Sample records for broad parameter range

  1. Femtosecond soliton source with fast and broad spectral tunability.

    PubMed

    Masip, Martin E; Rieznik, A A; König, Pablo G; Grosz, Diego F; Bragas, Andrea V; Martinez, Oscar E

    2009-03-15

    We present a complete set of measurements and numerical simulations of a femtosecond soliton source with fast and broad spectral tunability and nearly constant pulse width and average power. Solitons generated in a photonic crystal fiber, at the low-power coupling regime, can be tuned in a broad range of wavelengths, from 850 to 1200 nm using the input power as the control parameter. These solitons keep almost constant time duration (approximately 40 fs) and spectral widths (approximately 20 nm) over the entire measured spectra regardless of input power. Our numerical simulations agree well with measurements and predict a wide working wavelength range and robustness to input parameters.

  2. Melting and its relationship to impact crater morphology

    NASA Technical Reports Server (NTRS)

    Okeefe, John D.; Ahrens, Thomas J.

    1992-01-01

    Shock-melting features occur on planets at scales that range from micrometers to megameters. It is the objective of this study to determine the extent of thickness, volume geometry of the melt, and relationship with crater morphology. The variation in impact crater morphology on planets is influenced by a broad range of parameters: e.g., planetary density, thermal state, strength, impact velocity, gravitational acceleration. We modeled the normal impact of spherical projectiles on a semi-infinite planet over a broad range of conditions using numerical techniques.

  3. The HelCat dual-source plasma device.

    PubMed

    Lynn, Alan G; Gilmore, Mark; Watts, Christopher; Herrea, Janis; Kelly, Ralph; Will, Steve; Xie, Shuangwei; Yan, Lincan; Zhang, Yue

    2009-10-01

    The HelCat (Helicon-Cathode) device has been constructed to support a broad range of basic plasma science experiments relevant to the areas of solar physics, laboratory astrophysics, plasma nonlinear dynamics, and turbulence. These research topics require a relatively large plasma source capable of operating over a broad region of parameter space with a plasma duration up to at least several milliseconds. To achieve these parameters a novel dual-source system was developed utilizing both helicon and thermionic cathode sources. Plasma parameters of n(e) approximately 0.5-50 x 10(18) m(-3) and T(e) approximately 3-12 eV allow access to a wide range of collisionalities important to the research. The HelCat device and initial characterization of plasma behavior during dual-source operation are described.

  4. Putting Parameters in Their Proper Place

    ERIC Educational Resources Information Center

    Montrul, Silvina; Yoon, James

    2009-01-01

    Seeing the logical problem of second language acquisition as that of primarily selecting and re-assembling bundles of features anew, Lardiere proposes to dispense with the deductive learning approach and its broad range of consequences subsumed under the concept of parameters. While we agree that feature assembly captures more precisely the…

  5. Electronic control of different generation regimes in mode-locked all-fibre F8 laser

    NASA Astrophysics Data System (ADS)

    Kobtsev, Sergey; Ivanenko, Aleksey; Kokhanovskiy, Alexey; Smirnov, Sergey

    2018-04-01

    We demonstrate for the first time an electronically controlled realisation of markedly different generation regimes in a mode-locked all-fibre figure-eight (F8) Yb-doped laser. Electronic adjustment of the ratio of pumping powers of two amplification stages in a nonlinear amplifying loop mirror enables the establishment of stable pulse generation regimes with different degrees of coherence and control over their parameters within relatively broad limits, with the pulse duration range exceeding a factor of two in the picosecond domain for coherent and incoherent pulses, the energy range exceeding an order of magnitude for incoherent pulses (2.2-24.8 nJ) and over a factor of 8 for coherent pulses (1.9-16.2 nJ). Adjustment of the pumping powers allows one to maintain the duration of the coherent pulses and to set their peak power in the range of 32.5-292.5 W. The proposed configuration of electronic control over the radiation parameters of a mode-locked all-fibre F8 laser enables reproducible generation of pulses of different types with specified parameters within a broad range of values.

  6. Switchable Scattering Meta-Surfaces for Broadband Terahertz Modulation

    PubMed Central

    Unlu, M.; Hashemi, M. R.; Berry, C. W.; Li, S.; Yang, S.-H.; Jarrahi, M.

    2014-01-01

    Active tuning and switching of electromagnetic properties of materials is of great importance for controlling their interaction with electromagnetic waves. In spite of their great promise, previously demonstrated reconfigurable metamaterials are limited in their operation bandwidth due to their resonant nature. Here, we demonstrate a new class of meta-surfaces that exhibit electrically-induced switching in their scattering parameters at room temperature and over a broad range of frequencies. Structural configuration of the subwavelength meta-molecules determines their electromagnetic response to an incident electromagnetic radiation. By reconfiguration of the meta-molecule structure, the strength of the induced electric field and magnetic field in the opposite direction to the incident fields are varied and the scattering parameters of the meta-surface are altered, consequently. We demonstrate a custom-designed meta-surface with switchable scattering parameters at a broad range of terahertz frequencies, enabling terahertz intensity modulation with record high modulation depths and modulation bandwidths through a fully integrated, voltage-controlled device platform at room temperature. PMID:25028123

  7. Scaling behavior of immersed granular flows

    NASA Astrophysics Data System (ADS)

    Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.

    2017-06-01

    The shear behavior of granular materials immersed in a viscous fluid depends on fluid properties (viscosity, density), particle properties (size, density) and boundary conditions (shear rate, confining pressure). Using computational fluid dynamics simulations coupled with molecular dynamics for granular flow, and exploring a broad range of the values of parameters, we show that the parameter space can be reduced to a single parameter that controls the packing fraction and effective friction coefficient. This control parameter is a modified inertial number that incorporates viscous effects.

  8. Homeostatic enhancement of sensory transduction

    PubMed Central

    Milewski, Andrew R.; Ó Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.

    2017-01-01

    Our sense of hearing boasts exquisite sensitivity, precise frequency discrimination, and a broad dynamic range. Experiments and modeling imply, however, that the auditory system achieves this performance for only a narrow range of parameter values. Small changes in these values could compromise hair cells’ ability to detect stimuli. We propose that, rather than exerting tight control over parameters, the auditory system uses a homeostatic mechanism that increases the robustness of its operation to variation in parameter values. To slowly adjust the response to sinusoidal stimulation, the homeostatic mechanism feeds back a rectified version of the hair bundle’s displacement to its adaptation process. When homeostasis is enforced, the range of parameter values for which the sensitivity, tuning sharpness, and dynamic range exceed specified thresholds can increase by more than an order of magnitude. Signatures in the hair cell’s behavior provide a means to determine through experiment whether such a mechanism operates in the auditory system. Robustness of function through homeostasis may be ensured in any system through mechanisms similar to those that we describe here. PMID:28760949

  9. Laser stripping of hydrogen atoms by direct ionization

    DOE PAGES

    Brunetti, E.; Becker, W.; Bryant, H. C.; ...

    2015-05-08

    Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.

  10. Laser stripping of hydrogen atoms by direct ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunetti, E.; Becker, W.; Bryant, H. C.

    Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.

  11. SiC/SiC Composites: The Effect of Fiber Type and Fiber Architecture on Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2008-01-01

    Woven SiC/SiC composites represent a broad family of composites with a broad range of properties which are of interest for many energy-based and aero-based applications. Two important features of SiC/SiC composites which one must consider are the reinforcing fibers themselves and the fiber-architecture they are formed into. The range of choices for these two features can result in a wide range of elastic, mechanical, thermal, and electrical properties. In this presentation, it will be demonstrated how the effect of fiber-type and fiber architecture effects the important property of "matrix cracking stress" for slurry-cast melt-infiltrated SiC matrix composites, which is often considered to be a critical design parameter for this system of composites.

  12. Broad DNA methylation changes of spermatogenesis, inflammation and immune response-related genes in a subgroup of sperm samples for assisted reproduction.

    PubMed

    Schütte, B; El Hajj, N; Kuhtz, J; Nanda, I; Gromoll, J; Hahn, T; Dittrich, M; Schorsch, M; Müller, T; Haaf, T

    2013-11-01

    Aberrant sperm DNA methylation patterns, mainly in imprinted genes, have been associated with male subfertility and oligospermia. Here, we performed a genome-wide methylation analysis in sperm samples representing a wide range of semen parameters. Sperm DNA samples of 38 males attending a fertility centre were analysed with Illumina HumanMethylation27 BeadChips, which quantify methylation of >27 000 CpG sites in cis-regulatory regions of almost 15 000 genes. In an unsupervised analysis of methylation of all analysed sites, the patient samples clustered into a major and a minor group. The major group clustered with samples from normozoospermic healthy volunteers and, thus, may more closely resemble the normal situation. When correlating the clusters with semen and clinical parameters, the sperm counts were significantly different between groups with the minor group exhibiting sperm counts in the low normal range. A linear model identified almost 3000 CpGs with significant methylation differences between groups. Functional analysis revealed a broad gain of methylation in spermatogenesis-related genes and a loss of methylation in inflammation- and immune response-related genes. Quantitative bisulfite pyrosequencing validated differential methylation in three of five significant candidate genes on the array. Collectively, we identified a subgroup of sperm samples for assisted reproduction with sperm counts in the low normal range and broad methylation changes (affecting approximately 10% of analysed CpG sites) in specific pathways, most importantly spermatogenesis-related genes. We propose that epigenetic analysis can supplement traditional semen parameters and has the potential to provide new insights into the aetiology of male subfertility. © 2013 American Society of Andrology and European Academy of Andrology.

  13. Employees.

    ERIC Educational Resources Information Center

    Jones, Thomas N.

    The purpose of this chapter is to offer an overview and analysis of all the cases rendered during 1980 concerning the legal parameters of employment issues in institutions of higher education. Judicial review of employment decisions encompassed a broad range of actions, including selection and appointment; dismissal and nonrenewal; the termination…

  14. Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range. Part 1: constitutive equations

    NASA Astrophysics Data System (ADS)

    Kari, Leif

    2017-09-01

    The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William-Landel-Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.

  15. Impact of demographic, behavioral, and dental care utilization parameters on tooth color and personal satisfaction.

    PubMed

    Odioso, L L; Gibb, R D; Gerlach, R W

    2000-01-01

    A cross-sectional survey across broad age ranges was conducted to evaluate demographic, behavioral, and treatment parameters that impact tooth color and its perception. The sample included 180 US adults and teenagers, with a comparable representation of males and females in 6 different age strata, ranging from 13 to 64 years. Tooth color (L*a*b*) was measured on the maxillary central incisors using a spectrophotometer, and first-person satisfaction with tooth color was assessed using a five-point qualitative scale. Demographic, behavioral, and oral care parameters were modeled using multiple regression analysis. After adjusting for other explanatory variables, age, gender, coffee/tea consumption, and dental care all significantly affected yellowing (b*) and brightness (L*). Dental-visit frequency was the only factor that significantly predicted self-satisfaction with tooth color, explaining just 3% of the overall variability. First-person dissatisfaction with tooth color was common and found in most demographic and behavioral cohorts. Although age contributed to objectively measured tooth discoloration, personal satisfaction with tooth color was age-independent. These results suggest that the need or demand for esthetic dentistry may be broad-based and transcend stereotypical perceptions.

  16. Speed-dependent Voigt lineshape parameter database from dual frequency comb measurements up to 1305 K. Part I: Pure H2O absorption, 6801-7188 cm-1

    NASA Astrophysics Data System (ADS)

    Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Giorgetta, Fabrizio R.; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.

    2018-05-01

    We measure speed-dependent Voigt lineshape parameters with temperature-dependence exponents for several hundred spectroscopic features of pure water spanning 6801-7188 cm-1. The parameters are extracted from broad bandwidth, high-resolution dual frequency comb absorption spectra with multispectrum fitting techniques. The data encompass 25 spectra ranging from 296 K to 1305 K and 1 to 17 Torr of pure water vapor. We present the extracted parameters, compare them to published data, and present speed-dependence, self-shift, and self-broadening temperature-dependent parameters for the first time. Lineshape data is extracted using a quadratic speed-dependent Voigt profile and a single self-broadening power law temperature-dependence exponent over the entire temperature range. The results represent an important step toward a new high-temperature database using advanced lineshape profiles.

  17. Steps Toward Unveiling the True Population of AGN: Photometric Selection of Broad-Line AGN

    NASA Astrophysics Data System (ADS)

    Schneider, Evan; Impey, C.

    2012-01-01

    We present an AGN selection technique that enables identification of broad-line AGN using only photometric data. An extension of infrared selection techniques, our method involves fitting a given spectral energy distribution with a model consisting of three physically motivated components: infrared power law emission, optical accretion disk emission, and host galaxy emission. Each component can be varied in intensity, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this model, both broad- and narrow-line AGN are seen to fall within discrete ranges of parameter space that have plausible bounds, allowing physical trends with luminosity and redshift to be determined. Based on a fiducial sample of AGN from the catalog of Trump et al. (2009), we find the region occupied by broad-line AGN to be distinct from that of quiescent or star-bursting galaxies. Because this technique relies only on photometry, it will allow us to find AGN at fainter magnitudes than are accessible in spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects. With the vast availability of photometric data in large surveys, this technique should have broad applicability and result in large samples that will complement X-ray AGN catalogs.

  18. Application and optimization of input parameter spaces in mass flow modelling: a case study with r.randomwalk and r.ranger

    NASA Astrophysics Data System (ADS)

    Krenn, Julia; Zangerl, Christian; Mergili, Martin

    2017-04-01

    r.randomwalk is a GIS-based, multi-functional, conceptual open source model application for forward and backward analyses of the propagation of mass flows. It relies on a set of empirically derived, uncertain input parameters. In contrast to many other tools, r.randomwalk accepts input parameter ranges (or, in case of two or more parameters, spaces) in order to directly account for these uncertainties. Parameter spaces represent a possibility to withdraw from discrete input values which in most cases are likely to be off target. r.randomwalk automatically performs multiple calculations with various parameter combinations in a given parameter space, resulting in the impact indicator index (III) which denotes the fraction of parameter value combinations predicting an impact on a given pixel. Still, there is a need to constrain the parameter space used for a certain process type or magnitude prior to performing forward calculations. This can be done by optimizing the parameter space in terms of bringing the model results in line with well-documented past events. As most existing parameter optimization algorithms are designed for discrete values rather than for ranges or spaces, the necessity for a new and innovative technique arises. The present study aims at developing such a technique and at applying it to derive guiding parameter spaces for the forward calculation of rock avalanches through back-calculation of multiple events. In order to automatize the work flow we have designed r.ranger, an optimization and sensitivity analysis tool for parameter spaces which can be directly coupled to r.randomwalk. With r.ranger we apply a nested approach where the total value range of each parameter is divided into various levels of subranges. All possible combinations of subranges of all parameters are tested for the performance of the associated pattern of III. Performance indicators are the area under the ROC curve (AUROC) and the factor of conservativeness (FoC). This strategy is best demonstrated for two input parameters, but can be extended arbitrarily. We use a set of small rock avalanches from western Austria, and some larger ones from Canada and New Zealand, to optimize the basal friction coefficient and the mass-to-drag ratio of the two-parameter friction model implemented with r.randomwalk. Thereby we repeat the optimization procedure with conservative and non-conservative assumptions of a set of complementary parameters and with different raster cell sizes. Our preliminary results indicate that the model performance in terms of AUROC achieved with broad parameter spaces is hardly surpassed by the performance achieved with narrow parameter spaces. However, broad spaces may result in very conservative or very non-conservative predictions. Therefore, guiding parameter spaces have to be (i) broad enough to avoid the risk of being off target; and (ii) narrow enough to ensure a reasonable level of conservativeness of the results. The next steps will consist in (i) extending the study to other types of mass flow processes in order to support forward calculations using r.randomwalk; and (ii) in applying the same strategy to the more complex, dynamic model r.avaflow.

  19. Short-pulse amplification by strongly coupled stimulated Brillouin scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Matthew R., E-mail: mredward@princeton.edu; Mikhailova, Julia M.; Jia, Qing

    2016-08-15

    We examine the feasibility of strongly coupled stimulated Brillouin scattering as a mechanism for the plasma-based amplification of sub-picosecond pulses. In particular, we use fluid theory and particle-in-cell simulations to compare the relative advantages of Raman and Brillouin amplification over a broad range of achievable parameters.

  20. Data Aggregation, Curation and Modeling Approaches to Deliver Prediction Models to Support Computational Toxicology at the EPA (ACS Fall meeting)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program develops and utilizes QSAR modeling approaches across a broad range of applications. In terms of physical chemistry we have a particular interest in the prediction of basic physicochemical parameters ...

  1. Assessment of effects of neutrals on the power threshold for L to H transitions in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, L.W.; Carreras, B.A.; Maingi, R.

    1998-11-01

    To assess the effect of edge neutrals on the low-to-high confinement transition threshold, a broad range of plasma discharges has been analyzed. From this analysis, the transition power divided by the density, at constant magnetic field, appears to be a function of a single parameter measuring the neutrals` effect. This results suggest that there is a missing parameter linked to the neutrals in the power threshold scaling laws.

  2. A Catalog of Broad Absorption Line Quasars from the Sloan Digital Sky Survey Third Data Release

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Hall, Patrick B.; Reichard, Timothy A.; Richards, Gordon T.; Schneider, Donald P.; Vanden Berk, Daniel E.; Knapp, Gillian R.; Anderson, Scott F.; Fan, Xiaohui; Brinkman, J.; Kleinman, S. J.; Nitta, Atsuko

    2006-07-01

    We present a total of 4784 unique broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release. An automated algorithm was used to match a continuum to each quasar and to identify regions of flux at least 10% below the continuum over a velocity range of at least 1000 km s-1 in the C IV and Mg II absorption regions. The model continuum was selected as the best-fit match from a set of template quasar spectra binned in luminosity, emission line width, and redshift, with the power-law spectral index and amount of dust reddening as additional free parameters. We characterize our sample through the traditional ``balnicity'' index and a revised absorption index, as well as through parameters such as the width, outflow velocity, fractional depth, and number of troughs. From a sample of 16,883 quasars at 1.7<=z<=4.38, we identify 4386 (26.0%) quasars with broad C IV absorption, of which 1756 (10.4%) satisfy traditional selection criteria. From a sample of 34,973 quasars at 0.5<=z<=2.15, we identify 457 (1.31%) quasars with broad Mg II absorption, 191 (0.55%) of which satisfy traditional selection criteria. We also provide a supplementary list of 39 visually identified z>4.38 quasars with broad C IV absorption. We find that broad absorption line quasars may have broader emission lines on average than other quasars.

  3. Distribution, production, and ecophysiology of Picocystis strain ML in Mono Lake, California

    USGS Publications Warehouse

    Roesler, Collin S.; Culbertson, Charles W.; Etheridge, Stacey M.; Goericke, Ralf; Kiene, Ronald P.; Miller, Laurence G.; Oremland, Ronald S.

    2002-01-01

    A recently described unicellular chlorophytic alga isolated from meromictic Mono Lake, California, occupies a niche that spans two environments: the upper oxic mixolimnion and the deeper anoxic and highly reducing monimolimnion. This organism, Picocystis sp. strain ML, accounts for nearly 25% of the primary production during the winter bloom and more than 50% at other times of the year. In incubations, it is heavily grazed by the brine shrimp, Artemia monica. We assessed growth and photosynthetic parameters over broad ranges of irradiance, salinity, and pH and under oxic and anoxic conditions. Picocystis appears to be particularly adapted to low irradiance; we observed an order of magnitude increase in the cellular pigment concentrations, as well as marked increases in cellspecific photosynthetic parameters for cells acclimated to low-growth irradiance. Growth rates of 0.3–1.5 d21 were observed over a salinity range of 0–260‰ and a pH range of 4–12, with maximal growth at ;50 mmol photons m22 s21 , 40‰, and pH 6–10. Growth and oxygenic photosynthesis were observed under anoxic conditions at rates comparable to those measured under oxic conditions. The ability of the organism to acclimate and grow under such a broad range of environmental conditions makes it an important component of the Mono Lake ecosystem and likely contributes to its dominance of the monimolimnion/mixolimnion interface.

  4. Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharrati, Hedi; Agrebi, Amel; Karaoui, Mohamed-Karim

    2007-04-15

    X-ray buildup factors of lead in broad beam geometry for energies from 15 to 150 keV are determined using the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C). The obtained buildup factors data are fitted to a modified three parameter Archer et al. model for ease in calculating the broad beam transmission with computer at any tube potentials/filters combinations in diagnostic energies range. An example for their use to compute the broad beam transmission at 70, 100, 120, and 140 kVp is given. The calculated broad beam transmission is compared to data derived from literature, presenting good agreement.more » Therefore, the combination of the buildup factors data as determined and a mathematical model to generate x-ray spectra provide a computationally based solution to broad beam transmission for lead barriers in shielding x-ray facilities.« less

  5. Development and community-based validation of eight item banks to assess mental health.

    PubMed

    Batterham, Philip J; Sunderland, Matthew; Carragher, Natacha; Calear, Alison L

    2016-09-30

    There is a need for precise but brief screening of mental health problems in a range of settings. The development of item banks to assess depression and anxiety has resulted in new adaptive and static screeners that accurately assess severity of symptoms. However, expansion to a wider array of mental health problems is required. The current study developed item banks for eight mental health problems: social anxiety disorder, panic disorder, post-traumatic stress disorder, obsessive-compulsive disorder, adult attention-deficit hyperactivity disorder, drug use, psychosis and suicidality. The item banks were calibrated in a population-based Australian adult sample (N=3175) by administering large item pools (45-75 items) and excluding items on the basis of local dependence or measurement non-invariance. Item Response Theory parameters were estimated for each item bank using a two-parameter graded response model. Each bank consisted of 19-47 items, demonstrating excellent fit and precision across a range of -1 to 3 standard deviations from the mean. No previous study has developed such a broad range of mental health item banks. The calibrated item banks will form the basis of a new system of static and adaptive measures to screen for a broad array of mental health problems in the community. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. An improved analytic function for predicting light fluence rate in circular fields on a semi-infinite geometry

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.; Lu, Amy; Ong, Yi-Hong

    2016-03-01

    Accurate determination of in-vivo light fluence rate is critical for preclinical and clinical studies involving photodynamic therapy (PDT). This study compares the longitudinal light fluence distribution inside biological tissue in the central axis of a 1 cm diameter circular uniform light field for a range of in-vivo tissue optical properties (absorption coefficients (μa) between 0.01 and 1 cm-1 and reduced scattering coefficients (μs') between 2 and 40 cm-1). This was done using Monte-Carlo simulations for a semi-infinite turbid medium in an air-tissue interface. The end goal is to develop an analytical expression that would fit the results from the Monte Carlo simulation for both the 1 cm diameter circular beam and the broad beam. Each of these parameters is expressed as a function of tissue optical properties. These results can then be compared against the existing expressions in the literature for broad beam for analysis in both accuracy and applicable range. Using the 6-parameter model, the range and accuracy for light transport through biological tissue is improved and may be used in the future as a guide in PDT for light fluence distribution for known tissue optical properties.

  7. Assessment of effects of neutrals on the power threshold for L to H transitions in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, L.W.; Carreras, B.A.; Maingi, R.

    1997-09-01

    To assess the effect of edge neutrals on the low to high confinement transition threshold, a broad range of plasma discharges has been analyzed. From this analysis, the transition power divided by the density, at constant magnetic field, appears to be a function of a single parameter measuring the neutrals` effect, This parameter cannot be uniquely identified. For instance, it may be the radial decay length of the neutral profile or the charge exchange damping rate at about r/a {approx} 0.95. This results suggest that there is a missing parameter linked to the neutrals in the power threshold scaling laws.

  8. Charcateristics of Plasma Waves Excited During Gas Release and Plasma Injection Into The Ionosphere

    NASA Astrophysics Data System (ADS)

    Klos, Z.; Gdalevich, G. L.; Mikhailov, I.

    Waves in broad frequency range are generated during the injection of fast plasma as well as release of neutral gas into ionosphere from the spacecraft. The excited wave modes depend on the environmental plasma parameters, geometry of injection as well as on the rate of ionisation of plasma in the stream. The neutral xenon gas was released from the board of the ACTIVE satellite (in 1989) and parallel with the release process the VLF as well as HF waves were diagnosed. On the other hand the xenon plasma from gun generator was injected into the ionosphere from the board of APEX satellite (in 1991) and also broad frequency range of emission was registered. In the present paper are compared the plasma waves characteristics observed in these two types of experiments.

  9. Simulations of the OzDES AGN reverberation mapping project

    DOE PAGES

    King, Anthea L.; Martini, Paul; Davis, Tamara M.; ...

    2015-08-26

    As part of the Australian spectroscopic dark energy survey (OzDES) we are carrying out a large-scale reverberation mapping study of ~500 quasars over five years in the 30 deg 2 area of the Dark Energy Survey (DES) supernova fields. These quasars have redshifts ranging up to 4 and have apparent AB magnitudes between 16.8 mag < r < 22.5 mag. The aim of the survey is to measure time lags between fluctuations in the quasar continuum and broad emission-line fluxes of individual objects in order to measure black hole masses for a broad range of active galactic nuclei (AGN) andmore » constrain the radius–luminosity (R–L) relationship. Here we investigate the expected efficiency of the OzDES reverberation mapping campaign and its possible extensions. We expect to recover lags for ~35–45 % of the quasars. AGN with shorter lags and greater variability are more likely to yield a lag measurement, and objects with lags ≲6 months or ~1 yr are expected to be recovered the most accurately. The baseline OzDES reverberation mapping campaign is predicted to produce an unbiased measurement of the R–L relationship parameters for Hβ, MgIIλ2798, and C IVλ1549. As a result, extending the baseline survey by either increasing the spectroscopic cadence, extending the survey season, or improving the emission-line flux measurement accuracy will significantly improve the R–L parameter constraints for all broad emission lines.« less

  10. Extending semi-numeric reionization models to the first stars and galaxies

    NASA Astrophysics Data System (ADS)

    Koh, Daegene; Wise, John H.

    2018-03-01

    Semi-numeric methods have made it possible to efficiently model the epoch of reionization (EoR). While most implementations involve a reduction to a simple three-parameter model, we introduce a new mass-dependent ionizing efficiency parameter that folds in physical parameters that are constrained by the latest numerical simulations. This new parametrization enables the effective modelling of a broad range of host halo masses containing ionizing sources, extending from the smallest Population III host haloes with M ˜ 106 M⊙, which are often ignored, to the rarest cosmic peaks with M ˜ 1012 M⊙ during EoR. We compare the resulting ionizing histories with a typical three-parameter model and also compare with the latest constraints from the Planck mission. Our model results in an optical depth due to Thomson scattering, τe = 0.057, that is consistent with Planck. The largest difference in our model is shown in the resulting bubble size distributions that peak at lower characteristic sizes and are broadened. We also consider the uncertainties of the various physical parameters, and comparing the resulting ionizing histories broadly disfavours a small contribution from galaxies. The smallest haloes cease a meaningful contribution to the ionizing photon budget after z = 10, implying that they play a role in determining the start of EoR and little else.

  11. Numerical simulations of catastrophic disruption: Recent results

    NASA Technical Reports Server (NTRS)

    Benz, W.; Asphaug, E.; Ryan, E. V.

    1994-01-01

    Numerical simulations have been used to study high velocity two-body impacts. In this paper, a two-dimensional Largrangian finite difference hydro-code and a three-dimensional smooth particle hydro-code (SPH) are described and initial results reported. These codes can be, and have been, used to make specific predictions about particular objects in our solar system. But more significantly, they allow us to explore a broad range of collisional events. Certain parameters (size, time) can be studied only over a very restricted range within the laboratory; other parameters (initial spin, low gravity, exotic structure or composition) are difficult to study at all experimentally. The outcomes of numerical simulations lead to a more general and accurate understanding of impacts in their many forms.

  12. Electrostatic turbulence in the earth's central plasma sheet produced by multiple-ring ion distributions

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Chen, J.; Anderson, R. R.

    1992-01-01

    Attention is given to a mechanism to generate a broad spectrum of electrostatic turbulence in the quiet time central plasma sheet (CPS) plasma. It is shown theoretically that multiple-ring ion distributions can generate short-wavelength (less than about 1), electrostatic turbulence with frequencies less than about kVj, where Vj is the velocity of the jth ring. On the basis of a set of parameters from measurements made in the CPS, it is found that electrostatic turbulence can be generated with wavenumbers in the range of 0.02 and 1.0, with real frequencies in the range of 0 and 10, and with linear growth rates greater than 0.01 over a broad range of angles relative to the magnetic field (5-90 deg). These theoretical results are compared with wave data from ISEE 1 using an ion distribution function exhibiting multiple-ring structures observed at the same time. The theoretical results in the linear regime are found to be consistent with the wave data.

  13. Transcranial electric and magnetic stimulation: technique and paradigms.

    PubMed

    Paulus, Walter; Peterchev, Angel V; Ridding, Michael

    2013-01-01

    Transcranial electrical and magnetic stimulation techniques encompass a broad physical variety of stimuli, ranging from static magnetic fields or direct current stimulation to pulsed magnetic or alternating current stimulation with an almost infinite number of possible stimulus parameters. These techniques are continuously refined by new device developments, including coil or electrode design and flexible control of the stimulus waveforms. They allow us to influence brain function acutely and/or by inducing transient plastic after-effects in a range from minutes to days. Manipulation of stimulus parameters such as pulse shape, intensity, duration, and frequency, and location, size, and orientation of the electrodes or coils enables control of the immediate effects and after-effects. Physiological aspects such as stimulation at rest or during attention or activation may alter effects dramatically, as does neuropharmacological drug co-application. Non-linear relationships between stimulus parameters and physiological effects have to be taken into account. © 2013 Elsevier B.V. All rights reserved.

  14. Phenological response of sea turtles to environmental variation across a species' northern range.

    PubMed

    Mazaris, Antonios D; Kallimanis, Athanasios S; Pantis, John D; Hays, Graeme C

    2013-01-22

    Variations in environmental parameters (e.g. temperature) that form part of global climate change have been associated with shifts in the timing of seasonal events for a broad range of organisms. Most studies evaluating such phenological shifts of individual taxa have focused on a limited number of locations, making it difficult to assess how such shifts vary regionally across a species range. Here, by using 1445 records of the date of first nesting for loggerhead sea turtles (Caretta caretta) at different breeding sites, on different continents and in different years across a broad latitudinal range (25-39° 'N), we demonstrate that the gradient of the relationship between temperature and the date of first breeding is steeper at higher latitudes, i.e. the phenological responses to temperature appear strongest at the poleward range limit. These findings support the hypothesis that biological changes in response to climate change will be most acute at the poleward range limits and are in accordance with the predictions of MacArthur's hypothesis that poleward range limit for species range is environmentally limited. Our findings imply that the poleward populations of loggerheads are more sensitive to climate variations and thus they might display the impacts of climate change sooner and more prominently.

  15. Phenological response of sea turtles to environmental variation across a species' northern range

    PubMed Central

    Mazaris, Antonios D.; Kallimanis, Athanasios S.; Pantis, John D.; Hays, Graeme C.

    2013-01-01

    Variations in environmental parameters (e.g. temperature) that form part of global climate change have been associated with shifts in the timing of seasonal events for a broad range of organisms. Most studies evaluating such phenological shifts of individual taxa have focused on a limited number of locations, making it difficult to assess how such shifts vary regionally across a species range. Here, by using 1445 records of the date of first nesting for loggerhead sea turtles (Caretta caretta) at different breeding sites, on different continents and in different years across a broad latitudinal range (25–39° ′N), we demonstrate that the gradient of the relationship between temperature and the date of first breeding is steeper at higher latitudes, i.e. the phenological responses to temperature appear strongest at the poleward range limit. These findings support the hypothesis that biological changes in response to climate change will be most acute at the poleward range limits and are in accordance with the predictions of MacArthur's hypothesis that poleward range limit for species range is environmentally limited. Our findings imply that the poleward populations of loggerheads are more sensitive to climate variations and thus they might display the impacts of climate change sooner and more prominently. PMID:23193130

  16. CHARMM Force-Fields with Modified Polyphosphate Parameters Allow Stable Simulation of the ATP-Bound Structure of Ca(2+)-ATPase.

    PubMed

    Komuro, Yasuaki; Re, Suyong; Kobayashi, Chigusa; Muneyuki, Eiro; Sugita, Yuji

    2014-09-09

    Adenosine triphosphate (ATP) is an indispensable energy source in cells. In a wide variety of biological phenomena like glycolysis, muscle contraction/relaxation, and active ion transport, chemical energy released from ATP hydrolysis is converted to mechanical forces to bring about large-scale conformational changes in proteins. Investigation of structure-function relationships in these proteins by molecular dynamics (MD) simulations requires modeling of ATP in solution and ATP bound to proteins with accurate force-field parameters. In this study, we derived new force-field parameters for the triphosphate moiety of ATP based on the high-precision quantum calculations of methyl triphosphate. We tested our new parameters on membrane-embedded sarcoplasmic reticulum Ca(2+)-ATPase and four soluble proteins. The ATP-bound structure of Ca(2+)-ATPase remains stable during MD simulations, contrary to the outcome in shorter simulations using original parameters. Similar results were obtained with the four ATP-bound soluble proteins. The new force-field parameters were also tested by investigating the range of conformations sampled during replica-exchange MD simulations of ATP in explicit water. Modified parameters allowed a much wider range of conformational sampling compared with the bias toward extended forms with original parameters. A diverse range of structures agrees with the broad distribution of ATP conformations in proteins deposited in the Protein Data Bank. These simulations suggest that the modified parameters will be useful in studies of ATP in solution and of the many ATP-utilizing proteins.

  17. Accounting for human neurocognitive function in the design and evaluation of 360 degree situational awareness display systems

    NASA Astrophysics Data System (ADS)

    Metcalfe, Jason S.; Mikulski, Thomas; Dittman, Scott

    2011-06-01

    The current state and trajectory of development for display technologies supporting information acquisition, analysis and dissemination lends a broad informational infrastructure to operators of complex systems. The amount of information available threatens to outstrip the perceptual-cognitive capacities of operators, thus limiting their ability to effectively interact with targeted technologies. Therefore, a critical step in designing complex display systems is to find an appropriate match between capabilities, operational needs, and human ability to utilize complex information. The present work examines a set of evaluation parameters that were developed to facilitate the design of systems to support a specific military need; that is, the capacity to support the achievement and maintenance of real-time 360° situational awareness (SA) across a range of complex military environments. The focal point of this evaluation is on the reciprocity native to advanced engineering and human factors practices, with a specific emphasis on aligning the operator-systemenvironment fit. That is, the objective is to assess parameters for evaluation of 360° SA display systems that are suitable for military operations in tactical platforms across a broad range of current and potential operational environments. The approach is centered on five "families" of parameters, including vehicle sensors, data transmission, in-vehicle displays, intelligent automation, and neuroergonomic considerations. Parameters are examined under the assumption that displays designed to conform to natural neurocognitive processing will enhance and stabilize Soldier-system performance and, ultimately, unleash the human's potential to actively achieve and maintain the awareness necessary to enhance lethality and survivability within modern and future operational contexts.

  18. Effects of fragility and reduced glass transition temperature on the glass formation ability of amorphous alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Jin; Long, Zhi-Lin; Liu, Wei; Liao, Guang-Kai

    2017-11-01

    In this paper, based on the reduced glass transition temperature ({{T}rg} ) proposed by Turnbull and the relation between the glass-forming ability (GFA) and the short-range bond ordering of liquids demonstrated by Tanaka, a detailed analysis on the specific roles of {{T}rg} and fragility of the glass forming liquid (m) in characterizing the GFA has been conducted, and then a novel GFA parameter α [=2/3× (100{{T}rg}{)}-(16/100)× m=67{{T}rg}-0.16m] was put forward. This new GFA parameter α , which increases with a decrease in the critical cooling rate (R c) for glass formation, is a complex function of {{T}rg} and m. The relationship between R c and the parameter α was identified and verified using available literature data for broad range of amorphous alloys with widely varying GFA. The correlation coefficient (R 2) of 0.9 clearly shows an excellent correlation between GFA and the parameter α and that α is a more superior indicator compared to currently reported similar GFA parameters.

  19. Variability of broad and blueshifted component of [OIII]λ5007 in I ZWI

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wei, J. Y.; He, X. T.

    2005-04-01

    Although the existence of asymmetrical profile of [OIII]λ5007 has been discovered for ages, its filiation and physics are poorly understood. Two new spectra of I ZWI taken on November 16, 2001 and on December 3, 2002 were compared with the spectra taken by BG92. Following results are obtained. (1) The certain variations of broad [OIII] during about 10 years separating the observations are identified. The inferred length scale of broad [OIII] emitting region ranges from 0.3 to 3 pc. By assuming a Keplerian motion in line emitting region, the material emitting broad [OIII] is likely to be located at the transient emission line region, between BLR and NLR. (2) We find a positive relation between the FeII emission and flux of Hβ (or continuum). On the other hand, the parameter RFe decreases with ionizing continuum marginally. (3) We detect a low ionized NLR in I ZWI, because of the low flux ratios [OIII]n/Hβn (∼1.7).

  20. The outflow structure of GW170817 from late-time broad-band observations

    NASA Astrophysics Data System (ADS)

    Troja, E.; Piro, L.; Ryan, G.; van Eerten, H.; Ricci, R.; Wieringa, M. H.; Lotti, S.; Sakamoto, T.; Cenko, S. B.

    2018-07-01

    We present our broad-band study of GW170817 from radio to hard X-rays, including NuSTAR and Chandra observations up to 165 d after the merger, and a multimessenger analysis including LIGO constraints. The data are compared with predictions from a wide range of models, providing the first detailed comparison between non-trivial cocoon and jet models. Homogeneous and power-law shaped jets, as well as simple cocoon models are ruled out by the data, while both a Gaussian shaped jet and a cocoon with energy injection can describe the current data set for a reasonable range of physical parameters, consistent with the typical values derived from short GRB afterglows. We propose that these models can be unambiguously discriminated by future observations measuring the post-peak behaviour, with Fν ∝ t˜-1.0 for the cocoon and Fν∝ t˜-2.5 for the jet model.

  1. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.

    PubMed

    Mannan, Ahmad A; Liu, Di; Zhang, Fuzhong; Oyarzún, Diego A

    2017-10-20

    Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.

  2. Optimization of radar imaging system parameters for geological analysis

    NASA Technical Reports Server (NTRS)

    Waite, W. P.; Macdonald, H. C.; Kaupp, V. H.

    1981-01-01

    The use of radar image simulation to model terrain variation and determine optimum sensor parameters for geological analysis is described. Optimum incidence angle is determined by the simulation, which evaluates separately the discrimination of surface features possible due to terrain geometry and that due to terrain scattering. Depending on the relative relief, slope, and scattering cross section, optimum incidence angle may vary from 20 to 80 degrees. Large incident angle imagery (more than 60 deg) is best for the widest range of geological applications, but in many cases these large angles cannot be achieved by satellite systems. Low relief regions require low incidence angles (less than 30 deg), so a satellite system serving a broad range of applications should have at least two selectable angles of incidence.

  3. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, Edward J.; Blain, Robyn

    A relational retrieval database has been developed compiling toxicological studies assessing the occurrence of hormetic dose responses and their quantitative characteristics. This database permits an evaluation of these studies over numerous parameters, including study design and dose-response features and physical/chemical properties of the agents. The database contains approximately 5600 dose-response relationships satisfying evaluative criteria for hormesis across over approximately 900 agents from a broadly diversified spectrum of chemical classes and physical agents. The assessment reveals that hormetic dose-response relationships occur in males and females of numerous animal models in all principal age groups as well as across species displaying amore » broad range of differential susceptibilities to toxic agents. The biological models are extensive, including plants, viruses, bacteria, fungi, insects, fish, birds, rodents, and primates, including humans. The spectrum of endpoints displaying hormetic dose responses is also broad being inclusive of growth, longevity, numerous metabolic parameters, disease incidences (including cancer), various performance endpoints such as cognitive functions, immune responses among others. Quantitative features of the hormetic dose response reveal that the vast majority of cases display a maximum stimulatory response less than two-fold greater than the control while the width of the stimulatory response is typically less than 100-fold in dose range immediately contiguous with the toxicological NO(A)EL. The database also contains a quantitative evaluation component that differentiates among the various dose responses concerning the strength of the evidence supporting a hormetic conclusion based on study design features, magnitude of the stimulatory response, statistical significance, and reproducibility of findings.« less

  4. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview.

    PubMed

    Calabrese, Edward J; Blain, Robyn

    2005-02-01

    A relational retrieval database has been developed compiling toxicological studies assessing the occurrence of hormetic dose responses and their quantitative characteristics. This database permits an evaluation of these studies over numerous parameters, including study design and dose-response features and physical/chemical properties of the agents. The database contains approximately 5600 dose-response relationships satisfying evaluative criteria for hormesis across over approximately 900 agents from a broadly diversified spectrum of chemical classes and physical agents. The assessment reveals that hormetic dose-response relationships occur in males and females of numerous animal models in all principal age groups as well as across species displaying a broad range of differential susceptibilities to toxic agents. The biological models are extensive, including plants, viruses, bacteria, fungi, insects, fish, birds, rodents, and primates, including humans. The spectrum of endpoints displaying hormetic dose responses is also broad being inclusive of growth, longevity, numerous metabolic parameters, disease incidences (including cancer), various performance endpoints such as cognitive functions, immune responses among others. Quantitative features of the hormetic dose response reveal that the vast majority of cases display a maximum stimulatory response less than two-fold greater than the control while the width of the stimulatory response is typically less than 100-fold in dose range immediately contiguous with the toxicological NO(A)EL. The database also contains a quantitative evaluation component that differentiates among the various dose responses concerning the strength of the evidence supporting a hormetic conclusion based on study design features, magnitude of the stimulatory response, statistical significance, and reproducibility of findings.

  5. Methodology for comparing worldwide performance of diverse weight-constrained high energy laser systems

    NASA Astrophysics Data System (ADS)

    Bartell, Richard J.; Perram, Glen P.; Fiorino, Steven T.; Long, Scott N.; Houle, Marken J.; Rice, Christopher A.; Manning, Zachary P.; Bunch, Dustin W.; Krizo, Matthew J.; Gravley, Liesebet E.

    2005-06-01

    The Air Force Institute of Technology's Center for Directed Energy has developed a software model, the High Energy Laser End-to-End Operational Simulation (HELEEOS), under the sponsorship of the High Energy Laser Joint Technology Office (JTO), to facilitate worldwide comparisons across a broad range of expected engagement scenarios of expected performance of a diverse range of weight-constrained high energy laser system types. HELEEOS has been designed to meet JTO's goals of supporting a broad range of analyses applicable to the operational requirements of all the military services, constraining weapon effectiveness through accurate engineering performance assessments allowing its use as an investment strategy tool, and the establishment of trust among military leaders. HELEEOS is anchored to respected wave optics codes and all significant degradation effects, including thermal blooming and optical turbulence, are represented in the model. The model features operationally oriented performance metrics, e.g. dwell time required to achieve a prescribed probability of kill and effective range. Key features of HELEEOS include estimation of the level of uncertainty in the calculated Pk and generation of interactive nomographs to allow the user to further explore a desired parameter space. Worldwide analyses are enabled at five wavelengths via recently available databases capturing climatological, seasonal, diurnal, and geographical spatial-temporal variability in atmospheric parameters including molecular and aerosol absorption and scattering profiles and optical turbulence strength. Examples are provided of the impact of uncertainty in weight-power relationships, coupled with operating condition variability, on results of performance comparisons between chemical and solid state lasers.

  6. Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation

    NASA Astrophysics Data System (ADS)

    Kamchatnov, A. M.; Kuo, Y.-H.; Lin, T.-C.; Horng, T.-L.; Gou, S.-C.; Clift, R.; El, G. A.; Grimshaw, R. H. J.

    2013-12-01

    Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modeled by the forced KdV equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including solibores, rarefaction waves, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.

  7. Kinetic modeling of α-hydrogen abstractions from unsaturated and saturated oxygenate compounds by hydrogen atoms.

    PubMed

    Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos G; Marin, Guy B

    2014-10-09

    Hydrogen-abstraction reactions play a significant role in thermal biomass conversion processes, as well as regular gasification, pyrolysis, or combustion. In this work, a group additivity model is constructed that allows prediction of reaction rates and Arrhenius parameters of hydrogen abstractions by hydrogen atoms from alcohols, ethers, esters, peroxides, ketones, aldehydes, acids, and diketones in a broad temperature range (300-2000 K). A training set of 60 reactions was developed with rate coefficients and Arrhenius parameters calculated by the CBS-QB3 method in the high-pressure limit with tunneling corrections using Eckart tunneling coefficients. From this set of reactions, 15 group additive values were derived for the forward and the reverse reaction, 4 referring to primary and 11 to secondary contributions. The accuracy of the model is validated upon an ab initio and an experimental validation set of 19 and 21 reaction rates, respectively, showing that reaction rates can be predicted with a mean factor of deviation of 2 for the ab initio and 3 for the experimental values. Hence, this work illustrates that the developed group additive model can be reliably applied for the accurate prediction of kinetics of α-hydrogen abstractions by hydrogen atoms from a broad range of oxygenates.

  8. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions

    NASA Astrophysics Data System (ADS)

    Donahue, William; Newhauser, Wayne D.; Ziegler, James F.

    2016-09-01

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  9. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions.

    PubMed

    Donahue, William; Newhauser, Wayne D; Ziegler, James F

    2016-09-07

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  10. Electron transport in furfural: dependence of the electron ranges on the cross sections and the energy loss distribution functions

    NASA Astrophysics Data System (ADS)

    Ellis-Gibbings, L.; Krupa, K.; Colmenares, R.; Blanco, F.; Muńoz, A.; Mendes, M.; Ferreira da Silva, F.; Limá Vieira, P.; Jones, D. B.; Brunger, M. J.; García, G.

    2016-09-01

    Recent theoretical and experimental studies have provided a complete set of differential and integral electron scattering cross section data from furfural over a broad energy range. The energy loss distribution functions have been determined in this study by averaging electron energy loss spectra for different incident energies and scattering angles. All these data have been used as input parameters for an event by event Monte Carlo simulation procedure to obtain the electron energy deposition patterns and electron ranges in liquid furfural. The dependence of these results on the input cross sections is then analysed to determine the uncertainty of the simulated values.

  11. The quantitative theory of within-host viral evolution

    NASA Astrophysics Data System (ADS)

    Rouzine, Igor M.; Weinberger, Leor S.

    2013-01-01

    During the 1990s, a group of virologists and physicists began development of a quantitative theory to explain the rapid evolution of human immunodeficiency virus type 1 (HIV-1). This theory also proved to be instrumental in understanding the rapid emergence of drug resistance in patients. Over the past two decades, this theory expanded to account for a broad array of factors important to viral evolution and propelled development of a generalized theory applicable to a broad range of asexual and partly sexual populations with many evolving sites. Here, we discuss the conceptual and theoretical tools developed to calculate the speed and other parameters of evolution, with a particular focus on the concept of ‘clonal interference’ and its applications to untreated patients.

  12. Power Radiated from ITER and CIT by Impurities

    DOE R&D Accomplishments Database

    Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.

    1990-07-01

    The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.

  13. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation.

    PubMed

    Tomazou, Marios; Barahona, Mauricio; Polizzi, Karen M; Stan, Guy-Bart

    2018-04-25

    To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    LASTRAC is a general-purposed, physics-based transition prediction code released by NASA for Laminar Flow Control studies and transition research. The design and development of the LASTRAC code is aimed at providing an engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. It was written from scratch based on the state-of-the-art numerical methods for stability analysis and modern software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory or linear parabolized stability equations method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. This document describes the governing equations, numerical methods, code development, detailed description of input/output parameters, and case studies for the current release of LASTRAC.

  15. Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols

    PubMed Central

    Zecha, Judith A. E. M.; Raber-Durlacher, Judith E.; Nair, Raj G.; Epstein, Joel B.; Elad, Sharon; Hamblin, Michael R.; Barasch, Andrei; Migliorati, Cesar A.; Milstein, Dan M. J.; Genot, Marie-Thérèse; Lansaat, Liset; van der Brink, Ron; Arnabat-Dominguez, Josep; van der Molen, Lisette; Jacobi, Irene; van Diessen, Judi; de Lange, Jan; Smeele, Ludi E.; Schubert, Mark M.

    2016-01-01

    Purpose There is a large body of evidence supporting the efficacy of low-level laser therapy (LLLT), more recently termed photobiomodulation (PBM) for the management of oral mucositis (OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in PBM technology, together with a better understanding of mechanisms involved and dosimetric parameters may lead to the management of a broader range of complications associated with HNC treatment. This could enhance patient adherence to cancer therapy, and improve quality of life and treatment outcomes. The mechanisms of action, dosimetric, and safety considerations for PBM have been reviewed in part 1. Part 2 discusses the head and neck treatment side effects for which PBM may prove to be effective. In addition, PBM parameters for each of these complications are suggested and future research directions are discussed. Methods Narrative review and presentation of PBM parameters are based on current evidence and expert opinion. Results PBM may have potential applications in the management of a broad range of side effects of (chemo)radiation therapy (CRT) in patients being treated for HNC. For OM management, optimal PBM parameters identified were as follows: wavelength, typically between 633 and 685 nm or 780–830 nm; energy density, laser or light-emitting diode (LED) output between 10 and 150 mW; dose, 2–3 J (J/cm2), and no more than 6 J/cm2 on the tissue surface treated; treatment schedule, two to three times a week up to daily; emission type, pulsed (<100 Hz); and route of delivery, intraorally and/or transcutaneously. To facilitate further studies, we propose potentially effective PBM parameters for prophylactic and therapeutic use in supportive care for dermatitis, dysphagia, dry mouth, dysgeusia, trismus, necrosis, lymphedema, and voice/speech alterations. Conclusion PBM may have a role in supportive care for a broad range of complications associated with the treatment of HNC with CRT. The suggested PBM irradiation and dosimetric parameters, which are potentially effective for these complications, are intended to provide guidance for well-designed future studies. It is imperative that such studies include elucidating the effects of PBM on oncology treatment outcomes. PMID:26984249

  16. Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols.

    PubMed

    Zecha, Judith A E M; Raber-Durlacher, Judith E; Nair, Raj G; Epstein, Joel B; Elad, Sharon; Hamblin, Michael R; Barasch, Andrei; Migliorati, Cesar A; Milstein, Dan M J; Genot, Marie-Thérèse; Lansaat, Liset; van der Brink, Ron; Arnabat-Dominguez, Josep; van der Molen, Lisette; Jacobi, Irene; van Diessen, Judi; de Lange, Jan; Smeele, Ludi E; Schubert, Mark M; Bensadoun, René-Jean

    2016-06-01

    There is a large body of evidence supporting the efficacy of low-level laser therapy (LLLT), more recently termed photobiomodulation (PBM) for the management of oral mucositis (OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in PBM technology, together with a better understanding of mechanisms involved and dosimetric parameters may lead to the management of a broader range of complications associated with HNC treatment. This could enhance patient adherence to cancer therapy, and improve quality of life and treatment outcomes. The mechanisms of action, dosimetric, and safety considerations for PBM have been reviewed in part 1. Part 2 discusses the head and neck treatment side effects for which PBM may prove to be effective. In addition, PBM parameters for each of these complications are suggested and future research directions are discussed. Narrative review and presentation of PBM parameters are based on current evidence and expert opinion. PBM may have potential applications in the management of a broad range of side effects of (chemo)radiation therapy (CRT) in patients being treated for HNC. For OM management, optimal PBM parameters identified were as follows: wavelength, typically between 633 and 685 nm or 780-830 nm; energy density, laser or light-emitting diode (LED) output between 10 and 150 mW; dose, 2-3 J (J/cm(2)), and no more than 6 J/cm(2) on the tissue surface treated; treatment schedule, two to three times a week up to daily; emission type, pulsed (<100 Hz); and route of delivery, intraorally and/or transcutaneously. To facilitate further studies, we propose potentially effective PBM parameters for prophylactic and therapeutic use in supportive care for dermatitis, dysphagia, dry mouth, dysgeusia, trismus, necrosis, lymphedema, and voice/speech alterations. PBM may have a role in supportive care for a broad range of complications associated with the treatment of HNC with CRT. The suggested PBM irradiation and dosimetric parameters, which are potentially effective for these complications, are intended to provide guidance for well-designed future studies. It is imperative that such studies include elucidating the effects of PBM on oncology treatment outcomes.

  17. Broad-band spectrophotometry of the hot Jupiter HAT-P-12b from the near-UV to the near-IR

    NASA Astrophysics Data System (ADS)

    Mallonn, M.; Nascimbeni, V.; Weingrill, J.; von Essen, C.; Strassmeier, K. G.; Piotto, G.; Pagano, I.; Scandariato, G.; Csizmadia, Sz.; Herrero, E.; Sada, P. V.; Dhillon, V. S.; Marsh, T. R.; Künstler, A.; Bernt, I.; Granzer, T.

    2015-11-01

    Context. The detection of trends or gradients in the transmission spectrum of extrasolar planets is possible with observations at very low spectral resolution. Transit measurements of sufficient accuracy using selected broad-band filters allow for an initial characterization of the atmosphere of the planet. Aims: We want to investigate the atmosphere of the hot Jupiter HAT-P-12b for an increased absorption at the very blue wavelength regions caused by scattering. Furthermore, we aim for a refinement of the transit parameters and the orbital ephemeris. Methods: We obtained time series photometry of 20 transit events and analyzed them homogeneously, along with eight light curves obtained from the literature. In total, the light curves span a range from 0.35 to 1.25 microns. During two observing seasons over four months each, we monitored the host star to constrain the potential influence of starspots on the derived transit parameters. Results: We rule out the presence of a Rayleigh slope extending over the entire optical wavelength range, a flat spectrum is favored for HAT-P-12b with respect to a cloud-free atmosphere model spectrum. A potential cause of such gray absorption is the presence of a cloud layer at the probed latitudes. Furthermore, in this work we refine the transit parameters, the ephemeris and perform a TTV analysis in which we found no indication for an unseen companion. The host star showed a mild non-periodic variability of up to 1%. However, no stellar rotation period could be detected to high confidence.

  18. Searching for the optimal synthesis parameters of InP/CdxZn1-xSe quantum dots when combined with a broad band phosphor to optimize color rendering and efficacy of a hybrid remote phosphor white LED

    NASA Astrophysics Data System (ADS)

    Ryckaert, Jana; Correia, António; Smet, Kevin; Tessier, Mickael D.; Dupont, Dorian; Hens, Zeger; Hanselaer, Peter; Meuret, Youri

    2017-09-01

    Combining traditional phosphors with a broad emission spectrum and non-scattering quantum dots with a narrow emission spectrum can have multiple advantages for white LEDs. It allows to reduce the amount of scattering in the wavelength conversion element, increasing the efficiency of the complete system. Furthermore, the unique possibility to tune the emission spectrum of quantum dots allows to optimize the resulting LED spectrum in order to achieve optimal color rendering properties for the light source. However, finding the optimal quantum dot properties to achieve optimal efficacy and color rendering is a non-trivial task. Instead of simply summing up the emission spectra of the blue LED, phosphor and quantum dots, we propose a complete simulation tool that allows an accurate analysis of the final performance for a range of different quantum dot synthesis parameters. The recycling of the reflected light from the wavelength conversion element by the LED package is taken into account, as well as the re-absorption and the associated red-shift. This simulation tool is used to vary two synthesis parameters (core size and cadmium fraction) of InP/CdxZn1-xSe quantum dots. We find general trends for the ideal quantum dot that should be combined with a specific YAG:Ce broad band phosphor to obtain optimal efficiency and color rendering for a white LED with a specific pumping LED and recycling cavity, with a desired CCT of 3500K.

  19. Definitive screening design enables optimization of LC-ESI-MS/MS parameters in proteomics.

    PubMed

    Aburaya, Shunsuke; Aoki, Wataru; Minakuchi, Hiroyoshi; Ueda, Mitsuyoshi

    2017-12-01

    In proteomics, more than 100,000 peptides are generated from the digestion of human cell lysates. Proteome samples have a broad dynamic range in protein abundance; therefore, it is critical to optimize various parameters of LC-ESI-MS/MS to comprehensively identify these peptides. However, there are many parameters for LC-ESI-MS/MS analysis. In this study, we applied definitive screening design to simultaneously optimize 14 parameters in the operation of monolithic capillary LC-ESI-MS/MS to increase the number of identified proteins and/or the average peak area of MS1. The simultaneous optimization enabled the determination of two-factor interactions between LC and MS. Finally, we found two parameter sets of monolithic capillary LC-ESI-MS/MS that increased the number of identified proteins by 8.1% or the average peak area of MS1 by 67%. The definitive screening design would be highly useful for high-throughput analysis of the best parameter set in LC-ESI-MS/MS systems.

  20. Development and characterization of camphor sulphonic acid doped polyaniline film with broadband negative dielectric constant for microwave applications

    NASA Astrophysics Data System (ADS)

    Sreekala, P. S.; Honey, John; Aanandan, C. K.

    2018-05-01

    In this communication, the broadband artificial dielectric plasma behavior of Camphor Sulphonic acid doped Polyaniline (PANI-CSA) film at microwave frequencies is experimentally verified. The fabricated PANI-CSA films have been experimentally characterized by rectangular wave guide measurements for a broad range of frequencies within the X band and the effective material parameters, skin depth and conductivity have been extracted from the scattering parameters. Since most of the artificial materials available today are set up by consolidating two structured materials which independently demonstrates negative permittivity and negative permeability, this open another strategy for creation of compact single negative materials for microwave applications. The proposed doping can shift the double positive material parameter of the sample to single negative in nature.

  1. Study of periodic motions of a satellite with a magnetic damper

    NASA Technical Reports Server (NTRS)

    Sadov, Y. A.; Teterin, A. D.

