest subsonic nonthermal velocities, and there appears to be a tight correlation between these nonthermal velocities and stellar surface gravity [xi(sub nc) varies as g(sup (-.68 +/-.07))]. For evolved stars with lower surface gravities, the nonthermal velocities suggested by the narrow components are at or just above the sound speed. Nonthermal velocities computed from the widths of the broad components are always highly supersonic. We propose that the broad components are diagnostics for microflare heating. Turbulent dissipation and Alfven waves are both viable candidates for the narrow component heating mechanism. A solar analog for the broad components might be the 'explosive events' detected by the High-Resolution Telescope and Spectrograph (HRTS) experiment. The broad component we observe for the Si IV lambda 1394 line of alpha Cen A, a star that is nearly identical to the Sun, has a FWHM of 109 +/- 10 km/s and is blueshifted by 9 +/- 3 km/s relative to the narrow component. Both of these properties are consistent with the properties of the solar explosive events. However, the alpha Cen A broad component accounts for 25% +/- 4% of the total Si IV line flux, while solar explosive events are currently thought to account for no more than 5% of the Sun's total transition region emission. This discrepancy must be resolved before the connection between broad components and explosive events can be positively established. In addition to our analysis of the Si IV and C IV lines of many stars, we also provide a more thorough analysis of all of the available GHRS data for alpha Cen A (G2 V) and alpha Cen B (K1 V). We find that the transition region lines of both stars have redshifts almost identical to those observed on the Sun: showing an increase with line formation temperature up to about log T = 5.2 and then a rapid decrease. Using the O IV] lines as density diagnostics, we compute electron densities of log n(sub e) = 9.65 +/- 0.20 and log n(sub e) = 9.50 +/- 0.30 for alpha Cen A and alpha Cen B, respectively.
Double-peaked broad line emission from the LINER nucleus of NGC 1097
NASA Technical Reports Server (NTRS)
Storchi-Bergmann, Thaisa; Baldwin, Jack A.; Wilson, Andrew S.
1993-01-01
We report the recent appearance of a very broad component in the H-alpha and H-beta emission lines of the weakly active nucleus of the Sersic-Pastoriza galaxy NGC 1097. The FWZI of the broad component is about 21,000 km/s, and its profile is double-peaked; the presence of a blue, featureless continuum in the nucleus is also suggested. The broad component was first observed in H-alpha in November 2, 1991, and confirmed 11 months later. The H-alpha profile and flux did not change in this time interval. Comparison with previously published spectral data indicates that the broad lines have only recently appeared. Together with the relatively high X-ray luminosity and the compact nuclear radio source, our results characterize the presence of a Seyfert 1 nucleus in a galaxy which had previously shown only LINER characteristics. Obscuring material along our line of sight to the nucleus appears to have recently cleared, permitting a direct view of the active nucleus. We discuss two possible structures for the broad line region, biconical outflow and an accretion disk, that could give rise to the observed profile.
Constraints on the outer radius of the broad emission line region of active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Ward, Martin J.; Elvis, Martin; Karovska, Margarita
2014-03-01
Here we present observational evidence that the broad emission line region (BELR) of active galactic nuclei (AGN) generally has an outer boundary. This was already clear for sources with an obvious transition between the broad and narrow components of their emission lines. We show that the narrow component of the higher-order Paschen lines is absent in all sources, revealing a broad emission line profile with a broad, flat top. This indicates that the BELR is kinematically separate from the narrow emission line region. We use the virial theorem to estimate the BELR outer radius from the flat top width of the unblended profiles of the strongest Paschen lines, Paα and Paβ, and find that it scales with the ionizing continuum luminosity roughly as expected from photoionization theory. The value of the incident continuum photon flux resulting from this relationship corresponds to that required for dust sublimation. A flat-topped broad emission line profile is produced by both a spherical gas distribution in orbital motion and an accretion disc wind if the ratio between the BELR outer and inner radius is assumed to be less than ˜100-200. On the other hand, a pure Keplerian disc can be largely excluded, since for most orientations and radial extents of the disc the emission line profile is double-horned.
The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines
NASA Technical Reports Server (NTRS)
Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi;
2007-01-01
We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.
Accretion dynamics of EX Lupi in quiescence. The star, the spot, and the accretion column
NASA Astrophysics Data System (ADS)
Sicilia-Aguilar, Aurora; Fang, Min; Roccatagliata, Veronica; Collier Cameron, Andrew; Kóspál, Ágnes; Henning, Thomas; Ábrahám, Peter; Sipos, Nikoletta
2015-08-01
Context. EX Lupi is a young, accreting M0 star and the prototype of EXor variable stars. Its spectrum is very rich in emission lines, including many metallic lines with narrow and broad components. The presence of a close companion has also been proposed, based on radial velocity signatures. Aims: We use the metallic emission lines to study the accretion structures and to test the companion hypothesis. Methods: We analyse 54 spectra obtained during five years of quiescence time. We study the line profile variability and the radial velocity of the narrow and broad metallic emission lines. We use the velocity signatures of different species with various excitation conditions and their time dependency to track the dynamics associated with accretion. Results: We observe periodic velocity variations in the broad and the narrow line components, consistent with rotational modulation. The modulation is stronger for lines with higher excitation potentials (e.g. He II), which are likely produced in a confined area very close to the accretion shock. Conclusions: We propose that the narrow line components are produced in the post-shock region, while the broad components originate in the more extended, pre-shock material in the accretion column. All the emission lines suffer velocity modulation due to the rotation of the star. The broad components are responsible for the line-dependent veiling observed in EX Lupi. We demonstrate that a rotationally modulated line-dependent veiling can explain the radial velocity signature of the photospheric absorption lines, making the close-in companion hypothesis unnecessary. The accretion structure is locked to the star and very stable during the five years of observations. Not all stars with similar spectral types and accretion rates show the same metallic emission lines, which could be related to differences in temperature and density in their accretion structure(s). The contamination of photospheric signatures by accretion-related processes can be turned into a very useful tool for determining the innermost details of the accretion channels in the proximity of the star. The presence of emission lines from very stable accretion columns will nevertheless be a very strong limitation for the detection of companions by radial velocity in young stars, given the similarity of the accretion-related signatures with those produced by a companion. Appendices are available in electronic form at http://www.aanda.org
NASA Technical Reports Server (NTRS)
Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.;
2001-01-01
We present a moderate-resolution (approximately 20 km s(exp -1) spectrum of the mini broad absorption line QSO PG 1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III (lambda)977, Ly(beta), O VI (lambda)(lambda)1032,1038, Ly(alpha), N V (lambda)(lambda)1238,1242, Si IV (lambda)(lambda)1393,1402, and C IV (lambda)(lambda)1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km s(exp -1) with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly(alpha) flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV (ultraviolet) continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21) cm(exp -2), unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.
NASA Technical Reports Server (NTRS)
Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.;
2001-01-01
We present a moderate-resolution (approximately 20 km/s) spectrum of the broad-absorption line QSO PG 1351+64 between 915-1180 angstroms, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III lambda977, Ly-beta, O VI lambda-lambda-1032,1038, Ly-alpha, N V lambda-lambda-1238,1242, Si IV lambda-lambda-1393,1402, and C IV lambda-lambda-1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly-alpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The ultraviolet continuum shows a significant change in slope near 1050 angstroms in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21)/s, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.
Variable broad lines and outflow in the weak blazar PBC J2333.9-2343
NASA Astrophysics Data System (ADS)
Hernández-García, L.; Vietri, G.; Panessa, F.; Piconcelli, E.; Chavushyan, V.; Jiménez-Andrade, E. F.; Bassani, L.; Bazzano, A.; Cazzoli, S.; Malizia, A.; Masetti, N.; Monaco, L.; Pović, M.; Saviane, I.; Ubertini, P.
2018-05-01
PBC J2333.9-2343 is a peculiar active nucleus with two giant radio lobes and a weak blazar-like nucleus at their center. In the present work we show new optical, UV, and X-ray data taken from the San Pedro Mártir telescope, the New Technology Telescope, NTT/EFOSC2, and the Swift/XRT satellite. The source is highly variable at all frequencies, in particular the strongest variations are found in the broad Hα component with a flux increase of 61±4 per cent between 2009 and 2016, following the X-ray flux increase of 62±6 per cent between 2010 and 2016. We also detected a broad Hβ component in 2016, making the optical classification change from type 1.9 to type 1.8 in one year. We have also detected a broad component of the [OIII]λ5007 line, which is blue-shifted and of high velocity, suggesting an origin from a highly disturbed medium, possibly an outflow. The line flux variability and broad widths are indicative of a jet that is, at least in part, responsible for the ionization of the BLR and NLR.
NEAR-INFRARED SPECTROSCOPY OF THE TYPE IIn SN 2010jl: EVIDENCE FOR HIGH VELOCITY EJECTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borish, H. Jacob; Huang, Chenliang; Chevalier, Roger A.
2015-03-01
The Type IIn supernova SN 2010jl was relatively nearby and luminous, allowing detailed studies of the near-infrared (NIR) emission. We present 1-2.4 μm spectroscopy over the age range of 36-565 days from the earliest detection of the supernova. On day 36, the H lines show an unresolved narrow emission component along with a symmetric broad component that can be modeled as the result of electron scattering by a thermal distribution of electrons. Over the next hundreds of days, the broad components of the H lines shift to the blue by 700 km s{sup –1}, as is also observed in optical lines.more » The narrow lines do not show a shift, indicating they originate in a different region. He I λ10830 and λ20587 lines both show an asymmetric broad emission component, with a shoulder on the blue side that varies in prominence and velocity from –5500 km s{sup –1} on day 108 to –4000 km s{sup –1} on day 219. This component may be associated with the higher velocity flow indicated by X-ray observations of the supernova. The absence of the feature in the H lines suggests that this is from a He-rich ejecta flow. The He I λ10830 feature has a narrow P Cygni line, with absorption extending to ∼100 km s{sup –1} and strengthening over the first 200 days, and an emission component which weakens with time. At day 403, the continuum emission becomes dominated by a blackbody spectrum with a temperature of ∼1900 K, suggestive of dust emission.« less
Relativistic redshifts in quasar broad lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremaine, Scott; Shen, Yue; Liu, Xin
2014-10-10
The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomlymore » oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rho, J.; Hewitt, J. W.; Boogert, A.
2015-10-10
We performed Herschel HIFI, PACS, and SPIRE observations toward the molecular cloud interacting supernova remnant G349.7+0.2. An extremely broad emission line was detected at 557 GHz from the ground state transition 1{sub 10}-1{sub 01} of ortho-water. This water line can be separated into three velocity components with widths of 144, 27, and 4 km s{sup −1}. The 144 km s{sup −1} component is the broadest water line detected to date in the literature. This extremely broad line width shows the importance of probing shock dynamics. PACS observations revealed three additional ortho-water lines, as well as numerous high-J carbon monoxide (CO)more » lines. No para-water lines were detected. The extremely broad water line is indicative of a high velocity shock, which is supported by the observed CO rotational diagram that was reproduced with a J-shock model with a density of 10{sup 4} cm{sup −3} and a shock velocity of 80 km s{sup −1}. Two far-infrared fine-structure lines, [O i] at 145 μm and [C ii] line at 157 μm, are also consistent with the high velocity J-shock model. The extremely broad water line could be simply from short-lived molecules that have not been destroyed in high velocity J-shocks; however, it may be from more complicated geometry such as high-velocity water bullets or a shell expanding in high velocity. We estimate the CO and H{sub 2}O densities, column densities, and temperatures by comparison with RADEX and detailed shock models.« less
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; Padmanabhan, Urmila; Kraemer, Steven B.; Crenshaw, D. Michael; Mckernan, Barry; George, Ian M.; Turner, T. Jane; White, Nicholas E. (Technical Monitor)
2002-01-01
We report the results of simultaneous Chandra and RXTE observations of the Seyfert 1 galaxy Mkn 509. We deconvolve the broad and narrow Fe-K emission-line components for which we measure rest-frame equivalent widths of 119+/-18 eV and 57+/-13 eV respectively. The broad line has a FWHM of 57,600((sup 14,400)(sub -21,000)) km/s and the narrow line is unresolved, with an upper limit on the FWHM of 4,940 km/s. Both components must originate in cool matter since we measure rest-frame center energies of 6.36((sup +0.13)(sub -0.12)) keV and 6.42+/-0.01 keV for the broad and narrow line respectively. This rules out He-like and H-like Fe for the origin of both the broad and narrow lines. If, as is widely accepted, the broad Fe-K line originates in Thomson-thick matter (such as an accretion disk), then one expects to observe spectral curvature above approximately 10 keV, (commensurate with the observed broad line), characteristic of the Compton-reflection continuum. However our data sets very stringent limits on deviations of the observed continuum from a power law. Light travel-time delays cannot be invoked to explain anomalies in the relative strengths of the broad Ferry line and Compton-reflection continuum since they are supposed to originate in the same physical location. We are forced to conclude that both the broad and narrow Fe-K lines had to originate in Thomson-thin matter during our observation. This result, for a single observation of just one source, means that our understanding of Fe K line emission and Compton reflection from accreting X-ray sources in general needs to be re-examined. For example, if an irradiated accretion disk existed in Mkn 509 at the time of the observations, the lack of spectral curvature above approximately 10 keV suggests two possibilities. Either the disk was Thomson-thick and highly ionized, having negligible Fe-K line emission and photoelectric absorption or the disk was Thomson-thin producing some or all of the broad Fe-K line emission. In the former case, the broad Fe-K line had to have produced in a Thomson-thin region elsewhere. In both cases the predicted spectral curvature above approximately 10 keV is negligible. An additional implication of our results is that any putative obscuring torus in the system, required by unification models of active galaxies, must also be Thomson-thin. The same applies to the optical broad line region (BLR) if it has a substantial covering factor.
FLARE-LIKE VARIABILITY OF THE Mg II {lambda}2800 EMISSION LINE IN THE {gamma}-RAY BLAZAR 3C 454.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leon-Tavares, J.; Chavushyan, V.; Patino-Alvarez, V.
2013-02-01
We report the detection of a statistically significant flare-like event in the Mg II {lambda}2800 emission line of 3C 454.3 during the outburst of autumn 2010. The highest levels of emission line flux recorded over the monitoring period (2008-2011) coincide with a superluminal jet component traversing through the radio core. This finding crucially links the broad emission line fluctuations to the non-thermal continuum emission produced by relativistically moving material in the jet and hence to the presence of broad-line region clouds surrounding the radio core. If the radio core were located at several parsecs from the central black hole, thenmore » our results would suggest the presence of broad-line region material outside the inner parsec where the canonical broad-line region is envisaged to be located. We briefly discuss the implications of broad emission line material ionized by non-thermal continuum in the context of virial black hole mass estimates and gamma-ray production mechanisms.« less
Steps Toward Unveiling the True Population of AGN: Photometric Selection of Broad-Line AGN
NASA Astrophysics Data System (ADS)
Schneider, Evan; Impey, C.
2012-01-01
We present an AGN selection technique that enables identification of broad-line AGN using only photometric data. An extension of infrared selection techniques, our method involves fitting a given spectral energy distribution with a model consisting of three physically motivated components: infrared power law emission, optical accretion disk emission, and host galaxy emission. Each component can be varied in intensity, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this model, both broad- and narrow-line AGN are seen to fall within discrete ranges of parameter space that have plausible bounds, allowing physical trends with luminosity and redshift to be determined. Based on a fiducial sample of AGN from the catalog of Trump et al. (2009), we find the region occupied by broad-line AGN to be distinct from that of quiescent or star-bursting galaxies. Because this technique relies only on photometry, it will allow us to find AGN at fainter magnitudes than are accessible in spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects. With the vast availability of photometric data in large surveys, this technique should have broad applicability and result in large samples that will complement X-ray AGN catalogs.
EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan
2015-12-01
We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsicmore » Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.« less
NASA Technical Reports Server (NTRS)
Wiggs, Michael S.; Gies, Douglas R.
1993-01-01
The orbital-phase variations in the optical emission lines and UV P Cygni lines of the massive O-type binary 29 UW Canis Majoris are investigated in a search for evidence of colliding winds. High SNR spectra of the H-alpha and He I 6678-A emission lines are presented, and radial velocity curves for several features associated with the photosphere of the more luminous primary star are given. The H-alpha features consists of a P Cygni component that shares the motion of the primary, and which probably originates at the base of its wind, and a broad, stationary emission component. It is proposed that the broad emission forms in a plane midway between the stars where the winds collide. A simple geometric model is used to show that this placement of the broad component can explain the lack of orbital velocity shifts, the near-constancy of the emission strength throughout the orbit, the large velocities associated with the H-alpha wings, and the constancy of the velocity range observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espada, D.; Matsushita, S.; Sakamoto, K.
2010-09-01
We report on atomic gas (H I) and molecular gas (as traced by CO(2-1)) redshifted absorption features toward the nuclear regions of the closest powerful radio galaxy, Centaurus A (NGC 5128). Our H I observations using the Very Long Baseline Array allow us to discern with unprecedented sub-parsec resolution H I absorption profiles toward different positions along the 21 cm continuum jet in the inner 0.''3 (or 5.4 pc). In addition, our CO(2-1) data obtained with the Submillimeter Array probe the bulk of the absorbing molecular gas with little contamination by emission, which was not possible with previous CO single-dishmore » observations. We shed light on the physical properties of the gas in the line of sight with these data, emphasizing the still open debate about the nature of the gas that produces the broad absorption line ({approx}55 km s{sup -1}). First, the broad H I line is more prominent toward the central and brightest 21 cm continuum component than toward a region along the jet at a distance {approx}20 mas (or 0.4 pc) further from the nucleus. This indicates that the broad absorption line arises from gas located close to the nucleus, rather than from diffuse and more distant gas. Second, the different velocity components detected in the CO(2-1) absorption spectrum match well with other molecular lines, such as those of HCO{sup +}(1-0), except the broad absorption line that is detected in HCO{sup +}(1-0) (and most likely related to that of the H I). Dissociation of molecular hydrogen due to the active galactic nucleus seems to be efficient at distances r {approx}< 10 pc, which might contribute to the depth of the broad H I and molecular lines.« less
Broad Low-Intensity Wings in the Emission-Line Profiles of Four Wolf-Rayet Galaxies
NASA Astrophysics Data System (ADS)
Méndez, David I.; Esteban, César
1997-10-01
High-resolution spectroscopic observations have been obtained for the Wolf-Rayet galaxies He 2-10, II Zw 40, POX 4, and Tol 35. Several subregions have been selected in each slit position in order to investigate possible spatial variations in the line profiles, radial velocities, and ionization conditions of the gas. The most remarkable feature of the spectra is the presence of asymmetric broad low-intensity wings in the profiles of the brightest emission lines. These spectral features are detected farther out from the star-forming knots, showing linear dimensions between 300 pc and 4.1 kpc. The maximum expansion velocity measured for this gas is between 120 and 340 km s-1 and appears to be quite constant along the slit for all the objects. Additional general properties of the spectra are (1) the quoted emission-line ratios are similar in the narrow and broad components, (2) no systematic differences of the behavior of the broad and narrow components have been found along the major and minor axis of the galaxies, and (3) the spatial distribution of the ionized gas is peaked centrally. Different mechanisms capable of producing the observed broad spectral features are discussed: cloud-cloud collisions in virialized gas, ``academic'' superbubbles, champagne flows, and superbubble blowout. It is concluded that superbubble blowout expanding over a cloudy medium can explain the observational properties in a reasonable manner.
WISE J233237.05-505643.5: A Double-Peaked Broad-Lined AGN with Spiral-Shaped Radio Morphology
NASA Technical Reports Server (NTRS)
Tsai, Chao Wei; Jarrett, Thomas H.; Stern, Daniel; Emonts, Bjorn; Barrows, R. Scott; Assef, Roberto J.; Norris, Ray P.; Eisenhardt, Peter R. M.; Lonsdale, Carol; Blain, Andrew W.;
2013-01-01
We present radio continuum mapping, optical imaging and spectroscopy of the newly discovered double-peaked broad-lined AGN WISE J233237.05-505643.5 at redshift z = 0.3447. This source exhibits an FR-I and FR-II hybrid-morphology, characterized by bright core, jet, and Doppler-boosted lobe structures in ATCA continuum maps at 1.5, 5.6, and 9 GHz. Unlike most FR-II objects, W2332-5056 is hosted by a disk-like galaxy. The core has a projected 5" linear radio feature that is perpendicular to the curved primary jet, hinting at unusual and complex activity within the inner 25 kpc. The multi-epoch optical-near-IR photometric measurements indicate significant variability over a 3-20 year baseline from the AGN component. Gemini-South optical data shows an unusual double-peaked emission-line features: the centroids of the broad-lined components of H-alpha and H-beta are blueshifted with respect to the narrow lines and host galaxy by approximately 3800 km/s. We examine possible cases which involve single or double supermassive black holes in the system, and discuss required future investigations to disentangle the mystery nature of this system.
Lens-Aided Multi-Angle Spectroscopy (LAMAS) Reveals Small-Scale Outflow Structure in Quasars
NASA Astrophysics Data System (ADS)
Green, Paul J.
2006-06-01
Spectral differences between lensed quasar image components are common. Since lensing is intrinsically achromatic, these differences are typically explained as the effect of either microlensing, or as light path time delays sampling intrinsic quasar spectral variability. Here we advance a novel third hypothesis: some spectral differences are due to small line-of-sight differences through quasar disk wind outflows. In particular, we propose that variable spectral differences seen only in component A of the widest separation lens SDSS J1004+4112 are due to differential absorption along the sight lines. The absorber properties required by this hypothesis are akin to known broad absorption line (BAL) outflows but must have a broader, smoother velocity profile. We interpret the observed C IV emission-line variability as further evidence for spatial fine structure transverse to the line of sight. Since outflows are likely to be rotating, such absorber fine structure can consistently explain some of the UV and X-ray variability seen in AGNs. The implications are many: (1) Spectroscopic differences in other lensed objects may be due to this ``lens-aided multi-angle spectroscopy'' (LAMAS). (2) Outflows have fine structure on size scales of arcseconds, as seen from the nucleus. (3) Assuming either broad absorption line region sizes proposed in recent wind models, or typically assumed continuum emission region sizes, LAMAS and/or variability provide broadly consistent absorber size scale estimates of ~1015 cm. (4) Very broad smooth absorption may be ubiquitous in quasar spectra, even when no obvious troughs are seen.
QSO Broad Emission Line Asymmetries: Evidence of Gravitational Redshift?
NASA Astrophysics Data System (ADS)
Corbin, Michael R.
1995-07-01
The broad optical and ultraviolet emission lines of QSOs and active galactic nuclei (AGNs) display both redward and blueward asymmetries. This result is particularly well established for Hβ and C IV λ1549, and it has been found that Hβ becomes increasingly redward asymmetric with increasing soft X-ray luminosity. Two models for the origin of these asymmetries are investigated: (1) Anisotropic line emission from an ensemble of radially moving clouds, and (2) Two-component profiles consisting of a core of intermediate (˜1000-4000 km s-1) velocity width and a very broad (˜5000-20,000 km s-1) base, in which the asymmetries arise due to a velocity difference between the centroids of the components. The second model is motivated by the evidence that the traditional broad-line region is actually composed of an intermediate-line region (ILR) of optically thick clouds and a very broad line region (VBLR) of optically thin clouds lying closer to the central continuum source. Line profiles produced by model (1) are found to be inconsistent with those observed, being asymmetric mainly in their cores, whereas the asymmetries of actual profiles arise mainly from excess emission in their wings. By contrast, numerical fitting to actual Hβ and C IV λ1549 line profiles reveals that the majority can be accurately modeled by two components, either two Gaussians or the combination of a Gaussian base and a logarithmic core. The profile asymmetries in Hβ can be interpreted as arising from a shift of the base component over a range ˜6300 km s-1 relative to systemic velocity as defined by the position of the [O III] λ5007 line. A similar model appears to apply to C IV λ1549. The correlation between Hβ asymmetry and X-ray luminosity may thus be interpreted as a progressive red- shift of the VBLR velocity centroid relative to systemic velocity with increasing X-ray luminosity. This in turn suggests that the underlying effect is gravitational red shift, as soft X-ray emission arises from a region ˜ light-minutes in size and arguably traces the mass of the putative supermassive black hole. Depending on the size of the VBLR and the exact amount of its profile centroid shift, central masses in the range 109-10 Msun are implied for the objects displaying the strongest redward profile asymmetries, consistent with other estimates. The largest VBLR velocity dispersions measured from the two-component modeling are ˜20,000 km s-1, which also yields a virial mass ˜109 Msun for a VBLR size 0.1 pc. The gravitational redshift model does not explain the origin of the blueshift of the VBLR emission among low X-ray luminosity sources, however. This must be interpreted as arising from a competing effect such as electron scattering of line photons in the vicinity of the VBLR. On average, radio-loud objects have redward asymmetric broad-line profiles and stronger intermediate- and narrow-line emission than radio-quiet objects of comparable optical luminosity. Under the gravitational redshift model these differences may be interpreted as the result of black hole and host galaxy masses that are larger on average among the former class, consistent with the evidence that they are merger products.
THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela
2015-04-15
In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hβ line widths in mean and rms spectra. For the most highly variable AGNs wemore » also measured broad Hβ line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad Hβ width and luminosity, demonstrating that the broad-line region “breathes” on short timescales of days to weeks in response to continuum variations. We also find that broad Hβ velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad Hβ velocity shifted by ∼250 km s{sup −1} over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.« less
The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves
NASA Technical Reports Server (NTRS)
Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor L.; Greene, Jenny E..; Li, Weidong; Malkan, Matthew A.; Pancoast, Anna; Sand, David J.;
2016-01-01
In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hß line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad H beta line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad H beta width and luminosity, demonstrating that the broad-line region "breathes" on short timescales of days to weeks in response to continuum variations. We also find that broad H beta velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad H beta velocity shifted by approximately 250 km s(exp -1) over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.
Spectral Analysis of the Accretion Flow in NGC 1052 with Suzaku
NASA Technical Reports Server (NTRS)
Brenneman, L. W.; Weaver, K. A.; Kadler, M.; Tueller, J.; Marscher, A.; Ros, E.; Zensus,A.; Kovalev, Y. Y.; Aller, M.; Aller, H.;
2008-01-01
We present an analysis of the 101 ks, 2007 Suzaku spectrum of the LINER galaxy NGC 1052. The 0:3..10 keV continuum is well-modeled by a power-law continuum modified by Galactic and intrinsic absorption, and exhibits a soft, thermal emission component below 1 keV. Both a narrow core and a broader component of Fe-Ka emission are robustly detected at 6:4 keV. While the narrow line is consistent with an origin in material distant from the black hole, the broad line is best fit empirically by a model that describes fluorescent emission from the inner accretion disk around a rapidly rotating black hole. We find no direct evidence for Comptonized reflection of the hard X-ray source by the disk above 10 keV, however, which casts doubt on the hypothesis that the broad iron line is produced in a standard accretion disk. We explore other possible scenarios for producing this spectral feature and conclude that the high equivalent width and full width half maximum velocity of the broad iron line (v greater than or equals 0:37c) necessitate an origin within d approx. 8r(sub g) of the hard X-ray source. Based on the confirmed presence of a strong radio jet in this source, the broad iron line may be produced in dense plasma at the base of the jet, implying that emission mechanisms in the central-most portions of active galactic nuclei are more complex than previously thought.
Broad [C II] Line Wings as Tracer of Molecular and Multi-phase Outflows in Infrared Bright Galaxies
NASA Astrophysics Data System (ADS)
Janssen, A. W.; Christopher, N.; Sturm, E.; Veilleux, S.; Contursi, A.; González-Alfonso, E.; Fischer, J.; Davies, R.; Verma, A.; Graciá-Carpio, J.; Genzel, R.; Lutz, D.; Sternberg, A.; Tacconi, L.; Burtscher, L.; Poglitsch, A.
2016-05-01
We report a tentative correlation between the outflow characteristics derived from OH absorption at 119 μm and [C II] emission at 158 μm in a sample of 22 local and bright ultraluminous infrared galaxies (ULIRGs). For this sample, we investigate whether [C II] broad wings are a good tracer of molecular outflows, and how the two tracers are connected. Fourteen objects in our sample have a broad wing component as traced by [C II], and all of these also show OH119 absorption indicative of an outflow (in one case an inflow). The other eight cases, where no broad [C II] component was found, are predominantly objects with no OH outflow or a low-velocity (≤100 km s-1) OH outflow. The FWHM of the broad [C II] component shows a trend with the OH119 blueshifted velocity, although with significant scatter. Moreover, and despite large uncertainties, the outflow masses derived from OH and broad [C II] show a 1:1 relation. The main conclusion is therefore that broad [C II] wings can be used to trace molecular outflows. This may be particularly relevant at high redshift, where the usual tracers of molecular gas (like low-J CO lines) become hard to observe. Additionally, observations of blueshifted Na I D λλ 5890, 5896 absorption are available for 10 of our sources. Outflow velocities of Na I D show a trend with OH velocity and broad [C II] FWHM. These observations suggest that the atomic and molecular gas phases of the outflow are connected.
Baldwin Effect and Additional BLR Component in AGN with Superluminal Jets
NASA Astrophysics Data System (ADS)
Patiño Álvarez, Víctor; Torrealba, Janet; Chavushyan, Vahram; Cruz González, Irene; Arshakian, Tigran; León Tavares, Jonathan; Popovic, Luka
2016-06-01
We study the Baldwin Effect (BE) in 96 core-jet blazars with optical and ultraviolet spectroscopic data from a radio-loud AGN sample obtained from the MOJAVE 2cm survey. A statistical analysis is presented of the equivalent widths W_lambda of emission lines H beta 4861, Mg II 2798, C IV 1549, and continuum luminosities at 5100, 3000, and 1350 angstroms. The BE is found statistically significant (with confidence level c.l. > 95%) in H beta and C IV emission lines, while for Mg II the trend is slightly less significant (c.l. = 94.5%). The slopes of the BE in the studied samples for H beta and Mg II are found steeper and with statistically significant difference than those of a comparison radio-quiet sample. We present simulations of the expected BE slopes produced by the contribution to the total continuum of the non-thermal boosted emission from the relativistic jet, and by variability of the continuum components. We find that the slopes of the BE between radio-quiet and radio-loud AGN should not be different, under the assumption that the broad line is only being emitted by the canonical broad line region around the black hole. We discuss that the BE slope steepening in radio AGN is due to a jet associated broad-line region.
Seeing Through the Clouds: AGN Geometry with the Swift BAT Sample
NASA Astrophysics Data System (ADS)
Glikman, Eilat; Urry, M.; Schawinski, K.; Koss, M. J.; Winter, L. M.; Elitzur, M.; Wilkin, W. H.
2011-01-01
We investigate the intrinsic structure of the clouds surrounding AGN which give rise to their X-ray and optical emission properties. Using a complete sample of Swift BAT AGN selected in hard X-rays (14-195 keV), which is unbiased with respect to obscuration and extinction, we compute the reddening in the broad line region along the line of sight to the nucleus of each source using Balmer decrement from the ratio of the broad components of H-alpha/H-beta. We compare reddening from dust in the broad line clouds to the hydrogen column density (NH) obtained from their X-ray spectra. The distribution of the gas-to-dust ratios over many lines of sight allow us to test models of AGN structure and probe the immediate environment of the accreting supermassive black holes.
The Case for General Relativistic Effects in the Fe K(alpha) Profile of an Active Galaxy
NASA Technical Reports Server (NTRS)
Turner, T. J.; Mushotzky, R.; Yaqoob, T.; George, I. M.; Snowden, S. L.; Netzer, H.; Kraemer, S. B.; Nandra, K.; Chelouche, D.; White, Nicholas E. (Technical Monitor)
2002-01-01
We present results from a simultaneous Chandra HETG (High Energy Transmission Grating) and XMM (X-ray Multi-mirror Mission)-Newton observation of NGC 3516. We find evidence for several narrow components of Fe K(alpha) along with a broad line. We consider the possibility that the lines arise in a blob of material ejected from the nucleus with velocity of approximately 0.25c. We also consider an origin in a neutral accretion disk, suffering enhanced illumination at 35 and 175 R(sub g), perhaps due to magnetic reconnection. The presence of these narrow features indicates there is no Comptonizing region along the line-of-sight to the nucleus. This in turn is compelling support for the hypothesis that broad Fe K(alpha) components are, in general, produced by strong gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tombesi, F.; Kallman, T.; Leutenegger, M. A.
2016-10-20
We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory . The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700–1000 eV associated with ionized Fe L transitions (Fe XVII–XX). An emission line at the energy of E ≃ 6.4 keV consistent with the Fe K α is also observed. Our best-fit model requires at least three different components: (i) amore » hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 ± 0.1 keV; (ii) a warm absorber with ionization parameter log ξ = 2.3 ± 0.5 erg s{sup −1} cm, column density log N {sub H} = 20.7 ± 0.1 cm{sup −2}, and outflow velocity v {sub out} < 150 km s{sup −1}; and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.« less
NASA Technical Reports Server (NTRS)
Tombesi, F.; Reeves, J. N.; Kallman, Timothy R.; Reynolds, C. S.; Mushotzky, R. F.; Braito, V.; Behar, E.; Leutenegger, Maurice A.; Cappi, M.
2016-01-01
We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory. The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700-1000 eV associated with ionized Fe L transitions (Fe XVIIXX). An emission line at the energy of E approximately equal to 6.4 keV consistent with the Fe K alpha is also observed. Our best-fit model requires at least three different components: (i) a hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 +/- 0.1 keV; (ii) a warm absorber with ionization parameter log Epislon = 2.3 +/- 0.5 erg s(exp 1) cm, column density logN(sub H) = 20.7 +/- 0.1 cm(exp -2), and outflow velocity v(sub out) less than 150 km s(exp -1); and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.
The Spectral Variability of the T Tauri Star DF Tauri
NASA Astrophysics Data System (ADS)
Johns-Krull, Christopher M.; Basri, Gibor
1997-01-01
We analyze 117 echelle spectra of the T Tauri star DF Tau, concentrating on variations in the optical continuum veiling and the strong emission lines. Although this star was the inspiration for the original suggestion of magnetospheric accretion in T Tauri stars (TTSs), this hypothesis is only partially supported in our data. We find that variations in the Ca II infrared triplet lines correlate with the veiling variations; there is some evidence that the broad component of the He I line does, too. The narrow component of He I is shown to arise at the stellar surface, but it correlates with the broad component. There is a surprising lack of periodicity in the lines, and it does not occur where expected when seen. The correlation between continuum veiling and the line components expected to be most related to the veiling is poor. There is a great deal of variability in all the lines and line components; a snapshot spectrum is a poor way to characterize the star as a whole. The total Balmer line fluxes are poorly correlated with the veiling, unlike previous results on a large sample of TTSs. Redshifted absorption components are found in the weaker lines but are not common. The strength of the blueshifted absorption feature in Hα is correlated with the veiling, but changes in it perhaps occur before veiling changes by about one day. This time delay supports the idea that the wind originates at some distance from the stellar surface and is related to accretion. Spherically symmetric wind models are unable to reproduce well the relative absorption levels on the blue side of the Hα and Hβ lines simultaneously. Hα does not display the asymmetries expected of magnetospheric accretion, but it is sometimes suggestive of azimuthally asymmetric corotating structures. The line wings indicate that the formation region of the Hα line is dominated by high turbulence. Hβ does show more of the asymmetry expected of magnetospheric accretion. Based on observations obtained at the Lick Observatory operated by the University of California.
MOLECULAR GAS VELOCITY DISPERSIONS IN THE ANDROMEDA GALAXY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldú-Primo, Anahi; Schruba, Andreas, E-mail: caldu@mpia.de, E-mail: schruba@mpe.mpg.de
In order to characterize the distribution of molecular gas in spiral galaxies, we study the line profiles of CO (1 – 0) emission in Andromeda, our nearest massive spiral galaxy. We compare observations performed with the IRAM 30 m single-dish telescope and with the CARMA interferometer at a common resolution of 23 arcsec ≈ 85 pc × 350 pc and 2.5 km s{sup −1}. When fitting a single Gaussian component to individual spectra, the line profile of the single dish data is a factor of 1.5 ± 0.4 larger than the interferometric data one. This ratio in line widths ismore » surprisingly similar to the ratios previously observed in two other nearby spirals, NGC 4736 and NGC 5055, but measured at ∼0.5–1 kpc spatial scale. In order to study the origin of the different line widths, we stack the individual spectra in five bins of increasing peak intensity and fit two Gaussian components to the stacked spectra. We find a unique narrow component of FWHM = 7.5 ± 0.4 km s{sup −1} visible in both the single dish and the interferometric data. In addition, a broad component with FWHM = 14.4 ± 1.5 km s{sup −1} is present in the single-dish data, but cannot be identified in the interferometric data. We interpret this additional broad line width component detected by the single dish as a low brightness molecular gas component that is extended on spatial scales >0.5 kpc, and thus filtered out by the interferometer. We search for evidence of line broadening by stellar feedback across a range of star formation rates but find no such evidence on ∼100 pc spatial scale when characterizing the line profile by a single Gaussian component.« less
COLLIMATION AND SCATTERING OF THE ACTIVE GALACTIC NUCLEUS EMISSION IN THE SOMBRERO GALAXY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br
2013-03-10
We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the H{alpha} emission line. The collimation and scattering of this broad H{alpha} component was also revealed by fitting the [N II] {lambda}{lambda}6548, 6583 and H{alpha} emission linesmore » as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = -18 Degree-Sign {+-} 13 Degree-Sign and P.A. = 162 Degree-Sign {+-} 13 Degree-Sign ) along a direction perpendicular to the torus/disk (P.A. = 72 Degree-Sign {+-} 14 Degree-Sign ) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the H{alpha} emission line is visible and also why many previous studies detected no broad H{alpha}. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian-Min; Qiu, Jie; Du, Pu
2014-12-10
Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR) from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energymore » distributions depending on their location relative to the disk, resulting in the diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected to reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ and other broad emission lines (e.g., Fe II), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.« less
NASA Astrophysics Data System (ADS)
Mazzali, P. A.; Ashall, C.; Pian, E.; Stritzinger, M. D.; Gall, C.; Phillips, M. M.; Höflich, P.; Hsiao, E.
2018-05-01
The nebular-epoch spectrum of the rapidly declining, `transitional' Type Ia supernova (SN) 2007on showed double emission peaks, which have been interpreted as indicating that the SN was the result of the direct collision of two white dwarfs. The spectrum can be reproduced using two distinct emission components, one redshifted and one blueshifted. These components are similar in mass but have slightly different degrees of ionization. They recede from one another at a line-of-sight speed larger than the sum of the combined expansion velocities of their emitting cores, thereby acting as two independent nebulae. While this configuration appears to be consistent with the scenario of two white dwarfs colliding, it may also indicate an off-centre delayed detonation explosion of a near-Chandrasekhar-mass white dwarf. In either case, broad emission line widths and a rapidly evolving light curve can be expected for the bolometric luminosity of the SN. This is the case for both SNe 2007on and 2011iv, also a transitional SN Ia that exploded in the same elliptical galaxy, NGC 1404. Although SN 2011iv does not show double-peaked emission line profiles, the width of its emission lines is such that a two-component model yields somewhat better results than a single-component model. Most of the mass ejected is in one component, however, which suggests that SN 2011iv was the result of the off-centre ignition of a Chandrasekhar-mass white dwarf.
NASA Astrophysics Data System (ADS)
Liu, Qi; Zhang, Cheng; Ding, Xianting; Deng, Hui; Zhang, Daming; Cui, Wei; Xu, Hongwei; Wang, Yingwei; Xu, Wanhai; Lv, Lei; Zhang, Hongyu; He, Yinghua; Wu, Qiong; Szyf, Moshe; Ho, Chih-Ming; Zhu, Jingde
2015-06-01
Therapeutic outcomes of combination chemotherapy have not significantly advanced during the past decades. This has been attributed to the formidable challenges of optimizing drug combinations. Testing a matrix of all possible combinations of doses and agents in a single cell line is unfeasible due to the virtually infinite number of possibilities. We utilized the Feedback System Control (FSC) platform, a phenotype oriented approach to test 100 options among 15,625 possible combinations in four rounds of assaying to identify an optimal tri-drug combination in eight distinct chemoresistant bladder cancer cell lines. This combination killed between 82.86% and 99.52% of BCa cells, but only 47.47% of the immortalized benign bladder epithelial cells. Preclinical in vivo verification revealed its markedly enhanced anti-tumor efficacy as compared to its bi- or mono-drug components in cell line-derived tumor xenografts. The collective response of these pathways to component drugs was both cell type- and drug type specific. However, the entire spectrum of pathways triggered by the tri-drug regimen was similar in all four cancer cell lines, explaining its broad spectrum killing of BCa lines, which did not occur with its component drugs. Our findings here suggest that the FSC platform holdspromise for optimization of anti-cancer combination chemotherapy.
PECULIAR NEAR-NUCLEUS OUTGASSING OF COMET 17P/HOLMES DURING ITS 2007 OUTBURST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Chunhua; Gurwell, Mark A.; Wilner, David J.
2015-01-20
We present high angular resolution Submillimeter Array observations of the outbursting Jupiter family comet 17P/Holmes on 2007 October 26-29, achieving a spatial resolution of 2.''5, or ∼3000 km at the comet distance. The observations resulted in detections of the rotational lines CO 3-2, HCN 4-3, H{sup 13}CN 4-3, CS 7-6, H{sub 2}CO 3{sub 1,} {sub 2}-2{sub 1,} {sub 1}, H{sub 2}S 2{sub 2,} {sub 0}-2{sub 1,} {sub 1}, and multiple CH{sub 3}OH lines, along with the associated dust continuum at 221 and 349 GHz. The continuum has a spectral index of 2.7 ± 0.3, slightly steeper than blackbody emission from large dust particles.more » From the imaging data, we identify two components in the molecular emission. One component is characterized by a relatively broad line width (∼1 km s{sup –1} FWHM) exhibiting a symmetric outgassing pattern with respect to the nucleus position. The second component has a narrower line width (<0.5 km s{sup –1} FWHM) with the line center redshifted by 0.1-0.2 km s{sup –1} (cometocentric frame), and shows a velocity shift across the nucleus position with the position angle gradually changing from 66° to 30° within the four days of observations. We determine distinctly different CO/HCN ratios for each of the components. For the broad-line component we find CO/HCN < 7, while in the narrow-line component, CO/HCN = 40 ± 5. We hypothesize that the narrow-line component originates from the ice grain halo found in near-nucleus photometry, believed to be created by sublimating recently released ice grains around the nucleus during the outburst. In this interpretation, the high CO/HCN ratio of this component reflects the more pristine volatile composition of nucleus material released in the outburst.« less
Investigating the reasons of variability in Si IV and C IV broad absorption line troughs of quasars
NASA Astrophysics Data System (ADS)
Stathopoulos, Dimitrios; Lyratzi, Evangelia; Danezis, Emmanuel; Antoniou, Antonios; Tzimeas, Dimitrios
2017-09-01
In this paper we analyze the C IV and Si IV broad absorption troughs of two BALQSOs (J101056.69+355833.3, J114548.38+393746.6) to the individual components they consist of. By analyzing a BAL trough to its components we have the advantage to study the variations of the individual absorbing systems in the line of sight and not just the variations of the whole absorption trough or the variations of selected portions of BAL troughs exhibiting changes. We find that the velocity shifts and FWHMs (Full Width at Half Maximum) of the individual components do not vary between an interval of six years. All variable components show changes in the optical depths at line centers which are manifested as variations in the EW (Equivalent Width) of the components. In both BALQSOs, over corresponding velocities, Si IV has higher incidence of variability than C IV. From our analysis, evidence is in favour of different covering fractions between C IV and Si IV. Finally, although most of our results favour the crossing cloud scenario as the cause of variability, there is also strong piece of evidence indicating changing ionization as the source of variability. Thus, a mixed situation where both physical mechanisms contribute to BAL variability is the most possible scenario.
What Can TRAPPIST-1 Tell Us About Radiation From M-Dwarf Chromospheres And Coronae
NASA Astrophysics Data System (ADS)
Linsky, Jeffrey
2017-05-01
The recent discovery of 7 planets orbiting the nearby star TRAPPIST-1 (Gillon et al. Nature 2017) and the discovery that this M8 V host star has very weak chromospheric compared to coronal emission (Bourrier et al. A+A 2017) raises the broader question of the relation of chromospheres to coronae in host stars. This question is important because chromospheric emission, primarily in the Lyman-alpha line, controls photochemical reactions in the outer atmospheres of exoplanets, whereas coronal X-ray emission and associated coronal mass ejections play critical roles in atmospheric mass loss. Both chromospheric and coronal emission from the host star can, therefore, determine whether a planet is habitable. I will show that the amount of emission in the Lyman-alpha line is proportional to that in X-rays for F-K dwarf stars, but that chromospheric emission becomes relatively weak in the early M dwarfs and very weak in the late-M dwarfs such as TRAPPIST-1.Stellar emission lines formed in a star's chromosphere and transition region can be separated into narrow and broad Gaussian components with the broad components formed by microflaring events or high speed flows. I will show how the broad component activity indicator depends on stellar effective temperature and age.I will also describe the results concerning star-planet interactions obtained by MUSCLES Treasury Survey team.
Relativistic Iron K Emission and Absorption in the Seyfert 1.9 Galaxy MCG-05-23-16
NASA Technical Reports Server (NTRS)
Braito, V.; Reeves, J. N.; Dewangan, G. C.; George, I.; Griffiths, R.; Markowitz, A.; Nandra, K.; Porquet, D.; Ptak, A.; Turner, T. J.;
2007-01-01
We present the results of the simultaneous deep XMM-Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron Kalpha line. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with FeXXVI this absorption is indicative of a possible variable high ionization, high velocity outflow. The time averaged spectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM less than 5000 kilometers per second, EW approx. 60 eV) plus a broad component. This latter component has FWHM approx. 44000 kilometers per second, an EW approx. 50 eV and its profile is well described with an emission line originating from the accretion disk viewed with an inclination angle approx. 40 deg. and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM-Newton EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant within the errors. The analysis of the XMM-Newton/RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet supports a scenario where the soft X ray emission lines are produced in a plasma photoionized by the nuclear emission.
ORFEUS spectroscopy of the O BT VI lines in symbiotic stars and the Raman scattering process
NASA Astrophysics Data System (ADS)
Schmid, H. M.; Krautter, J.; Appenzeller, I.; Barnstedt, J.; Dumm, T.; Fromm, A.; Gölz, M.; Grewing, M.; Gringel, W.; Haas, C.; Hopfensitz, W.; Kappelmann, N.; Krämer, G.; Lindenberger, A.; Mandel, H.; Mürset, U.; Schild, H.; Schmutz, W.; Widmann, H.
1999-08-01
We present orfeus spectra of the O vi lambda lambda 1032,1038 emission lines in the symbiotic stars AG Dra, V1016 Cyg, RR Tel, CD-43(deg) 14304, AG Peg and Z And. The O vi emission lines can convert into broad and highly polarized emission lines at lambda 6825 and lambda 7082 in a Raman scattering process by neutral hydrogen. From a comparison of direct and Raman scattered radiation we extract new information on the scattering geometry in symbiotic systems. The nebular O vi emission lines are in all objects redshifted by about +40 km s(-1) . This can be explained as a radiative line transfer effect in a slowly expanding emission region. A comparable redshift is measured in the Raman scattered O vi lines. In AG Peg the O vi emissions show beside a narrow nebular line a broad component from a fast stellar wind outflow. Many interstellar absorption lines of molecular hydrogen are detected, particularly near the O vi lambda 1038 component. With model calculations we investigate their impact on the O vi lines. From the dereddened line fluxes of the direct and Raman scattered O vi lines we derive the scattering efficiency, which is defined as photon flux ratio N_Raman/N_O VI. The efficiencies derived for RR Tel, V1016 Cyg and Z And indicate that about 30% of the released O vi lambda 1032 photons interact with the neutral scattering region. The efficiencies for AG Dra and CD-43(deg14304) are much higher, which may suggest that the O vi nebulosity is embedded in a H(0) -region. The D-type system RR Tel shows strong line profile differences between the direct O vi emission, which is single-peaked, and the Raman scattered emission, which is double-peaked. This indicates that the neutral scattering region in RR Tel ``sees'' different O vi line profiles, implying that the O vi nebulosity is far from spherically symmetric. In a tentative model we suggest for RR Tel an O vi flow pattern where material streams from the cool giant towards the hot component, which further accelerates the gas radially. For the S-type systems AG Dra, CD-43(deg14304) and Z And the line profile differences between the direct and the Raman scattered O vi emissions are less pronounced. This may suggest that the O vi profiles depend less on the emission direction than in the D-type system RR Tel. For AG Peg we detect for the first time the Raman scattered emission at lambda 6825. The Raman line shows a narrow, nebular component as the O vi line, but no equivalent emission to the broad O vi wind component. The higher conversion efficiency for the narrow component indicates that the nebular O vi emission is significantly closer to the cool giant than the hot, mass losing component, and strongly supports previous colliding wind models for this object. Based on observations taken during the orfeus-spas i and orfeus-spas ii space shuttle missions, and ground based data collected at the ESO 2.2m and 3.6m telescopes at La Silla, Chile, and the 4.2m William Herschel Telescope at La Palma, Canary Islands. ESO observations were granted for the programs 52.7-040 and 58.D-0866.
H α and H β Raman scattering line profiles of the symbiotic star AG Pegasi
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Hyung, Siek
2018-04-01
The H α and H β line profiles of the symbiotic star AG Pegasi, observed in 1998 September (phase ϕ = 10.24), display top narrow double Gaussian components and bottom broad components (FWHM = 200-400 km s-1). The photoionization model indicates that the ionized zone, responsible for the hydrogen Balmer and Lyman lines, is radiation-bounded, with a hydrogen gas number density of nH ˜ 109.85 cm-3 and a gas temperature of Te = 12 000-15 000 K. We have carried out Monte Carlo simulations to fit the Raman scattering broad wings, assuming that the hydrogen Ly β and Ly γ lines emitted within the radiation-bounded H II zone around a white dwarf have the same double Gaussian line profile shape as the hydrogen Balmer lines. The simulation shows that the scattering H I zones are attached to (or located just outside) the inner H II shells. The best fit to the observed broad H I line profiles indicates that the column density of the scattering neutral zone is NH ≃ 3-5 × 1019 cm-2. We have examined whether the geometrical structure responsible for the observed H α and H β line profiles is a bipolar conical shell structure, consisting of the radiation-bounded ionized zone and the outer material bounded neutral zone. The expanding bipolar structure might be two opposite regions of the common envelope or the outer shell of the Roche lobe around the hot white dwarf, formed through the mass inflows from the giant star and pushed out by the fast winds from the hot white dwarf.
A molecular gas-rich GRB host galaxy at the peak of cosmic star formation
NASA Astrophysics Data System (ADS)
Arabsalmani, M.; Le Floc'h, E.; Dannerbauer, H.; Feruglio, C.; Daddi, E.; Ciesla, L.; Charmandaris, V.; Japelj, J.; Vergani, S. D.; Duc, P.-A.; Basa, S.; Bournaud, F.; Elbaz, D.
2018-05-01
We report the detection of the CO(3-2) emission line from the host galaxy of gamma-ray burst (GRB) 080207 at z = 2.086. This is the first detection of molecular gas in emission from a GRB host galaxy beyond redshift 1. We find this galaxy to be rich in molecular gas with a mass of 1.1 × 10^{11} M_{{\\odot }} assuming αCO = 4.36 M_{{\\odot }} (K km s^{-1} pc^2)^{-1}. The molecular gas mass fraction of the galaxy is ˜0.5, typical of star-forming galaxies (SFGs) with similar stellar masses and redshifts. With an SFR_{FIR} of 260 M_{{\\odot }} yr^{-1}, we measure a molecular gas depletion time-scale of 0.43 Gyr, near the peak of the depletion time-scale distribution of SFGs at similar redshifts. Our findings are therefore in contradiction with the proposed molecular gas deficiency in GRB host galaxies. We argue that the reported molecular gas deficiency for GRB hosts could be the artefact of improper comparisons or neglecting the effect of the typical low metallicities of GRB hosts on the CO-to-molecular-gas conversion factor. We also compare the kinematics of the CO(3-2) emission line to that of the H α emission line from the host galaxy. We find the H α emission to have contributions from two separate components, a narrow and a broad one. The narrow component matches the CO emission well in velocity space. The broad component, with a full width at half-maximum of ˜1100 km s^{-1}, is separated by +390 km s^{-1} in velocity space from the narrow component. We speculate this broad component to be associated with a powerful outflow in the host galaxy or in an interacting system.
Imaging the molecular outflows of the prototypical ULIRG NGC 6240 with ALMA
NASA Astrophysics Data System (ADS)
Saito, T.; Iono, D.; Ueda, J.; Espada, D.; Sliwa, K.; Nakanishi, K.; Lu, N.; Xu, C. K.; Michiyama, T.; Kaneko, H.; Yamashita, T.; Ando, M.; Yun, M. S.; Motohara, K.; Kawabe, R.
2018-03-01
We present 0.97 × 0.53 arcsec2 (470 pc × 250 pc) resolution CO (J = 2-1) observations towards the nearby luminous merging galaxy NGC 6240 with the Atacama Large Millimeter/submillimeter Array. We confirmed a strong CO concentration within the central 700 pc, which peaks between the double nuclei, surrounded by extended CO features along the optical dust lanes (˜11 kpc). We found that the CO emission around the central, a few kpc, has extremely broad velocity wings with full width at zero intensity ˜ 2000 km s-1, suggesting a possible signature of molecular outflow(s). In order to extract and visualize the high-velocity components in NGC 6240, we performed a multiple Gaussian fit to the CO data cube. The distribution of the broad CO components shows four extremely large line width regions (˜1000 km s-1) located 1-2 kpc away from both nuclei. Spatial coincidence of the large line width regions with H α, near-IR H2, and X-ray suggests that the broad CO (2-1) components are associated with nuclear outflows launched from the double nuclei.
The Case for Optically Thick High-Velocity Broad-Line Region Gas in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Snedden, Stephanie A.; Gaskell, C. Martin
2007-11-01
A combined analysis of the profiles of the main broad quasar emission lines in both Hubble Space Telescope and optical spectra shows that while the profiles of the strong UV lines are quite similar, there is frequently a strong increase in the Lyα/Hα ratio in the high-velocity gas. We show that the suggestion that the high-velocity gas is optically thin presents many problems. We show that the relative strengths of the high-velocity wings arise naturally in an optically thick BLR component. An optically thick model successfully explains the equivalent widths of the lines, the Lyα/Hα ratios and flatter Balmer decrements in the line wings, the strengths of C III] and the λ1400 blend, and the strong variability in flux of high-velocity, high-ionization lines (especially He II and He I).
A new X-ray spectral observation of NGC 1068
NASA Technical Reports Server (NTRS)
Marshall, F. E.; Netzer, H.; Arnaud, K. A.; Boldt, E. A.; Holt, S. S.; Jahoda, K. M.; Kelley, R.; Mushotzky, R. F.; Petre, R.; Serlemitsos, P. J.
1993-01-01
A new X-ray observation of NGC 1068, in which improved spectral resolution (R is approximately equal to 40) and broad energy range provide important new constraints on models for this galaxy, is reported. The observed X-ray continuum of NGC 1068 from 0.3 to 10 keV is well fitted as the sum of two power-law spectra with no evidence for absorption intrinsic to the source. Strong Fe K emission lines with a total equivalent width of 2700 eV were detected due to iron less ionized than Fe XX and to iron more ionized than Fe XXIII. No evidence was seen for lines due to the recombination of highly ionized oxygen with an upper limit for the O Ly-alpha emission line of 40 eV. The discovery of multiple Fe K and Fe L emission lines indicates a broad range of ionization states for this gas. The X-ray emission from the two components is modeled for various geometries using a photoionization code that calculates the temperature and ionization state of the gas. Typical model parameters are a total Compton depth of a few percent, an inner boundary of the hot component of about 1 pc, and an inner boundary of the warm component of about 20 pc.
NASA Technical Reports Server (NTRS)
Hubbard, R.
1974-01-01
The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.
NASA Astrophysics Data System (ADS)
Janiak, M.; Sikora, M.; Moderski, R.
2016-05-01
We present a detailed Fermi/LAT data analysis for the broad-line radio galaxy 3C 120. This source has recently entered into a state of increased γ-ray activity which manifested itself in two major flares detected by Fermi/LAT in 2014 September and 2015 April with no significant flux changes reported in other wavelengths. We analyse available data focusing our attention on aforementioned outbursts. We find very fast variability time-scale during flares (of the order of hours) together with a significant γ-ray flux increase. We show that the ˜6.8 yr averaged γ-ray emission of 3C 120 is likely a sum of the external radiation Compton and the synchrotron self-Compton radiative components. To address the problem of violent γ-ray flares and fast variability we model the jet radiation dividing the jet structure into two components: the wide and relatively slow outer layer and the fast, narrow spine. We show that with the addition of the fast spine occasionally bent towards the observer we are able to explain observed spectral energy distribution of 3C 120 during flares with the Compton upscattered broad-line region and dusty torus photons as main γ-rays emission mechanism.
NASA Astrophysics Data System (ADS)
Ponti, Gabriele
The nature of the soft excess and the presence of the broad Fe lines is still nowadays highly debated because the different absorption/emission models are degenerate. Spectral variability studies have the potential to break this degeneracy. I will present the results of a spectral variability RMS survey of the 36 brightest type 1 Seyfert galaxies observed by XMM-Newton for more than 30 ks. More than 80 as already measured, on longer timescales, with RXTE (Markowitz et al. 2004). About half of the sample show lower variability in the soft energy band, indicating that the emission from the soft excess is more stable than the one of the continuum. While the other sources show a soft excess that is as variable as the continuum. About half of the sample do not show an excess of variability where the warm absorber component imprints its stronger features, suggesting that for these sources the soft excess is not produced by a relativistic absorbing wind. In a few bright and well exposed sources it has been possible to measure an excess of variability at the energy of the broad component of the Fe K line, in agreement with the broad emission line interpretation. For the sources where more than one observation was available the stability of the shape of the RMS spectrum has been investigated. Moreover, it will be presented the results of the computation of the excess variance of all the radio quiet type 1 AGN of the XMM-Newton database. The relations between variability, black hole mass, accretion rate and luminosity are investigated and their scatter measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, Anca; Castillo, Christopher A.; Shields, Joseph C.
Using a sample of ∼100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of Hα and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which transition objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at ≲10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in themore » line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The transition objects show a threefold increase in the incidence of broad Hα emission in the high-resolution data, as well as the strongest density gradients, supporting the composite model for these systems as accreting sources surrounded by star-forming activity. The narrow-line LINERs appear to be the weaker counterparts of the Type 1 LINERs, where the low accretion rates cause the disappearance of the broad-line component. The enhanced sensitivity of the HST observations reveals a 30% increase in the incidence of accretion-powered systems at z ≈ 0. A comparison of the strength of the broad-line emission detected at different epochs implies potential broad-line variability on a decade-long timescale, with at least a factor of three in amplitude.« less
NASA Astrophysics Data System (ADS)
Bagri, Kalyani; Misra, Ranjeev; Rao, Anjali; Singh Yadav, Jagdish; Pandey, Shiv Kumar
2018-05-01
One of the popular models for the low/hard state of black hole binaries is that the standard accretion disk is truncated and the hot inner region produces, via Comptonization, hard X-ray flux. This is supported by the value of the high energy photon index, which is often found to be small, ∼ 1.7(< 2), implying that the hot medium is starved of seed photons. On the other hand, the suggestive presence of a broad relativistic Fe line during the hard state would suggest that the accretion disk is not truncated but extends all the way to the innermost stable circular orbit. In such a case, it is a puzzle why the hot medium would remain photon starved. The broad Fe line should be accompanied by a broad smeared reflection hump at ∼ 30 keV and it may be that this additional component makes the spectrum hard and the intrinsic photon index is larger, i.e. >2. This would mean that the medium is not photon deficient, reconciling the presence of a broad Fe line in the observed hard state. To test this hypothesis, we have analyzed the RXTE observations of GX 339–4 from the four outbursts during 2002–2011 and identify observations when the system was in the hard state and showed a broad Fe line. We have then attempted to fit these observationswith models,which include smeared reflection, to understandwhether the intrinsic photon index can indeed be large. We find that, while for some observations the inclusion of reflection does increase the photon index, there are hard state observations with a broad Fe line that have photon indices less than 2.
Broad Absorption Lines in Qsos: Observations and Implications for Models.
NASA Astrophysics Data System (ADS)
Turnshek, David Alvin
Spectroscopic observations of fourteen broad absorption line (BAL) QSOs are presented and analyzed. Other observations are summarized. The following major conclusions are reached. Broad absorption lines (BALs) are probably present in 3 to 10 percent of the spectra of moderate to high redshift QSOs. The BALs exhibit a variety of velocity structures, from seemingly smooth, continuous absorption to complexes of individual absorption lines. Outflow velocities up to 40,000 km s(' -1) are observed. The level of ionization is high. The minimum total absorption column densities are 10('20) to 10('22) cm('-2). The emission line properties of BAL QSOs appear to be different from those of non-BAL QSOs. For example, N V emission is generally stronger in BAL QSOs and the emission near C III} (lamda)1909 is generally broader in BAL QSOs. The distribution of multiplicities for isolated absorption troughs suggests that the large -scale spatial distribution of BAL clouds is non-random, possibly described by a disk geometry. The BAL clouds are incapable of accounting for all of the observed broad emission lines, particularly C III} (lamda)1909 and Mg II (lamda)2798. Therefore, if the BAL clouds give rise to observable emission, the generally adopted (optically thick, single component) model for the emission line region must be incorrect. Also, photoionization models, which utilize solar abundances and take the ionizing continuum to be a simple power law, are incapable of explaining the level of ionization in the BAL clouds. By considering the observed percentage of QSOs with BALs and resonance line scattering models, it is found that the absorption covering factor in BAL QSOs is between 3 and 20 percent. This suggests that possibly all, but not less than 15 percent, of the QSOs have BAL clouds associated with them. The amount of observable emission and polarization expected to be produced by the BAL clouds from resonance line scattering and collisional excitation is considered in detail. It seems likely that the BAL clouds contribute to the observed high ionization emission. A model worth exploring is one in which an inner, optically thick component gives rise to the low ionization emission, whereas an outer BAL cloud region gives rise to much of the high ionization emission.
Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability
NASA Technical Reports Server (NTRS)
Edelson, R. A.; Pike, G. F.; Krolik, J. H.
1990-01-01
A total of 657 archived IUE spectra are used to study the UV variability properties of six members of the CfA Seyfert I galaxy sample. All show strong evidence for continuum and line variations and a tendency for less luminous objects to be more strongly variable. Most objects show a clear correlation at zero lag between UV spectral index and luminosity, evidence that the variable component is an accretion disk around a black hole which is systematically smaller in less luminous sources. No correlation is seen between the continuum luminosity and equivalent width of the C IV, Mg II, and semiforbidden C III emission lines when the entire sample is examined, but a clear anticorrelation is present when only repeated observations of individual objects are considered. This is due to a combination of light-travel time effects in the broad-line region and the nonlinear responses of lines to continuum fluctuations.
NASA Astrophysics Data System (ADS)
Kuller, W. G.; Hanifen, D. W.
1982-07-01
Exoatmospheric detonations of nuclear weapons produce a broad spectrum of effects which can prevent operational space missions from being successfully accomplished. The spacecraft may be exposed to the prompt radiation from the detonations which can cause upset or burnout of critical mission components through Transient Radiation Effects on Electronics (TREE) or System Generated Electromagnetic Pulse (SGEMP). Continual exposure to the trapped radiation environment may cause component failure due to total dose or Electron Caused EMP (ECEMP). Satellite links to ground and airborne terminals are subject to serious degradation due to signal absorption and scintillation. The ground data stations and lines of communications are subject to failure from the broad range effects of high-altitude EMP.
Variability of broad and blueshifted component of [OIII]λ5007 in I ZWI
NASA Astrophysics Data System (ADS)
Wang, J.; Wei, J. Y.; He, X. T.
2005-04-01
Although the existence of asymmetrical profile of [OIII]λ5007 has been discovered for ages, its filiation and physics are poorly understood. Two new spectra of I ZWI taken on November 16, 2001 and on December 3, 2002 were compared with the spectra taken by BG92. Following results are obtained. (1) The certain variations of broad [OIII] during about 10 years separating the observations are identified. The inferred length scale of broad [OIII] emitting region ranges from 0.3 to 3 pc. By assuming a Keplerian motion in line emitting region, the material emitting broad [OIII] is likely to be located at the transient emission line region, between BLR and NLR. (2) We find a positive relation between the FeII emission and flux of Hβ (or continuum). On the other hand, the parameter RFe decreases with ionizing continuum marginally. (3) We detect a low ionized NLR in I ZWI, because of the low flux ratios [OIII]n/Hβn (∼1.7).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plotkin, Richard M.; Gallo, Elena; Shemmer, Ohad
Over the past 15 yr, examples of exotic radio-quiet quasars with intrinsically weak or absent broad emission line regions (BELRs) have emerged from large-scale spectroscopic sky surveys. Here, we present spectroscopy of seven such weak emission line quasars (WLQs) at moderate redshifts (z = 1.4–1.7) using the X-shooter spectrograph, which provides simultaneous optical and near-infrared spectroscopy covering the rest-frame ultraviolet (UV) through optical. These new observations effectively double the number of WLQs with spectroscopy in the optical rest-frame, and they allow us to compare the strengths of (weak) high-ionization emission lines (e.g., C iv) to low-ionization lines (e.g., Mg ii,more » Hβ, Hα) in individual objects. We detect broad Hβ and Hα emission in all objects, and these lines are generally toward the weaker end of the distribution expected for typical quasars (e.g., Hβ has rest-frame equivalent widths ranging from 15–40 Å). However, these low-ionization lines are not exceptionally weak, as is the case for high-ionization lines in WLQs. The X-shooter spectra also display relatively strong optical Fe ii emission, Hβ FWHM ≲ 4000 km s{sup −1}, and significant C iv blueshifts (≈1000–5500 km s{sup −1}) relative to the systemic redshift; two spectra also show elevated UV Fe ii emission, and an outflowing component to their (weak) Mg ii emission lines. These properties suggest that WLQs are exotic versions of “wind-dominated” quasars. Their BELRs either have unusual high-ionization components, or their BELRs are in an atypical photoionization state because of an unusually soft continuum.« less
Electron scattering wings on lines in interacting supernovae
NASA Astrophysics Data System (ADS)
Huang, Chenliang; Chevalier, Roger A.
2018-03-01
We consider the effect of electron scattering on lines emitted as a result of supernova interaction with a circumstellar medium, assuming that the scattering occurs in ionized gas in the pre-shock circumstellar medium. The single scattering case gives the broad component in the limit of low optical depth, showing a velocity full width half-maximum that is close to the thermal velocities of electrons. The line shape is approximately exponential at low velocities and steepens at higher velocities. At higher optical depths, the line profile remains exponential at low velocities, but wings strengthen with increasing optical depth. In addition to the line width, the ratio of narrow to broad (scattered) line strength is a possible diagnostic of the gas. The results depend on the density profile of the circumstellar gas, especially if the scattering and photon creation occur in different regions. We apply the scattering model to a number of supernovae, including Type IIn and Type Ia-circumstellar medium (CSM) events. The asymmetry to the red found in some cases can be explained by scattering in a fast wind region that is indicated by observations.
Investigating the Complexity of NGC 2992 with HETG
NASA Astrophysics Data System (ADS)
Canizares, Claude
2009-09-01
NGC 2992 is a nearby (z = 0.00771) Seyfert galaxy with a variable 1.5-2 classification. Over the past 30 years, the 2-10 keV continuum flux has varied by a factor of ~20. This was accompanied by complex variability in the multi-component Fe K line emission, which may indicate violent flaring activity in the innermost regions of the accretion disk. By observing NGC 2992 with the HETG, we will obtain the best constraint to date on the FWHM of the narrow, distant-matter Fe K line emission, along with precision measurement of its centroid energy, thereby enabling more accurate modeling of the variable broad component. We will also test models of the soft excess through measurement of narrow absorption lines attributable to a warm absorber and narrow emission lines arising from photoexcitation.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-controlled property. Cafeteria. A food dispensing facility capable of providing a broad variety of prepared foods and beverages (including hot meals) primarily through the use of a line where the customer serves... facilities are always provided. The DoD Component food dispensing facilities that conduct cafeteria-type...
NASA Technical Reports Server (NTRS)
Reeves, J. N.; Gofford, J.; Braito, V.; Sambruna, R.
2010-01-01
We present evidence for X-ray line emitting and absorbing gas in the nucleus of the Broad-Line Radio Galaxy (BLRG), 3C445. A 200 ks Chandra LETG observation of 3C 445 reveals the presence of several highly ionized emission lines in the soft X-ray spectrum, primarily from the He and H-like ions of O, Ne, Mg and Si. Radiative recombination emission is detected from O VII and O VIII, indicating that the emitting gas is photoionized. The He-like emission appears to be resolved into forbidden and intercombination line components, which implies a high density of greater than 10(sup 10) cm(sup -3), while the lines are velocity broadened with a mean width of 2600 km s(sup -1). The density and widths of the ionized lines indicate an origin of the gas on sub-parsec scales in the Broad Line Region (BLR). The X-ray continuum of 3C 445 is heavily obscured by a photoionized absorber of column density N(sub H) = 2 x 10(sup 23) cm(sup -2) and ionization parameter log xi = 1.4 erg cm s(sup -1). However the view of the X-ray line emission is unobscured, which requires the absorber to be located at radii well within any parsec scale molecular torus. Instead we suggest that the X-ray absorber in 3C 445 may be associated with an outflowing, but clumpy accretion disk wind, with an observed outflow velocity of approximately 10000 km s(sup -1).
An infrared view of AGN feedback in a type-2 quasar: the case of the Teacup galaxy
NASA Astrophysics Data System (ADS)
Ramos Almeida, C.; Piqueras López, J.; Villar-Martín, M.; Bessiere, P. S.
2017-09-01
We present near-infrared integral field spectroscopy data obtained with Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) of 'the Teacup galaxy'. The nuclear K-band (1.95-2.45 μm) spectrum of this radio-quiet type-2 quasar reveals a blueshifted broad component of FWHM ˜ 1600-1800 km s-1 in the hydrogen recombination lines (Pa α, Br δ and Br γ) and also in the coronal line [Si VI] λ1.963 μm. Thus, the data confirm the presence of the nuclear ionized outflow previously detected in the optical range and reveal its coronal counterpart. Both the ionized and coronal nuclear outflows are resolved, with seeing-deconvolved full widths at half-maximum of 1.1 ± 0.1 and 0.9 ± 0.1 kpc along position angle (PA) ˜ 72°-74°. This orientation is almost coincident with the radio axis (PA = 77°), suggesting that the radio jet could have triggered the nuclear outflow. In the case of the H2 lines, we do not require a broad component to reproduce the profiles, but the narrow lines are blueshifted by ˜50 km s-1 on average from the galaxy systemic velocity. This could be an indication of the presence of a nuclear molecular outflow, although the bulk of the H2 emission in the inner ˜2 arcsec (˜3 kpc) of the galaxy follows a rotation pattern. We find evidence for kinematically disrupted gas (FWHM > 250 km s-1) at up to 5.6 kpc from the AGN, which can be naturally explained by the action of the outflow. The narrow component of [Si VI] is redshifted with respect to the systemic velocity, unlike any other emission line in the K-band spectrum. This indicates that the region where the coronal lines are produced is not cospatial with the narrow-line region.
THE OPTICAL STRUCTURE OF THE STARBURST GALAXY M82. II. NEBULAR PROPERTIES OF THE DISK AND INNER WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westmoquette, M. S.; Smith, L. J.; Konstantopoulos, I. S.
2009-12-01
In this second paper of the series, we present the results from optical Gemini-North GMOS-IFU and WIYN DensePak IFU spectroscopic observations of the starburst and inner wind zones of M82, with a focus on the state of the T approx 10{sup 4} K ionized interstellar medium. Our electron density maps show peaks of a few 1000 cm{sup -3} (implying very high thermal pressures), local small spatial-scale variations, and a falloff in the minor axis direction. We discuss the implications of these results with regards to the conditions/locations that may favor the escape of individual cluster winds that ultimately power themore » large-scale superwind. Our findings, when combined with the body of literature built up over the last decade on the state of the interstellar medium (ISM) in M82, imply that the starburst environment is highly fragmented into a range of clouds from small/dense clumps with low-filling factors (<1 pc, n {sub e} approx> 10{sup 4} cm{sup -3}) to larger filling factor, less dense gas. The most compact clouds seem to be found in the cores of the star cluster complexes, whereas the cloud sizes in the inter-complex region are larger. These dense clouds are bathed with an intense radiation field and embedded in an extensive high temperature (T approx> 10{sup 6} K), X-ray-emitting ISM that is a product of the high star formation rates in the starburst zones of M82. The near-constant state of the ionization state of the approx10{sup 4} K gas throughout the M82 starburst zone can be explained as a consequence of the small cloud sizes, which allow the gas conditions to respond quickly to any changes. In Paper I, we found that the observed emission lines are composed of multiple components, including a broad (FWHM approx 150-350 km s{sup -1}) feature that we associate with emission from turbulent mixing layers on the surfaces of the gas clouds, resulting from the interaction of the fast wind outflows from the synchrotron self-Comptons. The large number of compact clouds and wind sources provides an ideal environment for broad line emission, and explains the large observed broad/narrow-line flux ratios. We have examined in more detail the discrete outflow channel identified within the inner wind in Paper I. The channel appears as a coherent, expanding cylindrical structure of length >120 pc and width 35-50 pc. The walls maintain an approximately constant (but subsonic) expansion velocity of approx60 km s{sup -1}, and are defined by peaks and troughs in the densities of the different line components. We hypothesize that as the hot wind fluid flows down the channel cavity, it interacts with the cooler, denser walls of the channel and with entrained material within the flow to produce broad-line emission, while the walls themselves emit primarily the narrow lines. We use the channel to examine further the relationship between the narrow and broad component emitting gas within the inner wind. Within the starburst energy injection zone, we find that turbulent motions (as traced by the broad component) appear to play an increasing role with height. Finally, we have argued that a point-like knot identified in GMOS position 4, exhibiting blueshifted (by approx140 km s{sup -1}), broad (approx<350 km s{sup -1}) Halpha emission and enhanced [S II]/Halpha and [N II]/Halpha ratios, is most likely an ejected luminous blue variable-type object.« less
The intrinsic far-UV spectrum of the high-redshift quasar B1422+231
NASA Astrophysics Data System (ADS)
O'Dowd, M.; Bate, N. F.; Webster, R. L.; Labrie, K.; King, A. L.; Yong, S.-. Y.
2018-02-01
We present new spectroscopy of the z = 3.62 gravitationally lensed quasar B1422+117 from the Gemini North GMOS integral field spectrograph. We observe significant differential magnifications between the broad emission lines and the continuum, as well as across the velocity structure of the Lyman-α line. We take advantage of this differential microlensing to algebraically decompose the quasar spectrum into the absorbed broad emission line and absorbed continuum components. We use the latter to derive the intrinsic Ly α forest absorption spectrum. The proximity effect is clearly detected, with a proximity zone edge of 8.6-17.3 Mpc from the quasar, implying (perhaps intermittent) activity over at least 28 Myr. The Ly α line profile exhibits a blue excess that is inconsistent with a symmetric fit to the unabsorbed red side. This has important implications for the use of this fitting technique in estimating the absorbed blue Ly α wings of Gunn-Peterson trough quasars.
Magnetospheric Accretion in Close Pre-main-sequence Binaries
NASA Astrophysics Data System (ADS)
Ardila, David R.; Jonhs-Krull, Christopher; Herczeg, Gregory J.; Mathieu, Robert D.; Quijano-Vodniza, Alberto
2015-10-01
The transfer of matter between a circumbinary disk and a young binary system remains poorly understood, obscuring the interpretation of accretion indicators. To explore the behavior of these indicators in multiple systems, we have performed the first systematic time-domain study of young binaries in the ultraviolet. We obtained far- and near-ultraviolet HST/COS spectra of the young spectroscopic binaries DQ Tau and UZ Tau E. Here we focus on the continuum from 2800 to 3200 Å and on the C iv doublet (λλ1548.19, 1550.77 Å) as accretion diagnostics. Each system was observed over three or four consecutive binary orbits, at phases ∼0, 0.2, 0.5, and 0.7. Those observations are complemented by ground-based U-band measurements. Contrary to model predictions, we do not detect any clear correlation between accretion luminosity and phase. Further, we do not detect any correlation between C iv flux and phase. For both stars the appearance of the C iv line is similar to that of single Classical T Tauri Stars (CTTSs), despite the lack of stable long-lived circumstellar disks. However, unlike the case in single CTTSs, the narrow and broad components of the C iv lines are uncorrelated, and we argue that the narrow component is powered by processes other than accretion, such as flares in the stellar magnetospheres and/or enhanced activity in the upper atmosphere. We find that both stars contribute equally to the narrow component C iv flux in DQ Tau, but the primary dominates the narrow component C iv emission in UZ Tau E. The C iv broad component flux is correlated with other accretion indicators, suggesting an accretion origin. However, the line is blueshifted, which is inconsistent with its origin in an infall flow close to the star. It is possible that the complicated geometry of the region, as well as turbulence in the shock region, are responsible for the blueshifted line profiles.
A UV-to-NIR Study of Molecular Gas in the Dust Cavity around RY Lupi
NASA Astrophysics Data System (ADS)
Arulanantham, N.; France, K.; Hoadley, K.; Manara, C. F.; Schneider, P. C.; Alcalá, J. M.; Banzatti, A.; Günther, H. M.; Miotello, A.; van der Marel, N.; van Dishoeck, E. F.; Walsh, C.; Williams, J. P.
2018-03-01
We present a study of molecular gas in the inner disk (r< 20 {au}) around RY Lupi, with spectra from HST-COS, HST-STIS, and VLT-CRIRES. We model the radial distribution of flux from hot gas in a surface layer between r = 0.1–10 au, as traced by Lyα-pumped H2. The result shows H2 emission originating in a ring centered at ∼3 au that declines within r < 0.1 au, which is consistent with the behavior of disks with dust cavities. An analysis of the H2 line shapes shows that a two-component Gaussian profile ({FWHM}}broad,{{{H}}}2}=105 +/- 15 {km} {{{s}}}-1{FWHM}}narrow,{{{H}}}2}=43+/- 13 {km} {{{s}}}-1) is statistically preferred to a single-component Gaussian. We interpret this as tentative evidence for gas emitting from radially separated disk regions (< {r}broad,{{{H}}}2}> ∼ 0.4+/- 0.1 {au};< {r}narrow,{{{H}}}2}> ∼ 3+/- 2 {au}). The 4.7 μm 12CO emission lines are also well fit by two-component profiles (< {r}broad,{CO}}> =0.4+/- 0.1 {au};< {r}narrow,{CO}}> =15+/- 2 {au}). We combine these results with 10 μm observations to form a picture of gapped structure within the mm-imaged dust cavity, providing the first such overview of the inner regions of a young disk. The HST SED of RY Lupi is available online for use in modeling efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chia-Ying; Cackett, Edward M.; Miller, Jon M.
Broad Fe K emission lines have been widely observed in the X-ray spectra of black hole systems as well as in neutron star systems. The intrinsically narrow Fe K fluorescent line is generally believed to be part of the reflection spectrum originating in an illuminated accretion disk which is broadened by strong relativistic effects. However, the nature of the lines in neutron star low-mass X-ray binaries (LMXBs) has been a matter of debate. We therefore obtained the longest, high-resolution X-ray spectrum of a neutron star LMXB to date with a 300 ks Chandra High Energy Transmission Grating Spectrometer (HETGS) observationmore » of Serpens X-1. The observation was taken under the “continuous clocking” mode, and thus was free of photon pile-up effects. We carry out a systematic analysis and find that the blurred reflection model fits the Fe line of Serpens X-1 significantly better than a broad Gaussian component does, implying that the relativistic reflection scenario is much preferred. Chandra HETGS also provides a highest spectral resolution view of the Fe K region and we find no strong evidence for additional narrow lines.« less
NASA Technical Reports Server (NTRS)
Savage, Blair D.; Sembach, Kenneth R.; Cardelli, Jason A.
1994-01-01
High-resolution spectra of interstellar Si IV, C IV, and N V absorption lines along the 4 kpc path to the inner Galaxy star HD 167756 at z = -0.85 kpc are presented. The spectra were obtained with the echelle mode of Goddard High Resolution Spectrograph (GHRS) aboard the Hubble Space Telescope (HST) and have signal-to-noise ratios ranging from 23 to 38. The high resolution of the measurements full width at half maximum (FWHM = 3.5 km/s) results in fully resolved line profiles for the highly ionized gas absorption. The measurements provide information on the column density per unit velocity, N(v), as a function of velocity for Si IV, C IV, and N V. The C IV and N V profiles extend from -70 to +70 km/s, while the Si IV profiles extend from -40 to +70 km/s. The integrated logarithmic column densities are long N(Si IV) = 13.09 +/- 0.02, log N(C IV) = 13.83 +/- 0.02, and log N(N V) = 13.56 +/- 0.03. The N V profile is broad, asymmetric, and featureless, while the Si IV profile contains narrow absorption components near V(sub LSR) = -19, 0, +20, and +52 km/s with Doppler spread parameters, b about = 10-12 km/s. The C IV profile contains both broad and narrow structure. The high ion feature near +52 km/s is also detected in the low-ionization lines of Ca II, O I, Si II, and Fe II. The other narrow Si IV and C IV components occur within several km/s of components seen in low-ionization species. The sight line contains at least two types of highly ionized gas. One type gives rise to a broad N V profile, and the other results in the more structured Si IV profile. The C IV profile contains contributions from both types of highly ionized gas. The broad but asymmetric N V profile is well represented by a large Galactic scale height gas which is participating in Galactic rotation and has a combination of thermal and turbulent broadening with b(sub tot) about = 42 km/s. The C IV to N V abundance ratio of 1.0 +/- 0.3 for the gas implies T about 1.6 x 10(exp 5) K or about 8 x 10(exp 5) K if the gas is in collisional ionization equilibrium and has a solar carbon to nitrogen abundance ratio. This absorption may be associated with cooling hot gas situated in Galactic shells and supershells along the sight line. The gas producing the narrow Si IV and C IV absorption components has line widths that are compatible with origins in conductive interfaces between the warm and hot interstellar medium. Kinematic flows associated with the photoionized edges of clouds might also produce Si IV and C IV lines with Doppler spread parameters similar to those observed, but the C IV to Si IV ratio in this gas is 3.5, which leads us to favor the conductive interface interpretation.
Chromospheres of Coronal Stars
NASA Technical Reports Server (NTRS)
Linsky, Jeffrey L.; Wood, Brian E.
1996-01-01
We summarize the main results obtained from the analysis of ultraviolet emission line profiles of coronal late-type stars observed with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. The excellent GHRS spectra provide new information on magnetohydrodynamic phenomena in the chromospheres and transition regions of these stars. One exciting new result is the discovery of broad components in the transition region lines of active stars that we believe provide evidence for microflare heating in these stars.
Observations of Ellerman bomb emission features in He I D3 and He I 10 830 Å
NASA Astrophysics Data System (ADS)
Libbrecht, Tine; Joshi, Jayant; Rodríguez, Jaime de la Cruz; Leenaarts, Jorrit; Ramos, Andrés Asensio
2017-02-01
Context. Ellerman bombs (EBs) are short-lived emission features, characterised by extended wing emission in hydrogen Balmer lines. Until now, no distinct signature of EBs has been found in the He I 10 830 Å line, and conclusive observations of EBs in He I D3 have never been reported. Aims: We aim to study the signature of EBs in neutral helium triplet lines. Methods: The observations consisted of ten consecutive SST/TRIPPEL raster scans close to the limb, featuring the Hβ, He I D3 and He I 10 830 Å spectral regions. We also obtained raster scans with IRIS and made use of the SDO/AIA 1700 Å channel. We used Hazel to invert the neutral helium triplet lines. Results: Three EBs in our data show distinct emission signatures in neutral helium triplet lines, most prominently visible in the He I D3 line. The helium lines have two components: a broad and blueshifted emission component associated with the EB, and a narrower absorption component formed in the overlying chromosphere. One of the EBs in our data shows evidence of strong velocity gradients in its emission component. The emission component of the other two EBs could be fitted using a constant slab. Our analysis hints towards thermal Doppler motions having a large contribution to the broadening for helium and IRIS lines. We conclude that the EBs must have high temperatures to exhibit emission signals in neutral helium triplet lines. An order of magnitude estimate places our observed EBs in the range of T 2 × 104-105 K. Movies associated to Figs. 3-5 are available at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Corbin, Michael R.; Boroson, Todd A.
1996-11-01
We present combined ultraviolet and optical spectra of 48 QSOs and Seyfert 1 galaxies in the redshift range 0.034-0.774. The UV spectra were obtained non-simultaneously with the optical and are derived from archival Hubble Space Telescope (HST) Faint Object Spectrograph and International Ultraviolet Explorer (IUE) observations. The sample consists of 22 radio- quiet objects, 12 flat radio spectrum radio-loud objects, and 14 steep radio spectrum objects, and it covers approximately 2.5 decades in ultraviolet continuum luminosity. The sample objects are among the most luminous known in this redshift range and include 3C 273 and Fairall 9, as well as many objects discovered in the Bright Quasar Survey. We measure and compare an array of emission-line and continuum parameters, including 2 keV X-ray luminosities derived from the Einstein database. We examine individual correlations and also apply a principal components analysis (PCA) in an effort to determine the underlying sources of variance among these observables. Our main results are as follows. 1. The C IV λ1549 profile asymmetry is correlated with the UV continuum luminosity measured at the position of that line, such that increasing continuum luminosity produces increasing redward asymmetry. This is the same correlation found between Hβ asymmetry and 2 keV luminosity in a larger sample of objects and appears to be followed by both radio-loud and radio-quiet sources. The C IV profile asymmetry is also correlated with the FWZI of the Lyα profile, with more redward asymmetric profiles associated with wider profile bases. The PCA reveals that the correlated increase in luminosity, C IV redward asymmetry, and profile base width accounts for over half the statistical variance in the sample. 2. There is a statistically significant difference between the FWZI distributions of the Lyα and Hβ lines, such that the former is wider on average by ~10^4^ km s^-1^. The FWHM values of the broad Hβ line are weakly correlated with those of C IV λ1549 and Lyα, and in contrast to the FWZI values the Hβ profiles are wider. Measures of the asymmetry of the Hβ and C IV profiles also show a weak correlation. The wavelength centroids at 3/4 maximum of the Lyα and C IV lines also show average blueshifts ~50-200 km s^-1^ from [O III] λ5007, versus an average redshift of 75 km s^-1^ for broad Hβ. 3. There is no clear evidence of narrow components to the stronger UV lines, even among objects in which the optical narrow lines including [O III] λλ4959, 5007 are unusually strong. We measure the average fractional contributions of such components to the Lyα and C III] λ1909 lines to be ~4%-5%, consistent with the findings from smaller samples. However, a sizable fraction (50%) of radio-loud objects display a narrow component of He II λ1640, the same as in the QSO population at intermediate redshifts, and such a component is likely to contribute to the other UV lines. We interpret the first result as the effect of a black hole mass/luminosity relation in which the profile widths and redward asymmetries are produced respectively by the virialized motions and gravitational redshift associated with 10^9^-10^10^ M_sun_ holes. This does not explain the cases of blueward profile asymmetries and blueshifted profile peaks, which require an effect acting oppositely to gravitational redshift. The peak redshift differences and relative weakness of the correlations between the UV profile widths and asymmetries and those of Hβ suggests a stratified ionization structure of the broad-line region (BLR), consistent with the variability studies of Seyfert 1 galaxies. Continuum variability and the dynamical evolution of the BLR gas may also influence these results. The difference between the Lyα and Hβ FWZI values provides additional evidence of an optically thin very broad line region (VBLR) lying interior to an intermediate line region (ILR) producing the profile cores. The smaller average FWHM values of the UV lines compared to Hβ indicate that they have a higher relative contribution of ILR emission, versus a more dominant VBLR component in the Balmer lines. The narrow He II λ1640 feature of radio-loud objects is likely associated with the inner regions of extended (100 kpc) ionized halos that are not present around radio-quiet objects, and which appear to be best explained as cooling flows around the QSO host galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devereux, Nick, E-mail: devereux@erau.edu
Dual epoch spectroscopy of the lenticular galaxy, NGC 4203, obtained with the Hubble Space Telescope has revealed that the double-peaked component of the broad H{alpha} emission line is time variable, increasing by a factor of 2.2 in brightness between 1999 and 2010. Modeling the gas distribution responsible for the double-peaked profiles indicates that a ring is a more appropriate description than a disk and most likely represents the contrail of a red supergiant star that is being tidally disrupted at a distance of {approx}1500 AU from the central black hole. There is also a bright core of broad H{alpha} linemore » emission that is not time variable and identified with a large-scale inflow from an outer radius of {approx}1 pc. If the gas number density is {>=}10{sup 6} cm{sup -3}, as suggested by the absence of similarly broad [O I] and [O III] emission lines, then the steady state inflow rate is {approx} 2 Multiplication-Sign 10{sup -2} M{sub Sun} yr{sup -1}, which exceeds the inflow requirement to explain the X-ray luminosity in terms of radiatively inefficient accretion by a factor of {approx}6. The central active galactic nucleus (AGN) is unable to sustain ionization of the broad-line region; the discrepancy is particularly acute in 2010 when the broad H{alpha} emission line is dominated by the contrail of the infalling supergiant star. However, ram pressure shock ionization produced by the interaction of the infalling supergiant with the ambient interstellar medium may help alleviate the ionizing deficit by generating a mechanical source of ionization supplementing the photoionization provided by the AGN.« less
Investigations of a New Eclipsing Cataclysmic Variable HBHA 4705-03
NASA Astrophysics Data System (ADS)
Yakin, D. G.; Suleimanov, V. F.; Shimansky, V. V.; Vlasyuk, V. V.; Spiridonova, O. I.
2013-01-01
Results of photometric and spectroscopic investigations of the recently discovered eclipsing cataclysmic variable star HBHA 4705-03 are presented. The emission spectra of the system show broad hydrogen and helium emission lines. The bright spots with an approximately zero velocity components are found in the Doppler maps for the hydrogen and ionized helium lines. The disc structure is more prominent in the maps for the neutral helium lines. The masses of the components (MWD = 0.54 ± 0.10M⊙ and MRD = 0.45 ± 0.05 M⊙), and the orbit inclination (i = 71.°8 ± 0.°7) were estimated using the radial velocity light curve and the eclipse width. The modeling of the light curve allows us to evaluate the bright spot parameters and the mass accretion rate (M ≍ 2 ·1017 g s-1).
NASA Astrophysics Data System (ADS)
Kristensen, L. E.; van Dishoeck, E. F.; Mottram, J. C.; Karska, A.; Yıldız, U. A.; Bergin, E. A.; Bjerkeli, P.; Cabrit, S.; Doty, S.; Evans, N. J.; Gusdorf, A.; Harsono, D.; Herczeg, G. J.; Johnstone, D.; Jørgensen, J. K.; van Kempen, T. A.; Lee, J.-E.; Maret, S.; Tafalla, M.; Visser, R.; Wampfler, S. F.
2017-09-01
Context. Through spectrally unresolved observations of high-J CO transitions, Herschel Photodetector Array Camera and Spectrometer (PACS) has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. The excitation and physical origin of this gas is still not understood. Aims: We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components within protostellar systems using spectrally resolved Herschel-HIFI data. Methods: Observations are presented of the highly excited CO line J = 16-15 (Eup/kB = 750 K) with the Herschel Heterodyne Instrument for the Far Infrared (HIFI) toward a sample of 24 low-mass protostellar objects. The sources were selected from the Herschel "Water in Star-forming regions with Herschel" (WISH) and "Dust, Ice, and Gas in Time" (DIGIT) key programs. Results: The spectrally resolved line profiles typically show two distinct velocity components: a broad Gaussian component with an average FWHM of 20 km s-1 containing the bulk of the flux, and a narrower Gaussian component with a FWHM of 5 km s-1 that is often offset from the source velocity. Some sources show other velocity components such as extremely-high-velocity features or "bullets". All these velocity components were first detected in H2O line profiles. The average rotational temperature over the entire profile, as measured from comparison between CO J = 16-15 and 10-9 emission, is 300 K. A radiative-transfer analysis shows that the average H2O/CO column-density ratio is 0.02, suggesting a total H2O abundance of 2 × 10-6, independent of velocity. Conclusions: Two distinct velocity profiles observed in the HIFI line profiles suggest that the high-J CO ladder observed with PACS consists of two excitation components. The warm PACS component (300 K) is associated with the broad HIFI component, and the hot PACS component (700 K) is associated with the offset HIFI component. The former originates in either outflow cavity shocks or the disk wind, and the latter in irradiated shocks. The low water abundance can be explained by photodissociation. The ubiquity of the warm and hot CO components suggest that fundamental mechanisms govern the excitation of these components; we hypothesize that the warm component arises when H2 stops being the dominant coolant. In this scenario, the hot component arises in cooling molecular H2-poor gas just prior to the onset of H2 formation. High spectral resolution observations of highly excited CO transitions uniquely shed light on the origin of warm and hot gas in low-mass protostellar objects. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
VizieR Online Data Catalog: CaII H&K to CaII IRT echelle spectra (Montes+, 2000)
NASA Astrophysics Data System (ADS)
Montes, D.; Fernandez-Figueroa, M. J.; de Castro, E.; Cornide, M.; Latorre, A.; Sanz-Forcada, J.
2000-11-01
This is the third paper of a series aimed at studying the chromosphere of active binary systems using the information provided for several optical spectroscopic features. High resolution echelle spectra including all the optical chromospheric activity indicators from the CaII H&K to CaII IRT lines are analysed here for 16 systems. The chromospheric contribution in these lines has been determined using the spectral subtraction technique. Very broad wings have been found in the subtracted Hα profile of the very active star HU Vir. These profiles are well matched using a two-component Gaussian fit (narrow and broad) and the broad component can be interpreted as arising from microflaring. Red-shifted absorption features in the Hα line have been detected in several systems and excess emission in the blue wing of FG UMa was also detected. These features indicate that several dynamical processes, or a combination of them, may be involved. Using the EHα/EHβ ratio as a diagnostic we have detected prominence-like extended material viewed off the limb in many stars of the sample, and prominences viewed against the disk at some orbital phases in the dwarfs OU Gem and BF Lyn. The He I D3 line has been detected as an absorption feature in mainly all the giants of the sample. Total filling-in of the He I D3, probably due to microflaring activity, is observed in HU Vir. Self-absorption with red asymmetry is detected in the CaII H&K lines of the giants 12 Cam, FG UMa and BM CVn. All the stars analysed show clear filled-in CaII IRT lines or even notable emission reversal. The small values of the E8542/E8498 ratio we have found indicate CaII IRT emission arises from plage-like regions. Orbital phase modulation of the chromospheric emission has been detected in some systems, in the case of HU Vir evidence of an active longitude area has been found. (5 data files).
C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Sulentic, Jack W.; Bachev, Rumen; Marziani, Paola; Negrete, C. Alenka; Dultzin, Deborah
2007-09-01
We are exploring a spectroscopic unification for all types of broad-line emitting AGNs. The four-dimensional Eigenvector 1 (4DE1) parameter space organizes quasar diversity in a sequence primarily governed by Eddington ratio. This paper considers the role of C IV λ1549 measures as 4DE1 diagnostics. We use HST archival spectra for 130 sources with S/N high enough to permit reliable C IV λ1549 broad-component measures. We find a C IV λ1549BC profile blueshift that is strongly concentrated among (largely radio-quiet [RQ]) sources with FWHM(HβBC)<~4000 km s-1 (which we call Population A). Narrow-line Seyfert 1 (NLSy1; with FWHM Hβ<=2000 km s-1) sources belong to this population but do not emerge as a distinct class. The systematic blueshift, widely interpreted as arising in a disk wind/outflow, is not observed in broader line AGNs (including most radio-loud [RL] sources), which we call Population B. We find new correlations involving FWHM(C IV λ1549BC), C IV λ1549 line shift, and equivalent width only among Population A sources. Sulentic et al. suggested C IV λ1549 measures enhance an apparent dichotomy between sources with FWHM(HβBC) less and greater than 4000 km s-1, suggesting that it has more significance in the context of broad-line region structure than the more commonly discussed RL versus RQ dichotomy. Black hole masses computed from FWHM C IV λ1549BC for about 80 AGNs indicate that the C IV λ1549 width is a poor virial estimator. Comparison of mass estimates derived from HβBC and C IV λ1549 reveals that the latter show different and nonlinear offsets for Population A and B sources. A significant number of sources also show narrow-line C IV λ1549 emission that must be removed before C IV λ1549BC measures can be made and interpreted effectively. We present a recipe for C IV λ1549 narrow-component extraction.
NASA Astrophysics Data System (ADS)
Moloney, Joshua; Shull, J. Michael
2014-10-01
Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 <= z <= 0.64, two AGNs with 0.32 <= z <= 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV λ765, O II λ833, and O III λ834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n H >= 1012 cm-3) and hydrogen ionizing photon fluxes (ΦH >= 1022 cm-2 s-1). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.
Investigation of the shell stars omicron and theta Per, and of the eclipsing binary beta Lyr
NASA Technical Reports Server (NTRS)
Plavec, M.
1975-01-01
All three stars showed rather complicated spectra, which require a very detailed spectroscopic analysis. The far UV spectrum of Beta Lyrae is clearly peculiar, with a multitude of emission lines not observed on any other star so far scanned with Copernicus. This made this star at once the most interesting and also, in a sense, easier to study. The other two stars display a spectrum rich in absorption lines, some of them being fairly broad (as expected for photospheric lines of rapidly rotating objects), some sharp. The later were clearly non-photospheric lines. An attempt was made to distinguish the circumstellar from the interstellar components.
Broad NE 8 lambda 774 emission from quasars in the HST-FOS snapshot survey (ABSNAP)
NASA Technical Reports Server (NTRS)
Hamann, Fred; Zuo, Lin; Tytler, David
1995-01-01
We discuss the strength and frequency of broad Ne VIII lambda 774 emission from quasars measured in the Hubble Space Telescope Faint Object Spectrograph (HST-FOS) snapshot survey (Absnap). Five sources in the survey have suitable redshifts (0.86 less than or equal to Z(sub em) less than or equal to 1.31), signal-to-noise ratios and no Lyman limit absorptions. Three of the five sources have a strong broad emission line near 774 A (rest), and the remaining two sources have a less securely measured line near this wavelength. We identify these lines with Ne VIII lambda 774 based on the measured wavelengths and theoretical estimates of various line fluxes (Hamann et al. 1995a). Secure Ne VIII detections occur in both radio-loud and radio-quiet sources. We tentatively conclude that broad Ne VIII lambda 774 emission is common in quasars, with typical strengths between approximately 25% and approximately 200% of O VI lambda 1034. These Ne VIII lambda 774 measurements imply that the broad emission line regions have a much hotter and more highly ionized component than previously recognized. They also suggest that quasar continua have substantial ionizing flux out to energies greater than 207 eV (greater than 15.2 ryd, lambda less than 60 A). Photoionization calculations using standard incident spectra indicate that the Ne VIII emission requires ionization parameters U greater than or = 5, total column densities N(sub H) greater than or = 10(sub 22)/sq cm and covering factors greater than or = 25%. The temperatures could be as high as approximately 10(exp 5) K. If the gas is instead collisionally ionized, strong Ne VIII would imply equilibrium temperatures in the range approximately 400,000 less than or approximately = T(sub e) less than or approximately = 10(exp 6) K. In either case, the highly ionized Ne VIII emission regions would appear as X-ray 'warm absorbers' if they lie along our line of sight to the X-ray continuum source.
A Principal Component Analysis of the Diffuse Interstellar Bands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ensor, T.; Cami, J.; Bhatt, N. H.
2017-02-20
We present a principal component (PC) analysis of 23 line-of-sight parameters (including the strengths of 16 diffuse interstellar bands, DIBs) for a well-chosen sample of single-cloud sightlines representing a broad range of environmental conditions. Our analysis indicates that the majority (∼93%) of the variations in the measurements can be captured by only four parameters The main driver (i.e., the first PC) is the amount of DIB-producing material in the line of sight, a quantity that is extremely well traced by the equivalent width of the λ 5797 DIB. The second PC is the amount of UV radiation, which correlates wellmore » with the λ 5797/ λ 5780 DIB strength ratio. The remaining two PCs are more difficult to interpret, but are likely related to the properties of dust in the line of sight (e.g., the gas-to-dust ratio). With our PCA results, the DIBs can then be used to estimate these line-of-sight parameters.« less
Determining the Pressure Shift of Helium I Lines Using White Dwarf Stars
NASA Astrophysics Data System (ADS)
Camarota, Lawrence
This dissertation explores the non-Doppler shifting of Helium lines in the high pressure conditions of a white dwarf photosphere. In particular, this dissertation seeks to mathematically quantify the shift in a way that is simple to reproduce and account for in future studies without requiring prior knowledge of the star's bulk properties (mass, radius, temperature, etc.). Two main methods will be used in this analysis. First, the spectral line will be quantified with a continuous wavelet transformation, and the components will be used in a chi2 minimizing linear regression to predict the shift. Second, the position of the lines will be calculated using a best-fit Levy-alpha line function. These techniques stand in contrast to traditional methods of quantifying the center of often broad spectral lines, which usually assume symmetry on the parts of the lines.
Chandra Detection of a Parsec Scale Wind in the Broad Line Radio Galaxy 3C 382
NASA Technical Reports Server (NTRS)
Reeves, J. N.; Sambruna, R. M.; Braito, V.; Eracleous, Michael
2009-01-01
We present unambiguous evidence for a parsec scale wind in the Broad-Line Radio Galaxy (BLRG) 3C 382, the first radio-loud AGN whereby an outflow has been measured with X-ray grating spectroscopy. A 118 ks Chandra grating (HETG) observation of 3C 382 has revealed the presence of several high ionization absorption lines in the soft X-ray band, from Fe, Ne, Mg and Si. The absorption lines are blue-shifted with respect to the systemic velocity of 3C 382 by -840+/-60 km/s and are resolved by Chandra with a velocity width of sigma = 340+/-70 km/s. The outflow appears to originate from a single zone of gas of column density N(sub H) = 1.3 x 10(exp 21)/sq cm and ionization parameter log(E/erg/cm/s) = 2.45. From the above measurements we calculate that the outflow is observed on parsec scales, within the likely range from 10-1000 pc, i.e., consistent with an origin in the Narrow Line Region. Finally we also discuss the possibility of a much faster (0.1c) outflow component, based on a blue-shifted iron K(alpha) emission line in the Suzaku observation of 3C 382, which could have an origin in an accretion disk wind.
NASA Astrophysics Data System (ADS)
Yan, Lin; Quimby, R.; Ofek, E.; Gal-Yam, A.; Mazzali, P.; Perley, D.; Vreeswijk, P. M.; Leloudas, G.; De Cia, A.; Masci, F.; Cenko, S. B.; Cao, Y.; Kulkarni, S. R.; Nugent, P. E.; Rebbapragada, Umaa D.; Woźniak, P. R.; Yaron, O.
2015-12-01
iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z = 0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises in 83-148 days to reach a peak bolometric luminosity of ˜1.3 × 1044 erg s-1, then decays slowly at 0.015 mag day-1. The measured ejecta velocity is ˜ 13,000 km s-1. The inferred explosion characteristics, such as the ejecta mass (70-220 M⊙), and the total radiative and kinetic energy (Erad ˜ 1051 erg, Ekin ˜ 2 × 1053 erg), are typical of slow-evolving H-poor SLSN events. However, the late-time spectrum taken at +251 days (rest, post-peak) reveals a Balmer Hα emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ˜4500 km s-1 and a ˜300 km s-1 blueward shift relative to the narrow component. We interpret this broad Hα emission with a luminosity of ˜2 × 1041 erg s-1 as resulting from the interaction between the supernova ejecta and a discrete H-rich shell, located at a distance of ˜4 × 1016 cm from the explosion site. This interaction causes the rest-frame r-band LC to brighten at late times. The fact that the late-time spectra are not completely absorbed by the shock-ionized H-shell implies that its Thomson scattering optical depth is likely ≤1, thus setting upper limits on the shell mass ≤30 M⊙. Of the existing models, a Pulsational Pair Instability supernova model can naturally explain the observed 30 M⊙ H-shell, ejected from a progenitor star with an initial mass of (95-150) M⊙ about 40 years ago. We estimate that at least ˜15% of all SLSNe-I may have late-time Balmer emission lines.
VizieR Online Data Catalog: Transitions in OMC-2 FIR 4 in the far-IR (Kama+, 2013)
NASA Astrophysics Data System (ADS)
Kama, M.; Lopez-Sepulcre, A.; Dominik, C.; Ceccarelli, C.; Fuente, A.; Caux, E.; Higgins, R.; Tielens, A. G. G. M.; Alonso-Albi, T.
2014-04-01
Broadband spectral surveys of protostars offer a rich view of the physical, chemical and dynamical structure and evolution of star-forming regions. The Herschel Space Observatory opened up the terahertz regime to such surveys, giving access to the fundamental transitions of many hydrides and to the high-energy transitions of many other species. A comparative analysis of the chemical inventories and physical processes and properties of protostars of various masses and evolutionary states is the goal of the Herschel CHEmical Surveys of Star forming regions (CHESS) key program. This paper focusses on the intermediate-mass protostar, OMC-2 FIR 4. We obtained a spectrum of OMC-2 FIR 4 in the 480 to 1902GHz range with the HIFI spectrometer onboard Herschel and carried out the reduction, line identification, and a broad analysis of the line profile components, excitation, and cooling. We detect 719 spectral lines from 40 species and isotopologs. The line flux is dominated by CO, H2O, and CH3OH. The line profiles are complex and vary with species and upper level energy, but clearly contain signatures from quiescent gas, a broad component likely due to an outflow, and a foreground cloud. We find abundant evidence for warm, dense gas, as well as for an outflow in the field of view. Line flux represents 2% of the 7L⊙ luminosity detected with HIFI in the 480 to 1250GHz range. Of the total line flux, 60% is from CO, 13% from H2O and 9% from CH3OH. A comparison with similar HIFI spectra of other sources is set to provide much new insight into star formation regions, a case in point being a difference of two orders of magnitude in the relative contribution of sulphur oxides to the line cooling of Orion KL and OMC-2 FIR 4. (1 data file).
The Herschel/HIFI spectral survey of OMC-2 FIR 4 (CHESS). An overview of the 480 to 1902 GHz range
NASA Astrophysics Data System (ADS)
Kama, M.; López-Sepulcre, A.; Dominik, C.; Ceccarelli, C.; Fuente, A.; Caux, E.; Higgins, R.; Tielens, A. G. G. M.; Alonso-Albi, T.
2013-08-01
Context. Broadband spectral surveys of protostars offer a rich view of the physical, chemical and dynamical structure and evolution of star-forming regions. The Herschel Space Observatory opened up the terahertz regime to such surveys, giving access to the fundamental transitions of many hydrides and to the high-energy transitions of many other species. Aims: A comparative analysis of the chemical inventories and physical processes and properties of protostars of various masses and evolutionary states is the goal of the Herschel CHEmical Surveys of Star forming regions (CHESS) key program. This paper focusses on the intermediate-mass protostar, OMC-2 FIR 4. Methods: We obtained a spectrum of OMC-2 FIR 4 in the 480 to 1902 GHz range with the HIFI spectrometer onboard Herschel and carried out the reduction, line identification, and a broad analysis of the line profile components, excitation, and cooling. Results: We detect 719 spectral lines from 40 species and isotopologs. The line flux is dominated by CO, H2O, and CH3OH. The line profiles are complex and vary with species and upper level energy, but clearly contain signatures from quiescent gas, a broad component likely due to an outflow, and a foreground cloud. Conclusions: We find abundant evidence for warm, dense gas, as well as for an outflow in the field of view. Line flux represents 2% of the 7 L⊙ luminosity detected with HIFI in the 480 to 1250 GHz range. Of the total line flux, 60% is from CO, 13% from H2O and 9% from CH3OH. A comparison with similar HIFI spectra of other sources is set to provide much new insight into star formation regions, a case in point being a difference of two orders of magnitude in the relative contribution of sulphur oxides to the line cooling of Orion KL and OMC-2 FIR 4. Appendix A is available in electronic form at http://www.aanda.org
Valcic, S; Timmermann, B N; Alberts, D S; Wächter, G A; Krutzsch, M; Wymer, J; Guillén, J M
1996-06-01
Green tea is an aqueous infusion of dried unfermented leaves of Camellia sinensis (family Theaceae) from which numerous biological activities have been reported including antimutagenic, antibacterial, hypocholesterolemic, antioxidant, antitumor and cancer preventive activities. From the aqueous-alcoholic extract of green tea leaves, six compounds (+)-gallocatechin (GC), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin gallate (EGCG) and caffeine, were isolated and purified. Together with (+)-catechin, these compounds were tested against each of four human tumor cells lines (MCF-7 breast carcinoma, HT-29 colon carcinoma, A-427 lung carcinoma and UACC-375 melanoma). The three most potent green tea components against all four tumor cell lines were EGCG, GC and EGC. EGCG was the most potent of the seven green tea components against three out of the four cell lines (i.e. MCF-7 breast cancer, HT-29 colon cancer and UACC-375 melanoma). On the basis of these extensive in vitro studies, it would be of considerable interest to evaluate all three of these components in comparative preclinical in vivo animal tumor model systems before final decisions are made concerning which of these potential chemopreventive drugs should be taken into broad clinical trials.
Hidden Broad-Line Seyfert 2 Galaxies in the CFA and 12 μM Samples
NASA Astrophysics Data System (ADS)
Tran, Hien D.
2001-06-01
We report the results of a spectropolarimetric survey of the CfA and 12 μm samples of Seyfert 2 (S2) galaxies. Polarized (hidden) broad-line regions (HBLRs) are confirmed in a number of galaxies, and several new cases (F02581-1136, MCG -3-58-7, NGC 5995, NGC 6552, NGC 7682) are reported. The 12 μm S2 galaxy sample shows a significantly higher incidence of HBLRs (50%) than its CfA counterpart (30%), suggesting that the latter may be incomplete in hidden active galactic nuclei. Compared to the non-HBLR S2 galaxies, the HBLR S2 galaxies display distinctly higher radio power relative to their far-infrared output and hotter dust temperature as indicated by the f25/f60 color. However, the level of obscuration is indistinguishable between the two types of S2 galaxies. These results strongly support the existence of two intrinsically different populations of S2 galaxies: one harboring an energetic, hidden S1 nucleus with a broad-line region and the other a ``pure'' S2 galaxy, with a weak or absent S1 nucleus and a strong, perhaps dominating starburst component. Thus, the simple purely orientation-based unification model is not applicable to all Seyfert galaxies.
NuSTAR AND SWIFT OBSERVATIONS OF THE BLACK HOLE CANDIDATE XTE J1908+094 DURING ITS 2013 OUTBURST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Lian; Walton, Dominic J.; Fürst, Felix
2015-09-20
The black hole (BH) candidate XTE J1908+094 went into outburst for the first time since 2003 in 2013 October. We report on an observation with the Nuclear Spectroscopic Telescope Array (NuSTAR) and monitoring observations with Swift during the outburst. NuSTAR caught the source in the soft state: the spectra show a broad relativistic iron line, and the light curves reveal a ∼40 ks flare, with the count rate peaking about 40% above the non-flare level and with significant spectral variation. A model combining a multi-temperature thermal component, a power law, and a reflection component with an iron line provides amore » good description of the NuSTAR spectrum. Although relativistic broadening of the iron line is observed, it is not possible to constrain the BH spin with these data. The variability of the power-law component, which can also be modeled as a Comptonization component, is responsible for the flux and spectral change during the flare, suggesting that changes in the corona (or possibly continued jet activity) are the likely cause of the flare.« less
NASA Technical Reports Server (NTRS)
Tripp, Todd M.; Giroux, Mark L.; Stocke, John T.; Tumlinson, Jason; Oegerle, William R.; Fisher, Richard R. (Technical Monitor)
2001-01-01
We use high-resolution UV (ultraviolet) spectra of the radio-quiet QSO (quasi-stellar object) H1821+643 (z(sub em) = 0.297), obtained with the Space Telescope Imaging Spectrograph (STIS) and the Far Ultraviolet Spectroscopic Explorer (FUSE), to study the ionization and metallicity of an intervening O VI absorption line system at z(sub abs) = 0.1212. This absorber has the following notable properties: (1) Several galaxies are close to the sight line at the absorber redshift, including an actively star-forming galaxy at a projected distance of 144 h(sub 75)(exp -1) kpc. (2) There is a complex cluster of H I Ly(alpha) absorption lines near the O VI redshift, including at least five components spread over a velocity range of approximately 700 km s(exp -1). (3) The strongest Ly(alpha) line in the cluster appears to be composed of a mildly saturated component with a typical b-value blended with a remarkably broad component with b approximately equals 85 km s(exp -1). (4) The O VI absorption is not aligned with the strongest (saturated) H I absorption, but instead is well-aligned with the very broad component. (5) The only detected species (at the 4(sigma) level) are O VI and H I despite coverage of strong transitions of abundant elements (e.g., C II, C III, and C IV). Based on these constraints, we find that the absorption line properties can be produced in collisionally ionized gas with 10(exp 5.3) is equal to or less than T is equal to or less than 10(exp 5.6) K and -1.8 is equal to or less than [O/H] is equal to or less than -0.6. However, we find that photoionization is also viable if the pathlength l through the absorbing gas is long enough; simple photoionization models require 85 is equal to or less than l is equal to or less than 1900 kpc and -1.1 is equal to or less than [O/H] is equal to or less than -0.3. We briefly discuss how observations of X-ray absorption lines due to O VII and O VIII could be used, in principle, to break the ionization mechanism degeneracy, and we conclude with some comments regarding the nature of O VI absorbers.
Ultraviolet Changes of the Central Source and the Very Nearby Ejecta
NASA Technical Reports Server (NTRS)
Gull, Theodore R.; Nielsen, Krister; Vierira, Gladys; Hillier, John; Walborn, Nolan; Davidson, Kris
2004-01-01
We utilized the high spatial and high spectral resolution of the HST/STIS MAMA echelle modes in the ultraviolet (0.025 inch spatial resolution and 30,000 to 120,000 spectral resolving power) to view changes in and around Eta Carinae before and after the X-Ray drop which occurred on June 29, 2003 (M. Corcoran, IAUC 8160). Major changes in the spectra of the Central Source and nearby nebulosities occurred between June 22 and July 5. Visibility of the Central Source dropped, especially between 1175 and 1350 Angstroms, but not uniformly throughout the ultraviolet. This fading is likely due to multiple line absorptions both in the source and in the intervening ejecta. Nebular emission of Si III] and Fe III, located 0.09 sec. to the west, disappeared. By July 29, a bright feature extending up to 0.071 sec. east of the Central Source became prominent in broad emission lines near 2500 Angstroms, but was not noticeable longward of 2900 Angstroms. ACS/HRC imagery and STIS CCD spectra taken concurrently are being examined for larger scale changes. Numerous narrow velocity components between -146 and -585 kilometers per second were identified in spectra before the minimum. New components appeared primarily in Fe II absorption lines with velocities between -170 and -380 kilometers per second. While the lines of the -513 kilometers per second component did not change, most lines of the -146 kilometers per second component changed considerably. Lines originating from high energy levels diminished or disappeared, while lines originating from lower energy levels strengthened. Strong absorption lines of Ti II, not present before the X-Ray drop, appeared within seven days, but disappeared by July 29. Further analysis of these unprecedented data will provide significant new information about the structure of Eta Carinae and its periodic variations.
A New Look at Ionized Disk Winds in Seyfert-1 AGN
NASA Astrophysics Data System (ADS)
Bostrom, Allison; Miller, Jon M.
2016-04-01
We present an analysis of deep, high signal-to-noise Chandra/HETG observations of four Seyfert-1 galaxies with known warm absorbers (outflowing winds), including NGC 4151, MCG-6-30-15, NGC 3783, and NGC 3516. Focusing on the 4-10 keV Fe K-band, we fit the spectra using grids of models characterized by photoion- ized absorption. Even in this limited band, the sensitive, time-averaged spectra all require 2-3 zones within the outflow. In an improvement over most previous studies, re-emission from the winds was self-consistently included in our models. The broadening of these emission components, when attributed to Keplerian rotation, yields new launching radius estimations that are largely consistent with the broad-line region. If this is correct, the hot outflow may supply the pressure needed to confine clumps within the broad-line region. NGC 4151 and NGC 3516 each appear to have a high-velocity component with speeds comparable to 0.01c. The winds in each of the four objects have kinetic luminosities greater than 0.5% of the host galaxy bolometric luminosity for a filling factor of unity, indicating that they may be significant agents of AGN feedback.
POX 52: A Dwarf Seyfert 1 Galaxy with an Intermediate-Mass Black Hole
NASA Astrophysics Data System (ADS)
Barth, Aaron J.; Ho, Luis C.; Rutledge, Robert E.; Sargent, Wallace L. W.
2004-05-01
We describe new optical images and spectra of POX 52, a dwarf galaxy with an active nucleus that was originally detected in the POX objective-prism survey. While POX 52 was originally thought to be a Seyfert 2 galaxy, the new data reveal an emission-line spectrum very similar to that of the dwarf Seyfert 1 galaxy NGC 4395, with broad components to the permitted line profiles, and we classify POX 52 as a Seyfert 1 galaxy. The host galaxy appears to be a dwarf elliptical, and its brightness profile is best fit by a Sérsic model with an index of 3.6+/-0.2 and a total magnitude of MV=-17.6. Applying mass-luminosity-line width scaling relations to estimate the black hole mass from the broad Hβ line width and nonstellar continuum luminosity, we find MBH~1.6×105Msolar. The stellar velocity dispersion in the host galaxy, measured from the Ca II λ8498, 8542 lines, is 36+/-5 km s-1, also suggestive of a black hole mass of order 105Msolar. Further searches for active nuclei in dwarf galaxies can provide unique constraints on the demographics of black holes in the mass range below 106Msolar.
NASA Astrophysics Data System (ADS)
Knežević, Sladjana; Läsker, Ronald; van de Ven, Glenn; Font, Joan; Raymond, John C.; Bailer-Jones, Coryn A. L.; Beckman, John; Morlino, Giovanni; Ghavamian, Parviz; Hughes, John P.; Heng, Kevin
2017-09-01
We present Hα spectroscopic observations and detailed modeling of the Balmer filaments in the supernova remnant (SNR) Tycho (SN 1572). We used GH α FaS (Galaxy Hα Fabry-Pérot Spectrometer) on the William Herschel Telescope with a 3.‧4 × 3.‧4 field of view, 0.″2 pixel scale, and {σ }{instr}=8.1 km s-1 resolution at 1″ seeing for ˜10 hr, resulting in 82 spatial-spectral bins that resolve the narrow Hα line in the entire SN 1572 northeastern rim. For the first time, we can therefore mitigate artificial line broadening from unresolved differential motion and probe Hα emission parameters in varying shock and ambient medium conditions. Broad Hα line remains unresolved within spectral coverage of 392 km s-1. We employed Bayesian inference to obtain reliable parameter confidence intervals and to quantify the evidence for models with multiple line components. The median Hα narrow-line (NL) FWHM of all bins and models is {W}{NL}=(54.8+/- 1.8) km s-1 at the 95% confidence level, varying within [35, 72] km s-1 between bins and clearly broadened compared to the intrinsic (thermal) ≈20 km s-1. Possible line splits are accounted for, significant in ≈ 18 % of the filament, and presumably due to remaining projection effects. We also find widespread evidence for intermediate-line emission of a broad-neutral precursor, with a median {W}{IL}=(180+/- 14) km s-1 (95% confidence). Finally, we present a measurement of the remnant’s systemic velocity, {V}{LSR}=-34 km s-1, and map differential line-of-sight motions. Our results confirm the existence and interplay of shock precursors in Tycho’s remnant. In particular, we show that suprathermal NL emission is near-universal in SN 1572, and that, in the absence of an alternative explanation, collisionless SNR shocks constitute a viable acceleration source for Galactic TeV cosmic-ray protons.
A DEEP X-RAY VIEW OF THE BARE AGN ARK 120. I. REVEALING THE SOFT X-RAY LINE EMISSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, J. N.; Braito, V.; Porquet, D.
2016-09-10
The Seyfert 1 galaxy Ark 120 is a prototype example of the so-called class of bare nucleus active galactic nuclei (AGNs), whereby there is no known evidence for the presence of ionized gas along the direct line of sight. Here deep (>400 ks exposure), high-resolution X-ray spectroscopy of Ark 120 is presented from XMM-Newton observations that were carried out in 2014 March, together with simultaneous Chandra /High Energy Transmission Grating exposures. The high-resolution spectra confirmed the lack of intrinsic absorbing gas associated with Ark 120, with the only X-ray absorption present originating from the interstellar medium (ISM) of our ownmore » Galaxy, with a possible slight enhancement of the oxygen abundance required with respect to the expected ISM values in the solar neighborhood. However, the presence of several soft X-ray emission lines are revealed for the first time in the XMM-Newton RGS spectrum, associated with the AGN and arising from the He- and H-like ions of N, O, Ne, and Mg. The He-like line profiles of N, O, and Ne appear velocity broadened, with typical FWHMs of ∼5000 km s{sup −1}, whereas the H-like profiles are unresolved. From the clean measurement of the He-like triplets, we deduce that the broad lines arise from a gas of density n {sub e} ∼ 10{sup 11} cm{sup −3}, while the photoionization calculations infer that the emitting gas covers at least 10% of 4 π steradian. Thus the broad soft X-ray profiles appear coincident with an X-ray component of the optical–UV broad-line region on sub-parsec scales, whereas the narrow profiles originate on larger parsec scales, perhaps coincident with the AGN narrow-line region. The observations show that Ark 120 is not intrinsically bare and substantial X-ray-emitting gas exists out of our direct line of sight toward this AGN.« less
Accretion Rate: An Axis Of Agn Unification
NASA Astrophysics Data System (ADS)
Trump, Jonathan R.; Impey, C. D.; Kelly, B. C.
2011-01-01
We show how accretion rate governs the physical properties of broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rate by using accurate accretion luminosities from well-sampled multiwavelength SEDs from the Cosmic Evolution Survey (COSMOS), and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L/L_Edd>0.01), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L/L_Edd<0.01) are unobscured and yet lack a broad line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L/L_Edd<0.01 narrow-line and lineless AGNs to be 10-100 times more radio-luminous than broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L/L_Edd<0.01 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together these results suggest that specific accretion rate is an important physical "axis" of AGN unification, described by a simple model.
Hints of correlation between broad-line and radio variations for 3C 120
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H. T.; Bai, J. M.; Li, S. K.
2014-01-01
In this paper, we investigate the correlation between broad-line and radio variations for the broad-line radio galaxy 3C 120. By the z-transformed discrete correlation function method and the model-independent flux randomization/random subset selection (FR/RSS) Monte Carlo method, we find that broad Hβ line variations lead the 15 GHz variations. The FR/RSS method shows that the Hβ line variations lead the radio variations by a factor of τ{sub ob} = 0.34 ± 0.01 yr. This time lag can be used to locate the position of the emitting region of radio outbursts in the jet, on the order of ∼5 lt-yr frommore » the central engine. This distance is much larger than the size of the broad-line region. The large separation of the radio outburst emitting region from the broad-line region will observably influence the gamma-ray emission in 3C 120.« less
Simultaneous X-ray and optical observations of true type 2 Seyfert galaxies
NASA Astrophysics Data System (ADS)
Bianchi, Stefano; Panessa, Francesca; Barcons, Xavier; Carrera, Francisco J.; La Franca, Fabio; Matt, Giorgio; Onori, Francesca; Wolter, Anna; Corral, Amalia; Monaco, Lorenzo; Ruiz, Ángel; Brightman, Murray
2012-11-01
We present the results of a campaign of simultaneous X-ray and optical observations of 'true' type 2 Seyfert galaxies candidates, i.e. active galactic nuclei without a broad-line region (BLR). Out of the initial sample composed of eight sources, one object, IC 1631, was found to be a misclassified starburst galaxy, another, Q2130-431, does show broad optical lines, while other two, IRAS 01428-0404 and NGC 4698, are very likely absorbed by Compton-thick gas along the line of sight. Therefore, these four sources are not unabsorbed Seyfert 2s as previously suggested in the literature. On the other hand, we confirm that NGC 3147, NGC 3660 and Q2131-427 belong to the class of true type 2 Seyfert galaxies, since they do not show any evidence for a broad component of the optical lines nor for obscuration in their X-ray spectra. These three sources have low accretion rates (ṁ=L bol /L Edd ≲0.01), in agreement with theoretical models which predict that the BLR disappears below a critical value of Lbol/LEdd. The last source, Mrk 273x, would represent an exception even of these accretion-dependent versions of the Unification Models, due to its high X-ray luminosity and accretion rate, and no evidence for obscuration. However, its optical classification as a Seyfert 2 is only based on the absence of a broad component of Hβ, due to the lack of optical spectra encompassing the Hα band. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA); with the TNG and Nordic Optical Telescope (NOT) operated on the island of La Palma by the Centro Galileo Galilei and the Nordic Optical Telescope Science Association, respectively, in the Spanish Observatorio del Roque de los Muchachos; at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC); at the European Organisation for Astronomical Research in the Southern hemisphere, Chile: 278.B-5021(A), 278.B-5016(A); at the Observatorio de Sierra Nevada (OSN) operated by the Instituto de Astrofísica de Andalucía (CSIC).
NASA Technical Reports Server (NTRS)
Hellier, C.; Mason, K. O.; Smale, A. P.; Corbet, R. H. D.; O'Donoghue, D.
1989-01-01
Photometry and red spectroscopy of the intermediate polar EX Hya in its rare outburst state are presented. Photometry during the declining phase of the July-August 1986 outburst shows the 67-min (spin) modulation to be present with similar characteristics to that in quiescence. In contrast, photometry from near the peak of the 1987 May outburst shows little evidence of the 67-min modulation, while spectroscopy obtained nearly simultaneously is similarly lacking in such evidence, despite its presence in quiescent spectroscopic data. Near the beginning of the May 1987 outburst the H alpha emission line develops a broad, high velocity base component whose velocity is modulated with the orbital cycle. The velocity and phase of the broad base component suggest that it is produced near the magnetosphere of the white dwarf at a point along the projected trajectory of the gas stream from the companion. The feature disappears later in the outburst and is not present during quiescence. It is suggested that the outbursts in EX Hya are caused by an increase in the rate of mass transfer from the companion, and that part of this enhanced mass-transfer stream skims over the top of the accretion disk to strike the magnetosphere directly. The interaction of the stream with the magnetosphere gives rise to the broad-base component observed.
The Narrow-Line Region of Narrow-Line Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Rodríguez-Ardila, A.; Binette, Luc; Pastoriza, Miriani G.; Donzelli, Carlos J.
2000-08-01
This work studies the optical emission-line properties and physical conditions of the narrow-line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1's) for which high signal-to-noise ratio spectroscopic observations were available. The resolution is 340 km s-1 (at Hα) over the wavelength interval 3700-9500 Å, enabling us to separate the broad and narrow components of the permitted emission lines. Our results show that the flux carried out by the narrow component of Hβ is, on average, 50% of the total line flux. As a result, the [O III] λ5007/Hβ ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [O III] λ5007/Hβ ratio and the weakness of low-ionization lines of NLS1's. Variation of the relative proportion of these two type of clouds nicely reproduces the dispersion of narrow-line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1's and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission-line ratios between these two groups of galaxies can be explained, to a first approximation, in terms of the shape of the input ionizing continuum. Narrow emission-line ratios of NLS1's are better reproduced by a steep power-law continuum in the EUV-soft X-ray region, with spectral index α~-2. Flatter spectral indices (α~-1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1's, which show that these objects are characterized by steeper power-law indices than those of Seyfert 1 galaxies with strong broad optical lines. Based on observations made at CASLEO. Complejo Astronómico El Leoncito (CASLEO) is operated under agreement between the Consejo Nacional de Investigaciones Científicas y técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juán.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge Junqiang; Hu Chen; Wang Jianmin
Recently, much attention has been paid to double-peaked narrow emission-line (NEL) galaxies, some of which are suggested to be related to merging galaxies. We make a systematic search to build the largest sample of these sources from Data Release 7 of the Sloan Digital Sky Survey (SDSS). With reasonable criteria for fluxes, FWHMs of the emission lines, and separations of the peaks, we select 3030 double-peaked NEL galaxies. In light of the existence of broad Balmer lines and the locations of the two components of double-peaked NELs distinguished by the Kauffmann et al. criteria in the Baldwin-Phillips-Terlevich diagram, we findmore » that there are 81 Type I active galactic nuclei (AGNs), 837 double Type II AGNs (2-Type II), 708 galaxies with double star-forming components (2-SF), 400 with mixed star-forming and Type II AGN components (Type II + SF), and 1004 unknown-type objects. As a by-product, a sample of galaxies (12,582) with asymmetric or top-flat profiles of emission lines is established. After visually inspecting the SDSS images of the two samples, we find 54 galaxies with dual cores. The present samples can be used to study the dynamics of merging galaxies, the triggering mechanism of black hole activity, the hierarchical growth of galaxies, and the dynamics of narrow line regions driven by outflows and a rotating disk.« less
STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, James F.; Remillard, Ronald A.; García, Javier A.
We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe–K line as measured with respect to the power law. A key distinction ofmore » our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe–K line, namely, the Compton power law. We find that reflection is several times more pronounced (∼3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobuta, K.; Akiyama, M.; Ueda, Y.
2012-12-20
In order to investigate the growth of supermassive black holes (SMBHs), we construct the black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) of X-ray-selected broad-line active galactic nuclei (AGNs) at z {approx} 1.4 in the Subaru XMM-Newton Deep Survey (SXDS) field. A significant part of the accretion growth of SMBHs is thought to take place in this redshift range. Black hole masses of X-ray-selected broad-line AGNs are estimated using the width of the broad Mg II line and 3000 A monochromatic luminosity. We supplement the Mg II FWHM values with the H{alpha} FWHM obtained from our NIRmore » spectroscopic survey. Using the black hole masses of broad-line AGNs at redshifts between 1.18 and 1.68, the binned broad-line AGN BHMFs and ERDFs are calculated using the V{sub max} method. To properly account for selection effects that impact the binned estimates, we derive the corrected broad-line AGN BHMFs and ERDFs by applying the maximum likelihood method, assuming that the ERDF is constant regardless of the black hole mass. We do not correct for the non-negligible uncertainties in virial BH mass estimates. If we compare the corrected broad-line AGN BHMF with that in the local universe, then the corrected BHMF at z = 1.4 has a higher number density above 10{sup 8} M{sub Sun} but a lower number density below that mass range. The evolution may be indicative of a downsizing trend of accretion activity among the SMBH population. The evolution of broad-line AGN ERDFs from z = 1.4 to 0 indicates that the fraction of broad-line AGNs with accretion rates close to the Eddington limit is higher at higher redshifts.« less
MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerras, E.; Mediavilla, E.; Jimenez-Vicente, J.
2013-02-20
We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s}more » = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.« less
NASA Astrophysics Data System (ADS)
Park, Daeseong; Barth, Aaron J.; Woo, Jong-Hak; Malkan, Matthew A.; Treu, Tommaso; Bennert, Vardha N.; Assef, Roberto J.; Pancoast, Anna
2017-04-01
We provide an updated calibration of C IV λ 1549 broad emission line–based single-epoch (SE) black hole (BH) mass estimators for active galactic nuclei (AGNs) using new data for six reverberation-mapped AGNs at redshift z=0.005{--}0.028 with BH masses (bolometric luminosities) in the range {10}6.5{--}{10}7.5 {M}ȯ ({10}41.7{--}{10}43.8 erg s‑1). New rest-frame UV-to-optical spectra covering 1150–5700 Å for the six AGNs were obtained with the Hubble Space Telescope (HST). Multicomponent spectral decompositions of the HST spectra were used to measure SE emission-line widths for the C IV, Mg II, and Hβ lines, as well as continuum luminosities in the spectral region around each line. We combine the new data with similar measurements for a previous archival sample of 25 AGNs to derive the most consistent and accurate calibrations of the C IV-based SE BH mass estimators against the Hβ reverberation-based masses, using three different measures of broad-line width: full width at half maximum (FWHM), line dispersion ({σ }line}), and mean absolute deviation (MAD). The newly expanded sample at redshift z=0.005{--}0.234 covers a dynamic range in BH mass (bolometric luminosity) of {log}{M}BH}/{M}ȯ =6.5{--}9.1 ({log}{L}bol}/ erg s‑1 = 41.7{--}46.9), and we derive the new C IV-based mass estimators using a Bayesian linear regression analysis over this range. We generally recommend the use of {σ }line} or MAD rather than FWHM to obtain a less biased velocity measurement of the C IV emission line, because its narrow-line component contribution is difficult to decompose from the broad-line profile. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-12922.
Photoionization Modelling of the Giant Broad-Line Region in NGC 3998.
NASA Astrophysics Data System (ADS)
Devereux, Nicholas
2018-01-01
Prior high angular resolution spectroscopic observations of the low-ionization nuclear emission-line region in NGC 3998 obtained with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope revealed a rich UV-visible spectrum consisting of broad permitted and broad forbidden emission lines. The photoionization code XSTAR is employed together with reddening-insensitive emission line diagnostics to constrain a dynamical model for the broad-line region (BLR) in NGC 3998. The BLR is modelled as a large H+ region ~ 7 pc in radius consisting of dust-free, low density ~ 104 cm-3, low metallicity ~ 0.01 Z/Z⊙ gas. Modelling the shape of the broad Hα emission line significantly discriminates between two independent measures of the black hole mass, favouring the estimate of de Francesco (2006). Interpreting the broad Hα emission line in terms of a steady-state spherically symmetric inflow leads to a mass inflow rate of 1.4 x 10-2 M⊙/yr, well within the present uncertainty of calculations that attempt to explain the observed X-ray emission in terms of an advection-dominated accretion flow (ADAF). Collectively, the model provides an explanation for the shape of the Hα emission line, the relative intensities and luminosities for the H Balmer, [OIII], and potentially several of the broad UV emission lines, as well as refining the initial conditions needed for future modelling of the ADAF.
Evolution of the High Velocity X-Ray Emission in SN 1987A
NASA Astrophysics Data System (ADS)
Dewey, Daniel; Haberl, F.; Dwarkadas, V. V.; Burrows, D. N.; Park, S.
2011-01-01
Chandra HETG observations of SN 1987A in late 1999 showed very broad lines with observed FWHM of order 7000 km/s (Michael et al. 2002). At this time (SN day 4600) the blastwave was already interacting with the HII region around the progenitor and optical spots had recently appeared. High-resolution spectra taken from May 2003 ( day 5900) to the present by XMM-Newton and Chandra have been well fit by models with FWHM less than 2000 km/s (Zhekov et al. 2005; Dewey et al. 2008; Sturm et al 2010). The emission is increasingly dominated by these narrower components as the blastwave encounters more of the dense equatorial ring. However emission from the HII region out of the ring plane is still expected at late times and would contribute a high-velocity component to the spectra. We analyze 6 epochs of SN 1987A grating data and include an additional very broad component in the spectral model. We find that deep HETG 2007 data are better fit when one quarter of the flux comes from a component with FWHM 8500 km/s, and that RGS 2003 data show an improved fit with a very-broad fraction that is between the 1999 and 2007 values. Later data continue a progression to lower, but still significant, very-broad fractions. The measurements are discussed in terms of the density and extent of the out-of-plane HII region, hydrodynamical simulations, and 3D models of SN 1987A's emission. Support for this work was provided by NASA/USA through contract NAS8-03060 to the Smithsonian Astrophysical Observatory (SAO) and further SAO sub-contracts TM9-0004X to VVD (U Chicago) and SV3-73016 to MIT for support of the CXC.
NASA Astrophysics Data System (ADS)
James, B. L.; Tsamis, Y. G.; Barlow, M. J.; Walsh, J. R.; Westmoquette, M. S.
2013-01-01
Using Very Large Telescope/Fibre Large Array Multi Element Spectrograph optical integral field unit observations, we present a detailed study of UM 448, a nearby blue compact galaxy (BCG) previously reported to have an anomalously high N/O abundance ratio. New Technology Telescope/Superb-Seeing Imager images reveal a morphology suggestive of a merger of two systems of contrasting colour, whilst our Hα emission maps resolve UM 448 into three separate regions that do not coincide with the stellar continuum peaks. UM 448 exhibits complex emission line profiles, with most lines consisting of a narrow [full width at half-maximum (FWHM) ≲ 100 km s-1], central component, an underlying broad component (FWHM ˜ 150-300 km s-1) and a third, narrow blueshifted component. Radial velocity maps of all three components show signs of solid body rotation across UM 448, with a projected rotation axis that correlates with the continuum morphology of the galaxy. A spatially resolved, chemodynamical analysis, based on the [O iii] λλ4363, 4959, [N ii] λ6584, [S ii] λλ6716, 6731 and [Ne iii] λ3868 line maps, is presented. Whilst the eastern tail of UM 448 has electron temperatures (Te) that are typical of BCGs, we find a region within the main body of the galaxy where the narrow and broad [O iii] λ4363 line components trace temperatures differing by 5000 K and oxygen abundances differing by 0.4 dex. We measure spatially resolved and integrated ionic and elemental abundances for O, N, S and Ne throughout UM 448, and find that they do not agree, possibly due the flux weighting of Te from the integrated spectrum. This has significant implications for abundances derived from long-slit and integrated spectra of star-forming galaxies in the nearby and distant universe. A region of enhanced N/O ratio is indeed found, extended over a ˜0.6 kpc2 region within the main body of the galaxy. Contrary to previous studies, however, we do not find evidence for a large Wolf-Rayet (WR) population, and conclude that WR stars alone cannot be responsible for producing the observed N/O excess. Instead, the location and disturbed morphology of the N-enriched region suggest that interaction-induced inflow of metal-poor gas may be responsible.
Correlation between the line width and the line flux of the double-peaked broad Hα of 3C390.3
NASA Astrophysics Data System (ADS)
Zhang, Xue-Guang
2013-03-01
In this paper, we carefully check the correlation between the line width (second moment) and the line flux of the double-peaked broad Hα of the well-known mapped active galactic nucleus (AGN) 3C390.3 in order to show some further distinctions between double-peaked emitters and normal broad-line AGN. Based on the virialization assumption MBH ∝ RBLR × V2(BLR) and the empirical relation RBLR ∝ L˜0.5, one strong negative correlation between the line width and the line flux of the double-peaked broad lines should be expected for 3C390.3, such as the negative correlation confirmed for the mapped broad-line object NGC 5548, RBLR × V2(BLR) ∝ L˜0.5 × σ2 = constant. Moreover, based on the public spectra around 1995 from the AGN WATCH project for 3C390.3, one reliable positive correlation is found between the line width and the line flux of the double-peaked broad Hα. In the context of the proposed theoretical accretion disc model for double-peaked emitters, the unexpected positive correlation can be naturally explained, due to different time delays for the inner and outer parts of the disc-like broad-line region (BLR) of 3C390.3. Moreover, the virialization assumption is checked and found to be still available for 3C390.3. However, the time-varying size of the BLR of 3C390.3 cannot be expected by the empirical relation RBLR ∝ L˜0.5. In other words, the mean size of the BLR of 3C390.3 can be estimated by the continuum luminosity (line luminosity), while the continuum emission strengthening leads to the size of BLR decreasing (not increasing) in different moments for 3C390.3. Then, we compared our results of 3C390.3 with the previous results reported in the literature for the other double-peaked emitters, and found that before to clearly correct the effects from disc physical parameters varying (such as the effects of disc precession) for long-term observed line spectra, it is not so meaningful to discuss the correlation of the line parameters of double-peaked broad lines. Furthermore, due to the probable `external' ionizing source with so far unclear structures, it is hard to give one conclusion that the positive correlation between the line width and the line flux can be found for all double-peaked emitters, even after the considerations of disc physical parameters varying. However, once one positive correlation of broad-line parameters is found, the accretion disc origination of the broad line should be considered first.
Anatomy of the AGN in NGC 5548. IX. Photoionized emission features in the soft X-ray spectra
NASA Astrophysics Data System (ADS)
Mao, Junjie; Kaastra, J. S.; Mehdipour, M.; Gu, Liyi; Costantini, E.; Kriss, G. A.; Bianchi, S.; Branduardi-Raymont, G.; Behar, E.; Di Gesu, L.; Ponti, G.; Petrucci, P.-O.; Ebrero, J.
2018-04-01
The X-ray narrow emission line region (NELR) of the archetypal Seyfert 1 galaxy NGC 5548 has been interpreted as a single-phase photoionized plasma that is absorbed by some of the warm absorber components. This scenario requires those overlaying warm absorber components to have larger distance (to the central engine) than the X-ray NELR, which is not fully consistent with the distance estimates found in the literature. Therefore, we reanalyze the high-resolution spectra obtained in 2013-2014 with the Reflection Grating Spectrometer (RGS) aboard XMM-Newton to provide an alternative interpretation of the X-ray narrow emission features. We find that the X-ray narrow emission features in NGC 5548 can be described by a two-phase photoionized plasma with different ionization parameters (logξ = 1.3 and 0.1) and kinematics (vout = -50 and -400 km s-1), and no further absorption by the warm absorber components. The X-ray and optical NELR might be the same multi-phase photoionized plasma. Both X-ray and optical NELR have comparable distances, asymmetric line profiles, and the underlying photoionized plasma is turbulent and compact in size. The X-ray NELR is not the counterpart of the UV/X-ray absorber outside the line of sight because their distances and kinematics are not consistent. In addition, X-ray broad emission features that we find in the spectrum can be accounted for by a third photoionized emission component. The RGS spectrum obtained in 2016 is analyzed as well, where the luminosity of most prominent emission lines (the O VII forbidden line and O VIII Lyα line) are the same (at a 1σ confidence level) as in 2013-2014.
The high velocity symbiotic star AG Draconis after its 1980 outburst
NASA Technical Reports Server (NTRS)
Viotti, R.; Altamore, A.; Baratta, G. B.; Cassatella, A.; Friedjung, M.; Giangrande, A.; Ponz, D.; Ricciardi, O.
1982-01-01
High and low resolution spectra of AG Dra taken in 1981 are analyzed. The UV spectrum of AG Dra is characterized by prominent high ionization emission lines superimposed on a strong continuum. At high resolution, several intense absorption lines of interstellar origin are seen, in spite of the low interstellar extinction. A similar situation is displayed by the high galactic latitude sd0 stars. The radial velocity difference between the emission lines and the i.s. lines is about -105 Km/sec in agreement with the optical observations. The He II 1640 A line appears much stronger than in other symbiotic stars and suggests the presence of a hot source which is variable according to the activity of the star. The line also exhibits broad emission wings which could be formed in a rotating disk. The NV resonance doublet displays a P Cygni profile and is probably formed in a warm wind. Two components in the UV continuum are identified: a steep component dominating the far UV probably associated with the hot source, and a flatter continuum in the near UV which cannot be accounted for by f-f and f-b emission alone, but which is probably emitted by an optically thick region or disk.
Yan, Lin; Quimby, R.; Ofek, E.; ...
2015-11-23
iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z = 0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises in 83–148 days to reach a peak bolometric luminosity of ~1.3 × 10 44 erg s -1, then decays slowly at 0.015 mag day -1. The measured ejecta velocity is ~ 13,000 km s -1. The inferred explosion characteristics, such as the ejecta mass (70–220 M ⊙), and the total radiative and kinetic energy (E rad ~ 10 51 erg, E kin ~ 2 × 10 53 erg), are typical of slow-evolving H-poor SLSN events. However,more » the late-time spectrum taken at +251 days (rest, post-peak) reveals a Balmer Hα emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ~4500 km s -1 and a ~300 km s -1 blueward shift relative to the narrow component. In this paper, we interpret this broad Hα emission with a luminosity of ~2 × 10 41 erg s -1 as resulting from the interaction between the supernova ejecta and a discrete H-rich shell, located at a distance of ~4 × 10 16 cm from the explosion site. This interaction causes the rest-frame r-band LC to brighten at late times. The fact that the late-time spectra are not completely absorbed by the shock-ionized H-shell implies that its Thomson scattering optical depth is likely ≤1, thus setting upper limits on the shell mass ≤30 M ⊙. Of the existing models, a Pulsational Pair Instability supernova model can naturally explain the observed 30 M ⊙ H-shell, ejected from a progenitor star with an initial mass of (95–150) M ⊙ about 40 years ago. Finally, we estimate that at least ~15% of all SLSNe-I may have late-time Balmer emission lines.« less
Physical Orbit for Lam Vir and Testing of Stellar Evolution Models
NASA Astrophysics Data System (ADS)
Zhao, M.; Monnier, J. D.; Torres, G.; Pedretti, E.; Millan-Gabet, R.; Berger, J.-P.; Traub, W. A.; Schloerb, F. P.
2005-12-01
Lambda Virginis is a well-known double-lined spectroscopic Am binary with the interesting property that both stars are very similar in abundance but one is sharp-lined and the other is broad-lined. The differing rotation rates and the unusual metallic-lined nature of this system presents a unique opportunity to test stellar evolution models. In this poster, we present high resolution observations of Lam Vir, taken with the Infrared-Optical Telescopes Array (IOTA) between 2003 and 2005. By combining our interferometric data with double-lined radial velocity data, we determined for the first time the physical orbit of Lam Vir, as well as the orbital parallax of the system. In addition, the masses of the two components are determined with 1% and 1.5% errors respectively. Our preliminary result from comparison with stellar evolution models suggests a discrepancy between Lam Vir and standard models.
NASA Astrophysics Data System (ADS)
Wang, L. J.; Cano, Z.; Wang, S. Q.; Zheng, W. K.; Liu, L. D.; Deng, J. S.; Yu, H.; Dai, Z. G.; Han, Y. H.; Xu, D.; Qiu, Y. L.; Wei, J. Y.; Li, B.; Song, L. M.
2017-12-01
Broad-lined type Ic supernovae (SNe Ic-BL) are a subclass of rare core-collapse SNe whose energy source is debated in the literature. Recently, a series of investigations on SNe Ic-BL with the magnetar (plus 56Ni) model were carried out. Evidence for magnetar formation was found for the well-observed SNe Ic-BL 1998bw and 2002ap. In this paper, we systematically study a large sample of SNe Ic-BL not associated with gamma-ray bursts (GRBs). We use photospheric velocity data determined in a homogeneous way. We find that the magnetar+56Ni model provides a good description of the light curves and velocity evolution of our sample of SNe Ic-BL, although some SNe (not all) can also be described by the pure-magnetar model or by the two-component pure-56Ni model (three out of 12 are unlikely to be explained by two-component model). In the magnetar+56Ni model, the amount of 56Ni required to explain their luminosity is significantly reduced, and the derived initial explosion energy is, in general, in accordance with neutrino heating. Some correlations between different physical parameters are evaluated, and their implications regarding magnetic field amplification and the total energy reservoir are discussed.