    1979-01-01

    The motion of a satellite with a magnetic damper in the plane of a circular polar orbit is studied. The asymptotics of periodic solutions are constructed for a satellite close to axisymmetric and the radius of convergence is evaluated for the power series obtained. In a broad range of values of parameters, a periodic solution is obtained by numerical integration of equations of motion of the satellite. The asymptotics of a bifurcated curve obtained (the curve on which origin of a pair of periodic solutions occurs) in the space of the parameters agrees well with the results of numerical computation with all physical values of these parameters. A breakdown is made of the space of the initial data of phase variables in the field of effect of different types of periodic motion.

  2. Parameters of Microcirculation in the Broad Ligament of the Uterus in Wistar Rats after Injection of Autologous Biomedical Cell Product.

    PubMed

    Dergacheva, T I; Lykov, A P; Shurlygina, A V; Starkova, E V; Poveshchenko, O V; Bondarenko, N A; Kim, I I; Tenditnik, M V; Borodin, Yu I; Konenkov, V I

    2015-10-01

    We studied the effects of autologous biomedical cell product (bone marrow multipotent mesenchymal stromal cells and their conditioned media) on the parameters of the microcirculatory bed in the broad ligament of the uterus of normal Wistar rats were studied. The parameters of microcirculation and lymph drainage in the broad ligament changed in opposite directions in response to injection of autologous biomedical cell product via different routes. This fact should be taken into consideration when prescribing cell therapy for inflammatory degenerative processes in the pelvic organs.

  3. Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications

    NASA Astrophysics Data System (ADS)

    Farag, Mohammed; Sweity, Haitham; Fleckenstein, Matthias; Habibi, Saeid

    2017-08-01

    Real-time prediction of the battery's core temperature and terminal voltage is very crucial for an accurate battery management system. In this paper, a combined electrochemical, heat generation, and thermal model is developed for large prismatic cells. The proposed model consists of three sub-models, an electrochemical model, heat generation model, and thermal model which are coupled together in an iterative fashion through physicochemical temperature dependent parameters. The proposed parameterization cycles identify the sub-models' parameters separately by exciting the battery under isothermal and non-isothermal operating conditions. The proposed combined model structure shows accurate terminal voltage and core temperature prediction at various operating conditions while maintaining a simple mathematical structure, making it ideal for real-time BMS applications. Finally, the model is validated against both isothermal and non-isothermal drive cycles, covering a broad range of C-rates, and temperature ranges [-25 °C to 45 °C].

  4. Transmission data for shielding diagnostic x-ray facilities.

    PubMed

    Simpkin, D J

    1995-05-01

    Recently published exposure transmission curves for broad diagnostic x-ray beams in lead, concrete, gypsum wallboard, steel, plate glass, and wood have been used to calculate the transmission in 5 kVp increments over the 25 to 35 kVp range for molybdenum-anode tubes and 50 to 150 kVp for tungsten-anode tubes. The data are fit to a three parameter model for ease in calculating the x-ray transmission with computers or calculators.

  5. Parameters of care for craniosynostosis.

    PubMed

    McCarthy, Joseph G; Warren, Stephen M; Bernstein, Joseph; Burnett, Whitney; Cunningham, Michael L; Edmond, Jane C; Figueroa, Alvaro A; Kapp-Simon, Kathleen A; Labow, Brian I; Peterson-Falzone, Sally J; Proctor, Mark R; Rubin, Marcie S; Sze, Raymond W; Yemen, Terrance A

    2012-01-01

    A multidisciplinary meeting was held from March 4 to 6, 2010, in Atlanta, Georgia, entitled "Craniosynostosis: Developing Parameters for Diagnosis, Treatment, and Management." The goal of this meeting was to create parameters of care for individuals with craniosynostosis. Fifty-two conference attendees represented a broad range of expertise, including anesthesiology, craniofacial surgery, dentistry, genetics, hand surgery, neurosurgery, nursing, ophthalmology, oral and maxillofacial surgery, orthodontics, otolaryngology, pediatrics, psychology, public health, radiology, and speech-language pathology. These attendees also represented 16 professional societies and peer-reviewed journals. The current state of knowledge related to each discipline was reviewed. Based on areas of expertise, four breakout groups were created to reach a consensus and draft specialty-specific parameters of care based on the literature or, in the absence of literature, broad clinical experience. In an iterative manner, the specialty-specific draft recommendations were presented to all conference attendees. Participants discussed the recommendations in multidisciplinary groups to facilitate exchange and consensus across disciplines. After the conference, a pediatric intensivist and social worker reviewed the recommendations. Consensus was reached among the 52 conference attendees and two post hoc reviewers. Longitudinal parameters of care were developed for the diagnosis, treatment, and management of craniosynostosis in each of the 18 specialty areas of care from prenatal evaluation to adulthood. To our knowledge, this is the first multidisciplinary effort to develop parameters of care for craniosynostosis. These parameters were designed to help facilitate the development of educational programs for the patient, families, and health-care professionals; stimulate the creation of a national database and registry to promote research, especially in the area of outcome studies; improve credentialing of interdisciplinary craniofacial clinical teams; and improve the availability of health insurance coverage for all individuals with craniosynostosis.

  6. Material parameter estimation with terahertz time-domain spectroscopy.

    PubMed

    Dorney, T D; Baraniuk, R G; Mittleman, D M

    2001-07-01

    Imaging systems based on terahertz (THz) time-domain spectroscopy offer a range of unique modalities owing to the broad bandwidth, subpicosecond duration, and phase-sensitive detection of the THz pulses. Furthermore, the possibility exists for combining spectroscopic characterization or identification with imaging because the radiation is broadband in nature. To achieve this, we require novel methods for real-time analysis of THz waveforms. This paper describes a robust algorithm for extracting material parameters from measured THz waveforms. Our algorithm simultaneously obtains both the thickness and the complex refractive index of an unknown sample under certain conditions. In contrast, most spectroscopic transmission measurements require knowledge of the sample's thickness for an accurate determination of its optical parameters. Our approach relies on a model-based estimation, a gradient descent search, and the total variation measure. We explore the limits of this technique and compare the results with literature data for optical parameters of several different materials.

  7. [Abnormal hepatic function tests in pregnancy: causes and consequences].

    PubMed

    Nemesánszky, Elemér

    2013-07-21

    The well-known normal ranges of laboratory parameters are altered due to the broad spectrum of physiological changes as well as proinflammatory and procoagulant effects of pregnancy. Hepatic disorders of any aetiology can cause potential problems during gravidity. Most frequently toxic-effects, hepatotrop viruses (such as hepatitis B and C), metabolic syndrome and diseases with autoimmune background can be observed. When dealing with "pregnancy-specific hepatic syndromes", it is very important to consider the "timing-factors" of pathologic changes and deterioration of clinical pictures as well. Due to the progress in cholestasis management, early termination of pregnancy can be avoided in many cases. As the overlap is really broad between various hepatic disorders, a multidisciplinary cooperation of different sub-disciplines is emphasized in order to achieve proper diagnosis and curative measures at early phase.

  8. Morphological basis for the evolution of acoustic diversity in oscine songbirds.

    PubMed

    Riede, Tobias; Goller, Franz

    2014-03-22

    Acoustic properties of vocalizations arise through the interplay of neural control with the morphology and biomechanics of the sound generating organ, but in songbirds it is assumed that the main driver of acoustic diversity is variation in telencephalic motor control. Here we show, however, that variation in the composition of the vibrating tissues, the labia, underlies diversity in one acoustic parameter, fundamental frequency (F0) range. Lateral asymmetry and arrangement of fibrous proteins in the labia into distinct layers is correlated with expanded F0 range of species. The composition of the vibrating tissues thus represents an important morphological foundation for the generation of a broad F0 range, indicating that morphological specialization lays the foundation for the evolution of complex acoustic repertoires.

  9. Imposing constraints on parameter values of a conceptual hydrological model using baseflow response

    NASA Astrophysics Data System (ADS)

    Dunn, S. M.

    Calibration of conceptual hydrological models is frequently limited by a lack of data about the area that is being studied. The result is that a broad range of parameter values can be identified that will give an equally good calibration to the available observations, usually of stream flow. The use of total stream flow can bias analyses towards interpretation of rapid runoff, whereas water quality issues are more frequently associated with low flow condition. This paper demonstrates how model distinctions between surface an sub-surface runoff can be used to define a likelihood measure based on the sub-surface (or baseflow) response. This helps to provide more information about the model behaviour, constrain the acceptable parameter sets and reduce uncertainty in streamflow prediction. A conceptual model, DIY, is applied to two contrasting catchments in Scotland, the Ythan and the Carron Valley. Parameter ranges and envelopes of prediction are identified using criteria based on total flow efficiency, baseflow efficiency and combined efficiencies. The individual parameter ranges derived using the combined efficiency measures still cover relatively wide bands, but are better constrained for the Carron than the Ythan. This reflects the fact that hydrological behaviour in the Carron is dominated by a much flashier surface response than in the Ythan. Hence, the total flow efficiency is more strongly controlled by surface runoff in the Carron and there is a greater contrast with the baseflow efficiency. Comparisons of the predictions using different efficiency measures for the Ythan also suggest that there is a danger of confusing parameter uncertainties with data and model error, if inadequate likelihood measures are defined.

  10. Analysis of exceptionally large tremors in two gold mining districts of South Africa

    USGS Publications Warehouse

    McGarr, A.; Bicknell, J.; Sembera, E.; Green, R.W.E.

    1989-01-01

    An investigation of ground motion, recorded using broad-band, wide dynamic-range digital seismographs, of large mine tremors from two South African mining districts with different geologic settings, reveals some essential differences in both seismic source and ground motion parameters. In the Klerksdorp district where the strata are offset by major throughgoing normal faults, the largest tremors, with magnitudes ranging as high as 5.2, tend to be associated with slip on these pre-existing faults. Moreover, the seismic source and ground motion parameters are quite similar to those of natural crustal earthquakes. In the Carletonville district, by contrast, where substantial faults do not exist, the large-magnitude tremors appear to result from the failure of relatively intact rock and cause seismic stress drops and ground motion parameters higher than normally observed for natural shocks. Additionally, there appears to be an upper magnitude limit of about 4 in the Carletonville district. Detailed analyses of an exceptionally large event recorded locally from each of these districts serve to highlight these contrasts. ?? 1989 Birkha??user Verlag.

  11. Image Discrimination Models With Stochastic Channel Selection

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Beard, Bettina L.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    Many models of human image processing feature a large fixed number of channels representing cortical units varying in spatial position (visual field direction and eccentricity) and spatial frequency (radial frequency and orientation). The values of these parameters are usually sampled at fixed values selected to ensure adequate overlap considering the bandwidth and/or spread parameters, which are usually fixed. Even high levels of overlap does not always ensure that the performance of the model will vary smoothly with image translation or scale changes. Physiological measurements of bandwidth and/or spread parameters result in a broad distribution of estimated parameter values and the prediction of some psychophysical results are facilitated by the assumption that these parameters also take on a range of values. Selecting a sample of channels from a continuum of channels rather than using a fixed set can make model performance vary smoothly with changes in image position, scale, and orientation. It also facilitates the addition of spatial inhomogeneity, nonlinear feature channels, and focus of attention to channel models.

  12. Motor unit recruitment by size does not provide functional advantages for motor performance

    PubMed Central

    Dideriksen, Jakob L; Farina, Dario

    2013-01-01

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers. PMID:24144879

  13. Motor unit recruitment by size does not provide functional advantages for motor performance.

    PubMed

    Dideriksen, Jakob L; Farina, Dario

    2013-12-15

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers.

  14. Laser absorption waves in metallic capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Kanevskii, M. F.; Kondrashov, V. V.

    1987-07-01

    The propagation of laser absorption waves in metallic capillaries was studied experimentally and numerically during pulsed exposure to CO2 laser radiation. The dependence of the plasma front propagation rate on the initial air pressure in the capillary is determined. In a broad range of parameters, the formation time of the optically opaque plasma layer is governed by the total laser pulse energy from the beginning of the exposure to the instant screening appears, and is weakly dependent on the pulse shape and gas pressure.

  15. Component Identification in Multi-Chemical Mixtures With Swept-Wavelength Resonant-Raman Spectroscopy

    DTIC Science & Technology

    2011-03-18

    efficiency of the OPO, but ranges from up to 15 mW on target in the UV to 50 mW in the visible. This ability to illuminate a target with a broad...been back illuminated and coated for enhanced UV response. The run file which automates the collection process uses several input parameters to...analyzed by a Agilent spectrophotometer to determine absorbance characteristics of the liquid. The remaining mixture was then placed into a standard UV

  16. A Guide to Electrical Insulation Design in Aerospace Vehicles for a Broad Range of Environmental Parameter Space

    DTIC Science & Technology

    2010-03-01

    as an example with information from Llewellyn Jones (1939) [30] and from Meek (1978), pg. 233 [7]. Morokuma (1969) [31] varied the surface potential...breakdown in high pressure gases,” Phys. Rev. A, 21, 2069. 13. Dutton, J., Llewellyn Jones , F., and Palmer, R.W., (1961), Proc. Phys. Soc. 78, 569...breakdown and insulators in compressed gas,” IEE Proc. 128, 303. 30. Llewellyn Jones , F. (1939), Phil. Mag. 28, 192. 31. Morokuma, Y., Nakamura, Y., and

  17. Comparative Sensitivity Analysis of Muscle Activation Dynamics

    PubMed Central

    Günther, Michael; Götz, Thomas

    2015-01-01

    We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379

  18. Modeling ramp-hold indentation measurements based on Kelvin-Voigt fractional derivative model

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; zhe Zhang, Qing; Ruan, Litao; Duan, Junbo; Wan, Mingxi; Insana, Michael F.

    2018-03-01

    Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt fractional derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials. These solutions, which are mostly in closed-form, apply to ramp-hold relaxation, load-unload and ramp-load creep-testing protocols. We report on applications of these model solutions to macro- and nano-indentation testing of hydrogels, gastric cancer cells and ex vivo breast tissue samples using an atomic force microscope (AFM). We also applied KVFD models to clinical ultrasonic breast data using a compression plate as required for elasticity imaging. Together the results show that KVFD models fit a broad range of experimental data with a correlation coefficient typically R 2  >  0.99. For hydrogel samples, estimation of KVFD model parameters from test data using spherical indentation versus plate compression as well as ramp relaxation versus load-unload compression all agree within one standard deviation. Results from measurements made using macro- and nano-scale indentation agree in trend. For gastric cell and ex vivo breast tissue measurements, KVFD moduli are, respectively, 1/3-1/2 and 1/6 of the elasticity modulus found from the Sneddon model. In vivo breast tissue measurements yield model parameters consistent with literature results. The consistency of results found for a broad range of experimental parameters suggest the KVFD model is a reliable tool for exploring intrinsic features of the cell/tissue microenvironments.

  19. A Search for H I Lyα Counterparts to Ultrafast X-Ray Outflows

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard A.; Lee, Julia C.; Danehkar, Ashkbiz

    2018-06-01

    Prompted by the H I Lyα absorption associated with the X-ray ultrafast outflow at ‑17,300 km s‑1 in the quasar PG 1211+143, we have searched archival UV spectra at the expected locations of H I Lyα absorption for a large sample of ultrafast outflows identified in XMM-Newton and Suzaku observations. Sixteen of the X-ray outflows have predicted H I Lyα wavelengths falling within the bandpass of spectra from either the Far Ultraviolet Spectroscopic Explorer or the Hubble Space Telescope, although none of the archival observations were simultaneous with the X-ray observations in which ultrafast X-ray outflows (UFOs) were detected. In our spectra broad features with FWHM of 1000 km s‑1 have 2σ upper limits on the H I column density of generally ≲2 × 1013 cm‑2. Using grids of photoionization models covering a broad range of spectral energy distributions (SEDs), we find that producing Fe XXVI Lyα X-ray absorption with equivalent widths >30 eV and associated H I Lyα absorption with {N}{{H}{{I}}}< 2× {10}13 {cm}}-2 requires total absorbing column densities {N}{{H}}> 5× {10}22 {cm}}-2 and ionization parameters log ξ ≳ 3.7. Nevertheless, a wide range of SEDs would predict observable H I Lyα absorption if ionization parameters are only slightly below peak ionization fractions for Fe XXV and Fe XXVI. The lack of Lyα features in the archival UV spectra indicates that the UFOs have very high ionization parameters, that they have very hard UV-ionizing spectra, or that they were not present at the time of the UV spectral observations owing to variability.

  20. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    DOE PAGES

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.; ...

    2015-02-01

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less

  1. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less

  2. Diversity of coding profiles of mechanoreceptors in glabrous skin of kittens.

    PubMed

    Gibson, J M; Beitel, R E; Welker, W

    1975-03-21

    We examined stimulul-response (S-R) profiles of 35 single mechanoreceptive afferent units having small receptive fields in glabrous forepaw skin of 24 anesthetized domestic kittens. Single unit activity was recorded with tungsten microelectrodes from cervical dorsal root ganglia. The study was designed to be as quantitatively descriptive as possible. We indented each unit's receptive field with a broad battery of simple, carefully controlled stimuli whose major parameters, including amplitude, velocity, acceleration, duration, and interstimulus interval were systematically varied. Stimuli were delivered by a small probe driven by a feedback-controlled axial displacement generator. Single unit discharge data were analyzed by a variety of direct and derived measures including dot patterns, peristimulus histograms, instantaneous and mean instantaneous firing rates, tuning curves, thresholds for amplitude and velocity, adaptation rates, dynamic and static sensitivities, and others. We found that with respect to any of the S-R transactions examined, the properties of our sample of units were continuously and broadly distributed. Any one unit might exhibit either a slow or rapid rate of adaptation, or might superficially appear to preferentially code a single stimulus parameter such as amplitude or velocity. But when the entire range of responsiveness of units to the entire stimulus battery was surveyed by a variety of analytic techniques, we were unable to find any justifiable basis for designation of discrete categories of S-R profiles. Intermediate response types were always found, and in general, all units were both broadly tuned and capable of responding to integrals of several stimulus parameters, our data argue against the usefulness of evaluating a unit's S-R coding capabilities by means of a limited ste of stimulation of response analysis procedures.

  3. Warm absorbers in X-rays (WAX), a comprehensive high-resolution grating spectral study of a sample of Seyfert galaxies - I. A global view and frequency of occurrence of warm absorbers.

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Guainazzi, Matteo; Dewangan, Gulab C.; Chakravorty, Susmita; Kembhavi, Ajit K.

    2014-07-01

    We present results from a homogeneous analysis of the broad-band 0.3-10 keV CCD resolution as well as of the soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. Our goal is to characterize warm absorbers (WAs) along the line of sight to the active nucleus. We significantly detect WAs in 65 per cent of the sample sources. Our results are consistent with WAs being present in at least half of the Seyfert galaxies in the nearby Universe, in agreement with previous estimates. We find a gap in the distribution of the ionization parameter in the range 0.5 < log ξ < 1.5 which we interpret as a thermally unstable region for WA clouds. This may indicate that the WA flow is probably constituted by a clumpy distribution of discrete clouds rather than a continuous medium. The distribution of the WA column densities for the sources with broad Fe Kα lines are similar to those sources which do not have broadened emission lines. Therefore, the detected broad Fe Kα emission lines are bona fide and not artefacts of ionized absorption in the soft X-rays. The WA parameters show no correlation among themselves, with the exception of the ionization parameter versus column density. The shallow slope of the log ξ versus log vout linear regression (0.12 ± 0.03) is inconsistent with the scaling laws predicted by radiation or magnetohydrodynamic-driven winds. Our results also suggest that WA and ultra fast outflows do not represent extreme manifestation of the same astrophysical system.

  4. Why some plant species are rare.

    PubMed

    Wieger Wamelink, G W; Wamelink, G W Weiger; Goedhart, Paul W; Frissel, Joep; Frissel, Josep Y

    2014-01-01

    Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.

  5. A new, sophisticated test of the Binary Black Hole Hypothesis for Quasars with Double-peaked Broad Balmer Lines.

    NASA Astrophysics Data System (ADS)

    Nguyen Duy Doan, Anh; Eracleous, Michael; Runnoe, Jessie; Halpern, Jules P.; Liu, Jia; Mathes, Gavin; Flohic, Helene M. L. G.

    2018-01-01

    Displaced peaks in the Balmer lines of quasars could serve as indirect evidence for the existence of close, bound supermassive black hole binaries (SBHBs) at sub-parsec separations. In this work, we test the SBHB hypothesis for 14 quasars with double-peaked emission lines using their long-term radial velocity curves. We make use of a Markov Chain Monte Carlo method to explore the parameter space efficiently. Compared to previous works, we have relaxed the assumption of circular orbits, adding two parameters (eccentricity and argument of periapsis) to the parameter space. We also account for jitter, i.e., short-term fluctuations in the radial velocity curves due to processes that are intrinsic to an individual broad-line region. We have found that the distribution of jitter about a smooth radial velocity curve resembles a Gaussian. Thus, jitter is equivalent to increasing measurement uncertainty in individual measurements. The resulting posterior distributions show the lower mass limit of the SBHBs to be in the range of 10^8 - 10^11 solar masses. For several objects, the mass limit drops by a few orders of magnitude compared to previous results by Liu et. al. However, we note that solutions corresponding to minimum masses often require very high orbital eccentricity ( > 0.9). We also calculate the orbital decay timescale of the binaries due to gravitational radiation, finding values in the range 10^6 - 10^11 years; these values correspond to the minimum-mass solutions. For one third of our targets, we can confidently disfavor the SBHB hypothesis on the basis that the minimum mass exceeds even the most massive black holes measured so far (2 x 10^10 solar masses). For the remaining objects, we must take into account the plausibility of a variety of parameters (e.g. eccentricity, lifetime, etc.) in our evaluation.

  6. Infrared spectroscopic study of CaFe0.7Co0.3O3

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.; Xia, H. L.; Dai, Y. M.; Qiu, Z. Y.; Sui, Q. T.; Long, Y. W.; Qiu, X. G.

    2017-08-01

    Temperature-dependent infrared spectroscopy has been investigated for CaFe0.7Co0.3O3 which undergoes a ferromagnetic transition at TC≈177 K . It is observed that the spectral weight is transferred from ˜4800 -14 000 cm-1 to ˜0 -4800 cm-1 as the temperature is lowered around TC. Such a large-range spectral weight transfer is attributed to the Hund's interaction. The phonons in CaFe0.7Co0.3O3 show minor asymmetric line shapes, implying relatively weak electron-phonon coupling compared with the parent compound CaFeO3. The optical conductivity also reveals a broad peak structure in the range of ˜700 -1500 cm-1. Fit by the model of single-polaron absorption, the broad peak is interpreted by the excitation of polarons. From the fitting parameters of the polaron peak, we estimate the electron-phonon coupling constant α ˜ 0.4 -0.5 , implying that CaFe0.7Co0.3O3 falls into the weak-coupling regime.

  7. Optimization of GATE and PHITS Monte Carlo code parameters for uniform scanning proton beam based on simulation with FLUKA general-purpose code

    NASA Astrophysics Data System (ADS)

    Kurosu, Keita; Takashina, Masaaki; Koizumi, Masahiko; Das, Indra J.; Moskvin, Vadim P.

    2014-10-01

    Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.

  8. Evaluation of DNA extraction methods and their clinical application for direct detection of causative bacteria in continuous ambulatory peritoneal dialysis culture fluids from patients with peritonitis by using broad-range PCR.

    PubMed

    Kim, Si Hyun; Jeong, Haeng Soon; Kim, Yeong Hoon; Song, Sae Am; Lee, Ja Young; Oh, Seung Hwan; Kim, Hye Ran; Lee, Jeong Nyeo; Kho, Weon-Gyu; Shin, Jeong Hwan

    2012-03-01

    The aims of this study were to compare several DNA extraction methods and 16S rDNA primers and to evaluate the clinical utility of broad-range PCR in continuous ambulatory peritoneal dialysis (CAPD) culture fluids. Six type strains were used as model organisms in dilutions from 10(8) to 10(0) colony-forming units (CFU)/mL for the evaluation of 5 DNA extraction methods and 5 PCR primer pairs. Broad-range PCR was applied to 100 CAPD culture fluids, and the results were compared with conventional culture results. There were some differences between the various DNA extraction methods and primer sets with regard to the detection limits. The InstaGene Matrix (Bio-Rad Laboratories, USA) and Exgene Clinic SV kits (GeneAll Biotechnology Co. Ltd, Korea) seem to have higher sensitivities than the others. The results of broad-range PCR were concordant with the results from culture in 97% of all cases (97/100). Two culture-positive cases that were broad-range PCR-negative were identified as Candida albicans, and 1 PCR-positive but culture-negative sample was identified as Bacillus circulans by sequencing. Two samples among 54 broad-range PCR-positive products could not be sequenced. There were differences in the analytical sensitivity of various DNA extraction methods and primers for broad-range PCR. The broad-range PCR assay can be used to detect bacterial pathogens in CAPD culture fluid as a supplement to culture methods.

  9. 78 FR 23826 - Information Collection Activities (Complaints, Petitions for Declaratory Orders, and Petitions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    .... Under these statutory and regulatory sections, the Board provides procedures for persons to make a broad range of claims and to seek a broad range of remedies before the Board. The information collections... terminate a controversy or remove uncertainty. Because petitions for a declaratory order cover a broad range...

  10. Broad-range PCR: past, present, or future of bacteriology?

    PubMed

    Renvoisé, A; Brossier, F; Sougakoff, W; Jarlier, V; Aubry, A

    2013-08-01

    PCR targeting the gene encoding 16S ribosomal RNA (commonly named broad-range PCR or 16S PCR) has been used for 20 years as a polyvalent tool to study prokaryotes. Broad-range PCR was first used as a taxonomic tool, then in clinical microbiology. We will describe the use of broad-range PCR in clinical microbiology. The first application was identification of bacterial strains obtained by culture but whose phenotypic or proteomic identification remained difficult or impossible. This changed bacterial taxonomy and allowed discovering many new species. The second application of broad-range PCR in clinical microbiology is the detection of bacterial DNA from clinical samples; we will review the clinical settings in which the technique proved useful (such as endocarditis) and those in which it did not (such as characterization of bacteria in ascites, in cirrhotic patients). This technique allowed identifying the etiological agents for several diseases, such as Whipple disease. This review is a synthesis of data concerning the applications, assets, and drawbacks of broad-range PCR in clinical microbiology. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Morphological basis for the evolution of acoustic diversity in oscine songbirds

    PubMed Central

    Riede, Tobias; Goller, Franz

    2014-01-01

    Acoustic properties of vocalizations arise through the interplay of neural control with the morphology and biomechanics of the sound generating organ, but in songbirds it is assumed that the main driver of acoustic diversity is variation in telencephalic motor control. Here we show, however, that variation in the composition of the vibrating tissues, the labia, underlies diversity in one acoustic parameter, fundamental frequency (F0) range. Lateral asymmetry and arrangement of fibrous proteins in the labia into distinct layers is correlated with expanded F0 range of species. The composition of the vibrating tissues thus represents an important morphological foundation for the generation of a broad F0 range, indicating that morphological specialization lays the foundation for the evolution of complex acoustic repertoires. PMID:24500163

  12. Variable-Speed Power-Turbine for the Large Civil Tilt Rotor

    NASA Technical Reports Server (NTRS)

    Suchezky, Mark; Cruzen, G. Scott

    2012-01-01

    Turbine design concepts were studied for application to a large civil tiltrotor transport aircraft. The concepts addressed the need for high turbine efficiency across the broad 2:1 turbine operating speed range representative of the notional mission for the aircraft. The study focused on tailoring basic turbine aerodynamic design design parameters to avoid the need for complex, heavy, and expensive variable geometry features. The results of the study showed that good turbine performance can be achieved across the design speed range if the design focuses on tailoring the aerodynamics for good tolerance to large swings in incidence, as opposed to optimizing for best performance at the long range cruise design point. A rig design configuration and program plan are suggested for a dedicated experiment to validate the proposed approach.

  13. Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration-Luminosity Phase Space

    NASA Astrophysics Data System (ADS)

    Villar, V. Ashley; Berger, Edo; Metzger, Brian D.; Guillochon, James

    2017-11-01

    The duration-luminosity phase space (DLPS) of optical transients is used, mostly heuristically, to compare various classes of transient events, to explore the origin of new transients, and to influence optical survey observing strategies. For example, several observational searches have been guided by intriguing voids and gaps in this phase space. However, we should ask, do we expect to find transients in these voids given our understanding of the various heating sources operating in astrophysical transients? In this work, we explore a broad range of theoretical models and empirical relations to generate optical light curves and to populate the DLPS. We explore transients powered by adiabatic expansion, radioactive decay, magnetar spin-down, and circumstellar interaction. For each heating source, we provide a concise summary of the basic physical processes, a physically motivated choice of model parameter ranges, an overall summary of the resulting light curves and their occupied range in the DLPS, and how the various model input parameters affect the light curves. We specifically explore the key voids discussed in the literature: the intermediate-luminosity gap between classical novae and supernovae, and short-duration transients (≲ 10 days). We find that few physical models lead to transients that occupy these voids. Moreover, we find that only relativistic expansion can produce fast and luminous transients, while for all other heating sources events with durations ≲ 10 days are dim ({M}{{R}}≳ -15 mag). Finally, we explore the detection potential of optical surveys (e.g., Large Synoptic Survey Telescope) in the DLPS and quantify the notion that short-duration and dim transients are exponentially more difficult to discover in untargeted surveys.

  14. The EDDA experiment at COSY

    NASA Astrophysics Data System (ADS)

    Rohdjess, H.

    1998-01-01

    Polarized and unpolarized proton-proton elastic scattering is investigated with the EDDA-experiment at the Cooler Synchrotron COSY at Jülich to significantly improve the world data base in the beam energy range 500-2500 MeV. Measurements during beam acceleration with thin internal targets and a large acceptance detector produce excitation functions over a broad angular and energy range with unprecedented internal consistency. Data taking with an unpolarized CH2 fiber target and an unpolarized beam have been completed and the derived differential cross sections demonstrate the benefit of this technique. With a polarized atomic beam target recently installed in COSY and a polarized COSY beam—currently under development—the measurements will be extended to analyzing powers and spin correlation parameters.

  15. Hierarchical classification with a competitive evolutionary neural tree.

    PubMed

    Adams, R G.; Butchart, K; Davey, N

    1999-04-01

    A new, dynamic, tree structured network, the Competitive Evolutionary Neural Tree (CENT) is introduced. The network is able to provide a hierarchical classification of unlabelled data sets. The main advantage that the CENT offers over other hierarchical competitive networks is its ability to self determine the number, and structure, of the competitive nodes in the network, without the need for externally set parameters. The network produces stable classificatory structures by halting its growth using locally calculated heuristics. The results of network simulations are presented over a range of data sets, including Anderson's IRIS data set. The CENT network demonstrates its ability to produce a representative hierarchical structure to classify a broad range of data sets.

  16. An operational amplifier B1404UD1A-1 in the patch-clamp current-to-voltage converter.

    PubMed

    Korzun, A M; Rozinov, S V; Abashin, G I

    1997-01-01

    The applicability of the home-made operational amplifier B1404UD1A-1 in a patch-clamp current-to-voltage converter was analyzed. Its parameters (background noise, input bias current, and gain-bandwidth product) were estimated. Schematic solutions and practical recommendations for the use of this amplifier in a current-to-voltage converter were given. Based on the background noise and frequency parameters of the converter, we found that this device can be used for measuring ion channel currents with a high sensitivity and within a broad frequency range (0.055 pA, to 1 kHz; 0.4 pA, to 10 kHz). An example of the converter application in experiments is given.

  17. Star-Shaped Crack Pattern of Broken Windows

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Nicolas; Vermorel, Romain; Villermaux, Emmanuel

    2013-04-01

    Broken thin brittle plates like windows and windshields are ubiquitous in our environment. When impacted locally, they typically present a pattern of cracks extending radially outward from the impact point. We study the variation of the pattern of cracks by performing controlled transverse impacts on brittle plates over a broad range of impact speed, plate thickness, and material properties, and we establish from experiments a global scaling law for the number of radial cracks incorporating all these parameters. A model based on Griffith’s theory of fracture combining bending elastic energy and fracture energy accounts for our observations. These findings indicate how the postmortem shape of broken samples are related to material properties and impact parameters, a procedure relevant to forensic science, archaeology, or astrophysics.

  18. Reconstructing a plasmonic metasurface for a broadband high-efficiency optical vortex in the visible frequency.

    PubMed

    Lu, Bing-Rui; Deng, Jianan; Li, Qi; Zhang, Sichao; Zhou, Jing; Zhou, Lei; Chen, Yifang

    2018-06-14

    Metasurfaces consisting of a two-dimensional metallic nano-antenna array are capable of transferring a Gaussian beam into an optical vortex with a helical phase front and a phase singularity by manipulating the polarization/phase status of light. This miniaturizes a laboratory scaled optical system into a wafer scale component, opening up a new area for broad applications in optics. However, the low conversion efficiency to generate a vortex beam from circularly polarized light hinders further development. This paper reports our recent success in improving the efficiency over a broad waveband at the visible frequency compared with the existing work. The choice of material, the geometry and the spatial organization of meta-atoms, and the fabrication fidelity are theoretically investigated by the Jones matrix method. The theoretical conversion efficiency over 40% in the visible wavelength range is worked out by systematic calculation using the finite difference time domain (FDTD) method. The fabricated metasurface based on the parameters by theoretical optimization demonstrates a high quality vortex in optical frequencies with a significantly enhanced efficiency of over 20% in a broad waveband.

  19. Control of DNA-Functionalized Nanoparticle Assembly

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica

    Directed crystallization of a large variety of nanoparticles, including proteins, via DNA hybridization kinetics has led to unique materials with a broad range of crystal symmetries. The nanoparticles are functionalized with DNA chains that link neighboring functionalized units. The shape of the nanoparticle, the DNA length, the sequence of the hybridizing DNA linker and the grafting density determine the crystal symmetries and lattice spacing. By carefully selecting these parameters one can, in principle, achieve all the symmetries found for both atomic and colloidal crystals of asymmetric shapes as well as new symmetries, and drive transitions between them. A scale-accurate coarse-grained model with explicit DNA chains provides the design parameters, including degree of hybridization, to achieve specific crystal structures. The model also provides surface energy values to determine the shape of defect-free single crystals with macroscopic anisotropic properties, as well as the parameters to develop colloidal models that reproduce both the shape of single crystals and their growth kinetics.

  20. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stow, Sarah M.; Causon, Tim J.; Zheng, Xueyun

    Collision cross section (CCS) measurements resulting from ion mobility-mass spectrometry (IM-MS) experiments provide a promising orthogonal dimension of structural information in MS-based analytical separations. As with any molecular identifier, interlaboratory standardization must precede broad range integration into analytical workflows. In this study, we present a reference drift tube ion mobility mass spectrometer (DTIM-MS) where improvements on the measurement accuracy of experimental parameters influencing IM separations provide standardized drift tube, nitrogen CCS values (DTCCSN2) for over 120 unique ion species with the lowest measurement uncertainty to date. The reproducibility of these DTCCSN2 values are evaluated across three additional laboratories on amore » commercially available DTIM-MS instrument. The traditional stepped field CCS method performs with a relative standard deviation (RSD) of 0.29% for all ion species across the three additional laboratories. The calibrated single field CCS method, which is compatible with a wide range of chromatographic inlet systems, performs with an average, absolute bias of 0.54% to the standardized stepped field DTCCSN2 values on the reference system. The low RSD and biases observed in this interlaboratory study illustrate the potential of DTIM-MS for providing a molecular identifier for a broad range of discovery based analyses.« less

  1. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    PubMed

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  2. Differential Modulation of Excitatory and Inhibitory Neurons during Periodic Stimulation

    PubMed Central

    Mahmud, Mufti; Vassanelli, Stefano

    2016-01-01

    Non-invasive transcranial neuronal stimulation, in addition to deep brain stimulation, is seen as a promising therapeutic and diagnostic approach for an increasing number of neurological diseases such as epilepsy, cluster headaches, depression, specific type of blindness, and other central nervous system disfunctions. Improving its effectiveness and widening its range of use may strongly rely on development of proper stimulation protocols that are tailored to specific brain circuits and that are based on a deep knowledge of different neuron types response to stimulation. To this aim, we have performed a simulation study on the behavior of excitatory and inhibitory neurons subject to sinusoidal stimulation. Due to the intrinsic difference in membrane conductance properties of excitatory and inhibitory neurons, we show that their firing is differentially modulated by the wave parameters. We analyzed the behavior of the two neuronal types for a broad range of stimulus frequency and amplitude and demonstrated that, within a small-world network prototype, parameters tuning allow for a selective enhancement or suppression of the excitation/inhibition ratio. PMID:26941602

  3. Plasmonic metamaterial based unified broadband absorber/near infrared emitter for thermophotovoltaic system based on hexagonally packed tungsten doughnuts

    NASA Astrophysics Data System (ADS)

    Behera, Saraswati; Joseph, Joby

    2017-11-01

    In this paper, we report a simple and effective design of a polarization independent and wide incident angle plasmonic metamaterial based unified broadband absorber and thermal emitter consisting of hexagonally packed tungsten doughnuts (hexa-rings) for thermophotovoltaic system. The proposed design shows more than 85% of absorption over 0.3 to 2.18 μm, that is, over the broad spectral range from the ultraviolet to the near infrared (NIR), and 100% absorption and thermal emission at 2.18 μm. Further, the NIR plasmonic absorption and thermal emission peak is tuned from the spectral range 2.18 to 3 μm for different low bandgap photovoltaic materials by varying the design parameters such as inner and outer ring radius, instead of varying any other design parameters in the proposed design. The possibility of the realization of hexa-doughnut structures through a single-step phase engineered interference lithography technique is also demonstrated through the realization of micro/nanostructure samples over large area.

  4. Emergent pattern formation in an interstitial biofilm

    NASA Astrophysics Data System (ADS)

    Zachreson, Cameron; Wolff, Christian; Whitchurch, Cynthia B.; Toth, Milos

    2017-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient γ ), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological parameters. Our findings are applicable to a broad range of biofilms and provide insights into the relationship between bacterial movement and their environment, and basic mechanisms behind self-organization of biophysical systems.

  5. On the Active and Passive Flow Separation Control Techniques over Airfoils

    NASA Astrophysics Data System (ADS)

    Moghaddam, Tohid; Banazadeh Neishabouri, Nafiseh

    2017-10-01

    In the present work, recent advances in the field of the active and passive flow separation control, particularly blowing and suction flow control techniques, applied on the common airfoils are briefly reviewed. This broad research area has remained the point of interest for many years as it is applicable to various applications. The suction and blowing flow control methods, among other methods, are more technically feasible and market ready techniques. It is well established that the uniform and/or oscillatory blowing and suction flow control mechanisms significantly improve the lift-to-drag ratio, and further, postpone the boundary layer separation as well as the stall. The oscillatory blowing and suction flow control, however, is more efficient compared to the uniform one. A wide range of parameters is involved in controlling the behavior of a blowing and/or suction flow control, including the location, length, and angle of the jet slots. The oscillation range of the jet slot is another substantial parameter.

  6. Characterization of gloss properties of differently treated polymer coating surfaces by surface clarity measurement methodology.

    PubMed

    Gruber, Dieter P; Buder-Stroisznigg, Michael; Wallner, Gernot; Strauß, Bernhard; Jandel, Lothar; Lang, Reinhold W

    2012-07-10

    With one measurement configuration, existing gloss measurement methodologies are generally restricted to specific gloss levels. A newly developed image-analytical gloss parameter called "clarity" provides the possibility to describe the perceptual result of a broad range of different gloss levels with one setup. In order to analyze and finally monitor the perceived gloss of products, a fast and flexible method also for the automated inspection is highly demanded. The clarity parameter is very fast to calculate and therefore usable for fast in-line surface inspection. Coated metal specimens were deformed by varying degree and polished afterwards in order to study the clarity parameter regarding the quantification of varying surface gloss types and levels. In order to analyze the correlation with the human gloss perception a study was carried out in which experts were asked to assess gloss properties of a series of surface samples under standardized conditions. The study confirmed clarity to exhibit considerably better correlation to the human perception than alternative gloss parameters.

  7. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    DOE PAGES

    van der Laan, J. D.; Sandia National Lab.; Scrymgeour, D. A.; ...

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists bettermore » than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.« less

  8. Signatures of compact halos of sterile-neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Kühnel, Florian; Ohlsson, Tommy

    2017-11-01

    We investigate compact halos of sterile-neutrino dark matter and examine observable signatures with respect to neutrino and photon emission. Primarily, we consider two cases: primordial black-hole halos and ultracompact minihalos. In both cases, we find that there exists a broad range of possible parameter choices such that detection in the near future with x-ray and gamma-ray telescopes might be well possible. In fact, for energies above 10 TeV, the neutrino telescope IceCube would be a splendid detection machine for such macroscopic dark-matter candidates.

  9. Dynamical Cooper pairing in nonequilibrium electron-phonon systems

    DOE PAGES

    Knap, Michael; Babadi, Mehrtash; Refael, Gil; ...

    2016-12-08

    In this paper, we analyze Cooper pairing instabilities in strongly driven electron-phonon systems. The light-induced nonequilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We demonstrate that the competition between these effects leads to an enhanced superconducting transition temperature in a broad range of parameters. Finally, our results may explain the observed transient enhancement of superconductivity in several classes of materials upon irradiation with high intensity pulses of terahertz light, and may pave new ways for engineering high-temperature light-induced superconducting states.

  10. Modeling Parasitic Energy Losses and the Impact of Advanced Tribological Concepts on Fuel Efficiency - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenske, George

    2016-11-28

    Our primary task for this project was to perform FMEP calculations for a broad range of parameters including engine type [spark ignition (SI) or compression ignition (CI)], engine size, engine mode (speed and load), lubricant viscosity, asperity friction, surface finish, oil type (mineral or synthetic), and additive (friction modifier), as discussed previously [1–3]. The actual analysis was limited to a large diesel engine and it included both load and speed dependencies as well as lubricant viscosity and speed.

  11. Analysis of glottal source parameters in Parkinsonian speech.

    PubMed

    Hanratty, Jane; Deegan, Catherine; Walsh, Mary; Kirkpatrick, Barry

    2016-08-01

    Diagnosis and monitoring of Parkinson's disease has a number of challenges as there is no definitive biomarker despite the broad range of symptoms. Research is ongoing to produce objective measures that can either diagnose Parkinson's or act as an objective decision support tool. Recent research on speech based measures have demonstrated promising results. This study aims to investigate the characteristics of the glottal source signal in Parkinsonian speech. An experiment is conducted in which a selection of glottal parameters are tested for their ability to discriminate between healthy and Parkinsonian speech. Results for each glottal parameter are presented for a database of 50 healthy speakers and a database of 16 speakers with Parkinsonian speech symptoms. Receiver operating characteristic (ROC) curves were employed to analyse the results and the area under the ROC curve (AUC) values were used to quantify the performance of each glottal parameter. The results indicate that glottal parameters can be used to discriminate between healthy and Parkinsonian speech, although results varied for each parameter tested. For the task of separating healthy and Parkinsonian speech, 2 out of the 7 glottal parameters tested produced AUC values of over 0.9.

  12. 33 CFR 334.480 - Archers Creek, Ribbon Creek and Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and pistol ranges, Parris Island. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek and Broad River... navigation: (1) At the rifle range. Archers Creek between Broad River and Beaufort River and Ribbon Creek...

  13. 33 CFR 334.480 - Archers Creek, Ribbon Creek and Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and pistol ranges, Parris Island. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek and Broad River... navigation: (1) At the rifle range. Archers Creek between Broad River and Beaufort River and Ribbon Creek...

  14. Evidence for different accretion regimes in GRO J1008-57

    NASA Astrophysics Data System (ADS)

    Kühnel, Matthias; Fürst, Felix; Pottschmidt, Katja; Kreykenbohm, Ingo; Ballhausen, Ralf; Falkner, Sebastian; Rothschild, Richard E.; Klochkov, Dmitry; Wilms, Jörn

    2017-11-01

    We present a comprehensive spectral analysis of the BeXRB GRO J1008-57 over a luminosity range of three orders of magnitude using NuSTAR, Suzaku, and RXTE data. We find significant evolution of the spectral parameters with luminosity. In particular, the photon index hardens with increasing luminosity at intermediate luminosities in the range 1036-1037 erg s-1. This evolution is stable and repeatedly observed over different outbursts. However, at the extreme ends of the observed luminosity range, we find that the correlation breaks down, with a significance level of at least 3.7σ. We conclude that these changes indicate transitions to different accretion regimes, which are characterized by different deceleration processes, such as Coulomb or radiation breaking. We compare our observed luminosity levels of these transitions to theoretical predications and discuss the variation of those theoretical luminosity values with fundamental neutron star parameters. Finally, we present detailed spectroscopy of the unique "triple peaked" outburst in 2014/15 which does not fit in the general parameter evolution with luminosity. The pulse profile on the other hand is consistent with what is expected at this luminosity level, arguing against a change in accretion geometry. In summary, GRO J1008-57 is an ideal target to study different accretion regimes due to the well-constrained evolution of its broad-band spectral continuum over several orders of magnitude in luminosity.

  15. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  16. Proton-proton elastic scattering excitation functions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Rohdjess, H.

    1998-05-01

    Polarized and unpolarized proton-proton elastic scattering is investigated with the EDDA-experiment at the Cooler Synchrotron COSY at Jülich to significantly improve the world data base in the beam energy range 500-2500 MeV. Measurements during beam acceleration with thin internal targets and a large acceptance detector provide excitation functions over a broad angular and energy range with unprecedented internal consistency. Data taking with an unpolarized CH2 fiber target and an unpolarized beam have been completed and the derived differential cross sections are presented and compared to a recent phase shift analysis. With a polarized atomic beam target newly installed in COSY and a polarized COSY beam—currently under development—the measurements will be extended to analyzing powers and spin correlation parameters.

  17. An IT-enabled supply chain model: a simulation study

    NASA Astrophysics Data System (ADS)

    Cannella, Salvatore; Framinan, Jose M.; Barbosa-Póvoa, Ana

    2014-11-01

    During the last decades, supply chain collaboration practices and the underlying enabling technologies have evolved from the classical electronic data interchange (EDI) approach to a web-based and radio frequency identification (RFID)-enabled collaboration. In this field, most of the literature has focused on the study of optimal parameters for reducing the total cost of suppliers, by adopting operational research (OR) techniques. Herein we are interested in showing that the considered information technology (IT)-enabled structure is resilient, that is, it works well across a reasonably broad range of parameter settings. By adopting a methodological approach based on system dynamics, we study a multi-tier collaborative supply chain. Results show that the IT-enabled supply chain improves operational performance and customer service level. Nonetheless, benefits for geographically dispersed networks are of minor entity.

  18. Constraining the optical potential in the search for η-mesic 4He

    NASA Astrophysics Data System (ADS)

    Skurzok, M.; Moskal, P.; Kelkar, N. G.; Hirenzaki, S.; Nagahiro, H.; Ikeno, N.

    2018-07-01

    A consistent description of the dd →4Heη and dd → (4Heη)bound→ X cross sections was recently proposed with a broad range of real (V0) and imaginary (W0), η-4He optical potential parameters leading to a good agreement with the dd →4Heη data. Here we compare the predictions of the model below the η production threshold, with the WASA-at-COSY excitation functions for the dd →3HeNπ reactions to put stronger constraints on (V0 ,W0). The allowed parameter space (with |V0 | < ∼ 60 MeV and |W0 | < ∼ 7 MeV estimated at 90% CL) excludes most optical model predictions of η-4He nuclei except for some loosely bound narrow states.

  19. Dynamical systems model and discrete element simulations of a tapped granular column

    NASA Astrophysics Data System (ADS)

    Rosato, A. D.; Blackmore, D.; Tricoche, X. M.; Urban, K.; Zuo, L.

    2013-06-01

    We present an approximate dynamical systems model for the mass center trajectory of a tapped column of N uniform, inelastic, spheres (diameter d), in which collisional energy loss is governed by the Walton-Braun linear loading-unloading soft interaction. Rigorous analysis of the model, akin to the equations for the motion of a single bouncing ball on a vibrating plate, reveals a parameter γ≔2aω2(1+e)/g that gauges the dynamical regimes and their transitions. In particular, we find bifurcations from periodic to chaotic dynamics that depend on frequency ω, amplitude a/d of the tap. Dynamics predicted by the model are also qualitatively observed in discrete element simulations carried out over a broad range of the tap parameters.

  20. Theoretical investigation of excitonic magnetism in LaSrCoO4

    NASA Astrophysics Data System (ADS)

    Fernández Afonso, J.; Sotnikov, A.; Kuneš, J.

    2018-04-01

    We use the LDA+U approach to search for possible ordered ground states of LaSrCoO4. We find a staggered arrangement of magnetic multipoles to be stable over a broad range of Co 3d interaction parameters. This ordered state can be described as a spin-density-wave-type condensate of dxy \\otimes dx^2-y^2 excitons carrying spin S  =  1. Further, we construct an effective strong-coupling model, calculate the exciton dispersion and investigate closing of the exciton gap, which marks the exciton condensation instability. Comparing the layered LaSrCoO4 with its pseudo cubic analog LaCoO3, we find that for the same interaction parameters the excitonic gap is smaller (possibly vanishing) in the layered cobaltite.

  1. Viscoinertial regime of immersed granular flows

    NASA Astrophysics Data System (ADS)

    Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.

    2017-07-01

    By means of extensive coupled molecular dynamics-lattice Boltzmann simulations, accounting for grain dynamics and subparticle resolution of the fluid phase, we analyze steady inertial granular flows sheared by a viscous fluid. We show that, for a broad range of system parameters (shear rate, confining stress, fluid viscosity, and relative fluid-grain density), the frictional strength and packing fraction can be described by a modified inertial number incorporating the fluid effect. In a dual viscous description, the effective viscosity diverges as the inverse square of the difference between the packing fraction and its jamming value, as observed in experiments. We also find that the fabric and force anisotropies extracted from the contact network are well described by the modified inertial number, thus providing clear evidence for the role of these key structural parameters in dense suspensions.

  2. Performance testing of a mid-infrared spectroscopic system for clinical chemistry applications utilising an ultra-broadband tunable EC-QCL radiation source

    NASA Astrophysics Data System (ADS)

    Grafen, M.; Nalpantidis, K.; Ihrig, D.; Heise, H. M.; Ostendorf, A.

    2016-03-01

    Mid-infrared (MIR) spectroscopy is a valuable analytical method for patient monitoring within point-of-care diagnostics. For implementation, quantum cascade lasers (QCL) appear to be most suited regarding miniaturization, complexity and eventually also costs. External cavity (EC) - QCLs offer broad tuning ranges and recently, ultra-broadly tunable systems covering spectral ranges around the mid-infrared fingerprint region became commercially available. Using such a system, transmission spectra from the wavenumber interval of 780 to 1920 cm-1, using a thermoelectrically cooled MCT-detector, were recorded while switching the aqueous glucose concentrations between 0, 50 and 100 mg/dL. In order to optimize the system performance, a multi-parameter study was carried out, varying laser pulse width, duty cycle, sweep speed and the optical sample pathlength for scoring the absorbance noise. Exploratory factor analysis with pattern recognition tools (PCA, LDA) was used for the raw data, providing more than 10 significantly contributing factors. With the glucose signal causing 20 % of the total variance, further factors include short-term drift possibly related to thermal effects, long-term drift due to varying atmospheric water vapour in the lab, as well as wavenumber shifts and drifts of the single tuners. For performance testing, the noise equivalent concentration was estimated based on cross-validated Partial-Least Squares (PLS) predictions and the a-posteriori obtained scores of the factor analysis. Based on the optimized parameters, a noise equivalent glucose concentration of 1.5 mg/dL was achieved.

  3. Dimensionless parameterization of lidar for laser remote sensing of the atmosphere and its application to systems with SiPM and PMT detectors.

    PubMed

    Agishev, Ravil; Comerón, Adolfo; Rodriguez, Alejandro; Sicard, Michaël

    2014-05-20

    In this paper, we show a renewed approach to the generalized methodology for atmospheric lidar assessment, which uses the dimensionless parameterization as a core component. It is based on a series of our previous works where the problem of universal parameterization over many lidar technologies were described and analyzed from different points of view. The modernized dimensionless parameterization concept applied to relatively new silicon photomultiplier detectors (SiPMs) and traditional photomultiplier (PMT) detectors for remote-sensing instruments allowed predicting the lidar receiver performance with sky background available. The renewed approach can be widely used to evaluate a broad range of lidar system capabilities for a variety of lidar remote-sensing applications as well as to serve as a basis for selection of appropriate lidar system parameters for a specific application. Such a modernized methodology provides a generalized, uniform, and objective approach for evaluation of a broad range of lidar types and systems (aerosol, Raman, DIAL) operating on different targets (backscatter or topographic) and under intense sky background conditions. It can be used within the lidar community to compare different lidar instruments.

  4. High-Sensitivity, Broad-Range Vacuum Gauge Using Nanotubes for Micromachined Cavities

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Kaul, Anupama B.

    2011-01-01

    A broad-range vacuum gauge has been created by suspending a single-walled carbon nanotube (SWNT) (metallic or semiconducting) in a Schottky diode format or in a bridge conductor format, between two electrically charged mesas. SWNTs are highly sensitive to molecular collisions because of their extremely small diameters in the range of 1 to 3 nanometers. The measurement parameter will be the change in conductivity of SWNT due to decreasing rate of molecular collisions as the pressure inside a chamber decreases. The rate of heat removal approaches a saturation limit as the mean free path (m.f.p.) lengths of molecules increase due to decreasing pressure. Only those sensing elements that have a long relaxation time can produce a measureable response when m.f.p. of molecules increases (or time between two consecutive collisions increases). A suspended SWNT offers such a capability because of its one-dimensional nature and ultrasmall diameter. In the initial approach, similar architecture was used as that of a SWNT-Schottky diode that has been developed at JPL, and has its changing conductivity measured as the test chamber is pumped down from atmospheric pressure to high vacuum (10(exp -7) Torr). Continuous response of decreasing conductivity has been measured as a function of decreasing pressure (SWNT is a negative thermal coefficient material) from atmosphere to less than 10(exp -6) Torr. A measureable current change in the hundreds of nA range has been recorded in the 10(exp -6) Torr regime.

  5. Impact of Monoenergetic Photon Sources on Nonproliferation Applications Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geddes, Cameron; Ludewigt, Bernhard; Valentine, John

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications, particularly where passive signatures do not penetrate or are insufficiently accurate. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow angular divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current bremsstrahlung photon sources (e.g., linacs and betatrons) produce photons over a broad range ofmore » energies, thus delivering unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations. Current sources must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they remain at relatively low TRL status. Candidate MPS technologies for nonproliferation applications are now being developed, each of which has different properties (e.g. broad vs. narrow angular divergence). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. This report describes a broad survey of potential applications, identification of high priority applications, and detailed simulations addressing those priority applications. Requirements were derived for each application, and analysis and simulations were conducted to define MPS parameters that deliver benefit. The results can inform targeting of MPS development to deliver strong impact relative to current systems.« less

  6. Improving Models of Photosynthetic Thermal Acclimation: Which Parameters are Most Important and How Many Should Be Modified?

    NASA Astrophysics Data System (ADS)

    Stinziano, J. R.; Way, D.; Bauerle, W.

    2017-12-01

    Photosynthetic temperature acclimation could strongly affect coupled vegetation-atmosphere feedbacks in the global carbon cycle, especially as the climate warms. Thermal acclimation of photosynthesis can be modelled as changes in the parameters describing the direct effect of temperature on photosynthetic capacity (activation energy, Ea; deactivation energy, Hd; entropy parameter, ΔS) or the basal value of photosynthetic capacity (i.e. photosynthetic capacity measured at 25 °C), however the impact of acclimating these parameters (individually or in combination) on vegetative carbon gain is relatively unexplored. Here we compare the ability of 66 photosynthetic temperature acclimation scenarios to improve predictions of a spatially explicit canopy carbon flux model, MAESTRA, for eddy covariance data from a loblolly pine forest. We show that: 1) incorporating seasonal temperature acclimation of basal photosynthetic capacity improves the model's ability to capture seasonal changes in carbon fluxes; 2) multifactor scenarios of photosynthetic temperature acclimation provide minimal (if any) improvement in model performance over single factor acclimation scenarios; 3) acclimation of enzyme activation energies should be restricted to the temperature ranges of the data from which the equations are derived; and 4) model performance is strongly affected by the choice of deactivation energy. We suggest that a renewed effort be made into understanding the thermal acclimation of enzyme activation and deactivation energies across broad temperature ranges to better understand the mechanisms underlying thermal photosynthetic acclimation.

  7. REVERBERATION AND PHOTOIONIZATION ESTIMATES OF THE BROAD-LINE REGION RADIUS IN LOW-z QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola

    2013-07-01

    Black hole mass estimation in quasars, especially at high redshift, involves the use of single-epoch spectra with signal-to-noise ratio and resolution that permit accurate measurement of the width of a broad line assumed to be a reliable virial estimator. Coupled with an estimate of the radius of the broad-line region (BLR) this yields the black hole mass M{sub BH}. The radius of the BLR may be inferred from an extrapolation of the correlation between source luminosity and reverberation-derived r{sub BLR} measures (the so-called Kaspi relation involving about 60 low-z sources). We are exploring a different method for estimating r{sub BLR}more » directly from inferred physical conditions in the BLR of each source. We report here on a comparison of r{sub BLR} estimates that come from our method and from reverberation mapping. Our ''photoionization'' method employs diagnostic line intensity ratios in the rest-frame range 1400-2000 A (Al III {lambda}1860/Si III] {lambda}1892, C IV {lambda}1549/Al III {lambda}1860) that enable derivation of the product of density and ionization parameter with the BLR distance derived from the definition of the ionization parameter. We find good agreement between our estimates of the density, ionization parameter, and r{sub BLR} and those from reverberation mapping. We suggest empirical corrections to improve the agreement between individual photoionization-derived r{sub BLR} values and those obtained from reverberation mapping. The results in this paper can be exploited to estimate M{sub BH} for large samples of high-z quasars using an appropriate virial broadening estimator. We show that the width of the UV intermediate emission lines are consistent with the width of H{beta}, thereby providing a reliable virial broadening estimator that can be measured in large samples of high-z quasars.« less

  8. Crack Instability Predictions Using a Multi-Term Approach

    NASA Technical Reports Server (NTRS)

    Zanganeh, Mohammad; Forman, Royce G.