Precision Fe K-Alpha and Fe K-Beta Line Spectroscopy of the Seyfert 1.9 Galaxy NGC 2992 with Suzaku
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; Murphy, Kendrah D.; Griffiths, Richard E.; Haba, Yoshito; Inoue, Hajime; Itoh, Takeshi; Kelley, Richard; Kokubun, Motohide; Markowitz, Alex; Mushotzky, Richard;
2006-01-01
We present detailed time-averaged X-ray spectroscopy in the 0.5-10 keV band of the Seyfert 1.9 galaxy NGC 2992 with the Suzaku X-ray Imaging Spectrometers (XIS). The source had a factor approximately 3 higher 2-10 keV flux (approximately 1.2 x l0(exp -11) erg per square cm per s) than the historical minimum and a factor approximately 7 less than the historical maximum. The XIS spectrum of NGC 2992 can be described by several components. There is a primary continuum, modeled as a power-law with a photon index of Gamma = 1.57(sup +0.06) (sup -0.03) that is obscured by a Compton-thin absorber with a column density of 8.01(sup +0.6) (sup -0.5)x l0 (exp 21) per square cm. . There is another, weaker, unabsorbed power-law component (modeled with the same slope as the primary), that is likely to be due to the primary continuum being electron-scattered into our line-of-sight by a region extended on a scale of hundreds of parsecs. We measure the Thomson depth of the scattering zone to be Tau = 0.072 +/- 0.021. An optically-thin thermal continuum emission component, which probably originates in the same extended region, is included in the model and yields a temperature and luminosity of KT = 0.656(sup +0.088) (sup -0.0.61) keV and approximately 1.2 +/- 0.4 x l0 (exp 40) erg per s respectively. We detect an Fe K emission complex which we model with broad and narrow lines and we show that the intensities of the two components are decoupled at a confidence level > 3 sigma. The broad Fe K alpha line has an equivalent width of 118(sup +32) (sup -61) eV and could originate in an accretion disk (with inclination angle greater than approximately 30 deg) around the putative central black hole. The narrow Fe K alpha line has an equivalent width of 1632(sup +47) (sup -26) eV and is unresolved (FWHM < 4630 km per s) and likely originates in distant matter. The absolute flux in the narrow line implies that the column density out of the line-of-sight could be much higher than measured in the line-of-sight, and that the mean (historically-averaged) continuum luminosity responsible for forming the line could be a factor of several higher than that measured from the data. We also detect the Fe K Beta line (corresponding to the narrow Fe K alpha line) with a high signal-to-noise ratio and describe a new robust method to constrain the ionization state of Fe responsible for the Fe K alpha and Fe K Beta lines that does not require any knowledge of possible gravitational and Doppler energy shifts affecting the line energies. For the distant line-emitting matter (e. g. the putative obscuring torus) we deduce that the predominant ionization state is lower than Fe VIII (at 99% confidence), conservatively taking into account residual calibration uncertainties in the XIS energy scale and theoretical and experimental uncertainties in the Fe K fluorescent line energies. From the limits on a possible Compton-reflection continuum it is likely that the narrow Fe K alpha and Fe K Beta lines originate in a Compton-thin structure.
Consequences of hot gas in the broad line region of active galactic nuclei
NASA Technical Reports Server (NTRS)
Kallman, T.; Mushotzky, R.
1985-01-01
Models for hot gas in the broad line region of active galactic nuclei are discussed. The results of the two phase equilibrium models for confinement of broad line clouds by Compton heated gas are used to show that high luminosity quasars are expected to show Fe XXVI L alpha line absorption which will be observed with spectrometers such as those planned for the future X-ray spectroscopy experiments. Two phase equilibrium models also predict that the gas in the broad line clouds and the confining medium may be Compton thick. It is shown that the combined effects of Comptonization and photoabsorption can suppress both the broad emission lines and X-rays in the Einstein and HEAO-1 energy bands. The observed properties of such Compton thick active galaxies are expected to be similar to those of Seyfert 2 nuclei. The implications for polarization and variability are also discussed.
NASA Astrophysics Data System (ADS)
Bisogni, S.; di Serego Alighieri, S.; Goldoni, P.; Ho, L. C.; Marconi, A.; Ponti, G.; Risaliti, G.
2017-06-01
We studied the spectra of six z 2.2 quasars obtained with the X-shooter spectrograph at the Very Large Telescope. The redshift of these sources and the X-shooter's spectral coverage allow us to cover the rest of the spectral range 1200-7000 Å for the simultaneous detection of optical and ultraviolet lines emitted by the broad-line region. Simultaneous measurements, avoiding issues related to quasars variability, help us understand the connection between the different broad-line region line profiles generally used as virial estimators of black hole masses in quasars. The goal of this work is to compare the different emission lines for each object to check on the reliability of Hα, Mg II and C iv with respect to Hβ. Hα and Mg II linewidths correlate well with Hβ, while C iv shows a poorer correlation, due to the presence of strong blueshifts and asymmetries in the profile. We compared our sample with the only other two whose spectra were taken with the same instrument and for all examined lines our results are in agreement with the ones obtained with X-shooter at z 1.5-1.7. We finally evaluate C III] as a possible substitute of C iv in the same spectral range and find that its behaviour is more coherent with those of the other lines: we believe that, when a high quality spectrum such as the ones we present is available and a proper modelization with the Fe II and Fe III emissions is performed, it is more appropriate to use this line than that of C iv if not corrected for the contamination by non-virialized components. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme 086.B-0320(A).The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A1
NASA Technical Reports Server (NTRS)
Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.;
1996-01-01
We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.
Photoionization modelling of the giant broad-line region in NGC 3998
NASA Astrophysics Data System (ADS)
Devereux, Nick
2018-01-01
Prior high angular resolution spectroscopic observations of the Low-ionization nuclear emission-line region (Liner) in NGC 3998 obtained with the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST) revealed a rich UV-visible spectrum consisting of broad permitted and broad forbidden emission lines. The photoionization code XSTAR is employed together with reddening-insensitive emission line diagnostics to constrain a dynamical model for the broad-line region (BLR) in NGC 3998. The BLR is modelled as a large H+ region ∼ 7 pc in radius consisting of dust-free, low-density ∼ 104 cm-3, low-metallicity ∼ 0.01 Z/Z⊙ gas. Modelling the shape of the broad H α emission line significantly discriminates between two independent measures of the black hole (BH) mass, favouring the estimate of de Francesco, Capetti & Marconi (2006). Interpreting the broad H α emission line in terms of a steady-state spherically symmetric inflow leads to a mass inflow rate of 1.4 × 10-2 M⊙ yr-1, well within the present uncertainty of calculations that attempt to explain the observed X-ray emission in terms of an advection-dominated accretion flow (ADAF). Collectively, the model provides an explanation for the shape of the H α emission line, the relative intensities and luminosities for the H Balmer, [O III], and potentially several of the broad UV emission lines, as well as refining the initial conditions needed for future modelling of the ADAF.
Goddard High-Resolution Spectrograph Observations of Procyon and HR1099
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Harper, Graham M.; Linsky, Jeffrey L.; Dempsey, Robert C.
1996-01-01
Goddard High Resolution Spectrograph (GHRS) observations have revealed the presence of broad wings in the transition-region lines of AU Mic and Capella. It has been proposed that these wings are signatures of microflares in the transition regions of these stars and that the solar analog for this phenomenon might be the 'transition region explosive events' discussed by Dere, Bartoe, & Brueckner. We have analyzed GHRS observations of Procyon (F5 IV-V) and HR 1099 (K1 IV + G5 IV) to search for broad wings in the UV emission lines of these stars. We find that the transition-region lines of HR 1099, which are emitted almost entirely by the K1 star, do indeed have broad wings that are even more prominent than those of AU Mic and Capella. This is consistent with the association of the broad wings with microflaring since HR 1099 is a very active binary system. In contrast, the transition-region lines of Procyon, a relatively inactive star, do not show evidence for broad wings, with the possible exception of N v lambda1239. However, Procyon's lines do appear to have excess emission in their blue wings. Linsky et al. found no evidence for broad wings in Capella's chromospheric lines, but we find that the Mg II resonance lines of HR 1099 do have broad wings. The striking resemblance between HR 1099's Mg II and C iv lines suggests that the Mg II line profiles may be regulated by turbulent processes similar to those that control the transition-region line profiles. If this is the case, microflaring may be occurring in the K1 star's chromosphere as well as in its transition region. However, radiative transfer calculations suggest that the broad wings of the Mg II lines can also result from normal chromospheric opacity effects rather than pure turbulence. The prominence of broad wings in the transition region and perhaps even chromospheric lines of active stars suggests that microflaring is very prevalent in the outer atmospheres of active stars.
The physical driver of the optical Eigenvector 1 in Quasar Main Sequence
NASA Astrophysics Data System (ADS)
Panda, Swayamtrupta; Czerny, Bożena; Wildy, Conor
2017-11-01
Quasars are complex sources, characterized by broad band spectra from radio through optical to X-ray band, with numerous emission and absorption features. This complexity leads to rich diagnostics. However, tet{bg92} used Principal Component Analysis (PCA), and with this analysis they were able to show significant correlations between the measured parameters. The leading component, related to Eigenvector 1 (EV1) was dominated by the anticorrelation between the Fe II optical emission and [OIII] line and EV1 alone contained 30% of the total variance. It opened a way in defining a quasar main sequence, in close analogy to the stellar main sequence on the Hertzsprung-Russel (HR) diagram ( tealt{sul01}). The question still remains which of the basic theoretically motivated parameters of an active nucleus (Eddington ratio, black hole mass, accretion rate, spin, and viewing angle) is the main driver behind the EV1. Here we limit ourselves to the optical waveband, and concentrate on theoretical modelling the Fe II to Hβ ratio, and we test the hypothesis that the physical driver of EV1 is the maximum of the accretion disk temperature, reflected in the shape of the spectral energy distribution (SED). We performed computations of the Hβ and optical Fe II for a broad range of SED peak position using CLOUDY photoionisation code. We assumed that both Hβ and Fe II emission come from the Broad Line Region represented as a constant density cloud in a plane-parallel geometry. We expected that a hotter disk continuum will lead to more efficient production of Fe II but our computations show that the Fe II to Hβ ratio actually drops with the rise of the disk temperature. Thus either hypothesis is incorrect, or approximations used in our paper for the description of the line emissivity is inadequate.
Droney, David C; Musto, Callie J; Mancuso, Katie; Roelofs, Wendell L; Linn, Charles E
2012-12-01
Coordinated sexual communication systems, seen in many species of moths, are hypothesized to be under strong stabilizing natural selection. Stabilized communication systems should be resistant to change, but there are examples of species/populations that show great diversification. A possible solution is that it is directional sexual selection on variation in male response that drives evolution. We tested a component of this model by asking whether 'rare' males (ca. 5 % of all males in a population) of the European corn borer moth (ECB), Ostrinia nubilalis, that respond to the sex pheromones of both ECB and a different Ostrinia species (O. furnacalis, the Asian corn borer, ACB), might play an important role in diversification. We specifically tested, via artificial selection, whether this broad male response has an evolvable genetic component. We increased the frequency of broad male response from 5 to 70 % in 19 generations, showing that broad-responding males could be important for the evolution of novel communication systems in ECB. We did not find a broader range of mating acceptance of broad males by females of the base population, however, suggesting that broad response would be unlikely to increase in frequency without the involvement of other factors. However, we found that ECB selection-line females accepted a broader range of courting males, including those of ACB, than did females of the base population. Thus, a genetic correlation exists between broad, long-range response to female sex pheromone and the breadth of female acceptance of males at close range. These results are discussed in the context of evolution of novel communication systems in Ostrinia.
Spectroscopic monitoring of the BL Lac object AO 0235+164
NASA Astrophysics Data System (ADS)
Raiteri, C. M.; Villata, M.; Capetti, A.; Heidt, J.; Arnaboldi, M.; Magazzù, A.
2007-03-01
Aims:Spectroscopic monitoring of BL Lac objects is a difficult task that nonetheless can provide important information on the different components of the active galactic nucleus. Methods: We performed optical spectroscopic monitoring of the BL Lac object AO 0235+164 (z=0.94) with the VLT and TNG telescopes from Aug. 2003 to Dec. 2004, during an extended WEBT campaign. The flux of this source is both contaminated and absorbed by a foreground galactic system at z=0.524, the stars of which can act as gravitational micro-lenses. Results: In this period the object was in an optically faint, though variable state, and a broad Mg II emission line was visible at all epochs. The spectroscopic analysis reveals an overall variation in the Mg II line flux of a factor 1.9, while the corresponding continuum flux density changed by a factor 4.3. Most likely, the photoionising radiation can be identified with the emission component that was earlier recognised to be present as a UV-soft-X-ray bump in the source spectral energy distribution and that is visible in the optical domain only in very faint optical states. We estimate an upper limit to the broad line region (BLR) size of a few light months from the historical minimum brightness level; from this we infer the maximum amplification of the Mg II line predicted by the microlensing scenario. Conclusions: .Unless we have strongly overestimated the size of the BLR, only very massive stars could significantly magnify the broad Mg II emission line, but the time scale of variations due to these (rare) events would be of several years. In contrast, the continuum flux, coming from much smaller emission regions in the jet, could be affected by microlensing from the more plausible MACHO deflectors, with variability time scales of the order of some months. Based on observations collected at the European Southern Observatory, Chile (ESO Programme 71.A-0174), and on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.
Faint Object Camera imaging and spectroscopy of NGC 4151
NASA Technical Reports Server (NTRS)
Boksenberg, A.; Catchpole, R. M.; Macchetto, F.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.
1995-01-01
We describe ultraviolet and optical imaging and spectroscopy within the central few arcseconds of the Seyfert galaxy NGC 4151, obtained with the Faint Object Camera on the Hubble Space Telescope. A narrowband image including (O III) lambda(5007) shows a bright nucleus centered on a complex biconical structure having apparent opening angle approximately 65 deg and axis at a position angle along 65 deg-245 deg; images in bands including Lyman-alpha and C IV lambda(1550) and in the optical continuum near 5500 A, show only the bright nucleus. In an off-nuclear optical long-slit spectrum we find a high and a low radial velocity component within the narrow emission lines. We identify the low-velocity component with the bright, extended, knotty structure within the cones, and the high-velocity component with more confined diffuse emission. Also present are strong continuum emission and broad Balmer emission line components, which we attribute to the extended point spread function arising from the intense nuclear emission. Adopting the geometry pointed out by Pedlar et al. (1993) to explain the observed misalignment of the radio jets and the main optical structure we model an ionizing radiation bicone, originating within a galactic disk, with apex at the active nucleus and axis centered on the extended radio jets. We confirm that through density bounding the gross spatial structure of the emission line region can be reproduced with a wide opening angle that includes the line of sight, consistent with the presence of a simple opaque torus allowing direct view of the nucleus. In particular, our modelling reproduces the observed decrease in position angle with distance from the nucleus, progressing initially from the direction of the extended radio jet, through our optical structure, and on to the extended narrow-line region. We explore the kinematics of the narrow-line low- and high-velocity components on the basis of our spectroscopy and adopted model structure.
Is BL Lacertae an ``orphan'' AGN?. Multiband and spectroscopic constraints on the parent population
NASA Astrophysics Data System (ADS)
Capetti, A.; Raiteri, C. M.; Buttiglione, S.
2010-06-01
Aims: We have analysed optical spectra of BL Lacertae, the prototype of its blazar subclass, to verify the broad Hα emission line detected more than a decade ago and its possible flux variation. We used the spectroscopic information to investigate the question of the BL Lacertae parent population. Methods: Low- and high-resolution optical spectra of BL Lacertae were acquired with the DOLORES spectrograph at the 3.58 m telescopio nazionale Galileo (TNG) during four nights in 2007-2008, when the source was in a relatively faint state. In three cases we were able to fit the complex Hα spectral range with multiple line components and to measure both the broad Hα and several narrow emission line fluxes. Results: A critical comparison with previous results suggests that the broad Hα flux has increased by about 50% in ten years. This might be due to an addition of gas in the broad line region (BLR), or to a strengthening of the disc luminosity, but such flux changes are not unusual in Broad Lined active nuclei. We estimated the BL Lacertae black hole mass by means of its relation with the bulge luminosity, finding 4-6 × 108 M⊙. The virial mass estimated from the spectroscopic data gives instead a value 20-30 times lower. An analysis of the disc and BLR properties in different AGNs suggests that this discrepancy is due to an underluminosity of the BL Lacertae BLR. Finally, we addressed the problem of the BL Lacertae parent population, comparing its isotropic quantities with those of other AGN classes. From the point of view of the narrow emission line spectrum, the source is located close to low-excitation radio galaxies. When one also considers its diffuse radio power, an association with FR I radio galaxies is severely questioned due to the lower radio luminosity (at a given line luminosity) of BL Lacertae. The narrow line and radio luminosities of BL Lacertae instead match those of a sample of miniature radio galaxies, which however do not show a BLR. Yet, if existing, “misaligned BL Lacertae” objects should have entered that sample. We also rule out the possibility that they were excluded because of a QSO optical appearance. Conclusions: The observational constraints suggest that BL Lacertae is caught in a short term transient stage, which does not leave a detectable evolutionary “trace” in the AGN population. We present a scenario that can account for the observed properties. Based on observations made with the Italian Telescopio Nazionale Galileo operated on the island of La Palma by the Centro Galileo Galilei of INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque del los Muchachos of the Instituto de Astrofisica de Canarias.
NASA Astrophysics Data System (ADS)
Trump, Jonathan R.; Hsu, Alexander D.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.
2013-02-01
We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.
An Intermediate-Mass Black Hole in the Dwarf Seyfert 1 Galaxy POX 52
NASA Astrophysics Data System (ADS)
Barth, A.; Ho, L.; Sargent, W.
2004-06-01
We describe new observations of POX 52, a previously known but nearly forgotten example of a dwarf galaxy with an active nucleus. While POX 52 was originally thought to be a Seyfert 2 galaxy, the new data reveal an emission-line spectrum very similar to that of the dwarf Seyfert 1 galaxy NGC 4395, with clear broad components to the permitted line profiles. The host galaxy appears to be a dwarf elliptical; this is the only known case of a Seyfert nucleus in a galaxy of this type. Applying scaling relations to estimate the black hole mass from the broad Hβ linewidth and continuum luminosity, we find MBH ≈ 1.6×105 M⊙. The stellar velocity dispersion in the host galaxy is 36 km s-1, also suggestive of a black hole mass of order 105 M⊙. Further searches for AGNs in dwarf galaxies can provide crucial constraints on the demographics of black holes in the mass range below 106 M⊙.
Resolving the Cygnus X-3 iron K line
NASA Technical Reports Server (NTRS)
Kitamoto, Shunji; Kawashima, Kenji; Negoro, Hitoshi; Miyamoto, Sigenori; White, N. E.; Nagase, Fumiaki
1994-01-01
An Advanced Satellite for Cosmology and Astrophysics (ASCA) observation of Cygnus X-3 on 1993 June 11, in its X-ray high intensity state, has for the first time resolved the broad iron K line emission into three components: a He-like line at 6.67 +/- 0.01 keV, a H-like line at 6.96 +/- 0.02 keV, and a neutral line at 6.37 +/- 0.03 keV. The line intensities of the 6.67 keV and 6.96 keV lines are modulated with the 4.8 hr orbital period and are maximum when the continuum intensity is minimum. There is a sharp minimum of the line intensity on the rising phase of the continuum intensity. An iron absorption edge is observed at 7.19 +/- 0.02 keV. The optical depth of the absorption edge varies from 0.3 to 0.5 and is in anti-phase with the overall X-ray continuum modulation. The observed complexity of the iron K line region is greater than that had been assumed in previous spectral modeling based on observations with lower resolution detectors.
2010-01-01
photometry , timing measurements of suitable cadence, and advanced theory are the keys to understanding the physics of million degree plasmas in...Disentangling these components requires time - and phase- resolved spectroscopic observations of a sample that spans a range of mass accretion rates...many narrow lines, or a continuum with strong, broad absorption features. Key Objective: Obtaining time - and phase- resolved high-resolution EUV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.
2014-06-20
We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly fullmore » coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane
We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broadmore » absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.« less
Super-massive binary black holes and emission lines in active galactic nuclei
NASA Astrophysics Data System (ADS)
Popović, Luka Č.
2012-02-01
It is now agreed that mergers play an essential role in the evolution of galaxies and therefore that mergers of supermassive black holes (SMBHs) must have been common. We see the consequences of past supermassive binary black holes (SMBs) in the light profiles of so-called 'core ellipticals' and a small number of SMBs have been detected. However, the evolution of SMBs is poorly understood. Theory predicts that SMBs should spend a substantial amount of time orbiting at velocities of a few thousand kilometers per second. If the SMBs are surrounded by gas observational effects might be expected from accretion onto one or both of the SMBHs. This could result in a binary Active Galactic Nucleus (AGN) system. Like a single AGN, such a system would emit a broad band electromagnetic spectrum and broad and narrow emission lines. The broad emission spectral lines emitted from AGNs are our main probe of the geometry and physics of the broad line region (BLR) close to the SMBH. There is a group of AGNs that emit very broad and complex line profiles, showing two displaced peaks, one blueshifted and one redshifted from the systemic velocity defined by the narrow lines, or a single such peak. It has been proposed that such line shapes could indicate an SMB system. We discuss here how the presence of an SMB will affect the BLRs of AGNs and what the observational consequences might be. We review previous claims of SMBs based on broad line profiles and find that they may have non-SMB explanations as a consequence of a complex BLR structure. Because of these effects it is very hard to put limits on the number of SMBs from broad line profiles. It is still possible, however, that unusual broad line profiles in combination with other observational effects (line ratios, quasi-periodical oscillations, spectropolarimetry, etc.) could be used for SMBs detection. Some narrow lines (e.g., [O III]) in some AGNs show a double-peaked profile. Such profiles can be caused by streams in the Narrow Line Region (NLR), but may also indicate the presence of a kilo-parsec scale mergers. A few objects indicated as double-peaked narrow line emitters are confirmed as kpc-scale margers, but double-peaked narrow line profiles are mostly caused by the complex NLR geometry. We briefly discuss the expected line profile of broad Fe Kα that probably originated in the accretion disk(s) around SMBs. This line may also be very complex and indicate the complex disk geometry or/and an SMB presence. Finally we consider rare configurations where a SMB system might be gravitationally lensed by a foreground galaxy, and discuss the expected line profiles in these systems.
The structure of galactic HI in directions of low total column density
NASA Technical Reports Server (NTRS)
Lockman, F. J.; Jahoda, K.; Mccammon, D.
1985-01-01
A detailed 21 cm study of areas of that have the smallest known amount of HI in the northern sky was performed. These observations were corrected for stray radiation. The region of main interest, around alpha = 10(h)45(m), delta = 57 deg 20', has a minimium N(HI) of 4.5 x 10 to the 19th power/sq cm. Spectra taken at 21' resolution over a field 4 x 3 deg in this direction show up to four HI line components. Two, near 0 and -50 km/s, are ubiquitous. There is also a narrow component at -10 km/s attributable to a diffuse cloud covering half of the field, and scattered patches of HI at v -100 km/s. the low and intermediate velocity components have a broad line width and are so smoothly distributed across the region that it is unlikely that they contain significant unresolved angular structure. Eight other low column density directions were also observed. Their spectra typically have several components, but the total column density is always 7 x 10 to the 19th power/sq cm and changes smoothly along a 2 deg strip. Half of the directions show narrow lines arising from weak diffuse HI clouds that contain 0.5 to 3.0 x 10 to the 19th power/sq cm.
NASA Astrophysics Data System (ADS)
Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming
2016-05-01
SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}⊙ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}⊙ yr-1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He I λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He I λ10830 and the bulk blueshifting of [O III]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na I D and He I λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm-3, ionization parameter 10-1.3 ≲ U ≲ 10-0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm-2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ˜48-65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044-1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ˜30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking galaxy merger (or violent interaction) and quasar feedback. Its proximity enables our further observational investigations in detail (or tests) of the co-evolution paradigm.
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha P.; Macalpine, Gordon M.
1992-01-01
Well-constrained photoionization models for the Seyfert I galaxy NGC 3783 are developed. Both cross-correlation analyses and line variability trends with varying ionizing radiation flux require a multicomponent picture. All the data for He II 1640 A, C IV 1549 A, and semiforbidden C III 1909 A can be reasonably well reproduced by two cloud components. One has a source-cloud distance of 24 lt-days, gas density around 3 x 10 exp 10/cu cm, ionization parameter range of 0.04-0.2, and cloud thickness such that about half of the carbon is doubly ionized and about half is triply ionized. The other component is located approximately 96 lt-days from the source, is shielded from the source by the inner cloud, has a density about 3 x 10 to the 9th/cu cm, and is characterized by an ionization parameter range of 0.001-0.03, The cloud thickness is such that about 45 percent carbon is doubly ionized and about 55 percent is singly ionized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roig, Benjamin; Blanton, Michael R.; Ross, Nicholas P.
2014-02-01
Many classes of active galactic nuclei (AGNs) have been observed and recorded since the discovery of Seyfert galaxies. In this paper, we examine the sample of luminous galaxies in the Baryon Oscillation Spectroscopic Survey. We find a potentially new observational class of AGNs, one with strong and broad Mg II λ2799 line emission, but very weak emission in other normal indicators of AGN activity, such as the broad-line Hα, Hβ, and the near-ultraviolet AGN continuum, leading to an extreme ratio of broad Hα/Mg II flux relative to normal quasars. Meanwhile, these objects' narrow-line flux ratios reveal AGN narrow-line regions withmore » levels of activity consistent with the Mg II fluxes and in agreement with that of normal quasars. These AGN may represent an extreme case of the Baldwin effect, with very low continuum and high equivalent width relative to typical quasars, but their ratio of broad Mg II to broad Balmer emission remains very unusual. They may also be representative of a class of AGN where the central engine is observed indirectly with scattered light. These galaxies represent a small fraction of the total population of luminous galaxies (≅ 0.1%), but are more likely (about 3.5 times) to have AGN-like nuclear line emission properties than other luminous galaxies. Because Mg II is usually inaccessible for the population of nearby galaxies, there may exist a related population of broad-line Mg II emitters in the local universe which is currently classified as narrow-line emitters (Seyfert 2 galaxies) or low ionization nuclear emission-line regions.« less
Hydrogen molecules and hydrogen-related defects in crystalline silicon
NASA Astrophysics Data System (ADS)
Fukata, N.; Sasaki, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.
1997-09-01
We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158 cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990 cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydrogen molecules is broad and asymmetric. It consists of at least two components, possibly arising from hydrogen molecules in different occupation sites in crystalline silicon. The rotational Raman line of hydrogen molecules is observed at 590 cm-1. The Raman band of Si-H stretching is observed for hydrogenation temperatures between 100 and 500 °C and the intensity has a maximum for hydrogenation at 250 °C.
Optical and UV spectroscopy of the peculiar RS CVn system, RT Lacertae
NASA Technical Reports Server (NTRS)
Huenemoerder, D. P.; Barden, S. C.
1985-01-01
Spectra in the H-alpha and H-beta regions of the peculiar double-lined RS CVn binary, RT Lacertae, were obtained in the fall of 1984. Limited International Ultraviolet Explorer (IUE) long wavelength low and high resolution spectra were obtained concurrently. The ground based spectra have shown an asymmetry with orbital phase in the H-alpha profile. The H-beta profiles were consistent with the same effect. One hemisphere showed excess emission and the other excess absorption, with a broad Gaussian emission component superposed upon the excess H-alpha line. An improved radial velocity curve, giving a better determined mass ratio and geometry was derived. This combined with the radii implied by the rotational broadening of the spectra, showed one component to be 80 to 90% filling the equilibrium Roche surface. The two-faced nature is, therfore, very likely due to mass transfer from the contact component impacting upon its companion. Low resolution ultraviolet data showed that the supposed cooler component is bluer than its companion. High resolution ultraviolet data taken during secondary eclipse showed Mg II emission strength which decreased more slowly than the area visible. The phase behavior of the low resolution data support the former situation, indicating traditional chromospheric activity.
Optical and UV spectroscopy of the peculiar RS CVn system, RT Lacertae
NASA Astrophysics Data System (ADS)
Huenemoerder, D. P.; Barden, S. C.
1985-11-01
Spectra in the H-alpha and H-beta regions of the peculiar double-lined RS CVn binary, RT Lacertae, were obtained in the fall of 1984. Limited International Ultraviolet Explorer (IUE) long wavelength low and high resolution spectra were obtained concurrently. The ground based spectra have shown an asymmetry with orbital phase in the H-alpha profile. The H-beta profiles were consistent with the same effect. One hemisphere showed excess emission and the other excess absorption, with a broad Gaussian emission component superposed upon the excess H-alpha line. An improved radial velocity curve, giving a better determined mass ratio and geometry was derived. This combined with the radii implied by the rotational broadening of the spectra, showed one component to be 80 to 90% filling the equilibrium Roche surface. The two-faced nature is, therfore, very likely due to mass transfer from the contact component impacting upon its companion. Low resolution ultraviolet data showed that the supposed cooler component is bluer than its companion. High resolution ultraviolet data taken during secondary eclipse showed Mg II emission strength which decreased more slowly than the area visible. The phase behavior of the low resolution data support the former situation, indicating traditional chromospheric activity.
High-Resolution X-Ray Spectroscopy and Modeling of the Absorbing and Emitting Outflow in NGC 3783
NASA Astrophysics Data System (ADS)
Kaspi, Shai; Brandt, W. N.; Netzer, Hagai; George, Ian M.; Chartas, George; Behar, Ehud; Sambruna, Rita M.; Garmire, Gordon P.; Nousek, John A.
2001-06-01
The high-resolution X-ray spectrum of NGC 3783 shows several dozen absorption lines and a few emission lines from the H-like and He-like ions of O, Ne, Mg, Si, and S, as well as from Fe XVII-Fe XXIII L-shell transitions. We have reanalyzed the Chandra HETGS spectrum using better flux and wavelength calibrations, along with more robust methods. Combining several lines from each element, we clearly demonstrate the existence of the absorption lines and determine that they are blueshifted relative to the systemic velocity by -610+/-130 km s-1. We find the Ne absorption lines in the High-Energy Grating spectrum to be resolved with FWHM=840+490-360 km s-1; no other lines are resolved. The emission lines are consistent with being at the systemic velocity. We have used regions in the spectrum where no lines are expected to determine the X-ray continuum, and we model the absorption and emission lines using photoionized-plasma calculations. The model consists of two absorption components, with different covering factors, which have an order-of-magnitude difference in their ionization parameters. The two components are spherically outflowing from the active galactic nucleus, and thus contribute to both the absorption and the emission via P Cygni profiles. The model also clearly requires O VII and O VIII absorption edges. The low-ionization component of our model can plausibly produce UV absorption lines with equivalent widths consistent with those observed from NGC 3783. However, we note that this result is highly sensitive to the unobservable UV to X-ray continuum, and the available UV and X-ray observations cannot firmly establish the relationship between the UV and X-ray absorbers. We find good agreement between the Chandra spectrum and simultaneous ASCA and RXTE observations. The 1 keV deficit previously found when modeling ASCA data probably arises from iron L-shell absorption lines not included in previous models. We also set an upper limit on the FWHM of the narrow Fe Kα emission line of 3250 km s-1. This is consistent with this line originating outside the broad-line region, possibly from a torus.
Irresistable: Service Masks, Goldwater-Nichols, and Overcoming Service Barriers to JFACC
2016-06-10
Air Forces IFR In Flight Refueling JCS Joint Chiefs of Staff JFACC Joint Force Air Component Commander JFC Joint Force Commander LOC Lines of...culture, diplomacy, and beyond.7 The focus is on the personalities that build and develop the technology and thus their impact on history. This broad...embarked Air Group 5 contained propeller and first-generation jets. In the days before in- flight-refueling ( IFR ), these aircraft could only manage a
C IV absorption-line variability in X-ray-bright broad absorption-line quasi-stellar objects
NASA Astrophysics Data System (ADS)
Joshi, Ravi; Chand, Hum; Srianand, Raghunathan; Majumdar, Jhilik
2014-07-01
We report the kinematic shift and strength variability of the C IV broad absorption-line (BAL) trough in two high-ionization X-ray-bright quasi-stellar objects (QSOs): SDSS J085551+375752 (at zem ˜ 1.936) and SDSS J091127+055054 (at zem ˜ 2.793). Both these QSOs have shown a combination of profile shifts and the appearance and disappearance of absorption components belonging to a single BAL trough. The observed average kinematic shift of the whole BAL profile resulted in an average deceleration of ˜-0.7 ± 0.1, -2.0 ± 0.1 cm s-2 over rest-frame time-spans of 3.11 and 2.34 yr for SDSS J085551+375752 and SDSS J091127+055054, respectively. To our knowledge, these are the largest kinematic shifts known, exceeding by factors of about 2.8 and 7.8 the highest deceleration reported in the literature; this makes both objects potential candidates to investigate outflows using multiwavelength monitoring of their line and continuum variability. We explore various possible mechanisms to understand the observed profile variations. Outflow models involving many small self-shielded clouds, probably moving in a curved path, provide the simplest explanation for the C IV BAL strength and velocity variations, along with the X-ray-bright nature of these sources.
Optical and UV spectroscopy of the peculiar RS CVn system RT Lacertae
NASA Technical Reports Server (NTRS)
Huenemoerder, D. P.; Barden, S. C.
1986-01-01
H-alpha and H-beta spectra of the peculiar double-lined RS CVn binary RT Lacertae have been obtained using the IUE, together with a ground-based coude-feed telescope at KPNO. The ground-based spectra show an asymmetry related to the orbital phase in the H-alpha profile. H-beta profiles showed excess emission in one hemisphere and excess absorption in the other, with a broad Gaussian emission component superposed on the excess H-alpha line. A radial velocity curve was derived to estimate the mass ratio and geometry of the system. It is shown that the component of RT Lac fills 80-90 percent of the equilibrium Roche surface. Low-resolution ultraviolet data show that the supposed cooler component is bluer than its companion, suggesting evidence of a scattering shell or a cloud produced by the splash of a gas stream. The phase behavior of the low resolution ultraviolet data support the conclusion that RT Lac is a mass transfer system and that mass transfer is the primary cause of its activity.
Double-peaked Emission Lines Due to a Radio Outflow in KISSR 1219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharb, P.; Vaddi, S.; Subramanian, S.
We present the results from 1.5 and 5 GHz phase-referenced VLBA and 1.5 GHz Karl G. Jansky Very Large Array (VLA) observations of the Seyfert 2 galaxy KISSR 1219, which exhibits double-peaked emission lines in its optical spectrum. The VLA and VLBA data reveal a one-sided core-jet structure at roughly the same position angles, providing evidence of an active galactic nucleus outflow. The absence of dual parsec-scale radio cores puts the binary black-hole picture in doubt for the case of KISSR 1219. The high brightness temperatures of the parsec-scale core and jet components (>10{sup 6} K) are consistent with thismore » interpretation. Doppler boosting with jet speeds of ≳0.55 c to ≳0.25 c , going from parsec to kiloparsec scales, at a jet inclination ≳50° can explain the jet one-sidedness in this Seyfert 2 galaxy. A blueshifted broad emission line component in [O iii] is also indicative of an outflow in the emission line gas at a velocity of ∼350 km s{sup −1}, while the [O i] doublet lines suggest the presence of shock-heated gas. A detailed line ratio study using the MAPPINGS III code further suggests that a shock+precursor model can explain the line ionization data well. Overall, our data suggest that the radio outflow in KISSR 1219 is pushing the emission line clouds, both ahead of the jet and in a lateral direction, giving rise to the double peak emission line spectra.« less
The broad-band X-ray spectral variability of Mrk 841
NASA Technical Reports Server (NTRS)
George, I. M.; Nandra, K.; Fabian, A. C.; Turner, T. J.; Done, C.; Day, C. S. R.
1993-01-01
A detailed spectral analysis of five X-ray observations of Mrk 841 with the EXOSAT, Ginga, and ROSAT satellites is reported. Variability is apparent in both the soft (0.1-1.0 keV) and medium (1-20 keV) energy bands. Above, 1 keV, the spectra are adequately modeled by a power law with a strong emission line of equivalent width 450 eV. The large equivalent width of the emission line indicates a strongly enhanced reflection component of the source compared with other Seyferts observed with Ginga. The implications of the results of the analysis for physical models of the emission regions in this and other X-ray bright Seyferts are briefly examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Lin; Masci, F.; Quimby, R.
2015-12-01
iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z = 0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises in 83–148 days to reach a peak bolometric luminosity of ∼1.3 × 10{sup 44} erg s{sup −1}, then decays slowly at 0.015 mag day{sup −1}. The measured ejecta velocity is ∼ 13,000 km s{sup −1}. The inferred explosion characteristics, such as the ejecta mass (70–220 M{sub ⊙}), and the total radiative and kinetic energy (E{sub rad} ∼ 10{sup 51} erg, E{sub kin} ∼ 2 × 10{sup 53} erg), are typical of slow-evolving H-poor SLSN events. However,more » the late-time spectrum taken at +251 days (rest, post-peak) reveals a Balmer Hα emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ∼4500 km s{sup −1} and a ∼300 km s{sup −1} blueward shift relative to the narrow component. We interpret this broad Hα emission with a luminosity of ∼2 × 10{sup 41} erg s{sup −1} as resulting from the interaction between the supernova ejecta and a discrete H-rich shell, located at a distance of ∼4 × 10{sup 16} cm from the explosion site. This interaction causes the rest-frame r-band LC to brighten at late times. The fact that the late-time spectra are not completely absorbed by the shock-ionized H-shell implies that its Thomson scattering optical depth is likely ≤1, thus setting upper limits on the shell mass ≤30 M{sub ⊙}. Of the existing models, a Pulsational Pair Instability supernova model can naturally explain the observed 30 M{sub ⊙} H-shell, ejected from a progenitor star with an initial mass of (95–150) M{sub ⊙} about 40 years ago. We estimate that at least ∼15% of all SLSNe-I may have late-time Balmer emission lines.« less
SALT long-slit spectroscopy of CTS C30.10: two-component Mg II line
NASA Astrophysics Data System (ADS)
Modzelewska, J.; Czerny, B.; Hryniewicz, K.; Bilicki, M.; Krupa, M.; Świȩtoń, A.; Pych, W.; Udalski, A.; Adhikari, T. P.; Petrogalli, F.
2014-10-01
Context. Quasars can be used as a complementary tool to SN Ia to probe the distribution of dark energy in the Universe by measuring the time delay of the emission line with respect to the continuum. The understanding of the Mg II emission line structure is important for cosmological application and for the black hole mass measurements of intermediate redshift quasars. Aims: Knowing the shape of Mg II line and its variability allows for identifying which part of the line should be used to measure the time delay and the black hole mass. We thus aim at determining the structure and the variability of the Mg II line, as well as the underlying Fe II pseudo-continuum. Methods: We performed five spectroscopic observations of a quasar CTS C30.10 (z = 0.9000) with the SALT telescope between December 2012 and March 2014, and we studied the variations in the spectral shape in the 2700 Å-2900 Å rest frame. Results: We show that the Mg II line in this source consists of two kinematic components, which makes the source representative of type B quasars. Both components were modeled well with a Lorentzian shape, and they vary in a similar way. The Fe II contribution seems to be related only to the first (blue) Mg II component. Broad band spectral fitting instead favor the use of the whole line profile. The contribution of the narrow line region to Mg II is very low, below 2%. The Mg II variability is lower than the variability of the continuum, which is consistent with the simple reprocessing scenario. The variability level of CTS C30.10 and the measurement accuracy of the line and continuum is high enough to expect that further monitoring will allow the time delay between the Mg II line and continuum to be measured. Based on observations made with the Southern African Large Telescope (SALT) under program 2012-2-POL-003 and 2013-1-POL-RSA-002 (PI: B. Czerny).Spectra shown in Figs. 3 and 4 are only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/570/A53Table 1 is available in electronic form at http://www.aanda.org
Suzaku Observations of the Broad-Line Radio Galaxy 3C390.3
NASA Technical Reports Server (NTRS)
Sambruna, rita
2007-01-01
We present the results of a 100ks Suzaku observation of the BLRG 3C390.3. The observations were performed to attempt to disentangle the contributions to the X-ray emission of this galaxy from an AGN and a jet component, via variability and/or the spectrum. The source was detected at high energies up to 80 keV, with a complex 0.3--80keV spectrum. Preliminary analysis of the data shows significant flux variability, with the largest amplitudes at higher energies. Deconvolution of the spectrum shows that, besides a standard Seyfert-like spectrum dominating the 0.3--8keV emission, an additional, hard power law component is required, dominating the emission above 10 keV. We attribute this component to a variable jet.
The Development of Quality Control Genotyping Approaches: A Case Study Using Elite Maize Lines.
Chen, Jiafa; Zavala, Cristian; Ortega, Noemi; Petroli, Cesar; Franco, Jorge; Burgueño, Juan; Costich, Denise E; Hearne, Sarah J
2016-01-01
Quality control (QC) of germplasm identity and purity is a critical component of breeding and conservation activities. SNP genotyping technologies and increased availability of markers provide the opportunity to employ genotyping as a low-cost and robust component of this QC. In the public sector available low-cost SNP QC genotyping methods have been developed from a very limited panel of markers of 1,000 to 1,500 markers without broad selection of the most informative SNPs. Selection of optimal SNPs and definition of appropriate germplasm sampling in addition to platform section impact on logistical and resource-use considerations for breeding and conservation applications when mainstreaming QC. In order to address these issues, we evaluated the selection and use of SNPs for QC applications from large DArTSeq data sets generated from CIMMYT maize inbred lines (CMLs). Two QC genotyping strategies were developed, the first is a "rapid QC", employing a small number of SNPs to identify potential mislabeling of seed packages or plots, the second is a "broad QC", employing a larger number of SNP, used to identify each germplasm entry and to measure heterogeneity. The optimal marker selection strategies combined the selection of markers with high minor allele frequency, sampling of clustered SNP in proportion to marker cluster distance and selecting markers that maintain a uniform genomic distribution. The rapid and broad QC SNP panels selected using this approach were further validated using blind test assessments of related re-generation samples. The influence of sampling within each line was evaluated. Sampling 192 individuals would result in close to 100% possibility of detecting a 5% contamination in the entry, and approximately a 98% probability to detect a 2% contamination of the line. These results provide a framework for the establishment of QC genotyping. A comparison of financial and time costs for use of these approaches across different platforms is discussed providing a framework for institutions involved in maize conservation and breeding to assess the resource use effectiveness of QC genotyping. Application of these research findings, in combination with existing QC approaches, will ensure the regeneration, distribution and use in breeding of true to type inbred germplasm. These findings also provide an effective approach to optimize SNP selection for QC genotyping in other species.
NASA Astrophysics Data System (ADS)
Sluse, D.; Tewes, M.
2014-11-01
The advent of large area photometric surveys has raised a great deal of interest in the possibility of using broadband photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei. We describe here a new method that uses time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single-band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images that is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques that use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.
NASA Astrophysics Data System (ADS)
Ursini, F.; Petrucci, P.-O.; Matt, G.; Bianchi, S.; Cappi, M.; Dadina, M.; Grandi, P.; Torresi, E.; Ballantyne, D. R.; De Marco, B.; De Rosa, A.; Giroletti, M.; Malzac, J.; Marinucci, A.; Middei, R.; Ponti, G.; Tortosa, A.
2018-05-01
We present the analysis of five joint XMM-Newton/NuSTARobservations, 20 ks each and separated by 12 days, of the broad-line radio galaxy 3C 382. The data were obtained as part of a campaign performed in September-October 2016 simultaneously with VLBA. The radio data and their relation with the X-ray ones will be discussed in a following paper. The source exhibits a moderate flux variability in the UV/X-ray bands, and a limited spectral variability especially in the soft X-ray band. In agreement with past observations, we find the presence of a warm absorber, an iron Kα line with no associated Compton reflection hump, and a variable soft excess well described by a thermal Comptonization component. The data are consistent with a "two-corona" scenario, in which the UV emission and soft excess are produced by a warm (kT ≃ 0.6 keV), optically thick (τ ≃ 20) corona consistent with being a slab fully covering a nearly passive accretion disc, while the hard X-ray emission is due to a hot corona intercepting roughly 10% of the soft emission. These results are remarkably similar to those generally found in radio-quiet Seyferts, thus suggesting a common accretion mechanism.
Broad-Band Continuum and Line Emission of the gamma-Ray Blazar PKS 0537-441
NASA Technical Reports Server (NTRS)
Pian, E.; Falomo, R.; Hartman, R. C.; Maraschi, L.; Tavecchio, F.; Tornikoski, M.; Treves, A.; Urry, C. M.; Ballo, L.; Mukherjee, R.;
2002-01-01
PKS 0537-441, a bright gamma ray emitting blazar was observed at radio, optical, UV and X-ray frequencies during various EGRET paintings, often quasi-simultaneously. In 1995 the object was found in an intense emission state at all wavelengths. BeppoSAX observations made in 1998, non-simultaneously with exposures at other frequencies, allow us to characterize precisely the spectral shape of the high energy blazer component, which we attribute to inverse Compton scatter in The optical-to-gamma-ray spectral energy distributions at the different epochs show that the gamma-ray luminosity dominates the barometric output. This, together with the presence of optical and UV line emission, suggests that, besides the synchrotron self-Compton mechanism, the Compton upscattering of photons external to the jet (e.g., in the broad line region) may have a significant role for high energy radiation. The multiwavelength variability can be reproduced by changes of the plasma bulk Lorentz factor. The spectrum secured by ICE in 1995 appears to be partially absorbed shortward of approximately 1700 Angstroms. However, this signature is not detected in the HST spectrum taker during a lower state of the source. The presence of intervening absorbers is not supported by optical imaging and spectroscopy of the field.
The SSS classical nova V5116 Sgr
NASA Astrophysics Data System (ADS)
Sala, G.; Ness, J.; Greiner, J.; Hernanz, M.
2017-10-01
XMM-Newton observed the nova V5116 Sgr during its supersoft phase (SSS). V5116 Sgr showed a decrease of the flux by a factor around 8 during 2/3 of the orbital period. The broad band EPIC spectra remain unchanged during the different flux phases, suggesting an occultation of the central source in a high inclination system. While the global SED does not change significantly, the RGS spectrum is changing between the high and the low flux phases. The non-occultation phase shows a typical white dwarf atmosphere spectrum, dominated by absorption lines. During the low flux periods an extra component of emission lines is superimposed to the soft X-ray continuum. This supports the picture of V5116 Sgr as the clearest example of a system switching between the SSa class of SSS novae, with spectra dominated by absorption lines, and the SSe class, showing an emission lines component. In addition, the simultaneous OM images allow us to find a phase solution for the X-ray light-curve. A thick rim of the accretion disk as the one developed for the SSSs CAL 87, RX J0019.8, and RX J0513.9 could provide a plausible model both for the optical and the X-ray light curve of V5116 Sgr.
Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Minjin; Ho, Luis C.; Peng, Chien Y.
2017-10-01
We present detailed image analysis of rest-frame optical images of 235 low-redshift ( z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope . The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetrymore » of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (H β FWHM ≤ 2000 km s{sup −1}) Type 1 AGNs, in contrast to their broad-line (H β FWHM > 2000 km s{sup −1}) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population.« less
Super star clusters, their environment, and the formation of galactic winds
NASA Astrophysics Data System (ADS)
Westmoquette, Mark S.
Starbursts and starburst-driven outflows play a central role in the evolution of galaxies. However, the paucity of detailed observations of superwinds limits our current understanding of these complex systems. To this end we have undertaken two intensive ground- and space-based observing campaigns aimed at studying the ionized gas conditions in two nearby starburst galaxies, M82 and NGC 1569. These two systems host starbursts on different scales: M82 contains densely-packed star cluster complexes that drive a large-scale bipolar superwind, whereas NGC 1569 exhibits a set of discrete superbubbles powered by only a handful of young massive clusters. We have used long-slit spectra, obtained with the Hubble Space Telescope (HST), together with HST and ground-based imaging from the WIYN 3.5 m telescope, to observe M82 at optical wavelengths. The high quality HST spectroscopy obtained with the Space Telescope Imaging Spectrograph (STIS), have allowed us to investigate the properties of the gas across the starburst core. By combining high-resolution HST imaging with deep WIYN observations, we have created the most comprehensive image of the M82 superwind to date, and used it to characterise the outflow morphology. We also observed the centre of NGC 1569 with the Integral Field Unit (IFU) of the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-North telescope, and M82 with the WIYN/DensePak and SparsePak IFUs. We decomposed the observed emission-line profile shapes, and identified an underlying broad (>100 kms-1) component across the starburst cores of both galaxies. By mapping the spatial variation of each individual line component, we have developed a new model to explain the broad emission and the state of the interstellar medium (ISM) in the central starbursts. We have also observed the outer-wind environment of NGC 1569 with the WIYN SparsePak instrument. We find that the broad line is only found within 500-700 pc of the centre, and speculate that the boundary of this region may indicate the point at which bulk motions begin to dominate over turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xin; Shen, Yue; Bian, Fuyan
2014-07-10
A small fraction of quasars have long been known to show bulk velocity offsets (of a few hundred to thousands of km s{sup –1}) in the broad Balmer lines with respect to the systemic redshift of the host galaxy. Models to explain these offsets usually invoke broad-line region gas kinematics/asymmetry around single black holes (BHs), orbital motion of massive (∼sub-parsec (sub-pc)) binary black holes (BBHs), or recoil BHs, but single-epoch spectra are unable to distinguish between these scenarios. The line-of-sight (LOS) radial velocity (RV) shifts from long-term spectroscopic monitoring can be used to test the BBH hypothesis. We have selectedmore » a sample of 399 quasars with kinematically offset broad Hβ lines from the Sloan Digital Sky Survey (SDSS) Seventh Data Release quasar catalog, and have conducted second-epoch optical spectroscopy for 50 of them. Combined with the existing SDSS spectra, the new observations enable us to constrain the LOS RV shifts of broad Hβ lines with a rest-frame baseline of a few years to nearly a decade. While previous work focused on objects with extreme velocity offset (>10{sup 3} km s{sup –1}), we explore the parameter space with smaller (a few hundred km s{sup –1}) yet significant offsets (99.7% confidence). Using cross-correlation analysis, we detect significant (99% confidence) radial accelerations in the broad Hβ lines in 24 of the 50 objects, of ∼10-200 km s{sup –1} yr{sup –1} with a median measurement uncertainty of ∼10 km s{sup –1} yr{sup –1}, implying a high fraction of variability of the broad-line velocity on multi-year timescales. We suggest that 9 of the 24 detections are sub-pc BBH candidates, which show consistent velocity shifts independently measured from a second broad line (either Hα or Mg II) without significant changes in the broad-line profiles. Combining the results on the general quasar population studied in Paper I, we find a tentative anti-correlation between the velocity offset in the first-epoch spectrum and the average acceleration between two epochs, which could be explained by orbital phase modulation when the time separation between two epochs is a non-negligible fraction of the orbital period of the motion causing the line displacement. We discuss the implications of our results for the identification of sub-pc BBH candidates in offset-line quasars and for the constraints on their frequency and orbital parameters.« less
Impact of broad-specification fuels on future jet aircraft. [engine components and performance
NASA Technical Reports Server (NTRS)
Grobman, J. S.
1978-01-01
The effects that broad specification fuels have on airframe and engine components were discussed along with the improvements in component technology required to use broad specification fuels without sacrificing performance, reliability, maintainability, or safety.
High Redshift Radio Galaxies at Low Redshift, and Some Other Issues
NASA Astrophysics Data System (ADS)
Antonucci, Robert
Cygnus A is the only high redshift radio galaxy at low redshift, that is it's the only nearby object with radio power in the range of the high redshift 3C objects. It is clear now that this is somewhat misleading in that Cyg A is an overachiever in the radio, and that its actual bolometric luminosity is much more modest than this would indicate. (This point has been explored and generalized in Barthel and Arnaud 1996; also see Carilli and Barthel 1996 for a detailed review of Cyg A). But the energy content of the lobes is famously large. There is a whole history of attempts to show that Cygnus A fits the Unified Model, and our particular contribution was detecting an apparent broad MgII line with the HST (Antonucci, Kinney and Hurt 1994, which includes references to previous work). The spectral signal-to-noise ratio (SNR) was less than amazing; furthermore an unflagged dead diode took out ~12 Å from the line profile; and there was an uncertain ``noise" contribution from confusing narrow lines (gory details in Antonucci 1994). One of the referees of our paper - the favorable one - stated that ``only a mother could love that line." Thus we reobserved it with somewhat better SNR and with the bad diode flagged, and the old and new data are presented to the same scale in Figure 1. Most of the bins are within the combined 1 σ statistical errors, and the many statistically significant wiggles are almost all present in NGC1068 as well (Antonucci, Hurt and Miller 1994). The point is that the errors are believable, and that the continuum should be set low. I believe the MgII line is there and is broader than we thought originally. (A detailed discussion of the spectrum is in prep.) In the 1994 paper we also stated that the polarization in the UV (F320W FOC filter) is ~6 %, and perpendicular to the radio axis, indicating that there is a fairly large contribution from scattered light from a quasar in this region. This is consistent with the scenario of Jackson and Tadhunter (1993), amongst others. Using the mighty Keck it has finally become possible to show the broad H alpha line in polarized flux, and it is extremely broad (~26,000 km/sec - Ogle et al 1997). Ogle et al compared the total broad H alpha and MgII fluxes in the SE component, corrected for Galactic reddening, and concluded that dust scattering must be important. (Specifically it would have to produce most of the broad MgII.) This was also our picture in the 1994 paper (and that of other workers). Caveats include aperture effects and velocity ranges for integration of the line fluxes, but the conclusion is likely to stand.
An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines
NASA Astrophysics Data System (ADS)
Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima
We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.
A Multi-ionic Kinematic Investigation of NGC 595, a Giant Extragalactic H II Region in M33
NASA Astrophysics Data System (ADS)
Lagrois, Dominic; Joncas, Gilles
2009-08-01
Spectro-interferometric observations of the Hα, [O III], and [S II] optical emission lines are combined with radio observations of the 21 cm line in order to obtain a reliable kinematic image of NGC 595, the second largest giant extragalactic H II region in M33. The Hα and [O III] observations reveal that the nebula is exposed to two distinct kinematical regimes. While symmetric, broad velocity profiles dominate a sizeable fraction of the ionized extent, evidence for line splitting is detected in a small region near the most massive stars of the star cluster. A quantitative investigation proposes that two expanding wind-blown bubbles could be held responsible for the observed line splitting. The kinematics of the ionized material presenting one-component velocity profiles likely indicates that Champagne flows are present at the periphery of the molecular component leading to accelerated ionized material in the ambient interstellar medium. In areas not dominated by the photoionization of the molecular clouds, the H+ and S+ material shows a kinematical behavior roughly in agreement with the atomic gas. Mean nonthermal line widths show relatively large, supersonic values especially in [O III]. Models of structure functions indicate that the Hα and [O III] components could be exposed to different turbulent motions which could explain the broadening excess observed for the latter ion. On the full ionized extent of the nebula, the S+ material shows narrower line widths than the two other ions. Combined with the absence of line splitting, these peculiar characteristics indicate that the [S II] component is likely located at the periphery of the nebula and probably does not coexist with Hα and [O III]. The shape of the [S II] structure function is in agreement with a relatively low number of large-scale velocity gradients which partially explains the narrower profiles observed. The mean electron density in the nebula is estimated at 162 ± 106(1σ) cm-3, in agreement with previous studies of similar extragalactic H II regions. We provide the first bidimensional electron density map ever presented for a giant extragalactic nebula.
Accretion Rate and the Physical Nature of Unobscured Active Galaxies
NASA Astrophysics Data System (ADS)
Trump, Jonathan R.; Impey, Christopher D.; Kelly, Brandon C.; Civano, Francesca; Gabor, Jared M.; Diamond-Stanic, Aleksandar M.; Merloni, Andrea; Urry, C. Megan; Hao, Heng; Jahnke, Knud; Nagao, Tohru; Taniguchi, Yoshi; Koekemoer, Anton M.; Lanzuisi, Giorgio; Liu, Charles; Mainieri, Vincenzo; Salvato, Mara; Scoville, Nick Z.
2011-05-01
We show how accretion rate governs the physical properties of a sample of unobscured broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rates by using accurate intrinsic accretion luminosities (L int) from well-sampled multiwavelength spectral energy distributions from the Cosmic Evolution Survey, and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L int/L Edd > 10-2), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L int/L Edd < 10-2) are unobscured and yet lack a broad-line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L int/L Edd < 10-2 narrow-line and lineless AGNs to have ratios of radio-to-optical/UV emission that are 10 times higher than L int/L Edd > 10-2 broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L int/L Edd < 10-2 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together, these results suggest that specific accretion rate is an important physical "axis" of AGN unification, as described by a simple model. Based on observations with the XMM-Newton satellite, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA; the Magellan telescope, operated by the Carnegie Observatories; the ESO Very Large Telescope; and the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution; the Subaru Telescope, operated by the National Astronomical Observatory of Japan; and the NASA/ESA Hubble Space Telescope, operated at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.
Spectral properties of the narrow-line region in Seyfert galaxies selected from the SDSS-DR7
NASA Astrophysics Data System (ADS)
Vaona, L.; Ciroi, S.; Di Mille, F.; Cracco, V.; La Mura, G.; Rafanelli, P.
2012-12-01
Although the properties of the narrow-line region (NLR) of active galactic nuclei (AGN) have been deeply studied by many authors in the past three decades, many questions are still open. The main goal of this work is to explore the NLR of Seyfert galaxies by collecting a large statistical spectroscopic sample of Seyfert 2 and Intermediate-type Seyfert galaxies having a high signal-to-noise ratio in order to take advantage of a high number of emission lines to be accurately measured. 2153 Seyfert 2 and 521 Intermediate-type Seyfert spectra were selected from Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) with a diagnostic diagram based on the oxygen emission-line ratios. All the emission lines, broad components included, were measured by means of a self-developed code, after the subtraction of the stellar component. Physical parameters, such as internal reddening, ionization parameter, temperature, density, gas and stellar velocity dispersion were determined for each object. Furthermore, we estimated mass and radius of the NLR, kinetic energy of the ionized gas and black hole accretion rate. From the emission-line analysis and the estimated physical properties, it appears that the NLR is similar in Seyfert 2 and Intermediate-Seyfert galaxies. The only differences, lower extinction, gas kinematics in general not dominated by the host galaxy gravitational potential and higher percentage of [O III]λ5007 blue asymmetries in Intermediate-Seyfert, can be ascribed to an effect of inclination of our line of sight with respect to the torus axis.
1RXS J180834.7+101041 is a new cataclysmic variable with non-uniform disc
NASA Astrophysics Data System (ADS)
Yakin, D. G.; Suleimanov, V. F.; Shimansky, V. V.; Borisov, N. V.; Bikmaev, I. F.; Sakhibullin, N. A.
2010-11-01
Results of photometric and spectroscopic investigations of the recently discovered disc cataclysmic variable star 1RXS J180834.7+101041 are presented. Emission spectra of the system show broad double peaked hydrogen and helium emission lines. Doppler maps for the hydrogen lines demonstrate strongly non-uniform emissivity distribution in the disc, similar to that found in IP Peg. It means that the system is a new cataclysmic variable with a spiral density wave in the disc. Masses of the components (MWD = 0.8+/-0.22 Msolar and MRD = 0.14+/-0.02 Msolar), and the orbit inclination (i = 78°+/- 1.°5) were estimated using the various well-known relations for cataclysmic variables.
Solar flare impulsive phase emission observed with SDO/EVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Michael B.; Milligan, Ryan O.; Mathioudakis, Mihalis
2013-12-10
Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log T{sub e} = 5.8-7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10 s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3-4 MK and we use spatially unresolved EVE observations to infer the thermalmore » structure of the emitting region. For the nine events studied, the DEMs exhibited a two-component distribution during the impulsive phase, a low-temperature component with peak temperature of 1-2 MK, and a broad high-temperature component from 7 to 30 MK. A bimodal high-temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using Atmospheric Imaging Assembly images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially average thermal structure of the chromospheric flare emission during the impulsive phase.« less
NASA Astrophysics Data System (ADS)
Braibant, L.; Hutsemékers, D.; Sluse, D.; Anguita, T.
2016-07-01
We investigate the kinematics and ionization structure of the broad emission line region of the gravitationally lensed quasar QSO2237+0305 (the Einstein cross) using differential microlensing in the high- and low-ionization broad emission lines. We combine visible and near-infrared spectra of the four images of the lensed quasar and detect a large-amplitude microlensing effect distorting the high-ionization CIV and low-ionization Hα line profiles in image A. While microlensing only magnifies the red wing of the Balmer line, it symmetrically magnifies the wings of the CIV emission line. Given that the same microlensing pattern magnifies both the high- and low-ionization broad emission line regions, these dissimilar distortions of the line profiles suggest that the high- and low-ionization regions are governed by different kinematics. Since this quasar is likely viewed at intermediate inclination, we argue that the differential magnification of the blue and red wings of Hα favors a flattened, virialized, low-ionization region whereas the symmetric microlensing effect measured in CIV can be reproduced by an emission line formed in a polar wind, without the need of fine-tuned caustic configurations. Based on observations made with the ESO-VLT, Paranal, Chile; Proposals 076.B-0197 and 076.B-0607 (PI: Courbin).
NASA Astrophysics Data System (ADS)
Ott, Juergen; Koribalski, Baerbel; Henkel, Christian; Edwards, Philip; Norris, Ray; Meier, David; Feain, Ilana; Curran, Steve; Martin-Pintado, Jesus; Beelen, Alexandre; Aalto, Susanne; Combes, Francoise; Israel, Frank; Muller, Sebastien; Espada, Daniel; Guelin, Michel; Black, John Harry; V-Trung, Dinh; Impellizzeri, Caterina M. V.; Persson, Carina
2011-10-01
Centaurus A with its host NGC5128 is the most nearby radio galaxy. Its molecular spectrum exhibits three prominent features: a) gas that is located in the outer disk and dust lanes, b) absorption lines that are supposedly close to the central AGN, and c) gas in emission from the nucleus. We propose to perform an extensive line survey toward CenA using the exciting new capabilities of CABB. The broad basebands and narrow zoom bands of CABB are ideal to capture the full breath of the CenA spectral features. Our multi-band line observations will allow us to derive the exact physical conditions of each component as well as the chemistry involved. We will therefore obtain a comprehensive view of the physics imprinted on the molecular spectrum of a radio galaxy and its host, reaching from the central supermassive black hole, through the accretion region and the inner disk to the outer dust lanes.
Xu, Rosalind J; Blasiak, Bartosz; Cho, Minhaeng; Layfield, Joshua P; Londergan, Casey H
2018-05-17
A quantitative connection between molecular dynamics simulations and vibrational spectroscopy of probe-labeled systems would enable direct translation of experimental data into structural and dynamical information. To constitute this connection, all-atom molecular dynamics (MD) simulations were performed for two SCN probe sites (solvent-exposed and buried) in a calmodulin-target peptide complex. Two frequency calculation approaches with substantial nonelectrostatic components, a quantum mechanics/molecular mechanics (QM/MM)-based technique and a solvatochromic fragment potential (SolEFP) approach, were used to simulate the infrared probe line shapes. While QM/MM results disagreed with experiment, SolEFP results matched experimental frequencies and line shapes and revealed the physical and dynamic bases for the observed spectroscopic behavior. The main determinant of the CN probe frequency is the exchange repulsion between the probe and its local structural neighbors, and there is a clear dynamic explanation for the relatively broad probe line shape observed at the "buried" probe site. This methodology should be widely applicable to vibrational probes in many environments.
Études RMN haute résolution et RPE des composés Ba 3C 60 et Ba 6C 60
NASA Astrophysics Data System (ADS)
Rezzouk, Abdellah; Dafir, Driss; Errammach, Youssef; Rachdi, Férid
2003-07-01
We report the results of 13C MAS NMR and EPR measurements on Ba 3C 60 and Ba 6C 60 fullerides. Using high resolution NMR, we were able to identify an isotropic line around 156 ppm for Ba 3C 60 and a broad isotropic one with three components at 132, 134.6, 139.9 ppm for Ba 6C 60 compound. The latter line is consistent with orientationally ordered C 60 molecules leading to three unequivalent carbon sites in agreement with X-ray studies. A strong diamagnetic shift was observed for the NMR line of Ba 6C 60 that is interpreted in terms of transition moment in an indirect gap system. EPR results confirm the insulating nature of both studied compounds. To cite this article: A. Rezzouk et al., C. R. Physique 4 (2003).
The Interstellar Medium in External Galaxies: Summaries of contributed papers
NASA Technical Reports Server (NTRS)
Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)
1990-01-01
The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.
NASA Astrophysics Data System (ADS)
Ponti, G.; Miniutti, G.; Malaguti, G.; Gallo, L.; Goldwurm, A.
2009-05-01
We present preliminary results of an ongoing project devoted to the study of the continuum and Fe K band variability in a sample of bright AGNs. These kind of studies may break the spectral degeneracy between the different absorption/emission models, allowing ``safe'' measurements of the disc and black hole properties from the broad line shapes. In fact, the Fe K band, alone, allows a first separation between the different components. Here we show the case of NGC 3783 which shows both a constant and a variable reflection component as well as strong ionized absorption. We show that a fundamental contribution will be given by Simbol-X that will allow to simultaneously measure not only the Fe K variability, but also the connected reflection hump variations.
The rebirth of Supernova 1987A : a study of the ejecta-ring collision
NASA Astrophysics Data System (ADS)
Gröningsson, Per
Supernovae are some of the most energetic phenomena in the Universe and they have throughout history fascinated people as they appeared as new stars in the sky. Supernova (SN) 1987A exploded in the nearby satellite galaxy, the Large Magellanic Cloud (LMC), at a distance of only 168,000 light years. The proximity of SN 1987A offers a unique opportunity to study the medium surrounding the supernova in great detail. Powered by the dynamical interaction of the ejecta with the inner circumstellar ring, SN 1987A is dramatically evolving at all wavelengths on time scales less than a year. This makes SN 1987A a great ``laboratory'' for studies of shock physics. Repeated observations of the ejecta-ring collision have been carried out using the UVES echelle spectrograph at VLT. This thesis covers seven epochs of high resolution spectra taken between October 1999 and November 2007. Three different emission line components are identified from the spectra. A narrow (~10 km/s) velocity component emerges from the unshocked ring. An intermediate (~250 km/s) component arises in the shocked ring, and a broad component extending to ~15,000 km/s comes from the reverse shock. Thanks to the high spectral resolution of UVES, it has been possible to separate the shocked from the unshocked ring emission. For the unshocked gas, ionization stages from neutral up to Ne V and Fe VII were found. The line fluxes of the low-ionization lines decline during the period of the observations. However, the fluxes of the [O III] and [Ne III] lines appear to increase and this is found to be consistent with the heating of the pre-shock gas by X-rays from the shock interactions. The line emission from the ejecta-ring collision increases rapidly as more gas is swept up by the shocks. This emission comes from ions with a range of ionization stages (e.g., Fe II-XIV). The low-ionization lines show an increase in their line widths which is consistent with that these lines originate from radiative shocks. The high-ionization line profiles (Fe X-XIV) initially show larger spectral widths, which indicates that at least a fraction of the emission comes from non-radiative shocks.
Long-term spectroscopic monitoring of the Luminous Blue Variable AG Carinae
NASA Astrophysics Data System (ADS)
Stahl, O.; Jankovics, I.; Kovács, J.; Wolf, B.; Schmutz, W.; Kaufer, A.; Rivinius, Th.; Szeifert, Th.
2001-08-01
We have extensively monitored the Luminous Blue Variable AG Car (HD 94910) spectroscopically. Our data cover the years 1989 to 1999. In this period, the star underwent almost a full S Dor cycle from visual minimum to maximum and back. Over several seasons, up to four months of almost daily spectra are available. Our data cover most of the visual spectral range with a high spectral resolution (lambda /Delta lambda ~ 20 000). This allows us to investigate the variability in many lines on time scales from days to years. The strongest variability occurs on a time scale of years. Qualitatively, the variations can be understood as changes of the effective temperature and radius, which are in phase with the optical light curve. Quantitatively, there are several interesting deviations from this behaviour, however. The Balmer lines show P Cygni profiles and have their maximum strength (both in equivalent width and line flux) after the peak of the optical light curve, at the descending branch of the light curve. The line-width during maximum phase is smaller than during minimum, but it has a local maximum close to the peak of the visual light curve. We derive mass-loss rates over the cycle from the Hα line and find the highest mass loss rates (log dot {M}/({M}_sun yr-1) ~ -3.8, about a factor of five higher than in the minimum, where we find log dot {M}/({M}_sun yr-1) ~ -4.5) after the visual maximum. Line-splitting is very commonly observed, especially on the rise to maximum and on the descending branch from maximum. The components are very long-lived (years) and are probably unrelated to similar-looking line-splitting events in normal supergiants. Small apparent accelerations of the components are observed. The change in radial velocity could be due to successive narrowing of the components, with the absorption disappearing at small expansion velocities first. In general, the line-splitting is more likely the result of missing absorption at intermediate velocities than of excess absorption at the velocities of the components. The HeI lines and other lines which form deep in the atmosphere show the most peculiar variations. The HeI lines show a central absorption with variable blue- and red-shifted emission components. Due to the variations of the emission components, the HeI lines can change their line profile from a normal P Cyg profile to an inverse P Cyg-profile or double-peak emission. In addition, very broad (+/-1500 km s-1) emission wings are seen at the strongest HeI lines of AG Car. At some phases, a blue-shifted absorption is also present. The central absorption of the HeI lines is blue-shifted before and red-shifted after maximum. Possibly, we directly see the expansion and contraction of the photosphere. If this explanation is correct, the velocity of the continuum-forming layer is not dominated by expansion but is only slightly oscillating around the systemic velocity. Based on observations collected at the European Southern Observatory at La Silla, Chile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighly, Karen M.; Cooper, Erin; Grupe, Dirk
2015-08-10
We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddeningmore » increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable.« less
Broad absorption-line time variability in the QSO CSO 203
NASA Technical Reports Server (NTRS)
Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. M.; Weymann, Ray J.; Morris, Simon L.; Korista, Kirk T.
1992-01-01
We present spectroscopy of the BALQSO CSO 203 during four epochs over a 17-month time span. These data show three distinct levels in the broad absorption lines (BALs) of Si IV 1397A and C IV 1549A. We also note possible variations in the N V 1240A and Al III 1857A absorption troughs. A broad-band monitoring effort during this period shows that the continuum level remained constant to within 10 percent. We argue that the triggering mechanism for the absorption-line changes is most likely synchronous with the continuum source photons; however, no correlation with the central source has yet been found. The observed variations are consistent with changes in the ionization level in the broad absorption-line region (BALR). We discuss possible mechanisms for these changes and the implications for the structure of the BALR.
Synthesis of line profiles from models of structured winds
NASA Technical Reports Server (NTRS)
Puls, J.; Feldmeier, A.; Springmann, U. W. E.; Owocki, S. P.; Fullerton, A. W.
1994-01-01
On the basis of a careful analysis of resonance line formation (both for singlets and doublets) in structured winds, present time dependent models of the line driven winds of hot stars are shown to be able to explain a number of observational features with respect to variability and structure: they are (in principle) able to reproduce the black and broad troughs (without any artificial 'turbulence velocity') and the 'blue edge variability' observed in saturate resonance lines: they might explain the 'long lived narrow absorption components' often observed in unsaturated lines at high velocities; they predict a relation between the 'edge velocity' of UV-lines and the radiation temperature of the observed X-ray emission. As a first example of the extent to which theoretical models can be constrained by comparisons between observations and profiles calculated by spectrum synthesis from structured winds, we show here that models with deep-seated onset of structure formation (approximately greater than 1.1 R(sub *)) produce resonance lines which agree qualitatively with observational findings; in contrast, the here presented models with structure formation only well out in the wind (approximately greater than 1.6 R(sub *) fail in this respect.
NASA Astrophysics Data System (ADS)
Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo; Laming, J. Martin; Katsuda, Satoru
2018-01-01
Linearly polarized Balmer line emissions from supernova remnant shocks are studied taking into account the energy loss of the shock owing to the production of non-thermal particles. The polarization degree depends on the downstream temperature and the velocity difference between upstream and downstream regions. The former is derived once the line width of the broad component of the H α emission is observed. Then, the observation of the polarization degree tells us the latter. At the same time, the estimated value of the velocity difference independently predicts adiabatic downstream temperature that is derived from Rankine Hugoniot relations for adiabatic shocks. If the actually observed downstream temperature is lower than the adiabatic temperature, there is a missing thermal energy which is consumed for particle acceleration. It is shown that a larger energy-loss rate leads to more highly polarized H α emission. Furthermore, we find that polarized intensity ratio of H β to H α also depends on the energy-loss rate and that it is independent of uncertain quantities such as electron temperature, the effect of Lyman line trapping and our line of sight.
NASA Technical Reports Server (NTRS)
Doschek, G. A.; theory. (3) Resolved: Most chromospheric h; theory. (3) Resolved: Most chromospheric h
1986-01-01
Three issues relative to chromospheric explosions were debated. (1) Resolved: The blue-shifted components of x-ray spectral lines are signatures of chromospheric evaporation. It was concluded that the plasma rising with the corona is indeed the primary source of thermal plasma observed in the corona during flares. (2) Resolved: The excess line broading of UV and X-ray lines is accounted for by a convective velocity distribution in evaporation. It is concluded that the hypothesis that convective evaporation produces the observed X-ray line widths in flares is no more than a hypothesis. It is not supported by any self-consistent physical theory. (3) Resolved: Most chromospheric heating is driven by electron beams. Although it is possible to cast doubt on many lines of evidence for electron beams in the chromosphere, a balanced view that debaters on both sides of the question might agree to is that electron beams probably heat the low corona and upper chromosphere, but their direct impact on evaporating the chromosphere is energetically unimportant when compared to conduction. This represents a major departure from the thick-target flare models that were popular before the Workshop.
Broad Balmer-Line Absorption in SDSS J172341.10+555340.5
NASA Astrophysics Data System (ADS)
Aoki, Kentaro
2010-10-01
We present the discovery of Balmer-line absorption from Hα to H9 in an iron low-ionizaton broad absorption line (FeLoBAL) quasar, SDSS J172341.10+555340.5, by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) attached to the Subaru Telescope. The redshift of the Balmer-line absorption troughs is 2.0530±0.0003, and it is blueshifted by 5370 km s-1 from the Balmer emission lines. It is more than 4000 km s-1 blueshifted from the previously known UV absorption lines. We detected relatively strong (EWrest = 20 Å) [OIII] emission lines that are similar to those found in other broad absorption line quasars with Balmer-line absorption. We also derived the column density of neutral hydrogen of 5.2 × 1017 cm-2 by using the curve of growth and taking account of Lyα trapping. We searched for UV absorption lines that had the same redshift with Balmer-line absorption, and found Ali III and Fe III absorption lines at z = 2.053 that correspond to previously unidentified absorption lines, and the presence of other blended troughs that were difficult to identify.
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Tomsik, Thomas M.
2011-01-01
As focus shifts towards long-duration space exploration missions, an increased interest in active thermal control of cryogenic propellants to achieve zero boil-off of cryogens has emerged. An active thermal control concept of considerable merit is the integration of a broad area cooling system for a cryogenic propellant tank with a combined cryocooler and circulator system that can be used to reduce or even eliminate liquid cryogen boil-off. One prospective cryocooler and circulator combination is the reverse turbo-Brayton cycle cryocooler. This system is unique in that it has the ability to both cool and circulate the coolant gas efficiently in the same loop as the broad area cooling lines, allowing for a single cooling gas loop, with the primary heat rejection occurring by way of a radiator and/or aftercooler. Currently few modeling tools exist that can size and characterize an integrated reverse turbo-Brayton cycle cryocooler in combination with a broad area cooling design. This paper addresses efforts to create such a tool to assist in gaining a broader understanding of these systems, and investigate their performance in potential space missions. The model uses conventional engineering and thermodynamic relationships to predict the preliminary design parameters, including input power requirements, pressure drops, flow rate, cycle performance, cooling lift, broad area cooler line sizing, and component operating temperatures and pressures given the cooling load operating temperature, heat rejection temperature, compressor inlet pressure, compressor rotational speed, and cryogenic tank geometry. In addition, the model allows for the preliminary design analysis of the broad area cooling tubing, to determine the effect of tube sizing on the reverse turbo-Brayton cycle system performance. At the time this paper was written, the model was verified to match existing theoretical documentation within a reasonable margin. While further experimental data is needed for full validation, this tool has already made significant steps towards giving a clearer understanding of the performance of a reverse turbo-Brayton cycle cryocooler integrated with broad area cooling technology for zero boil-off active thermal control.
2011-02-21
Saturn rings appear as only a thin line seen edge-on in the middle of this view from NASA Cassini spacecraft, but the rings cast broad shadows on the southern hemisphere of the planet in the lower left of the image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rho, J.; Hewitt, J. W.; Bieging, J.
We report a discovery of shocked gas from the supernova remnant (SNR) G357.7+0.3. Our millimeter and submillimeter observations reveal broad molecular lines of CO(2-1), CO(3-2), CO(4-3), {sup 13}CO (2-1), and {sup 13}CO (3-2), HCO{sup +}, and HCN using the Heinrich Hertz Submillimeter Telescope, the Arizona 12 m Telescope, APEX, and the MOPRA Telescope. The widths of the broad lines are 15–30 km s{sup −1}, and the detection of such broad lines is unambiguous, dynamic evidence showing that the SNR G357.7+0.3 is interacting with molecular clouds. The broad lines appear in extended regions (>4.′5 × 5′). We also present the detectionmore » of shocked H{sub 2} emission in the mid-infrared but lacking ionic lines using Spitzer /IRS observations to map a few-arcminute area. The H{sub 2} excitation diagram shows a best fit with a two-temperature local thermal equilibrium model with the temperatures of ∼200 and 660 K. We observed [C ii] at 158 μ m and high- J CO(11-10) with the German Receiver for Astronomy at Terahertz Frequencies (GREAT) on the Stratospheric Observatory for Infrared Astronomy. The GREAT spectrum of [C ii], a 3 σ detection, shows a broad line profile with a width of 15.7 km{sup −1} that is similar to those of broad CO molecular lines. The line width of [C ii] implies that ionic lines can come from a low-velocity C-shock. Comparison of H{sub 2} emission with shock models shows that a combination of two C-shock models is favored over a combination of C- and J-shocks or a single shock. We estimate the CO density, column density, and temperature using a RADEX model. The best-fit model with n (H{sub 2}) = 1.7 × 10{sup 4} cm{sup −3}, N(CO) = 5.6 × 10{sup 16} cm{sup −2}, and T = 75 K can reproduce the observed millimeter CO brightnesses.« less
A Census of X-Ray Gas in NGC 1068: Results from 450ks of Chandra HETG Observations
NASA Technical Reports Server (NTRS)
Kallman, T.; Evans, Daniel A.; Marshall, H.; Canizares, C.; Longinotti, A.; Nowak, M.; Schulz, N.
2013-01-01
We present models for the X-ray spectrum of the Seyfert 2 galaxy NGC 1068. These are fitted to data obtained using the High Energy Transmission Grating (HETG) on the Chandra X-ray observatory. The data show line and radiative recombination continuum (RRC) emission from a broad range of ions and elements. The models explore the importance of excitation processes for these lines including photoionization followed by recombination, radiative excitation by absorption of continuum radiation and inner shell fluorescence. The models show that the relative importance of these processes depends on the conditions in the emitting gas, and that no single emitting component can fit the entire spectrum. In particular, the relative importance of radiative excitation and photoionization/recombination differs according to the element and ion stage emitting the line. This in turn implies a diversity of values for the ionization parameter of the various components of gas responsible for the emission, ranging from log(Epsilon)=1 - 3. Using this, we obtain an estimate for the total amount of gas responsible for the observed emission. The mass flux through the region included in the HETG extraction region is approximately 0.3 Solar Mass/yr assuming ordered flow at the speed characterizing the line widths. This can be compared with what is known about this object from other techniques.
NASA Technical Reports Server (NTRS)
Kallman, T.; Evans, Daniel A.; Marshall, H.; Canizares, C.; Longinotti, A.; Nowak, M.; Schulz, N.
2013-01-01
We present models for the X-ray spectrum of the Seyfert 2 galaxy NGC 1068. These are fitted to data obtained using the High Energy Transmission Grating on Chandra. The data show line and radiative recombination continuum emission from a broad range of ions and elements. The models explore the importance of excitation processes for these lines including photoionization followed by recombination, radiative excitation by absorption of continuum radiation, and inner shell fluorescence. The models show that the relative importance of these processes depends on the conditions in the emitting gas and that no single emitting component can fit the entire spectrum. In particular, the relative importance of radiative excitation and photoionization/recombination differs according to the element and ion stage emitting the line. This in turn implies a diversity of values for the ionization parameter of the various components of gas responsible for the emission, ranging from log(E ) = 1 to 3. Using this, we obtain an estimate for the total amount of gas responsible for the observed emission. The mass flux through the region included in the HETG extraction region is approximately 0.3M/yr, assuming ordered flow at the speed characterizing the line widths. This can be compared with what is known about this object from other techniques.
A Census of X-ray gas in NGC 1068: Results from 450ks of Chandra HETG Observations.
Kallman, T; Evans, Daniel A; Marshall, H; Canizares, C; Longinotti, A; Nowak, M; Schulz, N
2014-01-10
We present models for the X-ray spectrum of the Seyfert 2 galaxy NGC 1068. These are fitted to data obtained using the High Energy Transmission Grating (HETG) on the Chandra X-ray observatory. The data show line and radiative recombination continuum (RRC) emission from a broad range of ions and elements. The models explore the importance of excitation processes for these lines including photoionization followed by recombination, radiative excitation by absorption of continuum radiation and inner shell fluorescence. The models show that the relative importance of these processes depends on the conditions in the emitting gas, and that no single emitting component can fit the entire spectrum. In particular, the relative importance of radiative excitation and photoionization/recombination differs according to the element and ion stage emitting the line. This in turn implies a diversity of values for the ionization parameter of the various components of gas responsible for the emission, ranging from log(ξ)=1 - 3. Using this, we obtain an estimate for the total amount of gas responsible for the observed emission. The mass flux through the region included in the HETG extraction region is approximately 0.3 M ⊙ yr -1 assuming ordered flow at the speed characterizing the line widths. This can be compared with what is known about this object from other techniques.
Broad Hβ Emission-line Variability in a Sample of 102 Local Active Galaxies
NASA Astrophysics Data System (ADS)
Runco, Jordan N.; Cosens, Maren; Bennert, Vardha N.; Scott, Bryan; Komossa, S.; Malkan, Matthew A.; Lazarova, Mariana S.; Auger, Matthew W.; Treu, Tommaso; Park, Daeseong
2016-04-01
A sample of 102 local (0.02 ≤ z ≤ 0.1) Seyfert galaxies with black hole masses MBH > 107M⊙ was selected from the Sloan Digital Sky Survey (SDSS) and observed using the Keck 10 m telescope to study the scaling relations between MBH and host galaxy properties. We study profile changes of the broad Hβ emission line within the three to nine year time frame between the two sets of spectra. The variability of the broad Hβ emission line is of particular interest, not only because it is used to estimate MBH, but also because its strength and width are used to classify Seyfert galaxies into different types. At least some form of broad-line variability (in either width or flux) is observed in the majority (∼66%) of the objects, resulting in a Seyfert-type change for ∼38% of the objects, likely driven by variable accretion and/or obscuration. The broad Hβ line virtually disappears in 3/102 (∼3%) extreme cases. We discuss potential causes for these changing look active galactic nuclei. While similar dramatic transitions have previously been reported in the literature, either on a case-by-case basis or in larger samples focusing on quasars at higher redshifts, our study provides statistical information on the frequency of Hβ line variability in a sample of low-redshift Seyfert galaxies.
The WiggleZ Dark Energy Survey: final data release and the metallicity of UV-luminous galaxies
NASA Astrophysics Data System (ADS)
Drinkwater, Michael J.; Byrne, Zachary J.; Blake, Chris; Glazebrook, Karl; Brough, Sarah; Colless, Matthew; Couch, Warrick; Croton, Darren J.; Croom, Scott M.; Davis, Tamara M.; Forster, Karl; Gilbank, David; Hinton, Samuel R.; Jelliffe, Ben; Jurek, Russell J.; Li, I.-hui; Martin, D. Christopher; Pimbblet, Kevin; Poole, Gregory B.; Pracy, Michael; Sharp, Rob; Smillie, Jon; Spolaor, Max; Wisnioski, Emily; Woods, David; Wyder, Ted K.; Yee, Howard K. C.
2018-03-01
The WiggleZ Dark Energy Survey measured the redshifts of over 200 000 ultraviolet (UV)-selected (NUV < 22.8 mag) galaxies on the Anglo-Australian Telescope. The survey detected the baryon acoustic oscillation signal in the large-scale distribution of galaxies over the redshift range 0.2 < z < 1.0, confirming the acceleration of the expansion of the Universe and measuring the rate of structure growth within it. Here, we present the final data release of the survey: a catalogue of 225 415 galaxies and individual files of the galaxy spectra. We analyse the emission-line properties of these UV-luminous Lyman-break galaxies by stacking the spectra in bins of luminosity, redshift, and stellar mass. The most luminous (-25 mag
NASA Astrophysics Data System (ADS)
Ciaravella, A.; Raymond, J. C.; Kahler, S. W.
2006-11-01
We present UV spectral information for 22 halo or partial halo CMEs observed by UVCS. The CME fronts show broad line profiles, while the line intensities are comparable to the background corona. The Doppler shifts of the front material are generally small, showing that the motion of gas in the fronts is mostly transverse to the line of sight. This indicates that, at least in halo CMEs, the fronts generally correspond to coronal plasma swept up by a shock or compression wave, rather than plasma carried outward by magnetic loops. This favors an ice cream cone (or a spherical shell) model, as opposed to an expanding arcade of loops. We use the line widths to discriminate between shock heating and bulk expansion. Of 14 cases where we detected the CME front, the line broadening in 7 cases can be attributed to shock heating, while in 3 cases it is the line-of-sight component of the CME expansion. For the CME cores we determine the angles between the motion and the plane of the sky, along with the actual heliocentric distances, in order to provide quantitative estimates of projection effects.
Development of Elite BPH-Resistant Wide-Spectrum Restorer Lines for Three and Two Line Hybrid Rice.
Fan, Fengfeng; Li, Nengwu; Chen, Yunping; Liu, Xingdan; Sun, Heng; Wang, Jie; He, Guangcun; Zhu, Yingguo; Li, Shaoqing
2017-01-01
Hybrid rice has contributed significantly to the world food security. Breeding of elite high-yield, strong-resistant broad-spectrum restorer line is an important strategy for hybrid rice in commercial breeding programs. Here, we developed three elite brown planthopper (BPH)-resistant wide-spectrum restorer lines by pyramiding big-panicle gene Gn8.1 , BPH-resistant genes Bph6 and Bph9 , fertility restorer genes Rf3, Rf4, Rf5 , and Rf6 through molecular marker assisted selection. Resistance analysis revealed that the newly developed restorer lines showed stronger BPH-resistance than any of the single-gene donor parent Luoyang-6 and Luoyang-9. Moreover, the three new restorer lines had broad spectrum recovery capabilities for Honglian CMS, Wild abortive CMS and two-line GMS sterile lines, and higher grain yields than that of the recurrent parent 9,311 under nature field conditions. Importantly, the hybrid crosses also showed good performance for grain yield and BPH-resistance. Thus, the development of elite BPH-resistant wide-spectrum restorer lines has a promising future for breeding of broad spectrum BPH-resistant high-yield varieties.
NuSTAR SPECTROSCOPY OF MULTI-COMPONENT X-RAY REFLECTION FROM NGC 1068
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Franz E.; Arévalo, Patricia; Walton, Dominic J.
2015-10-20
We report on high-energy X-ray observations of the Compton-thick Seyfert 2 galaxy NGC 1068 with NuSTAR, which provide the best constraints to date on its >10 keV spectral shape. The NuSTAR data are consistent with those from past and current instruments to within cross-calibration uncertainties, and we find no strong continuum or line variability over the past two decades, which is in line with its X-ray classification as a reflection-dominated Compton-thick active galactic nucleus. The combined NuSTAR, Chandra, XMM-Newton, and Swift BAT spectral data set offers new insights into the complex secondary emission seen instead of the completely obscured transmittedmore » nuclear continuum. The critical combination of the high signal-to-noise NuSTAR data and the decomposition of the nuclear and extranuclear emission with Chandra allow us to break several model degeneracies and greatly aid physical interpretation. When modeled as a monolithic (i.e., a single N{sub H}) reflector, none of the common Compton reflection models are able to match the neutral fluorescence lines and broad spectral shape of the Compton reflection hump without requiring unrealistic physical parameters (e.g., large Fe overabundances, inconsistent viewing angles, or poor fits to the spatially resolved spectra). A multi-component reflector with three distinct column densities (e.g., with best-fit values of N{sub H} of 1.4 × 10{sup 23}, 5.0 × 10{sup 24}, and 10{sup 25} cm{sup −2}) provides a more reasonable fit to the spectral lines and Compton hump, with near-solar Fe abundances. In this model, the higher N{sub H} component provides the bulk of the flux to the Compton hump, while the lower N{sub H} component produces much of the line emission, effectively decoupling two key features of Compton reflection. We find that ≈30% of the neutral Fe Kα line flux arises from >2″ (≈140 pc) and is clearly extended, implying that a significant fraction (and perhaps most) of the <10 keV reflected component arises from regions well outside a parsec-scale torus. These results likely have ramifications for the interpretation of Compton-thick spectra from observations with poorer signal-to-noise and/or more distant objects.« less
NASA Astrophysics Data System (ADS)
Ebisawa, Ken; Naoki, Iso
2012-07-01
X-ray intensities and spectra of the Seyfert galaxies are known to be variable. Some of the sources have characteristic seemingly broad iron line structure, and their spectral variations are small in the iron line energy band. MCG-6-30-15 is such an archetypal source, and Miyakawa (2011) proposed a "Variable Partial Covering (VPC)" model to explain its continuum spectral variation, seemingly broad iron line structure, and small spectral variation in the iron energy band simultaneously, only due to variation of a single parameter. That single parameter is the "partial covering fraction" to describe the geometrical fraction of the X-ray emitting area covered by the ionized absorbers in the line of sight. The intrinsic X-ray luminosity is hardly variable in this model. We have applied the VPC model to the 27 Seyfert galaxies observed with Suzaku, and found that spectral variations of the 22 sources are successfully explained by this model only varying the partial covering fraction. Intrinsic X-ray luminosities of Seyfert galaxies are not variable, as opposed to what they apparently seem, and gravitationally red-shifted iron line is not necessary. Those ionized absorbing clouds are most likely to be Broad Line Region (BLR) clouds, and we will be able to constrain the BLR structure from X-ray observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yue; Liu, Xin; Loeb, Abraham
We perform a systematic search for sub-parsec binary supermassive black holes (BHs) in normal broad-line quasars at z < 0.8, using multi-epoch Sloan Digital Sky Survey (SDSS) spectroscopy of the broad Hβ line. Our working model is that (1) one and only one of the two BHs in the binary is active; (2) the active BH dynamically dominates its own broad-line region (BLR) in the binary system, so that the mean velocity of the BLR reflects the mean velocity of its host BH; (3) the inactive companion BH is orbiting at a distance of a few R{sub BLR}, where R{submore » BLR} ∼ 0.01-0.1 pc is the BLR size. We search for the expected line-of-sight acceleration of the broad-line velocity from binary orbital motion by cross-correlating SDSS spectra from two epochs separated by up to several years in the quasar rest frame. Out of ∼700 pairs of spectra for which we have good measurements of the velocity shift between two epochs (1σ error ∼40 km s{sup –1}), we detect 28 systems with significant velocity shifts in broad Hβ, among which 7 are the best candidates for the hypothesized binaries, 4 are most likely due to broad-line variability in single BHs, and the rest are ambiguous. Continued spectroscopic observations of these candidates will easily strengthen or disprove these claims. We use the distribution of the observed accelerations (mostly non-detections) to place constraints on the abundance of such binary systems among the general quasar population. Excess variance in the velocity shift is inferred for observations separated by longer than 0.4 yr (quasar rest frame). Attributing all the excess to binary motion would imply that most of the quasars in this sample must be in binaries, that the inactive BH must be on average more massive than the active one, and that the binary separation is at most a few times the size of the BLR. However, if this excess variance is partly or largely due to long-term broad-line variability, the requirement of a large population of close binaries is much weakened or even disfavored for massive companions. Future time-domain spectroscopic surveys of normal quasars can provide vital prior information on the structure function of stochastic velocity shifts induced by broad-line variability in single BHs. Such surveys with improved spectral quality, increased time baseline, and more epochs can greatly improve the statistical constraints of this method on the general binary population in broad-line quasars, further shrink the allowed binary parameter space, and detect true sub-parsec binaries.« less
NASA Astrophysics Data System (ADS)
Menezes, R. B.; Steiner, J. E.
2017-04-01
NGC 1313 is a bulgeless nearby galaxy, classified as SB(s)d. Its proximity allows high spatial resolution observations. We performed the first detailed analysis of the emission-line properties in the nuclear region of NGC 1313, using an optical data cube obtained with the Gemini Multi-object Spectrograph. We detected four main emitting areas, three of them (regions 1, 2 and 3) having spectra typical of H II regions. Region 1 is located very close to the stellar nucleus and shows broad spectral features characteristic of Wolf-Rayet stars. Our analysis revealed the presence of one or two WC4-5 stars in this region, which is compatible with results obtained by previous studies. Region 4 shows spectral features (as a strong Hα emission line, with a broad component) typical of a massive emission-line star, such as a luminous blue variable, a B[e] supergiant or a B hypergiant. The radial velocity map of the ionized gas shows a pattern consistent with rotation. A significant drop in the values of the gas velocity dispersion was detected very close to region 1, which suggests that the young stars there were formed from this cold gas, possibly keeping low values of velocity dispersion. Therefore, although detailed measurements of the stellar kinematics were not possible (due to the weak stellar absorption spectrum of this galaxy), we predict that NGC 1313 may also show a drop in the values of the stellar velocity dispersion in its nuclear region.
NASA Astrophysics Data System (ADS)
Orellana, G.; Nagar, N. M.; Isaak, K. G.; Priddey, R.; Maiolino, R.; McMahon, R.; Marconi, A.; Oliva, E.
2011-07-01
Context. We present near-IR spectroscopy of a sample of luminous (MB - 27.5; Lbol > 1014 L⊙), sub-millimeter-detected, dusty (Md ~ 109 M⊙), radio-quiet quasi-stellar objects (QSOs) at z ~ 2. Aims: A primary aim is to provide a more accurate QSO redshift determination in order to trace kinematics and inflows/outflows in these sub-mm bright QSOs. Additionally, the Hα and continuum properties allow an estimation of the black hole mass and accretion rate, offering insights into the starburst-AGN connection in sub-mm bright QSOs. Methods: We measure the redshift, width, and luminosity of the Hα line, and the continuum luminosity near Hα. Relative velocity differences between Hα and rest-frame UV emission lines are used to study the presence and strength of outflows/inflows. Luminosities and line widths are used to estimate the black hole masses, bolometric luminosities, Eddington fractions, and accretion rates; these are compared to the star-formation-rate (SFR), estimated from the sub-mm derived far-infrared (FIR) luminosity. Finally our sub-mm-bright QSO sample is compared with other QSO samples at similar redshifts. Results: The Hα emission line was strongly detected in all sources. Two components - a very broad (≳5000 km s-1) Gaussian and an intermediate-width (≳1500 km s-1) Gaussian, were required to fit the Hα profile of all observed QSOs. Narrow (≲1000 km s-1) lines were not detected in the sample QSOs. The rest-frame UV emission lines in these sub-mm bright QSOs show larger than average blue-shifted velocities, potentially tracing strong - up to 3000 km s-1 - outflows in the broad line region. With the exception of the one QSO which shows exceptionally broad Hα lines, the black hole masses of the QSO sample are in the range log MBH = 9.0-9.7 and the Eddington fractions are between 0.5 and ~1. In black hole mass and accretion rate, this sub-mm bright QSO sample is indistinguishable from the Shemmer et al. (2004, ApJ, 614, 547) optically-bright QSO sample at z ~ 2; the latter is likely dominated by sub-mm dim QSOs. Previous authors have demonstrated a correlation, over six orders of magnitude, between SFR and accretion rate in active galaxies: the sub-mm bright QSOs lie at the upper extremes of both quantities and their SFR is an order of magnitude higher than that predicted from the correlation.
A Broad-band Spectral and Timing Study of the X-Ray Binary System Centaurus X-3
NASA Technical Reports Server (NTRS)
Audley, Michael Damian
1998-01-01
This dissertation describes a multi-mission investigation of the high mass X-ray binary pulsar Centaurus X-3. Cen X-3 was observed with the Broad Band X-Ray Telescope (BBXRT) in December 1990. This was the first high-resolution solid state X-ray spectrometer to cover the iron K fluorescence region. The Fe K emission feature was resolved into two components for the first time. A broad 6.7 keV feature was found to be a blend of lines from Fe XXI-Fe XXVI with energies ranging from 6.6 to 6.9 keV due to photoionization of the companion's stellar wind. A narrow line at 6.4 keV due to fluorescence of iron in relatively low ionization states was also found. The quasi-periodic oscillations (QPO) at about 40 mHz were used to estimate the surface magnetic field of Cen X-3 as approx. 2.6 x 10(exp 12) G and to predict that there should be a cyclotron scattering resonance absorption feature (CSRF) near 30 keV. In order to further resolve the iron line complex and to investigate the pulse-phase dependence of the iron line intensities, Cen X-3 was observed with the Advanced Satellite for Cosmology and Astrophysics (ASCA). Using ASCA's state-of-the-art non-dispersive X-ray spectrometers the 6.4 keV fluorescent iron line was found to be pulsing while the intensities of the 6.7 and 6.9 keV recombination lines do not vary with pulse phase. This confirms that the 6.4 keV line is due to reflection by relatively neutral matter close to the neutron star while the recombination lines originate in the extended stellar wind. The continuum spectrum was found to be modified by reflection from matter close to the neutron star. Observations with the EXOSAT GSPC were used to search for a CSRF. The EXOSAT spectra were consistent with the presence of a CSRF but an unambiguous detection was not possible because of a lack of sensitivity at energies higher than the cyclotron energy. Cen X-3 was then observed with the Rossi X-Ray Timing Explorer (RXTE) and evidence for a CSRF at 25.1 +/- 0.3 keV was found. This corresponds to a magnetic field of (2.16 +/- 0.03) X 10(exp 12) G and is consistent with the value obtained from the QPO analysis.
NASA Astrophysics Data System (ADS)
Ramos-Larios, G.; Guerrero, M. A.; Nigoche-Netro, A.; Olguín, L.; Gómez-Muñoz, M. A.; Sabin, L.; Vázquez, R.; Akras, S.; Ramírez Vélez, J. C.; Chávez, M.
2018-03-01
With its bright and wide equatorial waist seen almost edge-on (`the butterfly body') and the faint and broad bipolar extensions (`the butterfly wings'), NGC 650-1 is the archetypical example of bipolar planetary nebula (PN) with butterfly morphology. We present here deep high-resolution broad- and narrow-band optical images that expose the rich and intricate fine structure of this bipolar PN, with small-scale bubble-like features and collimated outflows. A SHAPE spatio-kinematic model indicates that NGC 650-1 has a broad central torus with an inclination angle of 75° with respect to the line of sight, whereas that of the bipolar lobes, which are clearly seen in the position-velocity maps, is 85°. Large field of view deep images show, for first time, an arc-like diffuse envelope in low- and high-excitation emission lines located up to 180 arcsec towards the east-south-east of the central star, well outside the main nebula. This morphological component is confirmed by Spitzer MIPS and WISE infrared imaging, as well as by long-slit low- and high-dispersion optical spectroscopic observations. Hubble Space Telescope images of NGC 650-1 obtained at two different epochs ˜14 yr apart reveal the proper motion of the central star along this direction. We propose that this motion of the star through the interstellar medium compresses the remnant material of a slow asymptotic giant branch wind, producing this bow-shock-like feature.
A Catalog of Broad Absorption Line Quasars from the Sloan Digital Sky Survey Third Data Release
NASA Astrophysics Data System (ADS)
Trump, Jonathan R.; Hall, Patrick B.; Reichard, Timothy A.; Richards, Gordon T.; Schneider, Donald P.; Vanden Berk, Daniel E.; Knapp, Gillian R.; Anderson, Scott F.; Fan, Xiaohui; Brinkman, J.; Kleinman, S. J.; Nitta, Atsuko
2006-07-01
We present a total of 4784 unique broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release. An automated algorithm was used to match a continuum to each quasar and to identify regions of flux at least 10% below the continuum over a velocity range of at least 1000 km s-1 in the C IV and Mg II absorption regions. The model continuum was selected as the best-fit match from a set of template quasar spectra binned in luminosity, emission line width, and redshift, with the power-law spectral index and amount of dust reddening as additional free parameters. We characterize our sample through the traditional ``balnicity'' index and a revised absorption index, as well as through parameters such as the width, outflow velocity, fractional depth, and number of troughs. From a sample of 16,883 quasars at 1.7<=z<=4.38, we identify 4386 (26.0%) quasars with broad C IV absorption, of which 1756 (10.4%) satisfy traditional selection criteria. From a sample of 34,973 quasars at 0.5<=z<=2.15, we identify 457 (1.31%) quasars with broad Mg II absorption, 191 (0.55%) of which satisfy traditional selection criteria. We also provide a supplementary list of 39 visually identified z>4.38 quasars with broad C IV absorption. We find that broad absorption line quasars may have broader emission lines on average than other quasars.
NASA Astrophysics Data System (ADS)
Bon, Edi; Jovanović, Predrag; Marziani, Paola; Bon, Nataša; Otašević, Aleksandar
2018-06-01
Here we investigate the connection of broad emission line shapes and continuum light curve variability time scales of type-1 Active Galactic Nuclei (AGN). We developed a new model to describe optical broad emission lines as an accretion disk model of a line profile with additional ring emission. We connect ring radii with orbital time scales derived from optical light curves, and using Kepler's third law, we calculate mass of central supermassive black hole (SMBH). The obtained results for central black hole masses are in a good agreement with other methods. This indicates that the variability time scales of AGN may not be stochastic, but rather connected to the orbital time scales which depend on the central SMBH mass.
NASA Astrophysics Data System (ADS)
Sun, Mouyuan; Trump, Jonathan R.; Shen, Yue; Brandt, W. N.; Dawson, Kyle; Denney, Kelly D.; Hall, Patrick B.; Ho, Luis C.; Horne, Keith; Jiang, Linhua; Richards, Gordon T.; Schneider, Donald P.; Bizyaev, Dmitry; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey
2015-09-01
We explore the variability of quasars in the Mg ii and {{H}}β broad emission lines and ultraviolet/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 6 months, containing 357 quasars with Mg ii and 41 quasars with {{H}}β . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 2854 quasars with Mg ii and 572 quasars with {{H}}β . The Mg ii emission line is significantly variable ({{Δ }}f/f∼ 10% on ∼100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳ 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ-function. {{H}}β is more variable than Mg ii (roughly by a factor of ∼1.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1\\lt z\\lt 2 quasars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higdon, J. C.; Lingenfelter, R. E.; Rothschild, R. E.
2009-06-10
The ratio of the luminosity of diffuse 511 keV positron annihilation radiation, measured by INTEGRAL in its four years, from a Galactic 'positron bulge' (<1.5 kpc) compared to that of the disk is {approx}1.4. This ratio is roughly 4 times larger than that expected simply from the stellar bulge-to-disk ratio of {approx}0.33 of the Galactic supernovae (SNe), which are thought to be the principal source of the annihilating positrons through the decay of radionuclei made by explosive nucleosynthesis in the SNe. This large discrepancy has prompted a search for new sources. Here, however, we show that the measured 511 keVmore » luminosity ratio can be fully understood in the context of a Galactic SN origin when the differential propagation of these {approx} MeV positrons in the various phases of the interstellar medium is taken into consideration, since these relativistic positrons must first slow down to energies {<=}10 eV before they can annihilate. Moreover, without propagation, none of the proposed positron sources, new or old, can explain the two basic properties on the Galactic annihilation radiation: the fraction of the annihilation that occurs through positronium formation and the ratio of the broad/narrow components of the 511 keV line. In particular, we show that in the neutral phases of the interstellar medium, which fill most of the disk (>3.5 kpc), the cascade of the magnetic turbulence, which scatters the positrons, is damped by ion-neutral friction, allowing positrons to stream along magnetic flux tubes. We find that nearly 1/2 of the positrons produced in the disk escape from it into the halo. On the other hand, we show that within the extended, or interstellar, bulge (<3.5 kpc), essentially all of the positrons are born in the hot plasmas which fill that volume. We find that the diffusion mean free path is long enough that only a negligible fraction annihilate there and {approx}80% of them escape down into the H II and H I envelopes of molecular clouds that lie within 1.5 kpc before they slow down and annihilate, while the remaining {approx}20% escape out into the halo and the disk beyond. This propagation accounts for the low observed annihilation radiation luminosity of the disk compared to the bulge. In addition, we show that the primary annihilation sites of the propagating positrons in both the bulge and the disk are in the warm ionized phases of the interstellar medium. Such annihilation can also account for those two basic properties of the emission, the fraction ({approx}93% {+-} 7%) of annihilation via positronium and the ratio ({approx}0.5) of broad ({approx}5.4 keV) to narrow ({approx}1.3 keV) components of the bulge 511 keV line emission. Moreover, we expect that the bulk of this broad line emission comes from the tilted disk region (0.5 < R < 1.5 kpc) with a very large broad/narrow flux ratio of {approx}6, while much of the narrow line emission comes from the inner bulge (R < 0.5 kpc) with a negligible broad/narrow flux ratio. Separate spectral analyses of the 511 keV line emission from these two regions should be able to test this prediction, and further probe the structure of the interstellar medium. Lastly, we show that the asymmetry in the inner disk annihilation line flux, which has been suggested as added evidence for new sources, can also be fully understood from positron propagation and the asymmetry in the inner spiral arms as viewed from our solar perspective without any additional sources.« less
NASA Astrophysics Data System (ADS)
Li, Zhen-Zhen; Zhou, Hong-Yan; Hao, Lei; Wang, Shu-Fen; Ji, Tuo; Liu, Bo
2016-09-01
Emission lines from the broad emission line region (BELR) and the narrow emission line region (NELR) of active galactic nuclei (AGNs) have been extensively studied. However, emission lines are rarely detected between these two regions. We present a detailed analysis of quasar SDSS J232444.80-094600.3 (SDSS J2324-0946), which is remarkable for its strong intermediate-width emission lines (IELs) with FWHM ≈ 1800 km s-1. The IEL component is present in different emission lines, including the permitted lines Lyα λ1216, CIV λ1549, semiforbidden line [CIII] λ1909, and forbidden lines [OIII] λλ4959, 5007. With the aid of photo-ionization models, we found that the IELs are produced by gas with a hydrogen density of nH ˜ 106.2 ˜ 106.3 cm-3, a distance from the central ionizing source of R ˜ 35 - 50 pc, a covering factor of ˜ 6%, and a dust-to-gas ratio of ≤ 4% that of the SMC. We suggest that the strong IELs of this quasar are produced by nearly dust-free and intermediate-density gas located at the skin of the dusty torus. Such strong IELs, which serve as a useful diagnostic, can provide an avenue to study the properties of gas between the BELR and the NELR.
Observations of emission in bright, low redshift quasars
NASA Technical Reports Server (NTRS)
1983-01-01
Ultraviolet, infrared, and optical spectra were combined to obtain a data set sample as broad as possible in the range of hydrogen lines in individual quasars. From the measured Lyman fluxes, coupled with Balmer and Paschen line fluxes measured in these same objects, an effort was made to establish observational constraints that would guide models of the broad emission line regions of quasars. It was found that IUE spectra were generally of sufficiently high quality to derive line profiles of the ultraviolet lines Lyman alpha and CIV 1550 A, which were compared to the Balmer line profiles. The objects observed and the line fluxes are tabulated. Plots of line profiles are included.
A multi-wavelength investigation of Seyfert 1.8 and 1.9 galaxies
NASA Astrophysics Data System (ADS)
Trippe, Margaret L.
We focus on determining the underlying physical cause of a Seyfert galaxy's appearance as type a 1.8 or 1.9. Are these "intermediate" Seyfert types typical Seyfert 1 nuclei reddened by central dusty tori or by nuclear dust lanes/spirals in the narrow-line region? Or, are they similar to NGC 2992, objects that have intrinsically weak continua and weak broad emission lines? Our study compares measurements of the reddenings of the narrow and broad-line regions with each other and with the X-ray column derived from XMM Newton 0.5--10 keV spectra to determine the presence and location of dust in the line of sight for a sample of 35 Seyfert 1.8s and 1.9s. From this, we find that Seyfert 1.9s are an almost equal mix of low-flux objects with unreddened broad line regions, and objects with broad line regions reddened by an internal dust source, either the torus or dust structures on the same size scale as the narrow line region. The 1.9s that recieved this designation due to a low continuum flux state showed variable type classifications. All three of the Seyfert 1.8s in our study are probably in low continuum states. Many objects have been misclassified as Seyfert 1.8/1.9s in the past, probably due to improper [N II]/Halpha deconvolution leading to a false detection of weak broad Halpha. INDEX WORDS: Active galaxies, Seyfert galaxies, Optical spectroscopy, X-ray spectroscopy, Astronomical dust
The Soft X-ray View of Ultra Fast Outflows
NASA Astrophysics Data System (ADS)
Reeves, J.; Braito, V.; Nardini, E.; Matzeu, G.; Lobban, A.; Costa, M.; Pounds, K.; Tombesi, F.; Behar, E.
2017-10-01
The recent large XMM-Newton programmes on the nearby quasars PDS 456 and PG 1211+143 have revealed prototype ultra fast outflows in the iron K band through highly blue shifted absorption lines. The wind velocities are in excess of 0.1c and are likely to make a significant contribution to the host galaxy feedback. Here we present evidence for the signature of the fast wind in the soft X-ray band from these luminous quasars, focusing on the spectroscopy with the RGS. In PDS 456, the RGS spectra reveal the presence of soft X-ray broad absorption line profiles, which suggests that PDS 456 is an X-ray equivalent to the BAL quasars, with outflow velocities reaching 0.2c. In PG 1211, the soft X-ray RGS spectra show a complex of several highly blue shifted absorption lines over a wide range of ionisation and reveal outflowing components with velocities between 0.06-0.17c. For both quasars, the soft X-ray absorption is highly variable, even on timescales of days and is most prominent when the quasar flux is low. Overall the results imply the presence of a soft X-ray component of the ultra fast outflows, which we attribute to a clumpy or inhomogeneous phase of the disk wind.
NASA Astrophysics Data System (ADS)
Uttley, P.; Gendreau, K.; Markwardt, C.; Strohmayer, T. E.; Bult, P.; Arzoumanian, Z.; Pottschmidt, K.; Ray, P. S.; Remillard, R.; Pasham, D.; Steiner, J.; Neilsen, J.; Homan, J.; Miller, J. M.; Iwakiri, W.; Fabian, A. C.
2018-03-01
NICER observed the new X-ray transient MAXI J1820+070 (ATel #11399, #11400, #11403, #11404, #11406, #11418, #11420, #11421) on multiple occasions from 2018 March 12 to 14. & nbsp;During this time the source brightened rapidly, from a total NICER mean count rate of 880 count/s on March 12 to 2800 count/s by March 14 17:00 & nbsp;UTC, corresponding to a change in 2-10 keV modelled flux (see below) from 1.9E-9 to 5E-9 erg cm-2 s-1. & nbsp; The broadband X-ray spectrum is absorbed by a low column density (fitting the model given below, we obtain 1.5E21 cm-2), in keeping with the low Galactic column in the direction of the source (ATel #11418; Dickey & Lockman, 1990, ARAA, 28, 215; Kalberla et al. 2005, A &A, 440, 775) and consists of a hard power-law component with weak reflection features (broad iron line and narrow 6.4 keV line core) and an additional soft X-ray component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghavamian, Parviz; Seitenzahl, Ivo R.; Dopita, M. A.
2017-10-01
We present results of integral field spectroscopy of Balmer-dominated shocks in the LMC supernova remnant (SNR) N103B, carried out using the Wide Field Integral Spectrograph (WiFeS ) on the 2.3 m telescope at the Siding Spring Observatory in Australia. Existing X-ray studies of N103B have indicated an SN Ia origin. Radiative shock emission from clumpy material surrounding the SNR may result from interaction of the forward shock with relic stellar wind material, possibly implicating a thermonuclear explosion in a single-degenerate binary system. The recently discovered Balmer-dominated shocks mark the impact of the forward shock with low density, partially neutral CSMmore » gas, and form a partial shell encircling clumps of material exhibiting radiative shocks. The WiFeS spectra of N103B reveal broad H α emission having a width as high as 2350 km s{sup −1} along the northern rim, and both H α and H β broad profiles having widths around 1300 km s{sup −1} along the southern rim. Fits to the H α line profiles indicate that in addition to the usual broad and narrow emission components, a third component of intermediate width exists in these Balmer-dominated shocks, ranging from around 125 km s{sup −1} up to 225 km s{sup −1} in width. This is consistent with predictions of recent Balmer-dominated shock models, which predict that an intermediate-width component will be generated in a fast neutral precursor. We derive a Sedov age of approximately 685 ± 20 years for N103B from the Balmer-dominated spectra, consistent with the young age of 380–860 years estimated from light echo studies.« less
NASA Technical Reports Server (NTRS)
2012-01-01
We present time-resolved broad-band observations of the quasar 3C 279 obtained from multiwavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported gamma-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears delayed with respect to the gamma-ray emission by about 10 days. X-ray observations reveal a pair of 'isolated' flares separated. by approx. 90 days, with only weak gamma-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the gamma-ray flare, while the peak appears in the mm/sub-mm band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broad-band spectra during the gamma-ray flaring event by a shift of its location from approx. 1 pc to approx. 4 pc from the central black hole. On the other hand, if the gamma-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.
On the origin of gamma-rays in Fermi blazars: beyondthe broad-line region
NASA Astrophysics Data System (ADS)
Costamante, L.; Cutini, S.; Tosti, G.; Antolini, E.; Tramacere, A.
2018-07-01
The gamma-ray emission in broad-line blazars is generally explained as inverse Compton (IC) radiation of relativistic electrons in the jet scattering optical-UV photons from the broad-line region (BLR), the so-called BLR external Compton (EC) scenario. We test this scenario on the Fermi gamma-ray spectra of 106 broad-line blazars detected with the highest significance or largest BLR, by looking for cut-off signatures at high energies compatible with γ-γ interactions with BLR photons. We do not find evidence for the expected BLR absorption. For 2/3 of the sources, we can exclude any significant absorption (τmax < 1), while for the remaining 1/3 the possible absorption is constrained to be 1.5-2 orders of magnitude lower than expected. This result holds also dividing the spectra in high- and low-flux states, and for powerful blazars with large BLR. Only 1 object out of 10 seems compatible with substantial attenuation (τmax > 5). We conclude that for 9 out of 10 objects, the jet does not interact with BLR photons. Gamma-rays seem either produced outside the BLR most of the time, or the BLR is ˜100 × larger than given by reverberation mapping. This means that (i) EC on BLR photons is disfavoured as the main gamma-ray mechanism, versus IC on IR photons from the torus or synchrotron self-Compton; (ii) the Fermi gamma-ray spectrum is mostly intrinsic, determined by the interaction of the particle distribution with the seed-photon spectrum; and (iii) without suppression by the BLR, broad-line blazars can become copious emitters above 100 GeV, as demonstrated by 3C 454.3. We expect the CTA sky to be much richer of broad-line blazars than previously thought.
On the origin of gamma rays in Fermi blazars: beyond the broad line region.
NASA Astrophysics Data System (ADS)
Costamante, L.; Cutini, S.; Tosti, G.; Antolini, E.; Tramacere, A.
2018-05-01
The gamma-ray emission in broad-line blazars is generally explained as inverse Compton (IC) radiation of relativistic electrons in the jet scattering optical-UV photons from the Broad Line Region (BLR), the so-called BLR External Compton scenario. We test this scenario on the Fermi gamma-ray spectra of 106 broad-line blazars detected with the highest significance or largest BLR, by looking for cut-off signatures at high energies compatible with γ-γ interactions with BLR photons. We do not find evidence for the expected BLR absorption. For 2/3 of the sources, we can exclude any significant absorption (τmax < 1), while for the remaining 1/3 the possible absorption is constrained to be 1.5-2 orders of magnitude lower than expected. This result holds also dividing the spectra in high and low-flux states, and for powerful blazars with large BLR. Only 1 object out of 10 seems compatible with substantial attenuation (τmax > 5). We conclude that for 9 out of 10 objects, the jet does not interact with BLR photons. Gamma-rays seem either produced outside the BLR most of the time, or the BLR is ˜100 × larger than given by reverberation mapping. This means that i) External Compton on BLR photons is disfavoured as the main gamma-ray mechanism, vs IC on IR photons from the torus or synchrotron self-Compton; ii) the Fermi gamma-ray spectrum is mostly intrinsic, determined by the interaction of the particle distribution with the seed-photons spectrum; iii) without suppression by the BLR, broad-line blazars can become copious emitters above 100 GeV, as demonstrated by 3C 454.3. We expect the CTA sky to be much richer of broad-line blazars than previously thought.
NASA Astrophysics Data System (ADS)
Hosono, Satsuki; Kawashima, Natsumi; Wollherr, Dirk; Ishimaru, Ichiro
2016-05-01
The distributed networks for information collection of chemical components with high-mobility objects, such as drones or smartphones, will work effectively for investigations, clarifications and predictions against unexpected local terrorisms and disasters like localized torrential downpours. We proposed and reported the proposed spectroscopic line-imager for smartphones in this conference. In this paper, we will mention the wide-area spectroscopic-image construction by estimating 6 DOF (Degrees Of Freedom: parallel movements=x,y,z and rotational movements=θx, θy, θz) from line data to observe and analyze surrounding chemical-environments. Recently, smartphone movies, what were photographed by peoples happened to be there, had worked effectively to analyze what kinds of phenomenon had happened around there. But when a gas tank suddenly blew up, we did not recognize from visible-light RGB-color cameras what kinds of chemical gas components were polluting surrounding atmospheres. Conventionally Fourier spectroscopy had been well known as chemical components analysis in laboratory usages. But volatile gases should be analyzed promptly at accident sites. And because the humidity absorption in near and middle infrared lights has very high sensitivity, we will be able to detect humidity in the sky from wide field spectroscopic image. And also recently, 6-DOF sensors are easily utilized for estimation of position and attitude for UAV (Unmanned Air Vehicle) or smartphone. But for observing long-distance views, accuracies of angle measurements were not sufficient to merge line data because of leverage theory. Thus, by searching corresponding pixels between line spectroscopic images, we are trying to estimate 6-DOF in high accuracy.
Solving the Excitation and Chemical Abundances in Shocks: The Case of HH 1
NASA Astrophysics Data System (ADS)
Giannini, T.; Antoniucci, S.; Nisini, B.; Bacciotti, F.; Podio, L.
2015-11-01
We present deep spectroscopic (3600-24700 Å ) X-shooter observations of the bright Herbig-Haro object HH 1, one of the best laboratories to study the chemical and physical modifications caused by protostellar shocks on the natal cloud. We observe atomic fine structure lines, H i and He i recombination lines and H2 ro-vibrational lines (more than 500 detections in total). Line emission was analyzed by means of Non-local Thermal Equilibiurm codes to derive the electron temperature and density, and for the first time we are able to accurately probe different physical regimes behind a dissociative shock. We find a temperature stratification in the range 4000 K \\div 80,000 K, and a significant correlation between temperature and ionization energy. Two density regimes are identified for the ionized gas, a more tenuous, spatially broad component (density ˜103 cm-3), and a more compact component (density ≥slant 105 cm-3) likely associated with the hottest gas. A further neutral component is also evidenced, having a temperature ≲10,000 K and a density >104 cm-3. The gas fractional ionization was estimated by solving the ionization equilibrium equations of atoms detected in different ionization stages. We find that neutral and fully ionized regions co-exist inside the shock. Also, indications in favor of at least partially dissociative shock as the main mechanism for molecular excitation are derived. Chemical abundances are estimated for the majority of the detected species. On average, abundances of non-refractory/refractory elements are lower than solar of about 0.15/0.5 dex. This indicates the presence of dust inside the medium, with a depletion factor of iron of ˜40%. Based on observations collected at the European Southern Observatory, (92.C-0058).
The Peculiar Radio-loud Narrow Line Seyfert 1 Galaxy 1H 0323+342
NASA Astrophysics Data System (ADS)
Paliya, Vaidehi S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.; Anjum, Ayesha; Pandey, S. B.
2014-07-01
We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ~3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.
Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Kim, Minjin; Ho, Luis C.; Peng, Chien Y.; Barth, Aaron J.; Im, Myungshin
2017-10-01
We present detailed image analysis of rest-frame optical images of 235 low-redshift (z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ FWHM ≤ 2000 km s-1) Type 1 AGNs, in contrast to their broad-line (Hβ FWHM > 2000 km s-1) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555. These data are associated with program AR-12133 and AR-12818.
BROAD Hβ EMISSION-LINE VARIABILITY IN A SAMPLE OF 102 LOCAL ACTIVE GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runco, Jordan N.; Cosens, Maren; Bennert, Vardha N.
2016-04-10
A sample of 102 local (0.02 ≤ z ≤ 0.1) Seyfert galaxies with black hole masses M{sub BH} > 10{sup 7}M{sub ⊙} was selected from the Sloan Digital Sky Survey (SDSS) and observed using the Keck 10 m telescope to study the scaling relations between M{sub BH} and host galaxy properties. We study profile changes of the broad Hβ emission line within the three to nine year time frame between the two sets of spectra. The variability of the broad Hβ emission line is of particular interest, not only because it is used to estimate M{sub BH}, but also because its strengthmore » and width are used to classify Seyfert galaxies into different types. At least some form of broad-line variability (in either width or flux) is observed in the majority (∼66%) of the objects, resulting in a Seyfert-type change for ∼38% of the objects, likely driven by variable accretion and/or obscuration. The broad Hβ line virtually disappears in 3/102 (∼3%) extreme cases. We discuss potential causes for these changing look active galactic nuclei. While similar dramatic transitions have previously been reported in the literature, either on a case-by-case basis or in larger samples focusing on quasars at higher redshifts, our study provides statistical information on the frequency of Hβ line variability in a sample of low-redshift Seyfert galaxies.« less
Infrared Spectroscopy of Pa-beta and [Fe II] Emission in NGC 4151
NASA Technical Reports Server (NTRS)
Knop, R. A.; Armus, L.; Larkin, J. E.; Matthews, K.; Shupe, D. L.; Soifer, B. T.
1996-01-01
We present spatially resolved 1.24-1.30 micron spectroscopy with a resolution of 240 km/s of the Seyfert 1.5 galaxy NGC 4151. Broad Pa-beta, narrow Pa-beta, and narrow [Fe II] (lambda = 1.2567 micron) emission lines are identified in the spectrum. Additionally, a spatially unresolved narrow component probably due to [S ix] (lambda = 1.25235 micron) is observed on the nucleus. The narrow Pa-beta and [Fe II] lines are observed to be extended over a scale of 5 sec. The spatial variation of the velocity centers of the Pa-beta and [Fe II] lines show remarkable similarity, and additionally show similarities to the velocity structure previously observed in ground based spectroscopy of [O III] emission in NGC 4151. This leads to the conclusion that the [Fe II] emission arises in clouds in the Seyfert narrow line region that are physically correlated with those narrow line clouds responsible for the optical emission. The [Fe II] emission line, however, is significantly wider than the Pa-beta emission line along the full spatial extent of the observed emission. This result suggests that despite the correlation between the bulk kinematics of Pa-beta and [Fe II], there is an additional process, perhaps fast shocks from a wind in the Seyfert nucleus, contributing to the [Fe II] emission.
Cao, Fan; Fang, Yiwen; Tan, Hong Kee; Goh, Yufen; Choy, Jocelyn Yeen Hui; Koh, Bryan Thean Howe; Hao Tan, Jiong; Bertin, Nicolas; Ramadass, Aroul; Hunter, Ewan; Green, Jayne; Salter, Matthew; Akoulitchev, Alexandre; Wang, Wilson; Chng, Wee Joo; Tenen, Daniel G; Fullwood, Melissa J
2017-05-19
Stretched histone regions, such as super-enhancers and broad H3K4me3 domains, are associated with maintenance of cell identity and cancer. We connected super-enhancers and broad H3K4me3 domains in the K562 chronic myelogenous leukemia cell line as well as the MCF-7 breast cancer cell line with chromatin interactions. Super-enhancers and broad H3K4me3 domains showed higher association with chromatin interactions than their typical counterparts. Interestingly, we identified a subset of super-enhancers that overlap with broad H3K4me3 domains and show high association with cancer-associated genes including tumor suppressor genes. Besides cell lines, we could observe chromatin interactions by a Chromosome Conformation Capture (3C)-based method, in primary human samples. Several chromatin interactions involving super-enhancers and broad H3K4me3 domains are constitutive and can be found in both cancer and normal samples. Taken together, these results reveal a new layer of complexity in gene regulation by super-enhancers and broad H3K4me3 domains.
A Panchromatic Study of Molecular Gas in the Protoplanetary System RY Lupi
NASA Astrophysics Data System (ADS)
Arulanantham, Nicole; France, Kevin; Hoadley, Keri
2018-01-01
To understand how planet formation occurs in protoplanetary disks, we must first characterize the behavior of material within 10 AU of the central star. We present a study of molecular gas at these radii in the disk around the young star RY Lupi, through spectra from HST-COS, HST-STIS, and VLT-CRIRES. We model the radial distribution of flux from hot (T ~ 2000 K) molecular gas in a surface layer between r = 0.1-10 AU, as traced by LyA-pumped H2. The result indicates that the H2 emission originates in a narrow ring centered at 1 AU, with a sharp decline in flux at r < 0.1 AU that is consistent with what is expected for transitional disks. When we adopt a more basic approach to evaulate the shapes of the emission lines, we find that a two-component Gaussian profile assuming two rings of gas in the inner disk provides a statistically better fit to the H2 emission lines than the single-component model of a smooth disk. This two-component profile includes broad (FWHMbroad, H2 = 105 +/- 15 km/s) and narrow (FWHMnarrow, H2 = 43 +/- 13 km/s) lines, corresponding to average gas radii of
The Nova-like star RW Sextantis
NASA Astrophysics Data System (ADS)
Stokes, S. J.; Evans, J. M.; Bianchini, A.; Canterna, R.
2000-12-01
We have analyzed 17 medium resolution spectra of RW Sex taken in 1988 at La Silla in the spectral range is 4000-5000 Å with a dispersion of 60 Å/mm and spectral resolution of about 2 Å/pixel. The mean spectrum of the object shows the continuum energy distribution slightly brighter and steeper than that observed by Beuermann, Stasiewski and Schwope (1992). In both cases the slope seems to be steeper that the λ -2.33 power law predicted for standard accretion discs (see Warner 1995). This might be due to uncertain flux calibration or to the dramatic intrinsic variability of this nova-like system (Honeycutt et al. 1998). Like in Beuerman et al.'s, the hydrogen and the HeI lines appear in absorption with superimposed central emission components. Relatively weak emissions from HeII at λ λ 4542,4686 and the blend CIII+NIII at λ4640 -50 are also seen. The peaks of the narrow emissions components of Hβ , HeIλ4471 and HeIλ4922 have been measured using Gaussian fittings. The new ephemeris are: T0(HJD) = 2446486.5061 +/- 0.0010 + 0.245064 +/- 0.000004 The radial velocity curve produced by the absorption components of the hydrogen and the HeI lines are in antiphase with respect to that produced by the emission cores. The amplitudes of all the radial velocity curves are consistent with those shown by Beuermann, Stasiewski and Schwope (1992). According to these authors the absorption lines are produced in the optically thick accretion disc while the narrow emissions arise from the heated atmosphere of the secondary. We fail however to detect the broad emission components observed by these authors and attributed to the hot disc corona. This point should deserve future investigation.
Intermediate-line Emission in AGNs: The Effect of Prescription of the Gas Density
NASA Astrophysics Data System (ADS)
Adhikari, T. P.; Hryniewicz, K.; Różańska, A.; Czerny, B.; Ferland, G. J.
2018-03-01
The requirement of an intermediate-line component in the recently observed spectra of several active galactic nuclei (AGNs) points to the possible existence of a physically separate region between the broad-line region (BLR) and narrow-line region (NLR). In this paper we explore the emission from the intermediate-line region (ILR) by using photoionization simulations of the gas clouds distributed radially from the center of the AGN. The gas clouds span distances typical for the BLR, ILR, and NLR, and the appearance of dust at the sublimation radius is fully taken into account in our model. The structure of a single cloud is calculated under the assumption of constant pressure. We show that the slope of the power-law radial profile of the cloud density does not affect the existence of the ILR in major types of AGNs. We found that the low-ionization iron line, Fe II, appears to be highly sensitive to the presence of dust and therefore becomes a potential tracer of dust content in line-emitting regions. We show that the use of a disk-like cloud density profile computed for the upper part of the atmosphere of the accretion disk reproduces the observed properties of the line emissivities. In particular, the distance of the Hβ line inferred from our model agrees with that obtained from reverberation mapping studies in the Sy1 galaxy NGC 5548.
NASA Astrophysics Data System (ADS)
Guenther, Hans; Brickhouse, N. S.; Dupree, A. K.; Luna, G.; Schneider, P. C.; Wolk, S. J.
2014-01-01
Classical T Tauri stars (CTTS) show strong, broad and asymmetric FUV emission lines. Neither the width, nor the line profile is understood. Likely, different mechanisms influence the line profile; the best candidates are accretion, winds and stellar activity. We monitored the C IV 1548/1550 Å doublet in the nearby, bright CTTS TW Hya to correlate it with i) the cool wind, as seen in COS NUV Mg II line profiles, ii) the photometric period from joint ground-based monitoring, iii) the accretion rate as determined from the UV continuum and iv) the Ha line profile from independent ground-based observations. The observations span 10 orbits distributed over a few weeks to cover the typical time scales of stellar rotation, accretion and winds. On short time scales (seconds) the variability in the data is compatible with counting statistics when we take certain instrumental effects (the detector dead-time fraction increases when the wavelength calibration lamps are switched on). This rules out any type of coherent accretion shock fluctuation as predicted in some simulations. On longer time scales (days) variability of a factor of 3 in the continuum and similarly massive changes in the line shape are seen. The ratio of the two lines of the doublet indicates that the lines are optically thick, calling into question the idea that the blue-shifted components of the C IV lines are formed in the pre-shock region.
Broad-Band Spectroscopy of Hercules X-1 with Suzaku
NASA Technical Reports Server (NTRS)
Asami, Fumi; Enoto, Teruaki; Iwakiri, Wataru; Yamada, Shin'ya; Tamagawa, Toru; Mihara, Tatehiro; Nagase, Fumiaki
2014-01-01
Hercules X-1 was observed with Suzaku in the main-on state from 2005 to 2010. The 0.4- 100 keV wide-band spectra obtained in four observations showed a broad hump around 4-9 keV in addition to narrow Fe lines at 6.4 and 6.7 keV. The hump was seen in all the four observations regardless of the selection of the continuum models. Thus it is considered a stable and intrinsic spectral feature in Her X-1. The broad hump lacked a sharp structure like an absorption edge. Thus it was represented by two different spectral models: an ionized partial covering or an additional broad line at 6.5 keV. The former required a persistently existing ionized absorber, whose origin was unclear. In the latter case, the Gaussian fitting of the 6.5-keV line needs a large width of sigma = 1.0-1.5 keV and a large equivalent width of 400-900 eV. If the broad line originates from Fe fluorescence of accreting matter, its large width may be explained by the Doppler broadening in the accretion flow. However, the large equivalent width may be inconsistent with a simple accretion geometry.
Corsi, Alessandra; Gal-Yam, A.; Kulkarni, S. R.; ...
2016-10-10
Long duration γ-ray bursts are a rare subclass of stripped-envelope core-collapse supernovae (SNe) that launch collimated relativistic outflows (jets). All γ-ray-burst-associated SNe are spectroscopically Type Ic, with broad-lines, but the fraction of broad-lined SNe Ic harboring low-luminosity γ-ray bursts remains largely unconstrained. Some SNe should be accompanied by off-axis γ-ray burst jets that initially remain invisible, but then emerge as strong radio sources (as the jets decelerate). However, this critical prediction of the jet model for γ-ray bursts has yet to be verified observationally. Here, we present K. G. Jansky Very Large Array observations of 15 broad-lined SNe of Type Ic discovered by the Palomar Transient Factory in an untargeted manner. Most of the SNe in our sample exclude radio emission observationally similar to that of the radio-loud, relativistic SN 1998bw. We constrain the fraction of 1998bw-like broad-lined SNe Ic to bemore » $$\\lesssim 41 \\% $$ (99.865% confidence). Most of the events in our sample also exclude off-axis jets similar to GRB 031203 and GRB 030329, but we cannot rule out off-axis γ-ray bursts expanding in a low-density wind environment. Three SNe in our sample are detected in the radio. PTF11qcj and PTF14dby show late-time radio emission with average ejecta speeds of ≈0.3–0.4 c, on the dividing line between relativistic and "ordinary" SNe. The speed of PTF11cmh radio ejecta is poorly constrained. We estimate that $$\\lesssim 85 \\% $$ (99.865% confidence) of the broad-lined SNe Ic in our sample may harbor off-axis γ-ray bursts expanding in media with densities in the range probed by this study.« less
NASA Astrophysics Data System (ADS)
Gruppioni, C.; Berta, S.; Spinoglio, L.; Pereira-Santaella, M.; Pozzi, F.; Andreani, P.; Bonato, M.; De Zotti, G.; Malkan, M.; Negrello, M.; Vallini, L.; Vignali, C.
2016-06-01
We present new estimates of AGN accretion and star formation (SF) luminosity in galaxies obtained for the local 12 μm sample of Seyfert galaxies (12MGS), by performing a detailed broad-band spectral energy distribution (SED) decomposition including the emission of stars, dust heated by SF and a possible AGN dusty torus. Thanks to the availability of data from the X-rays to the sub-millimetre, we constrain and test the contribution of the stellar, AGN and SF components to the SEDs. The availability of Spitzer-InfraRed Spectrograph (IRS) low-resolution mid-infrared (mid-IR) spectra is crucial to constrain the dusty torus component at its peak wavelengths. The results of SED fitting are also tested against the available information in other bands: the reconstructed AGN bolometric luminosity is compared to those derived from X-rays and from the high excitation IR lines tracing AGN activity like [Ne V] and [O IV]. The IR luminosity due to SF and the intrinsic AGN bolometric luminosity are shown to be strongly related to the IR line luminosity. Variations of these relations with different AGN fractions are investigated, showing that the relation dispersions are mainly due to different AGN relative contribution within the galaxy. Extrapolating these local relations between line and SF or AGN luminosities to higher redshifts, by means of recent Herschel galaxy evolution results, we then obtain mid- and far-IR line luminosity functions useful to estimate how many star-forming galaxies and AGN we expect to detect in the different lines at different redshifts and luminosities with future IR facilities (e.g. JWST, SPICA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Juncheng; Wang, Xiaofeng; Li, Junzheng
We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocitymore » of ∼19,000 km s{sup –1}). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (∼8-9 M{sub ☉}) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.« less
NASA Technical Reports Server (NTRS)
Wiggs, Michael S.; Gies, Douglas R.
1992-01-01
New evidence for colliding winds in the massive O-type binary system Plaskett's star is reported. High S/N ratio spectra of the H-alpha and He I 6678 emission lines are presented, and their orbital phase-related variations are examined in order to derive the locations and motions of the high-density gas in the system. Radial velocity cures for several absorption and emission lines associated with the photosphere of the primary are also provided. The H-alpha emission profiles are complex, with very broad wings and a sharp spikelike feature that approximately follows the motion of the primary star. The radial velocity curve for this spike lags behind the photospheric velocity curve of the primary by 0.066 in phase. It is suggested that the high-velocity H-alpha emission is related to instabilities in the intershock region between the two component stars. The H-alpha phase-related variations are compared with those observed in the UV wind lines in IUE archival spectra.
Spectroscopic observations of cool degenerate star candidates
NASA Technical Reports Server (NTRS)
Hintzen, P.
1986-01-01
Spectroscopic observations are reported for 23 Luyten Half-Second degenerate star candidates and for 13 Luyten-Palomar common proper-motion pairs containing possible degenerate star components. Twenty-five degenerate stars are identified, 20 of which lack previous spectroscopy. Most of these stars are cool - Luyten color class g or later. One star, LP 77-57, shows broad continuum depressions similar to those in LHS 1126, which Liebert and Dahn attributed to pressure-shifted C2. A second degenerate star, LHS 290, exhibits apparent strong Swan bands which are blueshifted about 75 A. Further observations, including polarimetry and photometry, are required to appraise the spectroscopic peculiarities of these stars. Finally, five cool, sharp-lined DA white dwarfs have been observed to detect lines of metals and to determine line strengths. None of these DAs show signs of Mg b or the G band, and four show no evidence of Ca II K. The attempt to detect Ca MI in the fifth star, G199-71, was inconclusive.
NASA Astrophysics Data System (ADS)
Tzanavaris, Panayiotis
Fluorescent Fe K emission from neutral matter in AGN spectracan arise in the accretion disk around the centralsupermassive black hole [SMBH] ("broad" line) and/or in distant matter ("narrow"line). If it is broad, it provides a unique windowto the strong gravity SMBH regime, including information on SMBH spin;if it is narrow, it probesthe distant reprocessor, likely a clumpy torus. We will use broadband X-ray data from four NASA X-ray missionsfor 45 nearby AGNs, and 1. Assess whether any known "broad" relativistic lines can be modeledas "narrow"instead, by means of self-consistent modeling of fluorescence,direct, and scattered continua; 2. Measure absorbing column densities both in and out of the line of sight; 3. Bootstrap measures of intrinsic bolometric AGN luminosity, with X-ray and optical data. This work will provide updated results on a) black hole spin, with implications on AGN jet power and accretion history; b) the census of highly-obscured (Compton thick) vs. Compton thin AGNs, with implications on models of the Cosmic X-ray Background; c) calibrations of Fe K line, X-ray intrinsic continuum, [OIII] and [OIV] luminosities as measures of intrinsc bolometric AGN luminosity, with implications on AGN feedback and galaxy evolution. Key in our approach is a physically based, self-consistent modeling of the narrow line, with finite column density in and out of the line of sight, and the latest relativistic modeling of the broad line.
Significant contribution of the Cerenkov line-like radiation to the broad emission lines of quasars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, D. B.; You, J. H.; Chen, W. P.
2014-01-01
The Cerenkov line-like radiation in a dense gas (N {sub H} > 10{sup 13} cm{sup –3}) is potentially important in the exploration of the optical broad emission lines of quasars and Seyfert 1 galaxies. With this quasi-line emission mechanism, some long standing puzzles in the study of quasars could be resolved. In this paper, we calculate the power of the Cerenkov line-like radiation in dense gas and compare with the powers of other radiation mechanisms by a fast electron to confirm its importance. From the observed gamma-ray luminosity of 3C 279, we show that the total number of fast electronsmore » is sufficiently high to allow effective operation of the quasi-line emission. We present a model calculation for the luminosity of the Cerenkov Lyα line of 3C 279, which is high enough to compare with observations. We therefore conclude that the broad line of quasars may be a blend of the Cerenkov emission line with the real line produced by the bound-bound transition. A new approach to the absorption of the Cerenkov line is presented with the method of escape probability, which markedly simplifies the computation in the optically thick case. The revised set of formulae for the Cerenkov line-like radiation is more convenient in applications.« less
NASA Astrophysics Data System (ADS)
Coatman, Liam; Hewett, Paul C.; Banerji, Manda; Richards, Gordon T.; Hennawi, Joseph F.; Prochaska, Jason X.
2017-01-01
Accurate black-hole (BH) mass estimates for high-redshift (z>2) quasars are essential for better understanding the relationship between super-massive BH accretion and star formation. Progress is currently limited by the large systematic errors in virial BH-masses derived from the CIV broad emission line, which is often significantly blueshifted relative to systemic, most likely due to outflowing gas in the quasar broad-line region. We have assembled Balmer-line based BH masses for a large sample of 230 high-luminosity (1045.5-1048 ergs-1), redshift 1.5
Observational Requirements for High-Fidelity Reverberation Mapping
NASA Technical Reports Server (NTRS)
Horne, Keith; Peterson, Bradley M.; Collier, Stefan J.; Netzer, Hagai
2004-01-01
We present a series of simulations to demonstrate that high-fidelity velocity-delay maps of the emission-line regions in active galactic nuclei can be obtained from time-resolved spectrophotometric data sets like those that will arise from the proposed Kronos satellite. While previous reverberation-mapping experiments have established the size scale R of the broad emission-line regions from the mean time delay tau = R/c between the line and continuum variations and have provided strong evidence for supermassive black holes, the detailed structure and kinematics of the broad-line region remain ambiguous and poorly constrained. Here we outline the technical improvements that will be required to successfully map broad-line regions by reverberation techniques. For typical AGN continuum light curves, characterized by power-law power spectra P (f) is proportional to f(exp -alpha) with a = -1.5 +/- 0.5, our simulations show that a small UV/optical spectrometer like Kronos will clearly distinguish between currently viable alternative kinematic models. From spectra sampled at time intervals Delta t and sustained for a total duration T(sub dur), we can reconstruct high-fidelity velocity-delay maps with velocity resolution comparable to that of the spectra, and delay resolution Delta tau approx. 2 Delta t, provided T(sub dur) exceeds the broad-line region light crossing time by at least a factor of three. Even very complicated kinematical models, such as a Keplerian flow with superimposed spiral wave pattern, are resolved in maps from our simulated Kronos datasets. Reverberation mapping with Kronos data is therefore likely deliver the first clear maps of the geometry and kinematics in the broad emission-line regions 1-100 microarcseconds from supermassive black holes.
Powerful, Rotating Disk Winds from Stellar-mass Black Holes
NASA Astrophysics Data System (ADS)
Miller, J. M.; Fabian, A. C.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Raymond, J.; Reynolds, C. S.
2015-12-01
We present an analysis of ionized X-ray disk winds found in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe xxv line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe xxvi line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are rotating with the orbital velocity of the underlying disk, and provides a new means of estimating launching radii—crucial to understanding wind driving mechanisms. Some aspects of the wind velocities and radii correspond well to the broad-line region in active galactic nuclei (AGNs), suggesting a physical connection. We discuss these results in terms of prevalent models for disk wind production and disk accretion itself, and implications for massive black holes in AGNs.
Circumnuclear star formation in Mrk 42 mapped with Gemini Near-infrared Integral Field Spectrograph
NASA Astrophysics Data System (ADS)
Hennig, Moiré G.; Riffel, Rogemar A.; Dors, O. L.; Riffel, Rogerio; Storchi-Bergmann, Thaisa; Colina, Luis
2018-06-01
We present Gemini Near-infrared Integral Field Spectrograph (NIFS) observations of the inner 1.5 × 1.5 kpc2 of the narrow-line Seyfert 1 galaxy Mrk 42 at a spatial resolution of 60 pc and spectral resolution of 40 km s^{-1}. The emission-line flux and equivalent width maps clearly show a ring of circumnuclear star formation regions surrounding the nucleus with radius of ˜500 pc. The spectra of some of these regions show molecular absorption features which are probably of CN, TiO, or VO, indicating the presence of massive evolved stars in the thermally pulsing asymptotic giant branch phase. The gas kinematics of the ring is dominated by rotation in the plane of the galaxy, following the large-scale disc geometry, while at the nucleus an additional outflowing component is detected blueshifted by 300-500 km s^{-1}, relative to the systemic velocity of the galaxy. Based on the equivalent width of Br γ we find pieces of evidence of gradients in the age of H II regions along the ring of Mrk 42, favouring the pearls on a string scenario of star formation. The broad component of Pa β emission line presents a Full Width at Half Maximum of ˜1480 km s^{-1}, implying in a mass of ˜2.5 × 106 M⊙ for the central supermassive black hole. Based on emission-line ratios we conclude that besides the active galactic nucleus, Mrk 42 presents nuclear Starburst activity.
In-line interferometer for broadband near-field scanning optical spectroscopy.
Brauer, Jens; Zhan, Jinxin; Chimeh, Abbas; Korte, Anke; Lienau, Christoph; Gross, Petra
2017-06-26
We present and investigate a novel approach towards broad-bandwidth near-field scanning optical spectroscopy based on an in-line interferometer for homodyne mixing of the near field and a reference field. In scattering-type scanning near-field optical spectroscopy, the near-field signal is usually obscured by a large amount of unwanted background scattering from the probe shaft and the sample. Here we increase the light reflected from the sample by a semi-transparent gold layer and use it as a broad-bandwidth, phase-stable reference field to amplify the near-field signal in the visible and near-infrared spectral range. We experimentally demonstrate that this efficiently suppresses the unwanted background signal in monochromatic near-field measurements. For rapid acquisition of complete broad-bandwidth spectra we employ a monochromator and a fast line camera. Using this fast acquisition of spectra and the in-line interferometer we demonstrate the measurement of pure near-field spectra. The experimental observations are quantitatively explained by analytical expressions for the measured optical signals, based on Fourier decomposition of background and near field. The theoretical model and in-line interferometer together form an important step towards broad-bandwidth near-field scanning optical spectroscopy.
Reddening and He i{sup ∗} λ 10830 Absorption Lines in Three Narrow-line Seyfert 1 Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shaohua; Zhou, Hongyan; Shi, Xiheng
We report the detection of heavy reddening and the He i* λ 10830 absorption lines at the active galactic nucleus (AGN) redshift in three narrow-line Seyfert 1 galaxies: SDSS J091848.61+211717.0, SDSS J111354.66+124439.0, and SDSS J122749.13+321458.9. They exhibit very red optical to near-infrared colors, narrow Balmer/Paschen broad emission lines and He i* λ 10830 absorption lines. The ultraviolet-optical-infrared nucleus continua are reddened by the SMC extinction law of E ( B − V ) ∼ 0.74, 1.17, and 1.24 mag for three objects, which are highly consistent with the values obtained from the broad-line Balmer decrements, but larger than those ofmore » narrow emission lines. The reddening analysis suggests that the extinction dust simultaneously obscures the accretion disk, the broad emission-line region, and the hot dust from the inner edge of the torus. It is possible that the dust obscuring the AGN structures is the dusty torus itself. Furthermore, the Cloudy analysis of the He i* λ 10830 absorption lines proposes the distance of the absorption materials to be the extend scale of the torus, which greatly increases probabilities of the obscure and absorption materials being the dusty torus.« less
The high-energy view of the broad-line radio galaxy 3C 111
NASA Astrophysics Data System (ADS)
Ballo, L.; Braito, V.; Reeves, J. N.; Sambruna, R. M.; Tombesi, F.
2011-12-01
We present the analysis of Suzaku and XMM-Newton observations of the broad-line radio galaxy (BLRG) 3C 111. Its high-energy emission shows variability, a harder continuum with respect to the radio-quiet active galactic nucleus population, and weak reflection features. Suzaku found the source in a minimum flux level; a comparison with the XMM-Newton data implies an increase of a factor of 2.5 in the 0.5-10 keV flux, in the 6 months separating the two observations. The iron K complex is detected in both data sets, with rather low equivalent width(s). The intensity of the iron K complex does not respond to the change in continuum flux. An ultrafast, high-ionization outflowing gas is clearly detected in the Suzaku/X-ray Imaging Spectrometer data; the absorber is most likely unstable. Indeed, during the XMM-Newton observation, which was 6 months after, the absorber was not detected. No clear rollover in the hard X-ray emission is detected, probably due to the emergence of the jet as a dominant component in the hard X-ray band, as suggested by the detection above ˜100 keV with the GSO onboard Suzaku, although the present data do not allow us to firmly constrain the relative contribution of the different components. The fluxes observed by the γ-ray satellites CGRO and Fermi would be compatible with the putative jet component if peaking at energies E˜ 100 MeV. In the X-ray band, the jet contribution to the continuum starts to be significant only above 10 keV. If the detection of the jet component in 3C 111 is confirmed, then its relative importance in the X-ray energy band could explain the different observed properties in the high-energy emission of BLRGs, which are otherwise similar in their other multiwavelength properties. Comparison between X-ray and γ-ray data taken at different epochs suggests that the strong variability observed for 3C 111 is probably driven by a change in the primary continuum.
The spectroscopic orbits and the geometrical configuration of the symbiotic binary AR Pavonis
NASA Astrophysics Data System (ADS)
Quiroga, C.; Mikołajewska, J.; Brandi, E.; Ferrer, O.; García, L.