    2015-01-01

    Present crack instability analysis for fracture critical flight hardware is normally performed using a single parameter, K(sub C), fracture toughness value obtained from standard ASTM 2D geometry test specimens made from the appropriate material. These specimens do not sufficiently match the boundary conditions and the elastic-plastic constraint characteristics of the hardware component, and also, the crack instability of most commonly used aircraft and aerospace structural materials have some amount of stable crack growth before fracture which makes the normal use of a K(sub C) single parameter toughness value highly approximate. In the past, extensive studies have been conducted to improve the single parameter (K or J controlled) approaches by introducing parameters accounting for the geometry or in-plane constraint effects. Using 'J-integral' and 'A' parameter as a measure of constraint is one of the most accurate elastic-plastic crack solutions currently available. In this work the feasibility of the J-A approach for prediction of the crack instability was investigated first by ignoring the effects of stable crack growth i.e. using a critical J and A and second by considering the effects of stable crack growth using the corrected J-delta a using the 'A' parameter. A broad range of initial crack lengths and a wide range of specimen geometries including C(T), M(T), ESE(T), SE(T), Double Edge Crack (DEC), Three-Hole-Tension (THT) and NC (crack from a notch) manufactured from Al7075 were studied. Improvements in crack instability predictions were observed compared to the other methods available in the literature.

  9. Application of the Aquifer Impact Model to support decisions at a CO 2 sequestration site: Modeling and Analysis: Application of the Aquifer Impact Model to support decisions at a CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacon, Diana Holford; Locke II, Randall A.; Keating, Elizabeth

    The National Risk Assessment Partnership (NRAP) has developed a suite of tools to assess and manage risk at CO2 sequestration sites (1). The NRAP tool suite includes the Aquifer Impact Model (AIM), based on reduced order models developed using site-specific data from two aquifers (alluvium and carbonate). The models accept aquifer parameters as a range of variable inputs so they may have more broad applicability. Guidelines have been developed for determining the aquifer types for which the ROMs should be applicable. This paper considers the applicability of the aquifer models in AIM to predicting the impact of CO2 or Brinemore » leakage were it to occur at the Illinois Basin Decatur Project (IBDP). Based on the results of the sensitivity analysis, the hydraulic parameters and leakage source term magnitude are more sensitive than clay fraction or cation exchange capacity. Sand permeability was the only hydraulic parameter measured at the IBDP site. More information on the other hydraulic parameters, such as sand fraction and sand/clay correlation lengths, could reduce uncertainty in risk estimates. Some non-adjustable parameters, such as the initial pH and TDS and the pH no-impact threshold, are significantly different for the ROM than for the observations at the IBDP site. The reduced order model could be made more useful to a wider range of sites if the initial conditions and no-impact threshold values were adjustable parameters.« less

  10. Semi-automatic characterization and simulation of VCSEL devices for high speed VSR communications

    NASA Astrophysics Data System (ADS)

    Pellevrault, S.; Toffano, Z.; Destrez, A.; Pez, M.; Quentel, F.

    2006-04-01

    Very short range (VSR) high bit rate optical fiber communications are an emerging market dedicated to local area networks, digital displays or board to board interconnects within real time calculators. In this technology, a very fast way to exchange data with high noise immunity and low-cost is needed. Optical multimode graded index fibers are used here because they have electrical noise immunity and are easier to handle than monomode fibers. 850 nm VCSEL are used in VSR communications because of their low cost, direct on-wafer tests, and the possibility of manufacturing VCSEL arrays very easily compared to classical optical transceivers using edge-emitting laser diodes. Although much research has been carried out in temperature modeling on VCSEL emitters, few studies have been devoted to characterizations over a very broad range of temperatures. Nowadays, VCSEL VSR communications tend to be used in severe environments such as space, avionics and military equipments. Therefore, a simple way to characterize VCSEL emitters over a broad range of temperature is required. In this paper, we propose a complete characterization of the emitter part of 2.5 Gb/s opto-electrical transceiver modules operating from -40°C to +120°C using 850 nm VCSELs. Our method uses simple and semi-automatic measurements of a given set of chosen device parameters in order to make fast and efficient simulations.

  11. Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry.

    PubMed

    Richardson, Daniel R; Stauffer, Hans U; Roy, Sukesh; Gord, James R

    2017-04-10

    A comparison is made between two ultrashort-pulse coherent anti-Stokes Raman scattering (CARS) thermometry techniques-hybrid femtosecond/picosecond (fs/ps) CARS and chirped-probe-pulse (CPP) fs-CARS-that have become standards for high-repetition-rate thermometry in the combustion diagnostics community. These two variants of fs-CARS differ only in the characteristics of the ps-duration probe pulse; in hybrid fs/ps CARS a spectrally narrow, time-asymmetric probe pulse is used, whereas a highly chirped, spectrally broad probe pulse is used in CPP fs-CARS. Temperature measurements were performed using both techniques in near-adiabatic flames in the temperature range 1600-2400 K and for probe time delays of 0-30 ps. Under these conditions, both techniques are shown to exhibit similar temperature measurement accuracies and precisions to previously reported values and to each other. However, it is observed that initial calibration fits to the spectrally broad CPP results require more fitting parameters and a more robust optimization algorithm and therefore significantly increased computational cost and complexity compared to the fitting of hybrid fs/ps CARS data. The optimized model parameters varied more for the CPP measurements than for the hybrid fs/ps measurements for different experimental conditions.

  12. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juan M. Restrepo

    2008-09-01

    Our aim has been to uncover fundamental aspects of the suspension and dislodgement of particles in wall-bounded oscillatory flows, in flows characterized by Reynolds numbers en- compassing the situation found in rivers and near shores (and perhaps in some industrial processes). Our research tools are computational and our coverage of parameter space fairly broad. Computational means circumvent many complications that make the measurement of the dynamics of particles in a laboratory setting an impractical task, especially on the broad range of parameter space we plan to report upon. The impact of this work on the geophysical problem of sedimentation ismore » boosted considerably by the fact that the proposed calculations can be considered ab-initio, in the sense that little to no modeling is done in generating dynamics of the particles and of the moving fluid: we use a three-dimensional Navier Stokes solver along with straightforward boundry conditions. Hence, to the extent that Navier Stokes is a model for an ideal incompressible isotropic Newtonian fluid, the calculations yield benchmark values for such things as the drag, buoyancy, and lift of particles, in a highly controlled environment. Our approach will be to make measurements of the lift, drag, and buoyancy of particles, by considering progressively more complex physical configurations and physics.« less

  13. The effect of sampling techniques used in the multiconfigurational Ehrenfest method

    NASA Astrophysics Data System (ADS)

    Symonds, C.; Kattirtzi, J. A.; Shalashilin, D. V.

    2018-05-01

    In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.

  14. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Tikan, Alexey; Billet, Cyril; El, Gennady; Tovbis, Alexander; Bertola, Marco; Sylvestre, Thibaut; Gustave, Francois; Randoux, Stephane; Genty, Goëry; Suret, Pierre; Dudley, John M.

    2017-07-01

    We report experimental confirmation of the universal emergence of the Peregrine soliton predicted to occur during pulse propagation in the semiclassical limit of the focusing nonlinear Schrödinger equation. Using an optical fiber based system, measurements of temporal focusing of high power pulses reveal both intensity and phase signatures of the Peregrine soliton during the initial nonlinear evolution stage. Experimental and numerical results are in very good agreement, and show that the universal mechanism that yields the Peregrine soliton structure is highly robust and can be observed over a broad range of parameters.

  15. Bayesian performance metrics and small system integration in recent homeland security and defense applications

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Kostrzewski, Andrew; Patton, Edward; Pradhan, Ranjit; Shih, Min-Yi; Walter, Kevin; Savant, Gajendra; Shie, Rick; Forrester, Thomas

    2010-04-01

    In this paper, Bayesian inference is applied to performance metrics definition of the important class of recent Homeland Security and defense systems called binary sensors, including both (internal) system performance and (external) CONOPS. The medical analogy is used to define the PPV (Positive Predictive Value), the basic Bayesian metrics parameter of the binary sensors. Also, Small System Integration (SSI) is discussed in the context of recent Homeland Security and defense applications, emphasizing a highly multi-technological approach, within the broad range of clusters ("nexus") of electronics, optics, X-ray physics, γ-ray physics, and other disciplines.

  16. Methods for Human Dehydration Measurement

    NASA Astrophysics Data System (ADS)

    Trenz, Florian; Weigel, Robert; Hagelauer, Amelie

    2018-03-01

    The aim of this article is to give a broad overview of current methods for the identification and quantification of the human dehydration level. Starting off from most common clinical setups, including vital parameters and general patients' appearance, more quantifiable results from chemical laboratory and electromagnetic measurement methods will be reviewed. Different analysis methods throughout the electromagnetic spectrum, ranging from direct current (DC) conductivity measurements up to neutron activation analysis (NAA), are discussed on the base of published results. Finally, promising technologies, which allow for an integration of a dehydration assessment system in a compact and portable way, will be spotted.

  17. HEDP and new directions for fusion energy

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Ronald C.

    2010-06-01

    Magnetic-confinement fusion energy and inertia-confinement fusion energy (IFE) represent two extreme approaches to the quest for the application of thermonuclear fusion to electrical energy generation. Blind pursuit of these extreme approaches has long delayed the achievement of their common goal. We point out the possibility of an intermediate approach that promises cheaper, and consequently more rapid development of fusion energy. For example, magneto-inertial fusion appears to be possible over a broad range of parameter space. It is further argued that imposition of artificial constraints impedes the discovery of physics solutions for the fusion energy problem.

  18. VASCOMP 2. The V/STOL aircraft sizing and performance computer program. Volume 6: User's manual, revision 3

    NASA Technical Reports Server (NTRS)

    Schoen, A. H.; Rosenstein, H.; Stanzione, K.; Wisniewski, J. S.

    1980-01-01

    This report describes the use of the V/STOL Aircraft Sizing and Performance Computer Program (VASCOMP II). The program is useful in performing aircraft parametric studies in a quick and cost efficient manner. Problem formulation and data development were performed by the Boeing Vertol Company and reflects the present preliminary design technology. The computer program, written in FORTRAN IV, has a broad range of input parameters, to enable investigation of a wide variety of aircraft. User oriented features of the program include minimized input requirements, diagnostic capabilities, and various options for program flexibility.

  19. The effect of sampling techniques used in the multiconfigurational Ehrenfest method.

    PubMed

    Symonds, C; Kattirtzi, J A; Shalashilin, D V

    2018-05-14

    In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.

  20. Evoking prescribed spike times in stochastic neurons

    NASA Astrophysics Data System (ADS)

    Doose, Jens; Lindner, Benjamin

    2017-09-01

    Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing with intermediate firing rates (20-40 Hz) the reliability in evoking the prescribed spike train is close to its theoretical maximum that is mainly determined by the level of intrinsic noise.

  1. Effect of self-organization, defects, impurities, and autocatalytic processes on the parameters of ZnO films and nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezdrogina, M. M., E-mail: Margaret.M@mail.ioffe.ru; Eremenko, M. V.; Levitskii, V. S.

    The effects of the parameters of ZnO-film deposition onto different substrates using the method of ac magnetron sputtering in a gas mixture of argon and oxygen hare studied. The phenomenon of self-organization is observed, which leads to invariability of the surface morphology of the ZnO films upon a variation in the substrate materials and deposition parameters. The parameters of the macro- and micro-photoluminescence spectra of the films differ insignificantly from the parameters of the photoluminescence spectra of bulk ZnO crystals obtained by the method of hydrothermal growth. The presence of intense emission with a narrow full-width at half-maximum (FWHM) inmore » different regions of the spectrum allows ZnO films obtained by magnetron sputtering doped with rare-earth metal impurities (REIs) to be considered as a promising material for the creation of optoelectronic devices working in a broad spectral range. The possibility of the implementation of magnetic ordering upon legierung with REIs significantly broadens the functional possibilities of ZnO films. The parameters of the photoluminescence spectra of ZnO nanorods are determined by their geometrical parameters and by the concentration and type of the impurities introduced.« less

  2. Electron spin resonance studies of Bi1-xScxFeO3 nanoparticulates: Observation of an enhanced spin canting over a large temperature range

    NASA Astrophysics Data System (ADS)

    Titus, S.; Balakumar, S.; Sakar, M.; Das, J.; Srinivasu, V. V.

    2017-12-01

    Bi1-xScxFeO3 (x = 0.0, 0.1, 0.15, 0.25) nano particles were synthesized by sol gel method. We then probed the spin system in these nano particles using electron spin resonance technique. Our ESR results strongly suggest the scenario of modified spin canted structures. Spin canting parameter Δg/g as a function of temperature for Scandium doped BFO is qualitatively different from undoped BFO. A broad peak is observed for all the Scandium doped BFO samples and an enhanced spin canting over a large temperature range (75-210 K) in the case of x = 0.15 doping. We also showed that the asymmetry parameter and thereby the magneto-crystalline anisotropy in these BSFO nanoparticles show peaks around 230 K for (x = 0.10 and 0.15) and beyond 300 K for x = 0.25 system. Thus, we established that the Sc doping significantly modifies the spin canting and magneto crystalline anisotropy in the BFO system.

  3. Seyfert galaxy ultraviolet emission-line intensities and variability - A self-consistent photoionization analysis applied to broad-line-emitting gas in NGC 3783

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha P.; Macalpine, Gordon M.

    1992-01-01

    Well-constrained photoionization models for the Seyfert I galaxy NGC 3783 are developed. Both cross-correlation analyses and line variability trends with varying ionizing radiation flux require a multicomponent picture. All the data for He II 1640 A, C IV 1549 A, and semiforbidden C III 1909 A can be reasonably well reproduced by two cloud components. One has a source-cloud distance of 24 lt-days, gas density around 3 x 10 exp 10/cu cm, ionization parameter range of 0.04-0.2, and cloud thickness such that about half of the carbon is doubly ionized and about half is triply ionized. The other component is located approximately 96 lt-days from the source, is shielded from the source by the inner cloud, has a density about 3 x 10 to the 9th/cu cm, and is characterized by an ionization parameter range of 0.001-0.03, The cloud thickness is such that about 45 percent carbon is doubly ionized and about 55 percent is singly ionized.

  4. Turbodrills and innovative PDC bits economically drilled hard formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, R.C.; Massey, K.

    1994-03-28

    The use of turbodrills and polycrystalline diamond compact (PDC) bits with an innovative, tracking cutting structure has improved drilling economics in medium and hard formations in the Gulf of Mexico. Field results have confirmed that turbodrilling with trackset PDC bits reduced drilling costs, compared to offset wells. The combination of turbodrills and trackset bits has been used successfully in a broad range of applications and with various drilling parameters. Formations ranging from medium shales to hard, abrasive sands have been successfully and economically drilled. The tools have been used in both water-based and oil-based muds. Additionally, the turbo-drill and tracksetmore » PDC bit combination has been stable on directional drilling applications. The locking effect of the cutting structure helps keep the bit on course.« less

  5. A Principal Component Analysis of the Diffuse Interstellar Bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ensor, T.; Cami, J.; Bhatt, N. H.

    2017-02-20

    We present a principal component (PC) analysis of 23 line-of-sight parameters (including the strengths of 16 diffuse interstellar bands, DIBs) for a well-chosen sample of single-cloud sightlines representing a broad range of environmental conditions. Our analysis indicates that the majority (∼93%) of the variations in the measurements can be captured by only four parameters The main driver (i.e., the first PC) is the amount of DIB-producing material in the line of sight, a quantity that is extremely well traced by the equivalent width of the λ 5797 DIB. The second PC is the amount of UV radiation, which correlates wellmore » with the λ 5797/ λ 5780 DIB strength ratio. The remaining two PCs are more difficult to interpret, but are likely related to the properties of dust in the line of sight (e.g., the gas-to-dust ratio). With our PCA results, the DIBs can then be used to estimate these line-of-sight parameters.« less

  6. ADVANTG An Automated Variance Reduction Parameter Generator, Rev. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, Scott W.; Johnson, Seth R.; Bevill, Aaron M.

    2015-08-01

    The primary objective of ADVANTG is to reduce both the user effort and the computational time required to obtain accurate and precise tally estimates across a broad range of challenging transport applications. ADVANTG has been applied to simulations of real-world radiation shielding, detection, and neutron activation problems. Examples of shielding applications include material damage and dose rate analyses of the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source and High Flux Isotope Reactor (Risner and Blakeman 2013) and the ITER Tokamak (Ibrahim et al. 2011). ADVANTG has been applied to a suite of radiation detection, safeguards, and special nuclear materialmore » movement detection test problems (Shaver et al. 2011). ADVANTG has also been used in the prediction of activation rates within light water reactor facilities (Pantelias and Mosher 2013). In these projects, ADVANTG was demonstrated to significantly increase the tally figure of merit (FOM) relative to an analog MCNP simulation. The ADVANTG-generated parameters were also shown to be more effective than manually generated geometry splitting parameters.« less

  7. Thermal and athermal three-dimensional swarms of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Nguyen, Nguyen H. P.; Jankowski, Eric; Glotzer, Sharon C.

    2012-07-01

    Swarms of self-propelled particles exhibit complex behavior that can arise from simple models, with large changes in swarm behavior resulting from small changes in model parameters. We investigate the steady-state swarms formed by self-propelled Morse particles in three dimensions using molecular dynamics simulations optimized for graphics processing units. We find a variety of swarms of different overall shape assemble spontaneously and that for certain Morse potential parameters at most two competing structures are observed. We report a rich “phase diagram” of athermal swarm structures observed across a broad range of interaction parameters. Unlike the structures formed in equilibrium self-assembly, we find that the probability of forming a self-propelled swarm can be biased by the choice of initial conditions. We investigate how thermal noise influences swarm formation and demonstrate ways it can be exploited to reconfigure one swarm into another. Our findings validate and extend previous observations of self-propelled Morse swarms and highlight open questions for predictive theories of nonequilibrium self-assembly.

  8. How Many Parameters Actually Affect the Mobility of Conjugated Polymers?

    NASA Astrophysics Data System (ADS)

    Fornari, Rocco P.; Blom, Paul W. M.; Troisi, Alessandro

    2017-02-01

    We describe charge transport along a polymer chain with a generic theoretical model depending in principle on tens of parameters, reflecting the chemistry of the material. The charge carrier states are obtained from a model Hamiltonian that incorporates different types of disorder and electronic structure (e.g., the difference between homo- and copolymer). The hopping rate between these states is described with a general rate expression, which contains the rates most used in the literature as special cases. We demonstrate that the steady state charge mobility in the limit of low charge density and low field ultimately depends on only two parameters: an effective structural disorder and an effective electron-phonon coupling, weighted by the size of the monomer. The results support the experimental observation [N. I. Craciun, J. Wildeman, and P. W. M. Blom, Phys. Rev. Lett. 100, 056601 (2008), 10.1103/PhysRevLett.100.056601] that the mobility in a broad range of (polymeric) semiconductors follows a universal behavior, insensitive to the chemical detail.

  9. [The spectrum studies of structure characteristics in magma contact metamorphic coal].

    PubMed

    Wu, Dun; Sun, Ruo-Yu; Liu, Gui-Jian; Yuan, Zi-Jiao

    2013-10-01

    The structural parameters evolution of coal due to the influence of intrusions of hot magma was investigated and analyzed. X-ray diffraction and laser confocal microscope Raman spectroscopy were used to test and analyze 4 coal samples undergoing varying contact-metamorphism by igneous magmas in borehole No. 13-4 of Zhuji coal mine, Huainan coalfield. The result showed that coal XRD spectrum showed higher background intensity, with the 26 degrees and 42 degrees nearby apparent graphite diffraction peak. Two significant vibration peaks of coal Raman spectra were observed in the 1 000-2 000 cm(-1) frequency range: broad "D" peak at 1 328-1 369 cm(-1) and sharp "G" peak at 1 564-1 599 cm(-1). With the influence of magma intrusion, the relationship between coal structural parameters and coal ranks was excellent.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehgal, Ray M.; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu; Ford, David M., E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu

    We have developed a coarse-grained description of the phase behavior of the isolated 38-atom Lennard-Jones cluster (LJ{sub 38}). The model captures both the solid-solid polymorphic transitions at low temperatures and the complex cluster breakup and melting transitions at higher temperatures. For this coarse model development, we employ the manifold learning technique of diffusion mapping. The outcome of the diffusion mapping analysis over a broad temperature range indicates that two order parameters are sufficient to describe the cluster's phase behavior; we have chosen two such appropriate order parameters that are metrics of condensation and overall crystallinity. In this well-justified coarse-variable space,more » we calculate the cluster's free energy landscape (FEL) as a function of temperature, employing Monte Carlo umbrella sampling. These FELs are used to quantify the phase behavior and onsets of phase transitions of the LJ{sub 38} cluster.« less

  11. Projection par plasma de depots de dioxyde de titane: Contribution a l'etude de leurs microstructures et proprietes electriques

    NASA Astrophysics Data System (ADS)

    Branland, Nadege

    2002-04-01

    The aim of this PhD work is, thanks to particle parameters (velocity and temperature) characterization, to try to understand the influence of plasma spray parameters on titania coating microstructures and the influence of the latter one on their electrical resistivity, for the same substrate conditions. The experimental approach has consisted in using two plasma spraying processes (Arc plasma spraying and Inductive plasma spraying) which have permitted to obtain a broad range of particle velocities and temperatures leading to coatings with specific microstructures. Despite the stoichiometry of the starting powder, all coatings obtained were grey, the oxygen loss increasing with the particle temperature. Isolating the stoichiometry influence has permitted to show that the decrease of the coatings electrical resistivity is especially due to the decrease of the number of bad interlamellar contacts.

  12. VizieR Online Data Catalog: BAL QSOs from SDSS DR3 (Trump+, 2006)

    NASA Astrophysics Data System (ADS)

    Trump, J. R.; Hall, P. B.; Reichard, T. A.; Richards, G. T.; Schneider, D. P.; vanden Berk, D. E.; Knapp, G. R.; Anderson, S. F.; Fan, X.; Brinkman, J.; Kleinman, S. J.; Nitta, A.

    2007-11-01

    We present a total of 4784 unique broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release (Cat. ). An automated algorithm was used to match a continuum to each quasar and to identify regions of flux at least 10% below the continuum over a velocity range of at least 1000km/s in the CIV and MgII absorption regions. The model continuum was selected as the best-fit match from a set of template quasar spectra binned in luminosity, emission line width, and redshift, with the power-law spectral index and amount of dust reddening as additional free parameters. We characterize our sample through the traditional balnicity index and a revised absorption index, as well as through parameters such as the width, outflow velocity, fractional depth, and number of troughs. (1 data file).

  13. Linear and nonlinear spectroscopy from quantum master equations.

    PubMed

    Fetherolf, Jonathan H; Berkelbach, Timothy C

    2017-12-28

    We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.

  14. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions

    NASA Astrophysics Data System (ADS)

    Fraley, Stephanie I.; Wu, Pei-Hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D.; Wirtz, Denis

    2015-10-01

    Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility.

  15. Linear and nonlinear spectroscopy from quantum master equations

    NASA Astrophysics Data System (ADS)

    Fetherolf, Jonathan H.; Berkelbach, Timothy C.

    2017-12-01

    We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.

  16. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model

    PubMed Central

    Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.

    2016-01-01

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601

  17. Experimental Results of Site Calibration and Sensitivity Measurements in OTR for UWB Systems

    NASA Astrophysics Data System (ADS)

    Viswanadham, Chandana; Rao, P. Mallikrajuna

    2017-06-01

    System calibration and parameter accuracy measurement of electronic support measures (ESM) systems is a major activity, carried out by electronic warfare (EW) engineers. These activities are very critical and needs good understanding in the field of microwaves, antennas, wave propagation, digital and communication domains. EW systems are broad band, built with state-of-the art electronic hardware, installed on different varieties of military platforms to guard country's security from time to time. EW systems operate in wide frequency ranges, typically in the order of thousands of MHz, hence these are ultra wide band (UWB) systems. Few calibration activities are carried within the system and in the test sites, to meet the accuracies of final specifications. After calibration, parameters are measured for their accuracies either in feed mode by injecting the RF signals into the front end or in radiation mode by transmitting the RF signals on to system antenna. To carry out these activities in radiation mode, a calibrated open test range (OTR) is necessary in the frequency band of interest. Thus site calibration of OTR is necessary to be carried out before taking up system calibration and parameter measurements. This paper presents the experimental results of OTR site calibration and sensitivity measurements of UWB systems in radiation mode.

  18. An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2016-02-01

    Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.

  19. Fractional viscoelasticity of soft elastomers and auxetic foams

    NASA Astrophysics Data System (ADS)

    Solheim, Hannah; Stanisauskis, Eugenia; Miles, Paul; Oates, William

    2018-03-01

    Dielectric elastomers are commonly implemented in adaptive structures due to their unique capabilities for real time control of a structure's shape, stiffness, and damping. These active polymers are often used in applications where actuator control or dynamic tunability are important, making an accurate understanding of the viscoelastic behavior critical. This challenge is complicated as these elastomers often operate over a broad range of deformation rates. Whereas research has demonstrated success in applying a nonlinear viscoelastic constitutive model to characterize the behavior of Very High Bond (VHB) 4910, robust predictions of the viscoelastic response over the entire range of time scales is still a significant challenge. An alternative formulation for viscoelastic modeling using fractional order calculus has shown significant improvement in predictive capabilities. While fractional calculus has been explored theoretically in the field of linear viscoelasticity, limited experimental validation and statistical evaluation of the underlying phenomena have been considered. In the present study, predictions across several orders of magnitude in deformation rates are validated against data using a single set of model parameters. Moreover, we illustrate the fractional order is material dependent by running complementary experiments and parameter estimation on the elastomer VHB 4949 as well as an auxetic foam. All results are statistically validated using Bayesian uncertainty methods to obtain posterior densities for the fractional order as well as the hyperelastic parameters.

  20. Synthesis and Characterization of Methylammonium Lead Iodide Perovskite and its Application in Planar Hetero-junction Devices

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Aditi; Mohan Singh Negi, Chandra; Yadav, Anjali; Gupta, Saral K.; Singh Verma, Ajay

    2018-06-01

    The present paper reports on the synthesis and characterization of methylammonium lead iodide perovskite thin film and its applications in heterojunction devices. Perovskite thin films were deposited by a simple spin-coating method using a precursor solution including methyl ammonium iodide and lead iodide onto a glass substrate. The surface morphology study via field emission scanning electron microscopy of the perovskite thin film shows complete surface coverage on glass substrate with negligible pin-holes. UV–visible spectroscopy study revealed a broad absorption range and the exhibition of a band-gap of 1.6 eV. The dark current-voltage (I–V) characteristics of all the devices under study show rectifying behaviour similar to the Schottky diode. Various device parameters such as ideality factor and barrier height are extracted from the I–V curve. At low voltages the devices exhibit Ohmic behaviour, trap free space charge limited conduction governs the charge transport at an intermediate voltage range, while at much higher voltages the devices show trap controlled space charge limited conduction. Furthermore, impedance spectroscopy measurements enable us to extract the various internal parameters of the devices. Correlations between these parameters and I–V characteristics are discussed. The different capacitive process arising in the devices was discussed using the capacitance versus frequency curve.

  1. Joint probabilistic determination of earthquake location and velocity structure: application to local and regional events

    NASA Astrophysics Data System (ADS)

    Beucler, E.; Haugmard, M.; Mocquet, A.

    2016-12-01

    The most widely used inversion schemes to locate earthquakes are based on iterative linearized least-squares algorithms and using an a priori knowledge of the propagation medium. When a small amount of observations is available for moderate events for instance, these methods may lead to large trade-offs between outputs and both the velocity model and the initial set of hypocentral parameters. We present a joint structure-source determination approach using Bayesian inferences. Monte-Carlo continuous samplings, using Markov chains, generate models within a broad range of parameters, distributed according to the unknown posterior distributions. The non-linear exploration of both the seismic structure (velocity and thickness) and the source parameters relies on a fast forward problem using 1-D travel time computations. The a posteriori covariances between parameters (hypocentre depth, origin time and seismic structure among others) are computed and explicitly documented. This method manages to decrease the influence of the surrounding seismic network geometry (sparse and/or azimuthally inhomogeneous) and a too constrained velocity structure by inferring realistic distributions on hypocentral parameters. Our algorithm is successfully used to accurately locate events of the Armorican Massif (western France), which is characterized by moderate and apparently diffuse local seismicity.

  2. A Methodology for Robust Comparative Life Cycle Assessments Incorporating Uncertainty.

    PubMed

    Gregory, Jeremy R; Noshadravan, Arash; Olivetti, Elsa A; Kirchain, Randolph E

    2016-06-21

    We propose a methodology for conducting robust comparative life cycle assessments (LCA) by leveraging uncertainty. The method evaluates a broad range of the possible scenario space in a probabilistic fashion while simultaneously considering uncertainty in input data. The method is intended to ascertain which scenarios have a definitive environmentally preferable choice among the alternatives being compared and the significance of the differences given uncertainty in the parameters, which parameters have the most influence on this difference, and how we can identify the resolvable scenarios (where one alternative in the comparison has a clearly lower environmental impact). This is accomplished via an aggregated probabilistic scenario-aware analysis, followed by an assessment of which scenarios have resolvable alternatives. Decision-tree partitioning algorithms are used to isolate meaningful scenario groups. In instances where the alternatives cannot be resolved for scenarios of interest, influential parameters are identified using sensitivity analysis. If those parameters can be refined, the process can be iterated using the refined parameters. We also present definitions of uncertainty quantities that have not been applied in the field of LCA and approaches for characterizing uncertainty in those quantities. We then demonstrate the methodology through a case study of pavements.

  3. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material.

    PubMed

    Singh, Ashwani Kumar; Kumar, Ajit; Haldar, Krishna Kamal; Gupta, Vinay; Singh, Kedar

    2018-06-15

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe 3 O 4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe 3 O 4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl 3 , ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe 3 O 4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe 3 O 4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SE R ), shielding effectiveness due to absorption (SE A ), and total shielding effectiveness (SE T ) were also plotted against frequency over a broad range (8-12 GHz). A significant change in all parameters (SE A value from 5 dB to 35 dB for Fe 3 O 4 nanoparticles to rGO-Fe 3 O 4 nanoparticle composite) was found. An actual shielding effectiveness (SE T ) up to 55 dB was found in the rGO-Fe 3 O 4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  4. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material

    NASA Astrophysics Data System (ADS)

    Singh, Ashwani Kumar; Kumar, Ajit; Kamal Haldar, Krishna; Gupta, Vinay; Singh, Kedar

    2018-06-01

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe3O4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe3O4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl3, ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe3O4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe3O4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SER), shielding effectiveness due to absorption (SEA), and total shielding effectiveness (SET) were also plotted against frequency over a broad range (8–12 GHz). A significant change in all parameters (SEA value from 5 dB to 35 dB for Fe3O4 nanoparticles to rGO-Fe3O4 nanoparticle composite) was found. An actual shielding effectiveness (SET) up to 55 dB was found in the rGO-Fe3O4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  5. A physical parameter method for the design of broad-band X-ray imaging systems to do coronal plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Kahler, S.; Krieger, A. S.

    1978-01-01

    The technique commonly used for the analysis of data from broad-band X-ray imaging systems for plasma diagnostics is the filter ratio method. This requires the use of two or more broad-band filters to derive temperatures and line-of-sight emission integrals or emission measure distributions as a function of temperature. Here an alternative analytical approach is proposed in which the temperature response of the imaging system is matched to the physical parameter being investigated. The temperature response of a system designed to measure the total radiated power along the line of sight of any coronal structure is calculated. Other examples are discussed.

  6. [Parameter optimization of BEPS model based on the flux data of the temperate deciduous broad-leaved forest in Northeast China.

    PubMed

    Lu, Wei; Fan, Wen Yi; Tian, Tian

    2016-05-01

    Keeping other parameters as empirical constants, different numerical combinations of the main photosynthetic parameters V c max and J max were conducted to estimate daily GPP by using the iteration method in this paper. To optimize V c max and J max in BEPSHourly model at hourly time steps, simulated daily GPP using different numerical combinations of the parameters were compared with the flux tower data obtained from the temperate deciduous broad-leaved forest of the Maoershan Forest Farm in Northeast China. Comparing the simulated daily GPP with the observed flux data in 2011, the results showed that optimal V c max and J max for the deciduous broad-leaved forest in Northeast China were 41.1 μmol·m -2 ·s -1 and 82.8 μmol·m -2 ·s -1 respectively with the minimal RMSE and the maximum R 2 of 1.10 g C·m -2 ·d -1 and 0.95. After V c max and J max optimization, BEPSHourly model simulated the seasonal variation of GPP better.

  7. Luminescence from cavitation bubbles deformed in uniform pressure gradients

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2017-09-01

    Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.

  8. Health technology adoption and the politics of governance in the UK.

    PubMed

    Milewa, Timothy

    2006-12-01

    The manner in which clinical and cost-effectiveness data are used to inform decisions about the funding and availability of drugs, therapies and medical devices is inherently politicised within collectively financed systems of health care. The National Institute for Health and Clinical Excellence (NICE) was established by the British government in 1999 to reach evidence-based decisions on whether selected health technologies should be made available by the National Health Service in England and Wales. But NICE is also required to involve a broad range of interested parties in the decision-making process, provide detailed rationales for its rulings and defend appeals from aggrieved parties. Debates about the emergence of "deliberative" forms of policy governance--based upon participation by a broad range of stakeholders rather than reliance on scientific, bureaucratic or political expertise alone--are thus particularly apposite. This article draws on a study of decision-making within NICE by focusing upon the tenor and orientation of deliberation about the adoption of health technologies. Does such deliberation take place upon a level playing field for different interests? Or do implicit parameters and understandings in the deliberative process tend to privilege some interests by structuring debate and attendant outcomes? Findings suggest that deliberative assumptions and parameters pertaining to fluid and contestable ideas of transparent reasoning and domain competence both reflect and shape relationships of influence and marginality among participants. Broader analytical implications centre on a distinction between "deliberative democracy" and "democratic deliberation". The extent to which this distinction is acknowledged and addressed in policy and practise will have marked implications for the substantive nature of attempts to broaden involvement in decision-making within public sector bodies such as NICE.

  9. A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas

    NASA Astrophysics Data System (ADS)

    López, Alexander; Medina, Ernesto; Bolívar, Nelson; Berche, Bertrand

    2010-03-01

    A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.

  10. A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas.

    PubMed

    López, Alexander; Medina, Ernesto; Bolívar, Nelson; Berche, Bertrand

    2010-03-24

    A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.

  11. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    NASA Technical Reports Server (NTRS)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  12. Poisson-Like Spiking in Circuits with Probabilistic Synapses

    PubMed Central

    Moreno-Bote, Rubén

    2014-01-01

    Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705

  13. Characterization of material parameters for high speed forming and cutting via experiment and inverse simulation

    NASA Astrophysics Data System (ADS)

    Scheffler, Christian; Psyk, Verena; Linnemann, Maik; Tulke, Marc; Brosius, Alexander; Landgrebe, Dirk

    2018-05-01

    High speed velocity effects in production technology provide a broad range of technological and economic advantages [1, 2]. However, exploiting them necessitates the knowledge of strain rate dependent material behavior in process modelling. In general, high speed material data characterization features several difficulties and requires sophisticated approaches in order to provide reliable material data. This paper proposes two innovative concepts with electromagnetic and pneumatic drive and an approach for material characterization in terms of strain rate dependent flow curves and parameters of failure or damage models. The test setups have been designed for investigations of strain rates up to 105 s-1. In principle, knowledge about the temporary courses and local distributions of stress and strain in the specimen is essential for identifying material characteristics, but short process times, fast changes of the measurement values, small specimen size and frequently limited accessibility of the specimen during the test hinder directly measuring these parameters at high-velocity testing. Therefore, auxiliary test parameters, which are easier to measure, are recorded and used as input data for an inverse numerical simulation that provides the desired material characteristics, e.g. the Johnson-Cook parameters, as a result. These parameters are a force equivalent strain signal on a measurement body and the displacement of the upper specimen edge.

  14. A new X-ray spectral observation of NGC 1068

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.; Netzer, H.; Arnaud, K. A.; Boldt, E. A.; Holt, S. S.; Jahoda, K. M.; Kelley, R.; Mushotzky, R. F.; Petre, R.; Serlemitsos, P. J.

    1993-01-01

    A new X-ray observation of NGC 1068, in which improved spectral resolution (R is approximately equal to 40) and broad energy range provide important new constraints on models for this galaxy, is reported. The observed X-ray continuum of NGC 1068 from 0.3 to 10 keV is well fitted as the sum of two power-law spectra with no evidence for absorption intrinsic to the source. Strong Fe K emission lines with a total equivalent width of 2700 eV were detected due to iron less ionized than Fe XX and to iron more ionized than Fe XXIII. No evidence was seen for lines due to the recombination of highly ionized oxygen with an upper limit for the O Ly-alpha emission line of 40 eV. The discovery of multiple Fe K and Fe L emission lines indicates a broad range of ionization states for this gas. The X-ray emission from the two components is modeled for various geometries using a photoionization code that calculates the temperature and ionization state of the gas. Typical model parameters are a total Compton depth of a few percent, an inner boundary of the hot component of about 1 pc, and an inner boundary of the warm component of about 20 pc.

  15. Life tables and reproductive parameters of Lutzomyia spinicrassa (Diptera: Psychodidae) under laboratory conditions.

    PubMed

    Escovar, Jesús; Bello, Felio J; Morales, Alberto; Moncada, Ligia; Cárdenas, Estrella

    2004-10-01

    Lutzomyia spinicrassa is a vector of Leishmania braziliensis in Colombia. This sand fly has a broad geographical distribution in Colombia and Venezuela and it is found mainly in coffee plantations. Baseline biological growth data of L. spinicrassa were obtained under experimental laboratory conditions. The development time from egg to adult ranged from 59 to 121 days, with 12.74 weeks in average. Based on cohorts of 100 females, horizontal life table was constructed. The following predictive parameters were obtained: net rate of reproduction (8.4 females per cohort female), generation time (12.74 weeks), intrinsic rate of population increase (0.17), and finite rate of population increment (1.18). The reproductive value for each class age of the cohort females was calculated. Vertical life tables were elaborated and mortality was described for the generation obtained of the field cohort. In addition, for two successive generations, additive variance and heritability for fecundity were estimated.

  16. Capabilities of NASA's Space Physics Data Facility as Resources to Enable the Heliophysics Virtual discipline Observatories (VxOs)

    NASA Technical Reports Server (NTRS)

    McGuire, Robert E.; Candey, Robert M.

    2007-01-01

    SPDF now supports a broad range of data, user services and other activities. These include: CDAWeb current multi-mission data graphics, listings, file subsetting and supersetting by time and parameters; SSCWeb and 3-D Java client orbit graphics, listings and conjunction queries; OMNIWeb 1/5/60 minute interplanetary parameters at Earth; product-level SPASE descriptions of data including holdings of nssdcftp; VSPO SPASE-based heliophysics-wide product site finding and data use;, standard Data format Translation Webservices (DTWS); metrics software and others. These data and services are available through standard user and application webservices interfaces, so middleware services such as the Heliophysics VxOs, and externally-developed clients or services, can readily leverage our data and capabilities. Beyond a short summary of the above, we will then conduct the talk as a conversation to evolving VxO needs and planned approach to leverage such existing and ongoing services.

  17. Research on infrared astrophysics and X ray and XUV astronomy

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The infrared research was divided into two related subjects, observations at wavelengths less than 34 microns and millimeter wavelength observations. A new complex of infrared sources in the Orion Nebula observed along with a broad range of galactic and extragalactic objects. The Comet Kohoutek was measured in the 1-20 micron wavelength region and its thermal properties agreed closely with those of Comet Ikeya-Seki. Combined infrared and photoelectric studies of the Makarian galaxies showed them to have a composite spectrum with a large emission feature in the far infrared. The development of one millimeter photometry and composited bolometers is described. A technique of reconstructing two dimensional surface brightness distributions with appropriate errors from individual strip scans was developed. Model parameters were determined by fitting data in non-linear systems. Results show spectral parameter uncertainties are underestimated or incorrectly evaluated in most studies.

  18. Immiscible impact dynamics of droplets onto millimetric films

    NASA Astrophysics Data System (ADS)

    Shaikh, S.; Toyofuku, G.; Hoang, R.; Marston, J. O.

    2018-01-01

    The impact of liquid droplets onto a film of an immiscible liquid is studied experimentally across a broad range of parameters [Re = O(101-103), We = O(102-103)] with the aid of high-speed photography and image analysis. Above a critical impact parameter, Re^{1/2}We^{1/4} ≈ 100, the droplet fragments into multiple satellite droplets, which typically occurs as the result of a fingering instability. Statistical analysis indicates that the satellite droplets are approximately log-normally distributed, in agreement with some previous studies and the theoretical predictions of Wu (Prob Eng Mech 18:241-249, 2003). However, in contrast to a recent study by Lhuissier et al. (Phys Rev Lett 110:264503, 2013), we find that it is the modal satellite diameter, not the mean diameter, that scales inversely with the impact speed (or Weber number) and that the dependence is d_{mod} ˜ We^{-1/4}.

  19. Structuring Stokes correlation functions using vector-vortex beam

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Anwar, Ali; Singh, R. P.

    2018-01-01

    Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.

  20. Vibrationally resolved photoelectron angular distributions for H/sub 2/ in the range 17 eVless than or equal toh. nu. less than or equal to39 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parr, A.C.; Hardis, J.E.; Southworth, S.H.

    1988-01-15

    Vibrationally resolved photoelectron angular distributions have been measured for photoionization of H/sub 2/ over the range 17 eVless than or equal toh..nu..less than or equal to39 eV using independent instrumentation at two synchro- tron radiation facilities. The present data greatly extend and add vibrational resolution to earlier variable-wavelength measurements. The average magnitude of the asymmetry parameter continues to lie lower than the best independent-electron calculations. Broad structure is observed for the first time, possibly indicating the effects of channel interaction with dissociative, doubly excited states of H/sub 2/. Neither the average magnitude nor the gross wavelength-dependent structure vary strongly withmore » the final vibrational channel.« less

  1. Electrostatic fluctuations in collisional plasmas

    NASA Astrophysics Data System (ADS)

    Rozmus, W.; Brantov, A.; Fortmann-Grote, C.; Bychenkov, V. Yu.; Glenzer, S.

    2017-10-01

    We present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S (k ⃗,ω ) , is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality. The collisionless limit of S (k ⃗,ω ) and the strong-collision result based on the fluctuation-dissipation theorem and classical transport at Te=Ti are recovered and discussed. Results of several Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means of our theory for S (k ⃗,ω ) .

  2. Solar energy system economic evaluation: Fern Tunkhannock, Tunkhannock, Pennsylvania

    NASA Astrophysics Data System (ADS)

    1980-09-01

    The economic performance of an Operational Test Site (OTS) is described. The long term economic performance of the system at its installation site and extrapolation to four additional selected locations to demonstrate the viability of the design over a broad range of environmental and economic conditions is reported. Topics discussed are: system description, study approach, economic analysis and system optimization, and technical and economical results of analysis. Data for the economic analysis are generated through evaluation of the OTS. The simulation is based on the technical results of the seasonal report simulation. In addition localized and standard economic parameters are used for economic analysis.

  3. Solar energy system economic evaluation: Fern Tunkhannock, Tunkhannock, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The economic performance of an Operational Test Site (OTS) is described. The long term economic performance of the system at its installation site and extrapolation to four additional selected locations to demonstrate the viability of the design over a broad range of environmental and economic conditions is reported. Topics discussed are: system description, study approach, economic analysis and system optimization, and technical and economical results of analysis. Data for the economic analysis are generated through evaluation of the OTS. The simulation is based on the technical results of the seasonal report simulation. In addition localized and standard economic parameters are used for economic analysis.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedrigo, Anna, E-mail: anna.fedrigo@nbi.ku.dk; Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 50019 Sesto Fiorentino; European Spallation Source ESS AB, SE-221 00 Lund

    VESPA, Vibrational Excitation Spectrometer with Pyrolytic-graphite Analysers, aims to probe molecular excitations via inelastic neutron scattering. It is a thermal high resolution inverted geometry time-of-flight instrument designed to maximise the use of the long pulse of the European Spallation Source. The wavelength frame multiplication technique was applied to provide simultaneously a broad dynamic range (about 0-500 meV) while a system of optical blind choppers allows to trade flux for energy resolution. Thanks to its high flux, VESPA will allow the investigation of dynamical and in situ experiments in physical chemistry. Here we describe the design parameters and the corresponding McStasmore » simulations.« less

  5. Codecaying Dark Matter.

    PubMed

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  6. Common spaceborne multicomputer operating system and development environment

    NASA Technical Reports Server (NTRS)

    Craymer, L. G.; Lewis, B. F.; Hayes, P. J.; Jones, R. L.

    1994-01-01

    A preliminary technical specification for a multicomputer operating system is developed. The operating system is targeted for spaceborne flight missions and provides a broad range of real-time functionality, dynamic remote code-patching capability, and system fault tolerance and long-term survivability features. Dataflow concepts are used for representing application algorithms. Functional features are included to ensure real-time predictability for a class of algorithms which require data-driven execution on an iterative steady state basis. The development environment supports the development of algorithm code, design of control parameters, performance analysis, simulation of real-time dataflow applications, and compiling and downloading of the resulting application.

  7. Correlation between the line width and the line flux of the double-peaked broad Hα of 3C390.3

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Guang

    2013-03-01

    In this paper, we carefully check the correlation between the line width (second moment) and the line flux of the double-peaked broad Hα of the well-known mapped active galactic nucleus (AGN) 3C390.3 in order to show some further distinctions between double-peaked emitters and normal broad-line AGN. Based on the virialization assumption MBH ∝ RBLR × V2(BLR) and the empirical relation RBLR ∝ L˜0.5, one strong negative correlation between the line width and the line flux of the double-peaked broad lines should be expected for 3C390.3, such as the negative correlation confirmed for the mapped broad-line object NGC 5548, RBLR × V2(BLR) ∝ L˜0.5 × σ2 = constant. Moreover, based on the public spectra around 1995 from the AGN WATCH project for 3C390.3, one reliable positive correlation is found between the line width and the line flux of the double-peaked broad Hα. In the context of the proposed theoretical accretion disc model for double-peaked emitters, the unexpected positive correlation can be naturally explained, due to different time delays for the inner and outer parts of the disc-like broad-line region (BLR) of 3C390.3. Moreover, the virialization assumption is checked and found to be still available for 3C390.3. However, the time-varying size of the BLR of 3C390.3 cannot be expected by the empirical relation RBLR ∝ L˜0.5. In other words, the mean size of the BLR of 3C390.3 can be estimated by the continuum luminosity (line luminosity), while the continuum emission strengthening leads to the size of BLR decreasing (not increasing) in different moments for 3C390.3. Then, we compared our results of 3C390.3 with the previous results reported in the literature for the other double-peaked emitters, and found that before to clearly correct the effects from disc physical parameters varying (such as the effects of disc precession) for long-term observed line spectra, it is not so meaningful to discuss the correlation of the line parameters of double-peaked broad lines. Furthermore, due to the probable `external' ionizing source with so far unclear structures, it is hard to give one conclusion that the positive correlation between the line width and the line flux can be found for all double-peaked emitters, even after the considerations of disc physical parameters varying. However, once one positive correlation of broad-line parameters is found, the accretion disc origination of the broad line should be considered first.

  8. Ecology and geography of avian influenza (HPAI H5N1) transmission in the Middle East and northeastern Africa

    PubMed Central

    Williams, Richard AJ; Peterson, A Townsend

    2009-01-01

    Background The emerging highly pathogenic avian influenza strain H5N1 ("HPAI-H5N1") has spread broadly in the past decade, and is now the focus of considerable concern. We tested the hypothesis that spatial distributions of HPAI-H5N1 cases are related consistently and predictably to coarse-scale environmental features in the Middle East and northeastern Africa. We used ecological niche models to relate virus occurrences to 8 km resolution digital data layers summarizing parameters of monthly surface reflectance and landform. Predictive challenges included a variety of spatial stratification schemes in which models were challenged to predict case distributions in broadly unsampled areas. Results In almost all tests, HPAI-H5N1 cases were indeed occurring under predictable sets of environmental conditions, generally predicted absent from areas with low NDVI values and minimal seasonal variation, and present in areas with a broad range of and appreciable seasonal variation in NDVI values. Although we documented significant predictive ability of our models, even between our study region and West Africa, case occurrences in the Arabian Peninsula appear to follow a distinct environmental regime. Conclusion Overall, we documented a variable environmental "fingerprint" for areas suitable for HPAI-H5N1 transmission. PMID:19619336

  9. Broad ion energy distributions in helicon wave-coupled helium plasma

    NASA Astrophysics Data System (ADS)

    Woller, K. B.; Whyte, D. G.; Wright, G. M.

    2017-05-01

    Helium ion energy distributions were measured in helicon wave-coupled plasmas of the dynamics of ion implantation and sputtering of surface experiment using a retarding field energy analyzer. The shape of the energy distribution is a double-peak, characteristic of radiofrequency plasma potential modulation. The broad distribution is located within a radius of 0.8 cm, while the quartz tube of the plasma source has an inner radius of 2.2 cm. The ion energy distribution rapidly changes from a double-peak to a single peak in the radius range of 0.7-0.9 cm. The average ion energy is approximately uniform across the plasma column including the double-peak and single peak regions. The widths of the broad distribution, ΔE , in the wave-coupled mode are large compared to the time-averaged ion energy, ⟨E ⟩. On the axis (r = 0), ΔE / ⟨E ⟩ ≲ 3.4, and at a radius near the edge of the plasma column (r = 2.2 cm), ΔE / ⟨E ⟩ ˜ 1.2. The discharge parameter space is scanned to investigate the effects of the magnetic field, input power, and chamber fill pressure on the wave-coupled mode that exhibits the sharp radial variation in the ion energy distribution.

  10. The response to selection for broad male response to female sex pheromone and its implications for divergence in close-range mating behavior in the European corn borer moth, Ostrinia nubilalis.

    PubMed

    Droney, David C; Musto, Callie J; Mancuso, Katie; Roelofs, Wendell L; Linn, Charles E

    2012-12-01

    Coordinated sexual communication systems, seen in many species of moths, are hypothesized to be under strong stabilizing natural selection. Stabilized communication systems should be resistant to change, but there are examples of species/populations that show great diversification. A possible solution is that it is directional sexual selection on variation in male response that drives evolution. We tested a component of this model by asking whether 'rare' males (ca. 5 % of all males in a population) of the European corn borer moth (ECB), Ostrinia nubilalis, that respond to the sex pheromones of both ECB and a different Ostrinia species (O. furnacalis, the Asian corn borer, ACB), might play an important role in diversification. We specifically tested, via artificial selection, whether this broad male response has an evolvable genetic component. We increased the frequency of broad male response from 5 to 70 % in 19 generations, showing that broad-responding males could be important for the evolution of novel communication systems in ECB. We did not find a broader range of mating acceptance of broad males by females of the base population, however, suggesting that broad response would be unlikely to increase in frequency without the involvement of other factors. However, we found that ECB selection-line females accepted a broader range of courting males, including those of ACB, than did females of the base population. Thus, a genetic correlation exists between broad, long-range response to female sex pheromone and the breadth of female acceptance of males at close range. These results are discussed in the context of evolution of novel communication systems in Ostrinia.

  11. Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials.

    PubMed

    Bansal, Arjun K; Truccolo, Wilson; Vargas-Irwin, Carlos E; Donoghue, John P

    2012-03-01

    Neural activity in motor cortex during reach and grasp movements shows modulations in a broad range of signals from single-neuron spiking activity (SA) to various frequency bands in broadband local field potentials (LFPs). In particular, spatiotemporal patterns in multiband LFPs are thought to reflect dendritic integration of local and interareal synaptic inputs, attentional and preparatory processes, and multiunit activity (MUA) related to movement representation in the local motor area. Nevertheless, the relationship between multiband LFPs and SA, and their relationship to movement parameters and their relative value as brain-computer interface (BCI) control signals, remain poorly understood. Also, although this broad range of signals may provide complementary information channels in primary (MI) and ventral premotor (PMv) areas, areal differences in information have not been systematically examined. Here, for the first time, the amount of information in SA and multiband LFPs was compared for MI and PMv by recording from dual 96-multielectrode arrays while monkeys made naturalistic reach and grasp actions. Information was assessed as decoding accuracy for 3D arm end point and grip aperture kinematics based on SA or LFPs in MI and PMv, or combinations of signal types across areas. In contrast with previous studies with ≤16 simultaneous electrodes, here ensembles of >16 units (on average) carried more information than multiband, multichannel LFPs. Furthermore, reach and grasp information added by various LFP frequency bands was not independent from that in SA ensembles but rather typically less than and primarily contained within the latter. Notably, MI and PMv did not show a particular bias toward reach or grasp for this task or for a broad range of signal types. For BCIs, our results indicate that neuronal ensemble spiking is the preferred signal for decoding, while LFPs and combined signals from PMv and MI can add robustness to BCI control.

  12. Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials

    PubMed Central

    Truccolo, Wilson; Vargas-Irwin, Carlos E.; Donoghue, John P.

    2012-01-01

    Neural activity in motor cortex during reach and grasp movements shows modulations in a broad range of signals from single-neuron spiking activity (SA) to various frequency bands in broadband local field potentials (LFPs). In particular, spatiotemporal patterns in multiband LFPs are thought to reflect dendritic integration of local and interareal synaptic inputs, attentional and preparatory processes, and multiunit activity (MUA) related to movement representation in the local motor area. Nevertheless, the relationship between multiband LFPs and SA, and their relationship to movement parameters and their relative value as brain-computer interface (BCI) control signals, remain poorly understood. Also, although this broad range of signals may provide complementary information channels in primary (MI) and ventral premotor (PMv) areas, areal differences in information have not been systematically examined. Here, for the first time, the amount of information in SA and multiband LFPs was compared for MI and PMv by recording from dual 96-multielectrode arrays while monkeys made naturalistic reach and grasp actions. Information was assessed as decoding accuracy for 3D arm end point and grip aperture kinematics based on SA or LFPs in MI and PMv, or combinations of signal types across areas. In contrast with previous studies with ≤16 simultaneous electrodes, here ensembles of >16 units (on average) carried more information than multiband, multichannel LFPs. Furthermore, reach and grasp information added by various LFP frequency bands was not independent from that in SA ensembles but rather typically less than and primarily contained within the latter. Notably, MI and PMv did not show a particular bias toward reach or grasp for this task or for a broad range of signal types. For BCIs, our results indicate that neuronal ensemble spiking is the preferred signal for decoding, while LFPs and combined signals from PMv and MI can add robustness to BCI control. PMID:22157115

  13. Warm Absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Laha, S.; Guainazzi, M.; Dewangan, G.; Chakravorty, S.; Kembhavi, A.

    2014-07-01

    We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. We could put a strict lower limit on the detection fraction of 50%. We find a gap in the distribution of the ionisation parameter in the range 0.5

  14. Fresh broad (Vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds.

    PubMed

    Ozcan, Hakki Mevlut; Sagiroglu, Ayten

    2014-08-01

    In this study, a novel fresh broad (Vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds was developed. The biosensor was constructed by immobilizing tissue homogenate of fresh broad (Vicia faba) on to glassy carbon electrode. For the stability of the biosensor, general immobilization techniques were used to secure the fresh broad tissue homogenate in gelatin-glutaraldehyde cross-linking matrix. In the optimization and characterization studies, the amount of fresh broad tissue homogenate and gelatin, glutaraldehyde percentage, optimum pH, optimum temperature and optimum buffer concentration, thermal stability, interference effects, linear range, storage stability, repeatability and sample applications (Wine, beer, fruit juices) were also investigated. Besides, the detection ranges of thirteen phenolic compounds were obtained with the help of the calibration graphs. A typical calibration curve for the sensor revealed a linear range of 5-60 μM catechol. In reproducibility studies, variation coefficient (CV) and standard deviation (SD) were calculated as 1.59%, 0.64×10(-3) μM, respectively.

  15. Reexamination of the calculation of two-center, two-electron integrals over Slater-type orbitals. II. Neumann expansion of the exchange integrals

    NASA Astrophysics Data System (ADS)

    Lesiuk, Michał; Moszynski, Robert

    2014-12-01

    In this paper we consider the calculation of two-center exchange integrals over Slater-type orbitals (STOs). We apply the Neumann expansion of the Coulomb interaction potential and consider calculation of all basic quantities which appear in the resulting expression. Analytical closed-form equations for all auxiliary quantities have already been known but they suffer from large digital erosion when some of the parameters are large or small. We derive two differential equations which are obeyed by the most difficult basic integrals. Taking them as a starting point, useful series expansions for small parameter values or asymptotic expansions for large parameter values are systematically derived. The resulting expansions replace the corresponding analytical expressions when the latter introduce significant cancellations. Additionally, we reconsider numerical integration of some necessary quantities and present a new way to calculate the integrand with a controlled precision. All proposed methods are combined to lead to a general, stable algorithm. We perform extensive numerical tests of the introduced expressions to verify their validity and usefulness. Advances reported here provide methodology to compute two-electron exchange integrals over STOs for a broad range of the nonlinear parameters and large angular momenta.

  16. Tertiary climates and floristic relationships at high latitudes in the northern hemisphere

    USGS Publications Warehouse

    Wolfe, J.A.