2002-05-01
We analyze optical and near infrared spectra of intermediate and high resolution of the eclipsing symbiotic system AR Pavonis. We have obtained the radial velocity curves for the red and the hot component from the M-giant absorption lines and from the wings of Hα , Hβ and He II lambda 4686 emission profiles, respectively. From the orbital elements we have derived the masses, Mg=2.5 Msun and Mh=1.0 Msun, for the red giant and the hot component, respectively. We also present and discuss radial velocity patterns in the blue cF absorption spectrum as well as various emission lines. In particular, we confirm that the blue absorption lines are associated with the hot component. The radial velocity curve of the blue absorption system, however, does not track the hot companion's orbital motion in a straightforward way, and its departures from an expected circular orbit are particularly strong when the hot component is active. We suggest that the cF-type absorption system is formed in material streaming from the giant presumably in a region where the stream encounters an accretion disk or an extended envelope around the hot component. The broad emission wings originate from the inner accretion disk or the envelope around the hot star. We also suggest that the central absorption in H profiles is formed in a neutral portion of the cool giant's wind which is strongly concentrated towards the orbital plane. The nebula in AR Pav seems to be bounded by significant amount of neutral material in the orbital plane. The forbidden emission lines are probably formed in low density ionized regions extended in polar directions and/or the wind-wind interaction zone. Based on observations taken at Complejo Astronómico El Leoncito (CASLEO), operated under an agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, the Secretaría de Ciencia y Tecnología de la Nación and the National Universities of La Plata, Córdoba and San Juan.
Line Profile of H Lyman-Beta Emission from Dissociative Excitation of H2
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Ahmed, Syed M.; Liu, Xian-Ming
1996-01-01
A high-resolution ultraviolet spectrometer was employed for a measurement of the H Lyman-Beta(H L(sub Beta)) emission Doppler line profile at 1025.7 A from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak, less than 30 mA full width at half maximum (FWHM), and a broad pedestal base about 260 mA FWHM. Analysis of the red wing of the line profile is complicated by a group of Wemer and Lyman rotational lines 160-220 mA from the line center. Analysis of the blue wing of the line profile gives the kinetic-energy distribution. There are two main kinetic-energy components to the H(3p) distribution: (1) a slow distribution with a peak value near 0 eV from singly excited states, and (2) a fast distribution with a peak contribution near 7 eV from doubly excited states. Using two different techniques, the absolute cross section of H L(sub Beta)p is found to be 3.2+/-.8 x 10(exp -19)sq cm at 100-eV electron impact energy. The experimental cross-section and line-profile results can be compared to previous studies of H(alpha) (6563.7 A) for principal quantum number n=3 and L(sub alpha)(1215.7 A) for n=2.
Unveiling the nucleus of NGC 7172
NASA Astrophysics Data System (ADS)
Smajić, S.; Fischer, S.; Zuther, J.; Eckart, A.
2012-08-01
Aims: We present the results of near-infrared (NIR) H + K European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 7172. We investigate the central 800 pc, concentrating on excitation conditions, morphology, and stellar content. NGC 7172 was selected from a sample of the ten nearest Seyfert 2 galaxies from the Veron-Cetty & Veron catalogue. All objects were chosen as test cases for adaptive optics (AO) assisted observations that allow a detailed study (at high spatial and spectral resolution) of the nuclear and host environments. NGC 7172 has a prominent dustlane crossing the central galaxy region from east to west, which makes it an ideal candidate to investigate the effect of obscuration by strong galactic extinction on (active) galaxies and their classification. Methods: The NIR is less influenced by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy and provides us with the opportunity to analyze several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 4″ × 4″ field of view (FOV). Results: We present emission and absorption line measurements in the central 800 pc of NGC 7172. The detection of [Si vi] and broad Paα and Brγ components are clear signs of an accreting super-massive black hole hiding behind the prominent dustlane at visible wavelengths. Hot temperatures of about 1300 K are indicative of a dusty torus in the nuclear region. Narrow components of Paα and Brγ enable us to make an extinction measurement. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation of these lines is caused by an active galactic nucleus. The central region of the galactic disk is predominantly inhabited by gas, dust, and an old K-M type giant stellar population. The gaseous, molecular, and stellar velocity maps show a related disturbed disk structure and similar velocities. Conclusions: We find evidence of nuclear activity located behind the prominent dustlane crossing the central region of the galaxy. The nucleus of NGC 7172, which is optically classified as a Seyfert 2 nucleus without any trace of broad emission lines, is a Seyfert 1 nucleus either surrounded by a molecular dust torus or hidden behind the strong galactic extinction. Our observation provides support for the unified model scheme. However, an evolutionary scenario cannot be ruled out by our observation. Based on the ESO-VLT STS-Cologne GTO proposal ID: 083.B-0620(A).
NASA Astrophysics Data System (ADS)
Horne, Keith D.; Agn Storm Team
2015-01-01
Two-dimensional velocity-delay maps of AGN broad emission line regions can be recovered by modelling observations of reverberating emission-line profiles on the assumption that the line profile variations are driven by changes in ionising radiation from a compact source near the black hole. The observable light travel time delay resolves spatial structure on iso-delay paraboloids, while the doppler shift resolves kinematic structure along the observer's line-of-sight. Velocity-delay maps will be presented and briefly discussed for the Lyman alpha, CIV and Hbeta line profiles based on the HST and ground-based spectrophotometric monitoring of NGC 5548 during the 2014 AGN STORM campaign.
SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapovalova, A. I.; Burenkov, A. N.; Popovic, L. C.
2012-09-15
We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with amore » sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.« less
The near-infrared broad emission line region of active galactic nuclei - II. The 1-μm continuum
NASA Astrophysics Data System (ADS)
Landt, Hermine; Elvis, Martin; Ward, Martin J.; Bentz, Misty C.; Korista, Kirk T.; Karovska, Margarita
2011-06-01
We use quasi-simultaneous near-infrared (near-IR) and optical spectroscopy from four observing runs to study the continuum around 1 μm in 23 well-known broad emission line active galactic nuclei (AGN). We show that, after correcting the optical spectra for host galaxy light, the AGN continuum around this wavelength can be approximated by the sum of mainly two emission components, a hot dust blackbody and an accretion disc. The accretion disc spectrum appears to dominate the flux at ˜ 1 μm, which allows us to derive a relation for estimating AGN black hole masses based on the near-IR virial product. This result also means that a near-IR reverberation programme can determine the AGN state independent of simultaneous optical spectroscopy. On average we derive hot dust blackbody temperatures of ˜1400 K, a value close to the sublimation temperature of silicate dust grains, and relatively low hot dust covering factors of ˜7 per cent. Our preliminary variability studies indicate that in most sources, the hot dust emission responds to changes in the accretion disc flux with the expected time lag; however, a few sources show a behaviour that can be attributed to dust destruction.
An effective selection method for low-mass active black holes and first spectroscopic identification
NASA Astrophysics Data System (ADS)
Morokuma, Tomoki; Tominaga, Nozomu; Tanaka, Masaomi; Yasuda, Naoki; Furusawa, Hisanori; Taniguchi, Yuki; Kato, Takahiro; Jiang, Ji-an; Nagao, Tohru; Kuncarayakti, Hanindyo; Morokuma-Matsui, Kana; Ikeda, Hiroyuki; Blinnikov, Sergei; Nomoto, Ken'ichi; Kokubo, Mitsuru; Doi, Mamoru
2016-06-01
We present a new method for effectively selecting objects which may be low-mass active black holes (BHs) at galaxy centers using high-cadence optical imaging data, and our first spectroscopic identification of an active 2.7 × 106 M⊙ BH at z = 0.164. This active BH was originally selected due to its rapid optical variability, from a few hours to a day, based on Subaru Hyper Suprime-Cam g-band imaging data taken with a 1 hr cadence. Broad and narrow Hα lines and many other emission ones are detected in our optical spectra taken with Subaru FOCAS, and the BH mass is measured via the broad Hα emission line width (1880 km s-1) and luminosity (4.2 × 1040 erg s-1) after careful correction to the atmospheric absorption around 7580-7720 Å. We measure the Eddington ratio and find it to be as low as 0.05, considerably smaller than those in a previous SDSS sample with similar BH mass and redshift, which indicates one of the special potentials of our Subaru survey. The g - r color and morphology of the extended component indicate that the host galaxy is a star-forming galaxy. We also show the effectiveness of our variability selection for low-mass active BHs.
Spectral and timing properties of atoll source 4U 1705-44: LAXPC/AstroSat results
NASA Astrophysics Data System (ADS)
Agrawal, V. K.; Nandi, Anuj; Girish, V.; Ramadevi, M. C.
2018-07-01
In this paper, we present the first results of spectral and timing properties of the atoll source 4U 1705-44 using ˜100 ks data obtained with the Large Area X-ray Proportional Counter (LAXPC) onboard AstroSat. The source was in the high soft state during our observations and traced out a banana track in the hardness intensity diagram (HID). We study the evolution of the power density spectra (PDS) and the energy spectra along the HID. PDS show the presence of a broad Lorentzian feature (peaked noise or PN) centred at 1-13 Hz and very low-frequency noise (VLFN). The energy spectra can be described by the sum of a thermal Comptonized component, a power-law and a broad iron line. The hard tail seen in the energy spectra is variable and contributes 4-30 per cent of the total flux. The iron line seen in this source is broad (FWHM ˜ 2 keV) and strong (EW ˜ 369-512 eV). Relativistic smearing in the accretion disc cannot explain the origin of this feature on its own and another mechanism is required, such as broadening by the Comptonization process in the external part of the `Comptonized corona'. A subtle and systematic evolution of the spectral parameters (optical depth, electron temperature etc.) is seen as the source moves along the HID. We study the correlation between the frequency of the PN and the spectral parameters. The PN frequency seems to be correlated with the strength of the corona. We discuss the implication of these results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia; Halpern, Jules P.; Eracleous, Michael
2016-01-20
One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocitymore » can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.« less
NASA Technical Reports Server (NTRS)
Marinucci, A.; Matt, G.; Kara, E.; Miniutti, G.; Elvis, M.; Arevalo, P.; Ballantyne, D. R.; Balokovic, M.; Bauer, F.; Brenneman, L.;
2014-01-01
We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 kiloseconds performed during three XMM-Newton orbits. We detect a relativistic broadened iron K-alpha line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of a = 0.58 (sup +0.11) (sub -0.17). The intrinsic spectrum is steep (gamma = 2.08 plus or minus 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy (E (sub c) = 108 (sup +11) (sub -10) kiloelectronvolts) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10-20 radius of gyration. These timing results independently support an intermediate black hole spin and a compact corona.
Galaxy and Mass Assembly (GAMA): active galactic nuclei in pairs of galaxies
NASA Astrophysics Data System (ADS)
Gordon, Yjan A.; Owers, Matt S.; Pimbblet, Kevin A.; Croom, Scott M.; Alpaslan, Mehmet; Baldry, Ivan K.; Brough, Sarah; Brown, Michael J. I.; Cluver, Michelle E.; Conselice, Christopher J.; Davies, Luke J. M.; Holwerda, Benne W.; Hopkins, Andrew M.; Gunawardhana, Madusha L. P.; Loveday, Jonathan; Taylor, Edward N.; Wang, Lingyu
2017-03-01
There exist conflicting observations on whether or not the environment of broad- and narrow-line active galatic nuclei (AGN) differ and this consequently questions the validity of the AGN unification model. The high spectroscopic completeness of the Galaxy and Mass Assembly (GAMA) survey makes it ideal for a comprehensive analysis of the close environment of galaxies. To exploit this, and conduct a comparative analysis of the environment of broad- and narrow-line AGN within GAMA, we use a double-Gaussian emission line fitting method to model the more complex line profiles associated with broad-line AGN. We select 209 type 1 (I.e. unobscured), 464 type 1.5-1.9 (partially obscured), and 281 type 2 (obscured) AGN within the GAMA II data base. Comparing the fractions of these with neighbouring galaxies out to a pair separation of 350 kpc h-1 and Δz < 0.012 shows no difference between AGN of different type, except at separations less than 20 kpc h-1 where our observations suggest an excess of type 2 AGN in close pairs. We analyse the properties of the galaxies neighbouring our AGN and find no significant differences in colour or the star formation activity of these galaxies. Further to this, we find that Σ5 is also consistent between broad- and narrow-line AGN. We conclude that the observations presented here are consistent with AGN unification.
Complex X-ray Absorption and the Fe K(alpha) Profile in NGC 3516
NASA Technical Reports Server (NTRS)
Turner, T. J.; Kraemer, S. B.; George, I. M.; Reeves, J. N.; Botorff, M. C.
2004-01-01
We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and November. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of approximately 1100 kilometers per second, has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (approximately 2.5 x 10(exp 23) per square centimeter) of highly ionized gas with a covering fraction approximately 50%. This low covering fraction suggests that the absorber lies within a few 1t-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the November dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.
CORONAS-F observation of gamma-ray emission from the solar flare on 2003 October 29
NASA Astrophysics Data System (ADS)
Kurt, Victoria G.; Yushkov, Boris Yu.; Galkin, Vladimir I.; Kudela, Karel; Kashapova, Larisa K.
2017-10-01
Appreciable hard X-ray (HXR) and gamma-ray emissions in the 0.04-150 MeV energy range associated with the 2003 October 29 solar flare (X10/3B) were observed at 20:38-20:58 UT by the SONG instrument onboard the CORONAS-F mission. To restore flare gamma-ray spectra we fitted the SONG energy loss spectra with a three-component model of the incident spectrum: (1) a power law in energy, assumed to be due to electron bremsstrahlung; (2) a broad continuum produced by prompt nuclear de-excitation gamma-lines; and (3) a broad gamma-line generated from pion-decay. We also restored spectra from the RHESSI data, compared them with the SONG spectra and found a reasonable agreement between these spectra in the 0.1-10 MeV energy range. The pion-decay emission was observed from 20:44:20 UT and had its maximum at 20:48-20:51 UT. The power-law spectral index of accelerated protons estimated from the ratio between intensities of different components of gamma rays changed with time. The hardest spectrum with a power-law index S = -3.5 - 3.6 was observed at 20:48-20:51 UT. Time histories of the pion-decay emission and proton spectrum were compared with changes of the locations of flare energy release as shown by RHESSI hard X-ray images and remote and remote Hα brightenings. An apparent temporal correlation between processes of particle acceleration and restructuring of flare magnetic field was found. In particular, the protons were accelerated to subrelativistic energies after radical change of the character of footpoint motion from a converging motion to a separation motion.
The case for inflow of the broad-line region of active galactic nuclei
NASA Astrophysics Data System (ADS)
Gaskell, C. Martin; Goosmann, René W.
2016-02-01
The high-ionization lines of the broad-line region (BLR) of thermal active galactic nuclei (AGNs) show blueshifts of a few hundred km/s to several thousand km/sec with respect to the low-ionization lines. This has long been thought to be due to the high-ionization lines of the BLR arising in a wind of which the far side of the outflow is blocked from our view by the accretion disc. Evidence for and against the disc-wind model is discussed. The biggest problem for the model is that velocity-resolved reverberation mapping repeatedly fails to show the expected kinematic signature of outflow of the BLR. The disc-wind model also cannot readily reproduce the red side of the line profiles of high-ionization lines. The rapidly falling density in an outflow makes it difficult to obtain high equivalent widths. We point out a number of major problems with associating the BLR with the outflows producing broad absorption lines. An explanation which avoids all these problems and satisfies the constraints of both the line profiles and velocity-resolved reverberation-mapping is a model in which the blueshifting is due to scattering off material spiraling inwards with an inflow velocity of half the velocity of the blueshifting. We discuss how recent reverberation mapping results are consistent with the scattering-plus-inflow model but do not support a disc-wind model. We propose that the anti-correlation of the apparent redshifting of Hβ with the blueshifting of C iv is a consequence of contamination of the red wings of Hβ by the broad wings of [O iii].
The Expanding Bipolar Conic Shell of the Symbiotic Star AG Peg
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Hyung, Siek
2018-06-01
Symbiotic stars are the most interesting since some systems are believed to host the most massive white dwarf, like SN Ia progenitors. Most recently, Lee and Hyung (2018, LH18) proposed a bipolar conic shell structure for the observed high expansion Hα and Hβ line profiles and other double peak lines observed in 1998 September (phase φ = 10.24): the physical conditions for the white dwarf luminosity and the ionized HII zone, responsible for double Gaussian optical lines including Balmer and Lyman line fluxes, were taken from the P-I model with gas density, nH = 109.85 cm-3 , while the column density for the scattering neutral zone was derived from the broader line components based on the result by Monte Carlo simulations. In this investigation, we examined whether the expanding shells of the bipolar conical geometry as proposed by LH18 would be able to form the other Hα and Hβ line profiles observed in other phases, φ = 11.56 and 11.98 (in 2001 August and 2002 August). We look into the kinematical property of the bipolar conic shell structure responsible for the HII and HI zones and then we discuss the secular variation of the broad line feature and the origin of the bipolar cone, i.e., part of a common envelope formed through the mass inflows from the giant star.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corsi, Alessandra; Gal-Yam, A.; Kulkarni, S. R.
Long duration γ-ray bursts are a rare subclass of stripped-envelope core-collapse supernovae (SNe) that launch collimated relativistic outflows (jets). All γ-ray-burst-associated SNe are spectroscopically Type Ic, with broad-lines, but the fraction of broad-lined SNe Ic harboring low-luminosity γ-ray bursts remains largely unconstrained. Some SNe should be accompanied by off-axis γ-ray burst jets that initially remain invisible, but then emerge as strong radio sources (as the jets decelerate). However, this critical prediction of the jet model for γ-ray bursts has yet to be verified observationally. Here, we present K. G. Jansky Very Large Array observations of 15 broad-lined SNe of Type Ic discovered by the Palomar Transient Factory in an untargeted manner. Most of the SNe in our sample exclude radio emission observationally similar to that of the radio-loud, relativistic SN 1998bw. We constrain the fraction of 1998bw-like broad-lined SNe Ic to bemore » $$\\lesssim 41 \\% $$ (99.865% confidence). Most of the events in our sample also exclude off-axis jets similar to GRB 031203 and GRB 030329, but we cannot rule out off-axis γ-ray bursts expanding in a low-density wind environment. Three SNe in our sample are detected in the radio. PTF11qcj and PTF14dby show late-time radio emission with average ejecta speeds of ≈0.3–0.4 c, on the dividing line between relativistic and "ordinary" SNe. The speed of PTF11cmh radio ejecta is poorly constrained. We estimate that $$\\lesssim 85 \\% $$ (99.865% confidence) of the broad-lined SNe Ic in our sample may harbor off-axis γ-ray bursts expanding in media with densities in the range probed by this study.« less
Understanding AGNs in the Local Universe through Optical Reverberation Mapping
NASA Astrophysics Data System (ADS)
Pei, Liuyi
2016-01-01
I present the results of observational projects aimed at measuring the mass of the black hole at the center of active galactic nuclei (AGNs) and understanding the structure and kinematics of the broad-line emitting gas within the black hole's sphere of influence.The first project aims to measure the black hole mass in the Kepler-field AGN KA1858. We obtained simultaneous spectroscopic data from the Lick Observatory 3-m telescope using the Kast Double Spectrograph and photometry data from five ground-based telescopes, and used reverberation mapping (RM) techniques to measure the emission-line light curves' lags relative to continuum variations. We obtained lags for H-beta, H-gamma, H-delta, and He II, and obtained the first black hole mass measurement for this object. Our results will serve as a reference point for future studies on relations between black hole mass and continuum variability characteristics using Kepler AGN light curves.The second project, in collaboration with the AGN STORM team, aims to understand the structure and dynamics of the broad line region (BLR) in NGC 5548 in both UV and optical wavelengths. To supplement 6 months of HST UV observations, we obtained simultaneous optical spectroscopic data from six ground-based observatories. We obtained emission-line lags for the optical H-beta and He II lines as well as velocity-resolved lag measurements for H-beta. We also compared the velocity-resolved lags for H-beta to the UV emission lines C IV and Ly-alpha and found similar lag profiles for all three lines.Finally, I will discuss my contributions to two other collaborations in AGN RM. A key component in RM is monitoring continuum variability, which is often done through ground-based photometry. I will present a pipeline that performs aperture photometry on any number of images of an AGN with WCS coordinates and immediately produces relative light curves. This pipeline enables quick looks of AGN variability in real time and has been used in the LAMP 2011 and the LCOGT Key Project collaborations. It is also applicable to large archival datasets in preparation for survey campaigns in the near future.
VizieR Online Data Catalog: MALT-45, a 7mm survey of the southern Galaxy (Jordan+, 2015)
NASA Astrophysics Data System (ADS)
Jordan, C. H.; Walsh, A. J.; Lowe, V.; Voronkov, M. A.; Ellingsen, S. P.; Breen, S. L.; Purcell, C. R.; Barnes, P. J.; Burton, M. G.; Cunningham, M. R.; Hill, T.; Jackson, J. M.; Longmore, S. N.; Peretto, N.; Urquhart, J. S.
2018-03-01
MALT-45 is an untargeted Galactic plane survey for spectral lines which are commonly bright in star-forming regions at 45GHz (7mm waveband). We have so far observed 5 square degrees within the region bounded by 330°<=l<=335°, b=+/-0.5°. MALT-45 observations were conducted on the Australia Telescope Compact Array (ATCA), which provides 2x2048MHz broad-band continuum windows for observing. Section 1.1 discusses the primary lines surveyed, and their rest frequencies dictate the positions of the broad-band windows for MALT-45. Within the frequency ranges of the broad-band windows, we survey for 12 spectral lines. (2 data files).
NASA Technical Reports Server (NTRS)
Hanke, Manfred; Wilms, Jorn; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert S.; Lee, Julia C.
2008-01-01
We present analyses of a 50 ks observation of the supergiant X-ray binary system CygnusX-1/HDE226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). CygX-1 was in its spectrally hard state and the observation was performed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for CygX-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe K line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect two plasma components with velocities and densities consistent with the base of the spherical wind and a focused wind. A simple simulation of the photoionization zone suggests that large parts of the spherical wind outside of the focused stream are completely ionized, which is consistent with the low velocities (<200 km/s) observed in the absorption lines, as the position of absorbers in a spherical wind at low projected velocity is well constrained. Our observations provide input for models that couple the wind activity of HDE 226868 to the properties of the accretion flow onto the black hole.
SALT long-slit spectroscopy of LBQS 2113-4538: variability of the Mg II and Fe II component
NASA Astrophysics Data System (ADS)
Hryniewicz, K.; Czerny, B.; Pych, W.; Udalski, A.; Krupa, M.; Świȩtoń, A.; Kaluzny, J.
2014-02-01
Context. The Mg II line is of extreme importance in intermediate redshift quasars since it allows us to measure the black hole mass in these sources and to use these sources as probes of the distribution of dark energy in the Universe, as a complementary tool to SN Ia. Aims: Reliable use of Mg II requires a good understanding of all the systematic effects involved in the measurement of the line properties, including the contamination by Fe II UV emission. Methods: We performed three spectroscopic observations of a quasar LBQS 2113-4538 (z = 0.956) with the SALT telescope, separated in time by several months and we analyze in detail the mean spectrum and the variability in the spectral shape. Results: We show that even in our good-quality spectra the Mg II doublet is well fit by a single Lorentzian shape. We tested several models of the Fe II pseudo-continuum and showed that one of them well represents all the data. The amplitudes of both components vary in time, but the shapes do not change significantly. The measured line width of LBQS 2113-4538 identifies this object as a class A quasar. The upper limit of 3% for the contribution of the narrow line region (NLR) to Mg II may suggest that the separation of the broad line region and NLR disappears in this class of objects. Based on observations made with the Southern African Large Telescope (SALT) under program 2012-1-POL-008 (PI: Czerny).Fe II template shown in Fig. 8 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A34
Disc origin of broad optical emission lines of the TDE candidate PTF09djl
NASA Astrophysics Data System (ADS)
Liu, F. K.; Zhou, Z. Q.; Cao, R.; Ho, L. C.; Komossa, S.
2017-11-01
An otherwise dormant supermassive black hole (SMBH) in a galactic nucleus flares up when it tidally disrupts a star passing by. Most of the tidal disruption events (TDEs) and candidates discovered in the optical/UV have broad optical emission lines with complex and diverse profiles of puzzling origin. In this Letter, we show that the double-peaked broad H α line of the TDE candidate PTF09djl can be well modelled with a relativistic elliptical accretion disc and the peculiar substructures with one peak at the line rest wavelength and the other redshifted to about 3.5 × 104 km s-1 are mainly due to the orbital motion of the emitting matter within the disc plane of large inclination 88° and pericentre orientation nearly vertical to the observer. The accretion disc has an extreme eccentricity 0.966 and semimajor axis of 340 BH Schwarzschild radii. The viewing angle effects of large disc inclination lead to significant attenuation of He emission lines originally produced at large electron scattering optical depth and to the absence/weakness of He emission lines in the spectra of PTF09djl. Our results suggest that the diversities of line intensity ratios among the line species in optical TDEs are probably due to the differences of disc inclinations.
A new study of the interacting binary star V356 Sgr
NASA Technical Reports Server (NTRS)
Polidan, R. S.
1988-01-01
Results on V356 Sgr from IUE and Voyager ultraviolet (500 to 3200 A) observations obtained in 1986 and 1987, primarily during 2 total eclipses are presented. The eclipse of Aug. 15, 1986 was fully covered with IUE low dispersion images and 9 hr of Voyager UVS data. The eclipse of Mar. 25, 1987 was covered with IUE low dispersion images and 1 high dispersion SWP image. During both eclipses the total strength of the emission lines is found to be invariant. An uneclipsed UV continuum is detected at wavelengths shorter than 1500 A. The high dispersion SWP spectrum reveals that the emission lines are extremely broad, almost symmetrical emissions with weak, slightly blue shifted absorption components. No evidence of carbon, C I, C II, C III, or C IV, is seen in the emission or absorption spectrum of V356 Sgr in eclipse. Models for this binary system are presented.
Stellar wind variations in HD 45166: The continuing story. [Wolf-Rayet star
NASA Technical Reports Server (NTRS)
Willis, Allan J.; Stickland, David J.; Heap, Sara R.
1988-01-01
High resolution SWP IUE spectra of HD 45166 (qWR+B8V) obtained over a 36 hr continuous run, together with earlier observations, reveal 2 distinct modes of UV variability in this object. Gross, epoch-linked changes are seen in the strengths of the qWR emission lines, accompanied by large changes in its highly ionized photospheric absorption spectrum. Rapid (hours) variability in strong, multiple, high velocity, wind discrete absorption components (DAC), in the CIV lambda 1550 resonance lines, which superpose to give the appearance of a broad P Cygni absorption profile at many epochs is also observed. These multiple DAC's (often at least 3 are seen) propagate in velocity, from 0.6 to 1.0 v inf, on a timescale of 1 day, implying an acceleration of 180 cm/s comparable to that seen in O-type stars.
EMI survey for maritime satellite, L-band, shipboard terminal
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Brandel, D. L.; Hill, J. S.
1975-01-01
The paper presents results of an onboard EMI survey of an L-band shipboard terminal for operation with two geostationary maritime satellites. Significant EMC results include: (1) antenna noise temperature measurements indicate a maximum of 70 K steady background component at 1.6 GHz at sea for elevation angles of 5 degrees and higher; (2) field intensity measurements from 1-10 GHz show that a L-band terminal can operate simultaneously with onboard S-band and X-band navigation radar; (3) radar transmitter case emissions, below deck, in-band from 1535-1660 MHz, at 1 m distance from the cabinet, are equivalent, or greater than above-deck emissions in the same frequency range; and (4) conducted-emission tests of a ship's power lines to both radars show both narrow band and broad band emissions are 15 dB to 50 dB higher than equivalent U.S. commercial power lines from 150 kHz to 32 MHz.
Physical conditions in broad and associated narrow absorption-line systems toward APM 08279+5255
NASA Astrophysics Data System (ADS)
Srianand, R.; Petitjean, P.
2000-05-01
Results of a careful analysis of the absorption systems with z_abs =~ z_em seen toward the bright, z_em ~ 3.91, gravitationally lensed quasar APM 08279+5255 are presented. Two of the narrow-line systems, at z_abs = 3.8931 and z_abs = 3.9135, show absorptions from singly ionized species with weak or no N v and O vi absorptions at the same redshift. Absorption due to fine structure transitions of C ii and S ii i (excitation energies corresponding to, respectively, 156mu m and 34mu m) are detected at z_abs = 3.8931. Excitation by IR radiation is favored as the column density ratios are consistent with the shape of APM 08279+5255 IR spectrum. The low-ionization state of the system favors a picture where the cloud is closer to the IR source than to the UV source, supporting the idea that the extension of the IR source is larger than ~ 200 pc. The absence of fine structure lines at z_abs = 3.9135 suggests that the gas responsible for this system is farther away from the IR source. Abundances are ~ 0.01 and 1 Zsun at z_abs = 3.913 and 3.8931 and aluminum could be over-abundant with respect to silicon and carbon by at least a factor of two and five. All this suggests that whereas the z_abs = 3.8931 system is probably located within 200 pc from the QSO and ejected at a velocity larger than 1000 km s-1, the z_abs = 3.9135 system is farther away and part of the host-galaxy. Several narrow-line systems have strong absorption lines due to C iv, O vi and N v and very low neutral hydrogen optical depths. This probably implies metallicities Z>= Z_sun although firm conclusion cannot be drawn as the exact value depends strongly on the shape of the ionizing spectrum. The C iv broad absorption has a complex structure with mini-BALs (width <= 1000 km s-1) and narrow components superposed on a continuous absorption of smaller optical depth. The continuous absorption is much stronger in O vi indicating that the corresponding gas-component is of higher ionization than the other components in the flow and that absorption structures in the BAL-flow are mainly due to density inhomogeneities. There is a tendency for mini-BALs to have different covering factors for different species. It is shown that a few of the absorbing clouds do not cover all the three QSO images, especially we conclude that the z_abs = 3.712 system covers only image C. Finally we identify narrow components within the BAL-flow with velocity separations within 5 km s-1 of the O vi, N v and S ii v doublet splittings suggesting that line driven radiative acceleration is an important process to explain the out-flow. Based on observations collected at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
Composition of interstellar clouds in the disk and halo. 2: Gamma(sup 2) Velorum
NASA Technical Reports Server (NTRS)
Fitzpatrick, Edward L.; Spitzer, Lyman, Jr.
1994-01-01
High-resolution observations of gamma(sup 2) Vel with the Goddard High-Resolution Spectrograph (GHRS) echelle on the Hubble Space Telescope reveal the presence of seven narrow absorption components, with LSR velocities between -23 and +9 km s(exp -1). Three of these show column density ratios N(S(++))/N(S(+)) and N(P(++))/N(P+)) of about 1 or more, and can be identified as H II regions, while the other four are H I regions, consistent with the O I profile and with the overall H(sup 0) column density of 5.9 x 10(exp 19) cm(exp -2), given the usual assumptions that S is undepleted while O has a depletion D(O) = -0.3 dex. The depletions of Fe, Si, and Mn, which could be measure accurately for two of the four H I regions (components 6 and 7), differ somewhat from the values of D(sub ws) found for slowly moving warm clouds in HD 93521; in particular, for the component at 4.0 km s(exp -1) (No. 6), abosolute of D exceeds absolute of D(sub ws) by 0.1-0.4 dex, while for that at 9.3 km s(exp -1) (No. 7), absolute of D equals absolute of D(sub ws) on the average. The observed ratio of Fe + Mg atoms to Si atoms in the grains of component 6 is 2.04 +/-0.10, consistent with an olivine grain composition; the Fe/Mg ratio is 1.5 +/- 0.2. The electron density in component 6, determined from the C II(sup *) feature, is 0.075 +/- 0.013 cm (exp -3), about two-thirds of that found for clouds of this velocity in HD 93521. In the two conspicuous H II regions, components 3 and 4, n(sub e), determined from the Si II(sup *) feature, is about 1 cm(exp -3). From the column density of S(+) + S(++) in these two components, the total H II path length is about 40 pc. With the radius of a wind-blown bubble around gamma(sup 2) Vel set equal to 60 pc, the effective Stromgren radius is about 100 pc, requiring that T approx. equal to 50,000 K for the Wolf-Rayet component of the gamma(sup 2) Vel binary. Since zeta Pup is a comparable source of ionizing radiation, this temperature is an upper limit. The profiles of the strongest H2 absorption features, from Copernicus archives, indicate that the absorbing molecules have a mean velocity identical with that of the strongest H II component (No. 4). We have no explanation for the possible presence of these H2 molecules in a region of ionized H. Alternatively, the H2 profiles can be explained by molecules in the two adjacent (in velocity) H I regions, components 2 and 5, provided their H I gas has densities and temperatures typical of normal cold clouds. The GHRS data show absorption by highly ionized atoms Si(3+) and C(3+), N(4+) in broad features, in addition to the narrow-line absorption by Si(3+) and C(3+) observed in the dominant H II components, Nos. 3 and 4. The broad C(3+) and N(4+) features have widths corresponding to T in the range (4-8) x 10(exp 5) K, consistent with the broad O(5+) line shown in Copernicus data. Despite some observational uncertainties, the ratios of column densities in the broad C(3+), N(4+), and O(5+) features agree to +/- 0.1 dex with theoretical values for warm gas, heating and evaporating by thermal conduction from an adjacent hot region. Outward evaporation from an isolated cloud in a hot ambient gas cannot be distinguished, on the basis of these data, from inward evaporation of a warm shell, compressed by an expanding, hot stellar-wind bubble. For several halo stars, the C IV/O VI ratio has a quite different average value, perhaps consistent with cooling of infalling hot gas instead of conductive heating and evaporation.
A New Black Hole Mass Estimate for Obscured Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Minezaki, Takeo; Matsushita, Kyoko
2015-04-01
We propose a new method for estimating the mass of a supermassive black hole, applicable to obscured active galactic nuclei (AGNs). This method estimates the black hole mass using the width of the narrow core of the neutral FeKα emission line in X-rays and the distance of its emitting region from the black hole based on the isotropic luminosity indicator via the luminosity scaling relation. Assuming the virial relation between the locations and the velocity widths of the neutral FeKα line core and the broad Hβ emission line, the luminosity scaling relation of the neutral FeKα line core emitting region is estimated. We find that the velocity width of the neutral FeKα line core falls between that of the broad Balmer emission lines and the corresponding value at the dust reverberation radius for most of the target AGNs. The black hole mass {{M}BH,FeKα } estimated with this method is then compared with other black hole mass estimates, such as the broad emission-line reverberation mass {{M}BH,rev} for type 1 AGNs, the mass {{M}BH,{{H2}O}} based on the H2O maser, and the single-epoch mass estimate {{M}BH,pol} based on the polarized broad Balmer lines for type 2 AGNs. We find that {{M}BH,FeKα } is consistent with {{M}BH,rev} and {{M}BH,pol}, and find that {{M}BH,FeKα } correlates well with {{M}BH,{{H2}O}}. These results suggest that {{M}BH,FeKα } is a potential indicator of the black hole mass for obscured AGNs. In contrast, {{M}BH,FeKα } is systematically larger than {{M}BH,{{H2}O}} by about a factor of 5, and the possible origins are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Linhua; Shen, Yue; McGreer, Ian D.
2016-02-20
We present a reverberation mapping (RM) experiment that combines broad- and intermediate-band photometry; it is the first such attempt targeting 13 quasars at 0.2 < z < 0.9. The quasars were selected to have strong Hα or Hβ emission lines that are located in one of three intermediate bands (with FWHM around 200 Å) centered at 8045, 8505, and 9171 Å. The imaging observations were carried out in the intermediate bands and the broad i and z bands using the prime-focus imager 90Prime on the 2.3 m Bok telescope. Because of the large (∼1 deg{sup 2}) field of view (FOV) of 90Prime, we includedmore » the 13 quasars within only five telescope pointings or fields. The five fields were repeatedly observed over 20–30 epochs that were unevenly distributed over a duration of 5–6 months. The combination of the broad- and intermediate-band photometry allows us to derive accurate light curves for both optical continuum emission (from the accretion disk) and line emission (from the broad-line region, or BLR). We detect Hα time lags between the continuum and line emission in six quasars. These quasars are at relatively low redshifts 0.2 < z < 0.4. The measured lags are consistent with the current BLR size–luminosity relation for Hβ at z < 0.3. While this experiment appears successful in detecting lags of the bright Hα line, further investigation is required to see if it can also be applied to the fainter Hβ line for quasars at higher redshifts. Finally we demonstrate that, by using a small telescope with a large FOV, intermediate-band photometric RM can be efficiently executed for a large sample of quasars at z > 0.2.« less
A Falling Corona Model for the Anomalous Behavior of the Broad Emission Lines in NGC 5548
NASA Astrophysics Data System (ADS)
Sun, Mouyuan; Xue, Yongquan; Cai, Zhenyi; Guo, Hengxiao
2018-04-01
NGC 5548 has been intensively monitored by the AGN Space Telescope and Optical Reverberation Mapping collaboration. Approximately after half of the light curves, the correlation between the broad emission lines and the lag-corrected ultraviolet (UV) continua becomes weak. This anomalous behavior is accompanied by an increase of soft X-ray emission. We propose a simple model to understand this anomalous behavior, i.e., the corona might fall down, thereby increasing the covering fraction of the inner disk. Therefore, X-ray and extreme-UV emission suffer from spectral variations. The UV continua variations are driven by both X-ray and extreme-UV variations. Consequently, the spectral variability induced by the falling corona would dilute the correlation between the broad emission lines and the UV continua. Our model can explain many additional observational facts, including the dependence of the anomalous behavior on velocity and ionization energy. We also show that the time lag and correlation between the X-ray and the UV variations change as NGC 5548 displays the anomalous behavior. The time lag is dramatically longer than the expectation from disk reprocessing if the anomalous behavior is properly excluded. During the anomalous state, the time lag approaches the light-travel timescale of disk reprocessing albeit with a much weaker correlation. We speculate that the time lag in the normal state is caused by reprocessing of the broad line region gas. As NGC 5548 enters the abnormal state, the contribution of the broad line region gas is smaller; the time lag reflects disk reprocessing. We also discuss alternative scenarios.
The Surprising Absence of Absorption in the Far-ultraviolet Spectrum of Mrk 231
NASA Technical Reports Server (NTRS)
Veilleux, S.; Trippe, M.; Hamann, F.; Rupke, D. S. N.; Tripp, T. M.; Netzer, H.; Lutz, D.; Sembach, K. R.; Krug, H.; Teng, Stacy H.;
2013-01-01
Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering approx. 1150-1470A with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint (< or approx.2% of predictions based on H(alpha)), broad (> or approx.10,000 km/s at the base), and highly blueshifted (centroid at approx. 3500 km/s) Ly(aplpha) emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F(sub lambda) Alpha Lambda(sup 1.7)) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly(alpha) emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (Av approx. 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.
The X-ray spectra of the black hole candidate 4U 1630-47 during its 2012 outburst
NASA Astrophysics Data System (ADS)
Wang, Y.; Mendez, M.
2015-07-01
Diaz Trigo et al. (2013) reported the detection of three Doppler-shifted emission lines arising from baryonic matter in the jet of 4U 1630-47 during its 2012 outburst. Here we propose an alternative model that, without the need of the lines from the jet, and with less free parameters, fits the same data equally well. In our model we allow the abundances of S and Fe in the interstellar medium to vary; the best-fitting values are, respectively, 1.5 and 0.5 times solar, consistent with recent findings. Our model also includes a moderately broad emission line and a narrow absorption line due to highly ionised Fe. (These lines are also present in the other observations of this source during the 2012 outburst.) This model fits well all the XMM-Newton observations of this source, both in burst and timing mode. In addition to the components that we fitted to the burst-mode data, the timing-mode observations show several absorption features due to ionised Fe and Ni, which reveal the presence of a highly-ionised absorber close to the source. Our model also fits well the burst-mode data using the most recent calibration files (March 2015), whereas the model from Diaz Trigo et al. does not.
Mean and extreme radio properties of quasars and the origin of radio emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kratzer, Rachael M.; Richards, Gordon T.
2015-02-01
We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio loudness of quasars. We consider how these properties evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission-line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high redshift, we find that both the RLF and the mean radio luminosity increasemore » for increasing BH mass and decreasing accretion rate. Similarly, both the RLF and mean radio loudness increase for quasars that are argued to have weaker radiation line driven wind components of the broad emission-line region. In agreement with past work, we find that the RLF increases with increasing optical/UV luminosity and decreasing redshift, while the mean radio loudness evolves in the exact opposite manner. This difference in behavior between the mean radio loudness and the RLF in L−z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences, but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.« less
Broad Redshifted Line as a Signature of Outflow
NASA Astrophysics Data System (ADS)
Titarchuk, Lev; Kazanas, Demos; Becker, Peter A.
2003-11-01
We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c is the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.
Broad Red-Shifted Lines as a Signature of Outflow
NASA Astrophysics Data System (ADS)
Kazanas, Demosthenes; Titarchuk, Lev; Becker, Peter A.
2004-07-01
We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.
Broad Red-Shifted Lines as a Signature of Outflows
NASA Astrophysics Data System (ADS)
Titarchuck, Lev; Kazanas, Demos; Becker, Peter A.
2006-02-01
We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in υ/c, where υ the outflow velocity and c is the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.
Polarization of the changing-look quasar J1011+5442
NASA Astrophysics Data System (ADS)
Hutsemékers, D.; Agís González, B.; Sluse, D.; Ramos Almeida, C.; Acosta Pulido, J.-A.
2017-07-01
If the disappearance of the broad emission lines observed in changing-look quasars were caused by the obscuration of the quasar core through moving dust clouds in the torus, high linear polarization typical of type 2 quasars would be expected. We measured the polarization of the changing-look quasar J1011+5442 in which the broad emission lines have disappeared between 2003 and 2015. We found a polarization degree compatible with null polarization. This measurement suggests that the observed change of look is not due to a change of obscuration hiding the continuum source and the broad line region, and that the quasar is seen close to the system axis. Our results thus support the idea that the vanishing of the broad emission lines in J1011+5442 is due to an intrinsic dimming of the ionizing continuum source that is most likely caused by a rapid decrease in the rate of accretion onto the supermassive black hole. Based on observations made with the William Herschel telescope operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
Echo Mapping of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Horne, K.
2004-01-01
Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.
NASA Astrophysics Data System (ADS)
Kriss, G.; Storm Team
2015-07-01
The Space Telescope and Optical Reverberation Mapping (STORM) project monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, obtaining 171 far-ultraviolet HST/COS spectra at approximately daily intervals. We find significant correlated variability in the continuum and broad emission lines, with amplitudes ranging from a factor of two in the emission lines to a factor of three in the continuum. The variations of all the strong emission lines lag behind those of the continuum, with He II lagging by ˜ 2.5 days and Ly&alpha,; C IV, and Si IV lagging by 5 to 6 days. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow absorption lines associated with the historical warm absorber varied in response to the changing UV flux on a daily basis with lags of 3 to 8 days. The ionization response allows precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.
Narrow vs. Broad line Seyfert 1 galaxies: X-ray, optical and mid-infrared AGN characteristics
NASA Astrophysics Data System (ADS)
Lakićević, Maša; Popović, Luka Č.; Kovačević-Dojčinović, Jelena
2018-05-01
We investigated narrow line Seyfert 1 galaxies (NLS1s) at optical, mid-infrared (MIR) and X-ray wavelengths, comparing them to the broad line active galactic nuclei (BLAGNs). We found that black hole mass, coronal line luminosities, X-ray hardness ratio and X-ray, optical and MIR luminosities are higher for the BLAGNs than for NLS1s, while policyclic aromatic hydrocarbon (PAH) contribution and the accretion rates are higher for the NLS1s. Furthermore, we found some trends among spectral parameters that NLS1s have and BLAGNs do not have. The evolution of FWHM(Hβ) with the luminosities of MIR and coronal lines, continuum luminosities, PAH contribution, Hβ broad line luminosity, FWHM[O III] and EW(HβNLR), are important trends found for NLS1s. That may contribute to the insight that NLS1s are developing AGNs, growing their black holes, while their luminosities and FWHM(Hβ) consequently grow, and that BLAGNs are mature, larger objects of slower and/or different evolution. Black hole mass is related to PAH contribution only for NLS1s, which may suggest that PAHs are more efficiently destroyed in NLS1s.
NASA Astrophysics Data System (ADS)
Panigrahi, Suraj Kumar; Mishra, Ashok Kumar
2017-09-01
A combination of broad-band UV radiation (UV A and UV B; 250-400 nm) and a stretched exponential function (StrEF) has been utilised in efforts towards convenient and sensitive detection of fluorescent dissolved organic matter (FDOM). This approach enables accessing the gross fluorescence spectral signature of both protein-like and humic-like components in a single measurement. Commercial FDOM components are excited with the broad-band UV excitation; the variation of spectral profile as a function of varying component ratio is analysed. The underlying fluorescence dynamics and non-linear quenching of amino acid moieties are studied with the StrEF (exp(-V[Q] β )). The complex quenching pattern reflects the inner filter effect (IFE) as well as inter-component interactions. The inter-component interactions are essentially captured through the ‘sphere of action’ and ‘dark complex’ models. The broad-band UV excitation ascertains increased excitation energy, resulting in increased population density in the excited state and thereby resulting in enhanced sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walborn, N.R.
The blue-shifted absorption component of the P-Cygni profile at He I lambda 5876 in HD 152408 (O8: Iafpe) has been found to be extremely broad, extending -1000 km sec$sup -1$ from the emission maximum. This unusual profile is probably due to overpopulation of the lower level of lambda 5876, which permits it to form throughout a greater extent of the expanding atmosphere than most other lines. This observation confirms Hutchings' identification of very large velocities in the blue-violet spectrum of HD 152408, and in particular his interpretation of a similar feature at He I lambda 3889, which is metastable. Themore » lambda 5876 profile in HD 152408 is compared to those in the similar but less extreme P-Cygni star HD 151804 (O8 Iaf), and in the Wolf-Rayet star HD 151932 (WN7-A). The similarity between the absorption components in HD 152408 and the WN star is striking. (auth)« less
Coupling of jet and accretion activity in the active galaxy NGC 1052
NASA Astrophysics Data System (ADS)
Boeck, Moritz; Kadler, Matthias; Ros, Eduardo; Weaver, Kimberly; Wilms, Joern; Brenneman, Laura; Angelakis, Emmanouil
The radio loud galaxy NGC 1052 has been monitored for the past fifteen years with Very Long Baseline Interferometry (VLBI) observations and has been the target of an intense multiwave-length monitoring campaign since 2005. This provides an excellent dataset for analyzing the relationship between properties of the relativistic jet and the accretion disk in active galactic nuclei. Components in the jet are tracked and the ejection times of new components are deter-mined. The analysis of the radio variability is complemented by the study of X-ray observations allowing us to draw conclusions on the accretion activity. The X-ray variability on weekly and monthly time scales is monitored with the Rossi X-ray Timing Explorer, whereas deep XMM-Newton and Suzaku observations provide spectra showing a broad Fe Kα line, whose variability can provide a particularly valuable probe of the inner accretion flow.
Structure and kinematics of the broad-line regions in active galaxies from IUE variability data
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha P.; Gaskell, C. Martin
1991-01-01
IUE archival data are used here to investigate the structure nad kinematics of the broad-line regions (BLRs) in nine AGN. It is found that the centroid of the line-continuum cross-correlation functions (CCFs) can be determined with reasonable reliability. The errors in BLR size estimates from CCFs for irregularly sampled light curves are fairly well understood. BLRs are found to have small luminosity-weighted radii, and lines of high ionization tend to be emitted closer to the central source than lines of low ionization, especially for low-luminosity objects. The motion of the gas is gravity-dominated with both pure inflow and pure outflow of high-velocity gas being excluded at a high confidence level for certain geometries.
The broad-band x ray spectral variability of Mkn 841
NASA Technical Reports Server (NTRS)
George, I. M.; Nandra, K.; Fabian, A. C.; Turner, T. J.; Done, C.; Day, C. S. R.
1992-01-01
The results of a detailed spectral analysis of four X-ray observations of the luminous Seyfert 1.5 galaxy Mkn 841 performed using the EXOSAT and Ginga satellites over the period June 1984 to July 1990 are reported. Preliminary results from a short ROSAT PSPC observation of Mkn 841 in July 1990 are also presented. Variability is apparent in both the soft (0.1-1.0 keV) and medium (1-20 keV) energy bands. Above 1 keV, the spectra are adequately modelled by a power-law with a strong emission line of equivalent width approximately 450 eV. The energy of the line (approximately 6.4 keV) is indicative of K-shell fluorescence from neutral iron, leading to the interpretation that the line arises via X-ray illumination of cold material surrounding the source. In addition to the flux variability, the continuum shape also changes in a dramatic fashion, with variations in the apparent photon index Delta(Gamma) approximately 0.6. The large equivalent width of the emission line clearly indicates a strongly enhanced reflection component in the source, compared to other Seyferts observed with Ginga. The spectral changes are interpreted in terms of a variable power-law continuum superimposed on a flatter reflection component. For one Ginga observation, the reflected flux appears to dominate the medium energy X-ray emission, resulting in an unusually flat slope (Gamma approximately 1.0). The soft X-ray excess is found to be highly variable by a factor approximately 10. These variations are not correlated with the hard flux, but it seems likely that the soft component arises via reprocessing of the hard X-rays. We find no evidence for intrinsic absorption, with the equivalent hydrogen column density constrained to be less than or equal to few x 10(exp 20) cm(exp -2). The implications of these results for physical models for the emission regions in this and other X-ray bright Seyferts are briefly discussed.
NASA Astrophysics Data System (ADS)
Braibant, L.; Hutsemékers, D.; Sluse, D.; Goosmann, R.
2017-11-01
Recent studies have shown that line profile distortions are commonly observed in gravitationally lensed quasar spectra. Often attributed to microlensing differential magnification, line profile distortions can provide information on the geometry and kinematics of the broad emission line region (BLR) in quasars. We investigate the effect of gravitational microlensing on quasar broad emission line profiles and their underlying continuum, combining the emission from simple representative BLR models with generic microlensing magnification maps. Specifically, we considered Keplerian disk, polar, and equatorial wind BLR models of various sizes. The effect of microlensing has been quantified with four observables: μBLR, the total magnification of the broad emission line; μcont, the magnification of the underlying continuum; as well as red/blue, RBI and wings/core, WCI, indices that characterize the line profile distortions. The simulations showed that distortions of line profiles, such as those recently observed in lensed quasars, can indeed be reproduced and attributed to the differential effect of microlensing on spatially separated regions of the BLR. While the magnification of the emission line μBLR sets an upper limit on the BLR size and, similarly, the magnification of the continuum μcont sets an upper limit on the size of the continuum source, the line profile distortions mainly depend on the BLR geometry and kinematics. We thus built (WCI,RBI) diagrams that can serve as diagnostic diagrams to discriminate between the various BLR models on the basis of quantitative measurements. It appears that a strong microlensing effect puts important constraints on the size of the BLR and on its distance to the high-magnification caustic. In that case, BLR models with different geometries and kinematics are more prone to produce distinctive line profile distortions for a limited number of caustic configurations, which facilitates their discrimination. When the microlensing effect is weak, there is a larger overlap between the characteristics of the line profile distortions produced by the different models, and constraints can only be derived on a statistical basis.
Evidence for a Broad Relativistic Iron Line from the Neutron Star LMXB Ser X-1
NASA Technical Reports Server (NTRS)
Bhattacharyya, Sudip; Strohmayer, Tod E.
2007-01-01
We report on an analysis of XMM-Newton data from the neutron star low mass X-ray binary (LMXB) Serpens X-1 (Ser X-1). Spectral analysis of EPIC PN data indicates that the previously known broad iron Ka emission line in this source has a significantly skewed structure with a moderately extended red wing. The asymmetric shape of the line is well described with the laor and diskline models in XSPEC, which strongly supports an inner accretion disk origin of the line. To our knowledge this is the first strong evidence for a relativistic line in a neutron star LMXB. This finding suggests that the broad lines seen in other neutron star LMXBs likely originate from the inner disk as well. Detailed study of such lines opens up a new way to probe neutron star parameters and their strong gravitational fields. The laor model describes the line from Ser X-1 somewhat better than diskline, and suggests that the inner accretion disk radius is less than 6GM/c(exp 2). This is consistent with the weak magnetic fields of LMXBs, and may point towards a high compactness and rapid spin of the neutron star. Finally, the inferred source inclination angle in the approximate range 50-60 deg is consistent with the lack of dipping from Ser X-1.
Constraints on the broad-line region properties and extinction in local Seyferts
NASA Astrophysics Data System (ADS)
Schnorr-Müller, Allan; Davies, R. I.; Korista, K. T.; Burtscher, L.; Rosario, D.; Storchi-Bergmann, T.; Contursi, A.; Genzel, R.; Graciá-Carpio, J.; Hicks, E. K. S.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Riffel, R.; Riffel, Rogemar A.; Schartmann, M.; Sternberg, A.; Sturm, E.; Tacconi, L.; Veilleux, S.; Ulrich, O. A.
2016-11-01
We use high-spectral resolution (R > 8000) data covering 3800-13 000 Å to study the physical conditions of the broad-line region (BLR) of nine nearby Seyfert 1 galaxies. Up to six broad H I lines are present in each spectrum. A comparison - for the first time using simultaneous optical to near-infrared observations - to photoionization calculations with our devised simple scheme yields the extinction to the BLR at the same time as determining the density and photon flux, and hence distance from the nucleus, of the emitting gas. This points to a typical density for the H I emitting gas of 1011 cm-3 and shows that a significant amount of this gas lies at regions near the dust sublimation radius, consistent with theoretical predictions. We also confirm that in many objects, the line ratios are far from case B, the best-fitting intrinsic broad-line Hα/H β ratios being in the range 2.5-6.6 as derived with our photoionization modelling scheme. The extinction to the BLR, based on independent estimates from H I and He II lines, is AV ≤ 3 for Seyfert 1-1.5s, while Seyfert 1.8-1.9s have AV in the range 4-8. A comparison of the extinction towards the BLR and narrow-line region (NLR) indicates that the structure obscuring the BLR exists on scales smaller than the NLR. This could be the dusty torus, but dusty nuclear spirals or filaments could also be responsible. The ratios between the X-ray absorbing column NH and the extinction to the BLR are consistent with the Galactic gas-to-dust ratio if NH variations are considered.
NASA Astrophysics Data System (ADS)
He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.
2018-04-01
With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.
The nature of the late B-type stars HD 67044 and HD 42035
NASA Astrophysics Data System (ADS)
Monier, R.; Gebran, M.; Royer, F.
2016-04-01
While monitoring a sample of apparently slowly rotating superficially normal bright late B and early A stars in the northern hemisphere, we have discovered that HD 67044 and HD 42035, hitherto classified as normal late B-type stars, are actually respectively a new chemically peculiar star and a new spectroscopic binary containing a very slow rotator HD 42035 S with ultra-sharp lines (v_{{e}}sin i= 3.7 km s^{-1}) and a fast rotator HD 42035 B with broad lines. The lines of Ti ii, Cr ii, Mn ii, Sr ii, Y ii, Zr ii and Ba ii are conspicuous features in the high resolution SOPHIE spectrum (R=75000) of HD 67044. The Hg ii line at 3983.93 Å is also present as a weak feature. The composite spectrum of HD 42035 is characterised by very sharp lines formed in HD 42035 S superimposed onto the shallow and broad lines of HD 42035 B. These very sharp lines are mostly due to light elements from C to Ni, the only heavy species definitely present are strontium and barium. Selected lines of 21 chemical elements from He up to Hg have been synthesized using model atmospheres computed with ATLAS9 and the spectrum synthesis code SYNSPEC48 including hyperfine structure of various isotopes when relevant. These synthetic spectra have been adjusted to high resolution high signal-to-noise spectra of HD 67044 and HD 42035 S in order to derive abundances of these key elements. HD 67044 is found to have distinct enhancements of Ti, Cr, Mn, Sr, Y, Zr, Ba and Hg and underabundances in He, C, O, Ca and Sc which shows that this star is not a superficially normal late B-type star, but actually is a new CP star most likely of the HgMn type. HD 42035 S has provisional underabundances of the light elements from C to Ti and overabundances of heavier elements (except for Fe and Sr which are also underabundant) up to barium. These values are lower limits to the actual abundances as we cannot currently place properly the continuum of HD 42035 S. More accurate fundamental parameters and abundances for HD 42035 S and HD 42035 B will be derived if we manage to disentangle their spectra. They will help clarify the status of the two components in this interesting new spectroscopic binary.
NASA Astrophysics Data System (ADS)
Wang, Yanan; Méndez, Mariano; Altamirano, Diego; Court, James; Beri, Aru; Cheng, Zheng
2018-05-01
We present simultaneous NuSTAR and Swift observations of the black hole transient IGR J17091-3642 during its 2016 outburst. By jointly fitting six NuSTAR and four Swift spectra, we found that during this outburst the source evolves from the hard to the hard/soft intermediate and back to the hard state, similar to the 2011 outburst. Unlike in the previous outburst, in this case we observed both a broad emission and an moderately broad absorption line in our observations. Our fits favour an accretion disc with an inclination angle of ˜45° with respect to the line of sight and a high iron abundance of 3.5 ± 0.3 in units of the solar abundance. We also observed heartbeat variability in one NuSTAR observation. We fitted the phase-resolved spectra of this observation and found that the reflected emission varies independently from the direct emission, whereas in the fits to the average spectra these two quantities are strongly correlated. Assuming that in IGR J17091-3642 the inner radius of the disc both in the average and the phase-resolved spectra is located at the radius of the innermost stable circular orbit, with 90% confidence the spin parameter of the black hole in this system is -0.13 ≤ a* ≤ 0.27.
INTEGRAL/SPI γ-ray line spectroscopy. Response and background characteristics
NASA Astrophysics Data System (ADS)
Diehl, Roland; Siegert, Thomas; Greiner, Jochen; Krause, Martin; Kretschmer, Karsten; Lang, Michael; Pleintinger, Moritz; Strong, Andrew W.; Weinberger, Christoph; Zhang, Xiaoling
2018-03-01
Context. The space based γ-ray observatory INTEGRAL of the European Space Agency (ESA) includes the spectrometer instrument "SPI". This is a coded mask telescope featuring a 19-element Germanium detector array for high-resolution γ-ray spectroscopy, encapsulated in a scintillation detector assembly that provides a veto for background from charged particles. In space, cosmic rays irradiate spacecraft and instruments, which, in spite of the vetoing detectors, results in a large instrumental background from activation of those materials, and leads to deterioration of the charge collection properties of the Ge detectors. Aim. We aim to determine the measurement characteristics of our detectors and their evolution with time, that is, their spectral response and instrumental background. These incur systematic variations in the SPI signal from celestial photons, hence their determination from a broad empirical database enables a reduction of underlying systematics in data analysis. For this, we explore compromises balancing temporal and spectral resolution within statistical limitations. Our goal is to enable modelling of background applicable to spectroscopic studies of the sky, accounting separately for changes of the spectral response and of instrumental background. Methods: We use 13.5 years of INTEGRAL/SPI data, which consist of spectra for each detector and for each pointing of the satellite. Spectral fits to each such spectrum, with independent but coherent treatment of continuum and line backgrounds, provides us with details about separated background components. From the strongest background lines, we first determine how the spectral response changes with time. Applying symmetry and long-term stability tests, we eliminate degeneracies and reduce statistical fluctuations of background parameters, with the aim of providing a self-consistent description of the spectral response for each individual detector. Accounting for this, we then determine how the instrumental background components change in intensities and other characteristics, most-importantly their relative distribution among detectors. Results: Spectral resolution of Ge detectors in space degrades with time, up to 15% within half a year, consistently for all detectors, and across the SPI energy range. Semi-annual annealing operations recover these losses, yet there is a small long-term degradation. The intensity of instrumental background varies anti-correlated to solar activity, in general. There are significant differences among different lines and with respect to continuum. Background lines are found to have a characteristic, well-defined and long-term consistent intensity ratio among detectors. We use this to categorise lines in groups of similar behaviour. The dataset of spectral-response and background parameters as fitted across the INTEGRAL mission allows studies of SPI spectral response and background behaviour in a broad perspective, and efficiently supports precision modelling of instrumental background.
Preliminary optical design of the coronagraph for the ASPIICS formation flying mission
NASA Astrophysics Data System (ADS)
Vivès, S.; Lamy, P.; Saisse, M.; Boit, J.-L.; Koutchmy, S.
2017-11-01
Formation flyers open new perspectives and allow to conceive giant, externally-occulted coronagraphs using a two-component space system with the external occulter on one spacecraft and the optical instrument on the other spacecraft at approximately 100-150 m from the first one. ASPIICS (Association de Satellites Pour l'Imagerie et l'Interfromtrie de la Couronne Solaire) is a mission proposed to ESA in the framework of the PROBA-3 program of formation flying which is presently in phase A to exploit this technique for coronal observations. ASPIICS is composed of a single coronagraph which performs high spatial resolution imaging of the corona as well as 2-dimensional spectroscopy of several emission lines from the coronal base out to 3 R. The selected lines allow to address different coronal regions: the forbidden line of Fe XIV at 530.285 nm (coronal matter), Fe IX/X at 637.4 nm (coronal holes), HeI at 587.6 nm (cold matter). An additional broad spectral channel will image the white light corona so as to derive electron densities. The classical design of an externally occulted coronagraph is adapted to the detection of the very inner corona as close as 1.01 R and the addition of a Fabry-Perot interferometer using a so-called "etalon". This paper is dedicated to the description of the optical design and its critical components: the entrance optics and the FabryPerot interferometer.
NASA Technical Reports Server (NTRS)
Seifina, Elena; Titarchuk, Lev
2010-01-01
We present an analysis of the X-ray spectral properties observed from black hole , candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Time Explorer (RXTE) data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes a X-ray spectral transition from the low hard state (LHS) to the intermediate state (IS). We show that the X-ray broad-band energy spectra during all spectral states are well fit by a sum of so called "Bulk Motion Comptonization (BMC) component" and by two (broad and narrow) Gaussians for the continuum and line emissions respectively. In addition to these spectral model components we also find a strong feature that we identify as a" blackbody-like (BB)" component which color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the "high temperature BB" bump leads us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent and Titarchuk. We have also established the photon index saturation at about 2.3 in index vs mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of black hole (BH) mass of compact object in SS 433, M(sub bh) approximately > 2 solar masses, using the scaling method using BHC GX 339-4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with recent BH mass measurement using the radial-velocity measurements of the binary system by Hillwig & Gies who find that M(sub x)( = (4.3 +/- 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, like in a number of other BH candidates, is the strong observational evidence for the presence of a BH in SS 433.
NASA Technical Reports Server (NTRS)
Maoz, Dan; Smith, Paul S.; Jannuzi, Buell T.; Kaspi, Shai; Netzer, Hagai
1994-01-01
We have monitored spectrophotometrically a subsample (28) of the Palomar-Green Bright Quasar Sample for 2 years in order to test for correlations between continuum and emission-line variations and to determine the timescales relevant to mapping the broad-line regions of high-luminosity active galactic nuclei (AGNs). Half of the quasars showed optical continuum variations with amplitudes in the range 20-75%. The rise and fall time for the continuum variations is typically 0.5-2 years. In most of the objects with continuum variations, we detect correlated variations in the broad H-alpha and H-beta emission lines. The amplitude of the line variations is usually 2-4 times smaller than the optical continuum fluctuations. We present light curves and analyze spectra for six of the variable quasars with 1000-10,000 A luminosity in the range 0.3-4 x 10(exp 45) ergs/s. In four of these objects the lines respond to the continuum variations with a lag that is smaller than or comparable to our typical sampling interval (a few months). Although continued monitoring is required to confirm these results and increase their accuracy, the present evidence indicates that quasars with the above luminosities have broad-line regions smaller than about 1 1t-yr. Two of the quasars monitored show no detectable line variations despite relatively large-amplitude continuum changes. This could be a stronger manifestation of the low-amplitude line-response phenomenon we observe in the other quasars.
Searching for Variability of NV Intrinsic Narrow Absorption Line Systems
NASA Astrophysics Data System (ADS)
Rodruck, Michael; Charlton, Jane; Ganguly, Rajib
2018-01-01
The majority of quasar absorption line systems with NV detected are found within the associated region (within 5000 km/s of the quasar redshift) and many/most are believed to be related to the quasar accretion disk wind or outflows. The most definite evidence that these NV absorbers are "intrinsic" is partial covering of the quasar continuum source and/or broad line region. Over 75 quasars containing NV narrow absorption lines have observations obtained at different times with the Keck/HIRES and the VLT/UVES spectrographs at high resolution. The interval between these observations range from months to a decade in the quasar rest frame. While variability is common for intrinsic broad and mini-broad absorption lines, intrinsic narrow absorption lines have been found to be less likely to vary, though systematic studies with large, high quality datasets have been limited. The variability timescales are useful for deriving gas densities and thus the distances from the central engines. This is important in mapping the quasar surroundings, understanding the accretion disk wind mechanism, and assessing the effect the wind has on the galaxy surroundings. We report on the results of a systematic study of variability of NV NALs, exploiting the overlap of targets for observations in the archives of Keck and VLT, and discuss the consequences for interpretation of the origin of intrinsic narrow absorption lines.
Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495.
Fabian, A C; Zoghbi, A; Ross, R R; Uttley, P; Gallo, L C; Brandt, W N; Blustin, A J; Boller, T; Caballero-Garcia, M D; Larsson, J; Miller, J M; Miniutti, G; Ponti, G; Reis, R C; Reynolds, C S; Tanaka, Y; Young, A J
2009-05-28
Since the 1995 discovery of the broad iron K-line emission from the Seyfert galaxy MCG-6-30-15 (ref. 1), broad iron K lines have been found in emission from several other Seyfert galaxies, from accreting stellar-mass black holes and even from accreting neutron stars. The iron K line is prominent in the reflection spectrum created by the hard-X-ray continuum irradiating dense accreting matter. Relativistic distortion of the line makes it sensitive to the strong gravity and spin of the black hole. The accompanying iron L-line emission should be detectable when the iron abundance is high. Here we report the presence of both iron K and iron L emission in the spectrum of the narrow-line Seyfert 1 galaxy 1H 0707-495. The bright iron L emission has enabled us to detect a reverberation lag of about 30 s between the direct X-ray continuum and its reflection from matter falling into the black hole. The observed reverberation timescale is comparable to the light-crossing time of the innermost radii around a supermassive black hole. The combination of spectral and timing data on 1H 0707-495 provides strong evidence that we are witnessing emission from matter within a gravitational radius, or a fraction of a light minute, from the event horizon of a rapidly spinning, massive black hole.
The Cambridge-Cambridge x-ray serendipity survey. 2: Classification of x-ray luminous galaxies
NASA Technical Reports Server (NTRS)
Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, Martin
1994-01-01
We present the results of an intermediate-resolution (1.5 A) spectroscopic study of 17 x-ray luminous narrow emission-line galaxies previously identified in the Cambridge-Cambridge ROSAT Serendipity Survey and the Einstein Extended Medium Sensitivity Survey. Emission-line ratios reveal that the sample is composed of ten Seyfert and seven starburst galaxies. Measured linewidths for the narrow H alpha emission lines lie in the range 170 - 460 km s(exp -1). Five of the objects show clear evidence for asymmetry in the (OIII) lambda 5007 emission-line profile. Broad H alpha emission is detected in six of the Seyfert galaxies, which range in type from Seyfert 1.5 to 2. Broad H beta emission is only detected in one Seyfert galaxy. The mean full width at half maximum for the broad lines in the Seyfert galaxies is FWHM = 3900 +/- 1750 km s(exp -1). Broad (FWHM = 2200 +/- 600 km s(exp -1) H alpha emission is also detected in three of the starburst galaxies, which could originate from stellar winds or supernovae remnants. The mean Balmer decrement for the sample is H alpha / H beta = 3, consistent with little or no reddening for the bulk of the sample. There is no evidence for any trend with x-ray luminosity in the ratio of starburst galaxies to Seyfert galaxies. Based on our previous observations, it is therefore likely that both classes of object comprise approximately 10 percent of the 2 keV x-ray background.
Properties of Narrow line Seyfert 1 galaxies
NASA Astrophysics Data System (ADS)
Rakshit, Suvendu; Stalin, Chelliah Subramonian; Chand, Hum; Zhang, Xue-Guang
2018-04-01
Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the Hα broad emission line <2000 km s-1 and the flux ratio of [O III] to Hα <3. Their properties are not well understood since only a few NLSy1 galaxies were known earlier. We have studied various properties of NLSy1 galaxies using an enlarged sample and compared them with the conventional broad-line Seyfert 1 (BLSy1) galaxies. Both the sample of sources have z˜ 0.8 and their optical spectra from SDSS-DR12 that are used to derive various physical parameters have a median signal to noise (S/N) ratio >10 pixel-1. A strong correlation between the Hα and Hα emission lines is found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of Hα, Hα and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the R4570 - λEdd diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R>10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 ± 0.9) than BLSy1 galaxies (2.4 ± 0.8). It is anti-correlated with the Hα width but correlated with the FeII strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.
Interactions Dominate the Dynamics of Visual Cognition
Stephen, Damian G.; Mirman, Daniel
2010-01-01
Many cognitive theories have described behavior as the summation of independent contributions from separate components. Contrasting views have emphasized the importance of multiplicative interactions and emergent structure. We describe a statistical approach to distinguishing additive and multiplicative processes and apply it to the dynamics of eye movements during classic visual cognitive tasks. The results reveal interaction-dominant dynamics in eye movements in each of the three tasks, and that fine-grained eye movements are modulated by task constraints. These findings reveal the interactive nature of cognitive processing and are consistent with theories that view cognition as an emergent property of processes that are broadly distributed over many scales of space and time rather than a componential assembly line. PMID:20070957
Investigating the Fraction of Radio-Loud Quasars with High Velocity Broad Emission LInes
NASA Astrophysics Data System (ADS)
Bhattacharjee, Anirban; Gilbert, Miranda; Brotherton, Michael S.
2018-06-01
Quasars show a bimodal distribution in their radio emission, with some having powerful radio-emitting jets (radio-loud), and most having weak or no jets (radio-quiet). Surveys have shown around 10% of of quasars have detectable radio emissions. These quasars are called radio-loud. Several multiwavelength studies have shown that radio-loud quasars have different properties than radio-quiet quasars. This fraction of radio-loud quasars to radio-quiet quasars has been assumed to be constant across all parameter space. In this study, we breakdown the parameter space with respect to the increasing velocity dispersion of broad emission lines. Our sample has been drawn from 2011 Shen et al. catalog of more than 100,000 quasars. In this study, we demonstrate that this fraction varies with respect to the increasing velocity dispersion (FWHM) of broad emission lines. We compare three different emission lines: H-Beta, MgII, and CIV. We observe with increasing FWHM of these three emission lines, fraction of radio-loud quasars within the subset increases. This poster presents our initial results into investigating whether the fraction of RL quasars remains 10% in different parameter space.
NASA Astrophysics Data System (ADS)
Miller, C. R.; Routh, P. S.; Donaldson, P. R.
2004-05-01
Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain electromagnetic (EM) sounding technique. CSAMT typically uses a grounded horizontal electric dipole approximately one to two kilometers in length as a source. Measurements of electric and magnetic field components are made at stations located ideally at least four skin depths away from the transmitter to approximate plane wave characteristics of the source. Data are acquired in a broad band frequency range that is sampled logarithmically from 0.1 Hz to 10 kHz. The usefulness of CSAMT soundings is to detect and map resistivity contrasts in the top two to three km of the Earth's surface. Some practical applications that CSAMT soundings have been used for include mapping ground water resources; mineral/precious metals exploration; geothermal reservoir mapping and monitoring; petroleum exploration; and geotechnical investigations. Higher frequency data can be used to image shallow features and lower frequency data are sensitive to deeper structures. We have a 3D CSAMT data set consisting of phase and amplitude measurements of the Ex and Hy components of the electric and magnetic fields respectively. The survey area is approximately 3 X 5 km. Receiver stations are situated 50 meters apart along a total of 13 lines with 8 lines bearing approximately N60E and the remainder of the lines oriented orthogonal to these 8 lines. We use an unconstrained Gauss-Newton method with positivity to invert the data. Inversion results will consist of conductivity versus depth profiles beneath each receiver station. These 1D profiles will be combined into a 3D subsurface conductivity image. We will include our interpretation of the subsurface conductivity structure and quantify the uncertainties associated with this interpretation.
NASA Astrophysics Data System (ADS)
Peterson, B. W.; Appleton, P. N.; Bitsakis, T.; Guillard, P.; Alatalo, K.; Boulanger, F.; Cluver, M.; Duc, P.-A.; Falgarone, E.; Gallagher, S.; Gao, Y.; Helou, G.; Jarrett, T. H.; Joshi, B.; Lisenfeld, U.; Lu, N.; Ogle, P.; Pineau des Forêts, G.; van der Werf, P.; Xu, C. K.
2018-03-01
Using the PACS and SPIRE spectrometers on board Herschel, we obtained observations of the Taffy galaxies (UGC 12914/12915) and bridge. The Taffy system is believed to be the result of a face-on collision between two gas-rich galaxies, in which the stellar disks passed through each other, but the gas was dispersed into a massive H I and molecular bridge between them. Emission is detected and mapped in both galaxies and the bridge in the [C II]157.7 μm and [O I]63.2 μm fine-structure lines. Additionally, SPIRE FTS spectroscopy detects the [C I] {}3{{{P}}}2\\to {}3{{{P}}}1(809.3 {GHz}) and [C I] {}3{{{P}}}1\\to 3{{{P}}}0(492.2 {GHz}) neutral carbon lines, and weakly detects high-J CO transitions in the bridge. These results indicate that the bridge is composed of a warm multi-phase medium consistent with shock and turbulent heating. Despite low star formation rates in the bridge, the [C II] emission appears to be enhanced, reaching [C II]/FIR ratios of 3.3% in parts of the bridge. Both the [C II] and [O I] lines show broad intrinsic multi-component profiles, similar to those seen in previous CO (1–0) and H I observations. The [C II] emission shares similar line profiles with both the double-peaked H I profiles and shares a high-velocity component with single-peaked CO profiles in the bridge, suggesting that the [C II] emission originates in both the neutral and molecular phases. We show that it is feasible that a combination of turbulently heated H2 and high column-density H I, resulting from the galaxy collision, is responsible for the enhanced [C II] emission.
Compact Low-Loss Planar Magic-T
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Wollack, Edward J.; Doiron, Terence; Moseley, Sameul H.
2008-01-01
This design allows broadband power combining with high isolation between the H port and E port, and achieves a lower insertion loss than any other broadband planar magic-T. Passive micro wave/millimeter-wave signal power is combined both in-phase and out-of-phase at the ports, with the phase error being less than 1 , which is limited by port impedance. The in-phase signal combiner consists of two quarter-wavelength-long transmission lines combined at the microstrip line junction. The out-of-phase signal combiner consists of two half-wavelength-long transmission lines combined in series. Structural symmetry creates a virtual ground plane at the combining junction, and the combined signal is converted from microstrip line to slotline. Optimum realizable characteristic impedances are used so that the magic-T provides broadband response with low return loss. The magic-T is used in microwave and millimeter-wave frequencies, with the operating bandwidth being approximately 100 percent. The minimum isolation obtainable is 32 dB from port E to port H. The magic-T VSWR is less than 1.1 in the operating band. Operating temperature is mainly dependent on the variation in the dielectric constant of the substrate. Using crystallized substrate, the invention can operate in an extremely broad range of temperatures (from 0 to 400 K). It has a very high reliability because it has no moving parts and requires no maintenance, though it is desirable that the magic-T operate in a low-humidity environment. Fabrication of this design is very simple, using only two metallized layers. No bond wires, via holes, or air bridges are required. Additionally, this magic-T can operate as an individual component without auxiliary components.
HERUS: A CO ATLAS FROM SPIRE SPECTROSCOPY OF LOCAL ULIRGs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, Chris; Rigopoulou, Dimitra; Hurley, Peter
We present the Herschel SPIRE Fourier Transform Spectroscopy (FTS) atlas for a complete flux-limited sample of local ultraluminous infrared galaxies (ULIRGs) as part of the HERschel Ultra Luminous InfraRed Galaxy Survey (HERUS). The data reduction is described in detail and was optimized for faint FTS sources ,with particular care being taken for the subtraction of the background, which dominates the continuum shape of the spectra. To improve the final spectra, special treatment in the data reduction has been given to any observation suffering from artifacts in the data caused by anomalous instrumental effects. Complete spectra are shown covering 200–671 μmore » m, with photometry in the SPIRE bands at 250, 350, and 500 μ m. The spectra include near complete CO ladders for over half of our sample, as well as fine structure lines from [C i] 370 μ m, [C i] 609 μ m, and [N ii] 205 μ m. We also detect H{sub 2}O lines in several objects. We construct CO spectral line energy distributions (SLEDs) for the sample, and compare their slopes with the far-infrared (FIR) colors and luminosities. We show that the CO SLEDs of ULIRGs can be broadly grouped into three classes based on their excitation. We find that the mid- J (5 < J < 8) lines are better correlated with the total FIR luminosity, suggesting that the warm gas component is closely linked to recent star formation. The higher J transitions do not linearly correlate with the FIR luminosity, consistent with them originating in hotter, denser gas that is unconnected to the current star formation. We conclude that in most cases more than one temperature component is required to model the CO SLEDs.« less
Analysis of the 3C 445 soft X-ray spectrum as observed by Chandra high-energy gratings
NASA Astrophysics Data System (ADS)
Dong, Fu-Tong; Shao, Shu-Hua; Cheng, Yan; Zeng, Jiao-Long
2018-05-01
We present a detailed analysis of the soft X-ray emission of 3C 445 using an archival Chandra High Energy Transmission Grating (HETG) spectrum. Highly-ionized H- and He-like Mg, Si and S lines, as well as a resolved low-ionized Si Kα line, are detected in the high resolution spectrum. The He-like triplets of Mg and Si are resolved into individual lines, and the calculated R ratios indicate a high density for the emitter. The low values of G ratios indicate the lines originate from collisionally ionized plasmas. However, the detection of a resolved narrow Ne X radiative recombination continua (RRC) feature in the spectrum seems to prefer a photoionized environment. The spectrum is subsequently modeled with a photoionization model, and the results are compared with those of a collisional model. Through a detailed analysis of the spectrum, we exclude a collisional origin for these emission lines. A one-component photoionization model provides a great fit to the emission features. The best-fit parameters are {log} ξ ={3.3}-0.3+0.4 erg cm s‑1, {n}{{H}}={5}-4.5+15× {10}10 cm‑3 and {N}{{H}}={2.5}-1.7+3.8× {10}20 cm‑2. According to the calculated high density for the emitter, the measured velocity widths of the emission lines and the inferred radial distance (6 × 1014 – 8 × 1015 cm), we suggest the emission lines originating from matter are located in the broad line region (BLR).
SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy
NASA Astrophysics Data System (ADS)
Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan
2018-07-01
We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereinafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey (SDSS) revealed a small linewidth of the broad component of the Hβ line (full width at half-maximum = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multiwavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in five months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy, and the synchronous variations in the multiwavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.
Light breeze in the local Universe
NASA Astrophysics Data System (ADS)
Concas, A.; Popesso, P.; Brusa, M.; Mainieri, V.; Erfanianfar, G.; Morselli, L.
2017-10-01
We analyze a complete spectroscopic sample of galaxies ( 600 000) drawn from Sloan Digital Sky Survey (SDSS, DR7) to look for evidence of galactic winds in the local Universe. We focus on the shape of the [OIII]λ5007 emission line as a tracer of ionizing gas outflows. We stack our spectra in a fine grid of star formation rate (SFR) and stellar mass to analyze the dependence of winds on the position of galaxies in the SFR versus mass diagram. We do not find any significant evidence of broad and shifted [OIII]λ5007 emission line which we interpret as no evidence of outflowing ionized gas in the global population. We have also classified these galaxies as star-forming or AGN-dominated according to their position in the standard BPT diagram. We show how the average [OIII]λ5007 profile changes as a function of the nature of the dominant ionizing source. We find that in the star-forming dominated source the oxygen line is symmetric and governed by the gravitational potential well. The AGN or composite AGN/star-formation activity objects, in contrast, display a prominent and asymmetric profile that can be well described by a broad Gaussian component that is blue-shifted from a narrow symmetric core. In particular, we find that the blue wings of the average [OIII]λ5007 profiles are increasingly prominent in the LINERs and Seyfert galaxies. We conclude that, through the identification of strong bulk motion as traced by the warm ionized gas, in the low-redshift Universe, "pure" star-formation activity does not seem capable of driving ionized-gas outflows, while, the presence of optically selected AGN seems to play a primary role. We discuss the implications of these results for the role of the quenching mechanism in the present-day Universe.
SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy
NASA Astrophysics Data System (ADS)
Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan
2018-04-01
We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey revealed a small linewidth of the broad component of the Hβ line (FWHM = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multi-wavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in 5 months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy and the synchronous variations in the multi-wavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.
The nature of water within bacterial spores: protecting life in extreme environments
NASA Astrophysics Data System (ADS)
Rice, Charles V.; Friedline, Anthony; Johnson, Karen; Zachariah, Malcolm M.; Thomas, Kieth J., III
2011-10-01
The bacterial spore is a formidable container of life, protecting the vital contents from chemical attack, antimicrobial agents, heat damage, UV light degradation, and water dehydration. The exact role of the spore components remains in dispute. Nevertheless, water molecules are important in each of these processes. The physical state of water within the bacterial spore has been investigated since the early 1930's. The water is found two states, free or bound, in two different areas, core and non-core. It is established that free water is accessible to diffuse and exchange with deuterated water and that the diffusible water can access all areas of the spore. The presence of bound water has come under recent scrutiny and has been suggested the water within the core is mobile, rather than bound, based on the analysis of deuterium relaxation rates. Using an alternate method, deuterium quadrupole-echo spectroscopy, we are able to distinguish between mobile and immobile water molecules. In the absence of rapid motion, the deuterium spectrum of D2O is dominated by a broad line, whose line shape is used as a characteristic descriptor of molecular motion. The deuterium spectrum of bacterial spores reveals three distinct features: the broad peak of immobilized water, a narrow line of water in rapid motion, and a signal of intermediate width. This third signal is assigned this peak from partially deuterated proteins with the spore in which N-H groups have undergone exchange with water deuterons to form N-D species. As a result of these observations, the nature of water within the spore requires additional explanation to understand how the spore and its water preserve life.
Lerner, Richard A
2011-04-01
Convergence of observations from different sources is the norm in science. However, when convergence occurs in man for antibodies it is remarkable because the repertoire of possible immunoglobulin products is very large and diverse. Thus, one would not expect to see the same antibody twice from divergent populations unless there is special significance as to why the immune response is constrained. Now, broadly neutralizing antibodies isolated from combinatorial libraries from three separate populations have been shown to all use the same (V(H) 1-69) germ line gene and interact with the influenza virus in very similar ways. Here we discuss the reasons for this convergence in terms of how the immunological repertoire responds to emergency situations where time is short as occurs, for example, in potentially lethal infections. It is suggested that there is a first responder or S.O.S. component of the antibody repertoire that evolved to initiate rapid defense against infectious agents. The discovery of the homologies between these commonly produced antibodies may have significance for the design of novel vaccines. Finally, these convergent results may give much insight into why antibodies encoded by the V(H) 1-69 germ line gene are highly over represented in B-cell lymphomas.
183 GHz water line variation: An energetic outburst in orion KL
NASA Technical Reports Server (NTRS)
Kuiper, T. B. H.; Kuiper, E. N. R.; Swanson, P. N.; Dickinson, D. F.; Klein, M. J.; Zimmermann, P.
1984-01-01
Observations of the 3(13)-2(20) transition of water vapor in the direction of Ori MC1 in 1980 February show a 50% flux increase and an apparent additional red shift of approximately 2 km/s relative to the line observed in 1977 December. From a detailed examination of the amplitude and frequency calibration, it appears unlikely that the effect is due to systematic error. The increase is attributed to the appearance of a new component at a velocity of 12 km/s with respect to the local standard of rest. The new component also has broad wings. Increased emission from a region in the high-velocity core of Ori MC1 can be due either to additional far-IR radiation to pump the 1983 GHz transition or to a change in the physical conditions in the gas. Statistical equilibrium calculations using the large-velocity-gradient formalism were carried out to develop a model for the emission. The calculations support a model in which the gas in the region of enhanced emission is hotter than the dust. The temporal coincidence between the 183 GHZ increase and the 22 GH1 water maser outburst suggests a common, impulsive cause, which has heated the gas in a part of the HV source, enhancing the emission in both transitions.
Kitis, M; Karanfil, T; Kilduff, J E; Wigton, A
2001-01-01
Five natural waters with a broad range of DOC concentrations were fractionated using various coal- and wood-based granular activated carbons (GAC) and alum coagulation. Adsorption and alum coagulation fractionated NOM solutions by preferentially removing components having high specific ultraviolet absorbance (SUVA). UV absorbing fractions of NOM were found to be the major contributors to DBP formation. SUVA appears to be an accurate predictor of reactivity with chlorine in terms of DBP yield; however, it was also found that low-SUVA components of NOM have higher bromine incorporation. SUVA has promise as a parameter for on-line monitoring and control of DBP formation in practical applications; however, the effects of bromide concentration may also need to be considered. Understanding how reactivity is correlated to SUVA may allow utilities to optimize the degree of treatment required to comply with DBP regulations. The reactive components that require removal, and the degree of treatment necessary to accomplish this removal, may be directly obtained from the relationship between SUVA removal and the degree of treatment (e.g., alum dose).
NASA Astrophysics Data System (ADS)
Miettinen, O.
2016-08-01
Deeply embedded low-mass protostars can be used as testbeds to study the early formation stages of solar-type stars, and the prevailing chemistry before the formation of a planetary system. The present study aims to characterise further the physical and chemical properties of the protostellar core Orion B9-SMM3. The Atacama Pathfinder EXperiment (APEX) telescope was used to perform a follow-up molecular line survey of SMM3. The observations were done using the single pointing (frequency range 218.2-222.2 GHz) and on-the-fly mapping methods (215.1-219.1 GHz). These new data were used in conjunction with our previous data taken by the APEX and Effelsberg 100 m telescopes. The following species were identified from the frequency range 218.2-222.2 GHz: ^{13}CO, C^{18}O, SO, para-H2CO, and E1-type CH3OH. The mapping observations revealed that SMM3 is associated with a dense gas core as traced by DCO+ and p-H2CO. Altogether three different p-H2CO transitions were detected with clearly broadened linewidths (Δ v˜8.2-11 km s^{-1} in FWHM). The derived p-H2CO rotational temperature, 64±15 K, indicates the presence of warm gas. We also detected a narrow p-H2CO line (Δ v=0.42 km s^{-1}) at the systemic velocity. The p-H2CO abundance for the broad component appears to be enhanced by two orders of magnitude with respect to the narrow line value ({˜}3×10^{-9} versus {˜}2×10^{-11}). The detected methanol line shows a linewidth similar to those of the broad p-H2CO lines, which indicates their coexistence. The CO isotopologue data suggest that the CO depletion factor decreases from {˜}27±2 towards the core centre to a value of {˜}8±1 towards the core edge. In the latter position, the N2D+/N2H+ ratio is revised down to 0.14±0.06. The origin of the subfragments inside the SMM3 core we found previously can be understood in terms of the Jeans instability if non-thermal motions are taken into account. The estimated fragmentation timescale, and the derived chemical abundances suggest that SMM3 is a few times 105 yr old, in good agreement with its Class 0 classification inferred from the spectral energy distribution analysis. The broad p-H2CO and CH3OH lines, and the associated warm gas provide the first clear evidence of a molecular outflow driven by SMM3.
NASA Astrophysics Data System (ADS)
Hacar, A.; Alves, J.; Burkert, A.; Goldsmith, P.
2016-06-01
Context. Since their first detection in the interestellar medium, (sub-)millimeter line observations of different CO isotopic variants have routinely been employed to characterize the kinematic properties of the gas in molecular clouds. Many of these lines exhibit broad linewidths that greatly exceed the thermal broadening expected for the low temperatures found within these objects. These observed suprathermal CO linewidths are assumed to originate from unresolved supersonic motions inside clouds. Aims: The lowest rotational J transitions of some of the most abundant CO isotopologues, 12CO and 13CO, are found to present large optical depths. In addition to well-known line saturation effects, these large opacities present a non-negligible contribution to their observed linewidths. Typically overlooked in the literature, in this paper we aim to quantify the impact of these opacity broadening effects on the current interpretation of the CO suprathermal line profiles. Methods: Combining large-scale observations and LTE modeling of the ground J = 1-0 transitions of the main 12CO, 13CO, C18O isotopologues, we have investigated the correlation of the observed linewidths as a function of the line opacity in different regions of the Taurus molecular cloud. Results: Without any additional contributions to the gas velocity field, a large fraction of the apparently supersonic (ℳ ~ 2-3) linewidths measured in both 12CO and 13CO (J = 1-0) lines can be explained by the saturation of their corresponding sonic-like, optically thin C18O counterparts assuming standard isotopic fractionation. Combined with the presence of multiple components detected in some of our C18O spectra, these opacity effects also seem to be responsible for most of the highly supersonic linewidths (ℳ > 8-10) detected in some of the broadest 12CO and 13CO spectra in Taurus. Conclusions: Our results demonstrate that most of the suprathermal 12CO and 13CO linewidths reported in nearby clouds like Taurus could be primarily created by a combination of opacity broadening effects and multiple gas velocity components blended in these saturated emission lines. Once corrected by their corresponding optical depth, each of these gas components present transonic intrinsic linewidths consistently traced by the three isotopologues, 12CO, 13CO, and C18O, with differences within a factor of 2. Highly correlated and velocity-coherent at large scales, the largest and highly supersonic velocity differences inside clouds are generated by the relative motions between individual gas components. In contrast to the classical interpretation within the framework of microscopic turbulence, this highly discretized structure of the molecular gas traced in CO suggest that the gas dynamics inside molecular clouds could be better described by the properties of a fully resolved macroscopic turbulence.
Variability of the broad absorption lines in the QSO UM 232
NASA Technical Reports Server (NTRS)
Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. Margaret
1989-01-01
Low-resolution spectra of UM 232 taken in 1978, 1979, and 1988 at Lick Observatory are presented. Large changes in the Si IV lambda 1397, CIV lambda 1549, and Al III lambda 1857 broad absorption lines are apparent. The decrease in column density in all three ions and an observed brightening of the QSO suggests that these changes are due to an increase in the ionization level driven by an increase in the central source luminosity. This mechanism has been proposed by Smith and Penston to explain small changes in the absorption spectrum of the QSO 1246-057. The spectra of UM 232 show that the fractional decrease in optical depth is smaller at higher outflow velocies. The structure of the broad absorption-line region (BALR) is investigted by estimating an ionization parameter for each ion species as a function of velocity.
An XMM-Newton Study of the Bright Ultrasoft Narrow-Line Quasar NAB 0205+024
NASA Technical Reports Server (NTRS)
Brandt, Niel
2004-01-01
The broad-band X-ray continuum of NAB 0205424 is well constrained due to the excellent photon statistics obtained (about 97,700 counts), and its impressive soft X-ray excess is clearly apparent. The hard X-ray power law has become notably steeper than when NAB 0205424 was observed with ASCA, attesting to the presence of significant X-ray spectral variability. A strong and broad emission feature is detected from about 5 to 6.4 keV, and we have modeled this as a relativistic line emitted close to the black hole from a narrow annulus of the accretion disk. Furthermore, a strong X-ray flare is detected with a hard X-ray spectrum; this flare may be responsible for illuminating the inner line-emitting part of the accretion disk. The combined observational results can be broadly interpreted in terms of the "thundercloud model proposed by Merloni & Fabian (2001).
Narrow absorption lines complex I: one form of broad absorption line
NASA Astrophysics Data System (ADS)
Lu, Wei-Jian; Lin, Ying-Ru
2018-03-01
We discover that some of the broad absorption lines (BALs) are actually a complex of narrow absorption lines (NALs). As a pilot study of this type of BAL, we show this discovery through a typical example in this paper. Utilizing the two-epoch observations of J002710.06-094435.3 (hereafter J0027-0944) from the Sloan Digital Sky Survey (SDSS), we find that each of the C IV and Si IV BAL troughs contains at least four NAL doublets. By resolving the Si IV BAL into multiple NALs, we present the following main results and conclusions. First, all these NALs show coordinated variations between the two-epoch SDSS observations, suggesting that they all originate in the quasar outflow, and that their variations are due to global changes in the ionization condition of the absorbing gas. Secondly, a BAL consisting of a number of NAL components indicates that this type of BAL is basically the same as the intrinsic NAL, which tends to support the inclination model rather than the evolution model. Thirdly, although both the C IV and Si IV BALs originate from the same clumpy substructures of the outflow, they show different profile shapes: multiple absorption troughs for the Si IV BAL in a wider velocity range, while P-Cygni for the C IV BAL in a narrower velocity range. This can be interpreted by the substantial differences in fine structure and oscillator strength between the Si IVλλ1393, 1402 and C IVλλ1548, 1551 doublets. Based on the above conclusions, we consider that the decomposition of a BAL into NALs can serve as a way to resolve the clumpy structure for outflows, and it can be used to learn more about characteristics of the clumpy structure and to test the outflow model, when utilizing high-resolution spectra and photoionization model.
Main-Sequence O Stars in NGC 6231: Enhanced Winds
NASA Astrophysics Data System (ADS)
Morrison, Nancy D.
Three late O-type main-sequence stars in the open cluster NGC 6231 will be observed with IUE at high dispersion, and their C IV and N V resonance-line profiles will be studied. From low-dispersion IUE observations, 10 members of the cluster have been found to have anomalously strong C IV resonance lines for their spectral types. Massa, Savage, and Cassinelli (1984) observed two of these "UV peculiar" stars (spectral types B0.5 V and B1 V) at high dispersion. They found that the C IV lines have a strong, broad, shortward-shifted absorption component, which suggests a greatly enhanced wind relative to the average for the spectral type. They proposed that the enhancement is due to an overabundance of C. Recently, however, Grigsby, Gordon, Morrison, and Zimba (1992) showed from optical spectra that these stars have normal C abundances. Thus, there is not yet a convincing explanation for these strikingly anomalous stellar winds. By extending the temperature range over which the phenomenon has been studied at high dispersion, however, we expect to gain new physical information. From wind modeling of the line profiles, we will derive mass-loss rates and terminal velocities, and we will test whether these winds are described by radiation-driven wind theory.
NASA Astrophysics Data System (ADS)
Pan, Xiang; Zhou, Hongyan; Ge, Jian; Jiang, Peng; Yang, Bin; Lu, Honglin; Ji, Tuo; Zhang, Shaohua; Shi, Xiheng
2017-02-01
We present a detailed analysis of the unusual damped Lyα absorption line system (DLA) toward the quasar SDSS J170542.91+354340.2 at a redshift of 2, previously reported by Noterdaeme et al. as one of the very few CO absorbers known to date at high z. This DLA is exceptional in that: (1) its extinction curve is similar to peculiar Milky Way sightlines penetrating star formation regions; (2) its absorption components are redshifted at a speed of several hundred km s-1 compared to broad Balmer emission lines; (3) its gas-phase metallicity is super-solar as evaluated from more than 30 absorption lines; (4) detection of residual flux in the DLA trough and variability of {{C}} {{IV}} absorption is possible. Based on these facts, we argue that this dusty DLA is a good candidate for an intrinsic quasar 2175 Å absorber, and can originate from star formation regions of the quasar’s host galaxy. We discuss in detail the gas and dust properties, and the dust depletion. Follow-up observations, such as spectropolarimetry and optical/infrared spectroscopy, will help to confirm the system’s intrinsic nature and to explore how dust grains behave in the extreme environments proximate to quasars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grier, C. J.; Brandt, W. N.; Trump, J. R.
2015-06-10
We report the discovery of rapid variations of a high-velocity C iv broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4σ) variability in the equivalent width (EW) of the broad (∼4000 km s{sup −1} wide) C iv trough on rest-frame timescales as short as 1.20 days (∼29 hr), the shortest broad absorption line variability timescale yet reported. The EW varied by ∼10%more » on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n{sub e} ≳ 3.9 × 10{sup 5} cm{sup −3}. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.« less
Discovery of Photon Index Saturation in the Black Hole Binary GRS 1915+105
NASA Technical Reports Server (NTRS)
Titarchuk, Lev; Seifina, Elena
2009-01-01
We present a study of the correlations between spectral, timing properties and mass accretion rate observed in X-rays from the Galactic Black Hole (BH) binary GRS 1915+105 during the transition between hard and soft states. We analyze all transition episodes from this source observed with Rossi X-ray Timing Explorer (RXTE), coordinated with Ryle Radio Telescope (RT) observations. We show that broad-band energy spectra of GRS 1915+105 during all these spectral states can be adequately presented by two Bulk Motion Comptonization (BMC) components: a hard component (BMC1, photon index Gamma(sub 1) = 1.7 -- 3.0) with turnover at high energies and soft thermal component (BMC2, Gamma(sub 2) = 2.7 -- 4.2) with characteristic color temperature < or = 1 keV, and the red-skewed iron line (LAOR) component. We also present observable correlations between the index and the normalization of the disk "seed" component. The use of "seed" disk normalization, which is presumably proportional to mass accretion rate in the disk, is crucial to establish the index saturation effect during the transition to the soft state. We discovered the photon index saturation of the soft and hard spectral components at values of < or approximately equal 4.2 and 3 respectively. We present a physical model which explains the index-seed photon normalization correlations. We argue that the index saturation effect of the hard component (BMC1) is due to the soft photon Comptonization in the converging inflow close to 1311 and that of soft component is due to matter accumulation in the transition layer when mass accretion rate increases. Furthermore we demonstrate a strong correlation between equivalent width of the iron line and radio flux in GRS 1915+105. In addition to our spectral model components we also find a strong feature of "blackbody-like" bump which color temperature is about 4.5 keV in eight observations of the intermediate and soft states. We discuss a possible origin of this "blackbody-like" emission.
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Berlind, P.; Bertram, R.; Bischoff, K.; Bochkarev, N. G.; Burenkov, A. N.; Calkins, M.; Carrasco, L.; Chavushyan, V. H.
2002-01-01
We present the final installment of an intensive 13 year study of variations of the optical continuum and broad H beta emission line in the Seyfert 1 galaxy NGC 5548. The database consists of 1530 optical continuum measurements and 1248 H beta measurements. The H beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction between the size of the broad-line region and the ionizing luminosity, r is proportional to L(sup 1/2)(sub ion). Moreover, the apparently linear nature of the correlation between the H beta response time and the nonstellar optical continuum F(sub opt) arises as a consequence of the changing shape of the continuum as it varies, specifically F(sub opt) is proportional to F(sup 0.56)(sub UV).
100-GHz Phase Switch/Mixer Containing a Slot-Line Transition
NASA Technical Reports Server (NTRS)
Gaier, Todd; Wells, Mary; Dawson, Douglas
2009-01-01
A circuit that can function as a phase switch, frequency mixer, or frequency multiplier operates over a broad frequency range in the vicinity of 100 GHz. Among the most notable features of this circuit is a grounded uniplanar transition (in effect, a balun) between a slot line and one of two coplanar waveguides (CPWs). The design of this circuit is well suited to integration of the circuit into a microwave monolithic integrated circuit (MMIC) package. One CPW is located at the input end and one at the output end of the top side of a substrate on which the circuit is fabricated (see Figure 1). The input CPW feeds the input signal to antiparallel flip-chip Schottky diodes connected to the edges of the slot line. Phase switching is effected by the combination of (1) the abrupt transition from the input CPW to the slot line and (2) CPW ground tuning effected by switching of the bias on the diodes. Grounding of the slot metal to the bottom metal gives rise to a frequency cutoff in the slot. This cutoff is valuable for separating different frequency components when the circuit is used as a mixer or multiplier. Proceeding along the slot line toward the output end, one encounters the aforementioned transition, which couples the slot line to the output CPW. Impedance tuning of the transition is accomplished by use of a high-impedance section immediately before the transition.
Historical milestones of a long pathway.
Roy, Thomas
2011-01-01
Hemodiafiltration (HDF), developed from the combination of hemodialysis and hemofiltration, is considered to be the most effective current procedure to remove uremic toxins from the blood of kidney patients. Historically, the clinical use of HDF was for many years limited due to the cost burden related to the large amount of sterile volume replacement fluid needed. The solution offered was on-line preparation of replacement fluid from standard dialysate by means of membrane filtration. Industry opened to this concept quite early and worked on various technical solutions between the early 1980s and the late 1990s before real state-of-the-art systems became commercially available on a broad basis. This article reviews in particular the activities of initially Fresenius and later Fresenius Medical Care in this field and identifies major concepts and prototypes up to today's commercially available high-end product--the 5008 therapy system--where on-line HDF finally became integrated as a standard component. Copyright © 2011 S. Karger AG, Basel.
Tracing Slow Winds from T Tauri Stars via Low Velocity Forbidden Line Emission
NASA Astrophysics Data System (ADS)
Simon, Molly; Pascucci, Ilaria; Edwards, Suzan; Feng, Wanda; Rigliaco, Elisabetta; Gorti, Uma; Hollenbach, David J.; Tuttle Keane, James
2016-06-01
Protoplanetary disks are a natural result of star formation, and they provide the material from which planets form. The evolutional and eventual dispersal of protoplanetary disks play critical roles in determining the final architecture of planetary systems. Models of protoplanetary disk evolution suggest that viscous accretion of disk gas onto the central star and photoevaporation driven by high-energy photons from the central star are the main mechanisms that drive disk dispersal. Understanding when photoevaporation begins to dominate over viscous accretion is critically important for models of planet formation and planetary migration. Using Keck/HIRES (resolution of ~ 7 km/s) we analyze three low excitation forbidden lines ([O I] 6300 Å, [O I] 5577 Å, and [S II] 6731 Å) previously determined to trace winds (including photoevaporative winds). These winds can be separated into two components, a high velocity component (HVC) with blueshifts between ~30 - 150 km/s, and a low velocity component (LVC) with blueshifts on the order of ~5 km/s (Hartigan et al. 1995). We selected a sample of 32 pre-main sequence T Tauri stars in the Taurus-Auriga star-forming region (plus TW Hya) with disks that span a range of evolutionary stages. We focus on the origin of the LVC specifically, which we are able to separate into a broad component (BC) and a narrow component (NC) due to the high resolution of our optical spectra. We focus our analysis on the [O I] 6300 Å emission feature, which is detected in 30/33 of our targets. Interestingly, we find wind diagnostics consistent with photoevaporation for only 21% of our sample. We can, however, conclude that a specific component of the LVC is tracing a magnetohydrodynamic (MHD) wind rather than a photoevaporative wind. We will present the details behind these findings and the implications they have for planet formation more generally.
ROSAT observations of NGC 2146: Evidence for a starburst-driven superwind
NASA Technical Reports Server (NTRS)
Armus, L.; Heckman, T. M.; Weaver, K. A.; Lehnert, M. D.
1995-01-01
We have imaged the edge-on starburst galaxy NGC 2146 with the Position Sensitive Proportional Counter (PSPC) and the High Resolution Imager (HRI) on board ROSAT and have compared these data to optical images and long-slit spectra. NGC 2146 possesses a very large X-ray nebula with a half-light radius of 1 min (4 kpc) and a maximum diameter of approximately 4 min, or 17 kpc. The X-ray emission is resolved by the PSPC and preferentially oriented along the minor axis, with a total flux of 1.1 x 10(exp -12) ergs/sq cm/s over 0.2 - 2.4 keV and a luminosity of approximately 3 x 10(exp 40) ergs/s. The inner X-ray nebula is resolved by the HRI into at least four bright knots together with strong diffuse emission responsible for at least 50% of the flux within a radius of 0.5 min (approximately 2 kpc). The brightest knot has a luminosity of (2 - 3) x 10(exp 39) ergs/s. The X-ray nebula has a spatial extent much larger than the starburst ridge seen at centimeter wavelengths by Kronberg & Biermann (1981) and is oriented in a `X-like' pattern along the galaxy minor axis at a position angle of approximately 30 degrees. This minor-axis X-ray emission is associated with a region of H alpha and dust filaments seen in optical images. Optical spectra show that the emission-line gas along the minor axis is characterized by relatively broad lines (approximately 250 km/s full width half-maximum (FWHM)) and by `shocklike' emission-line flux ratios. Together with the blue-asymmetric nuclear emission-line and NaD interstellar absorption-line profiles, these optical data strongly suggest the presence of a starburst-driven superwind. The X-ray spectrum extracted from the central 5 min contains a strong Fe L emission-line complex at 0.6 - 1.0 keV and a hard excess above 1.0 keV. The spectrum is best described with a two-component model, containing a soft (kT approximately 400 - 500 eV) Raymond-Smith thermal plasma together with either a Gamma = 1.7 power-law or a kT greater than 2.2 keV bremsstrahlung component. The soft thermal component provides approximately 30% of the total luminosity over 0.2 - 2.4 keV, or approximately 10(exp 40) ergs/s. The pressure derived from the soft component of the X-ray spectrum is consistent with that predicted from a starburst-driven superwind if the filling factor of the warm gas is approximately 1% - 10 %. If the hard X-ray component is thermal gas associated with the galactic outflow, the filling factor must be close to unity. Predictions of the luminosity, temperature, and size of an adiabatic starburst-generated windblown bubble are consistent with those measured for the soft thermal X-ray emission in NGC 2146. The hard X-ray component, however, has a luminosity much larger than predicted by the superwind model if this component is thermal emission from gas heated by an internal shock in the expanding bubble. We briefly review various possibilities as to the nature of the hard X-ray component in NGC 2146.
Broad Absorption Line Quasar catalogues with Supervised Neural Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scaringi, Simone; Knigge, Christian; Cottis, Christopher E.
2008-12-05
We have applied a Learning Vector Quantization (LVQ) algorithm to SDSS DR5 quasar spectra in order to create a large catalogue of broad absorption line quasars (BALQSOs). We first discuss the problems with BALQSO catalogues constructed using the conventional balnicity and/or absorption indices (BI and AI), and then describe the supervised LVQ network we have trained to recognise BALQSOs. The resulting BALQSO catalogue should be substantially more robust and complete than BI-or AI-based ones.
Extreme Variability in a Broad Absorption Line Quasar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, Daniel; Jun, Hyunsung D.; Graham, Matthew J.
CRTS J084133.15+200525.8 is an optically bright quasar at z = 2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V ∼ 17.3 between 2002 and 2008. Then, over the following five years, the source slowly brightened by approximately one magnitude, to V ∼ 16.2. Only ∼1 in 10,000 quasars show such extreme variability, as quantified by the extreme parameters derived for this quasar assuming a damped random walk model. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line quasar withmore » extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. We report the first definitive redshift for this source, based on the detection of broad H α in a Keck/MOSFIRE spectrum. Absorption systems separated by several 1000 km s{sup −1} in velocity show coordinated weakening in the depths of their troughs as the continuum flux increases. We interpret the broad absorption line variability to be due to changes in photoionization, rather than due to motion of material along our line of sight. This source highlights one sort of rare transition object that astronomy will now be finding through dedicated time-domain surveys.« less
In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines
Kustiawan, Paula M.; Puthong, Songchan; Arung, Enos T.; Chanchao, Chanpen
2014-01-01
Objective To screen crude extracts of propolis, bee pollen and honey from four stingless bee species [Trigona incisa (T. incisa)], Timia apicalis, Trigona fusco-balteata and Trigona fuscibasis) native to East Kalimantan, Indonesia for cytotoxic activity against five human cancer cell lines (HepG2, SW620, ChaGo-I, KATO-III and BT474). Methods All samples were extracted with methanol, and then subpartitioned with n-hexane and ethyl acetate. Each crude extract was screened at 20 µg/mL for in vitro cytotoxicity against the cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, four previously shown bioactive components from propolis (apigenin, caffeic acid phenyl ester, kaempferol and naringenin) and two chemotherapeutic drugs (doxorubicin and 5-fluorouracil) were used to evaluate the sensitivity of the cell lines. Results Overall, crude extracts from propolis and honey had higher cytotoxic activities than bee pollen, but the activity was dependent upon the extraction solvent, bee species and cell line. Propolis extracts from T. incisa and Timia apicalis showed the highest and lowest cytotoxic activity, respectively. Only the HepG2 cell line was broadly sensitive to the honey extracts. For pure compounds, doxorubicin was the most cytotoxic, the four propolis compounds the least, but the ChaGo-I cell line was sensitive to kaempferol at 10 µg/mL and KATO-III was sensitive to kaempferol and apigenin at 10 µg/mL. All pure compounds were effective against the BT474 cell line. Conclusions Propolis from T. incisa and Trigona fusco-balteata contain an in vitro cytotoxic activity against human cancer cell lines. Further study is required, including the isolation and characterization of the active antiproliferative agent(s). PMID:25183275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Adam D.; Dopita, Michael A.; Davies, Rebecca
We present the second and final data release of the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). Data are presented for 63 new galaxies not included in the first data release, and we provide 2D emission-line fitting products for the full S7 sample of 131 galaxies. The S7 uses the WiFeS instrument on the ANU 2.3 m telescope to obtain spectra with a spectral resolution of R = 7000 in the red (540–700 nm) and R = 3000 in the blue (350–570 nm), over an integral field of 25 × 38 arcsec{sup 2} with 1 × 1 arcsec{sup 2} spatial pixels. The S7 contains bothmore » the largest sample of active galaxies and the highest spectral resolution of any comparable integral field survey to date. The emission-line fitting products include line fluxes, velocities, and velocity dispersions across the WiFeS field of view, and an artificial neural network has been used to determine the optimal number of Gaussian kinematic components for emission-lines in each spaxel. Broad Balmer lines are subtracted from the spectra of nuclear spatial pixels in Seyfert 1 galaxies before fitting the narrow lines. We bin nuclear spectra and measure reddening-corrected nuclear fluxes of strong narrow lines for each galaxy. The nuclear spectra are classified on optical diagnostic diagrams, where the strength of the coronal line [Fe vii] λ 6087 is shown to be correlated with [O iii]/H β . Maps revealing gas excitation and kinematics are included for the entire sample, and we provide notes on the newly observed objects.« less
NASA Astrophysics Data System (ADS)
Thomas, Adam D.; Dopita, Michael A.; Shastri, Prajval; Davies, Rebecca; Hampton, Elise; Kewley, Lisa; Banfield, Julie; Groves, Brent; James, Bethan L.; Jin, Chichuan; Juneau, Stéphanie; Kharb, Preeti; Sairam, Lalitha; Scharwächter, Julia; Shalima, P.; Sundar, M. N.; Sutherland, Ralph; Zaw, Ingyin
2017-09-01
We present the second and final data release of the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). Data are presented for 63 new galaxies not included in the first data release, and we provide 2D emission-line fitting products for the full S7 sample of 131 galaxies. The S7 uses the WiFeS instrument on the ANU 2.3 m telescope to obtain spectra with a spectral resolution of R = 7000 in the red (540-700 nm) and R = 3000 in the blue (350-570 nm), over an integral field of 25 × 38 arcsec2 with 1 × 1 arcsec2 spatial pixels. The S7 contains both the largest sample of active galaxies and the highest spectral resolution of any comparable integral field survey to date. The emission-line fitting products include line fluxes, velocities, and velocity dispersions across the WiFeS field of view, and an artificial neural network has been used to determine the optimal number of Gaussian kinematic components for emission-lines in each spaxel. Broad Balmer lines are subtracted from the spectra of nuclear spatial pixels in Seyfert 1 galaxies before fitting the narrow lines. We bin nuclear spectra and measure reddening-corrected nuclear fluxes of strong narrow lines for each galaxy. The nuclear spectra are classified on optical diagnostic diagrams, where the strength of the coronal line [Fe vii] λ6087 is shown to be correlated with [O III]/Hβ. Maps revealing gas excitation and kinematics are included for the entire sample, and we provide notes on the newly observed objects.
Zhang, Renshan; Qi, Hua; Sun, Yuzhe; Xiao, Shi
2017-01-01
Disease resistance exerts a fitness cost on plants, presumably due to the extra consumption of energy and carbon. In this study, we examined whether transgenic Arabidopsis thaliana with increased levels of ATP and sucrose is more resistant or susceptible to pathogen infection. Lines of A. thaliana over-expressing purple acid phosphatase 2 (AtPAP2) (OE lines) contain increased levels of ATP and sucrose, with improved growth rate and seed production. Compared to wild type (WT) and pap2 lines, the OE lines were more susceptible to several Pseudomonas syringae pv. tomato (Pst) strains carrying AvrRpm1, AvrRpt2 AvrRps4, AvrPtoB, HrcC and WT strain DC3000. The increased susceptibility of the OE lines to Pst strains cannot solely be attributed to the suppressed expression of R-genes but must also be attributed to the suppression of downstream signaling components, such as MOS2, EDS1 and EDS5. Before infection, the levels of salicylic acid (SA) and jasmonic acid (JA) precursor OPDA were similar in the leaves of OE, pap2 and WT plants, whereas the levels of JA and its derivative JA-Ile were significantly lower in the leaves of OE lines and higher in the pap2 line. The expression of JA marker defense gene PDF1.2 was up-regulated in the OE lines compared to the WT prior to Pst DC3000 infection, but its expression was lower in the OE lines after infection. In summary, high fitness Arabidopsis thaliana exhibited altered JA metabolism and broad suppression of R-genes and downstream genes as well as a higher susceptibility to Pst infections. PMID:28152090
In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines.
Kustiawan, Paula M; Puthong, Songchan; Arung, Enos T; Chanchao, Chanpen
2014-07-01
To screen crude extracts of propolis, bee pollen and honey from four stingless bee species [Trigona incisa (T. incisa)], Timia apicalis, Trigona fusco-balteata and Trigona fuscibasis) native to East Kalimantan, Indonesia for cytotoxic activity against five human cancer cell lines (HepG2, SW620, ChaGo-I, KATO-III and BT474). All samples were extracted with methanol, and then subpartitioned with n-hexane and ethyl acetate. Each crude extract was screened at 20 µg/mL for in vitro cytotoxicity against the cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, four previously shown bioactive components from propolis (apigenin, caffeic acid phenyl ester, kaempferol and naringenin) and two chemotherapeutic drugs (doxorubicin and 5-fluorouracil) were used to evaluate the sensitivity of the cell lines. Overall, crude extracts from propolis and honey had higher cytotoxic activities than bee pollen, but the activity was dependent upon the extraction solvent, bee species and cell line. Propolis extracts from T. incisa and Timia apicalis showed the highest and lowest cytotoxic activity, respectively. Only the HepG2 cell line was broadly sensitive to the honey extracts. For pure compounds, doxorubicin was the most cytotoxic, the four propolis compounds the least, but the ChaGo-I cell line was sensitive to kaempferol at 10 µg/mL and KATO-III was sensitive to kaempferol and apigenin at 10 µg/mL. All pure compounds were effective against the BT474 cell line. Propolis from T. incisa and Trigona fusco-balteata contain an in vitro cytotoxic activity against human cancer cell lines. Further study is required, including the isolation and characterization of the active antiproliferative agent(s).
Interpreting the spectral behavior of MWC 314
NASA Astrophysics Data System (ADS)
Frasca, A.; Miroshnichenko, A. S.; Rossi, C.; Friedjung, M.; Marilli, E.; Muratorio, G.; Busà, I.
2016-01-01
Context. MWC 314 is one of the most luminous stars in the Milky Way. Its fundamental parameters are similar to those of luminous blue variables (LBVs), although no large photometric variations have been recorded. Moreover, it shows no evidence of either a dust shell or a relevant spectral variability. Aims: The main purpose of this work is to clarify the origin of the radial velocity and line profile variations exhibited by absorption and emission lines. Methods: We analyzed the radial velocity (RV) variations displayed by the absorption lines from the star's atmosphere using high-resolution optical spectra and fitting the RV curve with an eccentric orbit model. We also studied the RV and profile variations of some permitted and forbidden emission lines of metallic ions with a simple geometric model. The behavior of the Balmer and He I lines has also been investigated. Results: Fourier analysis applied to the RV of the absorption lines clearly shows a 60-day periodicity. A dense coverage of the RV curve allowed us to derive accurate orbital parameters. The RV of the Fe II emission lines varies in the same way, but with a smaller amplitude. Additionally, the intensity ratio of the blue/red peaks of these emission lines correlates with the RV variations. The first three members of the Balmer series as well as [N II] lines display a nearly constant RV and no profile variations in phase with the orbital motion instead. The He I λ5876 Å line shows a strongly variable profile with broad and blue-shifted absorption components that reach velocities of ≤-1000 km s-1 in some specific orbital phases. Conclusions: Our data and analysis provide strong evidence that the object is a binary system composed of a supergiant B[e] star and an undetected companion. The emission lines with a non-variable RV could originate in a circumbinary region. For the Fe II emission lines, we propose a simple geometrical two-component model where a compact source of Fe II emission, moving around the center of mass, is affected by a static extra absorption that originates from a larger area. Finally, the blue-shifted absorption in the He I λ5876 Å line could be the result of density enhancements in the primary star wind that is flowing towards the companion, and which is best observed when projected over the disk of the primary star. Based on observations made at the 0.91 m of Catania Observatory, the OHP telescopes and the 1.83 m telescope of the Asiago Observatory.
A Very Large Array Survey of Polar BAL Quasar Candidates
NASA Astrophysics Data System (ADS)
Olson, Kianna Alexandra; Brotherton, Michael S.; DiPompeo, Michael; Maithil, Jaya
2018-06-01
Polar broad absorption line quasars posses flat radio spectra and jets seen at small angles to the line of sight. Using the VLA we observed twelve polar broad absorption line quasar candidates at L (1.5GHz), C (4.5-5.5GHz), and X (8.5-9.5GHz) bands, and found that their cores display flat spectra. Compared to previous observations in the NVSS and First surveys, the peak flux densities all show significant variation σvar > 3, and brightness temperatures TB ≥ 1012K. Based on these findings, our quasars have the properties expected for objects that posses jets seen nearly pole on.
Black hole masses in active galactic nuclei
NASA Astrophysics Data System (ADS)
Denney, Kelly D.
2010-11-01
We present the complete results from two, high sampling-rate, multi-month, spectrophotometric reverberation mapping campaigns undertaken to obtain either new or improved Hbeta reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hbeta emission line in seven local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) RBLR-L relationship, where our results remove many outliers and significantly reduce the scatter at the low-luminosity end of this relationship. A detailed analysis of the data from our high sampling rate, multi-month reverberation mapping campaign in 2007 reveals that the Hbeta emission region within the BLRs of several nearby AGNs exhibit a variety of kinematic behaviors. Through a velocity-resolved reverberation analysis of the broad Hbeta emission-line flux variations in our sample, we reconstruct velocity-resolved kinematic signals for our entire sample and clearly see evidence for outflowing, infalling, and virialized BLR gas motions in NGC 3227, NGC 3516, and NGC 5548, respectively. Finally, we explore the nature of systematic errors that can arise in measurements of black hole masses from single-epoch spectra of AGNs by utilizing the many epochs available for NGC 5548 and PG1229+204 from reverberation mapping databases. In particular, we examine systematics due to AGN variability, contamination due to constant spectral components (i.e., narrow lines and host galaxy flux), data quality (i.e., signal-to-noise ratio, S/N), and blending of spectral features. We investigate the effect that each of these systematics has on the precision and accuracy of single-epoch masses calculated from two commonly-used line-width measures by comparing these results to recent reverberation mapping studies. We then present an error budget which summarizes the minimum observable uncertainties as well as the amount of additional scatter and/or systematic offset that can be expected from the individual sources of error investigated.
NASA Technical Reports Server (NTRS)
Kahler, S.; Krieger, A. S.
1978-01-01
The technique commonly used for the analysis of data from broad-band X-ray imaging systems for plasma diagnostics is the filter ratio method. This requires the use of two or more broad-band filters to derive temperatures and line-of-sight emission integrals or emission measure distributions as a function of temperature. Here an alternative analytical approach is proposed in which the temperature response of the imaging system is matched to the physical parameter being investigated. The temperature response of a system designed to measure the total radiated power along the line of sight of any coronal structure is calculated. Other examples are discussed.
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.; Keil, Stephen L.; Worden, Simon P.
2014-01-01
Analysis of more than 36 years of time series of seven parameters measured in the NSO/AFRL/Sac Peak K-line monitoring program elucidates five elucidates five components of the variation: (1) the solar cycle (period approx. 11 years), (2) quasi-periodic variations (periods approx 100 days), (3) a broad band stochastic process (wide range of periods), (4) rotational modulation, and (5) random observational errors. Correlation and power spectrum analyses elucidate periodic and aperiodic variation of the chromospheric parameters. Time-frequency analysis illuminates periodic and quasi periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (1) and (2) at time scales in the range approx 0.1 - 10 years. These results using only full-disk data further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced by NASA's Kepler observatory. Component (3) consists of variations over a range of timescales, in the manner of a 1/f random noise process. A timedependent Wilson-Bappu effect appears to be present in the solar cycle variations (1), but not in the stochastic process (3). Component (4) characterizes differential rotation of the active regions, and (5) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The recent data suggest that the current cycle is starting late and may be relatively weak. The data analyzed in this paper can be found at the National Solar Observatory web site http://nsosp.nso.edu/cak_mon/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.
NASA Technical Reports Server (NTRS)
Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.
2003-01-01
We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.
Using the Properties of Broad Absorption Line Quasars to Illuminate Quasar Structure
NASA Astrophysics Data System (ADS)
Yong, Suk Yee; King, Anthea L.; Webster, Rachel L.; Bate, Nicholas F.; O'Dowd, Matthew J.; Labrie, Kathleen
2018-06-01
A key to understanding quasar unification paradigms is the emission properties of broad absorption line quasars (BALQs). The fact that only a small fraction of quasar spectra exhibit deep absorption troughs blueward of the broad permitted emission lines provides a crucial clue to the structure of quasar emitting regions. To learn whether it is possible to discriminate between the BALQ and non-BALQ populations given the observed spectral properties of a quasar, we employ two approaches: one based on statistical methods and the other supervised machine learning classification, applied to quasar samples from the Sloan Digital Sky Survey. The features explored include continuum and emission line properties, in particular the absolute magnitude, redshift, spectral index, line width, asymmetry, strength, and relative velocity offsets of high-ionisation C IV λ1549 and low-ionisation Mg II λ2798 lines. We consider a complete population of quasars, and assume that the statistical distributions of properties represent all angles where the quasar is viewed without obscuration. The distributions of the BALQ and non-BALQ sample properties show few significant differences. None of the observed continuum and emission line features are capable of differentiating between the two samples. Most published narrow disk-wind models are inconsistent with these observations, and an alternative disk-wind model is proposed. The key feature of the proposed model is a disk-wind filling a wide opening angle with multiple radial streams of dense clumps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Khai; Bogdanović, Tamara
Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks thatmore » are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.« less
Broad-line Type Ic supernova SN 2014ad
NASA Astrophysics Data System (ADS)
Sahu, D. K.; Anupama, G. C.; Chakradhari, N. K.; Srivastav, S.; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi
2018-04-01
We present optical and ultraviolet photometry and low-resolution optical spectroscopy of the broad-line Type Ic supernova SN 2014ad in the galaxy PGC 37625 (Mrk 1309), covering the evolution of the supernova during -5 to +87 d with respect to the date of maximum in the B band. A late-phase spectrum obtained at +340 d is also presented. With an absolute V-band magnitude at peak of MV = -18.86 ± 0.23 mag, SN 2014ad is fainter than supernovae associated with gamma ray bursts (GRBs), and brighter than most of the normal and broad-line Type Ic supernovae without an associated GRB. The spectral evolution indicates that the expansion velocity of the ejecta, as measured using the Si II line, is as high as ˜33 500 km s-1 around maximum, while during the post-maximum phase it settles at ˜15 000 km s-1. The expansion velocity of SN 2014ad is higher than that of all other well-observed broad-line Type Ic supernovae except for the GRB-associated SN 2010bh. The explosion parameters, determined by applying Arnett's analytical light-curve model to the observed bolometric light-curve, indicate that it was an energetic explosion with a kinetic energy of ˜(1 ± 0.3) × 1052 erg and a total ejected mass of ˜(3.3 ± 0.8) M⊙, and that ˜0.24 M⊙ of 56Ni was synthesized in the explosion. The metallicity of the host galaxy near the supernova region is estimated to be ˜0.5 Z⊙.
Weak Emission-line Quasars in the Context of a Modified Baldwin Effect
NASA Astrophysics Data System (ADS)
Shemmer, Ohad
2016-01-01
Based on spectroscopic data for a sample of high-redshift quasars, I will show that the anti-correlation between the rest-frame equivalent width (EW) of the C IV λ1549 broad-emission line and the Hβ-based Eddington ratio extends across the widest possible ranges of redshift (0 < z < 3.5) and bolometric luminosity(~1044 < L < ~1048 erg s-1). Given this anti-correlation, hereby referred to as a modified Baldwin effect (MBE), weak emission line quasars (WLQs), typically showing EW(C IV) < ~10 Å, are expected to have extremely high Eddington ratios (L/LEdd > ~4). I will present new near-infrared spectroscopy of the broad Hβ line, as well as complementary EW(C IV) information, for all WLQs for which such information is currently available, nine sources in total. I will show that while four of these WLQs can be accommodated by the MBE, the otherfive deviate significantly from this relation, at the > ~3σ level, by exhibiting C IV lines much weaker than predicted from their Hβ-based Eddington ratios. Assuming the supermassive black hole masses in all quasars can be determined reliably using the single-epoch Hβ-method, these results indicate that EW(C IV)cannot depend solely on the Eddington ratio. I will briefly discuss a strategy for further investigation into the roles that basic physical properties play in controlling the relative strengths of broad-emission lines in quasars.
NASA Technical Reports Server (NTRS)
Marinucci, A.; Matt, G.; Bianchi, S.; Lu, T. N.; Arevalo, P.; Balokovic, M.; Ballantyne, D.; Bauer, F. E.; Boggs, S. E.; Stern, D.;
2014-01-01
We present NuSTAR observations of the bright Seyfert 2 galaxy NGC 2110 obtained in 2012, when the source was at the highest flux level ever observed, and in 2013, when the source was at a more typical flux level. We include archival observations from other X-ray satellites, namely XMM-Newton, Suzaku, BeppoSAX, Chandra and Swift. Simultaneous NuSTAR and Swift broad band spectra (in the 3-80 keV range) indicate a cutoff energy E(sub c) greater than 210 keV, with no detectable contribution from Compton reflection. NGC 2110 is one of the very few sources where no evidence for distant Compton thick scattering is found and, by using temporal information collected over more than a decade, we investigate variations of the iron K(alpha) line on time scales of years. The Fe K alpha line is likely the sum of two components: one constant (originating from distant Compton-thick material) and the other one variable and linearly correlated with the source flux (possibly arising from Compton-thin material much closer to the black hole).
A study of the continuum flux and the line structure in the IUE spectrum of Beta Lyrae
NASA Technical Reports Server (NTRS)
Aydin, C.; Engin, S.; Brandi, E.; Ferrer, O. E.; Hack, M.
1988-01-01
A study of the available archival IUE images of Beta Lyrae has led to the following results: (1) for lambda in the range of 1250 - 1500 A, the eclipse depth at second conjunction is slightly larger than the eclipse depth at primary conjunction; they are equal at about 1670 A; (2) the profiles of the resonance lines of SiIV (and the same seems to be true for NV and CIV) can be described as composite, formed by the superposition of a stationary P Cygni profile that suggests a velocity of approach of -170 km/s and a broad, less strong, emission that seems to yield a velocity distribution in antiphase with the velocity curve of the B8 II component of the system; and (3) the emission lines of the intercombination doublet of semiforbidden N II at about 2140 A suggest a velocity of about -130 km/s. The interpretation of the latter composite profile appears similar to the one suggested by Sahade (1966) to describe H-alpha and He I 5876 and He I 6678, and by Batten and Sahade (1973) to describe H-alpha.
The highly obscured nucleus of 3C 219
NASA Technical Reports Server (NTRS)
Fabbiano, G.; Willner, S. P.; Carleton, N. P; Elvis, M.
1986-01-01
The detection of a strong, and possibly broad, Paschen-alpha line from the narrow-line radio galaxy 3C 219 is reported. The detected flux is larger than predicted from the H-alpha line and the case B recombination. This implies the presence of a highly reddened line-emitting region in the nucleus.
Wave propagation in pulsar magnetospheres - Refraction of rays in the open flux zone
NASA Technical Reports Server (NTRS)
Barnard, J. J.; Arons, J.
1986-01-01
The propagation of waves through a relativistically outflowing electron-positron plasma in a very strong dipolar magnetic field, conditions expected in pulsar magnetospheres, is investigated. Halmilton's equations is derived for the propagation of rays through a plasma which is inhomogeneous in density, magnetic field directions, and Lorentz factor. These equations are solved for rays propagating through the plasmas outflowing along the 'open' dipolar field lines in which the density decreases inversely as the radius cubed and in the case where gradients transverse to the radial direction exist. In the radial case, the effects of refraction on pulse profiles, spectrum, and polarization are examined, and the effects of a transverse gradient are indicated. Attention is given to models in which the observed broad bandwidth in the radio emission has its origin in a radius to frequency map. Models with broad-band emission at a single radius are also studied. These are compared to observations of pulse width and pulse component separation as a function of frequency. The origin of 'orthogonal modes' is discussed.
Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain.
Koyama, Minoru; Kinkhabwala, Amina; Satou, Chie; Higashijima, Shin-ichi; Fetcho, Joseph
2011-01-18
The hindbrain of larval zebrafish contains a relatively simple ground plan in which the neurons throughout it are arranged into stripes that represent broad neuronal classes that differ in transmitter identity, morphology, and transcription factor expression. Within the stripes, neurons are stacked continuously according to age as well as structural and functional properties, such as axonal extent, input resistance, and the speed at which they are recruited during movements. Here we address the question of how particular networks among the many different sensory-motor networks in hindbrain arise from such an orderly plan. We use a combination of transgenic lines and pairwise patch recording to identify excitatory and inhibitory interneurons in the hindbrain network for escape behaviors initiated by the Mauthner cell. We map this network onto the ground plan to show that an individual hindbrain network is built by drawing components in predictable ways from the underlying broad patterning of cell types stacked within stripes according to their age and structural and functional properties. Many different specialized hindbrain networks may arise similarly from a simple early patterning.
Discovery of a z = 0.65 post-starburst BAL quasar in the DES supernova fields
Mudd, Dale; Martini, Paul; Tie, Suk Sien; ...
2017-03-23
In this paper, we present the discovery of a z = 0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad Fe ii (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explainedmore » by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. Finally, the age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.« less
Discovery of a z = 0.65 post-starburst BAL quasar in the DES supernova fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudd, Dale; Martini, Paul; Tie, Suk Sien
We present the discovery of a z=0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad FeII (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explained by the emergence of a youngmore » quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. The age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.« less
Discovery of a z = 0.65 post-starburst BAL quasar in the DES supernova fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudd, Dale; Martini, Paul; Tie, Suk Sien
In this paper, we present the discovery of a z = 0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad Fe ii (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explainedmore » by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. Finally, the age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.« less
Isotopic determination of uranium in soil by laser induced breakdown spectroscopy
Chan, George C. -Y.; Choi, Inhee; Mao, Xianglei; ...
2016-03-26
Laser-induced breakdown spectroscopy (LIBS) operated under ambient pressure has been evaluated for isotopic analysis of uranium in real-world samples such as soil, with U concentrations in the single digit percentage levels. The study addresses the requirements for spectral decomposition of 235U and 238U atomic emission peaks that are only partially resolved. Although non-linear least-square fitting algorithms are typically able to locate the optimal combination of fitting parameters that best describes the experimental spectrum even when all fitting parameters are treated as free independent variables, the analytical results of such an unconstrained free-parameter approach are ambiguous. In this work, five spectralmore » decomposition algorithms were examined, with different known physical properties (e.g., isotopic splitting, hyperfine structure) of the spectral lines sequentially incorporated into the candidate algorithms as constraints. It was found that incorporation of such spectral-line constraints into the decomposition algorithm is essential for the best isotopic analysis. The isotopic abundance of 235U was determined from a simple two-component Lorentzian fit on the U II 424.437 nm spectral profile. For six replicate measurements, each with only fifteen laser shots, on a soil sample with U concentration at 1.1% w/w, the determined 235U isotopic abundance was (64.6 ± 4.8)%, and agreed well with the certified value of 64.4%. Another studied U line - U I 682.691 nm possesses hyperfine structure that is comparatively broad and at a significant fraction as the isotopic shift. Thus, 235U isotopic analysis with this U I line was performed with spectral decomposition involving individual hyperfine components. For the soil sample with 1.1% w/w U, the determined 235U isotopic abundance was (60.9 ± 2.0)%, which exhibited a relative bias about 6% from the certified value. The bias was attributed to the spectral resolution of our measurement system - the measured line width for this U I line was larger than its isotopic splitting. In conclusion, although not the best emission line for isotopic analysis, this U I emission line is sensitive for element analysis with a detection limit of 500 ppm U in the soil matrix; the detection limit for the U II 424.437 nm line was 2000 ppm.« less
Far-ultraviolet and optical spectrophotometry of X-ray selected Seyfert galaxies
NASA Technical Reports Server (NTRS)
Clarke, J. T.; Bowyer, S.; Grewing, M.
1986-01-01
Five X-ray selected Seyfert galaxies were examined via near-simultaneous far-ultraviolet and optical spectrophotometry in an effort to test models for excitation of emission lines by X-ray and ultraviolet continuum photoionization. The observed Ly-alpha/H-beta ratio in the present sample averages 22, with an increase found toward the high-velocity wings of the H lines in the spectrum of at least one of the Seyfert I nuclei. It is suggested that Seyfert galaxies with the most high-velocity gas exhibit the highest Ly-alpha/H-beta ratios at all velocities in the line profiles, and that sometimes this ratio may be highest for the highest velocity material in the broad-line clouds. Since broad-lined objects are least affected by Ly-alpha trapping effects, they have Ly-alpha/H-beta ratios much closer to those predicted by early photoionization calculations.
Spectrophotometry of six broad absorption line QSOs
NASA Technical Reports Server (NTRS)
Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.
1987-01-01
Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.
A Catalog of Quasar Properties from the Baryon Oscillation Spectroscopic Survey
NASA Astrophysics Data System (ADS)
Chen, Zhi-Fu; Pan, Da-Sheng; Pang, Ting-Ting; Huang, Yong
2018-01-01
Using the quasars with z em < 0.9 from the Baryon Oscillation Spectroscopic Survey, we measure the spectral characteristics, including continuum and emission lines, around the Hβ and Hα spectral regions, which are lacking in Quasar Data Release 12 (DR12Q). We estimate the virial black hole mass from broad Hα and/or Hβ, and infer quasar redshifts from [O III] λ5007 emission lines. All the measurements and derived quantities are publicly available. A comparison between [O III] λ5007 redshifts and the visual inspection redshifts included in DR12Q indicates that the visual inspection redshifts are robust. We find that the full widths at half maximum of the broad Hα are consistent with those of the broad Hβ, while both the equivalent widths and line luminosities of the broad Hα are obviously larger than the corresponding quantities of the broad Hβ. We also find that there is an obviously systematic offset between the Hβ and Hα based mass if they are inferred from the empirical relationships in the literature. Using our large quasar sample, we have improved the Hβ and Hα based mass estimators by minimizing the difference between the Hβ- and Hα-based masses. For the black hole mass estimator (Equation (1)), we find that the coefficients (a, b) = (7.00, 0.50) for Hα and (a, b) = (6.96, 0.50) for Hβ are the best choices.
NASA Technical Reports Server (NTRS)
Mustel, E. R.
1979-01-01
The type 1 supernova discovered late in 1966 in NGC 3198 has broad minima in its spectrum break down into a number of significantly narrower absorption bands. The broad minima of tau, sigma and mu, which usually show no details in the spectra of type supernovas, contain a number of narrow absorption bands. The reality of most of these absorption bands is demonstrated by comparison of recordings of spectra of the supernova presented for two moments in time. These minima (particularly of tau and mu,) are a result of blending of several broad absorption bands. The minimum of tau should be a blend of intensive and very broad Fe absorption lines, in which the lower level is metastable. The wavelengths of these line are: 5169, 5198, 5235, 5276, 5317, 5363A.
1986-01-24
P-29508BW Range: 1.12 million kilometers (690,000 miles) This clear-filter view of the Uranian rings delta, gamma, eta, beta and alpha (from top) was taken with Voyager 2's narrow-angle camera and clearly illustrates the broad outer component and narrow inner component of the eta ring, which orbits Uranus at a radius of some 47,000 km (29,000 mi). The broad component is considerably more transparent than the dense, narrow inner eta component, as well as the other narrow rings shown. Resolution here is about 10 km (6 mi).
RCoronae Borealis at the 2003 light minimum
NASA Astrophysics Data System (ADS)
Kameswara Rao, N.; Lambert, David L.; Shetrone, Matthew D.
2006-08-01
A set of five high-resolution optical spectra of R CrB obtained in 2003 March is discussed. At the time of the first spectrum (March 8), the star was at V = 12.6, a decline of more than six magnitudes. By March 31, the date of the last observation, the star at V = 9.3 was on the recovery to maximum light (V = 6). The 2003 spectra are compared with the extensive collection of spectra from the 1995-1996 minimum presented previously. Spectroscopic features common to the two minima include the familiar ones also seen in spectra of other R Coronae Borealis stars (RCBs) in decline: sharp emission lines of neutral and singly ionized atoms, broad emission lines including HeI, [NII] 6583 Å, Na D and CaII H & K lines, and blueshifted absorption lines of Na D, and KI resonance lines. Prominent differences between the 2003 and 1995-1996 spectra are seen. The broad Na D and Ca H & K lines in 2003 and 1995-1996 are centred approximately on the mean stellar velocity. The 2003 profiles are fit by a single Gaussian, but in 1995-1996 two Gaussians separated by about 200 km s-1 were required. However, the HeI broad emission lines are fit by a single Gaussian at all times; the emitting He and Na-Ca atoms are probably not colocated. The C2 Phillips 2-0 lines were detected as sharp absorption lines and the C2 Swan band lines as sharp emission lines in 2003, but in 1995-1996 the Swan band emission lines were broad and the Phillips lines were undetected. The 2003 spectra show CI sharp emission lines at minimum light with a velocity changing in 5 d by about 20 km s-1 when the velocity of `metal' sharp lines is unchanged; the CI emission may arise from shock-heated gas. Reexamination of spectra obtained at maximum light in 1995 shows extended blue wings to strong lines with the extension dependent on a line's lower excitation potential; this is the signature of a stellar wind, also revealed by published observations of the HeI 10830 Å line at maximum light. Changes in the cores of the resonance lines of AlI and Na D (variable blueshifts) and the CaII infrared (IR) lines (variable blueshifts and redshifts) suggest complex flow patterns near the photosphere. The spectroscopic differences at the two mimima show the importance of continued scrutiny of the declines of R CrB (and other RCBs). Thorough understanding of the outer atmosphere and circumstellar regions of R CrB will require such continued scrutiny. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München and Georg-August-Universität Göttingen. E-mail: dll@anchor.as.utexas.edu (DLL)
Holmes, Amanda; Winston, Joel S; Eimer, Martin
2005-10-01
To investigate the impact of spatial frequency on emotional facial expression analysis, ERPs were recorded in response to low spatial frequency (LSF), high spatial frequency (HSF), and unfiltered broad spatial frequency (BSF) faces with fearful or neutral expressions, houses, and chairs. In line with previous findings, BSF fearful facial expressions elicited a greater frontal positivity than BSF neutral facial expressions, starting at about 150 ms after stimulus onset. In contrast, this emotional expression effect was absent for HSF and LSF faces. Given that some brain regions involved in emotion processing, such as amygdala and connected structures, are selectively tuned to LSF visual inputs, these data suggest that ERP effects of emotional facial expression do not directly reflect activity in these regions. It is argued that higher order neocortical brain systems are involved in the generation of emotion-specific waveform modulations. The face-sensitive N170 component was neither affected by emotional facial expression nor by spatial frequency information.
Shuttle cryogenic supply system optimization study. Volume 5A-1: Users manual for math models
NASA Technical Reports Server (NTRS)
1973-01-01
The Integrated Math Model for Cryogenic Systems is a flexible, broadly applicable systems parametric analysis tool. The program will effectively accommodate systems of considerable complexity involving large numbers of performance dependent variables such as are found in the individual and integrated cryogen systems. Basically, the program logic structure pursues an orderly progression path through any given system in much the same fashion as is employed for manual systems analysis. The system configuration schematic is converted to an alpha-numeric formatted configuration data table input starting with the cryogen consumer and identifying all components, such as lines, fittings, and valves, each in its proper order and ending with the cryogen supply source assembly. Then, for each of the constituent component assemblies, such as gas generators, turbo machinery, heat exchangers, and accumulators, the performance requirements are assembled in input data tabulations. Systems operating constraints and duty cycle definitions are further added as input data coded to the configuration operating sequence.
SESNPCA: Principal Component Analysis Applied to Stripped-Envelope Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Williamson, Marc; Bianco, Federica; Modjaz, Maryam
2018-01-01
In the new era of time-domain astronomy, it will become increasingly important to have rigorous, data driven models for classifying transients, including supernovae (SNe). We present the first application of principal component analysis (PCA) to stripped-envelope core-collapse supernovae (SESNe). Previous studies of SNe types Ib, IIb, Ic, and broad-line Ic (Ic-BL) focus only on specific spectral features, while our PCA algorithm uses all of the information contained in each spectrum. We use one of the largest compiled datasets of SESNe, containing over 150 SNe, each with spectra taken at multiple phases. Our work focuses on 49 SNe with spectra taken 15 ± 5 days after maximum V-band light where better distinctions can be made between SNe type Ib and Ic spectra. We find that spectra of SNe type IIb and Ic-BL are separable from the other types in PCA space, indicating that PCA is a promising option for developing a purely data driven model for SESNe classification.
A Multi-Wavelength Study of the Hot Component of the Interstellar Medium
NASA Technical Reports Server (NTRS)
Nichols, Joy; Oliversen, Ronald K. (Technical Monitor)
2002-01-01
The goals of this research are as follows: (1) Using the large number of lines of sight available in the ME database, identify the lines of sight with high-velocity components in interstellar lines, from neutral species through Si VI, C IV, and N V; (2) Compare the column density of the main components (i.e. low velocity components) of the interstellar lines with distance, galactic longitude and latitude, and galactic radial position. Derive statistics on the distribution of components in space (e.g. mean free path, mean column density of a component). Compare with model predictions for the column densities in the walls of old SNR bubbles and superbubbles, in evaporating cloud boundaries and in turbulent mixing layers; (3) For the lines of sight associated with multiple high velocity, high ionization components, model the shock parameters for the associated superbubble and SNR to provide more accurate energy input information for hot phase models and galactic halo models. Thus far 49 lines of sight with at least one high velocity component to the C IV lines have been identified; and (4) Obtain higher resolution data for the lines of sight with high velocity components (and a few without) to further refine these models.
NASA Technical Reports Server (NTRS)
Lanzuisi, G.; Perna, M.; Comastri, A.; Cappi, M.; Dadina, M.; Marinucci, A.; Masini, A.; Matt, G.; Vagnetti, F.; Vignali, C.;
2016-01-01
PG1247+267 is one of the most luminous known quasars at z approximately 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law (gamma = 2.3 +/- 0.1); the weak ionized Fe emission line; and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Compton thick, partial covering absorber; and iii) a relativistic disk reflector in a lamp-post geometry, with low coronal height and high BH spin. The first model is able to explain the high reflection component in terms of variability. The second does not require any reflection to reproduce the hard emission, while a rather low high-energy cutoff of approximately 100 keV is detected for the first time in such a high redshift source. The third model require a face-on geometry, which may affect the SMBH mass and Eddington ratio measurements. Deeper X-ray broad-band data are required in order to distinguish between these possibilities.
Interactions dominate the dynamics of visual cognition.
Stephen, Damian G; Mirman, Daniel
2010-04-01
Many cognitive theories have described behavior as the summation of independent contributions from separate components. Contrasting views have emphasized the importance of multiplicative interactions and emergent structure. We describe a statistical approach to distinguishing additive and multiplicative processes and apply it to the dynamics of eye movements during classic visual cognitive tasks. The results reveal interaction-dominant dynamics in eye movements in each of the three tasks, and that fine-grained eye movements are modulated by task constraints. These findings reveal the interactive nature of cognitive processing and are consistent with theories that view cognition as an emergent property of processes that are broadly distributed over many scales of space and time rather than a componential assembly line. Copyright 2009 Elsevier B.V. All rights reserved.
What Drives the Outflows in Broad Absorption Line QSOs?
NASA Technical Reports Server (NTRS)
Begelman, Mitchell C.
1997-01-01
We have made progress in the areas related to the propulsion and confinement of gas responsible for broad absorption troughts in QSOs: Radiative Acceleration in BALQSOs; The "Ghost" of Lyman (alpha); and Magnetic Confinement of Absorbing Gas.
Polarized radiation diagnostics of stellar magnetic fields
NASA Astrophysics Data System (ADS)
Mathys, Gautier
The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the geometric structure of these fields. How this can possibly be achieved is briefly discussed. An overview of the current status of polarimetric studies of magnetic fields in non-degenerate stars of other types is presented. The final section is devoted to magnetic fields of white dwarfs. Current knowledge of magnetic fields of isolated white dwarfs is briefly reviewed. Diagnostic techniques are discussed, with particular emphasis on the variety of physical processes to be considered for understanding of spectral line formation over the broad range of magnetic field strengths encountered in these stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devereux, Nick, E-mail: devereux@erau.edu
Prior imaging of the lenticular galaxy, NGC 3998, with the Hubble Space Telescope revealed a small, highly inclined, nuclear ionized gas disk, the kinematics of which indicate the presence of a 270 million solar mass black hole. Plausible kinematic models are used to constrain the size of the broad emission line region (BELR) in NGC 3998 by modeling the shape of the broad H{alpha}, H{beta}, and H{gamma} emission line profiles. The analysis indicates that the BELR is large with an outer radius {approx}7 pc, regardless of whether the kinematic model is represented by an accretion disk or a spherically symmetricmore » inflow. The electron temperature in the BELR is {<=} 28,800 K consistent with photoionization by the active galactic nucleus (AGN). Indeed, the AGN is able to sustain the ionization of the BELR, albeit with a high covering factor ranging between 20% and 100% depending on the spectral energy distribution adopted for the AGN. The high covering factor favors a spherical distribution for the gas as opposed to a thin disk. If the gas density is {>=}7 x 10{sup 3} cm{sup -3} as indicated by the broad forbidden [S II] emission line ratio, then interpreting the broad H{alpha} emission line in terms of a steady state spherically symmetric inflow leads to a rate {<=} 6.5 x 10{sup -2} M{sub sun} yr{sup -1} which exceeds the inflow requirement to explain the X-ray luminosity in terms of a radiatively inefficient inflow by a factor of {<=}18.« less
NASA Astrophysics Data System (ADS)
Devereux, Nick
2011-02-01
Prior imaging of the lenticular galaxy, NGC 3998, with the Hubble Space Telescope revealed a small, highly inclined, nuclear ionized gas disk, the kinematics of which indicate the presence of a 270 million solar mass black hole. Plausible kinematic models are used to constrain the size of the broad emission line region (BELR) in NGC 3998 by modeling the shape of the broad Hα, Hβ, and Hγ emission line profiles. The analysis indicates that the BELR is large with an outer radius ~7 pc, regardless of whether the kinematic model is represented by an accretion disk or a spherically symmetric inflow. The electron temperature in the BELR is <= 28,800 K consistent with photoionization by the active galactic nucleus (AGN). Indeed, the AGN is able to sustain the ionization of the BELR, albeit with a high covering factor ranging between 20% and 100% depending on the spectral energy distribution adopted for the AGN. The high covering factor favors a spherical distribution for the gas as opposed to a thin disk. If the gas density is >=7 × 103 cm-3 as indicated by the broad forbidden [S II] emission line ratio, then interpreting the broad Hα emission line in terms of a steady state spherically symmetric inflow leads to a rate <= 6.5 × 10-2 M sun yr-1 which exceeds the inflow requirement to explain the X-ray luminosity in terms of a radiatively inefficient inflow by a factor of <=18.