    1980-01-01

    During the Paleocene and Eocene, climates were characterized by a low mean annual range of temperature (a maximum of 10-15??C), a moderate to high mean annual temperature (10-20??C), and abundant precipitation; strong broad-leaved evergreen vegetation extended to almost lat. 60??N during the Paleocene and to well above 61??N during the Eocene. Poleward of the broad-leaved evergreen forests were forests that were broad-leaved deciduous; these deciduous forests, however, were unlike extant broad-leaved deciduous forests in general floristic composition and physiognomy. Coniferous forests probably occupied the northernmost latitudes. At the end of the Eocene, a major climatic deterioration resulted in a high (> 30??C) mean annual range of temperature and a low mean annual temperature (< 10??C). Vegetation represented temperate broad-leaved deciduous and coniferous forests. The Oligocene and Neogene climatic trends represent a decrease in both mean annual range of temperature and mean annual temperature. Tundra vegetation did not appear until late in the Neogene. The present distribution of broad-leaved evergreens concomitant with the principles of plant physiology indicates that present winter light conditions at high latitudes could not support broad-leaved evergreen forest. A possible solution to the problem is to increase winter light by lessening the inclination of the earth's rotational axis. ?? 1980.

  17. Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity.

    PubMed

    Cho, Sung Hwan; Lee, Seung Won; Yu, Seunggun; Kim, Hyeohn; Chang, Sooho; Kang, Donyoung; Hwang, Ihn; Kang, Han Sol; Jeong, Beomjin; Kim, Eui Hyuk; Cho, Suk Man; Kim, Kang Lib; Lee, Hyungsuk; Shim, Wooyoung; Park, Cheolmin

    2017-03-22

    The development of pressure sensors that are effective over a broad range of pressures is crucial for the future development of electronic skin applicable to the detection of a wide pressure range from acoustic wave to dynamic human motion. Here, we present flexible capacitive pressure sensors that incorporate micropatterned pyramidal ionic gels to enable ultrasensitive pressure detection. Our devices show superior pressure-sensing performance, with a broad sensing range from a few pascals up to 50 kPa, with fast response times of <20 ms and a low operating voltage of 0.25 V. Since high-dielectric-constant ionic gels were employed as constituent sensing materials, an unprecedented sensitivity of 41 kPa -1 in the low-pressure regime of <400 Pa could be realized in the context of a metal-insulator-metal platform. This broad-range capacitive pressure sensor allows for the efficient detection of pressure from a variety of sources, including sound waves, a lightweight object, jugular venous pulses, radial artery pulses, and human finger touch. This platform offers a simple, robust approach to low-cost, scalable device design, enabling practical applications of electronic skin.

  18. Broad-Range 16S rDNA PCR on Heart Valves in Infective Endocarditis.

    PubMed

    Müller Premru, Manica; Lejko Zupanc, Tatjana; Klokočovnik, Tomislav; Ruzić Sabljić, Eva; Cerar, Tjaša

    2016-03-01

    Infective endocarditis (IE) is diagnosed by blood and/or resected valve cultivation and echocardiographic findings, as defined by the Duke criteria. Unfortunately, cultures may be negative due to prior antibiotic therapy or fastidious or slow-growing microorganisms. The study aim was to investigate the value of the broad-range polymerase chain reaction (PCR) in addition to blood and valve culture for the detection of causative microorganisms. Between February 2012 and March 2015, valve samples from 36 patients undergoing cardiac surgery were analyzed; of these patients, 26 had a preoperative diagnosis of IE and 10 served as controls. Multiple blood cultures were obtained from 34 patients before antibiotic therapy was commenced. Valve samples were inoculated on bacteriological media and underwent analysis using broad-range PCR (16S rDNA). IE was confirmed microbiologically in 21 of the 26 patients (80.7%); in 20 cases (76.9%) this was by positive blood cultures and in 16 (61.5%) by positive valves. Valves were positive in 15 blood culturepositive patients, and in one blood-culture negative patient. Broad-range PCR detected a microorganism in valves significantly more frequently (n = 14; 53.8%) compared to valve culture (n = 8; 30.7%) (chisquare 11.5, p <0.001). The predominant microorganisms were Staphylococcus aureus, Streptococcus of the viridans group, coagulasenegative staphylococci and Enterococcus faecalis. Blood, valve cultures and broad-range PCR were negative in five patients (19.3%) with IE, and in all 10 subjects of the control group. Broad-range PCR on valves was more sensitive than valve culture. However, blood culture, if taken before the start of antibiotic therapy, was the best method for detecting IE.

  19. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspi, Yohai; Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relativemore » humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.« less

  20. Phenomenological MSSM interpretation of CMS searches in pp collisions at $$ \\sqrt{s}=7 $$ and 8 TeV

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2016-10-24

    Searches for new physics by the CMS collaboration are interpreted in the framework of the phenomenological minimal supersymmetric standard model (pMSSM). The data samples used in this study were collected atmore » $$ \\sqrt{s}=7 $$ and 8 TeV and have integrated luminosities of 5.0 fb$$^{-1}$$ and 19.5 fb$$^{-1}$$, respectively. A global Bayesian analysis is performed, incorporating results from a broad range of CMS supersymmetry searches, as well as constraints from other experiments. Because the pMSSM incorporates several well-motivated assumptions that reduce the 120 parameters of the MSSM to just 19 parameters defined at the electroweak scale, it is possible to assess the results of the study in a relatively straightforward way. Approximately half of the model points in a potentially accessible subspace of the pMSSM are excluded, including all pMSSM model points with a gluino mass below 500 GeV, as well as models with a squark mass less than 300 GeV. Models with chargino and neutralino masses below 200 GeV are disfavored, but no mass range of model points can be ruled out based on the analyses considered. Lastly, the nonexcluded regions in the pMSSM parameter space are characterized in terms of physical processes and key observables, and implications for future searches are discussed.« less

  1. Phenomenological MSSM interpretation of CMS searches in pp collisions at $$ \\sqrt{s}=7 $$ and 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.

    Searches for new physics by the CMS collaboration are interpreted in the framework of the phenomenological minimal supersymmetric standard model (pMSSM). The data samples used in this study were collected atmore » $$ \\sqrt{s}=7 $$ and 8 TeV and have integrated luminosities of 5.0 fb$$^{-1}$$ and 19.5 fb$$^{-1}$$, respectively. A global Bayesian analysis is performed, incorporating results from a broad range of CMS supersymmetry searches, as well as constraints from other experiments. Because the pMSSM incorporates several well-motivated assumptions that reduce the 120 parameters of the MSSM to just 19 parameters defined at the electroweak scale, it is possible to assess the results of the study in a relatively straightforward way. Approximately half of the model points in a potentially accessible subspace of the pMSSM are excluded, including all pMSSM model points with a gluino mass below 500 GeV, as well as models with a squark mass less than 300 GeV. Models with chargino and neutralino masses below 200 GeV are disfavored, but no mass range of model points can be ruled out based on the analyses considered. Lastly, the nonexcluded regions in the pMSSM parameter space are characterized in terms of physical processes and key observables, and implications for future searches are discussed.« less

  2. Phenomenological MSSM interpretation of CMS searches in pp collisions at √{s}=7 and 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; de Visscher, S.; Delaere, C.; Delcourt, M.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Elkafrawy, T.; Mahmoud, M. A.; Mohammed, Y.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Kraml, S.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Ruiz Alvarez, J. D.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sakharov, A.; Sekmen, S.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Traczyk, P.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Chadeeva, M.; Danilov, M.; Markin, O.; Rusinov, V.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; Curras, E.; de Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kortelainen, M. J.; Kousouris, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Gunion, J.; Ko, W.; Lander, R.; McLean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lewis, J.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Bruner, C.; Kenny, R. P.; Majumder, D.; Malek, M.; McBrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.

    2016-10-01

    Searches for new physics by the CMS collaboration are interpreted in the framework of the phenomenological minimal supersymmetric standard model (pMSSM). The data samples used in this study were collected at √{s}=7 and 8 TeV and have integrated luminosities of 5.0 fb-1 and 19.5 fb-1, respectively. A global Bayesian analysis is performed, incorporating results from a broad range of CMS supersymmetry searches, as well as constraints from other experiments. Because the pMSSM incorporates several well-motivated assumptions that reduce the 120 parameters of the MSSM to just 19 parameters defined at the electroweak scale, it is possible to assess the results of the study in a relatively straightforward way. Approximately half of the model points in a potentially accessible subspace of the pMSSM are excluded, including all pMSSM model points with a gluino mass below 500 GeV, as well as models with a squark mass less than 300 GeV. Models with chargino and neutralino masses below 200 GeV are disfavored, but no mass range of model points can be ruled out based on the analyses considered. The nonexcluded regions in the pMSSM parameter space are characterized in terms of physical processes and key observables, and implications for future searches are discussed. [Figure not available: see fulltext.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shengqiang; Li, Jie; Yu, Junsheng, E-mail: jsyu@uestc.edu.cn

    A color tuning index (I{sub CT}) parameter for evaluating the color change capability of color-tunable organic light-emitting diodes (CT-OLEDs) was proposed and formulated. And a series of CT-OLEDs, consisting of five different carrier/exciton adjusting interlayers (C/EALs) inserted between two complementary emitting layers, were fabricated and applied to disclose the relationship between I{sub CT} and C/EALs. The result showed that the trend of electroluminescence spectra behavior in CT-OLEDs has good accordance with I{sub CT} values, indicating that the I{sub CT} parameter is feasible for the evaluation of color variation. Meanwhile, by changing energy level and C/EAL thickness, the optimized device withmore » the widest color tuning range was based on N,N′-dicarbazolyl-3,5-benzene C/EAL, exhibiting the highest I{sub CT} value of 41.2%. Based on carrier quadratic hopping theory and exciton transfer model, two fitting I{sub CT} formulas derived from the highest occupied molecular orbital (HOMO) energy level and triplet energy level were simulated. Finally, a color tuning prediction (CTP) model was developed to deduce the I{sub CT} via C/EAL HOMO and triplet energy levels, and verified by the fabricated OLEDs with five different C/EALs. We believe that the CTP model assisted with I{sub CT} parameter will be helpful for fabricating high performance CT-OLEDs with a broad range of color tuning.« less

  4. Double plasma resonance instability as a source of solar zebra emission

    NASA Astrophysics Data System (ADS)

    Benáček, J.; Karlický, M.

    2018-03-01

    Context. The double plasma resonance (DPR) instability plays a basic role in the generation of solar radio zebras. In the plasma, consisting of the loss-cone type distribution of hot electrons and much denser and colder background plasma, this instability generates the upper-hybrid waves, which are then transformed into the electromagnetic waves and observed as radio zebras. Aims: In the present paper we numerically study the double plasma resonance instability from the point of view of the zebra interpretation. Methods: We use a 3-dimensional electromagnetic particle-in-cell (3D PIC) relativistic model. We use this model in two versions: (a) a spatially extended "multi-mode" model and (b) a spatially limited "specific-mode" model. While the multi-mode model is used for detailed computations and verifications of the results obtained by the "specific-mode" model, the specific-mode model is used for computations in a broad range of model parameters, which considerably save computational time. For an analysis of the computational results, we developed software tools in Python. Results: First using the multi-mode model, we study details of the double plasma resonance instability. We show how the distribution function of hot electrons changes during this instability. Then we show that there is a very good agreement between results obtained by the multi-mode and specific-mode models, which is caused by a dominance of the wave with the maximal growth rate. Therefore, for computations in a broad range of model parameters, we use the specific-mode model. We compute the maximal growth rates of the double plasma resonance instability with a dependence on the ratio between the upper-hybrid ωUH and electron-cyclotron ωce frequency. We vary temperatures of both the hot and background plasma components and study their effects on the resulting growth rates. The results are compared with the analytical ones. We find a very good agreement between numerical and analytical growth rates. We also compute saturation energies of the upper-hybrid waves in a very broad range of parameters. We find that the saturation energies of the upper-hybrid waves show maxima and minima at almost the same values of ωUH/ωce as the growth rates, but with a higher contrast between them than the growth rate maxima and minima. The contrast between saturation energy maxima and minima increases when the temperature of hot electrons increases. Furthermore, we find that the saturation energy of the upper-hybrid waves is proportional to the density of hot electrons. The maximum saturated energy can be up to one percent of the kinetic energy of hot electrons. Finally we find that the saturation energy maxima in the interval of ωUH/ωce = 3-18 decrease according to the exponential function. All these findings can be used in the interpretation of solar radio zebras.

  5. Sensitivity of black carbon concentrations and climate impact to aging and scavenging in OsloCTM2-M7

    NASA Astrophysics Data System (ADS)

    Lund, Marianne T.; Berntsen, Terje K.; Samset, Bjørn H.

    2017-05-01

    Accurate representation of black carbon (BC) concentrations in climate models is a key prerequisite for understanding its net climate impact. BC aging and scavenging are treated very differently in current models. Here, we examine the sensitivity of three-dimensional (3-D), temporally resolved BC concentrations to perturbations to individual model processes in the chemistry transport model OsloCTM2-M7. The main goals are to identify processes related to aerosol aging and scavenging where additional observational constraints may most effectively improve model performance, in particular for BC vertical profiles, and to give an indication of how model uncertainties in the BC life cycle propagate into uncertainties in climate impacts. Coupling OsloCTM2 with the microphysical aerosol module M7 allows us to investigate aging processes in more detail than possible with a simpler bulk parameterization. Here we include, for the first time in this model, a treatment of condensation of nitric acid on BC. Using kernels, we also estimate the range of radiative forcing and global surface temperature responses that may result from perturbations to key tunable parameters in the model. We find that BC concentrations in OsloCTM2-M7 are particularly sensitive to convective scavenging and the inclusion of condensation by nitric acid. The largest changes are found at higher altitudes around the Equator and at low altitudes over the Arctic. Convective scavenging of hydrophobic BC, and the amount of sulfate required for BC aging, are found to be key parameters, potentially reducing bias against HIAPER Pole-to-Pole Observations (HIPPO) flight-based measurements by 60 to 90 %. Even for extensive tuning, however, the total impact on global-mean surface temperature is estimated to less than 0.04 K. Similar results are found when nitric acid is allowed to condense on the BC aerosols. We conclude, in line with previous studies, that a shorter atmospheric BC lifetime broadly improves the comparison with measurements over the Pacific. However, we also find that the model-measurement discrepancies can not be uniquely attributed to uncertainties in a single process or parameter. Model development therefore needs to be focused on improvements to individual processes, supported by a broad range of observational and experimental data, rather than tuning of individual, effective parameters such as the global BC lifetime.

  6. Line intensities and temperature-dependent line broadening coefficients of Q-branch transitions in the v2 band of ammonia near 10.4 μm

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Spearrin, R. Mitchell; Peng, Wen Y.; Strand, Christopher L.; Jeffries, Jay B.; Enns, Gregory M.; Hanson, Ronald K.

    2016-05-01

    We report measured line intensities and temperature-dependent broadening coefficients of NH3 with Ar, N2, O2, CO2, H2O, and NH3 for nine sQ(J,K) transitions in the ν2 fundamental band in the frequency range 961.5-967.5 cm-1. This spectral region was chosen due to the strong NH3 absorption strength and lack of spectral interference from H2O and CO2 for laser-based sensing applications. Spectroscopic parameters were determined by multi-line fitting using Voigt lineshapes of absorption spectra measured with two quantum cascade lasers in thermodynamically-controlled optical cells. The temperature dependence of broadening was measured over a range of temperatures between 300 and 600 K. These measurements aid the development of mid-infrared NH3 sensors for a broad range of gas mixtures and at elevated temperatures.

  7. Influence of Non-linear Radiation Heat Flux on Rotating Maxwell Fluid over a Deformable Surface: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.

    2018-04-01

    Mathematical model for Maxwell fluid flow in rotating frame induced by an isothermal stretching wall is explored numerically. Scale analysis based boundary layer approximations are applied to simplify the conservation relations which are later converted to similar forms via appropriate substitutions. A numerical approach is utilized to derive similarity solutions for broad range of Deborah number. The results predict that velocity distributions are inversely proportional to the stress relaxation time. This outcome is different from that observed for the elastic parameter of second grade fluid. Unlike non-rotating frame, the solution curves are oscillatory decaying functions of similarity variable. As angular velocity enlarges, temperature rises and significant drop in the heat transfer coefficient occurs. We note that the wall slope of temperature has an asymptotically decaying profile against the wall to ambient ratio parameter. From the qualitative view point, temperature ratio parameter and radiation parameter have similar effect on the thermal boundary layer. Furthermore, radiation parameter has a definite role in improving the cooling process of the stretching boundary. A comparative study of current numerical computations and those from the existing studies is also presented in a limiting case. To our knowledge, the phenomenon of non-linear radiation in rotating viscoelastic flow due to linearly stretched plate is just modeled here.

  8. Contemporary Business Administration Curricula

    ERIC Educational Resources Information Center

    Gleason, James R.

    2006-01-01

    The National Association of State Directors of Career Technical Education Consortium (NASDCTEc) career clusters initiative was designed to research and foster development of curicula and assessments for each of 16 broad occupational groupings known as career clusters. These clusters encompass a broad range of careers, ranging from agriculture to…

  9. CLOSED-FIELD CORONAL HEATING DRIVEN BY WAVE TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downs, Cooper; Lionello, Roberto; Mikić, Zoran

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditionsmore » is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.« less

  10. Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor

    NASA Astrophysics Data System (ADS)

    Som, S.; Choubey, A.; Sharma, S. K.

    2012-09-01

    This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.

  11. Adaptive vibration suppression system: an iterative control law for a piezoelectric actuator shunted by a negative capacitor.

    PubMed

    Kodejska, Milos; Mokry, Pavel; Linhart, Vaclav; Vaclavik, Jan; Sluka, Tomas

    2012-12-01

    An adaptive system for the suppression of vibration transmission using a single piezoelectric actuator shunted by a negative capacitance circuit is presented. It is known that by using a negative-capacitance shunt, the spring constant of a piezoelectric actuator can be controlled to extreme values of zero or infinity. Because the value of spring constant controls a force transmitted through an elastic element, it is possible to achieve a reduction of transmissibility of vibrations through the use of a piezoelectric actuator by reducing its effective spring constant. Narrow frequency range and broad frequency range vibration isolation systems are analyzed, modeled, and experimentally investigated. The problem of high sensitivity of the vibration control system to varying operational conditions is resolved by applying an adaptive control to the circuit parameters of the negative capacitor. A control law that is based on the estimation of the value of the effective spring constant of a shunted piezoelectric actuator is presented. An adaptive system which achieves a self-adjustment of the negative capacitor parameters is presented. It is shown that such an arrangement allows the design of a simple electronic system which offers a great vibration isolation efficiency under variable vibration conditions.

  12. Critical laboratory values in hemostasis: toward consensus.

    PubMed

    Lippi, Giuseppe; Adcock, Dorothy; Simundic, Ana-Maria; Tripodi, Armando; Favaloro, Emmanuel J

    2017-09-01

    The term "critical values" can be defined to entail laboratory test results that significantly lie outside the normal (reference) range and necessitate immediate reporting to safeguard patient health, as well as those displaying a highly and clinically significant variation compared to previous data. The identification and effective communication of "highly pathological" values has engaged the minds of many clinicians, health care and laboratory professionals for decades, since these activities are vital to good laboratory practice. This is especially true in hemostasis, where a timely and efficient communication of critical values strongly impacts patient management. Due to the heterogeneity of available data, this paper is hence aimed to analyze the state of the art and provide an expert opinion about the parameters, measurement units and alert limits pertaining to critical values in hemostasis, thus providing a basic document for future consultation that assists laboratory professionals and clinicians alike. KEY MESSAGES Critical values are laboratory test results significantly lying outside the normal (reference) range and necessitating immediate reporting to safeguard patient health. A broad heterogeneity exists about critical values in hemostasis worldwide. We provide here an expert opinion about the parameters, measurement units and alert limits pertaining to critical values in hemostasis.

  13. Closed-field Coronal Heating Driven by Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Downs, Cooper; Lionello, Roberto; Mikić, Zoran; Linker, Jon A.; Velli, Marco

    2016-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.

  14. Reliability analysis in the Office of Safety, Environmental, and Mission Assurance (OSEMA)

    NASA Astrophysics Data System (ADS)

    Kauffmann, Paul J.

    1994-12-01

    The technical personnel in the SEMA office are working to provide the highest degree of value-added activities to their support of the NASA Langley Research Center mission. Management perceives that reliability analysis tools and an understanding of a comprehensive systems approach to reliability will be a foundation of this change process. Since the office is involved in a broad range of activities supporting space mission projects and operating activities (such as wind tunnels and facilities), it was not clear what reliability tools the office should be familiar with and how these tools could serve as a flexible knowledge base for organizational growth. Interviews and discussions with the office personnel (both technicians and engineers) revealed that job responsibilities ranged from incoming inspection to component or system analysis to safety and risk. It was apparent that a broad base in applied probability and reliability along with tools for practical application was required by the office. A series of ten class sessions with a duration of two hours each was organized and scheduled. Hand-out materials were developed and practical examples based on the type of work performed by the office personnel were included. Topics covered were: Reliability Systems - a broad system oriented approach to reliability; Probability Distributions - discrete and continuous distributions; Sampling and Confidence Intervals - random sampling and sampling plans; Data Analysis and Estimation - Model selection and parameter estimates; and Reliability Tools - block diagrams, fault trees, event trees, FMEA. In the future, this information will be used to review and assess existing equipment and processes from a reliability system perspective. An analysis of incoming materials sampling plans was also completed. This study looked at the issues associated with Mil Std 105 and changes for a zero defect acceptance sampling plan.

  15. Reliability analysis in the Office of Safety, Environmental, and Mission Assurance (OSEMA)

    NASA Technical Reports Server (NTRS)

    Kauffmann, Paul J.

    1994-01-01

    The technical personnel in the SEMA office are working to provide the highest degree of value-added activities to their support of the NASA Langley Research Center mission. Management perceives that reliability analysis tools and an understanding of a comprehensive systems approach to reliability will be a foundation of this change process. Since the office is involved in a broad range of activities supporting space mission projects and operating activities (such as wind tunnels and facilities), it was not clear what reliability tools the office should be familiar with and how these tools could serve as a flexible knowledge base for organizational growth. Interviews and discussions with the office personnel (both technicians and engineers) revealed that job responsibilities ranged from incoming inspection to component or system analysis to safety and risk. It was apparent that a broad base in applied probability and reliability along with tools for practical application was required by the office. A series of ten class sessions with a duration of two hours each was organized and scheduled. Hand-out materials were developed and practical examples based on the type of work performed by the office personnel were included. Topics covered were: Reliability Systems - a broad system oriented approach to reliability; Probability Distributions - discrete and continuous distributions; Sampling and Confidence Intervals - random sampling and sampling plans; Data Analysis and Estimation - Model selection and parameter estimates; and Reliability Tools - block diagrams, fault trees, event trees, FMEA. In the future, this information will be used to review and assess existing equipment and processes from a reliability system perspective. An analysis of incoming materials sampling plans was also completed. This study looked at the issues associated with Mil Std 105 and changes for a zero defect acceptance sampling plan.

  16. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.

    PubMed

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Jung, Wongyun; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2017-07-01

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Anomalous Thermal Expansion of HoCo0.5Cr0.5O3 Probed by X-ray Synchrotron Powder Diffraction.

    PubMed

    Hreb, Vasyl; Vasylechko, Leonid; Mykhalichko, Vitaliya; Prots, Yurii

    2017-12-01

    Mixed holmium cobaltite-chromite HoCo 0.5 Cr 0.5 O 3 with orthorhombic perovskite structure (structure type GdFeO 3 , space group Pbnm) was obtained by solid state reaction of corresponding oxides in air at 1373 K. Room- and high-temperature structural parameters were derived from high-resolution X-ray synchrotron powder diffraction data collected in situ in the temperature range of 300-1140 K. Analysis of the results obtained revealed anomalous thermal expansion of HoCo 0.5 Cr 0.5 O 3 , which is reflected in a sigmoidal temperature dependence of the unit cell parameters and in abnormal increase of the thermal expansion coefficients with a broad maxima near 900 K. Pronounced anomalies are also observed for interatomic distances and angles within Co/CrO 6 octahedra, tilt angles of octahedra and atomic displacement parameters. The observed anomalies are associated with the changes of spin state of Co 3+ ions and insulator-metal transition occurring in HoCo 0.5 Cr 0.5 O 3 .

  18. The Population Biology of Bacterial Plasmids: A PRIORI Conditions for the Existence of Conjugationally Transmitted Factors

    PubMed Central

    Stewart, Frank M.; Levin, Bruce R.

    1977-01-01

    A mathematical model for the population dynamics of conjugationally transmitted plasmids in bacterial populations is presented and its properties analyzed. Consideration is given to nonbacteriocinogenic factors that are incapable of incorporation into the chromosome of their host cells, and to bacterial populations maintained in either continuous (chemostat) or discrete (serial transfer) culture. The conditions for the establishment and maintenance of these infectious extrachromosomal elements and equilibrium frequencies of cells carrying them are presented for different values of the biological parameters: population growth functions, conjugational transfer and segregation rate constants. With these parameters in a biologically realistic range, the theory predicts a broad set of physical conditions, resource concentrations and dilution rates, where conjugationally transmitted plasmids can become established and where cells carrying them will maintain high frequencies in bacterial populations. This can occur even when plasmid-bearing cells are much less fit (i.e., have substantially lower growth rates) than cells free of these factors. The implications of these results and the reality and limitations of the model are discussed and the values of its parameters in natural populations speculated upon. PMID:17248761

  19. Anomalous Thermal Expansion of HoCo0.5Cr0.5O3 Probed by X-ray Synchrotron Powder Diffraction

    NASA Astrophysics Data System (ADS)

    Hreb, Vasyl; Vasylechko, Leonid; Mykhalichko, Vitaliya; Prots, Yurii

    2017-07-01

    Mixed holmium cobaltite-chromite HoCo0.5Cr0.5O3 with orthorhombic perovskite structure (structure type GdFeO3, space group Pbnm) was obtained by solid state reaction of corresponding oxides in air at 1373 K. Room- and high-temperature structural parameters were derived from high-resolution X-ray synchrotron powder diffraction data collected in situ in the temperature range of 300-1140 K. Analysis of the results obtained revealed anomalous thermal expansion of HoCo0.5Cr0.5O3, which is reflected in a sigmoidal temperature dependence of the unit cell parameters and in abnormal increase of the thermal expansion coefficients with a broad maxima near 900 K. Pronounced anomalies are also observed for interatomic distances and angles within Co/CrO6 octahedra, tilt angles of octahedra and atomic displacement parameters. The observed anomalies are associated with the changes of spin state of Co3+ ions and insulator-metal transition occurring in HoCo0.5Cr0.5O3.

  20. Finite Nuclei in the Quark-Meson Coupling Model.

    PubMed

    Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W

    2016-03-04

    We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.

  1. GRB 091127: The Cooling Break Race on Magnetic Fuel

    NASA Technical Reports Server (NTRS)

    Filgas, R.; Greiner, J.; Schady, P.; Kruhler, T.; Updike, A. C.; Klose, S.; Nardini, M.; Kann, D. A.; Rossi, A.; Sudilovsky, V.; hide

    2011-01-01

    Using high-quality, broad-band afterglow data for GRB 091127, we investigate the validity of the synchrotron fireball model for gamma-ray bursts, and infer physical parameters of the ultra-relativistic outflow. Methods. We used multi-wavelength (NIR to X-ray) follow-up observations obtained with GROND simultaneously in the g' r' t' i' z' JH filters and the XRT onboard the Swift satellite in the 0.3 to 10 keY energy range. The resulting afterglow light curve is of excellent accuracy with relative photometric errors as low as 1 %, and the spectral energy distribution (SED) is well-sampled over 5 decades in energy. These data present one of the most comprehensive observing campaigns for a single GRB afterglow and allow us to test several proposed emission models and outflow characteristics in unprecedented detail. Results. Both the multi-color light curve and the broad-band SED of the afterglow of GRB 091127 show evidence of a cooling break moving from high to lower energies. The early light curve is well described by a broken power-law, where the initial decay in the optical/NlR wavelength range is considerably flatter than at X-rays. Detailed fitting of the time-resolved SED shows that the break is very smooth with a sharpness index of 2.2 +/- 0.2, and evolves towards lower frequencies as a power-law with index -1.23 +/- 0.06. These are the first accurate and contemporaneous measurements of both the sharpness of the spectral break and its time evolution. Conclusions. The measured evolution of the cooling break (V(sub c) varies as t(sup -1.2) is not consistent with the predictions of the standard model, wherein V(sub c) varies as t(sup -05) is expected. A possible explanation for the observed behavior is a time dependence of the microphysical parameters, in particular the fraction of the total energy in the magnetic field epsilon(sub Beta). This conclusion provides further evidence that the standard fireball model is too simplistic, and time-dependent micro-physical parameters may be required to model the growing number of well-sampled afterglow light curves.

  2. Spraying Brassinolide improves Sigma Broad tolerance in foxtail millet (Setaria italica L.) through modulation of antioxidant activity and photosynthetic capacity.

    PubMed

    Yuan, Xiang-Yang; Zhang, Li-Guang; Huang, Lei; Yang, Hui-Jie; Zhong, Yan-Ting; Ning, Na; Wen, Yin-Yuan; Dong, Shu-Qi; Song, Xi-E; Wang, Hong-Fu; Guo, Ping-Yi

    2017-09-11

    To explore the role of Brassinolide (BR) in improving the tolerance of Sigma Broad in foxtail millet (Setaria italica L.), effects of 0.1 mg/L of BR foliar application 24 h before 3.37 g/ha of Sigma Broad treatment at five-leaf stage of foxtail millet on growth parameters, antioxidant enzymes, malondialdehyde (MDA), chlorophyll, net photosynthetic rate (P N ), chlorophyll fluorescence and P 700 parameters were studied 7 and 15 d after herbicide treatment, respectively. Results showed that Sigma Broad significantly decreased plant height, activities of superoxide dismutase (SOD), chlorophyll content, P N , PS II effective quantum yield (Y (II)), PS II electron transport rate (ETR (II)), photochemical quantum yield of PSI(Y (I)) and PS I electron transport rate ETR (I), but significantly increased MDA. Compared to herbicide treatment, BR dramatically increased plant height, activities of SOD, Y (II), ETR (II), Y (I) and ETR (I). This study showed BR pretreatment could improve the tolerance of Sigma Broad in foxtail millet through improving the activity of antioxidant enzymes, keeping electron transport smooth, and enhancing actual photochemical efficiency of PS II and PSI.

  3. Application of artificial neural networks and genetic algorithms to modeling molecular electronic spectra in solution

    NASA Astrophysics Data System (ADS)

    Lilichenko, Mark; Kelley, Anne Myers

    2001-04-01

    A novel approach is presented for finding the vibrational frequencies, Franck-Condon factors, and vibronic linewidths that best reproduce typical, poorly resolved electronic absorption (or fluorescence) spectra of molecules in condensed phases. While calculation of the theoretical spectrum from the molecular parameters is straightforward within the harmonic oscillator approximation for the vibrations, "inversion" of an experimental spectrum to deduce these parameters is not. Standard nonlinear least-squares fitting methods such as Levenberg-Marquardt are highly susceptible to becoming trapped in local minima in the error function unless very good initial guesses for the molecular parameters are made. Here we employ a genetic algorithm to force a broad search through parameter space and couple it with the Levenberg-Marquardt method to speed convergence to each local minimum. In addition, a neural network trained on a large set of synthetic spectra is used to provide an initial guess for the fitting parameters and to narrow the range searched by the genetic algorithm. The combined algorithm provides excellent fits to a variety of single-mode absorption spectra with experimentally negligible errors in the parameters. It converges more rapidly than the genetic algorithm alone and more reliably than the Levenberg-Marquardt method alone, and is robust in the presence of spectral noise. Extensions to multimode systems, and/or to include other spectroscopic data such as resonance Raman intensities, are straightforward.

  4. Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis

    USGS Publications Warehouse

    Lewan, M.D.; Ruble, T.E.

    2002-01-01

    This study compares kinetic parameters determined by open-system pyrolysis and hydrous pyrolysis using aliquots of source rocks containing different kerogen types. Kinetic parameters derived from these two pyrolysis methods not only differ in the conditions employed and products generated, but also in the derivation of the kinetic parameters (i.e., isothermal linear regression and non-isothermal nonlinear regression). Results of this comparative study show that there is no correlation between kinetic parameters derived from hydrous pyrolysis and open-system pyrolysis. Hydrous-pyrolysis kinetic parameters determine narrow oil windows that occur over a wide range of temperatures and depths depending in part on the organic-sulfur content of the original kerogen. Conversely, open-system kinetic parameters determine broad oil windows that show no significant differences with kerogen types or their organic-sulfur contents. Comparisons of the kinetic parameters in a hypothetical thermal-burial history (2.5 ??C/my) show open-system kinetic parameters significantly underestimate the extent and timing of oil generation for Type-US kerogen and significantly overestimate the extent and timing of petroleum formation for Type-I kerogen compared to hydrous pyrolysis kinetic parameters. These hypothetical differences determined by the kinetic parameters are supported by natural thermal-burial histories for the Naokelekan source rock (Type-IIS kerogen) in the Zagros basin of Iraq and for the Green River Formation (Type-I kerogen) in the Uinta basin of Utah. Differences in extent and timing of oil generation determined by open-system pyrolysis and hydrous pyrolysis can be attributed to the former not adequately simulating natural oil generation conditions, products, and mechanisms.

  5. New SECAA/ NSSDC Capabilities for Accessing ITM Data

    NASA Astrophysics Data System (ADS)

    Bilitza, D.; Papitashvili, N.; McGuire, R.

    NASA's National Space Science Data Center (NSSDC) archives a large volume of data and models that are of relevance to the International Living with a Star (ILWS) project. Working with NSSDC its sister organization the Sun Earth Connection Active Archive (SECAA) has developed a number of data access and browse tools to facilitate user access to this important data source. For the most widely used empirical models (IRI, IGRF, MSIS/CIRA, AE/AP-8) Java-based web interfaces let users compute, list, plot, and download model parameters. We will report about recent enhancements and extensions of these data and model services in the area of ionospheric-thermospheric-mesospheric (ITM) physics. The ATMOWeb system (http://nssdc.gsfc.nasa.gov/atmoweb/) includes data from many of the ITM satellite missions of the sixties, seventies, and eighties (BE-B, DME-A, Alouette 2, AE-B, OGO-6, ISIS-1, ISIS-2, AEROS-A, AE-C, AE-D, AE-E, DE-2, and Hinotori). New capabilities of the ATMOWeb system include in addition to time series plots and data retrievals, ATMOWeb now lets user generate scatter plots and linear regression fits for any pair of parameters. Optional upper and lower boundaries let users filter out specific segments of the data and/or certain ranges of orbit parameters (altitude, longitude, local time, etc.). Data from TIMED is being added to the CDAWeb system, including new web service capabilities, to be available jointly with the broad scope of space physics data already served by CDAWeb. We will also present the newest version of the NSSDC/SECAA models web pages. The layout and sequence of these entry pages to the models catalog, archive, and web interfaces was greatly simplified and broad up-to-date.

  6. Simultaneous X-ray and Far-Ultraviolet Spectra of AGN with ASCA and HUT

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We obtained ASCA spectra of the Seyfert 1 galaxy NGC 3516 in March 1995. Simultaneous far-UV observations were obtained with the Hopkins Ultraviolet Telescope on the Astro-2 shuttle mission. The ASCA spectrum shows a lightly absorbed power law of energy index 0.78. The low energy absorbing column is significantly less than previously seen. Prominent 0 VII and 0 VIII absorption edges are visible, but, consistent with the much lower total absorbing column, no Fe K absorption edge is detectable. A weak, narrow Fe K(alpha) emission line from cold material is present as well as a broad Fe K(alpha) line. These features are similar to those reported in other Seyfert 1 galaxies. A single warm absorber model provides only an imperfect description of the low energy absorption. In addition to a highly ionized absorber with ionization parameter U = 1.66 and a total column density of 1.4 x 10(exp 22)/sq cm, adding a lower ionization absorber with U = 0.32 and a total column of 6.9 x 10(exp 21)/sq cm significantly improves the fit. The contribution of resonant line scattering to our warm absorber models limits the Doppler parameter to less than 160 km/s at 90% confidence. Turbulence at the sound speed of the photoionized gas provides the best fit. None of the warm absorber models fit to the X-ray spectrum can match the observed equivalent widths of all the UV absorption lines. Accounting for the X-ray and UV absorption simultaneously requires an absorbing region with a broad range of ionization parameters and column densities.

  7. Electrostatic fluctuations in collisional plasmas

    DOE PAGES

    Rozmus, W.; Brantov, A.; Fortmann-Grote, C.; ...

    2017-10-12

    Here, we present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S( →k,ω), is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality. The collisionless limit of S( →k,ω) and the strong-collision result based on the fluctuation-dissipation theorem and classical transport at Tmore » e = T i are recovered and discussed. Results of several Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means of our theory for S( →k,ω).« less

  8. Electrostatic fluctuations in collisional plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozmus, W.; Brantov, A.; Fortmann-Grote, C.

    Here, we present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S( →k,ω), is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality. The collisionless limit of S( →k,ω) and the strong-collision result based on the fluctuation-dissipation theorem and classical transport at Tmore » e = T i are recovered and discussed. Results of several Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means of our theory for S( →k,ω).« less

  9. Electrostatic fluctuations in collisional plasmas.

    PubMed

    Rozmus, W; Brantov, A; Fortmann-Grote, C; Bychenkov, V Yu; Glenzer, S

    2017-10-01

    We present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S(k[over ⃗],ω), is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality. The collisionless limit of S(k[over ⃗],ω) and the strong-collision result based on the fluctuation-dissipation theorem and classical transport at T_{e}=T_{i} are recovered and discussed. Results of several Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means of our theory for S(k[over ⃗],ω).

  10. First Intrinsic Anisotropy Observations With the Cosmic Background Imager

    NASA Technical Reports Server (NTRS)

    Padin, S.; Cartwright, J. K.; Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Holzapfel, W. L.; Myers, S. T.; hide

    2001-01-01

    We present the first results of observations of the intrinsic anisotropy of the cosmic microwave background radiation with the Cosmic Background Imager from a site at 5080 in altitude in northern Chile. Our observations show a sharp decrease in C_l in the range l = 400 - 1500. Such a decrease in power at high l is one of the fundamental predictions of the standard cosmological model, and these are the first observations which cover a broad enough 1-range to show this decrease in a single experiment. The power, C_l, at l approximately 600 is higher than measured by Boomerang and Maxima, with the differences being significant at the 2.7sigma and 1.9sigma levels, respectively. The C_l we have measured enable us to place limits on the density parameter, Omega(tot) <= 0.4 or Omega(tot) >= 0.7 (90% confidence).

  11. The extrudate swell of HDPE: Rheological effects

    NASA Astrophysics Data System (ADS)

    Konaganti, Vinod Kumar; Ansari, Mahmoud; Mitsoulis, Evan; Hatzikiriakos, Savvas G.

    2017-05-01

    The extrudate swell of an industrial grade high molecular weight high-density polyethylene (HDPE) in capillary dies is studied experimentally and numerically using the integral K-BKZ constitutive model. The non-linear viscoelastic flow properties of the polymer resin are studied for a broad range of large step shear strains and high shear rates using the cone partitioned plate (CPP) geometry of the stress/strain controlled rotational rheometer. This allowed the determination of the rheological parameters accurately, in particular the damping function, which is proven to be the most important in simulating transient flows such as extrudate swell. A series of simulations performed using the integral K-BKZ Wagner model with different values of the Wagner exponent n, ranging from n=0.15 to 0.5, demonstrates that the extrudate swell predictions are extremely sensitive to the Wagner damping function exponent. Using the correct n-value resulted in extrudate swell predictions that are in excellent agreement with experimental measurements.

  12. A new application for food customization with additive manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Serenó, L.; Vallicrosa, G.; Delgado, J.; Ciurana, J.

    2012-04-01

    Additive Manufacturing (AM) technologies have emerged as a freeform approach capable of producing almost any complete three dimensional (3D) objects from computer-aided design (CAD) data by successively adding material layer by layer. Despite the broad range of possibilities, commercial AM technologies remain complex and expensive, making them suitable only for niche applications. The developments of the Fab@Home system as an open AM technology discovered a new range of possibilities of processing different materials such as edible products. The main objective of this work is to analyze and optimize the manufacturing capacity of this system when producing 3D edible objects. A new heated syringe deposition tool was developed and several process parameters were optimized to adapt this technology to consumers' needs. The results revealed in this study show the potential of this system to produce customized edible objects without qualified personnel knowledge, therefore saving manufacturing costs compared to traditional technologies.

  13. Evolution of double white dwarf binaries undergoing direct-impact accretion: Implications for gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.

  14. Quantum metabolism explains the allometric scaling of metabolic rates.

    PubMed

    Demetrius, Lloyd; Tuszynski, J A

    2010-03-06

    A general model explaining the origin of allometric laws of physiology is proposed based on coupled energy-transducing oscillator networks embedded in a physical d-dimensional space (d = 1, 2, 3). This approach integrates Mitchell's theory of chemi-osmosis with the Debye model of the thermal properties of solids. We derive a scaling rule that relates the energy generated by redox reactions in cells, the dimensionality of the physical space and the mean cycle time. Two major regimes are found corresponding to classical and quantum behaviour. The classical behaviour leads to allometric isometry while the quantum regime leads to scaling laws relating metabolic rate and body size that cover a broad range of exponents that depend on dimensionality and specific parameter values. The regimes are consistent with a range of behaviours encountered in micelles, plants and animals and provide a conceptual framework for a theory of the metabolic function of living systems.

  15. Searching for axion stars and Q-balls with a terrestrial magnetometer network

    DOE PAGES

    Jackson Kimball, D. F.; Budker, D.; Eby, J.; ...

    2018-02-08

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown thatmore » a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.« less

  16. Inland and coastal waters

    NASA Astrophysics Data System (ADS)

    Mouw, Colleen; Greb, Steven

    2012-09-01

    Workshop for Remote Sensing of Coastal and Inland Waters;Madison, Wisconsin, 20-22 June 2012 Coastal and inland water bodies, which have great value for recreation, food supply, commerce, transportation, and human health, have been experiencing external pressure from direct human activities and climate change. Given their societal and economic value, understanding issues of water quality, water quantity, and the impact of environmental change on the ecological and biogeochemical functioning of these water bodies is of interest to a broad range of communities. Remote sensing offers one of the most spatially and temporally comprehensive tools for observing these waters. While there has been some success with remotely observing these water bodies, many challenges still remain, including algorithm performance, atmospheric correction, the relationships between optical properties and biogeochemical parameters, sufficient spatial and spectral resolution, and a lack of uncertainty estimates over the wide range of environmental conditions encountered across these coastal and inland water bodies.

  17. Ion-exchange chromatography separation applied to mineral recycle in closed systems

    NASA Technical Reports Server (NTRS)

    Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1981-01-01

    As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.

  18. Searching for axion stars and Q -balls with a terrestrial magnetometer network

    NASA Astrophysics Data System (ADS)

    Jackson Kimball, D. F.; Budker, D.; Eby, J.; Pospelov, M.; Pustelny, S.; Scholtes, T.; Stadnik, Y. V.; Weis, A.; Wickenbrock, A.

    2018-02-01

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q -balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q -balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q -ball could be detected over a broad range of unexplored parameter space.

  19. Metastable Solution Thermodynamic Properties and Crystal Growth Kinetics

    NASA Technical Reports Server (NTRS)

    Kim, Soojin; Myerson, Allan S.

    1996-01-01

    The crystal growth rates of NH4H2PO4, KH2PO4, (NH4)2SO4, KAl(SO4)2 central dot 12H2O, NaCl, and glycine and the nucleation rates of KBr, KCl, NaBr central dot 2H2O, (NH4)2Cl, and (NH4)2SO4 were expressed in terms of the fundamental driving force of crystallization calculated from the activity of supersaturated solutions. The kinetic parameters were compared with those from the commonly used kinetic expression based on the concentration difference. From the viewpoint of thermodynamics, rate expressions based on the chemical potential difference provide accurate kinetic representation over a broad range of supersaturation. The rates estimated using the expression based on the concentration difference coincide with the true rates of crystallization only in the concentration range of low supersaturation and deviate from the true kinetics as the supersaturation increases.

  20. Searching for axion stars and Q-balls with a terrestrial magnetometer network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson Kimball, D. F.; Budker, D.; Eby, J.

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown thatmore » a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.« less

  1. Applicability of Broad-Band Photometry for Determining the Properties of Stars and Interstellar Extinction

    NASA Astrophysics Data System (ADS)

    Sichevskij, S. G.

    2018-01-01

    The feasibility of the determination of the physical conditions in star's atmosphere and the parameters of interstellar extinction from broad-band photometric observations in the 300-3000 nm wavelength interval is studied using SDSS and 2MASS data. The photometric accuracy of these surveys is shown to be insufficient for achieving in practice the theoretical possibility of estimating the atmospheric parameters of stars based on ugriz and JHK s photometry exclusively because such determinations result in correlations between the temperature and extinction estimates. The uncertainty of interstellar extinction estimates can be reduced if prior data about the temperature are available. The surveys considered can nevertheless be potentially valuable sources of information about both stellar atmospheric parameters and the interstellar medium.

  2. NUTRIENT CONCENTRATIONS IN FLOWING WATERS OF THE SOUTH FORK BROAD RIVER, GEORGIA WATERSHED

    EPA Science Inventory

    We monitored concentrations of nutrients, dissolved organic matter (DOM) and other parameters in 17 headwater streams, at three sites on the main stem, and in three major tributaries near their confluence with the South Fork Broad River on a monthly basis for over a year. Concent...

  3. Stellar parameters and H α line profile variability of Be stars in the BeSOS survey

    NASA Astrophysics Data System (ADS)

    Arcos, C.; Kanaan, S.; Chávez, J.; Vanzi, L.; Araya, I.; Curé, M.

    2018-03-01

    The Be phenomenon is present in about 20 per cent of B-type stars. Be stars show variability on a broad range of time-scales, which in most cases is related to the presence of a circumstellar disc of variable size and structure. For this reason, a time-resolved survey is highly desirable in order to understand the mechanisms of disc formation, which are still poorly understood. In addition, a complete observational sample would improve the statistical significance of the study of stellar and disc parameters. The `Be Stars Observation Survey' (BeSOS) is a survey containing reduced spectra obtained using the Pontifica Universidad Católica High Echelle Resolution Optical Spectrograph (PUCHEROS) with a spectral resolution of 17 000 in the range 4260-7300 Å. BeSOS's main objective is to offer consistent spectroscopic and time-resolved data obtained with one instrument. The user can download or plot the data and obtain stellar parameters directly from the website. We also provide a star-by-star analysis based on photometric, spectroscopic and interferometric data, as well as general information about the whole BeSOS sample. Recently, BeSOS led to the discovery of a new Be star HD 42167 and facilitated study of the V/R variation of HD 35165 and HD 120324, the steady disc of HD 110335 and the Be shell status of HD 127972. Optical spectra used in this work, as well as the stellar parameters derived, are available online at http://besos.ifa.uv.cl.

  4. Broad-Spectrum Molecular Detection of Fungal Nucleic Acids by PCR-Based Amplification Techniques.

    PubMed

    Czurda, Stefan; Lion, Thomas

    2017-01-01

    Over the past decade, the incidence of life-threatening invasive fungal infections has dramatically increased. Infections caused by hitherto rare and emerging fungal pathogens are associated with significant morbidity and mortality among immunocompromised patients. These observations render the coverage of a broad range of clinically relevant fungal pathogens highly important. The so-called panfungal or, perhaps more correctly, broad-range nucleic acid amplification techniques do not only facilitate sensitive detection of all clinically relevant fungal species but are also rapid and can be applied to analyses of any patient specimens. They have therefore become valuable diagnostic tools for sensitive screening of patients at risk of invasive fungal infections. This chapter summarizes the currently available molecular technologies employed in testing of a wide range of fungal pathogens, and provides a detailed workflow for patient screening by broad-spectrum nucleic acid amplification techniques.

  5. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first broad-band acoustic pulse at a first broad-band frequency range having a first central frequency and a first bandwidth spread; generating a second broad-band acoustic pulse at a second broad-band frequency range different than the first frequency range having a second central frequency and a second bandwidth spread, wherein the first acoustic pulse and second acoustic pulse are generated by at least one transducer arranged on a tool located within the borehole; and transmitting the first and the second broad-band acoustic pulses into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated pulse by a non-linear mixing of the first and second acoustic pulses, wherein the collimated pulse has a frequency equal to the difference in frequencies between the first central frequency and the second central frequency and a bandwidth spread equal to the sum of the first bandwidth spread and the second bandwidth spread.

  6. Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range.

    PubMed

    Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub

    2018-04-24

    Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.

  7. Contour detection improved by context-adaptive surround suppression.

    PubMed

    Sang, Qiang; Cai, Biao; Chen, Hao

    2017-01-01

    Recently, many image processing applications have taken advantage of a psychophysical and neurophysiological mechanism, called "surround suppression" to extract object contour from a natural scene. However, these traditional methods often adopt a single suppression model and a fixed input parameter called "inhibition level", which needs to be manually specified. To overcome these drawbacks, we propose a novel model, called "context-adaptive surround suppression", which can automatically control the effect of surround suppression according to image local contextual features measured by a surface estimator based on a local linear kernel. Moreover, a dynamic suppression method and its stopping mechanism are introduced to avoid manual intervention. The proposed algorithm is demonstrated and validated by a broad range of experimental results.

  8. Continuous-variable quantum authentication of physical unclonable keys: Security against an emulation attack

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, Georgios M.

    2018-01-01

    We consider a recently proposed entity authentication protocol in which a physical unclonable key is interrogated by random coherent states of light, and the quadratures of the scattered light are analyzed by means of a coarse-grained homodyne detection. We derive a sufficient condition for the protocol to be secure against an emulation attack in which an adversary knows the challenge-response properties of the key and moreover, he can access the challenges during the verification. The security analysis relies on Holevo's bound and Fano's inequality, and suggests that the protocol is secure against the emulation attack for a broad range of physical parameters that are within reach of today's technology.

  9. Photoionization Modeling

    NASA Technical Reports Server (NTRS)

    Kallman, T.

    2010-01-01

    Warm absorber spectra are characterized by the many lines from partially ionized intermediate-Z elements, and iron, detected with the grating instruments on Chandra and XMM-Newton. If these ions are formed in a gas which is in photoionization equilibrium, they correspond to a broad range of ionization parameters, although there is evidence for certain preferred values. A test for any dynamical model for these outflows is to reproduce these properties, at some level of detail. In this paper we present a statistical analysis of the ionization distribution which can be applied both the observed spectra and to theoretical models. As an example, we apply it to our dynamical models for warm absorber outflows, based on evaporation from the molecular torus.

  10. Dynamic characteristics of organic bulk-heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Babenko, S. D.; Balakai, A. A.; Moskvin, Yu. L.; Simbirtseva, G. V.; Troshin, P. A.

    2010-12-01

    Transient characteristics of organic bulk-heterojunction solar cells have been studied using pulsed laser probing. An analysis of the photoresponse waveforms of a typical solar cell measured by varying load resistance within broad range at different values of the bias voltage provided detailed information on the photocell parameters that characterize electron-transport properties of active layers. It is established that the charge carrier mobility is sufficient to ensure high values of the fill factor (˜0.6) in the obtained photocells. On approaching the no-load voltage, the differential capacitance of the photocell exhibits a sixfold increase as compared to the geometric capacitance. A possible mechanism of recombination losses in the active medium is proposed.

  11. Near Field Radiation Characteristics of Implantable Square Spiral Chip Inductor Antennas for Bio-Sensors

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Simons, Rainee N.; Miranda, Felix A.

    2007-01-01

    The near field radiation characteristics of implantable Square Spiral Chip Inductor Antennas (SSCIA) for Bio-Sensors have been measured. Our results indicate that the measured near field relative signal strength of these antennas agrees with simulated results and confirm that in the near field region the radiation field is fairly uniform in all directions. The effects of parameters such as ground-plane, number of turns and microstrip-gap width on the performance of the SSCIA are presented. Furthermore, the SSCIA antenna with serrated ground plane produce a broad radiation pattern, with a relative signal strength detectable at distances within the range of operation of hand-held devices for self-diagnosis.

  12. Competition-Driven Network Dynamics: Emergence of a Scale-Free Leadership Structure and Collective Efficiency

    NASA Astrophysics Data System (ADS)

    Anghel, M.; Toroczkai, Zoltán; Bassler, Kevin E.; Korniss, G.

    2004-02-01

    Using the minority game as a model for competition dynamics, we investigate the effects of interagent communications across a network on the global evolution of the game. Agent communication across this network leads to the formation of an influence network, which is dynamically coupled to the evolution of the game, and it is responsible for the information flow driving the agents' actions. We show that the influence network spontaneously develops hubs with a broad distribution of in-degrees, defining a scale-free robust leadership structure. Furthermore, in realistic parameter ranges, facilitated by information exchange on the network, agents can generate a high degree of cooperation making the collective almost maximally efficient.

  13. Magnetic properties of square Py nanowires: Irradiation dose and geometry dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehrmann, A., E-mail: andrea.ehrmann@fh-bielefeld.de; Blachowicz, T.; Komraus, S.

    Arrays of ferromagnetic patterned nanostructures with single particle lateral dimensions between 160 nm and 400 nm were created by electron-beam lithography. The fourfold particles with rectangular-shaped walls around a square open area were produced from permalloy. Their magnetic properties were measured using the longitudinal magneto-optical Kerr effect. The article reports about the angle-dependent coercive fields and the influence of the e-beam radiation dose on sample shapes. It is shown that a broad range of radiation dose intensities enables reliable creation of nanostructures with parameters relevant for the desired magnetization reversal scenario. The experimental results are finally compared with micromagnetic simulations to explainmore » the findings.« less

  14. Vertebral Osteomyelitis Caused by Helicobacter cinaedi Identified Using Broad-range Polymerase Chain Reaction with Sequencing of the Biopsied Specimen.

    PubMed

    Hase, Ryota; Hirooka, Takuya; Itabashi, Takashi; Endo, Yasunobu; Otsuka, Yoshihito

    2018-05-15

    A 65-year-old man presented with gradually exacerbating low back pain. Magnetic resonance imaging revealed vertebral osteomyelitis in the Th11-L2 vertebral bodies and discs. The patient showed negative findings on conventional cultures. Direct broad-range polymerase chain reaction (PCR) with sequencing of the biopsied specimen had the highest similarity to the 16S rRNA gene of Helicobacter cinaedi. This case suggests that direct broad-range PCR with sequencing should be considered when conventional cultures cannot identify the causative organism of vertebral osteomyelitis, and that this method may be particularly useful when the pathogen is a fastidious organism, such as H. cinaedi.

  15. Machine Learning Biogeographic Processes from Biotic Patterns: A New Trait-Dependent Dispersal and Diversification Model with Model Choice By Simulation-Trained Discriminant Analysis.

    PubMed

    Sukumaran, Jeet; Economo, Evan P; Lacey Knowles, L

    2016-05-01

    Current statistical biogeographical analysis methods are limited in the ways ecology can be related to the processes of diversification and geographical range evolution, requiring conflation of geography and ecology, and/or assuming ecologies that are uniform across all lineages and invariant in time. This precludes the possibility of studying a broad class of macroevolutionary biogeographical theories that relate geographical and species histories through lineage-specific ecological and evolutionary dynamics, such as taxon cycle theory. Here we present a new model that generates phylogenies under a complex of superpositioned geographical range evolution, trait evolution, and diversification processes that can communicate with each other. We present a likelihood-free method of inference under our model using discriminant analysis of principal components of summary statistics calculated on phylogenies, with the discriminant functions trained on data generated by simulations under our model. This approach of model selection by classification of empirical data with respect to data generated under training models is shown to be efficient, robust, and performs well over a broad range of parameter space defined by the relative rates of dispersal, trait evolution, and diversification processes. We apply our method to a case study of the taxon cycle, that is testing for habitat and trophic level constraints in the dispersal regimes of the Wallacean avifaunal radiation. ©The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate-Mass Black Hole

    NASA Astrophysics Data System (ADS)

    Barth, Aaron

    2004-07-01

    We propose a comprehensive optical, UV, and X-ray investigation of the unique galaxy POX 52. POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy appears to be a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses, placing POX 52 in a region of AGN parameter space that is almost completely unexplored at present. We request ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACS imaging to detect the X-ray emission from the nucleus and investigate its spectral and variability properties. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.

  17. On predicting receptivity to surface roughness in a compressible infinite swept wing boundary layer

    NASA Astrophysics Data System (ADS)

    Thomas, Christian; Mughal, Shahid; Ashworth, Richard

    2017-03-01

    The receptivity of crossflow disturbances on an infinite swept wing is investigated using solutions of the adjoint linearised Navier-Stokes equations. The adjoint based method for predicting the magnitude of stationary disturbances generated by randomly distributed surface roughness is described, with the analysis extended to include both surface curvature and compressible flow effects. Receptivity is predicted for a broad spectrum of spanwise wavenumbers, variable freestream Reynolds numbers, and subsonic Mach numbers. Curvature is found to play a significant role in the receptivity calculations, while compressible flow effects are only found to marginally affect the initial size of the crossflow instability. A Monte Carlo type analysis is undertaken to establish the mean amplitude and variance of crossflow disturbances generated by the randomly distributed surface roughness. Mean amplitudes are determined for a range of flow parameters that are maximised for roughness distributions containing a broad spectrum of roughness wavelengths, including those that are most effective in generating stationary crossflow disturbances. A control mechanism is then developed where the short scale roughness wavelengths are damped, leading to significant reductions in the receptivity amplitude.