Wang, Song; Bao, Fang-yin; Mei, Bai-mao; Ding, Shi-chao
2009-09-01
By the methods of fixed point, line intercept, and random investigation, the vertical distribution and community diversity of butterflies in Yaoluoping National Nature Reserve were investigated from 2005 to 2008. A total of 3681 specimen were collected, belonging to 111 species, 69 genera, and 10 families, among which, Nymphalidae had the higher species number, individual's number, and diversity index than the other families. The butterflies in the study area were a mixture of Oriental and Palaearetic species, with the Oriental species diminished gradually and the Palaearetic components increased gradually with increasing altitude. Among the three vertical zones ( <800 m, 800-1200 m, and >1200 m in elevation), that of 800-1200 m had the most abundant species of butterflies; and among the six habitat types (deciduous broad-leaved forest, evergreen conifer forest, conifer-broad leaf mixed forest, bush and secondary forest, farmland, and residential area), bush and secondary forest had the higher species number, individual's number, and diversity index of butterflies, while farmland had the lowest diversity index. The similarity coefficient of butterfly species between the habitats was mainly dependent on vegetation type, i.e., the more the difference of vegetation type, the lesser the species similarity coefficient between the habitats, which was the highest (0.61) between conifer-broad leaf mixed forest and bush and secondary forest, and the lowest (0. 20) between evergreen conifer forest and bush and secondary forest.
NASA Astrophysics Data System (ADS)
Ghosh, Ritesh; Dewangan, Gulab C.; Mallick, Labani; Raychaudhuri, Biplab
2018-06-01
We present a broadband spectral study of the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342 based on multi-epoch observations performed with NuSTAR on 2014 March 15, and two simultaneous observations performed with Suzaku and Swift on 2009 July 26 and 2013 March 1. We found the presence of a strong soft X-ray excess emission, a broad but weak Fe line and hard X-ray excess emission. We used the blurred reflection (relxill) and the intrinsic disc Comptonization (optxagnf), two physically motivated models, to describe the broadband spectra and to disentangle the disk/corona and jet emission. The relxill model is mainly constrained by the strong soft X-ray excess although the model failed to predict this excess when fitted above 3{keV} and extrapolated to lower energies. The joint spectral analysis of the three datasets above 3{keV} with this model resulted in a high black hole spin (a > 0.9) and moderate reflection fraction R ˜ 0.5. The optxagnf model fitted to the two simultaneous datasets resulted in an excess emission in the UV band. The simultaneous UV-to-hard X-ray spectra of 1H 0323+342 are best described by a model consisting of a primary X-ray power-law continuum with Γ ˜ 1.8, a blurred reflection component with R ˜ 0.5, Comptonised disk emission as the soft X-ray excess, optical/UV emission from a standard accretion disk around a black hole of mass ˜107M⊙ and a steep power law (Γ ˜ 3 - 3.5) component, most likely the jet emission in the UV band. The fractional RMS variability spectra suggest that both the soft excess and the powerlaw component are variable in nature.
The nature of the [O III] emission line system in the black hole hosting globular cluster RZ2109
NASA Astrophysics Data System (ADS)
Steele, Matthew M.
This work, focused on the description and understanding of the nature of a [O III] emission line source associated with an accreting stellar mass black hole in a globlar cluster, is comprised of three papers. In the first paper, we present a multi-facility study of the optical spectrum of the extra- galactic globular cluster RZ2109, which hosts a bright black hole X-ray source. The optical spectrum of RZ2109 shows strong and very broad [O III]lambdalambda4959,5007 emission in addition to the stellar absorption lines typical of a globular cluster. We use observations over an extended period of time to constrain the variability of these [O III] emission lines. We find that the equivalent width of the lines is similar in all of the datasets; the change in L[O III]lambda5007 is ≤ 10% between the first and last observations, which were separated by 467 days. The velocity profile of the line also shows no significant variability over this interval. Using a simple geometric model we demonstrate that the observed [O III]lambda5007 line velocity structure can be described by a two component model with most of the flux contributed by a bipolar conical outflow of about 1,600 km s -1 , and the remainder from a Gaussian component with a FWHM of several hundred km s-1 . In the second paper, we present an analysis of the elemental composition of the emission line system associated with the black hole hosting globular cluster RZ2109 located in NGC4472. From medium resolution GMOS optical spectroscopy we find a [O III]lambda5007/Hbeta emission line ratio of 106 for a 3200 km s-1 measurement aperture covering the full velocity width of the [O III]lambda5007 line, with a 95% confidence level lower and upper limits of [O III]lambda5007/Hbeta > 35.7 and < -110 (Hbeta absorption). For a narrower 600 km s-1 aperture covering the highest luminosity velocity structure in the line complex, we find [O III]lambda5007/Hbeta = 62, with corresponding 95% confidence lower and upper limits of > 30.2 and < -364. The measured [O III]lambda5007/Hbeta ratios are significantly higher than can be produced in radiative models of the emission line region with solar composition, and the confidence interval limits exclude all but the most extremely massive models. Therefore, we conclude that the region from which the [O III]lambda5007 emission originates must be hydrogen depleted relative to solar composition gas. This finding is consistent with emission from an accretion powered outflow driven by a hydrogen depleted donor star, such as a white dwarf, being accreted onto a black hole. In the third paper, we examine the variability of the [O III]lambdalambda4959,5007 emission line source in the NGC 4472 black hole hosting globular cluster RZ2109. Our continuing multi-facility monitoring program finds the strong emission line source had decreased 24+/-2 percent from the 2007-2010 mean levels in 2011 and 40+/-5 percent from the earlier mean in 2012. An analysis of the variability of the emission line velocity profile finds that the flux ratio of higher velocity 1600 km s-1 component to the lower velocity 300 km s-1 component has decreased 30 percent from 2009 to 2011, and the asymmetry between the red and blue wings of the profile has decreased 17 percent. We compare this variability to predictions of photoionized nova ejecta models of the emission line region, and discuss its implications for an accretion powered outflow from a CO WD-BH binary model.
Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakshit, Suvendu; Stalin, C. S., E-mail: suvenduat@gmail.com
We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V -band light curves from the Catalina Real Time Transient Survey that span 5–9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude thanmore » radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe ii strength but correlated with the width of the H β line. The well-known anti-correlation of variability–luminosity and the variability–Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.« less
Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Rakshit, Suvendu; Stalin, C. S.
2017-06-01
We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V-band light curves from the Catalina Real Time Transient Survey that span 5-9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude than radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe II strength but correlated with the width of the Hβ line. The well-known anti-correlation of variability-luminosity and the variability-Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.
Detection of low-metallicity warm plasma in a galaxy overdensity environment at z ˜ 0.2
NASA Astrophysics Data System (ADS)
Narayanan, Anand; Savage, Blair D.; Mishra, Preetish K.; Wakker, Bart P.; Khaire, Vikram; Wadadekar, Yogesh
2018-04-01
We present results from the analysis of a multiphase O VI-broad Ly α (BLA) absorber at z = 0.19236 in the HubbleSpaceTelescope/Cosmic Origins Spectrograph spectrum of PG 1121 + 422. The low and intermediate ionization metal lines in this absorber have a single narrow component, whereas the Ly α has a possible broad component with b({H {I}}) ˜ 71 km s-1. Ionization models favour the low and intermediate ions coming from a T ˜ 8500 K, moderately dense (n H ˜ 10 - 3 cm-3) photoionized gas with near solar metallicities. The weak O VI requires a separate gas phase that is collisionally ionized. The O VI coupled with BLA suggests T ˜ 3.2 × 105 K, with significantly lower metal abundance and ˜1.8 orders of magnitude higher total hydrogen column density compared to the photoionized phase. Sloan Digitial Sky Survey (SDSS) shows 12 luminous (>L*) galaxies in the ρ ≤ 5 Mpc, |Δv| ≤ 800 km s-1 region surrounding the absorber, with the absorber outside the virial bounds of the nearest galaxy. The warm phase of this absorber is consistent with being transition temperature plasma either at the interface regions between the hot intragroup gas and cooler photoionized clouds within the group, or associated with high velocity gas in the halo of a ≲L* galaxy. The absorber highlights the advantage of O VI-BLA absorbers as ionization model independent probes of warm baryon reserves.
NASA Astrophysics Data System (ADS)
Krtičková, I.; Krtička, J.
2018-06-01
Stars that exhibit a B[e] phenomenon comprise a very diverse group of objects in a different evolutionary status. These objects show common spectral characteristics, including the presence of Balmer lines in emission, forbidden lines and strong infrared excess due to dust. Observations of emission lines indicate illumination by an ultraviolet ionizing source, which is key to understanding the elusive nature of these objects. We study the ultraviolet variability of many B[e] stars to specify the geometry of the circumstellar environment and its variability. We analyse massive hot B[e] stars from our Galaxy and from the Magellanic Clouds. We study the ultraviolet broad-band variability derived from the flux-calibrated data. We determine variations of individual lines and the correlation with the total flux variability. We detected variability of the spectral energy distribution and of the line profiles. The variability has several sources of origin, including light absorption by the disc, pulsations, luminous blue variable type variations, and eclipses in the case of binaries. The stellar radiation of most of B[e] stars is heavily obscured by circumstellar material. This suggests that the circumstellar material is present not only in the disc but also above its plane. The flux and line variability is consistent with a two-component model of a circumstellar environment composed of a dense disc and an ionized envelope. Observations of B[e] supergiants show that many of these stars have nearly the same luminosity, about 1.9 × 105 L⊙, and similar effective temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dohyeong; Im, Myungshin; Kim, Ji Hoon
2015-01-01
We present 2.5-5.0 μm spectra of 83 nearby (0.002 < z < 0.48) and bright (K < 14 mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0 μm spectral region contains emission lines such as Brβ (2.63 μm), Brα (4.05 μm), and polycyclic aromatic hydrocarbons (3.3 μm), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selectedmore » from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ∼1100 K and ∼220 K, respectively, rather than the commonly cited hot dust temperature of 1500 K.« less
The corona of the broad-line radio galaxy 3C 390.3
Lohfink, A. M.; Ogle, P.; Tombesi, F.; ...
2015-11-13
We present the results from a joint Suzaku/NuSTAR broadband spectral analysis of 3C 390.3. The high quality data enables us to clearly separate the primary continuum from the reprocessed components allowing us to detect a high energy spectral cut-off (more » $${E}_{\\mathrm{cut}}={117}_{-14}^{+18}$$ keV), and to place constraints on the Comptonization parameters of the primary continuum for the first time. The hard over soft compactness is $${69}_{-24}^{+124}$$ and the optical depth is $${4.1}_{-3.6}^{+0.5},$$ this leads to an electron temperature of $${30}_{-8}^{+32}$$ keV. Expanding our study of the Comptonization spectrum to the optical/UV by studying the simultaneous Swift-UVOT data, we find indications that the compactness of the corona allows only a small fraction of the total UV/optical flux to be Comptonized. Our analysis of the reprocessed emission show that 3C 390.3 only has a small amount of reflection (R ~ 0.3), and of that the vast majority is from distant neutral matter. Furthermore, we also discover a soft-X-ray excess in the source, which can be described by a weak ionized reflection component from the inner parts of the accretion disk. In addition to the backscattered emission, we also detect the highly ionized iron emission lines Fe xxv and Fe xxvi.« less
2 Micron Spectroscopy within 0&farcs;3 of Sagittarius A*
Figer; Becklin; McLean; Gilbert; Graham; Larkin; Levenson; Teplitz; Wilcox; Morris
2000-04-10
We present moderate- (R approximately 2700) and high-resolution (R approximately 22,400) 2.0-2.4 µm spectroscopy of the central 0.1 arcsec2 of the Galaxy obtained with the facility near-infrared spectrometer (NIRSPEC) for the Keck II telescope. The composite spectra do not have any features attributable to the brightest stars in the central cluster; i.e., after background subtraction, W12CO&parl0;2-0&parr0;<2 Å. This stringent limit leads us to conclude that the majority, if not all, of the stars are hotter than typical red giants. Coupled with previously reported photometry, we conclude that the sources are likely OB main-sequence stars. In addition, the continuum slope in the composite spectrum is bluer than that of a red giant and is similar to that of the nearby hot star IRS 16NW. It is unlikely that they are late-type giants stripped of their outer envelopes because such sources would be much fainter than those observed. Given their inferred youth (tauage<20 Myr), we suggest the possibility that the stars have formed within 0.1 pc of the supermassive black hole. We find a newly identified broad-line component (VFWHM approximately 1000 km s-1) toward the 2.2178 µm [Fe iii] line located within a few arcseconds of Sagittarius A*. A similar component is not seen in the Brgamma emission.
Global e-VLBI observations of the gamma-ray narrow line Seyfert 1 PMN J0948+0022
NASA Astrophysics Data System (ADS)
Giroletti, M.; Paragi, Z.; Bignall, H.; Doi, A.; Foschini, L.; Gabányi, K. É.; Reynolds, C.; Blanchard, J.; Campbell, R. M.; Colomer, F.; Hong, X.; Kadler, M.; Kino, M.; van Langevelde, H. J.; Nagai, H.; Phillips, C.; Sekido, M.; Szomoru, A.; Tzioumis, A. K.
2011-04-01
Context. There is growing evidence of relativistic jets in radio-loud narrow-line Seyfert 1 (RL-NLS1) galaxies. Aims: We constrain the observational properties of the radio emission in the first RL-NLS1 galaxy ever detected in gamma-rays, PMN J0948+0022, i.e., its flux density and structure in both total intensity and polarization, its compactness, and variability. Methods: We performed three real-time e-VLBI observations of PMN J0948+0022 at 22 GHz, using a global array including telescopes in Europe, East Asia, and Australia. These are the first e-VLBI science observations ever carried out with a global array, reaching a maximum baseline length of 12 458 km. The observations were part of a large multiwavelength campaign in 2009. Results: The source is detected at all three epochs. The structure is dominated by a bright component, more compact than 55 μas, with a fainter component at a position angle θ ~ 35°. Relativistic beaming is required by the observed brightness temperature of 3.4 × 1011 K. Polarization is detected at a level of about 1%. Conclusions: The parameters derived by the VLBI observations, in addition to the broad-band properties, confirm that PMN J0948+0022 is similar to flat spectrum radio quasars. Global e-VLBI is a reliable and promising technique for future studies.
Nistor, Sergiu V; Stefan, Mariana; Goovaerts, Etienne; Ramaz, François; Briat, Bernard
2015-10-01
The sites of incorporation of Cu(2+) impurity ions in Bi12GeO20 single crystals co-doped with copper and vanadium have been investigated by electron paramagnetic resonance (EPR). While the X-band EPR spectra consist of a simple broad (ΔB ∼50 mT) line with anisotropic lineshape, the W-band EPR spectra exhibit well resolved, strongly anisotropic lines, due to transitions within the 3d(9)-(2)D ground manifold of the Cu(2+) ions. The most intense group of lines, attributed to the dominant Cu(2+)(I) center, displays a characteristic four components hyperfine structure for magnetic field orientations close to a 〈110〉 direction. The g and A tensor main axes are very close to one of the 12 possible sets of orthogonal 〈1-10〉, 〈00-1〉 and 〈110〉 crystal directions. Several less intense lines, with unresolved hyperfine structure and similar symmetry properties, mostly overlapped by the Cu(2+)(I) spectrum, were attributed to Cu(2+)(II) centers. The two paramagnetic centers are identified as substitutional Cu(2+) ions at Bi(3+) sites with low C1 symmetry, very likely resulting from different configurations of neighboring charge compensating defects. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier O.; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Kawamuro, Taiki
2018-03-01
The origin of the narrow Fe-Kα fluorescence line at 6.4 keV from active galactic nuclei has long been under debate; some of the possible sites are the outer accretion disk, the broad line region, a molecular torus, or interstellar/intracluster media. In 2016 February-March, we performed the first X-ray microcalorimeter spectroscopy with the Soft X-ray Spectrometer (SXS) on board the Hitomi satellite of the Fanaroff-Riley type I radio galaxy NGC 1275 at the center of the Perseus cluster of galaxies. With the high-energy resolution of ˜5 eV at 6 keV achieved by Hitomi/SXS, we detected the Fe-Kα line with ˜5.4 σ significance. The velocity width is constrained to be 500-1600 km s-1 (FWHM for Gaussian models) at 90% confidence. The SXS also constrains the continuum level from the NGC 1275 nucleus up to ˜20 keV, giving an equivalent width of ˜20 eV for the 6.4 keV line. Because the velocity width is narrower than that of the broad Hα line of ˜2750 km s-1, we can exclude a large contribution to the line flux from the accretion disk and the broad line region. Furthermore, we performed pixel map analyses on the Hitomi/SXS data and image analyses on the Chandra archival data, and revealed that the Fe-Kα line comes from a region within ˜1.6 kpc of the NGC 1275 core, where an active galactic nucleus emission dominates, rather than that from intracluster media. Therefore, we suggest that the source of the Fe-Kα line from NGC 1275 is likely a low-covering-fraction molecular torus or a rotating molecular disk which probably extends from a parsec to hundreds of parsecs scale in the active galactic nucleus system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Wang, JunXian; Zheng, Zhen-Ya
Using the Lyα emission line as a tracer of high-redshift, star-forming galaxies, hundreds of Lyα emission line galaxies (LAEs) at z > 5 have been detected. These LAEs are considered to be low-mass young galaxies, critical to the re-ionization of the universe and the metal enrichment of the circumgalactic medium (CGM) and the intergalactic medium (IGM). It is assumed that outflows in LAEs can help both ionizing photons and Lyα photons escape from galaxies. However, we still know little about the outflows in high-redshift LAEs due to observational difficulties, especially at redshift >5. Models of Lyα radiative transfer predict asymmetricmore » Lyα line profiles with broad red wings in LAEs with outflows. Here, we report a z ∼ 5.7 Lyα emission line with a broad red wing extending to >1000 km s{sup –1} relative to the peak of Lyα line, which has been detected in only a couple of z > 5 LAEs until now. If the broad red wing is ascribed to gas outflow instead of active galactic nucleus activity, the outflow velocity could be larger than the escape velocity (∼500 km s{sup –1}) of a typical halo mass of z ∼ 5.7 LAEs, which is consistent with the idea that outflows in LAEs disperse metals to CGM and IGM.« less
Genetic potential of black bean genotypes with predictable behaviors in multienvironment trials.
Torga, P P; Melo, P G S; Pereira, H S; Faria, L C; Melo, L C
2016-10-24
The aim of this study was to evaluate the phenotypic stability and specific and broad adaptability of common black bean genotypes for the Central and Center-South regions of Brazil by using the Annicchiarico and AMMI (weighted average of absolute scores: WAAS, and weighted average of absolute scores and productivity: WAASP) methodologies. We carried out 69 trials, with 43 and 26 trials in the Central and Center-South regions, respectively. Thirteen genotypes were evaluated in a randomized block design with three replications, during the rainy, dry, and winter seasons in 2 years. To obtain estimates of specific adaptation, we analyzed the parameters for each method obtained in the two geographic regions separately. To estimate broad adaptation, we used the average of the parameters obtained from each region. The lines identified with high specific adaptation in each region were not the same based on the Annicchiarico and AMMI (WAAS) methodologies. It was not possible to identify the same genotypes with specific or broad stability by using these methods. By contrast, the Annicchiarico and AMMI (WAASP) methods presented very similar estimates of broad and specific adaptation. Based on these methods, the lines with more specific adaptation were CNFP 8000 and CNFP 7994, in the Central and Center-South regions, respectively, of which the CNFP 8000 line was more widely adapted.
A Reverberation-based Black Hole Mass for MCG-06-30-15
NASA Astrophysics Data System (ADS)
Bentz, Misty C.; Cackett, Edward M.; Crenshaw, D. Michael; Horne, Keith; Street, Rachel; Ou-Yang, Benjamin
2016-10-01
We present the results of a reverberation campaign targeting MGC-06-30-15. Spectrophotometric monitoring and broad-band photometric monitoring over the course of four months in spring 2012 allowed a determination of a time delay in the broad Hβ emission line of τ = 5.3 ± 1.8 days in the rest frame of the active galactic nucleus (AGN). Combined with the width of the variable portion of the emission line, we determine a black hole mass of M BH = (1.6 ± 0.4) × 106 M ⊙. Both the Hβ time delay and the black hole mass are in good agreement with expectations from the R BLR-L and M BH-σ ⋆ relationships for other reverberation-mapped AGNs. The Hβ time delay is also in good agreement with the relationship between Hβ and broad-band near-IR delays, in which the effective size of the broad-line region is ˜4-5 times smaller than the inner edge of the dust torus. Additionally, the reverberation-based mass is in good agreement with estimates from the scaling relationship of the break in the X-ray power spectral density, and with constraints based on stellar kinematics derived from integral field spectroscopy of the inner ˜0.5 kpc of the galaxy.
NASA Astrophysics Data System (ADS)
Hirabayashi, Atsumu; Nambu, Yoshihiro; Fujimoto, Takashi
1986-10-01
The problem of excitation anisotropy in laser-induced-fluorescence spectroscopy (LIFS) was investigated for the intense excitation case under the broad-line condition. The depolarization coefficient for the fluorescence light was derived in the intense-excitation limit (linearly-polarized or unpolarized light excitation) and the results are presented in tables. In the region of intermediate intensity, between the weak and intense-excitation limits, the master equation was solved for a specific example of atomic transitions and its result is compared with experimental results.
NASA Technical Reports Server (NTRS)
Arav, Nahum
2002-01-01
The main aim of this research program is to determine the ionization equilibrium and abundances in quasar outflows. Especially in the broad absorption line QSO PG 0946+301. We find that the outflow's metalicity is consistent with being solar, while the abundance ratio of phosphorus to other metals is at least ten times solar. These findings are based on diagnostics that are not sensitive to saturation and partial covering effects in the BALs (Broad Adsorption Lines), which considerably weakened previous claims for enhanced metalicity. Ample evidence for these effects is seen in the spectrum.
Integrated Photonic Comb Generation: Applications in Coherent Communication and Sensing
NASA Astrophysics Data System (ADS)
Parker, John S.
Integrated photonics combines many optical components including lasers, modulators, waveguides, and detectors in close proximity via homogeneous (monolithic) or heterogeneous (using multiple materials) integration. This improves stability for interferometers and lasers, reduces the occurrence of unwanted reflections, and it avoids coupling losses between different components as they are on the same chip. Thus, less power is needed to compensate for these added losses, and less heat needs to be removed due to these power savings. In addition, integration allows the many components that comprise a system to be fabricated together, thereby reducing the cost per system and allowing rapid scaling in production throughput. Integrated optical combs have many applications including: metrology, THz frequency generation, arbitrary waveform generation, optical clocks, photonic analog-to-digital converters, sensing (imaging), spectroscopy, and data communication. A comb is a set of optical sources evenly spaced in frequency. Several methods of comb generation including mode-locking and optical parametric oscillation produce phase-matched optical outputs with a fixed phase relationship between the frequency lines. When the absolute frequency of a single comb line is stabilized along with the frequency spacing between comb lines, absolute phase and frequency precision can be achieved over the entire comb bandwidth. This functionality provides tremendous benefits to many applications such as coherent communication and optical sensing. The goals for this work were achieving a broad comb bandwidth and noise reduction, i.e., frequency and phase stability. Integrated mode-locked lasers on the InGaAsP/InP material platform were chosen, as they could be monolithically integrated with the wide range of highly functional and versatile photonic integrated circuits (PICs) previously demonstrated on this platform at UCSB. Gain flattening filters were implemented to increase the comb bandwidths to 2.5 THz. Active mode-locking with an RF source was used to precisely set the frequency spacing between comb lines with better than 10 Hz accuracy. An integrated optical phase-locked loop (OPLL) for the comb was designed, built, and tested. The OPLL fixed a single comb line to a stable single linewidth laser, demonstrating a ˜430 Hz FWHM optical linewidth on the locked comb line and 20º RMS phase deviation between the comb and optical reference. The free-running linewidth is 50--100 MHz, demonstrating over 50 dB improvement in optical linewidth via locking. An integrated tunable laser (SG-DBR) with an OPLL was phase-locked to a comb source with a fixed offset frequency, thus showing the potential for using a comb with SG-DBRs as a compact frequency synthesizer.
X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignace, R.; Waldron, W. L.; Cassinelli, J. P.
2012-05-01
The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles,more » a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.« less
An Extreme, Blueshifted Iron Line in the Narrow Line Seyfert 1 PG 1402+261
NASA Technical Reports Server (NTRS)
Reeves, J. N.; Porquet, D.; Turner, T. J.
2004-01-01
We report on a short, XMM-Newton observation of the radio-quiet Narrow Line Seyfert 1 PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6 - 9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad energy at 7.3 keV appears blue-shifted with respect to the iron Kalpha emission band between 6.4 - 6.97 keV, whilst the blue-wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of greater than 60 degrees is required to model the extreme blue-wing of the line. Furthermore the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG1402+261 above 2 keV is dominated by the pure-reflection component from the disk, whilst little or none of the direct hard power-law is observed. Alternatively the spectrum above 2 keV may instead be explained by an ionized absorber, if the column density is sufficiently high (NH greater than 3 x 10(exp 23) per square centimeter) and if the matter is ionized enough to produce a deep (tau approximately equal to 1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high velocity outflow, perhaps similar to those which appear to be observed in several other high accretion rate AGN. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection or outflow scenarios.
Distance determination to Broad Line Absorbers in AGN
NASA Astrophysics Data System (ADS)
Bautista, Manuel; Arav, N.; Dunn, J.; Edmonds, D.; Korista, K. T.; Moe, M.; Benn, C.; Ignacio, G.
2009-01-01
We present various techniques for the determination of the physical conditions (density, temperature, total hydrogen column density, and ionization structure), chemical composition, and distances of Broad Line Absorbers (BAL) to the central engine in AGN. We start by discussing various density diagnostics from absorption lines from species such as C II, Si II, and Fe III. On the other hand, lines from metastable levels Fe II are often affected by Bowen fluorescence by scattered C IV photons. Lines from metastable levels of Ni II are usually excited by continuum fluorescence and mostly sensitive to the strength of the radiation field shortward of the Lyman continuum and as such they cam be used as direct distance indicators. Further, we show how the total hydrogen density of the absorber, its ionization parameter and distance can be determined through photoionization modeling of the absorber. Finally, we present our results for outflows of three different quasars: QSO 2359-1241 and SDSS J0318-0600.
NASA Technical Reports Server (NTRS)
Clark, P. E.; Andre, C. G.; Adler, I.; Weidner, J.; Podwysocki, M.
1976-01-01
The positive correlation between Al/Si X-ray fluorescence intensity ratios determined during the Apollo 15 lunar mission and a broad-spectrum visible albedo of the moon is quantitatively established. Linear regression analysis performed on 246 1 degree geographic cells of X-ray fluorescence intensity and visible albedo data points produced a statistically significant correlation coefficient of .78. Three distinct distributions of data were identified as (1) within one standard deviation of the regression line, (2) greater than one standard deviation below the line, and (3) greater than one standard deviation above the line. The latter two distributions of data were found to occupy distinct geographic areas in the Palus Somni region.
Herschel PACS and SPIRE Observations of Blazar PKS 1510-089: A Case for Two Blazar Zones
Nalewajko, Krzysztof; Sikora, Marek; Madejski, Greg M.; ...
2012-11-06
In this paper, we present the results of observations of blazar PKS 1510–089 with the Herschel Space Observatory PACS and SPIRE instruments, together with multiwavelength data from Fermi/LAT, Swift, SMARTS, and Submillimeter Array. The source was found in a quiet state, and its far-infrared spectrum is consistent with a power law with a spectral index of α ≃ 0.7. Our Herschel observations were preceded by two "orphan" gamma-ray flares. The near-infrared data reveal the high-energy cutoff in the main synchrotron component, which cannot be associated with the main gamma-ray component in a one-zone leptonic model. This is because in suchmore » a model the luminosity ratio of the external-Compton (EC) and synchrotron components is tightly related to the frequency ratio of these components, and in this particular case an unrealistically high energy density of the external radiation would be implied. Therefore, we consider a well-constrained two-zone blazar model to interpret the entire data set. Finally, in this framework, the observed infrared emission is associated with the synchrotron component produced in the hot-dust region at the supra-parsec scale, while the gamma-ray emission is associated with the EC component produced in the broad-line region at the sub-parsec scale. In addition, the optical/UV emission is associated with the accretion disk thermal emission, with the accretion disk corona likely contributing to the X-ray emission.« less
Multioriented and curved text lines extraction from Indian documents.
Pal, U; Roy, Partha Pratim
2004-08-01
There are printed artistic documents where text lines of a single page may not be parallel to each other. These text lines may have different orientations or the text lines may be curved shapes. For the optical character recognition (OCR) of these documents, we need to extract such lines properly. In this paper, we propose a novel scheme, mainly based on the concept of water reservoir analogy, to extract individual text lines from printed Indian documents containing multioriented and/or curve text lines. A reservoir is a metaphor to illustrate the cavity region of a character where water can be stored. In the proposed scheme, at first, connected components are labeled and identified either as isolated or touching. Next, each touching component is classified either straight type (S-type) or curve type (C-type), depending on the reservoir base-area and envelope points of the component. Based on the type (S-type or C-type) of a component two candidate points are computed from each touching component. Finally, candidate regions (neighborhoods of the candidate points) of the candidate points of each component are detected and after analyzing these candidate regions, components are grouped to get individual text lines.
SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra
NASA Astrophysics Data System (ADS)
Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.
2017-01-01
Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.
Study of transmission line attenuation in broad band millimeter wave frequency range.
Pandya, Hitesh Kumar B; Austin, M E; Ellis, R F
2013-10-01
Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.
Schmidt, Kevin M.; Ellen, Stephen D.; Peterson, David M.
2014-01-01
To gain additional measurement of any permanent ground deformation that accompanied this damage, we compiled and conducted post-earthquake surveys along two 5-km lines of horizontal control and a 15-km level line. Measurements of horizontal distortion indicate approximately 0.1 m shortening in a NE-SW direction across the valley margin, similar to the amount measured in the channel lining. Evaluation of precise leveling by the National Geodetic Survey showed a downwarp, with an amplitude of >0.1 m over a span of >12 km, that resembled regional geodetic models of coseismic deformation. Although the leveling indicates broad, regional warping, abrupt discontinuities characteristic of faulting characterize both the broad-scale distribution of damage and the local deformation of the channel lining. Reverse movement largely along preexisting faults and probably enhanced significantly by warping combined with enhanced ground shaking, produced the documented coseismic ground deformation.
Infrared radiation models for atmospheric methane
NASA Technical Reports Server (NTRS)
Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.
1986-01-01
Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.
Vanishing absorption and blueshifted emission in FeLoBAL quasars
NASA Astrophysics Data System (ADS)
Rafiee, Alireza; Pirkola, Patrik; Hall, Patrick B.; Galati, Natalee; Rogerson, Jesse; Ameri, Abtin
2016-07-01
We study the dramatic decrease in iron absorption strength in the iron low-ionization broad absorption line quasar SDSS J084133.15+200525.8. We report on the continued weakening of absorption in the prototype of this class of variable broad absorption line quasar, FBQS J140806.2+305448. We also report a third example of this class, SDSS J123103.70+392903.6; unlike the other two examples, it has undergone an increase in observed continuum brightness (at 3000 Å rest frame) as well as a decrease in iron absorption strength. These changes could be caused by absorber transverse motion or by ionization variability. We note that the Mg II and UV Fe II lines in several FeLoBAL quasars are blueshifted by thousands of km s-1 relative to the H β emission line peak. We suggest that such emission arises in the outflowing winds normally seen only in absorption.
Iron lines in model disk spectra of Galactic black hole binaries
NASA Astrophysics Data System (ADS)
Różańska, A.; Madej, J.; Konorski, P.; SaḐowski, A.
2011-03-01
Context. We present angle-dependent, broad-band intensity spectra from accretion disks around black holes of 10 M⊙. In our computations disks are assumed to be slim, which means that the radial advection is taken into account while computing the effective temperature of the disk. Aims: We attempt to reconstruct continuum and line spectra of X-ray binaries in soft state, i.e. dominated by the disk component of multitemperature shape. We follow how the iron-line complex depends on the external irradiation, an accretion rate, and a black hole spin. Methods: Full radiative transfer is solved including effects of Compton scattering, free-free and all important bound-free transitions of 10 main elements. We assume the LTE equation of state. Moreover, we include here the fundamental series of iron lines from helium-like and hydrogen-like ions, and fluorescent Kα and Kβ lines from low ionized iron. We consider two cases: nonrotating black hole, and black hole rotating with almost maximum spin a = 0.98, and obtain spectra for five accretion disks from hard X-rays to the infrared. Results: In nonirradiated disks, resonance lines from He-like and H-like iron appear mostly in absorption. Such disk spectra exhibit limb darkening in the whole energy range. External irradiation causes that iron resonance lines appear in emission. Furthermore, depending on disk effective temperature, fluorescent iron Kα and Kβ lines are present in disk emitting spectra. All models with irradiation exhibit limb brightening in their X-ray reflected continua. Conclusions: We show that the disk around stellar black hole itself is hot enough to produce strong-absorption resonance lines of iron. Emission lines can only be observed if heating by external X-rays dominates thermal processess in a hot disk atmosphere. Irradiated disks are usually brighter in X-ray continuum when seen edge on, and fainter when seen face on.
Pei, L.; Fausnaugh, M. M.; Barth, A. J.; ...
2017-03-10
Here, we present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum bymore » $${4.17}_{-0.36}^{+0.36}\\,\\mathrm{days}$$ and $${0.79}_{-0.34}^{+0.35}\\,\\mathrm{days}$$, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ~50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ~50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He II(+O III]), and Si Iv(+O Iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR–L AGN relation based on the past behavior of NGC 5548.« less
NASA Astrophysics Data System (ADS)
Pei, L.; Fausnaugh, M. M.; Barth, A. J.; Peterson, B. M.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Goad, M. R.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Pogge, R. W.; Bennert, V. N.; Brotherton, M.; Clubb, K. I.; Dalla Bontà, E.; Filippenko, A. V.; Greene, J. E.; Grier, C. J.; Vestergaard, M.; Zheng, W.; Adams, Scott M.; Beatty, Thomas G.; Bigley, A.; Brown, Jacob E.; Brown, Jonathan S.; Canalizo, G.; Comerford, J. M.; Coker, Carl T.; Corsini, E. M.; Croft, S.; Croxall, K. V.; Deason, A. J.; Eracleous, Michael; Fox, O. D.; Gates, E. L.; Henderson, C. B.; Holmbeck, E.; Holoien, T. W.-S.; Jensen, J. J.; Johnson, C. A.; Kelly, P. L.; Kim, S.; King, A.; Lau, M. W.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; Manne-Nicholas, E. R.; Mauerhan, J. C.; Malkan, M. A.; McGurk, R.; Morelli, L.; Mosquera, Ana; Mudd, Dale; Muller Sanchez, F.; Nguyen, M. L.; Ochner, P.; Ou-Yang, B.; Pancoast, A.; Penny, Matthew T.; Pizzella, A.; Poleski, Radosław; Runnoe, Jessie; Scott, B.; Schimoia, Jaderson S.; Shappee, B. J.; Shivvers, I.; Simonian, Gregory V.; Siviero, A.; Somers, Garrett; Stevens, Daniel J.; Strauss, M. A.; Tayar, Jamie; Tejos, N.; Treu, T.; Van Saders, J.; Vican, L.; Villanueva, S., Jr.; Yuk, H.; Zakamska, N. L.; Zhu, W.; Anderson, M. D.; Arévalo, P.; Bazhaw, C.; Bisogni, S.; Borman, G. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Cackett, E. M.; Carini, M. T.; Crenshaw, D. M.; De Lorenzo-Cáceres, A.; Dietrich, M.; Edelson, R.; Efimova, N. V.; Ely, J.; Evans, P. A.; Ferland, G. J.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Grupe, D.; Gupta, A.; Hall, P. B.; Hicks, S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, M.; Kim, S. C.; Klimanov, S. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; MacInnis, F.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Netzer, H.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Papadakis, I.; Parks, J. R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schnülle, K.; Sergeev, S. G.; Siegel, M.; Skielboe, A.; Spencer, M.; Starkey, D.; Sung, H.-I.; Teems, K. G.; Turner, C. S.; Uttley, P.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zu, Y.
2017-03-01
We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum by {4.17}-0.36+0.36 {days} and {0.79}-0.34+0.35 {days}, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ˜50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ˜50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He II emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C IV, Lyα, He II(+O III]), and Si IV(+O IV]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR-L AGN relation based on the past behavior of NGC 5548.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sameshima, H.; Yoshii, Y.; Kawara, K., E-mail: sameshima@cc.kyoto-su.ac.jp
2017-01-10
We present an analysis of Mg ii λ 2798 and Fe ii UV emission lines for archival Sloan Digital Sky Survey (SDSS) quasars to explore the diagnostics of the magnesium-to-iron abundance ratio in a broad-line region cloud. Our sample consists of 17,432 quasars selected from the SDSS Data Release 7 with a redshift range of 0.72 < z < 1.63. A strong anticorrelation between the Mg ii equivalent width (EW) and the Eddington ratio is found, while only a weak positive correlation is found between the Fe ii EW and the Eddington ratio. To investigate the origin of these differing behaviors ofmore » Mg ii and Fe ii emission lines, we perform photoionization calculations using the Cloudy code, where constraints from recent reverberation mapping studies are considered. We find from calculations that (1) Mg ii and Fe ii emission lines are created at different regions in a photoionized cloud, and (2) their EW correlations with the Eddington ratio can be explained by just changing the cloud gas density. These results indicate that the Mg ii/Fe ii flux ratio, which has been used as a first-order proxy for the Mg/Fe abundance ratio in chemical evolution studies with quasar emission lines, depends largely on the cloud gas density. By correcting this density dependence, we propose new diagnostics of the Mg/Fe abundance ratio for a broad-line region cloud. In comparing the derived Mg/Fe abundance ratios with chemical evolution models, we suggest that α -enrichment by mass loss from metal-poor intermediate-mass stars occurred at z ∼ 2 or earlier.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.; Fausnaugh, M. M.; Barth, A. J.
Here, we present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum bymore » $${4.17}_{-0.36}^{+0.36}\\,\\mathrm{days}$$ and $${0.79}_{-0.34}^{+0.35}\\,\\mathrm{days}$$, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ~50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ~50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He II(+O III]), and Si Iv(+O Iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR–L AGN relation based on the past behavior of NGC 5548.« less
Brasser, Susan M.; Silbaugh, Bryant C.; Ketchum, Myles J.; Olney, Jeffrey J.; Lemon, Christian H.
2011-01-01
Alcohol activates orosensory circuits that project to motivationally relevant limbic forebrain areas that control appetite, feeding and drinking. To date, limited data exists regarding the contribution of chemosensory-derived ethanol reinforcement to ethanol preference and consumption. Measures of taste reactivity to intra-orally infused ethanol have not found differences in initial orofacial responses to alcohol between alcohol-preferring (P) and – nonpreferring (NP) genetically selected rat lines. Yet, in voluntary intake tests P rats prefer highly-concentrated ethanol upon initial exposure, suggesting an early sensory-mediated attraction. Here, we directly compared self-initiated chemosensory responding for alcohol and prototypic sweet, bitter, and oral trigeminal stimuli among selectively bred P, NP, and non-selected Wistar (WI) outbred lines to determine whether differential sensory responsiveness to ethanol and its putative sensory components are phenotypically associated with genetically-influenced alcohol preference. Rats were tested for immediate short-term lick responses to alcohol (3–40%), sucrose (0.01–1 M), quinine (0.01–3 mM) and capsaicin (0.003–1 mM) in a brief-access assay designed to index orosensory-guided behavior. P rats exhibited elevated short-term lick responses to both alcohol and sucrose relative to NP and WI lines across a broad range of concentrations of each stimulus and in the absence of blood alcohol levels that would produce significant postabsorptive effects. There was no consistent relationship between genetically-mediated alcohol preference and orosensory avoidance of quinine or capsaicin. These data indicate that enhanced initial chemosensory attraction to ethanol and sweet stimuli are phenotypes associated with genetic alcohol preference and are considered within the framework of downstream activation of oral appetitive reward circuits. PMID:22129513
Brasser, Susan M; Silbaugh, Bryant C; Ketchum, Myles J; Olney, Jeffrey J; Lemon, Christian H
2012-03-01
Alcohol activates orosensory circuits that project to motivationally relevant limbic forebrain areas that control appetite, feeding and drinking. To date, limited data exists regarding the contribution of chemosensory-derived ethanol reinforcement to ethanol preference and consumption. Measures of taste reactivity to intra-orally infused ethanol have not found differences in initial orofacial responses to alcohol between alcohol-preferring (P) and alcohol-non-preferring (NP) genetically selected rat lines. Yet, in voluntary intake tests, P rats prefer highly concentrated ethanol upon initial exposure, suggesting an early sensory-mediated attraction. Here, we directly compared self-initiated chemosensory responding for alcohol and prototypic sweet, bitter and oral trigeminal stimuli among selectively bred P, NP and non-selected Wistar (WI) outbred lines to determine whether differential sensory responsiveness to ethanol and its putative sensory components are phenotypically associated with genetically influenced alcohol preference. Rats were tested for immediate short-term lick responses to alcohol (3-40%), sucrose (0.01-1 M), quinine (0.01-3 mM) and capsaicin (0.003-1 mM) in a brief-access assay designed to index orosensory-guided behavior. P rats exhibited elevated short-term lick responses to both alcohol and sucrose relative to NP and WI lines across a broad range of concentrations of each stimulus and in the absence of blood alcohol levels that would produce significant post-absorptive effects. There was no consistent relationship between genetically mediated alcohol preference and orosensory avoidance of quinine or capsaicin. These data indicate that enhanced initial chemosensory attraction to ethanol and sweet stimuli are phenotypes associated with genetic alcohol preference and are considered within the framework of downstream activation of oral appetitive reward circuits. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.
An XMM-Newton Observation of the Seyfert Galaxy 1H0419-577 in an Extreme Low State
NASA Technical Reports Server (NTRS)
Pounds, K. A.; Reeves, J. N.; Page, K. L.; O'Brien, P. T.
2003-01-01
Previous observations of the luminous Seyfert galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma approx. 1.9 to a much flatter power law of Gamma approx. 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma approx. 1.0) which exhibits broad features that can be modelled with the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419- 577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicates the dominant spectral variability occurs via a steep power law component.
The standard model and some new directions. [for scientific theory of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Blandford, R. D.; Rees, M. J.
1992-01-01
A 'standard' model of Active Galactic Nuclei (AGN), based upon a massive black hole surrounded by a thin accretion disk, is defined. It is argued that, although there is good evidence for the presence of black holes and orbiting gas, most of the details of this model are either inadequate or controversial. Magnetic field may be responsible for the confinement of continuum and line-emitting gas, for the dynamical evolution of accretion disks and for the formation of jets. It is further argued that gaseous fuel is supplied in molecular form and that this is responsible for thermal re-radiation, equatorial obscuration and, perhaps, the broad line gas clouds. Stars may also supply gas close to the black hole, especially in low power AGN and they may be observable in discrete orbits as probes of the gravitational field. Recent observations suggest that magnetic field, stars, dusty molecular gas and orientation effects must be essential components of a complete description of AGN. The discovery of quasars with redshifts approaching 5 is an important clue to the mechanism of galaxy formation.
Interstellar absorption lines in the spectrum of sigma Sco using Copernicus observations
NASA Technical Reports Server (NTRS)
Allen, M. M.; Snow, T. P.
1986-01-01
Since the launch of Copernicus in 1972, studies have been made of the depletion of gas-phase elements onto dust grains. A few stars have been studied in detail, resulting in a standard depletion pattern which has since been used for comparison. Recent developments, however, have suggested that this standard pattern may need to be re-examined. Some weak, semi-forbidden lines were detected recently which may be able to resolve some of the ambiguities. Studies of single elements have shown that depletion of carbon and oxgyen are much smaller than previously determined. The high resolution ultraviolet spectral scans of sigma Sco were originally made in 1973, but have only recently been analyzed. All these stars are bright and moderately reddened. All four stars will be analyzed in detail, but sigma Sco is the first one completed. The data has broad coverage of ions, making these stars excellent candidates for determination of accurate depletions. A profile-fitting analysis was used rather than curves-of-growth in order to determine separate abundances and depletions in components separated by several km/sec.
Evidence for a supermassive black hole in the nucleus of the Seyfert galaxy NGC 5548
NASA Technical Reports Server (NTRS)
Crenshaw, D. Michael; Blackwell, James H., Jr.
1990-01-01
The international campaign to monitor the variable Seyfert 1 galaxy NGC 5548 with the IUE has provided an extensive and well-sampled set of spectroscopic observations. These observations are used to study the response of the C IV 1550 A emission-line profile to changes in the photoionizing continuum. Near the end of the IUE campaign, the continuum flux at 1440 A and the total C IV flux dopped by factors of 2.9 and 1.8, respectively, in 16 days. The red wing of the C IV profile responded more rapidly to the sharp continuum drop than the blue wing, indicating that clouds in the inner broad-line region (BLR) are undergoing gravitational infall. These results provide direct evidence that the central engine is a supermassive object, presumably a black hole, with a mass on the order of 10 to the 7th solar masses. Analysis of the profile variations also demonstrates that excess emission in the blue wing of C IV is from a component that is physically distinct from the bulk of the BLR.
An XMM-Newton Observation of the Seyfert 1 Galaxy 1H 0419-577 in an Extreme Low State
NASA Technical Reports Server (NTRS)
Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.
2004-01-01
Previous observations of the luminous Seyfert 1 galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma approx. 1.9 to a much flatter power law of Gamma approx. 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma approx. 1.0), which exhibits broad features that can be modelled myth the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419-577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was 'X-ray bright' indicates the dominant spectral variability occurs via a steep power law component.
NASA Astrophysics Data System (ADS)
Izotov, Y. I.; Guseva, N. G.; Fricke, K. J.; Henkel, C.
2011-09-01
Context. We present VLT/X-shooter spectroscopic observations in the wavelength range λλ3000-23 000 Å of the extremely metal-deficient blue compact dwarf (BCD) galaxy PHL 293B containing a luminous blue variable (LBV) star and compare them with previous data. Aims: This BCD is one of the two lowest-metallicity galaxies where LBV stars were detected, allowing us to study the LBV phenomenon in the extremely low metallicity regime. Methods: We determine abundances of nitrogen, oxygen, neon, sulfur, argon, and iron by analyzing the fluxes of narrow components of the emission lines using empirical methods and study the properties of the LBV from the fluxes and widths of broad emission lines. Results: We derive an interstellar oxygen abundance of 12+log O/H = 7.71 ± 0.02, which is in agreement with previous determinations. The observed fluxes of narrow Balmer, Paschen and Brackett hydrogen lines correspond to the theoretical recombination values after correction for extinction with a single value C(Hβ) = 0.225. This implies that the star-forming region observed in the optical range is the only source of ionisation and there is no additional source of ionisation that is seen in the NIR range but is hidden in the optical range. We detect three v = 1-0 vibrational lines of molecular hydrogen. Their flux ratios and non-detection of v = 2-1 and 3-1 emission lines suggest that collisional excitation is the main source producing H2 lines. For the LBV star in PHL 293B we find broad emission with P Cygni profiles in several Balmer hydrogen emission lines and for the first time in several Paschen hydrogen lines and in several He i emission lines, implying temporal evolution of the LBV on a time scale of 8 years. The Hα luminosity of the LBV star is by one order of magnitude higher than the one obtained for the LBV star in NGC 2363 ≡ Mrk 71 which has a slightly higher metallicity 12+logO/H = 7.87. The terminal velocity of the stellar wind in the low-metallicity LBV of PHL293B is high, ~800 km s-1, and is comparable to that seen in spectra of some extragalactic LBVs during outbursts. We find that the averaged terminal velocities derived from the Paschen and He i emission lines are by some ~40-60 km s-1 lower than those derived from the Balmer emission lines. This probably indicates the presence of the wind accelerating outward. Based on observations collected at the European Southern Observatory, Chile, ESO program 60.A-9442(A).The reduced data in Figures 1 and 2 are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A25
An XMM-Newton Study of the Bright Narrow-Line Seyfert 1 Galaxy Arakelian 564
NASA Technical Reports Server (NTRS)
Brandt, Niel
2004-01-01
We report on two XMM-Newton observations of the bright Narrow-Line Seyfert 1 galaxy Ark 564 taken one year apart (2000 June and 2001 June). The 0.6-10 keV continuum is well described by a soft blackbody component (kT - 140-150 eV) plus a steep power law (Gamma - 2.50-2.55). No significant spectral changes are observed between the two observations, although the X-ray flux in the second observation is - 40-50 per cent lower. In both observations we detect a significant absorption edge at a rest-frame energy of - 0.73 keV, corresponding to 0 VII. The presence of the absorption feature is confirmed by a simultaneous Chandra grating observation in 2000 June, although the best-fitting edge threshold is at a slightly lower energy in the Chandra data, possibly because of a different parameterization of the underlying X-ray continuum. We find tentative evidence for a broad iron emission line in the 2000 June observation. The results from an analysis of the power spectral density (PSD) function are also presented. The present XMM-Newton data support the idea that the PSD shows two breaks, although the location of the high-frequency break requires further constraints.
NASA Astrophysics Data System (ADS)
Gaskell, C. Martin; Harrington, Peter Z.
2018-04-01
The profiles of the broad emission lines of active galactic nuclei (AGNs) and the time delays in their response to changes in the ionizing continuum ("lags") give information about the structure and kinematics of the inner regions of AGNs. Line profiles are also our main way of estimating the masses of the supermassive black holes (SMBHs). However, the profiles often show ill-understood, asymmetric structure and velocity-dependent lags vary with time. Here we show that partial obscuration of the broad-line region (BLR) by outflowing, compact, dusty clumps produces asymmetries and velocity-dependent lags similar to those observed. Our model explains previously inexplicable changes in the ratios of the hydrogen lines with time and velocity, the lack of correlation of changes in line profiles with variability of the central engine, the velocity dependence of lags, and the change of lags with time. We propose that changes on timescales longer than the light-crossing time do not come from dynamical changes in the BLR, but are a natural result of the effect of outflowing dusty clumps driven by radiation pressure acting on the dust. The motion of these clumps offers an explanation of long-term changes in polarization. The effects of the dust complicate the study of the structure and kinematics of the BLR and the search for sub-parsec SMBH binaries. Partial obscuration of the accretion disc can also provide the local fluctuations in luminosity that can explain sizes deduced from microlensing.
Stability and broad-sense heritaibility of mineral content in potato: copper and sulfur
USDA-ARS?s Scientific Manuscript database
Potato breeding lines and varieties in two separate trials were evaluated for copper and sulfur content by wet ashing and Inductively Coupled Argon Plasma Emission Spectrophotometer analysis. Stability and broad-sense heritability were determined. Copper contents ranged among genotypes between 2.0...
ALMA view of the massive dense clump in the Galactic center 50 km s-1 molecular cloud .
NASA Astrophysics Data System (ADS)
Uehara, K.; Tsuboi, M.; Kitamura, Y.; Miyawaki, R.; Miyazaki, A.
We observed the 50 km s-1 molecular cloud with a high angular resolution (˜1.5 arcsec) using ALMA in the H13CO+ J=1-0, C34S J=2-1, CS J=2-1 and SiO v=0 J=2-1 emission lines. This cloud is a candidate for the massive star forming region induced by cloud-cloud collision (CCC). We newly found a massive dense clump (DC1) with a size of ˜0.3 pc in the CCC region of the cloud in the H13CO+ J=1-0 map. The DC1 seems to be located on a line where the four HII regions line up. Furthermore, the DC1 has a broad velocity width covering ˜30 km s-1 and ˜60 km s-1 components in the CS J=2-1 map; the 30 km s-1 component has filamentary structures and the 60 km s-1 one a sheet-like structure. From the position-velocity diagrams of the H13CO+ J=1-0 and CS J=2-1 lines and the intensity ratio of T(SiO v=0 J=2-1)/T(H13CO+ J=1-0), i.e., a shock tracer, we consider that the DC1 has formed by the CCC between the filaments and the sheet-like gas. The LTE mass and virial parameter of the DC1 is estimated to be ˜1.3×104 M_ȯ and ˜5, respectively. These facts suggest that the DC1 is likely in a gravitationally bound state and may start massive star formation. We propose a scenario that the CCC induced the massive star formation in the HII region A ˜105 years ago and now causes the formation and collapse of the DC1; the clump would evolve to an HII region within ˜105 years.
Narrow-line Seyfert 1 galaxies at hard X-rays
NASA Astrophysics Data System (ADS)
Panessa, F.; de Rosa, A.; Bassani, L.; Bazzano, A.; Bird, A.; Landi, R.; Malizia, A.; Miniutti, G.; Molina, M.; Ubertini, P.
2011-11-01
Narrow-line Seyfert 1 (NLSy1) galaxies are a peculiar class of type 1 active galactic nuclei (broad-line Seyfert 1 galaxies, hereinafter BLSy1). The X-ray properties of individual objects belonging to this class are often extreme and associated with accretion at high Eddington ratios. Here, we present a study on a sample of 14 NLSy1 galaxies selected at hard X-rays (>20 keV) from the fourth INTEGRAL/IBIS catalogue. The 20-100 keV IBIS spectra show hard-X-ray photon indices flatly distributed (Γ20-100 keV ranging from ˜1.3 to ˜3.6) with an average value of <Γ20-100 keV>= 2.3 ± 0.7, compatible with a sample of hard-X-ray BLSy1 average slopes. Instead, NLSy1 galaxies show steeper spectral indices with respect to BLSy1 galaxies when broad-band spectra are considered. Indeed, we combine XMM-Newton and Swift/XRT with INTEGRAL/IBIS data sets to obtain a wide energy spectral coverage (0.3-100 keV). A constraint on the high energy cut-off and on the reflection component is achieved only in one source, SWIFT J2127.4+5654 (Ecut-off˜ 50 keV, R= 1.0+0.5- 0.4). Hard-X-ray-selected NLSy1 galaxies do not display particularly strong soft excess emission, while absorption fully or partially covering the continuum is often measured as well as Fe line emission features. Variability is a common trait in this sample, both at X-rays and at hard X-rays. The fraction of NLSy1 galaxies in the hard-X-ray sky is likely to be ˜15 per cent, in agreement with estimates derived in optically selected NLSy1 samples. We confirm the association of NLSy1 galaxies with small black hole masses with a peak at 107 M⊙ in the distribution; however, hard-X-ray NLSy1 galaxies seem to occupy the lower tail of the Eddington ratio distribution of classical NLSy1 galaxies. Based on observations obtained with the INTEGRAL/IBIS, XMM-Newton and Swift/XRT.
A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Civano, F.; Elvis, M.; Lanzuisi, G.
2010-07-01
We present a detailed study of a peculiar source detected in the COSMOS survey at z = 0.359. Source CXOC J100043.1+020637, also known as CID-42, has two compact optical sources embedded in the same galaxy. The distance between the two, measured in the HST/ACS image, is 0.''495 {+-} 0.''005 that, at the redshift of the source, corresponds to a projected separation of 2.46 {+-} 0.02 kpc. A large ({approx}1200 km s{sup -1}) velocity offset between the narrow and broad components of H{beta} has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also themore » only X-ray source in COSMOS, having in its X-ray spectra a strong redshifted broad absorption iron line and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM-Newton data show that the absorption line is variable in energy by {Delta}E = 500 eV over four years and that the absorber has to be highly ionized in order not to leave a signature in the soft X-ray spectrum. That these features-the morphology, the velocity offset, and the inverted P-Cygni profile-occur in the same source is unlikely to be a coincidence. We envisage two possible explanations, both exceptional, for this system: (1) a gravitational wave (GW) recoiling black hole (BH), caught 1-10 Myr after merging; or (2) a Type 1/Type 2 system in the same galaxy where the Type 1 is recoiling due to the slingshot effect produced by a triple BH system. The first possibility gives us a candidate GW recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured active galactic nuclei (AGNs), and possibly universal in AGNs.« less
ERIC Educational Resources Information Center
Zebas, Carole J.
This study focuses on changes occurring in selected mechanical components of high school girls performing the standing broad jump, and collects data pertaining to the effects of monetary reward and videotape feedback upon the following components: (a) distance jumped, (b) maximum angle of knee flexion, (c) maximum angle of hip flexion, (d) hip…
The near-infrared radius-luminosity relationship for active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Bentz, Misty C.; Peterson, Bradley M.; Elvis, Martin; Ward, Martin J.; Korista, Kirk T.; Karovska, Margarita
2011-05-01
Black hole masses for samples of active galactic nuclei (AGNs) are currently estimated from single-epoch optical spectra. In particular, the size of the broad-line emitting region needed to compute the black hole mass is derived from the optical or ultraviolet continuum luminosity. Here we consider the relationship between the broad-line region size, R, and the near-infrared (near-IR) AGN continuum luminosity, L, as the near-IR continuum suffers less dust extinction than at shorter wavelengths and the prospects for separating the AGN continuum from host-galaxy starlight are better in the near-IR than in the optical. For a relationship of the form R∝Lα, we obtain for a sample of 14 reverberation-mapped AGN a best-fitting slope of α= 0.5 ± 0.1, which is consistent with the slope of the relationship in the optical band and with the value of 0.5 naïvely expected from photoionization theory. Black hole masses can then be estimated from the near-IR virial product, which is calculated using the strong and unblended Paschen broad emission lines (Paα or Paβ).
Radiation Pressure-Driven Magnetic Disk Winds in Broad Absorption Line Quasi-Stellar Objects
NASA Technical Reports Server (NTRS)
DeKool, Martin; Begelman, Mitchell C.
1995-01-01
We explore a model in which QSO broad absorption lines (BALS) are formed in a radiation pressure-driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.
Adcock, Robert S.; Schroeder, Chad E.; Chu, Yong-Kyu; Sotsky, Julie B.; Cramer, Daniel E.; Chilton, Paula M.; Song, Chisu; Anantpadma, Manu; Davey, Robert A.; Prodhan, Aminul I.; Yin, Xinmin; Zhang, Xiang
2016-01-01
Viral emergence and reemergence underscore the importance of developing efficacious, broad-spectrum antivirals. Here, we report the discovery of tetrahydrobenzothiazole-based compound 1, a novel, broad-spectrum antiviral lead that was optimized from a hit compound derived from a cytopathic effect (CPE)-based antiviral screen using Venezuelan equine encephalitis virus. Compound 1 showed antiviral activity against a broad range of RNA viruses, including alphaviruses, flaviviruses, influenza virus, and ebolavirus. Mechanism-of-action studies with metabolomics and molecular approaches revealed that the compound inhibits host pyrimidine synthesis and establishes an antiviral state by inducing a variety of interferon-stimulated genes (ISGs). Notably, the induction of the ISGs by compound 1 was independent of the production of type 1 interferons. The antiviral activity of compound 1 was cell type dependent with a robust effect observed in human cell lines and no observed antiviral effect in mouse cell lines. Herein, we disclose tetrahydrobenzothiazole compound 1 as a novel lead for the development of a broad-spectrum, antiviral therapeutic and as a molecular probe to study the mechanism of the induction of ISGs that are independent of type 1 interferons. PMID:27185801
Medium-resolution échelle spectroscopy of the Red Square Nebula, MWC 922
NASA Astrophysics Data System (ADS)
Wehres, N.; Ochsendorf, B. B.; Tielens, A. G. G. M.; Cox, N. L. J.; Kaper, L.; Bally, J.; Snow, T. P.
2017-05-01
Context. Medium-resolution échelle spectra of the Red Square Nebula surrounding the star MWC 922 are presented. The spectra have been obtained in 2010 and 2012 using the X-shooter spectrograph mounted on the Very Large Telescope (VLT) in Paranal, Chile. The spectrum covers a wavelength range between 300 nm-2.5 μm and shows that the nebula is rich in emission lines. Aims: We aim to identify the emission lines and use them as a tool to determine the physical and chemical characteristics of the nebula. The emission lines are also used to put constraints on the structure of the nebula and on the nature of the central stars. Methods: We analyzed and identified emission lines that indicated that the Red Square Nebula consists of a low density bipolar outflow, eminent in the broad emission component seen in [Fe II], as well as in P Cygni line profiles indicative of fast outflowing material. The narrow component in the [Fe II] lines is most likely formed in the photosphere of a surrounding disk. Some of the emission lines show a pronounced double peaked profile, such as Ca II, indicating an accretion disk in Keplerian rotation around the central star. [O I] emission lines are formed in the neutral atomic zone separating the ionized disk photosphere from the molecular gas in the interior of the disk, which is prominent in molecular CO emission in the near-IR. [N II] and [S II] emission clearly originates in a low density but fairly hot (7 000-10 000 K) nebular environment. H I recombination lines trace the extended nebula as well as the photosphere of the disk. Results: These findings put constraints on the evolution of the central objects in MWC 922. The Red Square shows strong similarities to the Red Rectangle Nebula, both in morphology and in its mid-IR spectroscopic characteristics. As for the Red Rectangle, the observed morphology of the nebula reflects mass-loss in a binary system. Specifically, we attribute the biconical morphology and the associated rung-like structure to the action of intermittent jets blown by the accreting companion in a dense shell, which has been created by the primary. We stress, though, that despite the morphological similarities, these two objects represent very different classes of stellar objects. The data-reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A69
Hot Gas Flows in T Tauri Stars
NASA Astrophysics Data System (ADS)
Ardila, David R.; Herczeg, G.; Gregory, S. G.; Ingleby, L.; France, K.; Brown, A.; Edwards, S.; Linsky, J.; Yang, H.; Valenti, J. A.; Johns-Krull, C. M.; Alexander, R.; Bergin, E. A.; Bethell, T.; Brown, J.; Calvet, N.; Espaillat, C.; Hervé, A.; Hillenbrand, L.; Hussain, G.; Roueff, E.; Schindhelm, E.; Walter, F. M.
2013-01-01
We describe observations of the hot gas 1e5 K) ultraviolet lines C IV and He II, in Classical and Weak T Tauri Stars (CTTSs, WTTSs). Our goal is to provide observational constraints for realistic models. Most of the data for this work comes from the Hubble proposal “The Disks, Accretion, and Outflows (DAO) of T Tau stars” (PI Herczeg). The DAO program is the largest and most sensitive high resolution spectroscopic survey of young stars in the UV ever undertaken and it provides a rich source of information for these objects. The sample of high resolution COS and STIS spectra presented here comprises 35 stars: one Herbig Ae star, 28 CTTSs, and 6 WTTSs. For CTTSs, the lines consist of two kinematic components. The relative strengths of the narrow and broad components (NC, BC) are similar in C IV but in He II the NC is stronger than the BC, and dominates the line profile. We do not find correlations between disk inclination and the velocity centroid, width, or shape of the CIV line profile. The NC of the C IV line in CTTSs increases in strength with accretion rate, and its contribution to the line increases from ˜20% to ˜80%, for the accretion rates considered here (1e-10 to 1e-7 Msun/yr). The CTTSs C IV lines are redshifted by ˜20 km/s while the CTTSs He II are redshifted by ˜10 km/s. Because the He II line and the C IV NC have the same width in CTTSs and in WTTSs, but are correlated with accretion, we suggest that they are produced in the stellar transition region. The accretion shock model predicts that the velocity of the post-shock emission should be 4x smaller than the velocity of the pre-shock emission. Identifying the post-shock emission with the NC and the pre-shock with the BC, we find that this is approximately the case in 11 out of 23 objects. The model cannot explain 11 systems in which the velocity of the NC is smaller than the velocity of the BC, or systems in which one of the velocities is negative (five CTTSs). The hot gas lines in some systems such as HN Tau, RW Aur A, AK Sco, DK Tau, T Tau N, and V1190 Sco require an outflow contribution, which may come from jet shocks in the observed outflows. We suggest that a hot wind is being launched by the Herbig Ae star DX Cha.
Visible and Near-Infrared Spectroscopy of Seyfert 1 and Narrow-Line Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Rodríguez-Ardila, Alberto; Pastoriza, Miriani G.; Donzelli, Carlos J.
2000-01-01
This paper studies the continuum and emission-line properties of a sample composed of 16 normal Seyfert 1 and seven narrow-line Seyfert 1 (NLS1) galaxies using optical and near-IR CCD spectroscopy. The continuum emission of the galaxies can be described in terms of a combination of stellar population, a nonstellar continuum of power-law form, and Fe II emission. A significative difference in the optical spectral index between NLS1's and normal Seyfert 1's is observed; the latter is steeper. Most NLS1's show Fe II/Hβ ratios larger than those observed in the other Seyfert 1's. In the IRAS band, both groups of galaxies have very similar properties. We have searched for the presence of optically thin gas in the broad-line region (BLR) of the galaxies by comparing the broad O I λ8446 and Hα emission-line profiles. Our analysis show that in the NLS1's, both profiles are similar in shape and width. This result contradicts the hypothesis of thin gas emission in the high-velocity part of the BLR to explain the ``narrowness'' of broad optical permitted lines in these objects. Evidence of narrow O I λ8446 emission is found in six galaxies of our sample, implying that this line is not restricted to a pure BLR phenomenon. In the narrow-line region, we find similar luminosities in the permitted and high-ionization lines of NLS1's and normal Seyfert 1's. However, low-ionization lines such as [O I] λ6300, [O II] λ3727, and [S II] λλ6717, 6731 are intrinsically less luminous in NLS1's. Physical properties derived from density- and temperature-sensitive line ratios suggest that the [O II] and [S II] emitting zones are overlapping in normal Seyfert 1's and separated in NLS1's. Based on observations made at CASLEO. Complejo Astronómico El Leoncito (CASLEO) is operated under agreement between the Consejo Nacional de Investigaciones Científicas y técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juán.
NASA Astrophysics Data System (ADS)
Rubtsova, N. N.; Gol'dort, V. G.; Ishchenko, V. N.; Khvorostov, E. B.; Kochubei, S. A.; Borisov, G. M.; Ledovskikh, D. V.; Reshetov, V. A.
2018-04-01
For the first time, the collision induced stimulated photon echo generated at transition 1S0 → 3 P1 of 174Yb (type 0-1) in the mixture of gases Yb + Xe was investigated in the presence of weak longitudinal magnetic field, with experimental parameters corresponding to broad spectral line conditions. Comparison of the experimental echo amplitude versus magnetic field strength dependence with the theoretical curve shows a very good agreement, giving rise to an improved estimate for the difference between alignment and orientation decay rates.
SN2012ab: a peculiar Type IIn supernova with aspherical circumstellar material
NASA Astrophysics Data System (ADS)
Bilinski, Christopher; Smith, Nathan; Williams, G. Grant; Smith, Paul; Zheng, WeiKang; Graham, Melissa L.; Mauerhan, Jon C.; Andrews, Jennifer E.; Filippenko, Alexei V.; Akerlof, Carl; Chatzopoulos, E.; Hoffman, Jennifer L.; Huk, Leah; Leonard, Douglas C.; Marion, G. H.; Milne, Peter; Quimby, Robert M.; Silverman, Jeffrey M.; Vinkó, Jozsef; Wheeler, J. Craig; Yuan, Fang
2018-03-01
We present photometry, spectra, and spectropolarimetry of supernova (SN) 2012ab, mostly obtained over the course of ˜300 d after discovery. SN 2012ab was a Type IIn (SN IIn) event discovered near the nucleus of spiral galaxy 2MASXJ12224762+0536247. While its light curve resembles that of SN 1998S, its spectral evolution does not. We see indications of CSM interaction in the strong intermediate-width emission features, the high luminosity (peak at absolute magnitude M = -19.5), and the lack of broad absorption features in the spectrum. The Hα emission undergoes a peculiar transition. At early times it shows a broad blue emission wing out to -14 000 km s-1 and a truncated red wing. Then at late times (>100 d) it shows a truncated blue wing and a very broad red emission wing out to roughly +20 000 km s-1. This late-time broad red wing probably arises in the reverse shock. Spectra also show an asymmetric intermediate-width Hα component with stronger emission on the red side at late times. The evolution of the asymmetric profiles requires a density structure in the distant CSM that is highly aspherical. Our spectropolarimetric data also suggest asphericity with a strong continuum polarization of ˜1-3 per cent and depolarization in the Hα line, indicating asphericity in the CSM at a level comparable to that in other SNe IIn. We estimate a mass-loss rate of \\dot{M} = 0.050 M_{⊙} yr^{-1} for vpre = 100 km s-1 extending back at least 75 yr prior to the SN. The strong departure from axisymmetry in the CSM of SN 2012ab may suggest that the progenitor was an eccentric binary system undergoing eruptive mass loss.
2MASS J00423991+3017515: An AGN On The Run?
NASA Astrophysics Data System (ADS)
Hogg, James
2016-09-01
We have discovered a peculiar AGN, 2MASS J00423991+3017515, in a local (z=0.14), disturbed galaxy whose optical spectrum has multiple broad lines that are consistently offset from the narrow line emission and host galaxy absorption by 1530 km/s. The morphology of the host galaxy and spectral properties thus suggest this AGN may be a recoiling supermassive black hole (SMBH). We propose high-resolution X-ray imaging and spectral follow-ups with the ACIS camera on Chandra to determine if the source of the kinematically-offset broad line emission is also spatially offset from the nucleus of the host galaxy. If a single, spatially offset AGN is detected, this source will be strongest candidate for a recoiling AGN candidate discovered to date.
A REVERBERATION-BASED BLACK HOLE MASS FOR MCG-06-30-15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentz, Misty C.; Crenshaw, D. Michael; Ou-Yang, Benjamin
2016-10-20
We present the results of a reverberation campaign targeting MGC-06-30-15. Spectrophotometric monitoring and broad-band photometric monitoring over the course of four months in spring 2012 allowed a determination of a time delay in the broad H β emission line of τ = 5.3 ± 1.8 days in the rest frame of the active galactic nucleus (AGN). Combined with the width of the variable portion of the emission line, we determine a black hole mass of M {sub BH} = (1.6 ± 0.4) × 10{sup 6} M {sub ⊙}. Both the H β time delay and the black hole mass aremore » in good agreement with expectations from the R {sub BLR}– L and M {sub BH}– σ {sub ⋆} relationships for other reverberation-mapped AGNs. The H β time delay is also in good agreement with the relationship between H β and broad-band near-IR delays, in which the effective size of the broad-line region is ∼4–5 times smaller than the inner edge of the dust torus. Additionally, the reverberation-based mass is in good agreement with estimates from the scaling relationship of the break in the X-ray power spectral density, and with constraints based on stellar kinematics derived from integral field spectroscopy of the inner ∼0.5 kpc of the galaxy.« less
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang
2018-04-01
A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.
Microlensing and Intrinsic Variability of the Broad Emission Lines of Lensed Quasars
NASA Astrophysics Data System (ADS)
Fian, C.; Guerras, Eduardo; Mediavilla, E.; Jiménez-Vicente, J.; Muñoz, J. A.; Falco, E. E.; Motta, V.; Hanslmeier, A.
2018-05-01
We study the broad emission lines in a sample of 11 gravitationally lensed quasars with at least two epochs of observation to identify intrinsic variability and to disentangle it from microlensing. To improve our statistical significance and emphasize trends, we also include 15 lens systems with single-epoch spectra. Mg II and C III] emission lines are only weakly affected by microlensing, but C IV shows strong microlensing in some cases, even for regions of the line core, presumably associated with small projected velocities. However, excluding the strongly microlensed cases, there is a strikingly good match, on average, between the red wings of the C IV and C III] profiles. Analysis of these results supports the existence of two regions in the broad-line region (BLR), one that is insensitive to microlensing (of size ≳50 lt-day and kinematics not confined to a plane) and another that shows up only when it is magnified by microlensing (of size of a few light-days, comparable to the accretion disk). Both regions can contribute in different proportions to the emission lines of different species and, within each line profile, to different velocity bins, all of which complicates detailed studies of the BLR based on microlensing size estimates. The strength of the microlensing indicates that some spectral features that make up the pseudo-continuum, such as the shelf-like feature at λ1610 or several Fe III blends, may in part arise from an inner region of the accretion disk. In the case of Fe II, microlensing is strong in some blends but not in others. This opens up interesting possibilities to study quasar accretion disk kinematics. Intrinsic variability seems to affect the same features prone to microlensing, with similar frequency and amplitude, but does not induce outstanding profile asymmetries. We measure intrinsic variability (≲20%) of the wings with respect to the cores in the C IV, C III], and Mg II lines consistent with reverberation mapping studies.
Discovery of Hα Absorption in the Unusual Broad Absorption Line Quasar SDSS J083942.11+380526.3
NASA Astrophysics Data System (ADS)
Aoki, Kentaro; Iwata, Ikuru; Ohta, Kouji; Ando, Masataka; Akiyama, Masayuki; Tamura, Naoyuki
2006-11-01
We discovered Hα absorption in the broad Hα emission line of an unusual broad absorption line quasar, SDSS J083942.11+380526.3, at z=2.318, through near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru telescope. The presence of nonstellar Hα absorption is known only in the Seyfert galaxy NGC 4151 to date; thus, our discovery is the first case for quasars. The Hα absorption line is blueshifted by 520 km s-1 relative to the Hα emission line, and its redshift almost coincides with those of UV low-ionization metal absorption lines. The width of the Hα absorption (~340 km s-1) is similar to those of the UV low-ionization absorption lines. These facts suggest that the Hα and low-ionization metal absorption lines are produced by the same low-ionization gas, which has a substantial amount of neutral gas. The column density of the neutral hydrogen is estimated to be ~1018 cm-2 by assuming a gas temperature of 10,000 K from the analysis of the curve of growth. The continuum spectrum is reproduced by a reddened [E(B-V)~0.15 mag for the SMC-like reddening law] composite quasar spectrum. Furthermore, the UV spectrum of SDSS J083942.11+380526.3 shows a remarkable similarity to that of NGC 4151 in its low state, suggesting that the physical condition of the absorber in SDSS J083942.11+380526.3 is similar to that of NGC 4151 in the low state. As proposed for NGC 4151, SDSS J083942.11+380526.3 may also be seen through the edge of the obscuring torus. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
A new method to measure the virial factors in the reverberation mapping of active galactic nuclei
NASA Astrophysics Data System (ADS)
Liu, H. T.; Feng, H. C.; Bai, J. M.