  18. Binaural pitch fusion: Comparison of normal-hearing and hearing-impaired listenersa)

    PubMed Central

    Reiss, Lina A. J.; Shayman, Corey S.; Walker, Emily P.; Bennett, Keri O.; Fowler, Jennifer R.; Hartling, Curtis L.; Glickman, Bess; Lasarev, Michael R.; Oh, Yonghee

    2017-01-01

    Binaural pitch fusion is the fusion of dichotically presented tones that evoke different pitches between the ears. In normal-hearing (NH) listeners, the frequency range over which binaural pitch fusion occurs is usually <0.2 octaves. Recently, broad fusion ranges of 1–4 octaves were demonstrated in bimodal cochlear implant users. In the current study, it was hypothesized that hearing aid (HA) users would also exhibit broad fusion. Fusion ranges were measured in both NH and hearing-impaired (HI) listeners with hearing losses ranging from mild-moderate to severe-profound, and relationships of fusion range with demographic factors and with diplacusis were examined. Fusion ranges of NH and HI listeners averaged 0.17 ± 0.13 octaves and 1.7 ± 1.5 octaves, respectively. In HI listeners, fusion ranges were positively correlated with a principal component measure of the covarying factors of young age, early age of hearing loss onset, and long durations of hearing loss and HA use, but not with hearing threshold, amplification level, or diplacusis. In NH listeners, no correlations were observed with age, hearing threshold, or diplacusis. The association of broad fusion with early onset, long duration of hearing loss suggests a possible role of long-term experience with hearing loss and amplification in the development of broad fusion. PMID:28372056

  19. Cervical isometric strength and range of motion of elite rugby union players: a cohort study

    PubMed Central

    2014-01-01

    Background Head and neck injury is relatively common in Rugby Union. Despite this, strength and range-of-motion characteristics of the cervical spine are poorly characterised. The aim of this study was to provide data on the strength and range-of-motion of the cervical spine of professional rugby players to guide clinical rehabilitation. Methods A cohort study was performed evaluating 27 players from a single UK professional rugby club. Cervical isometric strength and range-of-motion were assessed in 3 planes of reference. Anthropometric data was collected and multivariate regression modelling performed with a view to predicting cervical isometric strength. Results Largest forces were generated in extension, with broadly equal isometric side flexion forces at around 90% of extension values. The forwards generated significantly more force than the backline in all parameters bar flexion. The forwards had substantially reduced cervical range-of-motion and larger body mass, with differences observed in height, weight, neck circumference and chest circumference (p < 0.002). Neck circumference was the sole predictor of isometric extension (adjusted R2 = 30.34). Conclusion Rehabilitative training programs aim to restore individuals to pre-injury status. This work provides reference ranges for the strength and range of motion of the cervical spine of current elite level rugby players. PMID:25120916

  20. Cervical isometric strength and range of motion of elite rugby union players: a cohort study.

    PubMed

    Hamilton, David F; Gatherer, Don

    2014-01-01

    Head and neck injury is relatively common in Rugby Union. Despite this, strength and range-of-motion characteristics of the cervical spine are poorly characterised. The aim of this study was to provide data on the strength and range-of-motion of the cervical spine of professional rugby players to guide clinical rehabilitation. A cohort study was performed evaluating 27 players from a single UK professional rugby club. Cervical isometric strength and range-of-motion were assessed in 3 planes of reference. Anthropometric data was collected and multivariate regression modelling performed with a view to predicting cervical isometric strength. Largest forces were generated in extension, with broadly equal isometric side flexion forces at around 90% of extension values. The forwards generated significantly more force than the backline in all parameters bar flexion. The forwards had substantially reduced cervical range-of-motion and larger body mass, with differences observed in height, weight, neck circumference and chest circumference (p < 0.002). Neck circumference was the sole predictor of isometric extension (adjusted R(2) = 30.34). Rehabilitative training programs aim to restore individuals to pre-injury status. This work provides reference ranges for the strength and range of motion of the cervical spine of current elite level rugby players.

  1. Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition

    PubMed Central

    Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A.

    2016-01-01

    The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. PMID:26209846

  2. Importance of double-pole CFS-PML for broad-band seismic wave simulation and optimal parameters selection

    NASA Astrophysics Data System (ADS)

    Feng, Haike; Zhang, Wei; Zhang, Jie; Chen, Xiaofei

    2017-05-01

    The perfectly matched layer (PML) is an efficient absorbing technique for numerical wave simulation. The complex frequency-shifted PML (CFS-PML) introduces two additional parameters in the stretching function to make the absorption frequency dependent. This can help to suppress converted evanescent waves from near grazing incident waves, but does not efficiently absorb low-frequency waves below the cut-off frequency. To absorb both the evanescent wave and the low-frequency wave, the double-pole CFS-PML having two poles in the coordinate stretching function was developed in computational electromagnetism. Several studies have investigated the performance of the double-pole CFS-PML for seismic wave simulations in the case of a narrowband seismic wavelet and did not find significant difference comparing to the CFS-PML. Another difficulty to apply the double-pole CFS-PML for real problems is that a practical strategy to set optimal parameter values has not been established. In this work, we study the performance of the double-pole CFS-PML for broad-band seismic wave simulation. We find that when the maximum to minimum frequency ratio is larger than 16, the CFS-PML will either fail to suppress the converted evanescent waves for grazing incident waves, or produce visible low-frequency reflection, depending on the value of α. In contrast, the double-pole CFS-PML can simultaneously suppress the converted evanescent waves and avoid low-frequency reflections with proper parameter values. We analyse the different roles of the double-pole CFS-PML parameters and propose optimal selections of these parameters. Numerical tests show that the double-pole CFS-PML with the optimal parameters can generate satisfactory results for broad-band seismic wave simulations.

  3. Numerical details and SAS programs for parameter recovery of the SB distribution

    Treesearch

    Bernard R. Parresol; Teresa Fidalgo Fonseca; Carlos Pacheco Marques

    2010-01-01

    The four-parameter SB distribution has seen widespread use in growth-and-yield modeling because it covers a broad spectrum of shapes, fitting both positively and negatively skewed data and bimodal configurations. Two recent parameter recovery schemes, an approach whereby characteristics of a statistical distribution are equated with attributes of...

  4. Evidence for a Broad Relativistic Iron Line from the Neutron Star LMXB Ser X-1

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.

    2007-01-01

    We report on an analysis of XMM-Newton data from the neutron star low mass X-ray binary (LMXB) Serpens X-1 (Ser X-1). Spectral analysis of EPIC PN data indicates that the previously known broad iron Ka emission line in this source has a significantly skewed structure with a moderately extended red wing. The asymmetric shape of the line is well described with the laor and diskline models in XSPEC, which strongly supports an inner accretion disk origin of the line. To our knowledge this is the first strong evidence for a relativistic line in a neutron star LMXB. This finding suggests that the broad lines seen in other neutron star LMXBs likely originate from the inner disk as well. Detailed study of such lines opens up a new way to probe neutron star parameters and their strong gravitational fields. The laor model describes the line from Ser X-1 somewhat better than diskline, and suggests that the inner accretion disk radius is less than 6GM/c(exp 2). This is consistent with the weak magnetic fields of LMXBs, and may point towards a high compactness and rapid spin of the neutron star. Finally, the inferred source inclination angle in the approximate range 50-60 deg is consistent with the lack of dipping from Ser X-1.

  5. Chromospheric Variability: Analysis of 36 years of Time Series from the National Solar Observatory/Sacramento Peak Ca II K-line Monitoring Program

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Keil, Stephen L.; Worden, Simon P.

    2014-01-01

    Analysis of more than 36 years of time series of seven parameters measured in the NSO/AFRL/Sac Peak K-line monitoring program elucidates five elucidates five components of the variation: (1) the solar cycle (period approx. 11 years), (2) quasi-periodic variations (periods approx 100 days), (3) a broad band stochastic process (wide range of periods), (4) rotational modulation, and (5) random observational errors. Correlation and power spectrum analyses elucidate periodic and aperiodic variation of the chromospheric parameters. Time-frequency analysis illuminates periodic and quasi periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (1) and (2) at time scales in the range approx 0.1 - 10 years. These results using only full-disk data further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced by NASA's Kepler observatory. Component (3) consists of variations over a range of timescales, in the manner of a 1/f random noise process. A timedependent Wilson-Bappu effect appears to be present in the solar cycle variations (1), but not in the stochastic process (3). Component (4) characterizes differential rotation of the active regions, and (5) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The recent data suggest that the current cycle is starting late and may be relatively weak. The data analyzed in this paper can be found at the National Solar Observatory web site http://nsosp.nso.edu/cak_mon/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  6. Deriving physical parameters of unresolved star clusters. V. M 31 PHAT star clusters

    NASA Astrophysics Data System (ADS)

    de Meulenaer, P.; Stonkutė, R.; Vansevičius, V.

    2017-06-01

    Context. This study is the fifth of a series that investigates the degeneracy and stochasticity problems present in the determination of physical parameters such as age, mass, extinction, and metallicity of partially resolved or unresolved star cluster populations in external galaxies when using HST broad-band photometry. Aims: In this work we aim to derive parameters of star clusters using models with fixed and free metallicity based on the HST WFC3+ACS photometric system. The method is applied to derive parameters of a subsample of 1363 star clusters in the Andromeda galaxy observed with the HST. Methods: Following Paper III, we derive the star cluster parameters using a large grid of stochastic models that are compared to the six observed integrated broad-band WFC3+ACS magnitudes of star clusters. Results: We show that the age, mass, and extinction of the M 31 star clusters, derived assuming fixed solar metallicity, are in agreement with previous studies. We also demonstrate the ability of the WFC3+ACS photometric system to derive metallicity of star clusters older than 1 Gyr. We show that the metallicity derived using broad-band photometry of 36 massive M 31 star clusters is in good agreement with the metallicity derived using spectroscopy. Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A112

  7. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  8. Atmospheric simulator and calibration system for remote sensing radiometers

    NASA Technical Reports Server (NTRS)

    Holland, J. A.

    1983-01-01

    A system for calibrating the MAPS (measurement of air pollution from satellites) instruments was developed. The design of the system provides a capability for simulating a broad range of radiant energy source temperatures and a broad range of atmospheric pressures, temperatures, and pollutant concentrations for a single slab atmosphere. The system design and the system operation are described.

  9. The physical driver of the optical Eigenvector 1 in Quasar Main Sequence

    NASA Astrophysics Data System (ADS)

    Panda, Swayamtrupta; Czerny, Bożena; Wildy, Conor

    2017-11-01

    Quasars are complex sources, characterized by broad band spectra from radio through optical to X-ray band, with numerous emission and absorption features. This complexity leads to rich diagnostics. However, tet{bg92} used Principal Component Analysis (PCA), and with this analysis they were able to show significant correlations between the measured parameters. The leading component, related to Eigenvector 1 (EV1) was dominated by the anticorrelation between the Fe II optical emission and [OIII] line and EV1 alone contained 30% of the total variance. It opened a way in defining a quasar main sequence, in close analogy to the stellar main sequence on the Hertzsprung-Russel (HR) diagram ( tealt{sul01}). The question still remains which of the basic theoretically motivated parameters of an active nucleus (Eddington ratio, black hole mass, accretion rate, spin, and viewing angle) is the main driver behind the EV1. Here we limit ourselves to the optical waveband, and concentrate on theoretical modelling the Fe II to Hβ ratio, and we test the hypothesis that the physical driver of EV1 is the maximum of the accretion disk temperature, reflected in the shape of the spectral energy distribution (SED). We performed computations of the Hβ and optical Fe II for a broad range of SED peak position using CLOUDY photoionisation code. We assumed that both Hβ and Fe II emission come from the Broad Line Region represented as a constant density cloud in a plane-parallel geometry. We expected that a hotter disk continuum will lead to more efficient production of Fe II but our computations show that the Fe II to Hβ ratio actually drops with the rise of the disk temperature. Thus either hypothesis is incorrect, or approximations used in our paper for the description of the line emissivity is inadequate.

  10. K2xSn4–xS8–x (x = 0.65–1): a new metal sulfide for rapid and selective removal of Cs+, Sr2+ and UO22+ ions† †Electronic supplementary information (ESI) available: Raman spectra, thermogravimetric analysis, scanning electron microgram, X-ray crystallographic file (CIF) containing crystallographic refinement details, atomic coordinates with equivalent isotropic displacement parameters, anisotropic displacement parameters, and selected bond distances for KTS-3. See DOI: 10.1039/c5sc03040d

    PubMed Central

    Sarma, Debajit; Malliakas, Christos D.; Subrahmanyam, K. S.; Islam, Saiful M.

    2016-01-01

    The fission of uranium produces radionuclides, 137Cs and 90Sr, which are major constituents of spent nuclear fuel. The half-life of 137Cs and 90Sr is nearly 30 years and thus that makes them harmful to human life and the environment. The selective removal of these radionuclides in the presence of high salt concentrations from industrial nuclear waste is necessary for safe storage. Here we report the synthesis and crystal structure of K2xSn4–xS8–x (x = 0.65–1, KTS-3) a material which exhibits excellent Cs+, Sr2+ and UO22+ ion exchange properties in varying conditions. The compound adopts a layered structure which consists of exchangeable potassium ions sandwiched between infinite layers of octahedral and tetrahedral tin centers. K2xSn4–xS8–x (x = 0.65–1, KTS-3) crystallizes in the monoclinic space group P21/c with cell parameters a = 13.092(3) Å, b = 16.882(2) Å, c = 7.375(1) Å and β = 98.10(1)°. Refinement of the single crystal diffraction data revealed the presence of Sn vacancies in the tetrahedra that are long range ordered. The interlayer potassium ions of KTS-3 can be exchanged for Cs+, Sr2+ and UO22+. KTS-3 exhibits rapid and efficient ion exchange behavior in a broad pH range. The distribution coefficients (Kd) for KTS-3 are high for Cs+ (5.5 × 104), Sr2+ (3.9 × 105) and UO22+ (2.7 × 104) at neutral pH (7.4, 6.9, 5.7 ppm Cs+, Sr2+ and UO22+, respectively; V/m ∼ 1000 mL g–1). KTS-3 exhibits impressive Cs+, Sr2+ and UO22+ ion exchange properties in high salt concentration and over a broad pH range, which coupled with the low cost, environmentally friendly nature and facile synthesis underscores its potential in treating nuclear waste. PMID:29910868

  11. Strict Constraint Feasibility in Analysis and Design of Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Giesy, Daniel P.; Kenny, Sean P.

    2006-01-01

    This paper proposes a methodology for the analysis and design optimization of models subject to parametric uncertainty, where hard inequality constraints are present. Hard constraints are those that must be satisfied for all parameter realizations prescribed by the uncertainty model. Emphasis is given to uncertainty models prescribed by norm-bounded perturbations from a nominal parameter value, i.e., hyper-spheres, and by sets of independently bounded uncertain variables, i.e., hyper-rectangles. These models make it possible to consider sets of parameters having comparable as well as dissimilar levels of uncertainty. Two alternative formulations for hyper-rectangular sets are proposed, one based on a transformation of variables and another based on an infinity norm approach. The suite of tools developed enable us to determine if the satisfaction of hard constraints is feasible by identifying critical combinations of uncertain parameters. Since this practice is performed without sampling or partitioning the parameter space, the resulting assessments of robustness are analytically verifiable. Strategies that enable the comparison of the robustness of competing design alternatives, the approximation of the robust design space, and the systematic search for designs with improved robustness characteristics are also proposed. Since the problem formulation is generic and the solution methods only require standard optimization algorithms for their implementation, the tools developed are applicable to a broad range of problems in several disciplines.

  12. Computing the structural influence matrix for biological systems.

    PubMed

    Giordano, Giulia; Cuba Samaniego, Christian; Franco, Elisa; Blanchini, Franco

    2016-06-01

    We consider the problem of identifying structural influences of external inputs on steady-state outputs in a biological network model. We speak of a structural influence if, upon a perturbation due to a constant input, the ensuing variation of the steady-state output value has the same sign as the input (positive influence), the opposite sign (negative influence), or is zero (perfect adaptation), for any feasible choice of the model parameters. All these signs and zeros can constitute a structural influence matrix, whose (i, j) entry indicates the sign of steady-state influence of the jth system variable on the ith variable (the output caused by an external persistent input applied to the jth variable). Each entry is structurally determinate if the sign does not depend on the choice of the parameters, but is indeterminate otherwise. In principle, determining the influence matrix requires exhaustive testing of the system steady-state behaviour in the widest range of parameter values. Here we show that, in a broad class of biological networks, the influence matrix can be evaluated with an algorithm that tests the system steady-state behaviour only at a finite number of points. This algorithm also allows us to assess the structural effect of any perturbation, such as variations of relevant parameters. Our method is applied to nontrivial models of biochemical reaction networks and population dynamics drawn from the literature, providing a parameter-free insight into the system dynamics.

  13. Time Scale for Adiabaticity Breakdown in Driven Many-Body Systems and Orthogonality Catastrophe

    NASA Astrophysics Data System (ADS)

    Lychkovskiy, Oleg; Gamayun, Oleksandr; Cheianov, Vadim

    2017-11-01

    The adiabatic theorem is a fundamental result in quantum mechanics, which states that a system can be kept arbitrarily close to the instantaneous ground state of its Hamiltonian if the latter varies in time slowly enough. The theorem has an impressive record of applications ranging from foundations of quantum field theory to computational molecular dynamics. In light of this success it is remarkable that a practicable quantitative understanding of what "slowly enough" means is limited to a modest set of systems mostly having a small Hilbert space. Here we show how this gap can be bridged for a broad natural class of physical systems, namely, many-body systems where a small move in the parameter space induces an orthogonality catastrophe. In this class, the conditions for adiabaticity are derived from the scaling properties of the parameter-dependent ground state without a reference to the excitation spectrum. This finding constitutes a major simplification of a complex problem, which otherwise requires solving nonautonomous time evolution in a large Hilbert space.

  14. An approach to and web-based tool for infectious disease outbreak intervention analysis

    NASA Astrophysics Data System (ADS)

    Daughton, Ashlynn R.; Generous, Nicholas; Priedhorsky, Reid; Deshpande, Alina

    2017-04-01

    Infectious diseases are a leading cause of death globally. Decisions surrounding how to control an infectious disease outbreak currently rely on a subjective process involving surveillance and expert opinion. However, there are many situations where neither may be available. Modeling can fill gaps in the decision making process by using available data to provide quantitative estimates of outbreak trajectories. Effective reduction of the spread of infectious diseases can be achieved through collaboration between the modeling community and public health policy community. However, such collaboration is rare, resulting in a lack of models that meet the needs of the public health community. Here we show a Susceptible-Infectious-Recovered (SIR) model modified to include control measures that allows parameter ranges, rather than parameter point estimates, and includes a web user interface for broad adoption. We apply the model to three diseases, measles, norovirus and influenza, to show the feasibility of its use and describe a research agenda to further promote interactions between decision makers and the modeling community.

  15. Exo-Milankovitch Cycles. I. Orbits and Rotation States

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell; Barnes, Rory; Quinn, Thomas R.; Armstrong, John; Charnay, Benjamin; Wilhelm, Caitlyn

    2018-02-01

    The obliquity of the Earth, which controls our seasons, varies by only ∼2.°5 over ∼40,000 years, and its eccentricity varies by only ∼0.05 over 100,000 years. Nonetheless, these small variations influence Earth’s ice ages. For exoplanets, however, variations can be significantly larger. Previous studies of the habitability of moonless Earth-like exoplanets have found that high obliquities, high eccentricities, and dynamical variations can extend the outer edge of the habitable zone by preventing runaway glaciation (snowball states). We expand upon these studies by exploring the orbital dynamics with a semianalytic model that allows us to map broad regions of parameter space. We find that, in general, the largest drivers of obliquity variations are secular spin–orbit resonances. We show how the obliquity varies in several test cases, including Kepler-62 f, across a wide range of orbital and spin parameters. These obliquity variations, alongside orbital variations, will have a dramatic impact on the climates of such planets.

  16. Ecotoxicology and spatial modeling in population dynamics: an illustration with brown trout.

    PubMed

    Chaumot, Arnaud; Charles, Sandrine; Flammarion, Patrick; Auger, Pierre

    2003-05-01

    We developed a multiregion matrix population model to explore how the demography of a hypothetical brown trout population living in a river network varies in response to different spatial scenarios of cadmium contamination. Age structure, spatial distribution, and demographic and migration processes are taken into account in the model. Chronic or acute cadmium concentrations affect the demographic parameters at the scale of the river range. The outputs of the model constitute population-level end points (the asymptotic population growth rate, the stable age structure, and the asymptotic spatial distribution) that allow comparing the different spatial scenarios of contamination regarding the demographic response at the scale of the whole river network. An analysis of the sensitivity of these end points to lower order parameters enables us to link the local effects of cadmium to the global demographic behavior of the brown trout population. Such a link is of broad interest in the point of view of ecotoxicological management.

  17. A novel ultra-broadband single polarization single mode photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Jiang, Linghong; Zheng, Yi; Hou, Lantian; Zheng, Kai; Peng, Jiying; Zhao, Xingtao

    2017-08-01

    The concept of employing a central hole infiltrated with nematic liquid crystal (NLC) and two additional air holes in the core region is exploited to obtain an ultra-broadband single polarization single mode photonic crystal fiber (SPSM-PCF). The effects of structural parameters on the SPSM operation are studied using the full-vectorial finite element method. Numerical results show that the proposed structure can attain the SPSM operation bandwidth of 1610 nm (from 1.51 to 3.12 μm) with confinement loss lower than 0.01 dB/km. The SPSM operation range can also be widely tuned to shorter wavelengths by adjusting the structure parameters. And meanwhile, a broad dispersion-flattened SPSM PCF is also obtained around the communication wavelength. Moreover, the dual-core SPSM PCF has also been investigated, enabling potential applications in the wavelength splitter of 1.31 and 1.55 μm bands at a short fiber length of 1.629 mm with SPSM operation.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhuoyu; Yuan, Hongtao; Xie, Yanwu

    Carrier density and disorder are two crucial parameters that control the properties of correlated two-dimensional electron systems. Furthermore, in order to disentangle their individual contributions to quantum phenomena, independent tuning of these two parameters is required. By utilizing a hybrid liquid/solid electric dual-gate geometry acting on the conducting LaAlO 3/SrTiO 3 heterointerface, we obtain an additional degree of freedom to strongly modify the electron confinement profile and thus the strength of interfacial scattering, independent from the carrier density. A dual-gate controlled nonlinear Hall effect is a direct manifestation of this profile, which can be quantitatively understood by a Poisson–Schrödinger sub-bandmore » model. In particular, the large nonlinear dielectric response of SrTiO 3 enables a very wide range of tunable density and disorder, far beyond that for conventional semiconductors. This study provides a broad framework for understanding various reported phenomena at the LaAlO 3/SrTiO 3 interface.« less

  19. Numerical and Experimental Investigations of Humping Phenomena in Laser Micro Welding

    NASA Astrophysics Data System (ADS)

    Otto, Andreas; Patschger, Andreas; Seiler, Michael

    The Humping effect is a phenomenon which is observed approximately since 50 years in various welding procedures and is characterized by droplets due to a pile-up of the melt pool. It occurs within a broad range of process parameters. Particularly during micro welding, humping effect is critical due to typically high feed rates. In the past, essentially two approaches (fluid-dynamic approach of streaming melt within the molten pool and the Plateau-Rayleigh instability of a liquid jet) were discussed in order to explain the occurrence of the humping effect. But none of both can fully explain all observed effects. For this reason, experimental studies in micro welding of thin metal foils were performed in order to determine the influence of process parameters on the occurrence of humping effects. The experimental observations were compared with results from numerical multi-physical simulations (incorporating beam propagation, incoupling, heat transfer, fluid dynamics etc.) to provide a deeper understanding of the causes for hump formation.

  20. Growth of single crystals, thermal dependency of lattice parameters and Raman scattering in the Nd 2- xCe xCuO 4- δ system

    NASA Astrophysics Data System (ADS)

    Sadowski, W.; Hagemann, H.; François, M.; Bill, H.; Peter, M.; Walker, E.; Yvon, K.

    1990-09-01

    We report on the growth of Nd 2- xCe xCuO 4- δ single crystals (0< x<0.2) from Cu 2O flux. Free separated crystals with maximum size of 5x8x0.15 nm 3 have been obtained. Magnetic AC susceptibility measurements show a sharp superconducting transition at temperatures up to 23 K. The temperature dependence of the lattice parameters has been measured by means of X-ray powder diffraction between 10 K ( a=3.9413(3) Å, c=12.0290(18) Å) and 290 K ( a=3.9482(3) Å, c=12.0590(18) Å). Room temperature Raman spectra reveal a new band at 320 cm -1 which is not observed in Nd 2CuO 4. Raman spectra of crystals with Tc ranging from 7 to 22 K show a systematic intensity change of the broad band at 590 cm -1.

  1. Laser ignition of engines: a realistic option!

    NASA Astrophysics Data System (ADS)

    Weinrotter, M.; Srivastava, D. K.; Iskra, K.; Graf, J.; Kopecek, H.; Klausner, J.; Herdin, G.; Wintner, E.

    2006-01-01

    Due to the demands of the market to increase efficiencies and power densities of gas engines, existing ignition schemes are gradually reaching their limits. These limitations initially triggered the development of laser ignition as an effective alternative, first only for gas engines and now for a much wider range of internal combustion engines revealing a number of immediate advantages like no electrode erosion or flame kernel quenching. Furthermore and most noteworthy, already the very first engine tests about 5 years ago had resulted in a drastic reduction of NO x emissions. Within this broad range investigation, laser plasmas were generated by ns Nd-laser pulses and characterized by emission and Schlieren diagnostic methods. High-pressure chamber experiments with lean hydrogen-methane-air mixtures were successfully performed and allowed the determination of essential parameters like minimum pulse energies at different ignition pressures and temperatures as well as at variable fuel air compositions. Multipoint ignition was studied for different ignition point locations. In this way, relevant parameters were acquired allowing to estimate future laser ignition systems. Finally, a prototype diode-pumped passively Q-switched Nd:YAG laser was tested successfully at a gasoline engine allowing to monitor the essential operation characteristics. It is expected that laser ignition involving such novel solid-state lasers will allow much lower maintenance efforts.

  2. Climatic niche and flowering and fruiting phenology of an epiphytic plant

    PubMed Central

    Barve, Narayani; Martin, Craig E.; Peterson, A. Townsend

    2015-01-01

    Species have geographic distributions constrained by combinations of abiotic factors, biotic factors and dispersal-related factors. Abiotic requirements vary across the life stages for a species; for plant species, a particularly important life stage is when the plant flowers and develops seeds. A previous year-long experiment showed that ambient temperature of 5–35 °C, relative humidity of >50 % and ≤15 consecutive rainless days are crucial abiotic conditions for Spanish moss (Tillandsia usneoides L.). Here, we explore whether these optimal physiological intervals relate to the timing of the flowering and fruiting periods of Spanish moss across its range. As Spanish moss has a broad geographic range, we examined herbarium specimens to detect and characterize flowering/fruiting periods for the species across the Americas; we used high-temporal-resolution climatic data to assess the availability of optimal conditions for Spanish moss populations during each population's flowering period. We explored how long populations experience suboptimal conditions and found that most populations experience suboptimal conditions in at least one environmental dimension. Flowering and fruiting periods of Spanish moss populations are either being optimized for one or a few parameters or may be adjusted such that all parameters are suboptimal. Spanish moss populations appear to be constrained most closely by minimum temperature during this period. PMID:26359490

  3. Contribution of sonicate-fluid cultures and broad-range PCR to microbiological diagnosis in vascular graft infections.

    PubMed

    Kokosar Ulcar, Barbara; Lakic, Nikola; Jeverica, Samo; Pecavar, Blaz; Logar, Mateja; Cerar, Tjasa Kisek; Lejko-Zupanc, Tatjana

    2018-06-01

    Vascular graft infections (VGI) are associated with considerable morbidity and mortality, and antimicrobial treatment is an important adjunct to surgical treatment. While microbial aetiology of VGI is often difficult to determine, other techniques such as sonication of implanted material may be used to enhance the recovery of biofilm-associated organisms. We performed a retrospective analysis of 22 consecutive patients treated for VGI at University Medical Centre Ljubljana from May 2011 through January 2015. Explanted vascular grafts were flooded with sterile Ringer solution, sonicated for 1 min at a frequency of 40 kHz and inoculated on solid and liquid culture media. Aerobic and anaerobic cultures were performed, incubated for 14 days and any significant bacterial growth was quantitatively evaluated. Additionally, broad-range PCR from sonicate fluid was performed. Microbiological results were compared with the results of preoperatively taken blood cultures and the results of intraoperative tissue cultures (material from peri-graft collection). Identification of the causative organism (irrespective of the method) was achieved in 95.8%. Preoperative blood cultures were positive in 35.3%, intraoperative tissue cultures in 31.8%, sonicate fluid culture in 79.2%, while broad-range PCR from sonicate fluid was positive in 66.7%. In 37.5% the pathogen detected in sonicate fluid culture or broad-range PCR was the only positive microbiological result. Sonicate fluid culture and broad-range PCR from explanted vascular grafts may contribute to optimization of antimicrobial treatment. Optimal timing of antibiotic therapy before explantation should be further assessed to improve diagnostic yield.

  4. A paralogue of the phosphomutase-like gene family in Candida glabrata, CgPmu2, gained broad-range phosphatase activity due to a small number of clustered substitutions.

    PubMed

    Orlando, Kelly A; Iosue, Christine L; Leone, Sarah G; Davies, Danielle L; Wykoff, Dennis D

    2015-10-15

    Inorganic phosphate is required for a range of cellular processes, such as DNA/RNA synthesis and intracellular signalling. The phosphate starvation-inducible phosphatase activity of Candida glabrata is encoded by the gene CgPMU2 (C. glabrata phosphomutase-like protein). CgPMU2 is part of a three-gene family (∼75% identical) created through gene duplication in the C. glabrata clade; only CgPmu2 is a PHO-regulated broad range acid phosphatase. We identified amino acids that confer broad range phosphatase activity on CgPmu2 by creating fusions of sections of CgPMU2 with CgPMU1, a paralogue with little broad range phosphatase activity. We used site-directed mutagenesis on various fusions to sequentially convert CgPmu1 to CgPmu2. Based on molecular modelling of the Pmu proteins on to a histidine phosphatase crystal structure, clusters of amino acids were found in two distinct regions that were able to confer phosphatase activity. Substitutions in these two regions together conferred broad phosphatase activity on CgPmu1. Interestingly, one change is a histidine adjacent to the active site histidine of CgPmu2 and it exhibits a novel ability to partially replace the conserved active site histidine in CgPmu2. Additionally, a second amino acid change was able to confer nt phosphatase activity to CgPmu1, suggesting single amino acid changes neofunctionalize CgPmu2. © 2015 Authors; published by Portland Press Limited.

  5. Investigating the Fraction of Radio-Loud Quasars with High Velocity Broad Emission LInes

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anirban; Gilbert, Miranda; Brotherton, Michael S.

    2018-06-01

    Quasars show a bimodal distribution in their radio emission, with some having powerful radio-emitting jets (radio-loud), and most having weak or no jets (radio-quiet). Surveys have shown around 10% of of quasars have detectable radio emissions. These quasars are called radio-loud. Several multiwavelength studies have shown that radio-loud quasars have different properties than radio-quiet quasars. This fraction of radio-loud quasars to radio-quiet quasars has been assumed to be constant across all parameter space. In this study, we breakdown the parameter space with respect to the increasing velocity dispersion of broad emission lines. Our sample has been drawn from 2011 Shen et al. catalog of more than 100,000 quasars. In this study, we demonstrate that this fraction varies with respect to the increasing velocity dispersion (FWHM) of broad emission lines. We compare three different emission lines: H-Beta, MgII, and CIV. We observe with increasing FWHM of these three emission lines, fraction of radio-loud quasars within the subset increases. This poster presents our initial results into investigating whether the fraction of RL quasars remains 10% in different parameter space.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plogmaker, Stefan; Johansson, Erik M. J.; Rensmo, Haakan

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of {approx}8 to {approx}120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses ormore » pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.« less

  7. Ventilatory control in a primitive fish: signal conditioning via non-linear O2 affinity.

    PubMed

    Katz, S L

    1996-02-01

    Gas exchange in the gills of the air-breathing fish Amia calva was modelled to determine how the gills modify fluctuations in venous P O2. These fluctuations form the physiological signal for aerial ventilation in these fish. This study was performed to examine the signal conditioning role that the gills may play in the control system that regulates P O2. The model incorporated a non-linear Hb-O2 affinity relationship. Fluctuations in venous P O2 were modelled as sinusoids, covering a range of frequencies and amplitudes. Mean venous P O2 ranged from normoxic to hypoxic values. Over a broad range of parameters the gills amplify fluctuations in venous P O2 during transit to the arterial side. It was also observed that aquatic hypoxia reduces the effectiveness of the gills in maximizing arterial P O2, while increases in venous P O2 increase the effectiveness of the gills in the face of similar blood-water P O2 gradients. Each of these performance features is a consequence of the sigmoid Hb-O2 affinity relationship.

  8. Allosteric Control of Icosahedral Capsid Assembly

    PubMed Central

    Lazaro, Guillermo R.

    2017-01-01

    During the lifecycle of a virus, viral proteins and other components self-assemble to form an ordered protein shell called a capsid. This assembly process is subject to multiple competing constraints, including the need to form a thermostable shell while avoiding kinetic traps. It has been proposed that viral assembly satisfies these constraints through allosteric regulation, including the interconversion of capsid proteins among conformations with different propensities for assembly. In this article we use computational and theoretical modeling to explore how such allostery affects the assembly of icosahedral shells. We simulate assembly under a wide range of protein concentrations, protein binding affinities, and two different mechanisms of allosteric control. We find that, above a threshold strength of allosteric control, assembly becomes robust over a broad range of subunit binding affinities and concentrations, allowing the formation of highly thermostable capsids. Our results suggest that allostery can significantly shift the range of protein binding affinities that lead to successful assembly, and thus should be accounted for in models that are used to estimate interaction parameters from experimental data. PMID:27117092

  9. Broad-band UHF dipole array

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1985-01-01

    A 6X6 array of fan-dipoles was designed to operate in the 510 to 660 MHz frequency range for aircraft flight test and evaluation of a UHF radiometer system. A broad-band dipole design operating near the first resonance is detailed. Measured VSWR and radiation patterns for the dipole array demonstrate achievable bandwidths in the 35 percent to 40 percent range.

  10. Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition.

    PubMed

    Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A

    2016-08-01

    The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.

    PubMed

    Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W

    2015-07-23

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.

  12. A Data-Driven Approach to Develop Physically Sound Predictors: Application to Depth-Averaged Velocities and Drag Coefficients on Vegetated Flows

    NASA Astrophysics Data System (ADS)

    Tinoco, R. O.; Goldstein, E. B.; Coco, G.

    2016-12-01

    We use a machine learning approach to seek accurate, physically sound predictors, to estimate two relevant flow parameters for open-channel vegetated flows: mean velocities and drag coefficients. A genetic programming algorithm is used to find a robust relationship between properties of the vegetation and flow parameters. We use data published from several laboratory experiments covering a broad range of conditions to obtain: a) in the case of mean flow, an equation that matches the accuracy of other predictors from recent literature while showing a less complex structure, and b) for drag coefficients, a predictor that relies on both single element and array parameters. We investigate different criteria for dataset size and data selection to evaluate their impact on the resulting predictor, as well as simple strategies to obtain only dimensionally consistent equations, and avoid the need for dimensional coefficients. The results show that a proper methodology can deliver physically sound models representative of the processes involved, such that genetic programming and machine learning techniques can be used as powerful tools to study complicated phenomena and develop not only purely empirical, but "hybrid" models, coupling results from machine learning methodologies into physics-based models.

  13. Mechanism of voltage-gated channel formation in lipid membranes.

    PubMed

    Guidelli, Rolando; Becucci, Lucia

    2016-04-01

    Although several molecular models for voltage-gated ion channels in lipid membranes have been proposed, a detailed mechanism accounting for the salient features of experimental data is lacking. A general treatment accounting for peptide dipole orientation in the electric field and their nucleation and growth kinetics with ion channel formation is provided. This is the first treatment that explains all the main features of the experimental current-voltage curves of peptides forming voltage-gated channels available in the literature. It predicts a regime of weakly voltage-dependent conductance, followed by one of strong voltage-dependent conductance at higher voltages. It also predicts values of the parameters expressing the exponential dependence of conductance upon voltage and peptide bulk concentration for both regimes, in good agreement with those reported in the literature. Most importantly, the only two adjustable parameters involved in the kinetics of nucleation and growth of ion channels can be varied over broad ranges without affecting the above predictions to a significant extent. Thus, the fitting of experimental current-voltage curves stems naturally from the treatment and depends only slightly upon the choice of the kinetic parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Adaptation of cardiovascular system stent implants.

    PubMed

    Ostasevicius, Vytautas; Tretsyakou-Savich, Yahor; Venslauskas, Mantas; Bertasiene, Agne; Minchenya, Vladimir; Chernoglaz, Pavel

    2018-06-27

    Time-consuming design and manufacturing processes are a serious disadvantage when adapting human cardiovascular implants as they cause unacceptable delays after the decision to intervene surgically has been made. An ideal cardiovascular implant should have a broad range of characteristics such as strength, viscoelasticity and blood compatibility. The present research proposes the sequence of the geometrical adaptation procedures and presents their results. The adaptation starts from the identification of a person's current health status while performing abdominal aortic aneurysm (AAA) imaging, which is a point of departure for the mathematical model of a cardiovascular implant. The computerized tomography scan shows the patient-specific geometry parameters of AAA and helps to create a model using COMSOL Multiphysics software. The initial parameters for flow simulation are taken from the results of a patient survey. The simulation results allow choosing the available shape of an implant which ensures a non-turbulent flow. These parameters are essential for the design and manufacturing of an implant prototype which should be tested experimentally for the assurance that the mathematical model is adequate to a physical one. The article gives a focused description of competences and means that are necessary to achieve the shortest possible preparation of the adapted cardiovascular implant for the surgery.

  15. A sparse representation of gravitational waves from precessing compact binaries

    NASA Astrophysics Data System (ADS)

    Blackman, Jonathan; Szilagyi, Bela; Galley, Chad; Tiglio, Manuel

    2014-03-01

    With the advanced generation of gravitational wave detectors coming online in the near future, there is a need for accurate models of gravitational waveforms emitted by binary neutron stars and/or black holes. Post-Newtonian approximations work well for the early inspiral and there are models covering the late inspiral as well as merger and ringdown for the non-precessing case. While numerical relativity simulations have no difficulty with precession and can now provide accurate waveforms for a broad range of parameters, covering the 7 dimensional precessing parameter space with ~107 simulations is not feasible. There is still hope, as reduced order modelling techniques have been highly successful in reducing the impact of the curse of dimensionality for lower dimensional cases. We construct a reduced basis of Post-Newtonian waveforms for the full parameter space with mass ratios up to 10 and spins up to 0 . 9 , and find that for the last 100 orbits only ~ 50 waveforms are needed. The huge compression relies heavily on a reparametrization which seeks to reduce the non-linearity of the waveforms. We also show that the addition of merger and ringdown only mildly increases the size of the basis.

  16. Modeling of transport phenomena in tokamak plasmas with neural networks

    DOE PAGES

    Meneghini, Orso; Luna, Christopher J.; Smith, Sterling P.; ...

    2014-06-23

    A new transport model that uses neural networks (NNs) to yield electron and ion heat ux pro les has been developed. Given a set of local dimensionless plasma parameters similar to the ones that the highest delity models use, the NN model is able to efficiently and accurately predict the ion and electron heat transport pro les. As a benchmark, a NN was built, trained, and tested on data from the 2012 and 2013 DIII-D experimental campaigns. It is found that NN can capture the experimental behavior over the majority of the plasma radius and across a broad range ofmore » plasma regimes. Although each radial location is calculated independently from the others, the heat ux pro les are smooth, suggesting that the solution found by the NN is a smooth function of the local input parameters. This result supports the evidence of a well-de ned, non-stochastic relationship between the input parameters and the experimentally measured transport uxes. Finally, the numerical efficiency of this method, requiring only a few CPU-μs per data point, makes it ideal for scenario development simulations and real-time plasma control.« less

  17. Effect of Antimicrobial Peptide KSL-W on Human Gingival Tissue and C. albicans Growth, Transition and Secreted Aspartyl Proteinase (SAPS) 2, 4, 5 and 6 Expressions

    DTIC Science & Technology

    2016-07-01

    broad range of antibacterial activity and could play a role in preventing microbial infections(Decanis et al., 2009), (Zaslof, 2002). These antimicrobial...range of antibacterial activity and could play a role in preventing microbial infections(Decanis et al., 2009),(Zaslof, 2002). These antimicrobial...KSL- W (KKVVFWVKFK)(Na et al., 2007), which possess a broad range of antibacterial activity . It killed selected strains of non-oral and oral

  18. A Method for Assessing the Quality of Model-Based Estimates of Ground Temperature and Atmospheric Moisture Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Lin, Ching I.; Stajner, Ivanka; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed for validating model-based estimates of atmospheric moisture and ground temperature using satellite data. The approach relates errors in estimates of clear-sky longwave fluxes at the top of the Earth-atmosphere system to errors in geophysical parameters. The fluxes include clear-sky outgoing longwave radiation (CLR) and radiative flux in the window region between 8 and 12 microns (RadWn). The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data, and multiple global four-dimensional data assimilation (4-DDA) products. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic clear-sky longwave fluxes from two different 4-DDA data sets. Simple linear regression is used to relate the clear-sky longwave flux discrepancies to discrepancies in ground temperature ((delta)T(sub g)) and broad-layer integrated atmospheric precipitable water ((delta)pw). The slopes of the regression lines define sensitivity parameters which can be exploited to help interpret mismatches between satellite observations and model-based estimates of clear-sky longwave fluxes. For illustration we analyze the discrepancies in the clear-sky longwave fluxes between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS2) and a recent operational version of the European Centre for Medium-Range Weather Forecasts data assimilation system. The analysis of the synthetic clear-sky flux data shows that simple linear regression employing (delta)T(sub g)) and broad layer (delta)pw provides a good approximation to the full radiative transfer calculations, typically explaining more thin 90% of the 6 hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters, Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for (delta)T(sub g) to approx. 20% for the lower tropospheric moisture between 500 hPa and surface. The regression relationships developed from the synthetic flux data, together with CLR and RadWn observed with the Clouds and Earth Radiant Energy System instrument, ire used to assess the quality of the GEOS2 T(sub g) and pw. Results showed that the GEOS2 T(sub g) is too cold over land, and pw in upper layers is too high over the tropical oceans and too low in the lower atmosphere.

  19. Wideband characterization of printed circuit board materials up to 50 ghz

    NASA Astrophysics Data System (ADS)

    Rakov, Aleksei

    A traveling-wave technique developed a few years ago in the Missouri S&T EMC Laboratory has been employed until now for characterization of PCB materials over a broad frequency range up to 30 GHz. This technique includes measuring S-parameters of the specially designed PCB test vehicles. An extension of the frequency range of printed circuit board laminate dielectric and copper foil characterization is an important problem. In this work, a new PCB test vehicle design for operating up to 50 GHz has been proposed. As the frequency range of measurements increases, the analysis of errors and uncertainties in measuring dielectric properties becomes increasingly important. Formulas for quantification of two major groups of errors, repeatability (manufacturing variability) and reproducibility (systematic) errors, in extracting dielectric constant (DK) and dissipation factor (DK) have been derived, and computations for a number of cases are presented. Conductor (copper foil) surface roughness of PCB interconnects is an important factor, which affects accuracy of DK and DF measurements. This work describes a new algorithm for semi-automatic characterization of copper foil profiles on optical or scanning electron microscopy (SEM) pictures of signal traces. The collected statistics of numerous copper foil roughness profiles allows for introducing a new metric for roughness characterization of PCB interconnects. This is an important step to refining the measured DK and DF parameters from roughness contributions. The collected foil profile data and its analysis allow for developing "design curves", which could be used by SI engineers and electronics developers in their designs.

  20. Evaluation of an empirical monitor output estimation in carbon ion radiotherapy.

    PubMed

    Matsumura, Akihiko; Yusa, Ken; Kanai, Tatsuaki; Mizota, Manabu; Ohno, Tatsuya; Nakano, Takashi

    2015-09-01

    A conventional broad beam method is applied to carbon ion radiotherapy at Gunma University Heavy Ion Medical Center. According to this method, accelerated carbon ions are scattered by various beam line devices to form 3D dose distribution. The physical dose per monitor unit (d/MU) at the isocenter, therefore, depends on beam line parameters and should be calibrated by a measurement in clinical practice. This study aims to develop a calculation algorithm for d/MU using beam line parameters. Two major factors, the range shifter dependence and the field aperture effect, are measured via PinPoint chamber in a water phantom, which is an identical setup as that used for monitor calibration in clinical practice. An empirical monitor calibration method based on measurement results is developed using a simple algorithm utilizing a linear function and a double Gaussian pencil beam distribution to express the range shifter dependence and the field aperture effect. The range shifter dependence and the field aperture effect are evaluated to have errors of 0.2% and 0.5%, respectively. The proposed method has successfully estimated d/MU with a difference of less than 1% with respect to the measurement results. Taking the measurement deviation of about 0.3% into account, this result is sufficiently accurate for clinical applications. An empirical procedure to estimate d/MU with a simple algorithm is established in this research. This procedure allows them to use the beam time for more treatments, quality assurances, and other research endeavors.

  1. Parameters and Scales Used to Assess and Report Findings From Stroboscopy: A Systematic Review.

    PubMed

    Bonilha, Heather Shaw; Desjardins, Maude; Garand, Kendrea L; Martin-Harris, Bonnie

    2017-11-02

    Laryngeal endoscopy with stroboscopy, a critical component of the assessment of voice disorders, is rarely used as a treatment outcome measure in the scientific literature. We hypothesized that this is because of the lack of a widely used standardized, validated, and reliable method to assess and report laryngeal anatomy and physiology, and undertook a systematic literature review to determine the extent of the inconsistencies of the parameters and scales used in voice treatment outcome studies. Systematic literature review. We searched PubMed, Ovid, and Cochrane for studies where laryngeal endoscopy with stroboscopy was used as a treatment outcome measure with search terms representing "stroboscopy" and "treatment" guided by Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement standards. In the 62 included articles, we identified 141 terms representing 49 different parameters, which were further classified into 20 broad categories. The six most common parameters were magnitude of glottal gap, mucosal wave amplitude, location or shape of glottal gap, regularity of vibration, phase symmetry, and presence and size of specific lesions. Parameters were assessed on scales ranging from binary to 100 points. The number of scales used for each parameter varied from 1 to 24, with an average of four different scales per parameter. There is a lack of agreement in the scientific literature regarding which parameters should be assessed to measure voice treatment outcomes and which terms and scales should be used for each parameter. This greatly diminishes comparison and clinical implementation of the results of treatment outcomes research in voice disorders. We highlight a previously published tool and recommend it for future use in research and clinical settings. Copyright © 2017. Published by Elsevier Inc.

  2. Dynamics of Mass Transfer in Wide Symbiotic Systems

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Karovska, M.; Sasselov, D.

    2010-01-01

    We investigate the formation of accretion disks around the secondary in detached systems consisting of an Asymptotic Giant Branch (AGB) star and a compact accreting companion as a function of mass loss rate and orbital parameters. In particular, we study winds from late-type stars that are gravitationally focused by a companion in a wide binary system using hydrodynamical simulations. For a typical slow and massive wind from an evolved star there is a stream flow between the stars with accretion rates of a few percent of the mass loss from the primary. Mass transfer through a focused wind is an important mechanism for a broad range of interacting binary systems and can explain the formation of Barium stars and other chemically peculiar stars.

  3. Modified nonlinear amplifying loop mirror for mode-locked fibre oscillators with record-high energy and high-average-power pulsed output

    NASA Astrophysics Data System (ADS)

    Kobtsev, Sergey; Ivanenko, Alexey; Smirnov, Sergey; Kokhanovsky, Alexey

    2018-02-01

    The present work proposes and studies approaches for development of new modified non-linear amplifying loop mirror (NALM) allowing flexible and dynamic control of their non-linear properties within a relatively broad range of radiation powers. Using two independently pumped active media in the loop reflector constitutes one of the most promising approaches to development of better NALM with nonlinear properties controllable independently of the intra-cavity radiation power. This work reports on experimental and theoretical studies of the proposed redesigned NALM allowing both a higher level of energy parameters of output generated by mode-locked fibre oscillators and new possibilities of switching among different mode-locked regimes.

  4. Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system.

    PubMed

    Soni, Jalpa; Purwar, Harsh; Lakhotia, Harshit; Chandel, Shubham; Banerjee, Chitram; Kumar, Uday; Ghosh, Nirmalya

    2013-07-01

    A novel spectroscopic Mueller matrix system has been developed and explored for both fluorescence and elastic scattering polarimetric measurements from biological tissues. The 4 × 4 Mueller matrix measurement strategy is based on sixteen spectrally resolved (λ = 400 - 800 nm) measurements performed by sequentially generating and analyzing four elliptical polarization states. Eigenvalue calibration of the system ensured high accuracy of Mueller matrix measurement over a broad wavelength range, either for forward or backscattering geometry. The system was explored for quantitative fluorescence and elastic scattering spectroscopic polarimetric studies on normal and precancerous tissue sections from human uterine cervix. The fluorescence spectroscopic Mueller matrices yielded an interesting diattenuation parameter, exhibiting differences between normal and precancerous tissues.

  5. Electrical transport properties of single-crystal CaB 6 , SrB 6 , and BaB 6

    DOE PAGES

    Stankiewicz, Jolanta; Rosa, Priscila F. S.; Schlottmann, Pedro; ...

    2016-09-22

    We measure the electrical resistivity and Hall effect of alkaline-earth-metal hexaboride single crystals as a function of temperature, hydrostatic pressure, and magnetic field. The transport properties vary weakly with the external parameters and are modeled in terms of intrinsic variable-valence defects. These defects can stay either in (1) delocalized shallow levels or in (2) localized levels resonant with the conduction band, which can be neutral or negatively charged. Satisfactory agreement is obtained for electronic transport properties in a broad temperature and pressure range, though fitting the magnetoresistance is less straightforward and a combination of various mechanisms is needed to explainmore » the field and temperature dependences.« less

  6. Structural and spectral properties of MgZnO2:Sm3+ phosphor

    NASA Astrophysics Data System (ADS)

    Rajput, Preasha; Sharma, Pallavi; Biswas, Pankaj; Kamni

    2018-05-01

    The samarium doped MgZnO2 phosphor was synthesized by the low-cost combustion method. The powder X-ray diffraction (XRD) analysis confirmed the crystallinity and phase purity of the phosphor. The lattice parameters were determined by indexing the diffraction peaks. The photoluminescence (PL) study revealed that the phosphor exhibited a broad excitation band in the UV region ranging between 200 to 350 nm. The 601 nm emission was ascribed to 4G5/2 to 6H7/2 transitions of the Sm3+ ion. The optical bandgap of MgZnO2:Sm3+ was obtained to be 3.56 eV. The phosphor can be projected as a useful material in X- and gamma-ray scintillators.

  7. Wave journal bearing with compressible lubricant--Part 1: The wave bearing concept and a comparison to the plain circular bearing

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1995-01-01

    To improve hydrodynamic journal bearing steady-state and dynamic performance, a new bearing concept, the wave journal bearing, was developed at the author's lab. This concept features a waved inner bearing diameter. Compared to other alternative bearing geometries used to improve bearing performance such as spiral or herring-bone grooves, steps, etc., the wave bearing's design is relatively simple and allows the shaft to rotate in either direction. A three-wave bearing operating with a compressible lubricant, i.e., gas is analyzed using a numerical code. Its performance is compared to a plain (truly) circular bearing over a broad range of bearing working parameters, e.g., bearing numbers from 0.01 to 100.

  8. A design procedure for a tension-wire stiffened truss-column

    NASA Technical Reports Server (NTRS)

    Greene, W. H.

    1980-01-01

    A deployable, tension wire stiffened, truss column configuration was considered for space structure applications. An analytical procedure, developed for design of the truss column and exercised in numerical studies, was based on equivalent beam stiffness coefficients in the classical analysis for an initially imperfect beam column. Failure constraints were formulated to be used in a combined weight/strength and nonlinear mathematical programming automated design procedure to determine the minimum mass column for a particular combination of design load and length. Numerical studies gave the mass characteristics of the truss column for broad ranges of load and length. Comparisons of the truss column with a baseline tubular column used a special structural efficiency parameter for this class of columns.

  9. Comparison of the Physiology of the Spaceflight and Hindlimb Suspended Rat

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Booth, F. W.

    1994-01-01

    The suspended rat has been used extensively as a simulation of the spaceflight animal. In suspension, hindlimbs are unloaded from the acceleration of gravity, much as they are in spaceflight. Comparisons of data from spaceflight (microgravity) and suspended (1G) rats have suggested that suspension my be an appropriate model, but no direct comparisons had been made between the spaceflight and suspended rat. Cosmos 2044 afforded the first opportunity to directly compare the effects of hindlimb suspension (HS) and spaceflight (SF) on a broad range of physiological and histological parameters. This paper reports on the comparison of skelton, skeletal muscle, heart, neural, pulmonary, kidney, liver, intestine, blood plasma, immune function, red blood cells, and endocrine and reproductive functions and systems.

  10. Spectrum simulation in DTSA-II.

    PubMed

    Ritchie, Nicholas W M

    2009-10-01

    Spectrum simulation is a useful practical and pedagogical tool. Particularly with complex samples or trace constituents, a simulation can help to understand the limits of the technique and the instrument parameters for the optimal measurement. DTSA-II, software for electron probe microanalysis, provides both easy to use and flexible tools for simulating common and less common sample geometries and materials. Analytical models based on (rhoz) curves provide quick simulations of simple samples. Monte Carlo models based on electron and X-ray transport provide more sophisticated models of arbitrarily complex samples. DTSA-II provides a broad range of simulation tools in a framework with many different interchangeable physical models. In addition, DTSA-II provides tools for visualizing, comparing, manipulating, and quantifying simulated and measured spectra.

  11. Car-Parrinello molecular dynamics study of the melting behaviors of n-atom (n = 6, 10) graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Shekaari, Ashkan; Abolhassani, Mohammad Reza

    2017-06-01

    First-principles molecular dynamics has been applied to inquire into the melting behaviors of n-atom (n = 6, 10) graphene quantum dots (GQD6 and zigzag GQD10) within the temperature range of T = 0-500 K. The temperature dependence of the geometry of each quantum dot is thoroughly evaluated via calculating the related shape deformation parameters and the eigenvalues of the quadrupole tensors. Examining the variations of some phase-transition indicators such as root-mean-square bond length fluctuations and mean square displacements broadly proposes the value of Tm = 70 K for the melting point of GQD6 while a continuous, two-stage phase transition has been concluded for zigzag GQD10.

  12. Fluid and particle transport of a hairy structure

    NASA Astrophysics Data System (ADS)

    Lee, Hongki; Lahooti, Mohsen; Kim, Daegyoum; Jung, Seyeong

    2017-11-01

    Hairy appendages of animals are used to capture particles, sense surrounding flow, and generate propulsive force. Due to the small size of the hairy structures, their hydrodynamics have been studied mostly in very low Reynolds number. In this work, in a broad range of Reynolds number, O(1) - O(100), flow structure and inertial particle dynamics around an array of two-dimensional cylinders are investigated numerically by using an immersed boundary method. Given flow fields, Maxey-Riley equation is adopted to examine particle dynamics. Here, we discuss the effects of Reynolds number, density ratio of inertial particles and fluid, and distance between cylinders on particle behaviors around a moving structure. In addition, drift volume of inertial particles is correlated with the model parameters.

  13. Electrical transport properties of single-crystal CaB 6 , SrB 6 , and BaB 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stankiewicz, Jolanta; Rosa, Priscila F. S.; Schlottmann, Pedro

    We measure the electrical resistivity and Hall effect of alkaline-earth-metal hexaboride single crystals as a function of temperature, hydrostatic pressure, and magnetic field. The transport properties vary weakly with the external parameters and are modeled in terms of intrinsic variable-valence defects. These defects can stay either in (1) delocalized shallow levels or in (2) localized levels resonant with the conduction band, which can be neutral or negatively charged. Satisfactory agreement is obtained for electronic transport properties in a broad temperature and pressure range, though fitting the magnetoresistance is less straightforward and a combination of various mechanisms is needed to explainmore » the field and temperature dependences.« less

  14. Origami structures for tunable thermal expansion

    NASA Astrophysics Data System (ADS)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  15. Correlation tests of the engine performance parameter by using the detrended cross-correlation coefficient

    NASA Astrophysics Data System (ADS)

    Dong, Keqiang; Gao, You; Jing, Liming

    2015-02-01

    The presence of cross-correlation in complex systems has long been noted and studied in a broad range of physical applications. We here focus on an aero-engine system as an example of a complex system. By applying the detrended cross-correlation (DCCA) coefficient method to aero-engine time series, we investigate the effects of the data length and the time scale on the detrended cross-correlation coefficients ρ DCCA ( T, s). We then show, for a twin-engine aircraft, that the engine fuel flow time series derived from the left engine and the right engine exhibit much stronger cross-correlations than the engine exhaust-gas temperature series derived from the left engine and the right engine do.

  16. The Environment-Power System Analysis Tool development program. [for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Wilcox, Katherine G.; Stevens, N. John; Putnam, Rand M.; Roche, James C.

    1989-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide engineers with the ability to assess the effects of a broad range of environmental interactions on space power systems. A unique user-interface-data-dictionary code architecture oversees a collection of existing and future environmental modeling codes (e.g., neutral density) and physical interaction models (e.g., sheath ionization). The user-interface presents the engineer with tables, graphs, and plots which, under supervision of the data dictionary, are automatically updated in response to parameter change. EPSAT thus provides the engineer with a comprehensive and responsive environmental assessment tool and the scientist with a framework into which new environmental or physical models can be easily incorporated.

  17. Wireless sensor for temperature and humidity measurement

    NASA Astrophysics Data System (ADS)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  18. Valley switch in a graphene superlattice due to pseudo-Andreev reflection

    NASA Astrophysics Data System (ADS)

    Beenakker, C. W. J.; Gnezdilov, N. V.; Dresselhaus, E.; Ostroukh, V. P.; Herasymenko, Y.; Adagideli, I.; Tworzydło, J.

    2018-06-01

    Dirac electrons in graphene have a valley degree of freedom that is being explored as a carrier of information. In that context of "valleytronics" one seeks to coherently manipulate the valley index. Here, we show that reflection from a superlattice potential can provide a valley switch: Electrons approaching a pristine-graphene-superlattice-graphene interface near normal incidence are reflected in the opposite valley. We identify the topological origin of this valley switch, by mapping the problem onto that of Andreev reflection from a topological superconductor, with the electron-hole degree of freedom playing the role of the valley index. The valley switch is ideal at a symmetry point of the superlattice potential, but remains close to 100% in a broad parameter range.

  19. Experiments for practical education in process parameter optimization for selective laser sintering to increase workpiece quality

    NASA Astrophysics Data System (ADS)

    Reutterer, Bernd; Traxler, Lukas; Bayer, Natascha; Drauschke, Andreas

    2016-04-01

    Selective Laser Sintering (SLS) is considered as one of the most important additive manufacturing processes due to component stability and its broad range of usable materials. However the influence of the different process parameters on mechanical workpiece properties is still poorly studied, leading to the fact that further optimization is necessary to increase workpiece quality. In order to investigate the impact of various process parameters, laboratory experiments are implemented to improve the understanding of the SLS limitations and advantages on an educational level. Experiments are based on two different workstations, used to teach students the fundamentals of SLS. First of all a 50 W CO2 laser workstation is used to investigate the interaction of the laser beam with the used material in accordance with varied process parameters to analyze a single-layered test piece. Second of all the FORMIGA P110 laser sintering system from EOS is used to print different 3D test pieces in dependence on various process parameters. Finally quality attributes are tested including warpage, dimension accuracy or tensile strength. For dimension measurements and evaluation of the surface structure a telecentric lens in combination with a camera is used. A tensile test machine allows testing of the tensile strength and the interpreting of stress-strain curves. The developed laboratory experiments are suitable to teach students the influence of processing parameters. In this context they will be able to optimize the input parameters depending on the component which has to be manufactured and to increase the overall quality of the final workpiece.

  20. Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1GHz

    PubMed Central

    Revil, A

    2013-01-01

    A model combining low-frequency complex conductivity and high-frequency permittivity is developed in the frequency range from 1 mHz to 1 GHz. The low-frequency conductivity depends on pore water and surface conductivities. Surface conductivity is controlled by the electrical diffuse layer, the outer component of the electrical double layer coating the surface of the minerals. The frequency dependence of the effective quadrature conductivity shows three domains. Below a critical frequency fp, which depends on the dynamic pore throat size Λ, the quadrature conductivity is frequency dependent. Between fp and a second critical frequency fd, the quadrature conductivity is generally well described by a plateau when clay minerals are present in the material. Clay-free porous materials with a narrow grain size distribution are described by a Cole-Cole model. The characteristic frequency fd controls the transition between double layer polarization and the effect of the high-frequency permittivity of the material. The Maxwell-Wagner polarization is found to be relatively negligible. For a broad range of frequencies below 1 MHz, the effective permittivity exhibits a strong dependence with the cation exchange capacity and the specific surface area. At high frequency, above the critical frequency fd, the effective permittivity reaches a high-frequency asymptotic limit that is controlled by the two Archie's exponents m and n like the low-frequency electrical conductivity. The unified model is compared with various data sets from the literature and is able to explain fairly well a broad number of observations with a very small number of textural and electrochemical parameters. It could be therefore used to interpret induced polarization, induction-based electromagnetic methods, and ground penetrating radar data to characterize the vadose zone. PMID:23576823

  1. Model of myosin node aggregation into a contractile ring: the effect of local alignment

    NASA Astrophysics Data System (ADS)

    Ojkic, Nikola; Wu, Jian-Qiu; Vavylonis, Dimitrios

    2011-09-01

    Actomyosin bundles frequently form through aggregation of membrane-bound myosin clusters. One such example is the formation of the contractile ring in fission yeast from a broad band of cortical nodes. Nodes are macromolecular complexes containing several dozens of myosin-II molecules and a few formin dimers. The condensation of a broad band of nodes into the contractile ring has been previously described by a search, capture, pull and release (SCPR) model. In SCPR, a random search process mediated by actin filaments nucleated by formins leads to transient actomyosin connections among nodes that pull one another into a ring. The SCPR model reproduces the transport of nodes over long distances and predicts observed clump-formation instabilities in mutants. However, the model does not generate transient linear elements and meshwork structures as observed in some wild-type and mutant cells during ring assembly. As a minimal model of node alignment, we added short-range aligning forces to the SCPR model representing currently unresolved mechanisms that may involve structural components, cross-linking and bundling proteins. We studied the effect of the local node alignment mechanism on ring formation numerically. We varied the new parameters and found viable rings for a realistic range of values. Morphologically, transient structures that form during ring assembly resemble those observed in experiments with wild-type and cdc25-22 cells. Our work supports a hierarchical process of ring self-organization involving components drawn together from distant parts of the cell followed by progressive stabilization.

  2. Synthesis of polycyclic spiroindolines by highly diastereoselective interrupted Ugi cascade reactions of 3-(2-isocyanoethyl)indoles.

    PubMed

    Saya, Jordy M; Oppelaar, Barry; Cioc, Răzvan C; van der Heijden, Gydo; Vande Velde, Christophe M L; Orru, Romano V A; Ruijter, Eelco

    2016-10-13

    We report a highly diastereoselective interrupted Ugi reaction to construct a broad range of structurally congested and stereochemically complex spiroindolines from tryptamine-derived isocyanides. The reaction is facilitated by using fluorinated alcohols (TFE or HFIP) as solvents and tolerates a broad range of amines, aldehydes and 2-isocyanoethylindoles to give polycyclic products in moderate to excellent yields.

  3. Promoting Equitable Biology Lab Instruction by Engaging All Students in a Broad Range of Science Practices: An Exploratory Study

    ERIC Educational Resources Information Center

    Strimaitis, Anna M.; Southerland, Sherry A.; Sampson, Victor; Enderle, Patrick; Grooms, Jonathon

    2017-01-01

    This study examines what students enrolled in the honors and general sections of a high school biology course offered at the same school learn when they have an opportunity to participate in a broad or narrow range of science practices during their laboratory experiences. The results of our analysis suggest that the students enrolled in the…

  4. Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides

    NASA Astrophysics Data System (ADS)

    Babicheva, Viktoriia E.

    2017-12-01

    We study photonic multilayer waveguides that include layers of materials and metamaterials with a hyperbolic dispersion (HMM). We consider the long-range propagation of plasmon and phonon polaritons at the dielectric-HMM interface in different waveguide geometries (single boundary or different layers of symmetric cladding). In contrast to the traditional analysis of geometrical parameters, we make an emphasis on the optical properties of constituent materials: solving dispersion equations, we analyze how dielectric and HMM permittivities affect propagation length and mode size of waveguide eigenmodes. We derive figures of merit that should be used for each waveguide in a broad range of permittivity values as well as compare them with plasmonic waveguides. We show that the conventional plasmonic quality factor, which is the ratio of real to imaginary parts of permittivity, is not applicable to the case of waveguides with complex structure. Both telecommunication wavelengths and mid-infrared spectral ranges are of interest considering recent advances in van der Waals materials, such as hexagonal boron nitride. We evaluate the performance of the waveguides with hexagonal boron nitride in the range where it possesses hyperbolic dispersion (wavelength 6.3-7.3 μm), and we show that these waveguides with natural hyperbolic properties have higher propagation lengths than metal-based HMM waveguides.

  5. GRB 091127: The cooling break race on magnetic fuel

    NASA Astrophysics Data System (ADS)

    Filgas, R.; Greiner, J.; Schady, P.; Krühler, T.; Updike, A. C.; Klose, S.; Nardini, M.; Kann, D. A.; Rossi, A.; Sudilovsky, V.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Nicuesa Guelbenzu, A.; Olivares E., F.; Rau, A.

    2011-11-01

    Aims: Using high-quality, broad-band afterglow data for GRB 091127, we investigate the validity of the synchrotron fireball model for gamma-ray bursts (GRBs), and infer physical parameters of the ultra-relativistic outflow. Methods: We used multi-wavelength (NIR to X-ray) follow-up observations obtained with GROND simultaneously in the g'r'i'z'JH filters and the XRT onboard the Swift satellite in the 0.3 to 10 keV energy range. The resulting afterglow light curve is of excellent accuracy with relative photometric errors as low as 1%, and the spectral energy distribution (SED) is well-sampled over 5 decades in energy. These data present one of the most comprehensive observing campaigns for a single GRB afterglow and allow us to test several proposed emission models and outflow characteristics in unprecedented detail. Results: Both the multi-color light curve and the broad-band SED of the afterglow of GRB 091127 show evidence of a cooling break moving from high to lower energies. The early light curve is well described by a broken power-law, where the initial decay in the optical/NIR wavelength range is considerably flatter than at X-rays. Detailed fitting of the time-resolved SED shows that the break is very smooth with a sharpness index of 2.2 ± 0.2, and evolves towards lower frequencies as a power-law with index - 1.23 ± 0.06. These are the first accurate and contemporaneous measurements of both the sharpness of the spectral break and its time evolution. Conclusions: The measured evolution of the cooling break (νc ∝ t~-1.2) is not consistent with the predictions of the standard model, wherein νc ∝ t~-0.5 is expected. A possible explanation for the observed behavior is a time dependence of the microphysical parameters, in particular the fraction of the total energy in the magnetic field ɛB. This conclusion provides further evidence that the standard fireball model is too simplistic, and time-dependent micro-physical parameters may be required to model the growing number of well-sampled afterglow light curves. Tables 3 and 4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/535/A57

  6. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: SPECTRAL VARIATION ON KUIPER BELT OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, Wesley C.; Brown, Michael E.; Glass, Florian, E-mail: wesley.fraser@nrc.ca

    2015-05-01

    Here, we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 (WFC3) Test of Surfaces in the Outer Solar System. Twelve targets were re-observed with the WFC3 in the optical and NIR wavebands designed to complement those used during the first visit. Additionally, all of the observations originally presented by Fraser and Brown were reanalyzed through the same updated photometry pipeline. A re-analysis of the optical and NIR color distribution reveals a bifurcated optical color distribution and only two identifiable spectral classes, each of which occupies a broad range of colors and has correlatedmore » optical and NIR colors, in agreement with our previous findings. We report the detection of significant spectral variations on five targets which cannot be attributed to photometry errors, cosmic rays, point-spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have a broad range of dynamical classes and absolute magnitudes, exhibit a broad range of apparent magnitude variations, and are found in both compositional classes. The spectrally variable objects with sufficiently accurate colors for spectral classification maintain their membership, belonging to the same class at both epochs. 2005 TV189 exhibits a sufficiently broad difference in color at the two epochs that span the full range of colors of the neutral class. This strongly argues that the neutral class is one single class with a broad range of colors, rather than the combination of multiple overlapping classes.« less

  7. Structural and luminescence properties of self-yellow emitting undoped and (Ca, Ba, Sr)-doped Zn2V2O7 phosphors synthesized by combustion method

    NASA Astrophysics Data System (ADS)

    Foka, Kewele E.; Dejene, Birhanu F.; Koao, Lehlohonolo F.; Swart, Hendrik C.

    2018-04-01

    A self-activated yellow emitting Zn2V2O7 was synthesized by combustion method. The influence of the processing parameters such as synthesis temperature and dopants concentration on the structure, morphology and luminescence properties was investigated. The X-ray diffraction (XRD) analysis confirmed that the samples have a tetragonal structure and no significant structural change was observed in varying both the synthesis temperature and the dopants concentration. The estimated average crystallite size was 78 nm for the undoped samples synthesized at different temperatures and 77 nm for the doped samples. Scanning electron microscope (SEM) images showed agglomerated hexagonal-shaped particles with straight edges at low temperatures and the shape of the particles changed to cylindrical structures at moderate temperatures. At higher temperatures, the morphology changed completely. However, the morphologies of the doped samples looked alike. The photoluminescence (PL) of the product exhibited broad emission bands ranging from 400 to 800 nm. The best luminescence intensity was observed for the undoped Zn2V2O7 samples and those synthesized at 600 ℃ . Any further increase in synthesis temperature, type and concentration of dopants led to a decrease in the luminescence intensity. The broad band emission peak of Zn2V2O7 consisted of two broad bands corresponding to emissions from the Em1 (3T2→1A1) and Em2 (3T1→1A1) transitions.

  8. Cooperative bi-exponential decay of dye emission coupled via plasmons.

    PubMed

    Lyvers, David P; Moazzezi, Mojtaba; de Silva, Vashista C; Brown, Dean P; Urbas, Augustine M; Rostovtsev, Yuri V; Drachev, Vladimir P

    2018-06-22

    Bi-exponential decay of dye fluorescence near the surface of plasmonic metamaterials and core-shell nanoparticles is shown to be an intrinsic property of the coupled system. Indeed, the Dicke, cooperative states involve two groups of transitions: super-radiant, from the most excited to the ground states and sub-radiant, which cannot reach the ground state. The relaxation in the sub-radiant system occurs mainly due to the interaction with the plasmon modes. Our theory shows that the relaxation leads to the population of the sub-radiant states by dephasing the super-radiant Dicke states giving rise to the bi-exponential decay in agreement with the experiments. We use a set of metamaterial samples consisting of gratings of paired silver nanostrips coated with Rh800 dye molecules, having resonances in the same spectral range. The bi-exponential decay is demonstrated for Au\\SiO 2 \\ATTO655 core-shell nanoparticles as well, which persists even when averaging over a broad range of the coupling parameter.

  9. Search for Invisible Decays of a Dark Photon Produced in e^{+}e^{-} Collisions at BaBar.

    PubMed

    Lees, J P; Poireau, V; Tisserand, V; Grauges, E; Palano, A; Eigen, G; Brown, D N; Derdzinski, M; Giuffrida, A; Kolomensky, Yu G; Fritsch, M; Koch, H; Schroeder, T; Hearty, C; Mattison, T S; McKenna, J A; So, R Y; Blinov, V E; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Lankford, A J; Gary, J W; Long, O; Eisner, A M; Lockman, W S; Panduro Vazquez, W; Chao, D S; Cheng, C H; Echenard, B; Flood, K T; Hitlin, D G; Kim, J; Miyashita, T S; Ongmongkolkul, P; Porter, F C; Röhrken, M; Huard, Z; Meadows, B T; Pushpawela, B G; Sokoloff, M D; Sun, L; Smith, J G; Wagner, S R; Bernard, D; Verderi, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Fioravanti, E; Garzia, I; Luppi, E; Santoro, V; Calcaterra, A; de Sangro, R; Finocchiaro, G; Martellotti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rotondo, M; Zallo, A; Passaggio, S; Patrignani, C; Lacker, H M; Bhuyan, B; Mallik, U; Chen, C; Cochran, J; Prell, S; Ahmed, H; Gritsan, A V; Arnaud, N; Davier, M; Le Diberder, F; Lutz, A M; Wormser, G; Lange, D J; Wright, D M; Coleman, J P; Gabathuler, E; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Di Lodovico, F; Sacco, R; Cowan, G; Banerjee, Sw; Brown, D N; Davis, C L; Denig, A G; Gradl, W; Griessinger, K; Hafner, A; Schubert, K R; Barlow, R J; Lafferty, G D; Cenci, R; Jawahery, A; Roberts, D A; Cowan, R; Robertson, S H; Dey, B; Neri, N; Palombo, F; Cheaib, R; Cremaldi, L; Godang, R; Summers, D J; Taras, P; De Nardo, G; Sciacca, C; Raven, G; Jessop, C P; LoSecco, J M; Honscheid, K; Kass, R; Gaz, A; Margoni, M; Posocco, M; Simi, G; Simonetto, F; Stroili, R; Akar, S; Ben-Haim, E; Bomben, M; Bonneaud, G R; Calderini, G; Chauveau, J; Marchiori, G; Ocariz, J; Biasini, M; Manoni, E; Rossi, A; Batignani, G; Bettarini, S; Carpinelli, M; Casarosa, G; Chrzaszcz, M; Forti, F; Giorgi, M A; Lusiani, A; Oberhof, B; Paoloni, E; Rama, M; Rizzo, G; Walsh, J J; Smith, A J S; Anulli, F; Faccini, R; Ferrarotto, F; Ferroni, F; Pilloni, A; Piredda, G; Bünger, C; Dittrich, S; Grünberg, O; Heß, M; Leddig, T; Voß, C; Waldi, R; Adye, T; Wilson, F F; Emery, S; Vasseur, G; Aston, D; Cartaro, C; Convery, M R; Dorfan, J; Dunwoodie, W; Ebert, M; Field, R C; Fulsom, B G; Graham, M T; Hast, C; Innes, W R; Kim, P; Leith, D W G S; Luitz, S; MacFarlane, D B; Muller, D R; Neal, H; Ratcliff, B N; Roodman, A; Sullivan, M K; Va'vra, J; Wisniewski, W J; Purohit, M V; Wilson, J R; Randle-Conde, A; Sekula, S J; Bellis, M; Burchat, P R; Puccio, E M T; Alam, M S; Ernst, J A; Gorodeisky, R; Guttman, N; Peimer, D R; Soffer, A; Spanier, S M; Ritchie, J L; Schwitters, R F; Izen, J M; Lou, X C; Bianchi, F; De Mori, F; Filippi, A; Gamba, D; Lanceri, L; Vitale, L; Martinez-Vidal, F; Oyanguren, A; Albert, J; Beaulieu, A; Bernlochner, F U; King, G J; Kowalewski, R; Lueck, T; Nugent, I M; Roney, J M; Sobie, R J; Tasneem, N; Gershon, T J; Harrison, P F; Latham, T E; Prepost, R; Wu, S L

    2017-09-29

    We search for single-photon events in 53  fb^{-1} of e^{+}e^{-} collision data collected with the BABAR detector at the PEP-II B-Factory. We look for events with a single high-energy photon and a large missing momentum and energy, consistent with production of a spin-1 particle A^{'} through the process e^{+}e^{-}→γA^{'}; A^{'}→invisible. Such particles, referred to as "dark photons," are motivated by theories applying a U(1) gauge symmetry to dark matter. We find no evidence for such processes and set 90% confidence level upper limits on the coupling strength of A^{'} to e^{+}e^{-} in the mass range m_{A^{'}}≤8  GeV. In particular, our limits exclude the values of the A^{'} coupling suggested by the dark-photon interpretation of the muon (g-2)_{μ} anomaly, as well as a broad range of parameters for the dark-sector models.

  10. Analysis encapsulation of fiber Bragg gratings into polydimethylsiloxane for the needs of dynamic weighing

    NASA Astrophysics Data System (ADS)

    Fajkus, M.; Nedoma, J.; Martinek, R.; Novak, M.; Jargus, J.; Vasinek, V.

    2017-05-01

    Authors of the article focused on the possible encapsulation method of fiber Bragg gratings (FBGs) for the needs of dynamic weighing. For monitoring the parameters, we used broad-spectrum light source LED (Light-Emitting Diode) with a central wavelength of 1550 nm and optical spectrum analyzer with sampling rate 300 Hz. For encapsulation of used FBGs was chosen a specific material polymer polydimethylsiloxane (PDMS). A characteristic feature of this material is very high mechanical resistance, chemical resistance and temperature stability in the range of values -60 °C to + 200 °C. The combination of characteristic advantages of optical fibers (electromagnetic immunity) with stated properties of PDMS gives us the innovative type of encapsulated sensor which could be used for example for the needs of dynamic weighing in worsened or potentially hazardous conditions. This type of monitoring weighing is fully dielectric. Experimental measurements were carried out in laboratory conditions in the weight range of 35 up to 180 kg.

  11. Electrical impedance myography in facioscapulohumeral muscular dystrophy.

    PubMed

    Statland, Jeffrey M; Heatwole, Chad; Eichinger, Katy; Dilek, Nuran; Martens, William B; Tawil, Rabi

    2016-10-01

    In this study we determined the reliability and validity of electrical impedance myography (EIM) in facioscapulohumeral muscular dystrophy (FSHD). We performed a prospective study of EIM on 16 bilateral limb and trunk muscles in 35 genetically defined and clinically affected FSHD patients (reliability testing on 18 patients). Summary scores based on body region were derived. Reactance and phase (50 and 100 kHz) were compared with measures of strength, FSHD disease severity, and functional outcomes. Participants were mostly men, mean age 53.0 years, and included a full range of severity. Limb and trunk muscles showed good to excellent reliability [intraclass correlation coefficients (ICC) 0.72-0.99]. Summary scores for the arm, leg, and trunk showed excellent reliability (ICC 0.89-0.98). Reactance was the most sensitive EIM parameter to a broad range of FSHD disease metrics. EIM is a reliable measure of muscle composition in FSHD that offers the possibility to serially evaluate affected muscles. Muscle Nerve 54: 696-701, 2016. © 2016 Wiley Periodicals, Inc.

  12. Communication: molecular dynamics and (1)H NMR of n-hexane in liquid crystals.

    PubMed

    Weber, Adrian C J; Burnell, E Elliott; Meerts, W Leo; de Lange, Cornelis A; Dong, Ronald Y; Muccioli, Luca; Pizzirusso, Antonio; Zannoni, Claudio

    2015-07-07

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  13. Communication: Molecular dynamics and {sup 1}H NMR of n-hexane in liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Adrian C. J., E-mail: WeberA@BrandonU.CA; Burnell, E. Elliott, E-mail: elliott.burnell@ubc.ca; Meerts, W. Leo, E-mail: leo.meerts@science.ru.nl

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings.more » In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.« less

  14. The ARIEL mission reference sample

    NASA Astrophysics Data System (ADS)

    Zingales, Tiziano; Tinetti, Giovanna; Pillitteri, Ignazio; Leconte, Jérémy; Micela, Giuseppina; Sarkar, Subhajit

    2018-02-01

    The ARIEL (Atmospheric Remote-sensing Exoplanet Large-survey) mission concept is one of the three M4 mission candidates selected by the European Space Agency (ESA) for a Phase A study, competing for a launch in 2026. ARIEL has been designed to study the physical and chemical properties of a large and diverse sample of exoplanets and, through those, understand how planets form and evolve in our galaxy. Here we describe the assumptions made to estimate an optimal sample of exoplanets - including already known exoplanets and expected ones yet to be discovered - observable by ARIEL and define a realistic mission scenario. To achieve the mission objectives, the sample should include gaseous and rocky planets with a range of temperatures around stars of different spectral type and metallicity. The current ARIEL design enables the observation of ˜1000 planets, covering a broad range of planetary and stellar parameters, during its four year mission lifetime. This nominal list of planets is expected to evolve over the years depending on the new exoplanet discoveries.

  15. Prospects for charge sensitive amplifiers in scaled CMOS

    NASA Astrophysics Data System (ADS)

    O'Connor, Paul; De Geronimo, Gianluigi

    2002-03-01

    Due to its low cost and flexibility for custom design, monolithic CMOS technology is being increasingly employed in charge preamplifiers across a broad range of applications, including both scientific research and commercial products. The associated detectors have capacitances ranging from a few tens of fF to several hundred pF. Applications call for pulse shaping from tens of ns to tens of μs, and constrain the available power per channel from tens of μW to tens of mW. At the same time a new technology generation, with changed device parameters, appears every 2 years or so. The optimum design of the front-end circuitry is examined taking into account submicron device characteristics, weak inversion operation, the reset system, and power supply scaling. Experimental results from recent prototypes will be presented. We will also discuss the evolution of preamplifier topologies and anticipated performance limits as CMOS technology scales down to the 0.1 μm/1.0 V generation in 2006.

  16. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Study of photodissociation parameters of carboxyhemoglobin

    NASA Astrophysics Data System (ADS)

    Kuz'min, V. V.; Salmin, V. V.; Salmina, A. B.; Provorov, A. S.

    2008-07-01

    The general properties of photodissociation of carboxyhemoglobin (HbCO) in buffer solutions of whole human blood are studied by the flash photolysis method on a setup with intersecting beams. It is shown that the efficiency of photoinduced dissociation of the HbCO complex virtually linearly depends on the photolytic irradiation intensity for the average power density not exceeding 45 mW cm-2. The general dissociation of the HbCO complex in native conditions occurs in a narrower range of values of the saturation degree than in model experiments with the hemoglobin solution. The dependence of the pulse photolysis efficiency of HbCO on the photolytic radiation wavelength in the range from 550 to 585 nm has a broad bell shape. The efficiency maximum corresponds to the electronic Q transition (porphyrin π—π* absorption) in HbCO at a wavelength of 570 nm. No dissociation of the complex was observed under given experimental conditions upon irradiation of solutions by photolytic radiation at wavelengths above 585 nm.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, Xiaoyun; Xu, Feng, E-mail: xuf@xtal.tsinghua.edu.cn; Bell, Stephen G.

    The cytochrome P450 enzyme CYP203A1 from Rhodopseudomonas palustris binds a wide range of highly substituted aromatic compounds and may play an important role in the astonishing metabolic diversity of this organism. Crystals of CYP203A1 that diffract to 2.0 Å resolution have been obtained. Cytochrome P450 enzymes constitute a large family of haemoproteins that catalyze the monooxygenation of a great variety of endogenous and exogenous organic compounds. Cytochrome P450 203A1 (CYP203A1, RPA1009) from the metabolically versatile organism Rhodopseudomonas palustris binds a broad range of substrates, in particular substituted aromatic compounds. Crystals of CYP203A1 suitable for X-ray crystallography have been obtained andmore » diffraction data were collected in-house to 2.0 Å resolution from a single crystal. The crystals belong to space group P222, with unit-cell parameters a = 40.1, b = 95.1, c = 99.0 Å, α = β = γ = 90°. There is one protein molecule per asymmetric unit.« less

  18. Phenotypic Variability in the Coccolithophore Emiliania huxleyi.

    PubMed

    Blanco-Ameijeiras, Sonia; Lebrato, Mario; Stoll, Heather M; Iglesias-Rodriguez, Debora; Müller, Marius N; Méndez-Vicente, Ana; Oschlies, Andreas

    2016-01-01

    Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean.

  19. Differences between the nonselective adenosine receptor antagonists caffeine and theophylline in motor and mood effects: studies using medium to high doses in animal models.

    PubMed

    López-Cruz, Laura; Pardo, Marta; Salamone, John D; Correa, Mercè

    2014-08-15

    Caffeine and theophylline are methylxanthines that are broadly consumed, sometimes at high doses, and act as minor psychostimulants. Both are nonselective adenosine antagonists for A1 and A2A receptors, which are colocalized with dopamine D1 and D2 receptors in striatal areas. Adenosine antagonists generally have opposite actions to those of dopamine antagonists. Although the effects of caffeine are widely known, theophylline has been much less well characterized, especially at high doses. Adult male CD1 mice were used to study the effect of a broad range of doses (25.0, 50.0 or 100.0mg/kg) of caffeine and theophylline on measures of spontaneous locomotion and coordination, as well as the pattern of c-Fos immunoreactivity in brain areas rich in adenosine and dopamine receptors. In addition, we evaluated possible anxiety and stress effects of these doses. Caffeine, at these doses, impaired or suppressed locomotion in several paradigms. However, theophylline was less potent than caffeine at suppressing motor parameters, and even stimulated locomotion. Both drugs induced corticosterone release, however caffeine was more efficacious at intermediate doses. While caffeine showed an anxiogenic profile at all doses, theophylline only did so at the highest dose used (50mg/kg). Only theophylline increased c-Fos immunoreactivity in cortical areas. Theophylline has fewer disruptive effects than caffeine on motor parameters and produces less stress and anxiety effects. These results are relevant for understanding the potential side effects of methylxanthines when consumed at high doses. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Ophthalmic diagnostic tests, orbital anatomy, and adnexal histology of the broad-snouted caiman (Caiman latirostris).

    PubMed

    Oriá, Arianne P; Oliveira, Alberto Vinícius D; Pinna, Melissa H; Martins Filho, Emanoel F; Estrela-Lima, Alessandra; Peixoto, Tiago C; Silva, Renata Maria M da; Santana, Fernanda O; Meneses, Íris Daniela S; Requião, Kátia G; Ofri, Ron

    2015-01-01

    The aim of this study was to establish normal ophthalmic parameters for selected diagnostic tests, and to describe the orbital anatomy and adnexal histology of the broad-snouted caiman. A total of 35 Caiman latirostris that were free of obvious ocular diseases were used to measure the parameters in this investigation. Ages ranged from 5 to 15 years. Ophthalmic diagnostic tests were conducted, including evaluation of tear production with Schirmer Tear test-1 (STT1), culture of the conjunctival bacterial flora, applanation tonometry, conjunctival cytology, nictiating membrane incursion frequency test (NMIFT), endodontic absorbent paper point tear test (EAPPTT), palpebral fissure length measurement (PFL) and B-mode ultrasonography. Adnexal histology and skull samples were studied. Mean (±SD) STT1 was 3.4 ± 3.6 mm/min (95% confidence interval of 2.01-4.78 mm/min), intraocular pressure (IOP) was 12.9 ± 6.2 mmHg, NMIFT was 6.0 ± 3.5, EAPPTT was 17.1 ± 2.5 mm/min, PFL was 28.9 ± 3.0 mm, anterior chamber depth was 3.1 ± 0.3 mm, lens axial length was 8.4 ± 0.6 mm, vitreous chamber depth was 7.9 ± 0.7 mm and axial globe length was 19.9 ± 1.3 mm. For all animals evaluated, Bacillus sp., Diphteroids and Staphylococcus sp. were predominant. © 2013 American College of Veterinary Ophthalmologists.

  1. Antiferroquadrupolar correlations in the quantum spin ice candidate Pr2Zr2O7

    NASA Astrophysics Data System (ADS)

    Petit, S.; Lhotel, E.; Guitteny, S.; Florea, O.; Robert, J.; Bonville, P.; Mirebeau, I.; Ollivier, J.; Mutka, H.; Ressouche, E.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.

    2016-10-01

    We present an experimental study of the quantum spin ice candidate pyrochlore compound Pr2Zr2O7 by means of magnetization measurements, specific heat, and neutron scattering up to 12 T and down to 60 mK. When the field is applied along the [111 ] and [1 1 ¯0 ] directions, k =0 field-induced structures settle in. We find that the ordered moment rises slowly, even at very low temperature, in agreement with macroscopic magnetization. Interestingly, for H ∥[1 1 ¯0 ] , the ordered moment appears on the so-called α chains only. The spin excitation spectrum is essentially inelastic and consists in a broad flat mode centered at about 0.4 meV with a magnetic structure factor which resembles the spin ice pattern. For H ∥[1 1 ¯0 ] (at least up to 2.5 T), we find that a well-defined mode forms from this broad response, whose energy increases with H , in the same way as the temperature of the specific-heat anomaly. We finally discuss these results in the light of mean field calculations and propose an interpretation where quadrupolar interactions play a major role, overcoming the magnetic exchange. In this picture, the spin ice pattern appears shifted up to finite energy because of those interactions. We then propose a range of acceptable parameters for Pr2Zr2O7 that allow to reproduce several experimental features observed under field. With these parameters, the actual ground state of this material would be an antiferroquadrupolar liquid with spin-ice-like excitations.

  2. The Moon Zoo citizen science project: Preliminary results for the Apollo 17 landing site

    NASA Astrophysics Data System (ADS)

    Bugiolacchi, Roberto; Bamford, Steven; Tar, Paul; Thacker, Neil; Crawford, Ian A.; Joy, Katherine H.; Grindrod, Peter M.; Lintott, Chris

    2016-06-01

    Moon Zoo is a citizen science project that utilises internet crowd-sourcing techniques. Moon Zoo users are asked to review high spatial resolution images from the Lunar Reconnaissance Orbiter Camera (LROC), onboard NASA's LRO spacecraft, and perform characterisation such as measuring impact crater sizes and identify morphological 'features of interest'. The tasks are designed to address issues in lunar science and to aid future exploration of the Moon. We have tested various methodologies and parameters therein to interrogate and reduce the Moon Zoo crater location and size dataset against a validated expert survey. We chose the Apollo 17 region as a test area since it offers a broad range of cratered terrains, including secondary-rich areas, older maria, and uplands. The assessment involved parallel testing in three key areas: (1) filtering of data to remove problematic mark-ups; (2) clustering methods of multiple notations per crater; and (3) derivation of alternative crater degradation indices, based on the statistical variability of multiple notations and the smoothness of local image structures. We compared different combinations of methods and parameters and assessed correlations between resulting crater summaries and the expert census. We derived the optimal data reduction steps and settings of the existing Moon Zoo crater data to agree with the expert census. Further, the regolith depth and crater degradation states derived from the data are also found to be in broad agreement with other estimates for the Apollo 17 region. Our study supports the validity of this citizen science project but also recommends improvements in key elements of the data acquisition planning and production.

  3. A Combined Theoretical and Experimental Study of Dissociation of Charge Transfer States at the Donor-Acceptor Interface of Organic Solar Cells.

    PubMed

    Tscheuschner, Steffen; Bässler, Heinz; Huber, Katja; Köhler, Anna

    2015-08-13

    The observation that in efficient organic solar cells almost all electron-hole pairs generated at the donor-acceptor interface escape from their mutual coulomb potential remains to be a conceptual challenge. It has been argued that it is the excess energy dissipated in the course of electron or hole transfer at the interface that assists this escape process. The current work demonstrates that this concept is unnecessary to explain the field dependence of electron-hole dissociation. It is based upon the formalism developed by Arkhipov and co-workers as well as Baranovskii and co-workers. The key idea is that the binding energy of the dissociating "cold" charge-transfer state is reduced by delocalization of the hole along the polymer chain, quantified in terms of an "effective mass", as well as the fractional strength of dipoles existent at the interface in the dark. By covering a broad parameter space, we determine the conditions for efficient electron-hole dissociation. Spectroscopy of the charge-transfer state on bilayer solar cells as well as measurements of the field dependence of the dissociation yield over a broad temperature range support the theoretical predictions.

  4. The diversity of quasars unified by accretion and orientation.

    PubMed

    Shen, Yue; Ho, Luis C

    2014-09-11

    Quasars are rapidly accreting supermassive black holes at the centres of massive galaxies. They display a broad range of properties across all wavelengths, reflecting the diversity in the physical conditions of the regions close to the central engine. These properties, however, are not random, but form well-defined trends. The dominant trend is known as 'Eigenvector 1', in which many properties correlate with the strength of optical iron and [O III] emission. The main physical driver of Eigenvector 1 has long been suspected to be the quasar luminosity normalized by the mass of the hole (the 'Eddington ratio'), which is an important parameter of the black hole accretion process. But a definitive proof has been missing. Here we report an analysis of archival data that reveals that the Eddington ratio indeed drives Eigenvector 1. We also find that orientation plays a significant role in determining the observed kinematics of the gas in the broad-line region, implying a flattened, disk-like geometry for the fast-moving clouds close to the black hole. Our results show that most of the diversity of quasar phenomenology can be unified using two simple quantities: Eddington ratio and orientation.

  5. [Analysis of Camellia rosthorniana populations fecundity].

    PubMed

    Cao, Guoxing; Zhong, Zhangcheng; Xie, Deti; Liu, Yun

    2004-03-01

    With the method of space substituting time, the structure of Camellia rosthorniana populations in three forest communities, i.e., Jiant bamboo forest, coniferous and broad-leaved mixed forest, and evergreen broad-leaved forest in Mt. Jinyun was investigated, and based on static life-tables, the fecundity tables and reproductive value tables of C. rosthorniana populations were constructed. Each reproductive parameter and its relation to bionomic strategies of C. rosthorniana populations were also analyzed. The results indicated that in evergreen broad-leaved forest, C. rosthorniana population had the longest life span and the greatest fitness. The stage of maximum reproductive value increased with increasing stability of the community. The sum of each population's reproductive value, residual reproductive value and total reproductive value for the whole life-history of C. rosthorniana also increased with increasing maturity of the community, showing their inherent relationships with reproductive fitness. As regards to bionomic strategy, C. rosthorniana showed mainly the characteristics of a k-strategies, but in less stable community, the reproductive parameters were greatly changed, showing some characteristics of a r-strategies.

  6. Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors.

    PubMed

    Euser, Tijmen G; Harding, Philip J; Vos, Willem L

    2009-07-01

    We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both femtosecond pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21,050 cm(-1). A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than DeltaR=0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a three-dimensional Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.

  7. Manufacturing Work Measurement System Evaluation. Reference Guide

    DTIC Science & Technology

    1987-04-01

    discussions with users of the MTM-MEK predetermined time system. The coranents listed below are based on these discussions and, while a broad range...discussions with users of the MTM-V predeterroined time system. The coranents listed below are based on these discussions and, while a broad range of...industries were sampled, coranents should not be considered universal and therefore may not be applicable to all manufacturing environments: 0 Easy to

  8. A broad-host range dual-fluorescence reporter system for gene expression analysis in Gram-negative bacteria.

    PubMed

    Hennessy, Rosanna C; Christiansen, Line; Olsson, Stefan; Stougaard, Peter

    2018-01-01

    Fluorescence-based reporter systems are valuable tools for studying gene expression dynamics in living cells. Here we describe a dual-fluorescence reporter system carrying the red fluorescent marker mCherry and the blue fluorescent protein EBFP2 enabling the simultaneous analysis of two promoters in broad-host range autofluorescent Gram-negative bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. TIDAL HEATING IN A MAGMA OCEAN WITHIN JUPITER’S MOON Io

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Robert H.; Henning, Wade G.; Hamilton, Christopher W., E-mail: robert.h.tyler@nasa.gov

    Active volcanism observed on Io is thought to be driven by the temporally periodic, spatially differential projection of Jupiter's gravitational field over the moon. Previous theoretical estimates of the tidal heat have all treated Io as essentially a solid, with fluids addressed only through adjustment of rheological parameters rather than through appropriate extension of the dynamics. These previous estimates of the tidal response and associated heat generation on Io are therefore incomplete and possibly erroneous because dynamical aspects of the fluid behavior are not permitted in the modeling approach. Here we address this by modeling the partial-melt asthenosphere as amore » global layer of fluid governed by the Laplace Tidal Equations. Solutions for the tidal response are then compared with solutions obtained following the traditional solid-material approach. It is found that the tidal heat in the solid can match that of the average observed heat flux (nominally 2.25 W m{sup −2}), though only over a very restricted range of plausible parameters, and that the distribution of the solid tidal heat flux cannot readily explain a longitudinal shift in the observed (inferred) low-latitude heat fluxes. The tidal heat in the fluid reaches that observed over a wider range of plausible parameters, and can also readily provide the longitudinal offset. Finally, expected feedbacks and coupling between the solid/fluid tides are discussed. Most broadly, the results suggest that both solid and fluid tidal-response estimates must be considered in exoplanet studies, particularly where orbital migration under tidal dissipation is addressed.« less

  10. A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine.

    PubMed

    Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre

    2016-09-25

    Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Implementation of Structures in the CMS: Part 2, Weir

    DTIC Science & Technology

    2013-08-01

    sharp - crested weir , it is between 0.55 and 0.58, and a broad - crested ...implementation, different weir coefficients are specified for the weir structure design, sharp - crested or broad - crested weir . The lowest value in the...coefficient range is used for the sharp - crested (0.55) and broad - crested (0.46) weir , respectively; the flux comparison between these two

  12. Standardization of domestic frying processes by an engineering approach.

    PubMed

    Franke, K; Strijowski, U

    2011-05-01

    An approach was developed to enable a better standardization of domestic frying of potato products. For this purpose, 5 domestic fryers differing in heating power and oil capacity were used. A very defined frying process using a highly standardized model product and a broad range of frying conditions was carried out in these fryers and the development of browning representing an important quality parameter was measured. Product-to-oil ratio, oil temperature, and frying time were varied. Quite different color changes were measured in the different fryers although the same frying process parameters were applied. The specific energy consumption for water evaporation (spECWE) during frying related to product amount was determined for all frying processes to define an engineering parameter for characterizing the frying process. A quasi-linear regression approach was applied to calculate this parameter from frying process settings and fryer properties. The high significance of the regression coefficients and a coefficient of determination close to unity confirmed the suitability of this approach. Based on this regression equation, curves for standard frying conditions (SFC curves) were calculated which describe the frying conditions required to obtain the same level of spECWE in the different domestic fryers. Comparison of browning results from the different fryers operated at conditions near the SFC curves confirmed the applicability of the approach. © 2011 Institute of Food Technologists®

  13. Thermophysical properties of hydrophobised lime plaster - Experimental analysis of moisture effect

    NASA Astrophysics Data System (ADS)

    Pavlíková, Milena; Pernicová, Radka; Pavlík, Zbyšek

    2016-07-01

    Lime plasters are the most popular finishing materials in renewal of historical buildings and culture monuments. Because of their limited durability, new materials and design solutions are investigated in order to improve plasters performance in harmful environmental conditions. For the practical use, the plasters mechanical resistivity and the compatibility with substrate are the most decisive material parameters. However, also plasters hygric and thermal parameters affecting the overall hygrothermal function of the renovated structures are of the particular importance. On this account, the effect of moisture content on the thermophysical properties of a newly designed lime plasters containing hydrophobic admixture is analysed in the paper. For the comparative purposes, the reference lime and cement-lime plasters are tested as well. Basic characterization of the tested materials is done using bulk density, matrix density, and porosity measurements. Thermal conductivity and volumetric heat capacity in the broad range of moisture content are experimentally accessed using a transient impulse method. The obtained data reveals the significant increase of the both studied thermal parameters with increasing moisture content and gives information on plasters behaviour in a highly humid environment and/or in the case of their possible direct contact with liquid water. The accessed material parameters will be stored in a material database, where can find use as an input data for computational modelling of coupled heat and moisture transport in this type of porous building materials.

  14. Stationary to nonstationary transition in crossed-field devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marini, Samuel; Rizzato, Felipe B.; Pakter, Renato

    2016-03-15

    The previous results based on numerical simulations showed that a cold electron beam injected in a crossed field gap does not reach a time independent stationary state in the space charge limited regime [P. J. Christenson and Y. Y. Lau, Phys. Plasmas 1, 3725 (1994)]. In this work, the effect of finite injection temperature in the transition from stationary to nonstationary states is investigated. A fully kinetic model for the electron flow is derived and used to determine the possible stationary states of the system. It is found that although there is always a stationary solution for any set ofmore » parameters, depending on the injection temperature the electron flow becomes very sensitive to fluctuations and the stationary state is never reached. By investigating the nonlinear dynamics of a characteristic electron, a theory based on a single free parameter is constructed to predict when the transition between stationary and nonstationary states occurs. In agreement with the previous numerical results, the theory indicates that for vanishing temperatures the system never reaches the time independent stationary state in the space charge limited regime. Nevertheless, as the injection temperature is raised it is found a broad range of system parameters for which the stationary state is indeed attained. By properly adjusting the free parameter in the theory, one can be able to describe, to a very good accuracy, when the transition occurs.« less

  15. Relationship between genetic parameters in maize (Zea mays) with seedling growth parameters under 40-100% soil moisture conditions.

    PubMed

    Muhammad, R W; Qayyum, A

    2013-10-18

    We estimated the association of genetic parameters with production characters in 64 maize (Zea mays) genotypes in a green house in soil with 40-100% moisture levels (percent of soil moisture capacity). To identify the major parameters that account for variation among the genotypes, we used single linkage cluster analysis and principle component analysis. Ten plant characters were measured. The first two, four, three, and again three components, with eigen values > 1 contributed 75.05, 80.11, 68.67, and 75.87% of the variability among the genotypes under the different moisture levels, i.e., 40, 60, 80, and 100%, respectively. Other principal components (3-10, 5-10, and 4-10) had eigen values less than 1. The highest estimates of heritability were found for root fresh weight, root volume (0.99), and shoot fresh weight (0.995) in 40% soil moisture. Values of genetic advance ranged from 23.4024 for SR at 40% soil moisture to 0.2538 for shoot dry weight in 60% soil moisture. The high magnitude of broad sense heritability provides evidence that these plant characters are under the control of additive genetic effects. This indicates that selection should lead to fast genetic improvement of the material. The superior agronomic types that we identified may be exploited for genetic potential to improve yield potential of the maize crop.

  16. The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus.

    PubMed

    Sheth, Seema N; Angert, Amy L

    2014-10-01

    The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within-population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  17. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control.

    PubMed

    Reza, Syed Azer; Khwaja, Tariq Shamim; Mazhar, Mohsin Ali; Niazi, Haris Khan; Nawab, Rahma

    2017-07-20

    Various existing target ranging techniques are limited in terms of the dynamic range of operation and measurement resolution. These limitations arise as a result of a particular measurement methodology, the finite processing capability of the hardware components deployed within the sensor module, and the medium through which the target is viewed. Generally, improving the sensor range adversely affects its resolution and vice versa. Often, a distance sensor is designed for an optimal range/resolution setting depending on its intended application. Optical triangulation is broadly classified as a spatial-signal-processing-based ranging technique and measures target distance from the location of the reflected spot on a position sensitive detector (PSD). In most triangulation sensors that use lasers as a light source, beam divergence-which severely affects sensor measurement range-is often ignored in calculations. In this paper, we first discuss in detail the limitations to ranging imposed by beam divergence, which, in effect, sets the sensor dynamic range. Next, we show how the resolution of laser-based triangulation sensors is limited by the interpixel pitch of a finite-sized PSD. In this paper, through the use of tunable focus lenses (TFLs), we propose a novel design of a triangulation-based optical rangefinder that improves both the sensor resolution and its dynamic range through adaptive electronic control of beam propagation parameters. We present the theory and operation of the proposed sensor and clearly demonstrate a range and resolution improvement with the use of TFLs. Experimental results in support of our claims are shown to be in strong agreement with theory.

  18. Cr-doped scandium borate laser

    DOEpatents

    Chai, Bruce H.; Lai, Shui T.; Long, Margaret N.

    1989-01-01

    A broadly wavelength-tunable laser is provided which comprises as the laser medium a single crystal of MBO.sub.3 :Cr.sup.3+, where M is selected from the group of Sc, In and Lu. The laser may be operated over a broad temperature range from cryogenic temperatures to elevated temperatures. Emission is in a spectral range from red to infrared, and the laser is useful in the fields of defense, communications, isotope separation, photochemistry, etc.

  19. Can job redesign interventions influence a broad range of employee outcomes by changing multiple job characteristics? A quasi-experimental study.

    PubMed

    Holman, David; Axtell, Carolyn

    2016-07-01

    Many job redesign interventions are based on a multiple mediator-multiple outcome model in which the job redesign intervention indirectly influences a broad range of employee outcomes by changing multiple job characteristics. As this model remains untested, the aim of this study is to test a multiple mediator-multiple outcome model of job redesign. Multilevel analysis of data from a quasi-experimental job redesign intervention in a call center confirmed the hypothesized model and showed that the job redesign intervention affected a broad range of employee outcomes (i.e., employee well-being, psychological contract fulfillment, and supervisor-rated job performance) through changes in 2 job characteristics (i.e., job control and feedback). The results provide further evidence for the efficacy and mechanisms of job redesign interventions. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Forms of organic phosphorus in wetland soils

    NASA Astrophysics Data System (ADS)

    Cheesman, A. W.; Turner, B. L.; Reddy, K. R.

    2014-12-01

    Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e., forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydrogeomorphic, and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g-1, of which an average of 58% was extracted in a single-step NaOH-EDTA procedure. The extracts contained a broad range of P forms, including phosphomonoesters (averaging 24% of the total soil P), phosphodiesters (averaging 10% of total P), phosphonates (up to 4% of total P), and both pyrophosphate and long-chain polyphosphates (together averaging 6% of total P). Soil P composition was found to be dependant upon two key biogeochemical properties: organic matter content and pH. For example, stereoisomers of inositol hexakisphosphate were detected exclusively in acidic soils with high mineral content, while phosphonates were detected in soils from a broad range of vegetation and hydrogeomorphic types but only under acidic conditions. Conversely inorganic polyphosphates occurred in a broad range of wetland soils, and their abundance appears to reflect more broadly that of a "substantial" and presumably active microbial community with a significant relationship between total inorganic polyphosphates and microbial biomass P. We conclude that soil P composition varies markedly among freshwater wetlands but can be predicted by fundamental soil properties.

  1. Forms of organic phosphorus in wetland soils

    NASA Astrophysics Data System (ADS)

    Cheesman, A. W.; Turner, B. L.; Reddy, K. R.

    2014-06-01

    Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e. forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydro-geomorphic and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g

  2. Determination of excitation profile and dielectric function spatial nonuniformity in porous silicon by using WKB approach.

    PubMed

    He, Wei; Yurkevich, Igor V; Canham, Leigh T; Loni, Armando; Kaplan, Andrey

    2014-11-03

    We develop an analytical model based on the WKB approach to evaluate the experimental results of the femtosecond pump-probe measurements of the transmittance and reflectance obtained on thin membranes of porous silicon. The model allows us to retrieve a pump-induced nonuniform complex dielectric function change along the membrane depth. We show that the model fitting to the experimental data requires a minimal number of fitting parameters while still complying with the restriction imposed by the Kramers-Kronig relation. The developed model has a broad range of applications for experimental data analysis and practical implementation in the design of devices involving a spatially nonuniform dielectric function, such as in biosensing, wave-guiding, solar energy harvesting, photonics and electro-optical devices.

  3. Impact of one-dimensional photonic crystal back reflector in thin-film c-Si solar cells on efficiency

    NASA Astrophysics Data System (ADS)

    Jalali, Tahmineh

    2018-05-01

    In this work, the effect of one-dimensional photonic crystal on optical absorption, which is implemented at the back side of thin-film crystalline silicon (c-Si) solar cells, is extensively discussed. The proposed structure acts as a Bragg reflector which reflects back light to the active layer as well as nanograting which couples the incident light to enhance optical absorption. To understand the optical mechanisms responsible for the enhancement of optical absorption, quantum efficiency and current density for all structures are calculated and the effect of influential parameters, such as grating period is investigated. The results confirm that our proposed structure have a great deal for substantial efficiency enhancement in a broad range from 400 to 1100 nm.

  4. A stretchable and flexible system for skin-mounted measurement of motion tracking and physiological signals.

    PubMed

    Pinghung Wei; Raj, Milan; Yung-Yu Hsu; Morey, Briana; DePetrillo, Paolo; McGrane, Bryan; Xianyan Wang; Lin, Monica; Keen, Bryan; Papakyrikos, Cole; Lowe, Jared; Ghaffari, Roozbeh

    2014-01-01

    In this paper, we present a stretchable wearable system capable of i) measuring multiple physiological parameters and ii) transmitting data via radio frequency to a smart phone. The electrical architecture consists of ultra thin sensors (<; 20 μm thick) and a conformal network of associated active and passive electronics in a mesh-like geometry that can mechanically couple with the curvilinear surfaces of the human body. Spring-like metal interconnects between individual chips on board the device allow the system to accommodate strains approaching ~30% A representative example of a smart patch that measures movement and electromyography (EMG) signals highlights the utility of this new class of medical skin-mounted system in monitoring a broad range of neuromuscular and cardiovascular diseases.

  5. Biocompatible Polymer Nanoformulation To Improve the Release and Safety of a Drug Mimic Molecule Detectable via ICP-MS.

    PubMed

    Ferrari, Raffaele; Talamini, Laura; Violatto, Martina Bruna; Giangregorio, Paola; Sponchioni, Mattia; Morbidelli, Massimo; Salmona, Mario; Bigini, Paolo; Moscatelli, Davide

    2017-01-03

    Fluorescent poly(ε-caprolactone)-based nanoparticles (NPs) have been synthesized and successfully loaded with a titanium organometallic compound as a mimic of a water-insoluble drug. The nature of this nanovector enabled us to combine the quantification of the metal in tissues after systemic administration in healthy immunocompetent mice by inductively coupled plasma mass spectroscopy (ICP-MS) followed by the visualization of NPs in organ sections by confocal microscopy. This innovative method of nanodrug screening has enabled us to elucidate the crucial parameters of their kinetics. The organometallic compound is a good mimic of most anticancer drugs, and this approach is an interesting starting point to design the relevance of a broad range of nanoformulations in terms of safety and targeted delivery of the cargoes.

  6. Induced seismicity provides insight into why earthquake ruptures stop.

    PubMed

    Galis, Martin; Ampuero, Jean Paul; Mai, P Martin; Cappa, Frédéric

    2017-12-01

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures.

  7. Solid State Laser Technology Development for Atmospheric Sensing Applications

    NASA Technical Reports Server (NTRS)

    Barnes, James C.

    1998-01-01

    NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.

  8. Optical evaluation of the wave filtering properties of graded undulated lattices

    NASA Astrophysics Data System (ADS)

    Trainiti, G.; Rimoli, J. J.; Ruzzene, M.

    2018-03-01

    We investigate and experimentally demonstrate the elastic wave filtering properties of graded undulated lattices. Square reticulates composed of curved beams are characterized by graded mechanical properties which result from the spatial modulation of the curvature parameter. Among such properties, the progressive formation of frequency bandgaps leads to strong wave attenuation over a broad frequency range. The experimental investigation of wave transmission and the detection of full wavefields effectively illustrate this behavior. Transmission measurements are conducted using a scanning laser Doppler vibrometer, while a dedicated digital image correlation procedure is implemented to capture in-plane wave motion at selected frequencies. The presented results illustrate the broadband attenuation characteristics resulting from spatial grading of the lattice curvature, whose in-depth investigation is enabled by the presented experimental procedures.

  9. DFT study of quercetin activated forms involved in antiradical, antioxidant, and prooxidant biological processes.

    PubMed

    Fiorucci, Sébastien; Golebiowski, Jérôme; Cabrol-Bass, Daniel; Antonczak, Serge

    2007-02-07

    Quercetin, one of the most representative flavonoid compounds, is involved in antiradical, antioxidant, and prooxidant biological processes. Despite a constant increase of knowledge on both positive and negative activities of quercetin, it is unclear which activated form (quinone, semiquinone, or deprotonated) actually plays a role in each of these processes. Structural, electronic, and energetic characteristics of quercetin, as well as the influence of a copper ion on all of these parameters, are studied by means of quantum chemical electronic structure calculations. Introduction of thermodynamic cycles together with the role of coreactive compounds, such as reactive oxygen species, gives a glimpse of the most probable reaction schemes. Such a theoretical approach provides another hint to clarify which reaction is likely to occur within the broad range of quercetin biological activities.

  10. A PIONIER and Incisive Look at the Interacting Binary SS Lep

    NASA Astrophysics Data System (ADS)

    Blind, N.; Boffin, H. M. J.; Berger, J.-P.; Lebouquin, J.-B.; Mérand, A.

    2011-09-01

    Symbiotic stars are excellent laboratories to study a broad range of poorly understood physical processes, such as mass loss of red giants, accretion onto compact objects, and evolution of nova-like outbursts. As their evolution is strongly influenced by the mass transfer episodes, understanding the history of these systems requires foremost to determine which process is at play: Roche lobe overflow, stellar wind accretion, or some more complex mixture of both. We report here an interferometric study of the symbiotic system SS Leporis, performed with the unique PIONIER instrument. By determining the binary orbit and revisiting the parameters of the two stars, we show that the giant does not fill its Roche lobe, and that the mass transfer most likely occurs via the accretion of an important part of the giant's wind.

  11. HIS Design: Big Data that Supports Hydrologic Modeling from Continental to Hillslope Scales

    NASA Astrophysics Data System (ADS)

    Rasmussen, T. C.; Deemy, J. B.; Younger, S. E.; Kirk, S. E.; Brockman, L. E.

    2016-12-01

    Analogous to Google Maps, hydrologic data, information, and knowledge resolve differently depending upon the spatial and temporal scales of interest. We show how a multi-scale hydrologic information system (HIS) can be designed and populated for a broad range of spatial (e.g., hillslope, local, regional, continental) and temporal (e.g., current, recent, historic, geologic) scales. Surface and subsurface hydrologic and transport processes are assumed to be scale-dependent, requiring unique governing equations and parameters at each scale. This robust and flexible framework is designed to meet the inventory, monitoring, and management needs of multiple federal agencies (i.e., Forest Service, National Park Service, Fish and Wildlife Service, National Wildlife Reserves). Multi-scale HIS examples are provided using Geographic Information Systems (GIS) for the Southeastern US.

  12. Persistent-random-walk approach to anomalous transport of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Sadjadi, Zeinab; Shaebani, M. Reza; Rieger, Heiko; Santen, Ludger

    2015-06-01

    The motion of self-propelled particles is modeled as a persistent random walk. An analytical framework is developed that allows the derivation of exact expressions for the time evolution of arbitrary moments of the persistent walk's displacement. It is shown that the interplay of step length and turning angle distributions and self-propulsion produces various signs of anomalous diffusion at short time scales and asymptotically a normal diffusion behavior with a broad range of diffusion coefficients. The crossover from the anomalous short-time behavior to the asymptotic diffusion regime is studied and the parameter dependencies of the crossover time are discussed. Higher moments of the displacement distribution are calculated and analytical expressions for the time evolution of the skewness and the kurtosis of the distribution are presented.

  13. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2016-04-01

    We have analysed natural organic matter (NOM) properties in 18 agricultural streams in Sweden covering a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients to signals observed in receiving waters.

  14. Accurate simulations of helium pick-up experiments using a rejection-free Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Dutra, Matthew; Hinde, Robert

    2018-04-01

    In this paper, we present Monte Carlo simulations of helium droplet pick-up experiments with the intention of developing a robust and accurate theoretical approach for interpreting experimental helium droplet calorimetry data. Our approach is capable of capturing the evaporative behavior of helium droplets following dopant acquisition, allowing for a more realistic description of the pick-up process. Furthermore, we circumvent the traditional assumption of bulk helium behavior by utilizing density functional calculations of the size-dependent helium droplet chemical potential. The results of this new Monte Carlo technique are compared to commonly used Poisson pick-up statistics for simulations that reflect a broad range of experimental parameters. We conclude by offering an assessment of both of these theoretical approaches in the context of our observed results.