2017-04-01
Based on the gravitational red shift, which is a prediction of Einstein's general relativity theory, of broad optical emission lines in active galactic nuclei (AGNs), a new method is proposed to estimate the virial factors f in measuring black hole masses MRM by the reverberation mapping of AGNs. The factors f can be measured based on two physical quantities, I.e. the gravitational red shifts zg and the full widths at half maxima vFWHM of broad lines. In the past, it has been difficult to determine the factors f for individual AGNs. We apply this new method to several reverberation-mapped type 1 Seyfert galaxies. There is a correlation between f and the radius of the broad-line region (BLR) rBLR, f=5.4 r_{BLR}^{0.3}, for the gravitationally red-shifted broad lines He II, He I, Hβ and Hα in the narrow-line type 1 Seyfert galaxy (NLS1) Mrk 110. This correlation results from the influence of the radiation pressure of the accretion disc on the BLR clouds. This influence seems to be more important than usually thought so in AGNs. Mrk 110 has f ≈ 8-16, distinctly larger than the mean
WPVS 007: Dramatic Broad Absorption Line Variability in a Narrow-line Seyfert 1
NASA Astrophysics Data System (ADS)
Cooper, Erin M.; Leighly, K.; Hamann, F. W.; Grupe, D.; Dietrich, M.
2014-01-01
Blue-shifted broad absorption lines are the manifestation of gaseous outflows in astrophysical phenomena. In active galaxies, these outflowing winds may play a key role in the central engine physics by removing angular momentum and in influencing host galaxy evolution by imparting energy and chemically enriched gas to the surrounding medium. AGN wind variability affords us a valuable tool to study this still poorly understood phenomenon. The existence of a high velocity broad line outflow in WPVS007 is especially extraordinary, as Seyfert-luminosity active galaxies are unexpected to produce them. With its lower luminosity and compact size, the NLS1 galaxy WPVS007 (M_V=-19.7, z=0.02882) provides us the ability to study even colossal variability on merely human timescales. Since its 1996 FOS observation, displaying miniBALs but no true broad absorption lines, WPVS007 has experienced a short but rich history of UV BAL variability. By the 2003 FUSE observation, WPVS007 had developed a BAL with v_max ~ 6000km/s, indicating an optically thick, high velocity outflow. We present the 2010 and 2013 June and December HST COS spectra. Between 2003 and 2010, both the maximum and minimum outflow velocity had increased substantially. As of 2013 June, the continuum emission has since dimmed by a factor of ~2 and the BALs have appeared to weaken, with both decreased maximum and minimum velocities. Such dramatic shifts in BAL velocity are unprecedented, as BAL variability is typically confined to changes in optical depth. What is the nature of the variability in this BAL wind? The upcoming (as of the writing of this abstract) December observation should give us more insight into tackling that question, whether it be the transient response of a continuous flow to a fluctuating continuum or perhaps the continued decline of a discrete outflow event.
DETECTION OF FORBIDDEN LINE COMPONENTS OF LITHIUM-LIKE CARBON IN STELLAR SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, Klaus; Rauch, Thomas; Hoyer, Denny
2016-08-10
We report the first identification of forbidden line components from an element heavier than helium in the spectrum of astrophysical plasmas. So far, these components were identified only in laboratory plasmas and not in astrophysical objects. Forbidden components are well known for neutral helium lines in hot stars, particularly in helium-rich post-AGB stars and white dwarfs. We discovered that two hitherto unidentified lines in the ultraviolet spectra of hot hydrogen-deficient (pre-) white dwarfs can be identified as forbidden line components of triply ionized carbon (C iv). The forbidden components (3p–4f and 3d–4d) appear in the blue and red wings ofmore » the strong, Stark broadened 3p–4d and 3d–4f lines at 1108 Å and 1169 Å, respectively. They are visible over a wide effective temperature range (60,000–200,000 K) in helium-rich (DO) white dwarfs and PG 1159 stars that have strongly oversolar carbon abundances.« less
Detection of Forbidden Line Components of Lithium-like Carbon in Stellar Spectra
NASA Astrophysics Data System (ADS)
Werner, Klaus; Rauch, Thomas; Hoyer, Denny; Quinet, Pascal
2016-08-01
We report the first identification of forbidden line components from an element heavier than helium in the spectrum of astrophysical plasmas. So far, these components were identified only in laboratory plasmas and not in astrophysical objects. Forbidden components are well known for neutral helium lines in hot stars, particularly in helium-rich post-AGB stars and white dwarfs. We discovered that two hitherto unidentified lines in the ultraviolet spectra of hot hydrogen-deficient (pre-) white dwarfs can be identified as forbidden line components of triply ionized carbon (C IV). The forbidden components (3p-4f and 3d-4d) appear in the blue and red wings of the strong, Stark broadened 3p-4d and 3d-4f lines at 1108 Å and 1169 Å, respectively. They are visible over a wide effective temperature range (60,000-200,000 K) in helium-rich (DO) white dwarfs and PG 1159 stars that have strongly oversolar carbon abundances.
The Trails of Superluminal Jet Components in 3C 111
NASA Technical Reports Server (NTRS)
Kadler, M.; Ros, E.; Perucho, M.; Kovalev, Y. Y.; Homan, D. C.; Agudo, I.; Kellermann, K. I.; Aller, M. F.; Aller, H. D.; Lister, M. L.;
2007-01-01
The parsec-scale radio jet of the broad-line radio galaxy 3C 111 has been monitored since 1995 as part of the 2cm Survey and MOJAVE monitoring observations conducted with the VLBA. Here, we present results from 18 epochs of VLBA observations of 3C 111 and from 18 years of radio flux density monitoring observations conducted at the University of Michigan. A major radio flux-density outburst of 3C 111 occurred in 1996 and was followed by a particularly bright plasma ejection associated with a superluminal jet component. This major event allows us to study a variety of processes associated with outbursts of radio-loud AGN in much greater detail than possible in other cases: the primary perturbation gives rise to the formation of a forward and a backward-shock, which both evolve in characteristically different ways and allow us to draw conclusions about the workflow of jet-production events; the expansion, acceleration and recollimation of the ejected jet plasma in an environment with steep pressure and density gradients are revealed; trailing components are formed in the wake of the primary perturbation as a result of Kelvin- Helmholtz instabilities from the interaction of the jet with the external medium. The jet-medium interaction is further scrutinized by the linear-polarization signature of jet components traveling along the jet and passing a region of steep pressure/density gradients.
An XMM-Newton view of the radio galaxy 3C 411
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostrom, Allison; Reynolds, Christopher S.; Tombesi, Francesco
We present the first high signal-to-noise XMM-Newton observations of the broad-line radio galaxy 3C 411. After fitting various spectral models, an absorbed double power-law (PL) continuum and a blurred relativistic disk reflection model (kdblur) are found to be equally plausible descriptions of the data. While the softer PL component (Γ = 2.11) of the double PL model is entirely consistent with that found in Seyfert galaxies (and hence likely originates from a disk corona), the additional PL component is very hard (Γ = 1.05); amongst the active galactic nucleus zoo, only flat-spectrum radio quasars (FSRQ) have such hard spectra. Togethermore » with the flat radio-spectrum displayed by this source, we suggest that it should instead be classified as an FSRQ. This leads to potential discrepancies regarding the jet inclination angle, with the radio morphology suggesting a large jet inclination but the FSRQ classification suggesting small inclinations. The kdblur model predicts an inner disk radius of at most 20 r {sub g} and relativistic reflection.« less
Noise Assessment of the Southeastern Pennsylvania Transportation Authority Heavy Rail Transit System
DOT National Transportation Integrated Search
1978-10-01
The report describes the noise climate on and near the Southeastern Pennsylvania Transportation Authority, (SEPTA), Broad Street Subway and Market-Frankford Elevated Line. The two SEPTA urban rail transit lines have approximately 22.6 miles of two-wa...
Polarisation observations of VY Canis Majoris H2O 532-441 620.701 GHz maser emission with HIFI
NASA Astrophysics Data System (ADS)
Harwit, M.; Houde, M.; Sonnentrucker, P.; Boogert, A. C. A.; Cernicharo, J.; De Beck, E.; Decin, L.; Henkel, C.; Higgins, R. D.; Jellema, W.; Kraus, A.; McCoey, C.; Melnick, G. J.; Menten, K. M.; Risacher, C.; Teyssier, D.; Vaillancourt, J. E.; Alcolea, J.; Bujarrabal, V.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Olofsson, H.; Planesas, P.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M.
2010-10-01
Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims: We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H2O. Methods: In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s-1, which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut für Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results: We report the first astronomical detection to date of H2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 5) is only available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.; Turner, T. J.; Yaqoob, T.
2003-09-01
We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-Ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2-1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km s-1) and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectroscopic Explorer and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with proposal 9279.
NASA Astrophysics Data System (ADS)
Kraemer, S. B.; Crenshaw, D. M.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K.; George, I. M.; Turner, T. J.; Yaqoob, T.; Dunn, J. P.
2002-12-01
We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, obtained with the Space Telescope Imaging Spectrograph at high spectral resolution (λ /Δ λ = 30,000 - 46,000), simultaneously with Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner high-ionization narrow-line region (NLR). Assuming the NLR is fully covered, we find nonunity covering factors in the cores of several components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous C IV and N V columns for component 1 (at -1040 km s-1), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim (based on nonsimultaneous observations of N V and C IV). We find that dust-free models of the absorbers severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include dust (and thereby heavily deplete carbon) are successful in matching all of the observed ionic columns, and result in substantially lower ionization parameters and total column densities compared to dust-free models. Interestingly, these models yield the exact amount of dust needed to produce the observed reddening of the inner NLR, assuming a Galactic dust to gas ratio. The models produce little O VII and O VIII, indicating that none of the dusty UV absorbers is associated with a classic X-ray warm absorber.
Optical monitor for water vapor concentration
Kebabian, Paul
1998-01-01
A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.
Optical monitor for water vapor concentration
Kebabian, P.
1998-06-02
A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma. 5 figs.
Graeff, C F O; Silva, G B; Nüesch, F; Zuppiroli, L
2005-09-01
We have used electrically detected magnetic resonance (EDMR) to study a series of multilayer organic devices based on aluminum (III) 8-hydroxyquinoline (Alq3). These devices were designed to identify the microscopic origin of different spin-dependent processes, i.e. hopping and exciton formation. The EDMR signal in organic light-emitting diodes (OLEDs) based on Alq3 is only observed when the device is electroluminescent and is assigned to spin-dependent exciton formation. It can be decomposed in at least two Gaussians: one with peak-to-peak line (deltaH(PP)) of 1.6 mT and another with deltaH(PP) of 2.0 to 3.4 mT, depending on bias and temperature. The g-factors of the two components are barely distinguishable and close to 2.003. The broad line is attributed to the resonance in Alq3 anions, while the other line is attributed to cationic states. These attributions are supported by line shape and its electrical-field dependence of unipolar Alq3-based diodes, where hopping process related to dication and dianion formation is observed. In these unipolar devices, it is shown that the signal coming from spin-dependent hopping occurs close to organic semiconductor/metal interfaces. The sign of the magnetic-resonance-induced conductivity change is dominated by charge injection rather than charge mobility. Our results indicate that the probability of singlet exciton formation in our OLEDs is smaller than 25%.
Lu, Yuqing; Yao, Miaomiao; Zhang, Jinpeng; Song, Liqiang; Liu, Weihua; Yang, Xinming; Li, Xiuquan; Li, Lihui
2016-09-01
A novel broad-spectrum powdery mildew resistance gene PmPB74 was identified in wheat- Agropyron cristatum introgression line Pubing 74. Development of wheat cultivars with broad-spectrum, durable resistance to powdery mildew has been restricted by lack of superior genetic resources. In this study, a wheat-A. cristatum introgression line Pubing 74, originally selected from a wide cross between the common wheat cultivar Fukuhokomugi (Fukuho) and Agropyron cristatum (L.) Gaertn (2n = 4x = 28; genome PPPP), displayed resistance to powdery mildew at both the seedling and adult stages. The putative alien chromosomal fragment in Pubing 74 was below the detection limit of genomic in situ hybridization (GISH), but evidence for other non-GISH-detectable introgressions was provided by the presence of three STS markers specific to A. cristatum. Genetic analysis indicated that Pubing 74 carried a single dominant gene for powdery mildew resistance, temporarily designated PmPB74. Molecular mapping showed that PmPB74 was located on wheat chromosome arm 5DS, and flanked by markers Xcfd81 and HRM02 at genetic distances of 2.5 and 1.7 cM, respectively. Compared with other lines with powdery mildew resistance gene(s) on wheat chromosome arm 5DS, Pubing 74 was resistant to all 28 Blumeria graminis f. sp tritici (Bgt) isolates from different wheat-producing regions of northern China. Allelism tests indicated that PmPB74 was not allelic to PmPB3558 or Pm2. Our work showed that PmPB74 is a novel gene with broad resistance to powdery mildew, and hence will be helpful in broadening the genetic basis of powdery mildew resistance in wheat.
X-ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.
2017-02-01
We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies (z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad Hα emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad Hα and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L 0.5-7keV ≈ 5 × 1039 to 1 × 1042 ergs-1. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ˜7 × 104 to 1 × 106 M ⊙), we find inferred Eddington fractions ranging from ˜0.1% to 50%, I.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (I.e., α OX values an average of 0.36 lower than expected based on the relation between α OX and 2500 Å luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.
X-Ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldassare, Vivienne F.; Gallo, Elena; Reines, Amy E.
2017-02-10
We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies ( z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad H α emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad H α and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L {sub 0.5–7keV} ≈ 5 × 10{sup 39}more » to 1 × 10{sup 42} ergs{sup −1}. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ∼7 × 10{sup 4} to 1 × 10{sup 6} M {sub ⊙}), we find inferred Eddington fractions ranging from ∼0.1% to 50%, i.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (i.e., α {sub OX} values an average of 0.36 lower than expected based on the relation between α {sub OX} and 2500 Å luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.« less
Long-term Ultraviolet Monitoring of a Tidal Disruption Event at only 90 Mpc
NASA Astrophysics Data System (ADS)
Maksym, W. Peter; Cenko, Bradley; Eracleous, Michael; Keel, William C.; Irwin, Jimmy; Sigurdsson, Steinn; Fruchter, Andrew; Gezari, Suvi; Bogdanovic, Tamara; Roth, Katherine
2018-01-01
At only 90 Mpc, ASASSN-14li is one of the nearest tidal disruption events (TDEs) to permit high-quality multi-wavelength monitoring, and is the first TDE with ultraviolet spectroscopic observations between Lyman alpha and Mg II λ2800Å. We present results from a continued long-term ultraviolet monitoring campaign with the Hubble Space Telescope. Prior observations had showed an array of broad emission lines common to Seyferts. Surpisingly, however, uncommon lines such as He II λ1640Å, N III] λ1750Å and N IV] λ1486Å had been enhanced, whereas others such as C III] λ1909Å and Mg II λ2800Å are notably absent. Our campaign shows contnued continuum emission accompanied by the gradual disappearance of broad line emission, which may indicate the gradual disappearance of a TDE wind as the accretion rate declines to sub-critical levels. Variability of the semi-forbidden lines supports stimulation by the TDE. A continued absence of low-ionization lines like Mg II in our monitoring may constrain the presence of ionized unbound material at large radii.
Pharmacogenomic agreement between two cancer cell line data sets.
2015-12-03
Large cancer cell line collections broadly capture the genomic diversity of human cancers and provide valuable insight into anti-cancer drug response. Here we show substantial agreement and biological consilience between drug sensitivity measurements and their associated genomic predictors from two publicly available large-scale pharmacogenomics resources: The Cancer Cell Line Encyclopedia and the Genomics of Drug Sensitivity in Cancer databases.
Study of transmission line attenuation in broad band millimeter wave frequency range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.
2013-10-15
Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmosphericmore » water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.« less
Using the in-line component for fixed-wing EM 1D inversion
NASA Astrophysics Data System (ADS)
Smiarowski, Adam
2015-09-01
Numerous authors have discussed the utility of multicomponent measurements. Generally speaking, for a vertical-oriented dipole source, the measured vertical component couples to horizontal planar bodies while the horizontal in-line component couples best to vertical planar targets. For layered-earth cases, helicopter EM systems have little or no in-line component response and as a result much of the in-line signal is due to receiver coil rotation and appears as noise. In contrast to this, the in-line component of a fixed-wing airborne electromagnetic (AEM) system with large transmitter-receiver offset can be substantial, exceeding the vertical component in conductive areas. This paper compares the in-line and vertical response of a fixed-wing airborne electromagnetic (AEM) system using a half-space model and calculates sensitivity functions. The a posteriori inversion model parameter uncertainty matrix is calculated for a bathymetry model (conductive layer over more resistive half-space) for two inversion cases; use of vertical component alone is compared to joint inversion of vertical and in-line components. The joint inversion is able to better resolve model parameters. An example is then provided using field data from a bathymetry survey to compare the joint inversion to vertical component only inversion. For each inversion set, the difference between the inverted water depth and ship-measured bathymetry is calculated. The result is in general agreement with that expected from the a posteriori inversion model parameter uncertainty calculation.
NASA Astrophysics Data System (ADS)
McCray, Richard; France, K.; Kirshner, R. P.; SAINTS Collaboration
2012-01-01
We present the most sensitive ultraviolet observations of Supernova 1987A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (v - 300 km/s) emission lines from the circumstellar ring, broad (v - 10 - 20 × 103 km/s) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise (> 40 per resolution element) broad Ly α emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at - > 1350 A can be explained by H I 2-photon (2s 2S1/2 - 1s 2S1/2) emission from the same region. We confirm our earlier, tentative detection of N V -1240 emission from the reverse shock and we present the first detections of broad He II 1640, C IV -1550, and N IV] 1486 emission lines from the reverse shock. The helium abundance in the high velocity material is He/H = 0.14 +/- 0.06. The N V/H line ratio requires partial ion-electron equilibration (Te/Tp - 0.14 - 0.35). We find that the N/C abundance ratio in the gas crossing the reverse shock is significantly higher than that in the circumstellar ring, a result we attribute to continued CNO processing in the supernova progenitor subsequent to the expulsion of the circumstellar ring.
NASA Technical Reports Server (NTRS)
Braito, V.; Reeves, J. N.; Sambruna, R. M.; Gofford, J.
2012-01-01
Here we present the results of a Suzaku observation of the Broad Line Radio Galaxy 3C 445. We confirm the results obtained with the previous X-ray observations which unveiled the presence of several soft X-ray emission lines and an overall X-ray emission which strongly resembles a typical Seyfert 2 despite of the optical classification as an unobscured AGN. The broad band spectrum allowed us to measure for the first time the amount of reflection (R approximately 0.9) which together with the relatively strong neutral Fe Ka emission line (EW approximately 100 eV) strongly supports a scenario where a Compton-thick mirror is present. The primary X ray continuum is strongly obscured by an absorber with a column density of NH = 2 - 3 x 10(exp 23) per square centimeter. Two possible scenarios are proposed for the absorber: a neutral partial covering or a mildly ionised absorber with an ionisation parameter log xi approximately 1.0 erg centimeter per second. A comparison with the past and more recent X-ray observations of 3C 445 performed with XMM-Newton and Chandra is presented, which provided tentative evidence that the ionised and outflowing absorber varied. We argue that the absorber is probably associated with an equatorial diskwind located within the parsec scale molecular torus.
Hydrogen line ratios in Seyfert galaxies and low redshift quasars
NASA Technical Reports Server (NTRS)
Kriss, G. R.
1984-01-01
New observations of the Lymal alpha radiation/hydrogen alpha radiation ratio in a set of X-ray selected active galactic nuclei and an archival study of International Ultraviolet Explorer (IUE) observations of Lymal alpha low redshift quasars and Seyfert galaxies have been used to form a large sample for studying the influence of soft X-rays on the enhancement of Balmer emission in the broad line region. In common models of broad line clouds, the Balmer lines are formed deep in the interior, largely by collisional excitation. Heating within the clouds is provided by soft X-ray radiation, while Lymal alpha is formed mainly by recombination after photoionization. The ratio Lymal alpha/Halpha is expected to depend weakly on the ratio of ionizing ultraviolet luminosity to X-ray luminosity (L sub UV/l sub x). If the Lymal alpha luminosity is used as a measure of L sub UV' a weak dependence of Lymal/H alpha on the X-ray luminosity is found similar to previous results.
Discovery of an X-ray Violently Variable Broad Absorption Line Quasar
NASA Technical Reports Server (NTRS)
Ghosh, Kajal K.; Gutierrez, Carlos M.; Punsly, Brian; Chevallier, Loic; Goncalves, Anabela C.
2006-01-01
In this letter, we report on a quasar that is violently variable in the X-rays, XVV. It is also a broad absorption line quasar (BALQSO) that exhibits both high ionization and low ionization UV absorption lines (LoBALQSO). It is very luminous in the X-rays (approximately 10(exp 46) ergs s(sup -l) over the entire X-ray band). Surprisingly, this does not over ionize the LoBAL outflow. The X-rays vary by a factor of two within minutes in the quasar rest frame, which is shorter than 1/30 of the light travel time across a scale length equal to the black hole radius. We concluded that the X-rays are produced in a relativistic jet beamed toward earth in which variations in the Doppler enhancement produce the XVV behavior.
Goddard X-ray astronomy contributions to the IAU/COSPAR (1982)
NASA Technical Reports Server (NTRS)
Holt, S. S.; Petre, R.; Shafer, R. A.; Urry, C. M.; Mushotzky, R. F.
1982-01-01
The relation of X-ray flux to both the continuum flux in the optical and radio bands, and to the line emission properties of these objects were studied. The Einstein Observatory, because of increased sensitivity and improved angular resolution, increased substantially the number of known X-ray emitting active galactic nuclei. The Einstein imaging instruments detected morphology in AGN X-ray emission, in particular from jetlike structures in Cen-A, M87, and 3C273. The improved energy resolution and sensitivity of the spectrometers onboard the Observatory provide information on the geometry and ionization structure of the region responsible for the broad optical emission lines in a few AGN's. This information, combined with theoretical modeling and IUE and optical observations, allows the construction of a moderately detailed picture of the broad line region in these objects.
Airframe Noise from a Hybrid Wing Body Aircraft Configuration
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.
2016-01-01
A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.
Birth, death, and replacement of karyopherins in Drosophila.
Phadnis, Nitin; Hsieh, Emily; Malik, Harmit S
2012-05-01
Nucleocytoplasmic transport is a broadly conserved process across eukaryotes. Despite its essential function and conserved mechanism, components of the nuclear transport apparatus have been implicated in genetic conflicts in Drosophila, especially in the male germ line. The best understood case is represented by a truncated RanGAP gene duplication that is part of the segregation distorter system in Drosophila melanogaster. Consistent with the hypothesis that the nuclear transport pathway is at the heart of mediating genetic conflicts, both nucleoporins and directionality imposing components of nuclear transport have previously been shown to evolve under positive selection. Here, we present a comprehensive phylogenomic analysis of importins (karyopherins) in Drosophila evolution. Importins are adaptor molecules that physically mediate the transport of cargo molecules and comprise the third component of the nuclear transport apparatus. We find that importins have been repeatedly gained and lost throughout various stages of Drosophila evolution, including two intriguing examples of an apparently coincident loss and gain of nonorthologous and noncanonical importin-α. Although there are a few signatures of episodic positive selection, genetic innovation in importin evolution is more evident in patterns of recurrent gene birth and loss specifically for function in Drosophila testes, which is consistent with their role in supporting host genomes defense against segregation distortion.
A Mote in Andromeda's Disk: A Periodic AGN Behind M31
NASA Astrophysics Data System (ADS)
Dorn-Wallenstein, Trevor; Levesque, Emily; Ruan, John
2018-01-01
We present the discovery of multiple periodicities in J0045+41, a z≈0.215 AGN seen through a low-absorption region of M31. We obtained moderate resolution spectroscopy of J0045+41 using GMOS at Gemini-North. We use eigenspectra derived from principle component analyses of the SDSS galaxy and quasar catalogs to decompose the spectrum into host and AGN components, and estimate the luminosity and virial mass of the central engine. Residuals to our fit reveal a blue-shifted component to the broad Hα and Hβ lines at a relative velocity of ∼4800 km s-1. We search for evidence of periodicity using g-band photometry from the Palomar Transient Factory and find evidence for multiple periodicities ranging from ∼80-350 days. Two of the detected periods are in a 1:4 ratio, which is identical to the predictions of hydrodynamical simulations of binary supermassive black hole systems. If these signals arise due to such a system, J0045+41 is well within the gravitational wave regime. We calculate the time until inspiral due to gravitational radiation, assuming reasonable values of the mass ratio of the two black holes, and the anticipated gravitational strain in the context of forthcoming low-frequency gravitational wave observatories like the Square Kilometer Array.
A near-infrared relationship for estimating black hole masses in active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Ward, Martin J.; Peterson, Bradley M.; Bentz, Misty C.; Elvis, Martin; Korista, Kirk T.; Karovska, Margarita
2013-06-01
Black hole masses for samples of active galactic nuclei (AGN) are currently estimated from single-epoch optical spectra using scaling relations anchored in reverberation mapping results. In particular, the two quantities needed for calculating black hole masses, namely the velocity and the radial distance of the orbiting gas are derived from the widths of the Balmer hydrogen broad emission lines and the optical continuum luminosity, respectively. We have recently presented a near-infrared (near-IR) relationship for estimating AGN black hole masses based on the widths of the Paschen hydrogen broad emission lines and the total 1 μm continuum luminosity. The near-IR offers several advantages over the optical: it suffers less from dust extinction, the AGN continuum is observed only weakly contaminated by the host galaxy and the strongest Paschen broad emission lines Paα and Paβ are unblended. Here, we improve the calibration of the near-IR black hole mass relationship by increasing the sample from 14 to 23 reverberation-mapped AGN using additional spectroscopy obtained with the Gemini Near-Infrared Spectrograph. The additional sample improves the number statistics in particular at the high-luminosity end.
Hidden Broad-line Regions in Seyfert 2 Galaxies: From the Spectropolarimetric Perspective
NASA Astrophysics Data System (ADS)
Du, Pu; Wang, Jian-Min; Zhang, Zhi-Xiang
2017-05-01
The hidden broad-line regions (BLRs) in Seyfert 2 galaxies, which display broad emission lines (BELs) in their polarized spectra, are a key piece of evidence in support of the unified model for active galactic nuclei (AGNs). However, the detailed kinematics and geometry of hidden BLRs are still not fully understood. The virial factor obtained from reverberation mapping of type 1 AGNs may be a useful diagnostic of the nature of hidden BLRs in type 2 objects. In order to understand the hidden BLRs, we compile six type 2 objects from the literature with polarized BELs and dynamical measurements of black hole masses. All of them contain pseudobulges. We estimate their virial factors, and find the average value is 0.60 and the standard deviation is 0.69, which agree well with the value of type 1 AGNs with pseudobulges. This study demonstrates that (1) the geometry and kinematics of BLR are similar in type 1 and type 2 AGNs of the same bulge type (pseudobulges), and (2) the small values of virial factors in Seyfert 2 galaxies suggest that, similar to type 1 AGNs, BLRs tend to be very thick disks in type 2 objects.
THE ABSOLUTE RATE OF LGRB FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, J. F.; Schady, P.
2016-06-01
We estimate the long-duration gamma-ray burst (LGRB) progenitor rate using our recent work on the effects of environmental metallically on LGRB formation in concert with supernovae (SNe) statistics via an approach patterned loosely off the Drake equation. Beginning with the cosmic star formation history, we consider the expected number of broad-line Type Ic events (the SNe type associated with LGRBs) that are in low-metallicity host environments adjusted by the contribution of high-metallicity host environments at a much reduced rate. We then compare this estimate to the observed LGRB rate corrected for instrumental selection effects to provide a combined estimate ofmore » the efficiency fraction of these progenitors to produce LGRBs and the fraction of which are beamed in our direction. From this we estimate that an aligned LGRB occurs for approximately every 4000 ± 2000 low-metallically broad-lined SNe Ic. Therefore, if one assumes a semi-nominal beaming factor of 100, then only about one such supernova out of 40 produce an LGRB. Finally, we propose an off-axis LGRB search strategy of targeting only broad-line Type Ic events that occur in low-metallicity hosts for radio observation.« less
The Absolute Rate of LGRB Formation
NASA Astrophysics Data System (ADS)
Graham, J. F.; Schady, P.
2016-06-01
We estimate the long-duration gamma-ray burst (LGRB) progenitor rate using our recent work on the effects of environmental metallically on LGRB formation in concert with supernovae (SNe) statistics via an approach patterned loosely off the Drake equation. Beginning with the cosmic star formation history, we consider the expected number of broad-line Type Ic events (the SNe type associated with LGRBs) that are in low-metallicity host environments adjusted by the contribution of high-metallicity host environments at a much reduced rate. We then compare this estimate to the observed LGRB rate corrected for instrumental selection effects to provide a combined estimate of the efficiency fraction of these progenitors to produce LGRBs and the fraction of which are beamed in our direction. From this we estimate that an aligned LGRB occurs for approximately every 4000 ± 2000 low-metallically broad-lined SNe Ic. Therefore, if one assumes a semi-nominal beaming factor of 100, then only about one such supernova out of 40 produce an LGRB. Finally, we propose an off-axis LGRB search strategy of targeting only broad-line Type Ic events that occur in low-metallicity hosts for radio observation.
Hidden Broad-line Regions in Seyfert 2 Galaxies: From the Spectropolarimetric Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Pu; Wang, Jian-Min; Zhang, Zhi-Xiang, E-mail: dupu@ihep.ac.cn
2017-05-01
The hidden broad-line regions (BLRs) in Seyfert 2 galaxies, which display broad emission lines (BELs) in their polarized spectra, are a key piece of evidence in support of the unified model for active galactic nuclei (AGNs). However, the detailed kinematics and geometry of hidden BLRs are still not fully understood. The virial factor obtained from reverberation mapping of type 1 AGNs may be a useful diagnostic of the nature of hidden BLRs in type 2 objects. In order to understand the hidden BLRs, we compile six type 2 objects from the literature with polarized BELs and dynamical measurements of blackmore » hole masses. All of them contain pseudobulges. We estimate their virial factors, and find the average value is 0.60 and the standard deviation is 0.69, which agree well with the value of type 1 AGNs with pseudobulges. This study demonstrates that (1) the geometry and kinematics of BLR are similar in type 1 and type 2 AGNs of the same bulge type (pseudobulges), and (2) the small values of virial factors in Seyfert 2 galaxies suggest that, similar to type 1 AGNs, BLRs tend to be very thick disks in type 2 objects.« less
New results on the generation of broadband electrostatic waves in the magnetotail
NASA Technical Reports Server (NTRS)
Grabbe, C. L.
1985-01-01
The theory of the generation of broadband electrostatic noise (BEN) in the magnetotail is extended through numerical solution of the dispersion relation under conditions that exist in the plasma sheet boundary layer. It is found that the low-frequency portion of the spectrum has a broad angular spectrum but a fairly sharp peak near 75 deg with respect to the magnetic field, while the high-frequency portion has a narrower angular spectrum that is strongly concentrated along the magnetic field line. These results are in excellent agreement with observations of the broadband wave spectrum and a recent measurement of the propagation direction. The effect of a second cold component of electrons is analyzed, and it is found that it can increase the upper cutoff frequency of BEN to the observed value at about the plasma frequency.
Nuclear lamina builds tissues from the stem cell niche.
Chen, Haiyang; Zheng, Yixian
2014-01-01
Recent studies show that nuclear lamins, the type V intermediate filament proteins, are required for proper building of at least some organs. As the major structural components of the nuclear lamina found underneath the inner nuclear membranes, lamins are ubiquitously expressed in all animal cells. How the broadly expressed lamins support the building of specific tissues is not understood. By studying Drosophila testis, we have uncovered a mechanism by which lamin-B functions in the cyst stem cell (CySC) and its differentiated cyst cell, the cell types known to form the niche/microenvironment for the germline stem cells (GSC) and the developing germ line, to ensure testis organogenesis (1). In this extra view, we discuss some remaining questions and the implications of our findings in the understanding of how the ubiquitous nuclear lamina regulates tissue building in a context-dependent manner.
NASA Technical Reports Server (NTRS)
Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.
1995-01-01
We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.
Characterizing the population of active galactic nuclei in dwarf galaxies
NASA Astrophysics Data System (ADS)
Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.
2017-01-01
Clues to super-massive black hole (BH) formation and growth reside in the population and properties of BHs in local dwarf galaxies. The masses of BHs in these systems are our best observational constraint on the masses of the first BH "seeds" at high redshift. Moreover, present-day dwarf galaxies are unlikely to have undergone major mergers, making them a relatively pristine testbed for studying triggers of BH accretion. However, in order to find BHs in dwarf galaxies outside the Local Group, it is necessary to search for signatures of accretion, i.e., active galactic nuclei (AGN). Until recently, only a handful of dwarf galaxies were known to contain AGN. However, large surveys such as the SDSS have led to the production of samples of over a hundred dwarf galaxies with AGN signatures (see e.g., Reines et al. 2013). My dissertation work has involved in-depth, multi-wavelength follow-up of nearby (z<0.055) dwarf galaxies with optical spectroscopic AGN signatures in SDSS.I analyzed high resolution spectra of dwarf galaxies with narrow-line AGN, which led to the discovery of a 50,000 MSun BH in the nucleus of RGG 118 - the smallest BH yet reported in a galaxy nucleus (Baldassare et al. 2015). I also used multi-epoch optical spectroscopy to study the nature of broad H-alpha emission in dwarf galaxies. A characteristic signature of dense gas orbiting around a BH, broad emission can also be produced by transient stellar processes. I showed that broad H-alpha in star-forming dwarf galaxies fades over a baseline of 5-10 years, and is likely produced by e.g., a Type II SN as opposed to an AGN. However, broad emission in dwarf galaxies with AGN/composite narrow lines is persistent and consistent across observations, suggesting an AGN origin (Baldassare et al. 2016). Finally, I analyzed X-ray and UV observations of dwarf galaxies with broad and narrow-line AGN signatures. All targets had nuclear X-ray detections at levels significantly higher than expected from X-ray binaries. With BH masses of ~105-106 MSun, inferred Eddington ratios range from 0.1-50%, akin to massive broad-line AGN at higher redshift (Baldassare et al. submitted). My dissertation work provides strong confirmation that these systems are bona fide AGN.
2016-07-18
One broad active region sported a wonderful example of coiled magnetic field lines over almost a four-day period (July 15-18, 2016). The magnetic lines are easily visible in this 171 Angstrom wavelength of extreme ultraviolet light be cause charged particles are spiraling along the lines. The active region is a hotbed of struggling magnetic forces that were pushing out above the sun's surface. http://photojournal.jpl.nasa.gov/catalog/PIA17911
The impact of Phase 1 of the Silver Line on the Northern Virginia transportation system.
DOT National Transportation Integrated Search
2017-05-01
The purpose of this study was to assess the impact of Phase 1 of the Washington Metropolitan Area Transit Authoritys Silver Line on the broad regional transportation system, and specifically on the road network operated by the Virginia Department ...
Gas-phase broadband spectroscopy using active sources: progress, status, and applications
Cossel, Kevin C.; Waxman, Eleanor M.; Finneran, Ian A.; Blake, Geoffrey A.; Ye, Jun; Newbury, Nathan R.
2017-01-01
Broadband spectroscopy is an invaluable tool for measuring multiple gas-phase species simultaneously. In this work we review basic techniques, implementations, and current applications for broadband spectroscopy. We discuss components of broad-band spectroscopy including light sources, absorption cells, and detection methods and then discuss specific combinations of these components in commonly-used techniques. We finish this review by discussing potential future advances in techniques and applications of broad-band spectroscopy. PMID:28630530
Unveiling the nature of the $$\\gamma$$-ray emitting active galactic nucleus PKS 0521-36
D'Ammando, F.; Orienti, M.; Tavecchio, F.; ...
2015-05-19
PKS 0521-36 is an active galactic nucleus (AGN) with uncertain classification. Here, we investigate the properties of this source from radio to γ-rays. The broad emission lines in the optical and ultraviolet bands and steep radio spectrum indicate a possible classification as an intermediate object between broad-line radio galaxies (BLRG) and steep spectrum radio quasars (SSRQ). On pc-scales PKS 0521-36 shows a knotty structure similar to misaligned AGN. The core dominance and the γ-ray properties are similar to those estimated for other SSRQ and BLRG detected in γ-rays, suggesting an intermediate viewing angle with respect to the observer. In thismore » context the flaring activity detected from this source by Fermi-Large Area Telescope between 2010 June and 2012 February is very intriguing. We discuss the γ-ray emission of this source in the framework of the structured jet scenario, comparing the spectral energy distribution (SED) of the flaring state in 2010 June with that of a low state. We present three alternative models corresponding to three different choices of the viewing angles θv = 6°, 15°, and 20°. We obtain a good fit for the first two cases, but the SED obtained with θv = 15° if observed at a small angle does not resemble that of a typical blazar since the synchrotron emission should dominate by a large factor (~100) the inverse Compton component. This suggests that a viewing angle between 6° and 15° is preferred, with the rapid variability observed during γ-ray flares favouring a smaller angle. However, we cannot rule out that PKS 0521-36 is the misaligned counterpart of a synchrotron-dominated blazar.« less
Pradhan, Subrata; Chakraborty, Anirban; Sikdar, Narattam; Chakraborty, Saikat; Bhattacharyya, Jagannath; Mitra, Joy; Manna, Anulina; Dutta Gupta, Snehasish; Sen, Soumitra Kumar
2016-10-01
Genetically engineered rice lines with broad insecticidal properties against major lepidopteran pests were generated using a synthetic, truncated form of vegetative insecticidal protein (Syn vip3BR) from Bacillus thuringiensis. The selectable marker gene and the redundant transgene(s) were eliminated through Cre/ lox mediated recombination and genetic segregation to make consumer friendly Bt -rice. For sustainable resistance against lepidopteran insect pests, chloroplast targeted synthetic version of bioactive core component of a vegetative insecticidal protein (Syn vip3BR) of Bacillus thuringiensis was expressed in rice under the control of green-tissue specific ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene promoter. The transgenic plants (in Oryza sativa indica Swarna cultivar) showed high insect mortality rate in vitro against major rice pests, yellow stem borer (Scirpophaga incertulas), rice leaf folder (Cnaphalocrocis medinalis) and rice horn caterpillar (Melanitis leda ismene) in T1 generation, indicating insecticidal potency of Syn vip3BR. Under field conditions, the T1 plants showed considerable resistance against leaf folders and stem borers. The expression cassette (vip-lox-hpt-lox) as well as another vector with chimeric cre recombinase gene under constitutive rice ubiquitin1 gene promoter was designed for the elimination of selectable marker hygromycin phosphotransferase (hptII) gene. Crossing experiments were performed between T1 plants with single insertion site of vip-lox-hpt-lox T-DNA and one T1 plant with moderate expression of cre recombinase with linked bialaphos resistance (syn bar) gene. Marker gene excision was achieved in hybrids with up to 41.18 % recombination efficiency. Insect resistant transgenic lines, devoid of selectable marker and redundant transgene(s) (hptII + cre-syn bar), were established in subsequent generation through genetic segregation.
The Host Galaxy and Central Engine of the Dwarf Active Galactic Nucleus POX 52
NASA Astrophysics Data System (ADS)
Thornton, Carol E.; Barth, Aaron J.; Ho, Luis C.; Rutledge, Robert E.; Greene, Jenny E.
2008-10-01
We present new multiwavelength observations of the dwarf Seyfert 1 galaxy POX 52 in order to investigate the properties of the host galaxy and the active nucleus and to examine the mass of its black hole, previously estimated to be ~105 M⊙. HST ACS HRC images show that the host galaxy has a dwarf elliptical morphology (MI = - 18.4 mag, Sérsic index n = 4.3) with no detected disk component or spiral structure, confirming previous results from ground-based imaging. X-ray observations from both Chandra and XMM-Newton show strong (factor of 2) variability over timescales as short as 500 s, as well as a dramatic decrease in the absorbing column density over a 9 month period. We attribute this change to a partial covering absorber, with a 94% covering fraction and NH = 58+ 8.4-9.2 × 1021 cm -2, that moved out of the line of sight in between the XMM-Newton and Chandra observations. Combining these data with observations from the VLA, Spitzer, and archival data from 2MASS and GALEX, we examine the SED of the active nucleus. Its shape is broadly similar to typical radio-quiet quasar SEDs, despite the very low bolometric luminosity of Lbol = 1.3 × 1043 ergs s-1. Finally, we compare black hole mass estimators, including methods based on X-ray variability, and optical scaling relations using the broad Hβ line width and AGN continuum luminosity, finding a range of black hole mass from all methods to be MBH = (2.2-4.2) × 105 M⊙, with an Eddington ratio of Lbol/LEdd ≈ 0.2-0.5.
SOFT LAGS IN NEUTRON STAR kHz QUASI-PERIODIC OSCILLATIONS: EVIDENCE FOR REVERBERATION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barret, Didier, E-mail: didier.barret@irap.omp.eu; CNRS, Institut de Recherche en Astrophysique et Planetologie, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4
2013-06-10
High frequency soft reverberation lags have now been detected from stellar mass and supermassive black holes. Their interpretation involves reflection of a hard source of photons onto an accretion disk, producing a delayed reflected emission, with a time lag consistent with the light travel time between the irradiating source and the disk. Independently of the location of the clock, the kHz quasi-periodic oscillation (QPO) emission is thought to arise from the neutron star boundary layer. Here, we search for the signature of reverberation of the kHz QPO emission, by measuring the soft lags and the lag energy spectrum of themore » lower kHz QPOs from 4U1608-522. Soft lags, ranging from {approx}15 to {approx}40 {mu}s, between the 3-8 keV and 8-30 keV modulated emissions are detected between 565 and 890 Hz. The soft lags are not constant with frequency and show a smooth decrease between 680 Hz and 890 Hz. The broad band X-ray spectrum is modeled as the sum of a disk and a thermal Comptonized component, plus a broad iron line, expected from reflection. The spectral parameters follow a smooth relationship with the QPO frequency, in particular the fitted inner disk radius decreases steadily with frequency. Both the bump around the iron line in the lag energy spectrum and the consistency between the lag changes and the inferred changes of the inner disk radius, from either spectral fitting or the QPO frequency, suggest that the soft lags may indeed involve reverberation of the hard pulsating QPO source on the disk.« less
NASA Astrophysics Data System (ADS)
Zemcov, Michael; SPHEREx Science Team
2018-01-01
The near IR extragalactic background light (EBL) encodes the integrated light production over cosmic history, so traces the total emission from all galaxies along the line of sight up to the ancient first-light objects responsible for the epoch of reionization (EOR). The EBL can be constrained through measurements of anisotropies, taking advantage of the fact that extragalactic populations produce fluctuations with distinct spatial and spectral characteristics from local foregrounds. In particular, EBL anisotropies trace the underlying clustering of faint emission sources, such as stars, galaxies and accreting black holes present during the EOR, dwarf galaxies, and intra-halo light (IHL), all of which are components not readily detected in point source surveys. The fluctuation amplitude observed independently by a number of recent measurements exceeds that expected from the large-scale clustering of known galaxy populations, indicating the presence of a large integrated brightness from these faint and diffuse components. Improved large-area measurements covering the entire near-IR are required to constrain the possible models for the history of emission from stars back to the EOR.SPHEREx brings new capabilities to EBL fluctuation measurements, employing 96 spectral channels covering 0.75 to 5 microns with spectral resolving power R = 41 to 135 that enable SPHEREx to carry out a multi-frequency separation of the integrated light from galaxies, IHL, and EOR components using the rich auto- and cross-correlation information available from two 45 square degree surveys of the ecliptic poles. SPHEREx is an ideal intensity mapping machine, and has the sensitivity to disentangle the history of light production associated with EBL fluctuations. SPHEREx will search for an EOR component its to minimum required level through component separation and spectral fitting techniques optimized for the near-IR. In addition to broad-band intensity mapping that enhances and extends the Euclid survey, uniquely SPHEREx will enable tomography of cosmic large scale structure using line tracers such as Lya, Ha, Hb, O[II] and O[III], as highlighted in community workshops and AAS special sessions over the past several years.
The Prevalence of Ionized Gas Outflow Signatures in SDSS-IV MaNGA Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Flores, Anthony M.; Wylezalek, Dominika; Zakamska, Nadia
2018-01-01
Actively accreting supermassive black holes (AGN) can have a variety of effects on their host galaxies, from generating large regions of hot, photoionized gas, to driving AGN feedback in the form of galaxy wide outflows that may affect the evolution of the galaxy over time by quenching their star formation and by thus setting limits to the total mass of their host galaxy. The focus of this work is to assess the prevalence of AGN-driven outflows in low-redshift AGN of moderate power using IFU observations of 2778 galaxies available through SDSS-IV MaNGA.SDSS-IV MaNGA is an optical spectroscopic IFU survey which will have obtained spatially resolved spectroscopic observations of ~10,000 galaxies at z ≤ 0.1 and with stellar masses >10^9 solar masses over the next three years, allowing us to describe the kinematic properties of a large galaxy sample across different spatial regions.We have re-mapped the kinematics of the [O III] emission line to account for asymmetries and secondary kinematic components in the emission line brought on by potential AGN-driven outflows. Using all galaxies currently in the MaNGA survey, we implement a new fitting procedure to help determine the prevalence of these secondary components. Specifically, we use the non-parametric W80 value as a proxy for velocity dispersion, which we expect to be affected especially in the case of asymmetries and broadening of the emission lines. Separating these galaxies into two samples of independently identified AGN candidates and non-AGN, I will show that broad secondary components are twice as common in MaNGA-selected AGN compared to galaxies in MaNGA not classified as AGN. Moreover, when the underlying distribution of W80 values are compared between samples, I will show that the differences in these distributions are statistically significant. This demonstrates that large IFU survey like SDSS-IV MaNGA will uncover many previously unknown AGN and AGN feedback signatures. Outflows and feedback from low- and intermediate-luminosity AGN might have been underestimated in the past but can potentially significantly contribute to the AGN/host-galaxy self-regulation.
Product line management in oncology: a Canadian experience.
Wodinsky, H B; Egan, D; Markel, F
1988-01-01
More competition for finite resources and increasing regulation have led many hospitals to consider a strategic reorganization. Recently, one common reorganization strategy has been"product line management." Product line management can be broadly defined in terms of centralized program management, planning, and marketing strategies. In Canada, while strategic driving forces may be different, a product line management alternative has arisen in one of the most potentially complex product lines, cancer services. This article compares and contrasts the theoretical model for product line management development, with special reference to cancer services, to the experience of one Canadian medical center and cancer center.
Split-cross-bridge resistor for testing for proper fabrication of integrated circuits
NASA Technical Reports Server (NTRS)
Buehler, M. G. (Inventor)
1985-01-01
An electrical testing structure and method is described whereby a test structure is fabricated on a large scale integrated circuit wafer along with the circuit components and has a van der Pauw cross resistor in conjunction with a bridge resistor and a split bridge resistor, the latter having two channels each a line width wide, corresponding to the line width of the wafer circuit components, and with the two channels separated by a space equal to the line spacing of the wafer circuit components. The testing structure has associated voltage and current contact pads arranged in a two by four array for conveniently passing currents through the test structure and measuring voltages at appropriate points to calculate the sheet resistance, line width, line spacing, and line pitch of the circuit components on the wafer electrically.
NASA Astrophysics Data System (ADS)
Lan, Sheng; Sugimoto, Yoshimasa; Nishikawa, Satoshi; Ikeda, Naoki; Yang, Tao; Kanamoto, Kozyo; Ishikawa, Hiroshi; Asakawa, Kiyoshi
2002-07-01
We present a systematic study of coupled defects in photonic crystals (PCs) and explore their applications in constructing optical components and devices for ultrafast all-optical signal processing. First, we find that very deep band gaps can be generated in the impurity bands of coupled cavity waveguides (CCWs) by a small periodic modulation of defect modes. This phenomenon implies a high-efficiency all-optical switching mechanism. The switching mechanism can be easily extended from one-dimensional (1D) to two-dimensional and three-dimensional PC structures by utilizing the coupling of defect pairs which are generally present in PCs. Second, we suggest that CCWs with quasiflat and narrow impurity bands can be employed as efficient delay lines for ultrashort pulses. Criteria for designing such kind of CCWs have been derived from the analysis of defect coupling and the investigation of pulse transmission through various CCWs. It is found that the availability of quasiflat impurity bands depends not only on the intrinsic properties of the constituting defects but also on the detailed configuration of CCWs. In experiments, optical delay lines based on 1D monorail CCWs have been successfully fabricated and characterized. Finally, we have proposed a new mechanism for constructing waveguide intersections with broad bandwidth and low cross-talk.
Su, Yaling; Chen, Feizhou; Liu, Zhengwen
2015-05-01
Here we investigated absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in 15 alpine lakes located below or above the tree line to determine its source and composition. The results indicate that the concentrations of CDOM in below-tree-line lakes are significantly higher than in above-tree-line lakes, as evidenced from the absorption coefficients of a250 and a365. The intensities of the protein-like and humic-like fluorescence in below-tree-line lakes are higher than in above-tree-line lakes as well. Three fluorescent components were identified using parallel factor analysis (PARAFAC) modelling. Component 1 is probably associated with biological degradation of terrestrial humic component. The terrestrial humic-like component 2 is only found in below-tree-line lakes. The protein-like or phenolic component 3 is dominant in above-tree-line lakes, which is probably more derived from autochthonous origin. In this study, (1) higher a250/a365 and S275-295 values indicate smaller molecular weights of CDOM in above-tree-line lakes than in below-tree-line lakes, and smaller molecular weights at the surface than at 2.0 m depth; (2) SUVA254 and FI255 results provide evidence of lower percent aromaticity of CDOM in above-tree-line lakes; and (3) FI310 and FI370 suggest a strong allochthonous origin at the surface in below-tree-line lakes, and more contribution from autochthonous biological and aquatic bacterial origin in above-tree-line lakes.
Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines
NASA Astrophysics Data System (ADS)
Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath
2017-04-01
The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.
Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines
USDA-ARS?s Scientific Manuscript database
Natural variation provides a powerful opportunity to study the genetic basis of biological traits. Brachypodium distachyon is a broadly distributed diploid model grass with a small genome and a large collection of diverse inbred lines. As a step towards understanding the genetic basis of the natura...
Direct current power delivery system and method
Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin
2016-09-06
A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.
Multiwavelength Properties of the X-Ray Sources in the Groth-Westphal Strip Field
NASA Astrophysics Data System (ADS)
Miyaji, Takamitsu; Sarajedini, Vicki; Griffiths, Richard E.; Yamada, Toru; Schurch, Matthew; Cristóbal-Hornillos, David; Motohara, Kentaro
2004-06-01
We summarize the multiwavelength properties of X-ray sources detected in the 80 ks XMM-Newton observation of the Groth-Westphal strip, a contiguous strip of 28 Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images. Among the ~150 X-ray sources detected in the XMM-Newton field of view, 23 are within the WFPC2 fields. Ten spectroscopic redshifts are available from the Deep Extragalactic Evolutionary Probe and Canada-France Redshift Survey projects. Four of these show broad Mg II emission and can be classified as type 1 active galactic nuclei (AGNs). Two of those without any broad lines, nevertheless, have [Ne V] emission, which is an unambiguous signature of AGN activity. One is a narrow-line Seyfert 1 and the other a type 2 AGN. As a follow-up, we have made near-infrared spectroscopic observations using the OHS/CISCO spectrometer for five of the X-ray sources for which we found no indication of AGN activity in the optical spectrum. We have detected Hα+[N II] emission in four of them. A broad Hα component and/or a large [N II]/Hα ratio is seen, suggestive of AGN activity. Nineteen sources have been detected in the Ks band, and four of these are extremely red objects (EROs) (I814-Ks>4). The optical counterparts for the majority of the X-ray sources are bulge-dominated. The I814-Ks color of these bulge-dominated hosts are indeed consistent with evolving elliptical galaxies, while contaminations from star formation/AGNs seems to be present in their V606-I814 color. Assuming that the known local relations among the bulge luminosity, central velocity dispersion, and the mass of the central blackhole still hold at z~1, we compare the AGN luminosity with the Eddington luminosity of the central blackhole mass. The AGN bolometric luminosity to Eddington luminosity ratio ranges from 0.3% to 10%. Based on observations from the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA. Also based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Subwavelength grating enabled on-chip ultra-compact optical true time delay line
Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.
2016-01-01
An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024
Subwavelength grating enabled on-chip ultra-compact optical true time delay line.
Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R
2016-07-26
An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.
OUTFLOW AND METALLICITY IN THE BROAD-LINE REGION OF LOW-REDSHIFT ACTIVE GALACTIC NUCLEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jaejin; Woo, Jong-Hak; Nagao, Tohru
2017-01-20
Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE , we investigate outflows in the broad-line region (BLR) in low-redshift AGNs ( z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which ismore » consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yuan; Li Xiaobo, E-mail: liuyuan@ihep.ac.cn, E-mail: lixb@ihep.ac.cn
The properties of the dusty tori in active galactic nuclei (AGNs) have been investigated in detail, mainly focusing on the geometry and components; however, the kinematics of the torus are still not clear. The narrow iron K α line at 6.4 keV is thought to be produced by the X-ray reflection from the torus. Thus, the velocity-resolved reverberation mapping of it is able to constrain the kinematics of the torus. Such effort is limited by the spectral resolution of current charged coupled device (CCD) detectors and should be possible with the microcalorimeter on the next generation X-ray satellite. In thismore » paper, we first construct the response functions of the torus under a uniform inflow, a Keplerian rotation, and a uniform outflow. Then the energy-dependent light curve of the narrow iron K α line is simulated according to the performance of the X-ray Integral Field Unit in Athena. Finally, the energy-dependent cross-correlation function is calculated to reveal the kinematic signal. According to our results, 100 observations with 5 ks exposure of each are sufficient to distinguish the above three velocity fields. Although the real geometry and velocity field of the torus could be more complex than we assumed, the present result proves the feasibility of the velocity-resolved reverberation mapping of the narrow iron K α line. The combination of the dynamics of the torus with those of the broad-line region and the host galaxy is instructive for the understanding of the feeding and feedback process of AGNs.« less
The polarization and ultraviolet spectrum of Markarian 231
NASA Technical Reports Server (NTRS)
Smith, Paul S.; Schmidt, Gary D.; Allen, Richard G.; Angel, J. R. P.
1995-01-01
Ultraviolet spectropolarimetry acquired with the Hubble Space Telescope (HST) of the peculiar Seyfert galaxy Mrk 231 is combined with new high-quality ground-based measurements to provide the first, nearly complete, record of its linear polarization from 1575 to 7900 A. The accompanying ultraviolet spectrum portrays the heavily extinguished emission-line spectrum of the active nucleus plus the emergence of a blue continuum shortward of approximately 2400 A. In addition, absorption features due to He I lambda 3188, Mg I lambda 2853, Mg II lambda 2798, and especially several resonance multiplets of Fe II are identified with a well-known optical absorption system blueshifted approximately 4600 km/s with respect to emission lines. The continuum is attributed to approximately 10(exp 5) hot, young stars surrounding the nucleus. This component dilutes the polarized nuclear light, implying that the intrinsic polarization of the active galactic nucleus (AGN) spectrum approaches 20% at 2800 A. The rapid decline in degree of polarization toward longer wavelengths is best explained by the strongly frequency-dependent scattering cross section of dust grains coupled with modest starlight dilution. Peculiar S-shaped inflections in both the degree and position angle of polarization through H alpha and other major emission lines are interpreted as effects of scattering from two regions offset in velocity by several hundred km/s. A third source of (weakly) polarized flux is required to explain a nearly 40 deg rotation in position angle between 3200 and 1800 A. The displaced absorption features, polarimetry, and optical/infrared properties of Mrk 231 all point to its classification as a low-ionization, or Mg II broad absorption line quasar, in which most, if not all, lines of sight to the active nucleus are heavily obscured by dust and low-ionization gas clouds.
Mead, Emma J; Masterton, Rosalyn J; Feary, Marc; Obrezanova, Olga; Zhang, Lin; Young, Robert; Smales, C Mark
2015-12-15
Translation initiation is on the critical pathway for the production of monoclonal antibodies (mAbs) by mammalian cells. Formation of a closed loop structure comprised of mRNA, a number of eukaryotic initiation factors (eIFs) and ribosomal proteins has been proposed to aid re-initiation of translation and therefore increase global translational efficiency. We have determined mRNA and protein levels of the key components of the closed loop, eIFs (eIF3a, eIF3b, eIF3c, eIF3h, eIF3i and eIF4G1), poly(A)-binding protein (PABP) 1 and PABP-interacting protein 1 (PAIP1), across a panel of 30 recombinant mAb-producing GS-CHOK1SV cell lines with a broad range of growth characteristics and production levels of a model recombinant mAb. We have used a multi-level statistical approach to investigate the relationship between key performance indicators (cell growth and recombinant antibody productivity) and the intracellular amounts of target translation initiation factor proteins and the mRNAs encoding them. We show that high-producing cell lines maintain amounts of the translation initiation factors involved in the formation of the closed loop mRNA, maintaining these proteins at appropriate levels to deliver enhanced recombinant protein production. We then utilize knowledge of the amounts of these factors to build predictive models for and use cluster analysis to identify, high-producing cell lines. The present study therefore defines the translation initiation factor amounts that are associated with highly productive recombinant GS-CHOK1SV cell lines that may be targets for screening highly productive cell lines or to engineer new host cell lines with the potential for enhanced recombinant antibody productivity. © 2015 Authors; published by Portland Press Limited.
PAHFIT: Properties of PAH Emission
NASA Astrophysics Data System (ADS)
Smith, J. D.; Draine, Bruce
2012-10-01
PAHFIT is an IDL tool for decomposing Spitzer IRS spectra of PAH emission sources, with a special emphasis on the careful recovery of ambiguous silicate absorption, and weak, blended dust emission features. PAHFIT is primarily designed for use with full 5-35 micron Spitzer low-resolution IRS spectra. PAHFIT is a flexible tool for fitting spectra, and you can add or disable features, compute combined flux bands, change fitting limits, etc., without changing the code. PAHFIT uses a simple, physically-motivated model, consisting of starlight, thermal dust continuum in a small number of fixed temperature bins, resolved dust features and feature blends, prominent emission lines (which themselves can be blended with dust features), as well as simple fully-mixed or screen dust extinction, dominated by the silicate absorption bands at 9.7 and 18 microns. Most model components are held fixed or are tightly constrained. PAHFIT uses Drude profiles to recover the full strength of dust emission features and blends, including the significant power in the wings of the broad emission profiles. This means the resulting feature strengths are larger (by factors of 2-4) than are recovered by methods which estimate the underlying continuum using line segments or spline curves fit through fiducial wavelength anchors.
Memory, reasoning, and categorization: parallels and common mechanisms
Hayes, Brett K.; Heit, Evan; Rotello, Caren M.
2014-01-01
Traditionally, memory, reasoning, and categorization have been treated as separate components of human cognition. We challenge this distinction, arguing that there is broad scope for crossover between the methods and theories developed for each task. The links between memory and reasoning are illustrated in a review of two lines of research. The first takes theoretical ideas (two-process accounts) and methodological tools (signal detection analysis, receiver operating characteristic curves) from memory research and applies them to important issues in reasoning research: relations between induction and deduction, and the belief bias effect. The second line of research introduces a task in which subjects make either memory or reasoning judgments for the same set of stimuli. Other than broader generalization for reasoning than memory, the results were similar for the two tasks, across a variety of experimental stimuli and manipulations. It was possible to simultaneously explain performance on both tasks within a single cognitive architecture, based on exemplar-based comparisons of similarity. The final sections explore evidence for empirical and processing links between inductive reasoning and categorization and between categorization and recognition. An important implication is that progress in all three of these fields will be expedited by further investigation of the many commonalities between these tasks. PMID:24987380
Memory, reasoning, and categorization: parallels and common mechanisms.
Hayes, Brett K; Heit, Evan; Rotello, Caren M
2014-01-01
Traditionally, memory, reasoning, and categorization have been treated as separate components of human cognition. We challenge this distinction, arguing that there is broad scope for crossover between the methods and theories developed for each task. The links between memory and reasoning are illustrated in a review of two lines of research. The first takes theoretical ideas (two-process accounts) and methodological tools (signal detection analysis, receiver operating characteristic curves) from memory research and applies them to important issues in reasoning research: relations between induction and deduction, and the belief bias effect. The second line of research introduces a task in which subjects make either memory or reasoning judgments for the same set of stimuli. Other than broader generalization for reasoning than memory, the results were similar for the two tasks, across a variety of experimental stimuli and manipulations. It was possible to simultaneously explain performance on both tasks within a single cognitive architecture, based on exemplar-based comparisons of similarity. The final sections explore evidence for empirical and processing links between inductive reasoning and categorization and between categorization and recognition. An important implication is that progress in all three of these fields will be expedited by further investigation of the many commonalities between these tasks.
Li, Shenglan; Xue, Haipeng; Wu, Jianbo; Rao, Mahendra S; Kim, Dong H; Deng, Wenbin; Liu, Ying
2015-12-15
Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼ 33% correctly targeted clones) compared to conventional targeting protocol (∼ 3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations.
Highly ionized collimated outflow from HE 0238-1904
NASA Astrophysics Data System (ADS)
Muzahid, S.; Srianand, R.; Savage, B. D.; Narayanan, A.; Mohan, V.; Dewangan, G. C.
2012-07-01
We present a detailed analysis of a highly ionized, multiphased and collimated outflowing gas detected through O V, O VI, Ne VIII and Mg X absorption associated with the QSO HE 0238-1904 (zem≃ 0.629). Based on the similarities in the absorption-line profiles and estimated covering fractions, we find that the O VI and Ne VIII absorption trace the same phase of the absorbing gas. Simple photoionization models can reproduce the observed ?, ? and ? from a single phase whereas the low-ionization species (e.g. N III, N IV and O IV) originate from a different phase. The measured ? ratio is found to be remarkably similar (within a factor of ˜2) in several individual absorption components kinematically spread over ˜1800 km s-1. Under photoionization this requires a fine-tuning between hydrogen density (nH) and the distance of the absorbing gas from the Quasi Stellar Object (QSO). Alternatively, this can also be explained by collisional ionization in hot gas with T≥ 105.7 K. Long-term stability favours the absorbing gas being located outside the broad-line region. We speculate that the collimated flow of such a hot gas could possibly be triggered by the radio jet interaction.
Li, Shenglan; Xue, Haipeng; Wu, Jianbo; Rao, Mahendra S.; Kim, Dong H.; Deng, Wenbin
2015-01-01
Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼33% correctly targeted clones) compared to conventional targeting protocol (∼3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations. PMID:26414932
Meeting report: a hard look at the state of enamel research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Ophir D.; Duverger, Olivier; Shaw, Wendy
Enamel is a principal component of the dentition, and defects in this hard tissue are associated with a wide variety of diseases. To assess the state of the field of enamel research, the National Institute of Dental and Craniofacial Research (NIDCR) convened the “Encouraging Novel Amelogenesis Models and Ex vivo cell Lines (ENAMEL) Development” workshop at its Bethesda headquarters on 23 June 2017. Enamel formation involves complex developmental stages and cellular differentiation mechanisms that are summarized in Figure 1. The meeting, which was organized by Jason Wan from NIDCR, had three sessions: model organisms, stem cells/cell lines, and tissues/ 3Dmore » cell culture/organoids. In attendance were investigators interested in enamel from a broad range of disciplines as well as NIDCR leadership and staff. The meeting brought together developmental biologists, cell biologists, human geneticists, materials scientists, and clinical researchers from across the United States to discuss recent progress and future challenges in our understanding of the formation and function of enamel. Lively discussions took place throughout the day, and this meeting report highlights some of the major findings and ideas that emerged during the workshop.« less
The metallicities of the broad emission line regions in the nitrogen-loudest quasars
NASA Astrophysics Data System (ADS)
Batra, Neelam Dhanda; Baldwin, Jack A.
2014-03-01
We measured the metallicity Z in the broad emission-line regions (BELRs) of 43 Sloan Digital Sky Survey (SDSS) quasars with the strongest N IV] and N III] emission lines. These N-loud quasi-stellar objects (QSOs) have unusually low-black-hole masses. We used the intensity ratio of N lines to collisionally excited emission lines of other heavy elements to find metallicities in their BELR regions. We found that seven of the eight line-intensity ratios that we employed give roughly consistent metallicities as measured, but that for each individual QSO their differences from the mean of all metallicity measurements depend on the ionization potential of the ions that form the emission lines. After correcting for this effect, the different line-intensity ratios give metallicities that generally agree to within the 0.24 dex uncertainty in the measurements of the line-intensity ratios. The metallicities are very high, with mean log Z for the whole sample of 5.5 Z⊙ and a maximum of 18 Z⊙. Our results argue against the possibility that the strong N lines represent an overabundance only of N but not of all heavy elements. They are compatible with either that (1) the BELR gas has been chemically enriched by the general stellar population in the central bulge of the host galaxy, but the locally optimally emitting cloud model used in the analysis needs some fine tuning or (2) that instead this gas has been enriched by intense star formation on the very local scale of the active nucleus that has resulted in an abundance gradient within the BELR.
NASA Astrophysics Data System (ADS)
Waters, Tim; Kashi, Amit; Proga, Daniel; Eracleous, Michael; Barth, Aaron J.; Greene, Jenny
2016-08-01
The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized BLR models such as randomly orbiting clouds and thin Keplerian disks. We conduct a parameter survey exploring how echo images, line profiles, and transfer functions depend on both the inclination angle and the line opacity. We find that the line profiles are almost always single peaked, while transfer functions tend to have tails extending to large time delays. The outflow, despite being primarily equatorially directed, causes an appreciable blueshifted excess on both the echo image and line profile when seen from lower inclinations (I≲ 45^\\circ ). This effect may be observable in low ionization lines such as {{H}}β .
A search for quasars in the Virgo cluster region
NASA Technical Reports Server (NTRS)
He, X.-T.; Cannon, R. D.; Peacock, J. A.; Smith, M. G.; Oke, J. B.
1984-01-01
Using objective-prism plates taken with the 44-arcmin objective prism mounted on the UK Schmidt telescope, 53 emission-line quasar candidates and 29 ultraviolet-excess objects (possible low-redshift quasars) have been found in a 5 x 5-degree field centered on 12 h 27 m, + 13 deg 30 min (1950) in the Virgo cluster of galaxies. Eighteen of these 82 candidates were observed using the double spectrograph on the Palomar 5-meter telescope; 13 of the observed objects proved to be quasars. The broad-absorption-line QSO Q1232 + 134 is the first example of the class to show broad low-ionization absorption lines (such as Mg II 2798 A) in addition to the usual high-excitation lines such as Nv 1240 A. Although no conclusive evidence for quasar-galaxy associations is found in this field, there do exist nonuniformities in the distribution of the quasar candidates which may merit further investigation. These objects will provide a useful network of probes for absorbing material in the Virgo cluster. The lines-of-sight to two of the confirmed quasars pass very close to NGC galaxies; the respective projected QSO-galaxy separations are only 4 and 11 kpc at the assumed distance of the Virgo cluster.
1E 0104.2 + 3153 - A broad absorption-line QSO viewed through a giant elliptical galaxy
NASA Technical Reports Server (NTRS)
Stocke, J. T.; Liebert, J.; Schild, R.; Gioia, I. M.; Maccacaro, T.
1984-01-01
The optical identification of the X-ray source 1E 0104.2 + 3153 is complicated by the close projection of a broad absorption-line (BAL) QSO (z = 2.027) 10 arcsec from a giant elliptical galaxy (z = 0.111) at the center of a compact group of galaxies. At only 1.2 de Vaucouleur radii (16 kpc for H sub 0 = 100 km/s Mpc) this QSO-galaxy projection is the closest yet discovered. Based upon current observations, the source of the X-ray emission cannot be conclusively determined. Present in the BAL QSO spectrum are extremely strong Ca II H and K absorption lines due to the intervening galaxy, the first optical detection of the cold interstellar medium in an elliptical galaxy. The strength of these lines (EW = 2 and 1 A) requires observation through several interstellar clouds in the line of sight to the QSO. By its proximity to the central regions of the elliptical galaxy and the relative distances of the galaxy and QSO, this QSO is a particularly good candidate for observing dramatic transient gravitational lensing phenomena due to halo stars in the foreground galaxy.
Ju, Jin Hyun; Crystal, Ronald G.
2017-01-01
Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In light of these results, we discuss the broad impact eQTL that have been previously reported from the analysis of human data and suggest that considerable caution should be exercised when making biological inferences based on these reported eQTL. PMID:28505156
Ju, Jin Hyun; Shenoy, Sushila A; Crystal, Ronald G; Mezey, Jason G
2017-05-01
Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In light of these results, we discuss the broad impact eQTL that have been previously reported from the analysis of human data and suggest that considerable caution should be exercised when making biological inferences based on these reported eQTL.
XMM-Newton and INTEGRAL view of the hard state of EXO 1745-248 during its 2015 outburst
NASA Astrophysics Data System (ADS)
Matranga, M.; Papitto, A.; Di Salvo, T.; Bozzo, E.; Torres, D. F.; Iaria, R.; Burderi, L.; Rea, N.; de Martino, D.; Sanchez-Fernandez, C.; Gambino, A. F.; Ferrigno, C.; Stella, L.
2017-07-01
Context. Transient low-mass X-ray binaries (LMXBs) often show outbursts that typically last a few weeks and are characterized by a high X-ray luminosity (Lx ≈ 1036-1038 erg s-1), while most of the time they are found in X-ray quiescence (LX ≈ 1031-1033 erg s-1). The source EXO 1745-248 is one of them. Aims: The broad-band coverage and sensitivity of the instrument on board XMM-Newton and INTEGRAL offers the opportunity of characterizing the hard X-ray spectrum during the outburst of EXO 1745-248. Methods: We report on quasi-simultaneous XMM-Newton and INTEGRAL observations of the X-ray transient EXO 1745-248 located in the globular cluster Terzan 5, performed ten days after the beginning of the outburst (on 2015 March 16) of the source between March and June 2015. The source was caught in a hard state, emitting a 0.8-100 keV luminosity of ≃ 1037 erg s-1. Results: The spectral continuum was dominated by thermal Comptonization of seed photons with temperature kTin ≃ 1.3 keV, by a cloud with a moderate optical depth τ ≃ 2, and with an electron temperature of kTe ≃ 40 keV. A weaker soft thermal component at temperature kTth ≃ 0.6-0.7 keV and compatible with a fraction of the neutron star radius was also detected. A rich emission line spectrum was observed by the EPIC-pn on board XMM-Newton; features at energies compatible with K-α transitions of ionized sulfur, argon, calcium, and iron were detected, with a broadness compatible with either thermal Compton broadening or Doppler broadening in the inner parts of an accretion disk truncated at 20 ± 6 gravitational radii from the neutron star. Strikingly, at least one narrow emission line ascribed to neutral or mildly ionized iron is needed to model the prominent emission complex detected between 5.5 and 7.5 keV. The different ionization state and broadness suggest an origin in a region located farther from the neutron star than where the other emission lines are produced. Seven consecutive type I bursts were detected during the XMM-Newton observation, none of which showed hints of photospheric radius expansion. A thorough search for coherent pulsations from the EPIC-pn light curve did not result in any significant detection. Upper limits ranging from a few to 15% on the signal amplitude were set, depending on the unknown spin and orbital parameters of the system.
Bulk Comptonization: new hints from the luminous blazar 4C+25.05
NASA Astrophysics Data System (ADS)
Kammoun, E. S.; Nardini, E.; Risaliti, G.; Ghisellini, G.; Behar, E.; Celotti, A.
2018-01-01
Blazars are often characterized by a spectral break at soft X-rays, whose origin is still debated. While most sources show a flattening, some exhibit a blackbody-like soft excess with temperatures of the order of ∼0.1 keV, similar to low-luminosity, non-jetted Seyferts. Here, we present the analysis of the simultaneous XMM-Newton and NuSTAR observations of the luminous flat-spectrum radio quasar 4C+25.05 (z = 2.368). The observed 0.3-30 keV spectrum is best described by the sum of a hard X-ray power law (Γ = 1.38_{-0.03}^{+0.05}) and a soft component, approximated by a blackbody with kT_BB = 0.66_{-0.04}^{+0.05} keV (rest frame). If the spectrum of 4C+25.05 is interpreted in the context of bulk Comptonization by cold electrons of broad-line region photons emitted in the direction of the jet, such an unusual temperature implies a bulk Lorentz factor of the jet of Γbulk ∼ 11.7. Bulk Comptonization is expected to be ubiquitous on physical grounds, yet no clear signature of it has been found so far, possibly due to its transient nature and the lack of high-quality, broad-band X-ray spectra.
Father involvement: Identifying and predicting family members' shared and unique perceptions.
Dyer, W Justin; Day, Randal D; Harper, James M
2014-08-01
Father involvement research has typically not recognized that reports of involvement contain at least two components: 1 reflecting a view of father involvement that is broadly recognized in the family, and another reflecting each reporter's unique perceptions. Using a longitudinal sample of 302 families, this study provides a first examination of shared and unique views of father involvement (engagement and warmth) from the perspectives of fathers, children, and mothers. This study also identifies influences on these shared and unique perspectives. Father involvement reports were obtained when the child was 12 and 14 years old. Mother reports overlapped more with the shared view than father or child reports. This suggests the mother's view may be more in line with broadly recognized father involvement. Regarding antecedents, for fathers' unique view, a compensatory model partially explains results; that is, negative aspects of family life were positively associated with fathers' unique view. Children's unique view of engagement may partially reflect a sentiment override with father antisocial behaviors being predictive. Mothers' unique view of engagement was predicted by father and mother work hours and her unique view of warmth was predicted by depression and maternal gatekeeping. Taken, together finding suggests a far more nuanced view of father involvement should be considered.