  15. A modular, closed-loop platform for intracranial stimulation in people with neurological disorders.

    PubMed

    Sarma, Anish A; Crocker, Britni; Cash, Sydney S; Truccolo, Wilson

    2016-08-01

    Neuromodulation systems based on electrical stimulation can be used to investigate, probe, and potentially treat a range of neurological disorders. The effects of ongoing neural state and dynamics on stimulation response, and of stimulation parameters on neural state, have broad implications for the development of closed-loop neuro-modulation approaches. We describe the development of a modular, low-latency platform for pre-clinical, closed-loop neuromodulation studies with human participants. We illustrate the uses of the platform in a stimulation case study with a person with epilepsy undergoing neuro-monitoring prior to resective surgery. We demonstrate the efficacy of the system by tracking interictal epileptiform discharges in the local field potential to trigger intracranial electrical stimulation, and show that the response to stimulation depends on the neural state.

  16. Multiparameter Estimation in Networked Quantum Sensors

    NASA Astrophysics Data System (ADS)

    Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.

    2018-02-01

    We introduce a general model for a network of quantum sensors, and we use this model to consider the following question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. This immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or nonlinear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.

  17. Genetic potential of black bean genotypes with predictable behaviors in multienvironment trials.

    PubMed

    Torga, P P; Melo, P G S; Pereira, H S; Faria, L C; Melo, L C

    2016-10-24

    The aim of this study was to evaluate the phenotypic stability and specific and broad adaptability of common black bean genotypes for the Central and Center-South regions of Brazil by using the Annicchiarico and AMMI (weighted average of absolute scores: WAAS, and weighted average of absolute scores and productivity: WAASP) methodologies. We carried out 69 trials, with 43 and 26 trials in the Central and Center-South regions, respectively. Thirteen genotypes were evaluated in a randomized block design with three replications, during the rainy, dry, and winter seasons in 2 years. To obtain estimates of specific adaptation, we analyzed the parameters for each method obtained in the two geographic regions separately. To estimate broad adaptation, we used the average of the parameters obtained from each region. The lines identified with high specific adaptation in each region were not the same based on the Annicchiarico and AMMI (WAAS) methodologies. It was not possible to identify the same genotypes with specific or broad stability by using these methods. By contrast, the Annicchiarico and AMMI (WAASP) methods presented very similar estimates of broad and specific adaptation. Based on these methods, the lines with more specific adaptation were CNFP 8000 and CNFP 7994, in the Central and Center-South regions, respectively, of which the CNFP 8000 line was more widely adapted.

  18. Origin of the X-ray Spectral Variation and Seemingly Broad Iron Line Strucuture in the Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Ebisawa, Ken; Naoki, Iso

    2012-07-01

    X-ray intensities and spectra of the Seyfert galaxies are known to be variable. Some of the sources have characteristic seemingly broad iron line structure, and their spectral variations are small in the iron line energy band. MCG-6-30-15 is such an archetypal source, and Miyakawa (2011) proposed a "Variable Partial Covering (VPC)" model to explain its continuum spectral variation, seemingly broad iron line structure, and small spectral variation in the iron energy band simultaneously, only due to variation of a single parameter. That single parameter is the "partial covering fraction" to describe the geometrical fraction of the X-ray emitting area covered by the ionized absorbers in the line of sight. The intrinsic X-ray luminosity is hardly variable in this model. We have applied the VPC model to the 27 Seyfert galaxies observed with Suzaku, and found that spectral variations of the 22 sources are successfully explained by this model only varying the partial covering fraction. Intrinsic X-ray luminosities of Seyfert galaxies are not variable, as opposed to what they apparently seem, and gravitationally red-shifted iron line is not necessary. Those ionized absorbing clouds are most likely to be Broad Line Region (BLR) clouds, and we will be able to constrain the BLR structure from X-ray observations.

  19. Large Uncertainty in Estimating pCO2 From Carbonate Equilibria in Lakes

    NASA Astrophysics Data System (ADS)

    Golub, Malgorzata; Desai, Ankur R.; McKinley, Galen A.; Remucal, Christina K.; Stanley, Emily H.

    2017-11-01

    Most estimates of carbon dioxide (CO2) evasion from freshwaters rely on calculating partial pressure of aquatic CO2 (pCO2) from two out of three CO2-related parameters using carbonate equilibria. However, the pCO2 uncertainty has not been systematically evaluated across multiple lake types and equilibria. We quantified random errors in pH, dissolved inorganic carbon, alkalinity, and temperature from the North Temperate Lakes Long-Term Ecological Research site in four lake groups across a broad gradient of chemical composition. These errors were propagated onto pCO2 calculated from three carbonate equilibria, and for overlapping observations, compared against uncertainties in directly measured pCO2. The empirical random errors in CO2-related parameters were mostly below 2% of their median values. Resulting random pCO2 errors ranged from ±3.7% to ±31.5% of the median depending on alkalinity group and choice of input parameter pairs. Temperature uncertainty had a negligible effect on pCO2. When compared with direct pCO2 measurements, all parameter combinations produced biased pCO2 estimates with less than one third of total uncertainty explained by random pCO2 errors, indicating that systematic uncertainty dominates over random error. Multidecadal trend of pCO2 was difficult to reconstruct from uncertain historical observations of CO2-related parameters. Given poor precision and accuracy of pCO2 estimates derived from virtually any combination of two CO2-related parameters, we recommend direct pCO2 measurements where possible. To achieve consistently robust estimates of CO2 emissions from freshwater components of terrestrial carbon balances, future efforts should focus on improving accuracy and precision of CO2-related parameters (including direct pCO2) measurements and associated pCO2 calculations.

  20. Sleep spindles and intelligence: evidence for a sexual dimorphism.

    PubMed

    Ujma, Péter P; Konrad, Boris Nikolai; Genzel, Lisa; Bleifuss, Annabell; Simor, Péter; Pótári, Adrián; Körmendi, János; Gombos, Ferenc; Steiger, Axel; Bódizs, Róbert; Dresler, Martin

    2014-12-03

    Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a higher number of spindles and higher spindle density than males. Sleep spindles have been associated with learning potential and intelligence; however, the details of this relationship have not been fully clarified yet. In a sample of 160 adult human subjects with a broad IQ range, we investigated the relationship between sleep spindle parameters and intelligence. In females, we found a positive age-corrected association between intelligence and fast sleep spindle amplitude in central and frontal derivations and a positive association between intelligence and slow sleep spindle duration in all except one derivation. In males, a negative association between intelligence and fast spindle density in posterior regions was found. Effects were continuous over the entire IQ range. Our results demonstrate that, although there is an association between sleep spindle parameters and intellectual performance, these effects are more modest than previously reported and mainly present in females. This supports the view that intelligence does not rely on a single neural framework, and stronger neural connectivity manifesting in increased thalamocortical oscillations in sleep is one particular mechanism typical for females but not males. Copyright © 2014 the authors 0270-6474/14/3416358-11$15.00/0.

  1. Climatic niche and flowering and fruiting phenology of an epiphytic plant.

    PubMed

    Barve, Narayani; Martin, Craig E; Peterson, A Townsend

    2015-09-10

    Species have geographic distributions constrained by combinations of abiotic factors, biotic factors and dispersal-related factors. Abiotic requirements vary across the life stages for a species; for plant species, a particularly important life stage is when the plant flowers and develops seeds. A previous year-long experiment showed that ambient temperature of 5-35 °C, relative humidity of >50 % and ≤15 consecutive rainless days are crucial abiotic conditions for Spanish moss (Tillandsia usneoides L.). Here, we explore whether these optimal physiological intervals relate to the timing of the flowering and fruiting periods of Spanish moss across its range. As Spanish moss has a broad geographic range, we examined herbarium specimens to detect and characterize flowering/fruiting periods for the species across the Americas; we used high-temporal-resolution climatic data to assess the availability of optimal conditions for Spanish moss populations during each population's flowering period. We explored how long populations experience suboptimal conditions and found that most populations experience suboptimal conditions in at least one environmental dimension. Flowering and fruiting periods of Spanish moss populations are either being optimized for one or a few parameters or may be adjusted such that all parameters are suboptimal. Spanish moss populations appear to be constrained most closely by minimum temperature during this period. Published by Oxford University Press on behalf of the Annals of Botany Company.

  2. Application of a Self-Similar Pressure Profile to Sunyaev-Zeldovich Effect Data from Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Mroczkowski, Tony; Bonamente, Max; Carlstrom, John E.; Culverhouse, Thomas L.; Greer, Christopher; Hawkins, David; Hennessy, Ryan; Joy, Marshall; Lamb, James W.; Leitch, Erik M.; hide

    2009-01-01

    We investigate the utility of a new, self-similar pressure profile for fitting Sunyaev-Zel'dovich (SZ) effect observations of galaxy clusters. Current SZ imaging instruments-such as the Sunyaev-Zel'dovich Array (SZA)- are capable of probing clusters over a large range in a physical scale. A model is therefore required that can accurately describe a cluster's pressure profile over a broad range of radii from the core of the cluster out to a significant fraction of the virial radius. In the analysis presented here, we fit a radial pressure profile derived from simulations and detailed X-ray analysis of relaxed clusters to SZA observations of three clusters with exceptionally high-quality X-ray data: A1835, A1914, and CL J1226.9+3332. From the joint analysis of the SZ and X-ray data, we derive physical properties such as gas mass, total mass, gas fraction and the intrinsic, integrated Compton y-parameter. We find that parameters derived from the joint fit to the SZ and X-ray data agree well with a detailed, independent X-ray-only analysis of the same clusters. In particular, we find that, when combined with X-ray imaging data, this new pressure profile yields an independent electron radial temperature profile that is in good agreement with spectroscopic X-ray measurements.

  3. Closed Field Coronal Heating Models Inspired by Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M. M.

    2013-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence dissipation (WTD) phenomenology for the heating of closed coronal loops. To do so, we employ an implementation of non-WKB equations designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic equations in 1D for an idealized loop, and the relevance to a range of solar conditions is established by computing solutions for several hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-sun and active region conditions. The importance of the self-reflection term in producing realistic heating scale heights and thermal non-equilibrium cycles is discussed, and preliminary 3D thermodynamic MHD simulations using this formulation are presented. Research supported by NASA and NSF.

  4. Synthesis of Trigeneration Systems: Sensitivity Analyses and Resilience

    PubMed Central

    Carvalho, Monica; Lozano, Miguel A.; Ramos, José; Serra, Luis M.

    2013-01-01

    This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs. PMID:24453881

  5. Design optimization of beta- and photovoltaic conversion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.; Blum, A.; Fischer-Colbrie, E.

    1976-01-08

    This report presents the theoretical and experimental results of an LLL Electronics Engineering research program aimed at optimizing the design and electronic-material parameters of beta- and photovoltaic p-n junction conversion devices. To meet this objective, a comprehensive computer code has been developed that can handle a broad range of practical conditions. The physical model upon which the code is based is described first. Then, an example is given of a set of optimization calculations along with the resulting optimized efficiencies for silicon (Si) and gallium-arsenide (GaAs) devices. The model we have developed, however, is not limited to these materials. Itmore » can handle any appropriate material--single or polycrystalline-- provided energy absorption and electron-transport data are available. To check code validity, the performance of experimental silicon p-n junction devices (produced in-house) were measured under various light intensities and spectra as well as under tritium beta irradiation. The results of these tests were then compared with predicted results based on the known or best estimated device parameters. The comparison showed very good agreement between the calculated and the measured results.« less

  6. Computerized adaptive testing: the capitalization on chance problem.

    PubMed

    Olea, Julio; Barrada, Juan Ramón; Abad, Francisco J; Ponsoda, Vicente; Cuevas, Lara

    2012-03-01

    This paper describes several simulation studies that examine the effects of capitalization on chance in the selection of items and the ability estimation in CAT, employing the 3-parameter logistic model. In order to generate different estimation errors for the item parameters, the calibration sample size was manipulated (N = 500, 1000 and 2000 subjects) as was the ratio of item bank size to test length (banks of 197 and 788 items, test lengths of 20 and 40 items), both in a CAT and in a random test. Results show that capitalization on chance is particularly serious in CAT, as revealed by the large positive bias found in the small sample calibration conditions. For broad ranges of theta, the overestimation of the precision (asymptotic Se) reaches levels of 40%, something that does not occur with the RMSE (theta). The problem is greater as the item bank size to test length ratio increases. Potential solutions were tested in a second study, where two exposure control methods were incorporated into the item selection algorithm. Some alternative solutions are discussed.

  7. Dual-Gate Modulation of Carrier Density and Disorder in an Oxide Two-Dimensional Electron System

    DOE PAGES

    Chen, Zhuoyu; Yuan, Hongtao; Xie, Yanwu; ...

    2016-09-08

    Carrier density and disorder are two crucial parameters that control the properties of correlated two-dimensional electron systems. Furthermore, in order to disentangle their individual contributions to quantum phenomena, independent tuning of these two parameters is required. By utilizing a hybrid liquid/solid electric dual-gate geometry acting on the conducting LaAlO 3/SrTiO 3 heterointerface, we obtain an additional degree of freedom to strongly modify the electron confinement profile and thus the strength of interfacial scattering, independent from the carrier density. A dual-gate controlled nonlinear Hall effect is a direct manifestation of this profile, which can be quantitatively understood by a Poisson–Schrödinger sub-bandmore » model. In particular, the large nonlinear dielectric response of SrTiO 3 enables a very wide range of tunable density and disorder, far beyond that for conventional semiconductors. This study provides a broad framework for understanding various reported phenomena at the LaAlO 3/SrTiO 3 interface.« less

  8. Synthesis of trigeneration systems: sensitivity analyses and resilience.

    PubMed

    Carvalho, Monica; Lozano, Miguel A; Ramos, José; Serra, Luis M

    2013-01-01

    This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs.

  9. Laser surface texturing for high control of interference fit joint load bearing

    NASA Astrophysics Data System (ADS)

    Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.

    2017-10-01

    Laser beams attract the attention of researchers, engineers and manufacturer as they can deliver high energy with finite controlled processing parameters and heat affected zone (HAZ) on almost all kind of materials [1-3]. Laser beams can be generated in the broad range of wavelengths, energies and beam modes in addition to the unique property of propagation in straight lines with less or negligible divergence [3]. These features made lasers preferential for metal treatment and surface modification over the conventional machining and heat treatment methods. Laser material forming and processing is prosperous and competitive because of its flexibility and the creation of new solutions and techniques [3-5]. This study is focused on the laser surface texture of 316L stainless steel pins for the application of interference fit, widely used in automotive and aerospace industry. The main laser processing parameters applied are the power, frequency and the overlapping laser beam scans. The produced samples were characterized by measuring the increase in the insertion diameter, insertion and removal force, surface morphology and cross section alteration and the modified layer chemical composition and residual stresses.

  10. Dissolved oxygen content as an index of water quality in San Vicente Bay, Chile (36 degrees 45'S).

    PubMed

    Rudolph, Anny; Ahumada, Ramón; Pérez, Claudio

    2002-08-01

    The present report describes some effects of industrial and municipal effluents on the waters of San Vicente Bay. Analyses of the main substances contained in the fishing industry effluent suggest rating criteria based on the oxygen saturation of the water as an assessment of organic pollution. Six cruises were carried out throughout the Bay, from June to December 1996. Water samples were analyzed for dissolved oxygen, oil and grease content, and sediment samples for organic matter content. Water parameters (salinity, temperature) were used to characterize the Bay's hydrography, and to calculate values for oxygen saturation. The measurements demonstrated a local broad range of oxygen deficit, with a maximum of 45% in the winter to 95% in the spring. In November more than 65% of the Bay's area showed oxygen deficits greater than 40%. Organic matter was unusually high in sediments along the northern sector of the Bay. The results suggest that the oxygen depletion was a representative parameter for establishing a relative scale of water quality in this Bay.

  11. An approach to and web-based tool for infectious disease outbreak intervention analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daughton, Ashlynn R.; Generous, Nicholas; Priedhorsky, Reid

    Infectious diseases are a leading cause of death globally. Decisions surrounding how to control an infectious disease outbreak currently rely on a subjective process involving surveillance and expert opinion. However, there are many situations where neither may be available. Modeling can fill gaps in the decision making process by using available data to provide quantitative estimates of outbreak trajectories. Effective reduction of the spread of infectious diseases can be achieved through collaboration between the modeling community and public health policy community. However, such collaboration is rare, resulting in a lack of models that meet the needs of the public healthmore » community. Here we show a Susceptible-Infectious-Recovered (SIR) model modified to include control measures that allows parameter ranges, rather than parameter point estimates, and includes a web user interface for broad adoption. We apply the model to three diseases, measles, norovirus and influenza, to show the feasibility of its use and describe a research agenda to further promote interactions between decision makers and the modeling community.« less

  12. Quantifying the origin of metallic glass formation

    NASA Astrophysics Data System (ADS)

    Johnson, W. L.; Na, J. H.; Demetriou, M. D.

    2016-01-01

    The waiting time to form a crystal in a unit volume of homogeneous undercooled liquid exhibits a pronounced minimum τX* at a `nose temperature' T* located between the glass transition temperature Tg, and the crystal melting temperature, TL. Turnbull argued that τX* should increase rapidly with the dimensionless ratio trg=Tg/TL. Angell introduced a dimensionless `fragility parameter', m, to characterize the fall of atomic mobility with temperature above Tg. Both trg and m are widely thought to play a significant role in determining τX*. Here we survey and assess reported data for TL, Tg, trg, m and τX* for a broad range of metallic glasses with widely varying τX*. By analysing this database, we derive a simple empirical expression for τX*(trg, m) that depends exponentially on trg and m, and two fitting parameters. A statistical analysis shows that knowledge of trg and m alone is therefore sufficient to predict τX* within estimated experimental errors. Surprisingly, the liquid/crystal interfacial free energy does not appear in this expression for τX*.

  13. Intelligent Systems for Stabilizing Mode-Locked Lasers and Frequency Combs: Machine Learning and Equation-Free Control Paradigms for Self-Tuning Optics

    NASA Astrophysics Data System (ADS)

    Kutz, J. Nathan; Brunton, Steven L.

    2015-12-01

    We demonstrate that a software architecture using innovations in machine learning and adaptive control provides an ideal integration platform for self-tuning optics. For mode-locked lasers, commercially available optical telecom components can be integrated with servocontrollers to enact a training and execution software module capable of self-tuning the laser cavity even in the presence of mechanical and/or environmental perturbations, thus potentially stabilizing a frequency comb. The algorithm training stage uses an exhaustive search of parameter space to discover best regions of performance for one or more objective functions of interest. The execution stage first uses a sparse sensing procedure to recognize the parameter space before quickly moving to the near optimal solution and maintaining it using the extremum seeking control protocol. The method is robust and equationfree, thus requiring no detailed or quantitatively accurate model of the physics. It can also be executed on a broad range of problems provided only that suitable objective functions can be found and experimentally measured.

  14. Regionalising MUSLE factors for application to a data-scarce catchment

    NASA Astrophysics Data System (ADS)

    Gwapedza, David; Slaughter, Andrew; Hughes, Denis; Mantel, Sukhmani

    2018-04-01

    The estimation of soil loss and sediment transport is important for effective management of catchments. A model for semi-arid catchments in southern Africa has been developed; however, simplification of the model parameters and further testing are required. Soil loss is calculated through the Modified Universal Soil Loss Equation (MUSLE). The aims of the current study were to: (1) regionalise the MUSLE erodibility factors and; (2) perform a sensitivity analysis and validate the soil loss outputs against independently-estimated measures. The regionalisation was developed using Geographic Information Systems (GIS) coverages. The model was applied to a high erosion semi-arid region in the Eastern Cape, South Africa. Sensitivity analysis indicated model outputs to be more sensitive to the vegetation cover factor. The simulated soil loss estimates of 40 t ha-1 yr-1 were within the range of estimates by previous studies. The outcome of the present research is a framework for parameter estimation for the MUSLE through regionalisation. This is part of the ongoing development of a model which can estimate soil loss and sediment delivery at broad spatial and temporal scales.

  15. Hard Constraints in Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Giesy, Daniel P.; Kenny, Sean P.

    2008-01-01

    This paper proposes a methodology for the analysis and design of systems subject to parametric uncertainty where design requirements are specified via hard inequality constraints. Hard constraints are those that must be satisfied for all parameter realizations within a given uncertainty model. Uncertainty models given by norm-bounded perturbations from a nominal parameter value, i.e., hyper-spheres, and by sets of independently bounded uncertain variables, i.e., hyper-rectangles, are the focus of this paper. These models, which are also quite practical, allow for a rigorous mathematical treatment within the proposed framework. Hard constraint feasibility is determined by sizing the largest uncertainty set for which the design requirements are satisfied. Analytically verifiable assessments of robustness are attained by comparing this set with the actual uncertainty model. Strategies that enable the comparison of the robustness characteristics of competing design alternatives, the description and approximation of the robust design space, and the systematic search for designs with improved robustness are also proposed. Since the problem formulation is generic and the tools derived only require standard optimization algorithms for their implementation, this methodology is applicable to a broad range of engineering problems.

  16. Analysis of transient state in HTS tapes under ripple DC load current

    NASA Astrophysics Data System (ADS)

    Stepien, M.; Grzesik, B.

    2014-05-01

    The paper concerns the analysis of transient state (quench transition) in HTS tapes loaded with the current having DC component together with a ripple component. Two shapes of the ripple were taken into account: sinusoidal and triangular. Very often HTS tape connected to a power electronic current supply (i.e. superconducting coil for SMES) that delivers DC current with ripples and it needs to be examined under such conditions. Additionally, measurements of electrical (and thermal) parameters under such ripple excitation is useful to tape characterization in broad range of load currents. The results presented in the paper were obtained using test bench which contains programmable DC supply and National Instruments data acquisition system. Voltage drops and load currents were measured vs. time. Analysis of measured parameters as a function of the current was used to tape description with quench dynamics taken into account. Results of measurements were also used to comparison with the results of numerical modelling based on FEM. Presented provisional results show possibility to use results of measurements in transient state to prepare inverse models of superconductors and their detailed numerical modelling.

  17. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury.

    PubMed

    Wenger, Nikolaus; Moraud, Eduardo Martin; Raspopovic, Stanisa; Bonizzato, Marco; DiGiovanna, Jack; Musienko, Pavel; Morari, Manfred; Micera, Silvestro; Courtine, Grégoire

    2014-09-24

    Neuromodulation of spinal sensorimotor circuits improves motor control in animal models and humans with spinal cord injury. With common neuromodulation devices, electrical stimulation parameters are tuned manually and remain constant during movement. We developed a mechanistic framework to optimize neuromodulation in real time to achieve high-fidelity control of leg kinematics during locomotion in rats. We first uncovered relationships between neuromodulation parameters and recruitment of distinct sensorimotor circuits, resulting in predictive adjustments of leg kinematics. Second, we established a technological platform with embedded control policies that integrated robust movement feedback and feed-forward control loops in real time. These developments allowed us to conceive a neuroprosthetic system that controlled a broad range of foot trajectories during continuous locomotion in paralyzed rats. Animals with complete spinal cord injury performed more than 1000 successive steps without failure, and were able to climb staircases of various heights and lengths with precision and fluidity. Beyond therapeutic potential, these findings provide a conceptual and technical framework to personalize neuromodulation treatments for other neurological disorders. Copyright © 2014, American Association for the Advancement of Science.

  18. On the probability distribution of daily streamflow in the United States

    USGS Publications Warehouse

    Blum, Annalise G.; Archfield, Stacey A.; Vogel, Richard M.

    2017-01-01

    Daily streamflows are often represented by flow duration curves (FDCs), which illustrate the frequency with which flows are equaled or exceeded. FDCs have had broad applications across both operational and research hydrology for decades; however, modeling FDCs has proven elusive. Daily streamflow is a complex time series with flow values ranging over many orders of magnitude. The identification of a probability distribution that can approximate daily streamflow would improve understanding of the behavior of daily flows and the ability to estimate FDCs at ungaged river locations. Comparisons of modeled and empirical FDCs at nearly 400 unregulated, perennial streams illustrate that the four-parameter kappa distribution provides a very good representation of daily streamflow across the majority of physiographic regions in the conterminous United States (US). Further, for some regions of the US, the three-parameter generalized Pareto and lognormal distributions also provide a good approximation to FDCs. Similar results are found for the period of record FDCs, representing the long-term hydrologic regime at a site, and median annual FDCs, representing the behavior of flows in a typical year.

  19. Metallic coatings of microelectromechanical structures at low temperatures: Stress, elasticity, and nonlinear dissipation

    NASA Astrophysics Data System (ADS)

    Collin, E.; Kofler, J.; Lakhloufi, S.; Pairis, S.; Bunkov, Yu. M.; Godfrin, H.

    2010-06-01

    We present mechanical measurements performed at low temperatures on cantilever-based microelectromechanical structures coated with a metallic layer. Two very different coatings are presented in order to illustrate the capabilities of the present approach, namely (soft) aluminum and (hard) niobium oxide. The temperature is used as a control parameter to access materials properties. We benefit from low temperature techniques to extract a phase-resolved measurement of the first mechanical resonance mode in cryogenic vacuum. By repeating the experiment on the same samples, after multiple metallic depositions, we can determine accurately the contribution of the coating layers to the mechanical properties in terms of surface stress, additional mass, additional elasticity, and damping. Analytic theoretical expressions are derived and used to fit the data. Taking advantage of the extremely broad dynamic range provided by the technique, we can measure the anelasticity of the thin metallic film. The key parameters describing the metals' dynamics are analyzed in an original way in order to provide new experimental grounds for future theoretical modelings of the underlying mechanisms.

  20. Spin dynamics and frequency dependence of magnetic damping study in soft ferromagnetic FeTaC film with a stripe domain structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samantaray, B., E-mail: iitg.biswanath@gmail.com; Ranganathan, R.; Mandal, P.

    Perpendicular magnetic anisotropy (PMA) and low magnetic damping are the key factors for the free layer magnetization switching by spin transfer torque technique in magnetic tunnel junction devices. The magnetization precessional dynamics in soft ferromagnetic FeTaC thin film with a stripe domain structure was explored in broad band frequency range by employing micro-strip ferromagnetic resonance technique. The polar angle variation of resonance field and linewidth at different frequencies have been analyzed numerically using Landau-Lifshitz-Gilbert equation by taking into account the total free energy density of the film. The numerically estimated parameters Landé g-factor, PMA constant, and effective magnetization are foundmore » to be 2.1, 2 × 10{sup 5} erg/cm{sup 3} and 7145 Oe, respectively. The frequency dependence of Gilbert damping parameter (α) is evaluated by considering both intrinsic and extrinsic effects into the total linewidth analysis. The value of α is found to be 0.006 at 10 GHz and it increases monotonically with decreasing precessional frequency.« less

  1. An approach to and web-based tool for infectious disease outbreak intervention analysis

    DOE PAGES

    Daughton, Ashlynn R.; Generous, Nicholas; Priedhorsky, Reid; ...

    2017-04-18

    Infectious diseases are a leading cause of death globally. Decisions surrounding how to control an infectious disease outbreak currently rely on a subjective process involving surveillance and expert opinion. However, there are many situations where neither may be available. Modeling can fill gaps in the decision making process by using available data to provide quantitative estimates of outbreak trajectories. Effective reduction of the spread of infectious diseases can be achieved through collaboration between the modeling community and public health policy community. However, such collaboration is rare, resulting in a lack of models that meet the needs of the public healthmore » community. Here we show a Susceptible-Infectious-Recovered (SIR) model modified to include control measures that allows parameter ranges, rather than parameter point estimates, and includes a web user interface for broad adoption. We apply the model to three diseases, measles, norovirus and influenza, to show the feasibility of its use and describe a research agenda to further promote interactions between decision makers and the modeling community.« less

  2. On the accuracy of the LSC-IVR approach for excitation energy transfer in molecular aggregates

    NASA Astrophysics Data System (ADS)

    Teh, Hung-Hsuan; Cheng, Yuan-Chung

    2017-04-01

    We investigate the applicability of the linearized semiclassical initial value representation (LSC-IVR) method to excitation energy transfer (EET) problems in molecular aggregates by simulating the EET dynamics of a dimer model in a wide range of parameter regime and comparing the results to those obtained from a numerically exact method. It is found that the LSC-IVR approach yields accurate population relaxation rates and decoherence rates in a broad parameter regime. However, the classical approximation imposed by the LSC-IVR method does not satisfy the detailed balance condition, generally leading to incorrect equilibrium populations. Based on this observation, we propose a post-processing algorithm to solve the long time equilibrium problem and demonstrate that this long-time correction method successfully removed the deviations from exact results for the LSC-IVR method in all of the regimes studied in this work. Finally, we apply the LSC-IVR method to simulate EET dynamics in the photosynthetic Fenna-Matthews-Olson complex system, demonstrating that the LSC-IVR method with long-time correction provides excellent description of coherent EET dynamics in this typical photosynthetic pigment-protein complex.

  3. A laboratory-calibrated model of coho salmon growth with utility for ecological analyses

    USGS Publications Warehouse

    Manhard, Christopher V.; Som, Nicholas A.; Perry, Russell W.; Plumb, John M.

    2018-01-01

    We conducted a meta-analysis of laboratory- and hatchery-based growth data to estimate broadly applicable parameters of mass- and temperature-dependent growth of juvenile coho salmon (Oncorhynchus kisutch). Following studies of other salmonid species, we incorporated the Ratkowsky growth model into an allometric model and fit this model to growth observations from eight studies spanning ten different populations. To account for changes in growth patterns with food availability, we reparameterized the Ratkowsky model to scale several of its parameters relative to ration. The resulting model was robust across a wide range of ration allocations and experimental conditions, accounting for 99% of the variation in final body mass. We fit this model to growth data from coho salmon inhabiting tributaries and constructed ponds in the Klamath Basin by estimating habitat-specific indices of food availability. The model produced evidence that constructed ponds provided higher food availability than natural tributaries. Because of their simplicity (only mass and temperature are required as inputs) and robustness, ration-varying Ratkowsky models have utility as an ecological tool for capturing growth in freshwater fish populations.

  4. The IFITMs Inhibit Zika Virus Replication.

    PubMed

    Savidis, George; Perreira, Jill M; Portmann, Jocelyn M; Meraner, Paul; Guo, Zhiru; Green, Sharone; Brass, Abraham L

    2016-06-14

    Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses. Copyright © 2016. Published by Elsevier Inc.

  5. Do climate variables and human density affect Achatina fulica (Bowditch) (Gastropoda: Pulmonata) shell length, total weight and condition factor?

    PubMed

    Albuquerque, F S; Peso-Aguiar, M C; Assunção-Albuquerque, M J T; Gálvez, L

    2009-08-01

    The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm). The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.

  6. Differential recovery of water quality parameters eight years after severe wildfire and salvage logging in Alberta's southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Silins, U.; Bladon, K. D.; Stone, M.; Emelko, M. B.; Collins, A.; Boon, S.; Williams, C.; Wagner, M. J.; Martens, A. M.; Anderson, A.

    2012-12-01

    Broad regions of western North America rely on water supplies that originate from forested regions of the Rocky Mountain cordillera where landuse pressures, and stresses including changing natural disturbance regimes associated with shifting climates has been impacting critical source water supplies from this region. Increases in magnitude and severity of wildfires along with impacts on downstream water supplies has been observed along the length of the North American Rocky Mountain chain, however, the longevity of these impacts (including impacts to important water quality parameters) remain highly uncertain because processes regulating recovery from such disturbances can span a range of timescales from a few years to decades depending on both the hydro-climatic regime, and which water quality parameters are important. Studies document such long-term changes are few. The Southern Rockies Watershed Project (SRWP) was established to document the magnitude and recovery from the severe 2003 Lost Creek wildfire in the Crowsnest Pass region of southwest Alberta, Canada. Hydrology, water quality (physical & chemical) have been studies in 9 instrumented catchments (4-14 km2) encompassing burned, burned and salvage logged, prescribed burned, and unburned (reference) conditions since late winter 2004. While most important water quality parameters were strongly elevated in burned and burned-salvage logged catchments after the fire, strongly differential rates of recovery were observed for contaminant concentration, export, and yield across a range of water quality parameters (2004-2011). For example, while various nitrogen (N) species (total nitrogen, dissolved nitrogen, NO3-, NH4+) showed 2-7 fold increases in concentration the first 1-2 years after the wildfire, N recovered back to baseline concentrations 4-5 years after the wildfire. In contrast, eight full years after the wildfire (2011), no recovery of sediment or phosphorus (P) production (soluble reactive, total dissolved, particulate, and total P) has been evident. Incremental impacts of management intervention by salvage logging over wildfire alone were observed for most water quality parameters. Sedimentary geology, glacial history of this region, along with predominance of fine fluvial sediments are likely implicated in both the strong sediment-P coupling and longevity of wildfire impacts observed in this region.

  7. Application of empirical and dynamical closure methods to simple climate models

    NASA Astrophysics Data System (ADS)

    Padilla, Lauren Elizabeth

    This dissertation applies empirically- and physically-based methods for closure of uncertain parameters and processes to three model systems that lie on the simple end of climate model complexity. Each model isolates one of three sources of closure uncertainty: uncertain observational data, large dimension, and wide ranging length scales. They serve as efficient test systems toward extension of the methods to more realistic climate models. The empirical approach uses the Unscented Kalman Filter (UKF) to estimate the transient climate sensitivity (TCS) parameter in a globally-averaged energy balance model. Uncertainty in climate forcing and historical temperature make TCS difficult to determine. A range of probabilistic estimates of TCS computed for various assumptions about past forcing and natural variability corroborate ranges reported in the IPCC AR4 found by different means. Also computed are estimates of how quickly uncertainty in TCS may be expected to diminish in the future as additional observations become available. For higher system dimensions the UKF approach may become prohibitively expensive. A modified UKF algorithm is developed in which the error covariance is represented by a reduced-rank approximation, substantially reducing the number of model evaluations required to provide probability densities for unknown parameters. The method estimates the state and parameters of an abstract atmospheric model, known as Lorenz 96, with accuracy close to that of a full-order UKF for 30-60% rank reduction. The physical approach to closure uses the Multiscale Modeling Framework (MMF) to demonstrate closure of small-scale, nonlinear processes that would not be resolved directly in climate models. A one-dimensional, abstract test model with a broad spatial spectrum is developed. The test model couples the Kuramoto-Sivashinsky equation to a transport equation that includes cloud formation and precipitation-like processes. In the test model, three main sources of MMF error are evaluated independently. Loss of nonlinear multi-scale interactions and periodic boundary conditions in closure models were dominant sources of error. Using a reduced order modeling approach to maximize energy content allowed reduction of the closure model dimension up to 75% without loss in accuracy. MMF and a comparable alternative model peformed equally well compared to direct numerical simulation.

  8. BluePyOpt: Leveraging Open Source Software and Cloud Infrastructure to Optimise Model Parameters in Neuroscience.

    PubMed

    Van Geit, Werner; Gevaert, Michael; Chindemi, Giuseppe; Rössert, Christian; Courcol, Jean-Denis; Muller, Eilif B; Schürmann, Felix; Segev, Idan; Markram, Henry

    2016-01-01

    At many scales in neuroscience, appropriate mathematical models take the form of complex dynamical systems. Parameterizing such models to conform to the multitude of available experimental constraints is a global non-linear optimisation problem with a complex fitness landscape, requiring numerical techniques to find suitable approximate solutions. Stochastic optimisation approaches, such as evolutionary algorithms, have been shown to be effective, but often the setting up of such optimisations and the choice of a specific search algorithm and its parameters is non-trivial, requiring domain-specific expertise. Here we describe BluePyOpt, a Python package targeted at the broad neuroscience community to simplify this task. BluePyOpt is an extensible framework for data-driven model parameter optimisation that wraps and standardizes several existing open-source tools. It simplifies the task of creating and sharing these optimisations, and the associated techniques and knowledge. This is achieved by abstracting the optimisation and evaluation tasks into various reusable and flexible discrete elements according to established best-practices. Further, BluePyOpt provides methods for setting up both small- and large-scale optimisations on a variety of platforms, ranging from laptops to Linux clusters and cloud-based compute infrastructures. The versatility of the BluePyOpt framework is demonstrated by working through three representative neuroscience specific use cases.

  9. Parameterization of Highly Charged Metal Ions Using the 12-6-4 LJ-Type Nonbonded Model in Explicit Water

    PubMed Central

    2015-01-01

    Highly charged metal ions act as catalytic centers and structural elements in a broad range of chemical complexes. The nonbonded model for metal ions is extensively used in molecular simulations due to its simple form, computational speed, and transferability. We have proposed and parametrized a 12-6-4 LJ (Lennard-Jones)-type nonbonded model for divalent metal ions in previous work, which showed a marked improvement over the 12-6 LJ nonbonded model. In the present study, by treating the experimental hydration free energies and ion–oxygen distances of the first solvation shell as targets for our parametrization, we evaluated 12-6 LJ parameters for 18 M(III) and 6 M(IV) metal ions for three widely used water models (TIP3P, SPC/E, and TIP4PEW). As expected, the interaction energy underestimation of the 12-6 LJ nonbonded model increases dramatically for the highly charged metal ions. We then parametrized the 12-6-4 LJ-type nonbonded model for these metal ions with the three water models. The final parameters reproduced the target values with good accuracy, which is consistent with our previous experience using this potential. Finally, tests were performed on a protein system, and the obtained results validate the transferability of these nonbonded model parameters. PMID:25145273

  10. Upscaled soil-water retention using van Genuchten's function

    USGS Publications Warehouse

    Green, T.R.; Constantz, J.E.; Freyberg, D.L.

    1996-01-01

    Soils are often layered at scales smaller than the block size used in numerical and conceptual models of variably saturated flow. Consequently, the small-scale variability in water content within each block must be homogenized (upscaled). Laboratory results have shown that a linear volume average (LVA) of water content at a uniform suction is a good approximation to measured water contents in heterogeneous cores. Here, we upscale water contents using van Genuchten's function for both the local and upscaled soil-water-retention characteristics. The van Genuchten (vG) function compares favorably with LVA results, laboratory experiments under hydrostatic conditions in 3-cm cores, and numerical simulations of large-scale gravity drainage. Our method yields upscaled vG parameter values by fitting the vG curve to the LVA of water contents at various suction values. In practice, it is more efficient to compute direct averages of the local vG parameter values. Nonlinear power averages quantify a feasible range of values for each upscaled vG shape parameter; upscaled values of N are consistently less than the harmonic means, reflecting broad pore-size distributions of the upscaled soils. The vG function is useful for modeling soil-water retention at large scales, and these results provide guidance for its application.

  11. Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: A useful application in biomedicine.

    PubMed

    Hina, S; Mustafa, M; Hayat, T; Alsaedi, A

    2016-10-01

    In this work, we explore the heat transfer characteristics in the peristaltic transport of Powell-Eyring fluid inside a curved channel with complaint walls. The study has motivation toward the understanding of blood flow in microcirculatory system. Formulation is developed in the existence of velocity slip and temperature jump conditions. Perturbation approach has been utilized to present series expressions of axial velocity and temperature distributions. Streamlines are prepared to analyze the interesting phenomenon of trapping. Moreover, the plots of heat transfer coefficient for a broad range of embedded parameters are presented and discussed. The results indicate that slip effects substantially influence the velocity and temperature distributions. Axial flow accelerates when slip parameter is incremented. Temperature rises and wall heat flux grows when viscous dissipation effect is strengthened. In contrast to the planar channels, here velocity and temperature functions do not exhibit symmetry with respect to the central line. In addition, bolus size and its shape are different in upper and lower portions of the channel. Heat transfer coefficient enlarges when the curvature effects are reduced. The behaviors of wall tension and wall mass parameters on the profiles are qualitatively similar. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. The Thermal Conductivity of Earth's Core: A Key Geophysical Parameter's Constraints and Uncertainties

    NASA Astrophysics Data System (ADS)

    Williams, Q.

    2018-05-01

    The thermal conductivity of iron alloys at high pressures and temperatures is a critical parameter in governing ( a) the present-day heat flow out of Earth's core, ( b) the inferred age of Earth's inner core, and ( c) the thermal evolution of Earth's core and lowermost mantle. It is, however, one of the least well-constrained important geophysical parameters, with current estimates for end-member iron under core-mantle boundary conditions varying by about a factor of 6. Here, the current state of calculations, measurements, and inferences that constrain thermal conductivity at core conditions are reviewed. The applicability of the Wiedemann-Franz law, commonly used to convert electrical resistivity data to thermal conductivity data, is probed: Here, whether the constant of proportionality, the Lorenz number, is constant at extreme conditions is of vital importance. Electron-electron inelastic scattering and increases in Fermi-liquid-like behavior may cause uncertainties in thermal conductivities derived from both first-principles-associated calculations and electrical conductivity measurements. Additional uncertainties include the role of alloying constituents and local magnetic moments of iron in modulating the thermal conductivity. Thus, uncertainties in thermal conductivity remain pervasive, and hence a broad range of core heat flows and inner core ages appear to remain plausible.

  13. Measuring viscosity with a resonant magnetic perturbation in the MST RFP

    NASA Astrophysics Data System (ADS)

    Fridström, Richard; Munaretto, Stefano; Frassinetti, Lorenzo; Chapman, Brett; Brunsell, Per; Sarff, John; MST Team

    2016-10-01

    Application of an m = 1 resonant magnetic perturbation (RMP) causes braking and locking of naturally rotating m = 1 tearing modes (TMs) in the MST RFP. The experimental TM dynamics are replicated by a theoretical model including the interaction between the RMP and multiple TMs [Fridström PoP 23, 062504 (2016)]. The viscosity is the only free parameter in the model, and it is chosen such that model TM velocity evolution matches that of the experiment. The model does not depend on the means by which the natural rotation is generated. The chosen value of the viscosity, about 40 m2/s, is consistent with separate measurements in MST using a biased probe to temporarily spin up the plasma. This viscosity is about 100 times larger than the classical prediction, likely due to magnetic stochasticity in the core of these plasmas. Viscosity is a key parameter in visco-resistive MHD codes like NIMROD. The validation of these codes requires measurement of the viscosity over a broad parameter range, which will now be possible with the RMP technique that, unlike the biased probe, is not limited to low-energy-density plasmas. Estimation with the RMP technique of the viscosity in several MST discharges suggests that the viscosity decreases as the electron beta increases. Work supported by USDOE.

  14. Multiscale metrologies for process optimization of carbon nanotube polymer composites

    DOE PAGES

    Natarajan, Bharath; Orloff, Nathan D.; Ashkar, Rana; ...

    2016-07-18

    Carbon nanotube (CNT) polymer nanocomposites are attractive multifunctional materials with a growing range of commercial applications. With the increasing demand for these materials, it is imperative to develop and validate methods for on-line quality control and process monitoring during production. In this work, a novel combination of characterization techniques is utilized, that facilitates the non-invasive assessment of CNT dispersion in epoxy produced by the scalable process of calendering. First, the structural parameters of these nanocomposites are evaluated across multiple length scales (10 -10 m to 10 -3 m) using scanning gallium-ion microscopy, transmission electron microscopy and small-angle neutron scattering. Then,more » a non-contact resonant microwave cavity perturbation (RCP) technique is employed to accurately measure the AC electrical conductivity of the nanocomposites. Quantitative correlations between the conductivity and structural parameters find the RCP measurements to be sensitive to CNT mass fraction, spatial organization and, therefore, the processing parameters. These results, and the non-contact nature and speed of RCP measurements identify this technique as being ideally suited for quality control of CNT nanocomposites in a nanomanufacturing environment. In conclusion, when validated by the multiscale characterization suite, RCP may be broadly applicable in the production of hybrid functional materials, such as graphene, gold nanorod, and carbon black nanocomposites.« less

  15. Preparation and analysis of anodic aluminum oxide films with continuously tunable interpore distances

    NASA Astrophysics Data System (ADS)

    Qin, Xiufang; Zhang, Jinqiong; Meng, Xiaojuan; Deng, Chenhua; Zhang, Lifang; Ding, Guqiao; Zeng, Hao; Xu, Xiaohong

    2015-02-01

    Nanoporous anodic aluminum oxides are often used as templates for preparation of nanostructures such as nanodot, nanowire and nanotube arrays. The interpore distance of anodic aluminum oxide is the most important parameter in controlling the periodicity of these nanostructures. Herein we demonstrate a simple and yet powerful method to fabricate ordered anodic aluminum oxides with continuously tunable interpore distances. By using mixed solution of citric and oxalic acids with different molar ratio, the range of anodizing voltages within which self-ordered films can be formed were extended to between 40 and 300 V, resulting in the interpore distances change from 100 to 750 nm. Our work realized very broad range of interpore distances in a continuously tunable fashion and the experiment processes are easily controllable and reproducible. The dependence of the interpore distances on acid ratios in mixed solutions was discussed through analysis of anodizing current and it was found that the effective dissociation constant of the mixed acids is of great importance. The interpore distances achieved are comparable to wavelengths ranging from UV to near IR, and may have potential applications in optical meta-materials for photovoltaics and optical sensing.

  16. On the geodetic applications of simultaneous range-differencing to LAGEOS

    NASA Technical Reports Server (NTRS)

    Pablis, E. C.

    1982-01-01

    The possibility of improving the accuracy of geodetic results by use of simultaneously observed ranges to Lageos, in a differencing mode, from pairs of stations was studied. Simulation tests show that model errors can be effectively minimized by simultaneous range differencing (SRD) for a rather broad class of network satellite pass configurations. The methods of least squares approximation are compared with monomials and Chebyshev polynomials and the cubic spline interpolation. Analysis of three types of orbital biases (radial, along- and across track) shows that radial biases are the ones most efficiently minimized in the SRC mode. The degree to which the other two can be minimized depends on the type of parameters under estimation and the geometry of the problem. Sensitivity analyses of the SRD observation show that for baseline length estimations the most useful data are those collected in a direction parallel to the baseline and at a low elevation. Estimating individual baseline lengths with respect to an assumed but fixed orbit not only decreases the cost, but it further reduces the effects of model biases on the results as opposed to a network solution. Analogous results and conclusions are obtained for the estimates of the coordinates of the pole.

  17. Optimization of Cold Spray Deposition of High-Density Polyethylene Powders

    NASA Astrophysics Data System (ADS)

    Bush, Trenton B.; Khalkhali, Zahra; Champagne, Victor; Schmidt, David P.; Rothstein, Jonathan P.

    2017-10-01

    When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure and plastic deformation can produce bonding between the particle and the substrate. The use of a cool supersonic gas flow to accelerate these solid particles is known as cold spray deposition. The cold spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting potential material properties possible with polymeric particles. In this work, a combined computational and experimental study was employed to study the cold spray deposition of high-density polyethylene powders over a wide range of particle temperatures and impact velocities. Cold spray deposition of polyethylene powders was demonstrated across a range broad range of substrate materials including several different polymer substrates with different moduli, glass and aluminum. A material-dependent window of successful deposition was determined for each substrate as a function of particle temperature and impact velocity. Additionally, a study of deposition efficiency revealed the optimal process parameters for high-density polyethylene powder deposition which yielded a deposition efficiency close to 10% and provided insights into the physical mechanics responsible for bonding while highlighting paths toward future process improvements.

  18. Long-range Self-interacting Dark Matter in the Sun

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Liang, Zheng-Liang; Wu, Yue-Liang; Zhou, Yu-Feng

    2015-12-01

    We investigate the implications of the long-rang self-interaction on both the self-capture and the annihilation of the self-interacting dark matter (SIDM) trapped in the Sun. Our discussion is based on a specific SIDM model in which DM particles self-interact via a light scalar mediator, or Yukawa potential, in the context of quantum mechanics. Within this framework, we calculate the self-capture rate across a broad region of parameter space. While the self-capture rate can be obtained separately in the Born regime with perturbative method, and in the classical limits with the Rutherford formula, our calculation covers the gap between in a non-perturbative fashion. Besides, the phenomenology of both the Sommerfeld-enhanced s- and p-wave annihilation of the solar SIDM is also involved in our discussion. Moreover, by combining the analysis of the Super-Kamiokande (SK) data and the observed DM relic density, we constrain the nuclear capture rate of the DM particles in the presence of the dark Yukawa potential. The consequence of the long-range dark force on probing the solar SIDM turns out to be significant if the force-carrier is much lighter than the DM particle, and a quantitative analysis is provided.

  19. Binaural Pitch Fusion in Bilateral Cochlear Implant Users.

    PubMed

    Reiss, Lina A J; Fowler, Jennifer R; Hartling, Curtis L; Oh, Yonghee

    Binaural pitch fusion is the fusion of stimuli that evoke different pitches between the ears into a single auditory image. Individuals who use hearing aids or bimodal cochlear implants (CIs) experience abnormally broad binaural pitch fusion, such that sounds differing in pitch by as much as 3-4 octaves are fused across ears, leading to spectral averaging and speech perception interference. The goal of this study was to determine if adult bilateral CI users also experience broad binaural pitch fusion. Stimuli were pulse trains delivered to individual electrodes. Fusion ranges were measured using simultaneous, dichotic presentation of reference and comparison stimuli in opposite ears, and varying the comparison stimulus to find the range that fused with the reference stimulus. Bilateral CI listeners had binaural pitch fusion ranges varying from 0 to 12 mm (average 6.1 ± 3.9 mm), where 12 mm indicates fusion over all electrodes in the array. No significant correlations of fusion range were observed with any subject factors related to age, hearing loss history, or hearing device history, or with any electrode factors including interaural electrode pitch mismatch, pitch match bandwidth, or within-ear electrode discrimination abilities. Bilateral CI listeners have abnormally broad fusion, similar to hearing aid and bimodal CI listeners. This broad fusion may explain the variability of binaural benefits for speech perception in quiet and in noise in bilateral CI users.

  20. Visual control of flight speed in Drosophila melanogaster.

    PubMed

    Fry, Steven N; Rohrseitz, Nicola; Straw, Andrew D; Dickinson, Michael H

    2009-04-01

    Flight control in insects depends on self-induced image motion (optic flow), which the visual system must process to generate appropriate corrective steering maneuvers. Classic experiments in tethered insects applied rigorous system identification techniques for the analysis of turning reactions in the presence of rotating pattern stimuli delivered in open-loop. However, the functional relevance of these measurements for visual free-flight control remains equivocal due to the largely unknown effects of the highly constrained experimental conditions. To perform a systems analysis of the visual flight speed response under free-flight conditions, we implemented a 'one-parameter open-loop' paradigm using 'TrackFly' in a wind tunnel equipped with real-time tracking and virtual reality display technology. Upwind flying flies were stimulated with sine gratings of varying temporal and spatial frequencies, and the resulting speed responses were measured from the resulting flight speed reactions. To control flight speed, the visual system of the fruit fly extracts linear pattern velocity robustly over a broad range of spatio-temporal frequencies. The speed signal is used for a proportional control of flight speed within locomotor limits. The extraction of pattern velocity over a broad spatio-temporal frequency range may require more sophisticated motion processing mechanisms than those identified in flies so far. In Drosophila, the neuromotor pathways underlying flight speed control may be suitably explored by applying advanced genetic techniques, for which our data can serve as a baseline. Finally, the high-level control principles identified in the fly can be meaningfully transferred into a robotic context, such as for the robust and efficient control of autonomous flying micro air vehicles.

  1. Inferring transit time distributions from atmospheric tracer data: Assessment of the predictive capacities of Lumped Parameter Models on a 3D crystalline aquifer model

    NASA Astrophysics Data System (ADS)

    Marçais, J.; de Dreuzy, J.-R.; Ginn, T. R.; Rousseau-Gueutin, P.; Leray, S.

    2015-06-01

    While central in groundwater resources and contaminant fate, Transit Time Distributions (TTDs) are never directly accessible from field measurements but always deduced from a combination of tracer data and more or less involved models. We evaluate the predictive capabilities of approximate distributions (Lumped Parameter Models abbreviated as LPMs) instead of fully developed aquifer models. We develop a generic assessment methodology based on synthetic aquifer models to establish references for observable quantities as tracer concentrations and prediction targets as groundwater renewal times. Candidate LPMs are calibrated on the observable tracer concentrations and used to infer renewal time predictions, which are compared with the reference ones. This methodology is applied to the produced crystalline aquifer of Plœmeur (Brittany, France) where flows leak through a micaschists aquitard to reach a sloping aquifer where they radially converge to the producing well, issuing broad rather than multi-modal TTDs. One, two and three parameters LPMs were calibrated to a corresponding number of simulated reference anthropogenic tracer concentrations (CFC-11, 85Kr and SF6). Extensive statistical analysis over the aquifer shows that a good fit of the anthropogenic tracer concentrations is neither a necessary nor a sufficient condition to reach acceptable predictive capability. Prediction accuracy is however strongly conditioned by the use of a priori relevant LPMs. Only adequate LPM shapes yield unbiased estimations. In the case of Plœmeur, relevant LPMs should have two parameters to capture the mean and the standard deviation of the residence times and cover the first few decades [0; 50 years]. Inverse Gaussian and shifted exponential performed equally well for the wide variety of the reference TTDs from strongly peaked in recharge zones where flows are diverging to broadly distributed in more converging zones. When using two sufficiently different atmospheric tracers like CFC-11 and 85Kr, groundwater renewal time predictions are accurate at 1-5 years for estimating mean transit times of some decades (10-50 years). 1-parameter LPMs calibrated on a single atmospheric tracer lead to substantially larger errors of the order of 10 years, while 3-parameter LPMs calibrated with a third atmospheric tracers (SF6) do not improve the prediction capabilities. Based on a specific site, this study highlights the high predictive capacities of two atmospheric tracers on the same time range with sufficiently different atmospheric concentration chronicles.

  2. Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Tong, Cunzhu; Wang, Lijie; Zeng, Yugang; Tian, Sicong; Shu, Shili; Zhang, Jian; Wang, Lijun

    2016-11-01

    High-power broad-area (BA) diode lasers often suffer from low beam quality, broad linewidth, and a widened slow-axis far field with increasing current. In this paper, a two-dimensional current-modulated structure is proposed and it is demonstrated that it can reduce not only the far-field sensitivity to the injection current but also the linewidth of the lasing spectra. Injection-insensitive lateral divergence was realized, and the beam parameter product (BPP) was improved by 36.5%. At the same time, the linewidth was decreased by about 45% without significant degradations of emission power and conversion efficiency.

  3. Characterization of plasma parameters in shaped PBX-M discharges

    NASA Astrophysics Data System (ADS)

    England, A. C.; Bell, R. E.; Hirshman, S. P.; Kaita, R.; Kugel, H. W.; LeBlanc, B. L.; Lee, D. K.; Okabayashi, M.; Sun, Y.-C.; Takahashi, H.

    1997-09-01

    The Princeton Beta Experiment-Modification (PBX-M) was run both with elliptical and with bean-shaped plasmas during the 1992 and 1993 operating periods. Two deuterium-fed neutral beams were used for auxiliary heating, and during 1992 the average power was 0741-3335/39/9/008/img13. This will be referred to as the lower neutral-beam power (LNBP) period. As many as four deuterium-fed neutral beams were used during 1993, and the average power was 0741-3335/39/9/008/img14. This will be referred to as the medium neutral-beam power (MNBP) period. The neutron source strength, Sn, showed a scaling with injected power 0741-3335/39/9/008/img15, 0741-3335/39/9/008/img16 for both the LMBP and MNBP periods. A much wider range of shaping parameters was studied during the MNBP as compared with the LNBP period. A weak positive dependence on bean shaping was observed for the LNBP, and a stronger positive dependence on shaping was observed for MNBP, viz 0741-3335/39/9/008/img17. High values of Sn were obtained in bean-shaped plasmas for the highest values of 0741-3335/39/9/008/img18 at 0741-3335/39/9/008/img19 for the LNBP. For the MNBP the highest values of Sn and stored energy were obtained at 0741-3335/39/9/008/img19, and the highest values of 0741-3335/39/9/008/img18 were obtained at 0741-3335/39/9/008/img22. The achievement of high Sn is aided by high neutral-beam power, high toroidal field, strong shaping, high electron temperature, and broad profiles. The achievement of high 0741-3335/39/9/008/img18 is aided by low toroidal field, high density, less shaping, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img24. The achievement of high 0741-3335/39/9/008/img25 is aided by strong shaping, high density, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img26. Some comparisons with the previous higher neutral-beam (HNBP) period in 1989 are also made.

  4. A rapid method to assess a broad inventory of organic species in marine sediments using ultra-high resolution mass spectrometry.

    PubMed

    Radović, Jagoš R; Silva, Renzo C; Snowdon, Ryan W; Brown, Melisa; Larter, Steve; Oldenburg, Thomas B P

    2016-06-15

    A broad range of organic species in marine sediments is routinely used as biogeochemical proxies of Earth history. These species are typically analyzed using different analytical methods, targeting very specific components and often including time-intensive sample preparation. There is, therefore, a need for a more comprehensive, rapid and high-throughput approach to simultaneously analyze a broad range of known sedimentary polar species and also have a surveillance capability able to identify candidate new species classes. Whole solvent extracts from recently deposited Gulf of Mexico marine sediments were obtained after a simple, one-step extraction. They were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), using atmospheric pressure photoionization in positive ion mode (APPI-P), over a broad mass range (m/z 150-1500). From 3000 to over 5000 peaks per sample were assigned molecular formulae, and the majority of assignments (90%) showed an absolute error lower than 200 ppb. The detected species belong to the NO1-7 , N4 O2-8 , O1-9 , HC, N and OS compound classes, including known biomarker species such as pigments (e.g. tetrapyrrole macrocycles and carotenoids) and lipids (e.g. glycerol dialkyl glycerol tetraethers, GDGTs), but also compounds of still unknown detailed molecular structure, but with clear potential geochemical relevance. The reported method enables rapid (12 min FTICR-MS analysis time) and simultaneous detection of a broad range of multi-heteroatom, polar organic species in whole sediment extracts. This allows for higher sample throughput, a more comprehensive investigation of sedimentary geochemistry, and potentially the discovery of new components and derivation of novel, multi-species proxies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Whistle characteristics of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in Sanniang Bay, China.

    PubMed

    Wang, Zhitao; Fang, Liang; Shi, Wenjing; Wang, Kexiong; Wang, Ding

    2013-04-01

    Broadband recording systems were adapted to characterize the whistle characteristics of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in Sanniang Bay, China. A total of 4630 whistles were recorded, of which 2651 with legible contours and relatively good signal-to-noise ratios were selected for statistical analysis. Of the six tonal types (i.e., flat, down, rise, convex, U-shaped, and sine), flat (N = 1426; 39.45%) was the most predominant, followed by down (N = 754; 23.35%) and rise (N = 489; 12.34%). The whistles showed a short duration (mean ± SD: 370.19 ± 285.61 ms; range: 29-2923 ms), a broad frequency range (fundamental contour ranged from 0.52 to 33 kHz), and two harmonics (mean ± SD: 1.90 ± 2.74, with the maximum frequency of harmonics beyond 96 kHz). Whistles without gaps and stairs accounted for 76.7% and 86.4%, respectively. No significant interspecies differences in frequency parameters were observed compared with S. teuszii, which is inconsistent with morphological taxonomies but confirms phylogenetic results, thus suggesting a close relation between Chinese S. chinensis and Atlantic S. teuszii. Significant intra- and interspecific differences in the genus Sousa were also observed, indicating that animal vocalization may not be limited by genetically determined traits but could also be a function of local habitat adaptation.

  6. Practice Parameter on Child and Adolescent Mental Health Care in Community Systems of Care

    ERIC Educational Resources Information Center

    Journal of the American Academy of Child and Adolescent Psychiatry, 2007

    2007-01-01

    This parameter presents overarching principles and practices for child and adolescent mental health care in community systems of care. Community systems of care are defined broadly as comprising the wide array of child-serving agencies, programs, and practitioners (both public and private), in addition to natural community supports such as…

  7. Competitive exclusion over broad spatial extents is a slow process: Evidence and implications for species distribution modeling

    USGS Publications Warehouse

    Yackulic, Charles B.

    2016-01-01

    There is considerable debate about the role of competition in shaping species distributions over broad spatial extents. This debate has practical implications because predicting changes in species' geographic ranges in response to ongoing environmental change would be simpler if competition could be ignored. While this debate has been the subject of many reviews, recent literature has not addressed the rates of relevant processes. This omission is surprising in that ecologists hypothesized decades ago that regional competitive exclusion is a slow process. The goal of this review is to reassess the debate under the hypothesis that competitive exclusion over broad spatial extents is a slow process.Available evidence, including simulations presented for the first time here, suggests that competitive exclusion over broad spatial extents occurs slowly over temporal extents of many decades to millennia. Ecologists arguing against an important role for competition frequently study modern patterns and/or range dynamics over periods of decades, while much of the evidence for competition shaping geographic ranges at broad spatial extents comes from paleoecological studies over time scales of centuries or longer. If competition is slow, as evidence suggests, the geographic distributions of some, perhaps many species, would continue to change over time scales of decades to millennia, even if environmental conditions did not continue to change. If the distributions of competing species are at equilibrium it is possible to predict species distributions based on observed species–environment relationships. However, disequilibrium is widespread as a result of competition and many other processes. Studies whose goal is accurate predictions over intermediate time scales (decades to centuries) should focus on factors associated with range expansion (colonization) and loss (local extinction), as opposed to current patterns. In general, understanding of modern range dynamics would be enhanced by considering the rates of relevant processes.

  8. An Efficient Strategy for Broad-Range Detection of Low Abundance Bacteria without DNA Decontamination of PCR Reagents

    PubMed Central

    Chang, Shy-Shin; Hsu, Hsung-Ling; Cheng, Ju-Chien; Tseng, Ching-Ping

    2011-01-01

    Background Bacterial DNA contamination in PCR reagents has been a long standing problem that hampers the adoption of broad-range PCR in clinical and applied microbiology, particularly in detection of low abundance bacteria. Although several DNA decontamination protocols have been reported, they all suffer from compromised PCR efficiency or detection limits. To date, no satisfactory solution has been found. Methodology/Principal Findings We herein describe a method that solves this long standing problem by employing a broad-range primer extension-PCR (PE-PCR) strategy that obviates the need for DNA decontamination. In this method, we first devise a fusion probe having a 3′-end complementary to the template bacterial sequence and a 5′-end non-bacterial tag sequence. We then hybridize the probes to template DNA, carry out primer extension and remove the excess probes using an optimized enzyme mix of Klenow DNA polymerase and exonuclease I. This strategy allows the templates to be distinguished from the PCR reagent contaminants and selectively amplified by PCR. To prove the concept, we spiked the PCR reagents with Staphylococcus aureus genomic DNA and applied PE-PCR to amplify template bacterial DNA. The spiking DNA neither interfered with template DNA amplification nor caused false positive of the reaction. Broad-range PE-PCR amplification of the 16S rRNA gene was also validated and minute quantities of template DNA (10–100 fg) were detectable without false positives. When adapting to real-time and high-resolution melting (HRM) analytical platforms, the unique melting profiles for the PE-PCR product can be used as the molecular fingerprints to further identify individual bacterial species. Conclusions/Significance Broad-range PE-PCR is simple, efficient, and completely obviates the need to decontaminate PCR reagents. When coupling with real-time and HRM analyses, it offers a new avenue for bacterial species identification with a limited source of bacterial DNA, making it suitable for use in clinical and applied microbiology laboratories. PMID:21637859

  9. THE COMPLEX CIRCUMNUCLEAR ENVIRONMENT OF THE BROAD-LINE RADIO GALAXY 3C 390.3 REVEALED BY CHANDRA HETG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tombesi, F.; Kallman, T.; Leutenegger, M. A.

    2016-10-20

    We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory . The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700–1000 eV associated with ionized Fe L transitions (Fe XVII–XX). An emission line at the energy of E ≃ 6.4 keV consistent with the Fe K α is also observed. Our best-fit model requires at least three different components: (i) amore » hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 ± 0.1 keV; (ii) a warm absorber with ionization parameter log ξ = 2.3 ± 0.5 erg s{sup −1} cm, column density log N {sub H} = 20.7 ± 0.1 cm{sup −2}, and outflow velocity v {sub out} < 150 km s{sup −1}; and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.« less

  10. The Complex Circumnuclear Environment of the Broad-Line Radio Galaxy 3C 390.3 Revealed by Chandra HETG

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Reeves, J. N.; Kallman, Timothy R.; Reynolds, C. S.; Mushotzky, R. F.; Braito, V.; Behar, E.; Leutenegger, Maurice A.; Cappi, M.

    2016-01-01

    We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory. The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700-1000 eV associated with ionized Fe L transitions (Fe XVIIXX). An emission line at the energy of E approximately equal to 6.4 keV consistent with the Fe K alpha is also observed. Our best-fit model requires at least three different components: (i) a hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 +/- 0.1 keV; (ii) a warm absorber with ionization parameter log Epislon = 2.3 +/- 0.5 erg s(exp 1) cm, column density logN(sub H) = 20.7 +/- 0.1 cm(exp -2), and outflow velocity v(sub out) less than 150 km s(exp -1); and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.

  11. Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH.

    PubMed

    Dorey, Narimane; Lançon, Pauline; Thorndyke, Mike; Dupont, Sam

    2013-11-01

    Our ability to project the impact of global change on marine ecosystem is limited by our poor understanding on how to predict species sensitivity. For example, the impact of ocean acidification is highly species-specific, even in closely related taxa. The aim of this study was to test the hypothesis that the tolerance range of a given species to decreased pH corresponds to their natural range of exposure. Larvae of the green sea urchin Strongylocentrotus droebachiensis were cultured from fertilization to metamorphic competence (29 days) under a wide range of pH (from pHT  = 8.0/pCO2  ≈ 480 μatm to pHT  = 6.5/pCO2  ≈ 20 000 μatm) covering present (from pHT 8.7 to 7.6), projected near-future variability (from pHT 8.3 to 7.2) and beyond. Decreasing pH impacted all tested parameters (mortality, symmetry, growth, morphometry and respiration). Development of normal, although showing morphological plasticity, swimming larvae was possible as low as pHT  ≥ 7.0. Within that range, decreasing pH increased mortality and asymmetry and decreased body length (BL) growth rate. Larvae raised at lowered pH and with similar BL had shorter arms and a wider body. Relative to a given BL, respiration rates and stomach volume both increased with decreasing pH suggesting changes in energy budget. At the lowest pHs (pHT  ≤ 6.5), all the tested parameters were strongly negatively affected and no larva survived past 13 days post fertilization. In conclusion, sea urchin larvae appeared to be highly plastic when exposed to decreased pH until a physiological tipping point at pHT  = 7.0. However, this plasticity was associated with direct (increased mortality) and indirect (decreased growth) consequences for fitness. © 2013 John Wiley & Sons Ltd.

  12. Measuring the Outflow Properties of FeLoBAL Quasars

    NASA Astrophysics Data System (ADS)

    Dabbieri, Collin; Choi, Hyunseop; MacInnis, Francis; Leighly, Karen; Terndrup, Donald

    2018-01-01

    Roughly 20 percent of the quasar population shows broad absorption lines, which are indicators of an energetic wind. Within the broad absorption line class of quasars exist FeLoBAL quasars, which show strong absorption lines from the Fe II and Fe III transitions as well as other low-ionization lines. FeLoBALs are of particular interest because they are thought to possibly be a short-lived stage in a quasar's life where it expels its shroud of gas and dust. This means the winds we see from FeLoBALs are one manifestation of galactic feedback. This idea is supported by Farrah et al. (2012) who found an anti correlation between outflow strength and contribution from star formation to the total IR luminosity of the host galaxy when examining a sample of FeLoBAL quasars. We analyze the sample of 26 FeLoBALs from Farrah et al. (2012) in order to measure the properties of their outflows, including ionization, density, column density and covering fraction. The absorption and continuum profiles of these objects are modeled using SimBAL, a program which creates synthetic spectra using a grid of Cloudy models. A Monte-Carlo method is employed to determine posterior probabilities for the physical parameters of the outflow. From these probabilities we extract the distance of the outflow, the mass outflow rate and the kinetic luminosity. We demonstrate SimBAL is capable of modeling a wide range of spectral morphologies. From the 26 objects studied we observe interesting correlations between ionization parameter, distance and density. Analysis of our sample also suggests a dearth of objects with velocity widths greater than or equal to 300 km/s at distances greater than or equal to 100 parsecs.

  13. Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl

    NASA Astrophysics Data System (ADS)

    Taran, Michail N.; Dyar, M. Darby; Khomenko, Vladimir M.

    2017-12-01

    A synthetic hydrothermal beryl Fe-4-51, investigated previously by Taran and Rossman (Am Miner 86:973-980, 2001), was additionally studied by microprobe, Mössbauer, optical absorption, Raman and IR spectroscopy. For comparison, polarized spectra of natural blue aquamarine and Cr3+, Fe3+-bearing alexandrite, both from Brazil, are also presented. Fe-4-51 is a nearly pure Fe3+-bearing beryl, with a homogeneous composition as shown by electron microprobe. Averaging over 22 points gives a formula of Be3.07(Al1.94,{Fe}_{{{0.07}}}^{{{3}+}} )Σ=2.01Si5.95O18, with Fe3+ replacing Al3+ in the octahedral site of the structure. The Mössbauer spectrum is dominated by a broad disordered pattern with beryl-suitable parameters; for Fe2+, IS = 1.21 mm/s, QS = 2.71 mm/s, area ≈ 5% and for Fe3+, IS = 0.34 mm/s, QS = 0.71 mm/s, and area ≈ 67%—are distinguished overlying a broad disordered continuum. The optical absorption spectrum is typical of octahedral Fe3+. From it, the crystal field strength Dq is derived as 1520 cm-1 and the values of Racah parameters of interelectronic repulsion B and C are found to be 665 and 3415 cm-1, respectively. This rather low B value, compared with that of a free Fe3+ ion, 814 cm-1, suggests a comparatively high degree of covalency in the octahedral Fe3+-O bond. Infrared spectra show the presence of channel H2O of both I and II structural type in comparable quantities, about 0.5 and 1 mass%, respectively. Raman data show the expected five bands in the energy range from 300 to 1200 cm-1.

  14. Physically-Based Probabilistic Seismic Hazard Analysis Using Broad-Band Ground Motion Simulation: a Case Study for Prince Islands Fault, Marmara Sea

    NASA Astrophysics Data System (ADS)

    Mert, A.

    2016-12-01

    The main motivation of this study is the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in Marmara Sea and the disaster risk around Marmara region, especially in İstanbul. This study provides the results of a physically-based Probabilistic Seismic Hazard Analysis (PSHA) methodology, using broad-band strong ground motion simulations, for sites within the Marmara region, Turkey, due to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically-based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We include the effects of all considerable magnitude earthquakes. To generate the high frequency (0.5-20 Hz) part of the broadband earthquake simulation, the real small magnitude earthquakes recorded by local seismic array are used as an Empirical Green's Functions (EGF). For the frequencies below 0.5 Hz the simulations are obtained using by Synthetic Green's Functions (SGF) which are synthetic seismograms calculated by an explicit 2D/3D elastic finite difference wave propagation routine. Using by a range of rupture scenarios for all considerable magnitude earthquakes throughout the PIF segments we provide a hazard calculation for frequencies 0.1-20 Hz. Physically based PSHA used here follows the same procedure of conventional PSHA except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes and this approach utilizes full rupture of earthquakes along faults. Further, conventional PSHA predicts ground-motion parameters using by empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitude earthquakes to obtain ground-motion parameters. PSHA results are produced for 2%, 10% and 50% hazards for all studied sites in Marmara Region.

  15. Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl

    NASA Astrophysics Data System (ADS)

    Taran, Michail N.; Dyar, M. Darby; Khomenko, Vladimir M.

    2018-05-01

    A synthetic hydrothermal beryl Fe-4-51, investigated previously by Taran and Rossman (Am Miner 86:973-980, 2001), was additionally studied by microprobe, Mössbauer, optical absorption, Raman and IR spectroscopy. For comparison, polarized spectra of natural blue aquamarine and Cr3+, Fe3+-bearing alexandrite, both from Brazil, are also presented. Fe-4-51 is a nearly pure Fe3+-bearing beryl, with a homogeneous composition as shown by electron microprobe. Averaging over 22 points gives a formula of Be3.07(Al1.94,{Fe}_{{{0.07}}}^{{{3}+}})Σ=2.01Si5.95O18, with Fe3+ replacing Al3+ in the octahedral site of the structure. The Mössbauer spectrum is dominated by a broad disordered pattern with beryl-suitable parameters; for Fe2+, IS = 1.21 mm/s, QS = 2.71 mm/s, area ≈ 5% and for Fe3+, IS = 0.34 mm/s, QS = 0.71 mm/s, and area ≈ 67%—are distinguished overlying a broad disordered continuum. The optical absorption spectrum is typical of octahedral Fe3+. From it, the crystal field strength Dq is derived as 1520 cm-1 and the values of Racah parameters of interelectronic repulsion B and C are found to be 665 and 3415 cm-1, respectively. This rather low B value, compared with that of a free Fe3+ ion, 814 cm-1, suggests a comparatively high degree of covalency in the octahedral Fe3+-O bond. Infrared spectra show the presence of channel H2O of both I and II structural type in comparable quantities, about 0.5 and 1 mass%, respectively. Raman data show the expected five bands in the energy range from 300 to 1200 cm-1.

  16. Broad Detection Range Rhenium Diselenide Photodetector Enhanced by (3-Aminopropyl)Triethoxysilane and Triphenylphosphine Treatment.

    PubMed

    Jo, Seo-Hyeon; Park, Hyung-Youl; Kang, Dong-Ho; Shim, Jaewoo; Jeon, Jaeho; Choi, Seunghyuk; Kim, Minwoo; Park, Yongkook; Lee, Jaehyeong; Song, Young Jae; Lee, Sungjoo; Park, Jin-Hong

    2016-08-01

    The effects of triphenylphosphine and (3-aminopropyl)triethoxysilane on a rhenium diselenide (ReSe2 ) photodetector are systematically studied by comparing with conventional MoS2 devices. This study demonstrates a very high performance ReSe2 photodetector with high photoresponsivity (1.18 × 10(6) A W(-1) ), fast photoswitching speed (rising/decaying time: 58/263 ms), and broad photodetection range (possible above 1064 nm). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Broad NE 8 lambda 774 emission from quasars in the HST-FOS snapshot survey (ABSNAP)

    NASA Technical Reports Server (NTRS)

    Hamann, Fred; Zuo, Lin; Tytler, David

    1995-01-01

    We discuss the strength and frequency of broad Ne VIII lambda 774 emission from quasars measured in the Hubble Space Telescope Faint Object Spectrograph (HST-FOS) snapshot survey (Absnap). Five sources in the survey have suitable redshifts (0.86 less than or equal to Z(sub em) less than or equal to 1.31), signal-to-noise ratios and no Lyman limit absorptions. Three of the five sources have a strong broad emission line near 774 A (rest), and the remaining two sources have a less securely measured line near this wavelength. We identify these lines with Ne VIII lambda 774 based on the measured wavelengths and theoretical estimates of various line fluxes (Hamann et al. 1995a). Secure Ne VIII detections occur in both radio-loud and radio-quiet sources. We tentatively conclude that broad Ne VIII lambda 774 emission is common in quasars, with typical strengths between approximately 25% and approximately 200% of O VI lambda 1034. These Ne VIII lambda 774 measurements imply that the broad emission line regions have a much hotter and more highly ionized component than previously recognized. They also suggest that quasar continua have substantial ionizing flux out to energies greater than 207 eV (greater than 15.2 ryd, lambda less than 60 A). Photoionization calculations using standard incident spectra indicate that the Ne VIII emission requires ionization parameters U greater than or = 5, total column densities N(sub H) greater than or = 10(sub 22)/sq cm and covering factors greater than or = 25%. The temperatures could be as high as approximately 10(exp 5) K. If the gas is instead collisionally ionized, strong Ne VIII would imply equilibrium temperatures in the range approximately 400,000 less than or approximately = T(sub e) less than or approximately = 10(exp 6) K. In either case, the highly ionized Ne VIII emission regions would appear as X-ray 'warm absorbers' if they lie along our line of sight to the X-ray continuum source.

  18. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    NASA Astrophysics Data System (ADS)

    Scipión, Danny E.; Lawrence, Dale A.; Milla, Marco A.; Woodman, Ronald F.; Lume, Diego A.; Balsley, Ben B.

    2016-09-01

    The SOUSY (SOUnding SYstem) radar was relocated to the Jicamarca Radio Observatory (JRO) near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz), it is able to characterize clear-air backscattering with high range resolution (37.5 m). A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz) using the DataHawk (DH) small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  19. Primordial black hole production in Critical Higgs Inflation

    NASA Astrophysics Data System (ADS)

    Ezquiaga, Jose María; García-Bellido, Juan; Ruiz Morales, Ester

    2018-01-01

    Primordial Black Holes (PBH) arise naturally from high peaks in the curvature power spectrum of near-inflection-point single-field inflation, and could constitute today the dominant component of the dark matter in the universe. In this letter we explore the possibility that a broad spectrum of PBH is formed in models of Critical Higgs Inflation (CHI), where the near-inflection point is related to the critical value of the RGE running of both the Higgs self-coupling λ (μ) and its non-minimal coupling to gravity ξ (μ). We show that, for a wide range of model parameters, a half-domed-shaped peak in the matter spectrum arises at sufficiently small scales that it passes all the constraints from large scale structure observations. The predicted cosmic microwave background spectrum at large scales is in agreement with Planck 2015 data, and has a relatively large tensor-to-scalar ratio that may soon be detected by B-mode polarization experiments. Moreover, the wide peak in the power spectrum gives an approximately lognormal PBH distribution in the range of masses 0.01- 100M⊙, which could explain the LIGO merger events, while passing all present PBH observational constraints. The stochastic background of gravitational waves coming from the unresolved black-hole-binary mergers could also be detected by LISA or PTA. Furthermore, the parameters of the CHI model are consistent, within 2σ, with the measured Higgs parameters at the LHC and their running. Future measurements of the PBH mass spectrum could allow us to obtain complementary information about the Higgs couplings at energies well above the EW scale, and thus constrain new physics beyond the Standard Model.

  20. Factors associated with generic health-related quality of life in adult asthma patients in Germany: Cross-sectional study.

    PubMed

    Böhmer, Merle M; Brandl, Magdalena; Brandstetter, Susanne; Finger, Tamara; Fischer, Wiebke; Pfeifer, Michael; Apfelbacher, Christian

    2017-04-01

    Given a 9% lifetime prevalence of asthma in Germany and the impairment of health-related quality of life (HRQOL) that goes along with it, it is important to understand parameters affecting HRQOL in asthma patients. Objective of this study was therefore to determine factors associated with generic HRQOL in asthma patients. Data for cross-sectional analyses were obtained from the baseline of an ongoing cohort study. physician-diagnosed asthma; age ≥18 years; disease duration ≥3 months; no acute psychiatric/neurological disease; sufficient knowledge of German. HRQOL was assessed by the Short Form 12 Health Survey Questionnaire (SF-12), which comprises a physical (PCS-12) and a mental component (MCS-12). Information on a broad range of parameters potentially influencing HRQOL was collected by examining the patients' medical records and via a self-administered questionnaire. Those parameters were of socio-demographic, disease-specific, treatment-related or psychosocial nature. We conducted multivariable linear regression analyses to assess determinants of HRQOL. In total, 196 asthma patients participated in the study (mean age: 48 years (range: 18-90); 60.2% females). In multivariable analysis, PCS-12 was negatively associated with older age, being female, insufficient disease control, higher number of medications in tablet form and reporting symptoms of depression. MCS-12 was negatively associated with being female, living alone, insufficient disease control, and reporting symptoms of anxiety or depression. Focusing on disease control and screening for depression and anxiety may be promising approaches to improve HRQOL in adult asthma patients. If a patient shows alarming symptoms of anxiety and/or depression, the patient should then be referred for psychiatric treatment.

  1. Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs

    PubMed Central

    McFarland, James M.; Cui, Yuwei; Butts, Daniel A.

    2013-01-01

    The computation represented by a sensory neuron's response to stimuli is constructed from an array of physiological processes both belonging to that neuron and inherited from its inputs. Although many of these physiological processes are known to be nonlinear, linear approximations are commonly used to describe the stimulus selectivity of sensory neurons (i.e., linear receptive fields). Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron's inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron's response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. Parameter estimation is robust and efficient even with large numbers of model components and in the context of high-dimensional stimuli with complex statistical structure (e.g. natural stimuli). We describe detailed methods for estimating the model parameters, and illustrate the advantages of the NIM using a range of example sensory neurons in the visual and auditory systems. We thus present a modeling framework that can capture a broad range of nonlinear response functions while providing physiologically interpretable descriptions of neural computation. PMID:23874185

  2. Developing a calibrated CONUS-wide watershed-scale simulation platform for quantifying the influence of different sources of uncertainty on streamflow forecast skill

    NASA Astrophysics Data System (ADS)

    Newman, A. J.; Sampson, K. M.; Wood, A. W.; Hopson, T. M.; Brekke, L. D.; Arnold, J.; Raff, D. A.; Clark, M. P.

    2013-12-01

    Skill in model-based hydrologic forecasting depends on the ability to estimate a watershed's initial moisture and energy conditions, to forecast future weather and climate inputs, and on the quality of the hydrologic model's representation of watershed processes. The impact of these factors on prediction skill varies regionally, seasonally, and by model. We are investigating these influences using a watershed simulation platform that spans the continental US (CONUS), encompassing a broad range of hydroclimatic variation, and that uses the current simulation models of National Weather Service streamflow forecasting operations. The first phase of this effort centered on the implementation and calibration of the SNOW-17 and Sacramento soil moisture accounting (SAC-SMA) based hydrologic modeling system for a range of watersheds. The base configuration includes 630 basins in the United States Geological Survey's Hydro-Climatic Data Network 2009 (HCDN-2009, Lins 2012) conterminous U.S. basin subset. Retrospective model forcings were derived from Daymet (http://daymet.ornl.gov/), and where available, a priori parameter estimates were based on or compared with the operational NWS model parameters. Model calibration was accomplished by several objective, automated strategies, including the shuffled complex evolution (SCE) optimization approach developed within the NWS in the early 1990s (Duan et al. 1993). This presentation describes outcomes from this effort, including insights about measuring simulation skill, and on relationships between simulation skill and model parameters, basin characteristics (climate, topography, vegetation, soils), and the quality of forcing inputs. References: %Z Thornton, P.; Thornton, M.; Mayer, B.; Wilhelmi, N.; Wei, Y.; Devarakonda, R; Cook, R. Daymet: Daily Surface Weather on a 1 km Grid for North America. 1980-2008; Oak Ridge National Laboratory Distributed Active Archive Center: Oak Ridge, TN, USA, 2012; Volume 10.

  3. Limited capacity for developmental thermal acclimation in three tropical wrasses

    NASA Astrophysics Data System (ADS)

    Motson, K.; Donelson, J. M.

    2017-06-01

    For effective conservation and management of marine systems, it is essential that we understand the biological impacts of and capacity for acclimation to increased ocean temperatures. This study investigated for the first time the effects of developing in projected warmer ocean conditions in the tropical wrasse species: Halichoeres melanurus, Halichoeres miniatus and Thalassoma amblycephalum. New recruits were reared for 11 weeks in control (29 °C) and +2 °C (31 °C) temperature treatments, consistent with predicted increases in sea surface temperature by 2100. A broad range of key attributes and performance parameters was tested, including aerobic metabolism, swimming ability, burst escape performance and physical condition. Response latency of burst performance was the only performance parameter in which evidence of beneficial thermal developmental acclimation was found, observed only in H. melanurus. Generally, development in the +2 °C treatment came at a significant cost to all species, resulting in reduced growth and physical condition, as well as metabolic and swimming performance relative to controls. Development in +2 °C conditions exacerbated the effects of warming on aerobic metabolism and swimming ability, compared to short-term warming effects. Burst escape performance parameters were only mildly affected by development at +2 °C, with non-locomotor performance (response latency) showing greater thermal sensitivity than locomotor performance parameters. These results indicate that the effects of future climate change on tropical wrasses would be underestimated with short-term testing. This study highlights the importance of holistic, longer-term developmental experimental approaches, with warming found to yield significant, species-specific responses in all parameters tested.

  4. Photosynthesis-irradiance parameters of marine phytoplankton: synthesis of a global data set

    NASA Astrophysics Data System (ADS)

    Bouman, Heather A.; Platt, Trevor; Doblin, Martina; Figueiras, Francisco G.; Gudmundsson, Kristinn; Gudfinnsson, Hafsteinn G.; Huang, Bangqin; Hickman, Anna; Hiscock, Michael; Jackson, Thomas; Lutz, Vivian A.; Mélin, Frédéric; Rey, Francisco; Pepin, Pierre; Segura, Valeria; Tilstone, Gavin H.; van Dongen-Vogels, Virginie; Sathyendranath, Shubha

    2018-02-01

    The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS) project of the European Space Agency is to assemble a global database of photosynthesis-irradiance (P-E) parameters from a range of oceanographic regimes as an aid to examining the basin-scale variability in the photophysiological response of marine phytoplankton and to use this information to improve the assignment of P-E parameters in the estimation of global marine primary production using satellite data. The MAPPS P-E database, which consists of over 5000 P-E experiments, provides information on the spatio-temporal variability in the two P-E parameters (the assimilation number, PmB, and the initial slope, αB, where the superscripts B indicate normalisation to concentration of chlorophyll) that are fundamental inputs for models (satellite-based and otherwise) of marine primary production that use chlorophyll as the state variable. Quality-control measures consisted of removing samples with abnormally high parameter values and flags were added to denote whether the spectral quality of the incubator lamp was used to calculate a broad-band value of αB. The MAPPS database provides a photophysiological data set that is unprecedented in number of observations and in spatial coverage. The database will be useful to a variety of research communities, including marine ecologists, biogeochemical modellers, remote-sensing scientists and algal physiologists. The compiled data are available at https://doi.org/10.1594/PANGAEA.874087 (Bouman et al., 2017).

  5. Sparse Polynomial Chaos Surrogate for ACME Land Model via Iterative Bayesian Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Debusschere, B.; Najm, H. N.; Thornton, P. E.

    2015-12-01

    For computationally expensive climate models, Monte-Carlo approaches of exploring the input parameter space are often prohibitive due to slow convergence with respect to ensemble size. To alleviate this, we build inexpensive surrogates using uncertainty quantification (UQ) methods employing Polynomial Chaos (PC) expansions that approximate the input-output relationships using as few model evaluations as possible. However, when many uncertain input parameters are present, such UQ studies suffer from the curse of dimensionality. In particular, for 50-100 input parameters non-adaptive PC representations have infeasible numbers of basis terms. To this end, we develop and employ Weighted Iterative Bayesian Compressive Sensing to learn the most important input parameter relationships for efficient, sparse PC surrogate construction with posterior uncertainty quantified due to insufficient data. Besides drastic dimensionality reduction, the uncertain surrogate can efficiently replace the model in computationally intensive studies such as forward uncertainty propagation and variance-based sensitivity analysis, as well as design optimization and parameter estimation using observational data. We applied the surrogate construction and variance-based uncertainty decomposition to Accelerated Climate Model for Energy (ACME) Land Model for several output QoIs at nearly 100 FLUXNET sites covering multiple plant functional types and climates, varying 65 input parameters over broad ranges of possible values. This work is supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Accelerated Climate Modeling for Energy (ACME) project. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Interactive Visual Analytics Approch for Exploration of Geochemical Model Simulations with Different Parameter Sets

    NASA Astrophysics Data System (ADS)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2015-04-01

    Many geoscience applications can benefit from testing many combinations of input parameters for geochemical simulation models. It is, however, a challenge to screen the input and output data from the model to identify the significant relationships between input parameters and output variables. For addressing this problem we propose a Visual Analytics approach that has been developed in an ongoing collaboration between computer science and geoscience researchers. Our Visual Analytics approach uses visualization methods of hierarchical horizontal axis, multi-factor stacked bar charts and interactive semi-automated filtering for input and output data together with automatic sensitivity analysis. This guides the users towards significant relationships. We implement our approach as an interactive data exploration tool. It is designed with flexibility in mind, so that a diverse set of tasks such as inverse modeling, sensitivity analysis and model parameter refinement can be supported. Here we demonstrate the capabilities of our approach by two examples for gas storage applications. For the first example our Visual Analytics approach enabled the analyst to observe how the element concentrations change around previously established baselines in response to thousands of different combinations of mineral phases. This supported combinatorial inverse modeling for interpreting observations about the chemical composition of the formation fluids at the Ketzin pilot site for CO2 storage. The results indicate that, within the experimental error range, the formation fluid cannot be considered at local thermodynamical equilibrium with the mineral assemblage of the reservoir rock. This is a valuable insight from the predictive geochemical modeling for the Ketzin site. For the second example our approach supports sensitivity analysis for a reaction involving the reductive dissolution of pyrite with formation of pyrrothite in presence of gaseous hydrogen. We determine that this reaction is thermodynamically favorable under a broad range of conditions. This includes low temperatures and absence of microbial catalysators. Our approach has potential for use in other applications that involve exploration of relationships in geochemical simulation model data.

  7. Photonic generation of FCC-compliant UWB pulses based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion

    NASA Astrophysics Data System (ADS)

    Mu, Hongqian; Wang, Muguang; Tang, Yu; Zhang, Jing; Jian, Shuisheng

    2018-03-01

    A novel scheme for the generation of FCC-compliant UWB pulse is proposed based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion. The modified Gaussian quadruplet is synthesized based on linear sum of a broad Gaussian pulse and two narrow Gaussian pulses with the same pulse-width and amplitude peak. Within specific parameter range, FCC-compliant UWB with spectral power efficiency of higher than 39.9% can be achieved. In order to realize the designed waveform, a UWB generator based on spectral shaping and incoherent wavelength-to-time mapping is proposed. The spectral shaper is composed of a Gaussian filter and a programmable filter. Single-mode fiber functions as both dispersion device and transmission medium. Balanced photodetection is employed to combine linearly the broad Gaussian pulse and two narrow Gaussian pulses, and at same time to suppress pulse pedestals that result in low-frequency components. The proposed UWB generator can be reconfigured for UWB doublet by operating the programmable filter as a single-band Gaussian filter. The feasibility of proposed UWB generator is demonstrated experimentally. Measured UWB pulses match well with simulation results. FCC-compliant quadruplet with 10-dB bandwidth of 6.88-GHz, fractional bandwidth of 106.8% and power efficiency of 51% is achieved.

  8. Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers.

    PubMed

    Rahmanzadeh, Mahdi; Rajabalipanah, Hamid; Abdolali, Ali

    2018-02-01

    In this study, by using an equivalent circuit method, a polarization-insensitive terahertz (THz) absorber based on multilayer graphene-based metasurfaces (MGBMs) is systematically designed, providing an extremely broad absorption bandwidth (BW). The proposed absorber is a compact, three-layer structure, comprising square-, cross-, and circular-shaped graphene metasurfaces embedded between three separator dielectrics. The equivalent-conductivity method serves as a parameter retrieval technique to characterize the graphene metasurfaces as the components of the proposed circuit model. Good agreement is observed between the full-wave simulations and the equivalent-circuit predictions. The optimum MGBM absorber exhibits >90% absorbance in an extremely broad frequency band of 0.55-3.12 THz (BW=140%). The results indicate a significant BW enhancement compared with both the previous metal- and graphene-based THz absorbers, highlighting the capability of the designed MGBM absorber. To clarify the physical mechanism of absorption, the surface current and the electric-field distributions, as well as the power loss density of each graphene metasurface, are monitored and discussed. The MGBM functionality is evaluated under a wide range of incident wave angles to prove that the proposed absorber is omnidirectional and polarization-insensitive. These superior performances guarantee the applicability of the MGBM structure as an ultra-broadband absorber for various THz applications.

  9. Chandra Detection of a Parsec Scale Wind in the Broad Line Radio Galaxy 3C 382

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Sambruna, R. M.; Braito, V.; Eracleous, Michael

    2009-01-01

    We present unambiguous evidence for a parsec scale wind in the Broad-Line Radio Galaxy (BLRG) 3C 382, the first radio-loud AGN whereby an outflow has been measured with X-ray grating spectroscopy. A 118 ks Chandra grating (HETG) observation of 3C 382 has revealed the presence of several high ionization absorption lines in the soft X-ray band, from Fe, Ne, Mg and Si. The absorption lines are blue-shifted with respect to the systemic velocity of 3C 382 by -840+/-60 km/s and are resolved by Chandra with a velocity width of sigma = 340+/-70 km/s. The outflow appears to originate from a single zone of gas of column density N(sub H) = 1.3 x 10(exp 21)/sq cm and ionization parameter log(E/erg/cm/s) = 2.45. From the above measurements we calculate that the outflow is observed on parsec scales, within the likely range from 10-1000 pc, i.e., consistent with an origin in the Narrow Line Region. Finally we also discuss the possibility of a much faster (0.1c) outflow component, based on a blue-shifted iron K(alpha) emission line in the Suzaku observation of 3C 382, which could have an origin in an accretion disk wind.

  10. Toward the Application of the Maximum Entropy Production Principle to a Broader Range of Far From Equilibrium Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Lineweaver, C. H.

    2005-12-01

    The principle of Maximum Entropy Production (MEP) is being usefully applied to a wide range of non-equilibrium processes including flows in planetary atmospheres and the bioenergetics of photosynthesis. Our goal of applying the principle of maximum entropy production to an even wider range of Far From Equilibrium Dissipative Systems (FFEDS) depends on the reproducibility of the evolution of the system from macro-state A to macro-state B. In an attempt to apply the principle of MEP to astronomical and cosmological structures, we investigate the problematic relationship between gravity and entropy. In the context of open and non-equilibrium systems, we use a generalization of the Gibbs free energy to include the sources of free energy extracted by non-living FFEDS such as hurricanes and convection cells. Redox potential gradients and thermal and pressure gradients provide the free energy for a broad range of FFEDS, both living and non-living. However, these gradients have to be within certain ranges. If the gradients are too weak, FFEDS do not appear. If the gradients are too strong FFEDS disappear. Living and non-living FFEDS often have different source gradients (redox potential gradients vs thermal and pressure gradients) and when they share the same gradient, they exploit different ranges of the gradient. In a preliminary attempt to distinguish living from non-living FFEDS, we investigate the parameter space of: type of gradient and steepness of gradient.

  11. Fatigue failure of materials under broad band random vibrations

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Lanz, R. W.

    1971-01-01

    The fatigue life of material under multifactor influence of broad band random excitations has been investigated. Parameters which affect the fatigue life are postulated to be peak stress, variance of stress and the natural frequency of the system. Experimental data were processed by the hybrid computer. Based on the experimental results and regression analysis a best predicting model has been found. All values of the experimental fatigue lives are within the 95% confidence intervals of the predicting equation.

  12. Influence of the nucleus area distribution on the survival fraction after charged particles broad beam irradiation.

    PubMed

    Wéra, A-C; Barazzuol, L; Jeynes, J C G; Merchant, M J; Suzuki, M; Kirkby, K J

    2014-08-07

    It is well known that broad beam irradiation with heavy ions leads to variation in the number of hit(s) received by each cell as the distribution of particles follows the Poisson statistics. Although the nucleus area will determine the number of hit(s) received for a given dose, variation amongst its irradiated cell population is generally not considered. In this work, we investigate the effect of the nucleus area's distribution on the survival fraction. More specifically, this work aims to explain the deviation, or tail, which might be observed in the survival fraction at high irradiation doses. For this purpose, the nucleus area distribution was added to the beam Poisson statistics and the Linear-Quadratic model in order to fit the experimental data. As shown in this study, nucleus size variation, and the associated Poisson statistics, can lead to an upward survival trend after broad beam irradiation. The influence of the distribution parameters (mean area and standard deviation) was studied using a normal distribution, along with the Linear-Quadratic model parameters (α and β). Finally, the model proposed here was successfully tested to the survival fraction of LN18 cells irradiated with a 85 keV µm(- 1) carbon ion broad beam for which the distribution in the area of the nucleus had been determined.

  13. In vivo imaging of scattering and absorption properties of exposed brain using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2014-03-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.

  14. Dynamical susceptibility near a long-wavelength critical point with a nonconserved order parameter

    NASA Astrophysics Data System (ADS)

    Klein, Avraham; Lederer, Samuel; Chowdhury, Debanjan; Berg, Erez; Chubukov, Andrey

    2018-04-01

    We study the dynamic response of a two-dimensional system of itinerant fermions in the vicinity of a uniform (Q =0 ) Ising nematic quantum critical point of d - wave symmetry. The nematic order parameter is not a conserved quantity, and this permits a nonzero value of the fermionic polarization in the d - wave channel even for vanishing momentum and finite frequency: Π (q =0 ,Ωm)≠0 . For weak coupling between the fermions and the nematic order parameter (i.e., the coupling is small compared to the Fermi energy), we perturbatively compute Π (q =0 ,Ωm)≠0 over a parametrically broad range of frequencies where the fermionic self-energy Σ (ω ) is irrelevant, and use Eliashberg theory to compute Π (q =0 ,Ωm) in the non-Fermi-liquid regime at smaller frequencies, where Σ (ω )>ω . We find that Π (q =0 ,Ω ) is a constant, plus a frequency-dependent correction that goes as |Ω | at high frequencies, crossing over to |Ω| 1 /3 at lower frequencies. The |Ω| 1 /3 scaling holds also in a non-Fermi-liquid regime. The nonvanishing of Π (q =0 ,Ω ) gives rise to additional structure in the imaginary part of the nematic susceptibility χ″(q ,Ω ) at Ω >vFq , in marked contrast to the behavior of the susceptibility for a conserved order parameter. This additional structure may be detected in Raman scattering experiments in the d - wave geometry.

  15. A global sensitivity analysis for African sleeping sickness.

    PubMed

    Davis, Stephen; Aksoy, Serap; Galvani, Alison

    2011-04-01

    African sleeping sickness is a parasitic disease transmitted through the bites of tsetse flies of the genus Glossina. We constructed mechanistic models for the basic reproduction number, R0, of Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, respectively the causative agents of West and East African human sleeping sickness. We present global sensitivity analyses of these models that rank the importance of the biological parameters that may explain variation in R0, using parameter ranges based on literature, field data and expertize out of Uganda. For West African sleeping sickness, our results indicate that the proportion of bloodmeals taken from humans by Glossina fuscipes fuscipes is the most important factor, suggesting that differences in the exposure of humans to tsetse are fundamental to the distribution of T. b. gambiense. The second ranked parameter for T. b. gambiense and the highest ranked for T. b. rhodesiense was the proportion of Glossina refractory to infection. This finding underlines the possible implications of recent work showing that nutritionally stressed tsetse are more susceptible to trypanosome infection, and provides broad support for control strategies in development that are aimed at increasing refractoriness in tsetse flies. We note though that for T. b. rhodesiense the population parameters for tsetse - species composition, survival and abundance - were ranked almost as highly as the proportion refractory, and that the model assumed regular treatment of livestock with trypanocides as an established practice in the areas of Uganda experiencing East African sleeping sickness.

  16. BLACK HOLE MASS AND EDDINGTON RATIO DISTRIBUTION FUNCTIONS OF X-RAY-SELECTED BROAD-LINE AGNs AT z {approx} 1.4 IN THE SUBARU XMM-NEWTON DEEP FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobuta, K.; Akiyama, M.; Ueda, Y.

    2012-12-20

    In order to investigate the growth of supermassive black holes (SMBHs), we construct the black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) of X-ray-selected broad-line active galactic nuclei (AGNs) at z {approx} 1.4 in the Subaru XMM-Newton Deep Survey (SXDS) field. A significant part of the accretion growth of SMBHs is thought to take place in this redshift range. Black hole masses of X-ray-selected broad-line AGNs are estimated using the width of the broad Mg II line and 3000 A monochromatic luminosity. We supplement the Mg II FWHM values with the H{alpha} FWHM obtained from our NIRmore » spectroscopic survey. Using the black hole masses of broad-line AGNs at redshifts between 1.18 and 1.68, the binned broad-line AGN BHMFs and ERDFs are calculated using the V{sub max} method. To properly account for selection effects that impact the binned estimates, we derive the corrected broad-line AGN BHMFs and ERDFs by applying the maximum likelihood method, assuming that the ERDF is constant regardless of the black hole mass. We do not correct for the non-negligible uncertainties in virial BH mass estimates. If we compare the corrected broad-line AGN BHMF with that in the local universe, then the corrected BHMF at z = 1.4 has a higher number density above 10{sup 8} M{sub Sun} but a lower number density below that mass range. The evolution may be indicative of a downsizing trend of accretion activity among the SMBH population. The evolution of broad-line AGN ERDFs from z = 1.4 to 0 indicates that the fraction of broad-line AGNs with accretion rates close to the Eddington limit is higher at higher redshifts.« less

  17. Development of test methodology for dynamic mechanical analysis instrumentation

    NASA Technical Reports Server (NTRS)

    Allen, V. R.

    1982-01-01

    Dynamic mechanical analysis instrumentation was used for the development of specific test methodology in the determination of engineering parameters of selected materials, esp. plastics and elastomers, over a broad range of temperature with selected environment. The methodology for routine procedures was established with specific attention given to sample geometry, sample size, and mounting techniques. The basic software of the duPont 1090 thermal analyzer was used for data reduction which simplify the theoretical interpretation. Clamps were developed which allowed 'relative' damping during the cure cycle to be measured for the fiber-glass supported resin. The correlation of fracture energy 'toughness' (or impact strength) with the low temperature (glassy) relaxation responses for a 'rubber-modified' epoxy system was negative in result because the low-temperature dispersion mode (-80 C) of the modifier coincided with that of the epoxy matrix, making quantitative comparison unrealistic.

  18. Noise induced quantum effects in photosynthetic complexes

    NASA Astrophysics Data System (ADS)

    Dorfman, Konstantin; Voronine, Dmitri; Mukamel, Shaul; Scully, Marlan

    2012-02-01

    Recent progress in coherent multidimensional optical spectroscopy revealed effects of quantum coherence coupled to population leading to population oscillations as evidence of quantum transport. Their description requires reevaluation of the currently used methods and approximations. We identify couplings between coherences and populations as the noise-induced cross-terms in the master equation generated via Agarwal-Fano interference that have been shown earlier to enhance the quantum yield in a photocell. We investigated a broad range of typical parameter regimes, which may be applied to a variety of photosynthetic complexes. We demonstrate that quantum coherence may be induced in photosynthetic complexes under natural conditions of incoherent light from the sun. This demonstrates that a photosynthetic reaction center may be viewed as a biological quantum heat engine that transforms high-energy thermal photon radiation into low entropy electron flux.

  19. Mixed-order phase transition in a colloidal crystal.

    PubMed

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2017-12-05

    Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field [Formula: see text] At the transition field [Formula: see text], the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length [Formula: see text] Mean-field critical exponents are predicted, since the upper critical dimension of the transition is [Formula: see text] Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.

  20. Mixed-order phase transition in a colloidal crystal

    NASA Astrophysics Data System (ADS)

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2017-12-01

    Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2-Hs2|-1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.

  1. Q selection for an electro-optical earth imaging system: theoretical and experimental results.

    PubMed

    Cochrane, Andy; Schulz, Kevin; Kendrick, Rick; Bell, Ray

    2013-09-23

    This paper explores practical design considerations for selecting Q for an electro-optical earth imaging system, where Q is defined as (λ FN) / pixel pitch. Analytical methods are used to show that, under imaging conditions with high SNR, increasing Q with fixed aperture cannot lead to degradation of image quality regardless of the angular smear rate of the system. The potential for degradation of image quality under low SNR is bounded by an increase of the detector noise scaling as Q. An imaging test bed is used to collect representative imagery for various Q configurations. The test bed includes real world errors such as image smear and haze. The value of Q is varied by changing the focal length of the imaging system. Imagery is presented over a broad range of parameters.

  2. Design of the Polarimeter for the Fibre Arrayed Solar Optical Telescope

    NASA Astrophysics Data System (ADS)

    Dun, Guang-tao; Qu, Zhong-quan

    2013-01-01

    The theoretical design of the polarimeter used for the Fibre Arrayed Solar Optical Telescope (FASOT) is described. It has the following characteris- tics: (1) It is provided with the function of optical polarization switching, which makes the high-effciency polarimetry possible; (2) In the waveband of 750 nm, the polarimetric effciency is higher than 50% for the every Stokes parameter, and higher than 86.6% for the total polarization, thus an observer can make the simultaneous polarization measurements on multiple magnetosensitive lines in such a broad range of wavelength; (3) According to the selected photospheric and chromospheric lines, the measurement can be focused on either linear polarization or circular polarization; (4) The polarimeter has a loose tolerance on the manufacturing technology of polarimetric elements and installation errors. All this makes this polarimeter become a high-performance polarimetric device.

  3. Properties of entangled photon pairs generated in one-dimensional nonlinear photonic-band-gap structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perina, Jan Jr.; Centini, Marco; Sibilia, Concita

    We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49more » layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency.« less

  4. Kinetic analysis of extension of substrate specificity with Xanthomonas maltophilia, Aeromonas hydrophila, and Bacillus cereus metallo-beta-lactamases.

    PubMed Central

    Felici, A; Amicosante, G

    1995-01-01

    Twenty beta-lactam molecules, including penicillins, cephalosporins, penems, carbapenems, and monobactams, were investigated as potential substrates for Xanthomonas maltophilia ULA-511, Aeromonas hydrophila AE036, and Bacillus cereus 5/B/6 metallo-beta-lactamases. A detailed analysis of the kinetic parameters examined confirmed these enzymes to be broad-spectrum beta-lactamases with different ranges of catalytic efficiency. Cefoxitin and moxalactam, substrates for the beta-lactamases from X. maltophilia ULA-511 and B. cereus 5/B/6, behaved as inactivators of the A. hydrophila AE036 metallo-beta-lactamase, which appeared to be unique among the enzymes tested in this study. In addition, we report a new, faster, and reliable purification procedure for the B. cereus 5/B/6 metallo-beta-lactamase, cloned in Escherichia coli HB101. PMID:7695305

  5. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kengne, J.; Njitacke Tabekoueng, Z.; Kamdoum Tamba, V.

    2015-10-15

    In this contribution, a novel memristor-based oscillator, obtained from Shinriki's circuit by substituting the nonlinear positive conductance with a first order memristive diode bridge, is introduced. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. The basic dynamical properties of the system are investigated including equilibria and stability, phase portraits, frequency spectra, bifurcation diagrams, and Lyapunov exponents' spectrum. It is found that in addition to the classical period-doubling and symmetry restoring crisis scenarios reported in the original circuit, the memristor-based oscillator experiences the unusual and striking feature of multiple attractors (i.e., coexistence of a pairmore » of asymmetric periodic attractors with a pair of asymmetric chaotic ones) over a broad range of circuit parameters. Results of theoretical analyses are verified by laboratory experimental measurements.« less

  6. Pervasive orbital eccentricities dictate the habitability of extrasolar earths.

    PubMed

    Kita, Ryosuke; Rasio, Frederic; Takeda, Genya

    2010-09-01

    The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.

  7. Telerobotic control of a mobile coordinated robotic server

    NASA Technical Reports Server (NTRS)

    Lee, Gordon

    1991-01-01

    Results from the Master's Degree Thesis of Mr. Robert Stanley, a graduate student supervised by the principal investigator on this project is reported. The goal of this effort is to develop advanced control methods for flexible space manipulator systems. As such, a fuzzy logic controller has been developed in which model structure as well as parameter constraints are not required for compensation. A general rule base is formulated using quantized linguistic terms; it is then augmented to a traditional integral control. The resulting hybrid fuzzy controller stabilizes the structure over a broad range of uncertainties, including unknown initial conditions. An off-line tuning approach using phase portraits gives further insight into the algorithm. The approach was applied to a three-degree-of-freedom manipulator system - the prototype of the coordinated flexible manipulator system currently being designed and built at North Carolina State University.

  8. Beyond the Rayleigh instability limit for multicharged finite systems: From fission to Coulomb explosion

    PubMed Central

    Last, Isidore; Levy, Yaakov; Jortner, Joshua

    2002-01-01

    We address the stability of multicharged finite systems driven by Coulomb forces beyond the Rayleigh instability limit. Our exploration of the nuclear dynamics of heavily charged Morse clusters enabled us to vary the range of the pair potential and of the fissibility parameter, which results in distinct fragmentation patterns and in the angular distributions of the fragments. The Rayleigh instability limit separates between nearly binary (or tertiary) spatially unisotropic fission and spatially isotropic Coulomb explosion into a large number of small, ionic fragments. Implications are addressed for a broad spectrum of dynamics in chemical physics, radiation physics of ultracold gases, and biophysics, involving the fission of clusters and droplets, the realization of Coulomb explosion of molecular clusters, the isotropic expansion of optical molasses, and the Coulomb instability of “isolated” proteins. PMID:12093910

  9. Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems

    NASA Astrophysics Data System (ADS)

    Schinabeck, C.; Erpenbeck, A.; Härtle, R.; Thoss, M.

    2016-11-01

    Within the hierarchical quantum master equation (HQME) framework, an approach is presented, which allows a numerically exact description of nonequilibrium charge transport in nanosystems with strong electronic-vibrational coupling. The method is applied to a generic model of vibrationally coupled transport considering a broad spectrum of parameters ranging from the nonadiabatic to the adiabatic regime and including both resonant and off-resonant transport. We show that nonequilibrium effects are important in all these regimes. In particular, in the off-resonant transport regime, the inelastic cotunneling signal is analyzed for a vibrational mode in full nonequilibrium, revealing a complex interplay of different transport processes and deviations from the commonly used G0/2 rule of thumb. In addition, the HQME approach is used to benchmark approximate master equation and nonequilibrium Green's function methods.

  10. A system-level view of optimizing high-channel-count wireless biosignal telemetry.

    PubMed

    Chandler, Rodney J; Gibson, Sarah; Karkare, Vaibhav; Farshchi, Shahin; Marković, Dejan; Judy, Jack W

    2009-01-01

    In this paper we perform a system-level analysis of a wireless biosignal telemetry system. We perform an analysis of each major system component (e.g., analog front end, analog-to-digital converter, digital signal processor, and wireless link), in which we consider physical, algorithmic, and design limitations. Since there are a wide range applications for wireless biosignal telemetry systems, each with their own unique set of requirements for key parameters (e.g., channel count, power dissipation, noise level, number of bits, etc.), our analysis is equally broad. The net result is a set of plots, in which the power dissipation for each component and as the system as a whole, are plotted as a function of the number of channels for different architectural strategies. These results are also compared to existing implementations of complete wireless biosignal telemetry systems.

  11. Drop spreading and gelation of thermoresponsive polymers.

    PubMed

    de Ruiter, R; Royon, L; Snoeijer, J H; Brunet, P

    2018-04-25

    Spreading and solidification of liquid droplets are elementary processes of relevance for additive manufacturing. Here we investigate the effect of heat transfer on spreading of a thermoresponsive solution (Pluronic F127) that undergoes a sol-gel transition above a critical temperature Tm. By controlling the concentration of Pluronic F127 we systematically vary Tm, while also imposing a broad range of temperatures of the solid and the liquid. We subsequently monitor the spreading dynamics over several orders of magnitude in time and determine when solidification stops the spreading. It is found that the main parameter is the difference between the substrate temperature and Tm, pointing to a local mechanism for arrest near the contact line. Unexpectedly, the spreading is also found to stop below the gelation temperature, which we attribute to a local enhancement in polymer concentration due to evaporation near the contact line.

  12. Induced seismicity provides insight into why earthquake ruptures stop

    PubMed Central

    Galis, Martin; Ampuero, Jean Paul; Mai, P. Martin; Cappa, Frédéric

    2017-01-01

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures. PMID:29291250

  13. Multiparameter Estimation in Networked Quantum Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.

    We introduce a general model for a network of quantum sensors, and we use this model to consider the question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. Thismore » immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or non-linear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.« less

  14. Multiparameter Estimation in Networked Quantum Sensors

    DOE PAGES

    Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.

    2018-02-21

    We introduce a general model for a network of quantum sensors, and we use this model to consider the question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. Thismore » immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or non-linear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.« less

  15. Acid-fast Smear and Histopathology Results Provide Guidance for the Appropriate Use of Broad-Range Polymerase Chain Reaction and Sequencing for Mycobacteria.

    PubMed

    Miller, Kennon; Harrington, Susan M; Procop, Gary W

    2015-08-01

    New molecular diagnostic tests are attractive because of the potential they hold for improving diagnostics in microbiology. The value of these tests, which is often assumed, should be investigated to determine the best use of these potentially powerful tools. To investigate the usefulness of broad-range polymerase chain reaction (PCR), followed by sequencing, in mycobacterial infections. We reviewed the test performance of acid-fast bacilli (AFB) PCR and traditional diagnostic methods (histopathology, AFB smear, and culture). We assessed the diagnostic effect and cost of the unrestricted ordering of broad-range PCR for the detection and identification of mycobacteria in clinical specimens. The AFB PCR was less sensitive than culture and histopathology and was less specific than culture, AFB smear, and histopathology. During 18 months, $93 063 was spent on 183 patient specimens for broad-range PCR and DNA sequencing for mycobacteria to confirm one culture-proven Mycobacterium tuberculosis infection that was also known to be positive by AFB smear and histopathology. In this cohort, there was a false-negative AFB PCR for M tuberculosis and a false-positive AFB PCR for Mycobacterium lentiflavum . Testing of AFB smear-negative specimens from patients without an inflammatory response supportive of a mycobacterial infection is costly and has not been proven to improve patient care. Traditional diagnostics (histopathology, AFB smear, and culture) should remain the primary methods for the detection of mycobacteria in clinical specimens.

  16. Genetics and variation

    Treesearch

    John R. Jones; Norbert V. DeByle

    1985-01-01

    The broad genotypic variability in quaking aspen (Populus tremuloides Michx.), that results in equally broad phenotypic variability among clones is important to the ecology and management of this species. This chapter considers principles of aspen genetics and variation, variation in aspen over its range, and local variation among clones. For a more...

  17. Stability and broad-sense heritaibility of mineral content in potato: copper and sulfur

    USDA-ARS?s Scientific Manuscript database

    Potato breeding lines and varieties in two separate trials were evaluated for copper and sulfur content by wet ashing and Inductively Coupled Argon Plasma Emission Spectrophotometer analysis. Stability and broad-sense heritability were determined. Copper contents ranged among genotypes between 2.0...

  18. X-ray variability of Seyfert 1.8/1.9 galaxies

    NASA Astrophysics Data System (ADS)

    Hernández-García, L.; Masegosa, J.; González-Martín, O.; Márquez, I.; Guainazzi, M.; Panessa, F.

    2017-06-01

    Context. Seyfert 1.8/1.9 are sources showing weak broad Hα components in their optical spectra. According to unification schemes, they are seen with an edge-on inclination, similar to type 2 Seyfert galaxies, but with slightly lower inclination angles. Aims: We aim to test whether Seyfert 1.8/1.9 have similar properties at UV and X-ray wavelengths. Methods: We used the 15 Seyfert 1.8/1.9 in the Véron Cetty and Véron catalog with public data available from the Chandra and/or XMM-Newton archives at different dates, with timescales between observations ranging from days to years. All the spectra of the same source were simultaneously fit with the same model and different parameters were left free to vary in order to select the variable parameter(s). Whenever possible, short-term variations from the analysis of the X-ray light curves and long-term UV variations from the optical monitor onboard XMM-Newton were studied. Our results are homogeneously compared with a previous work using the same methodology applied to a sample of Seyfert 2. Results: X-ray variability is found in all 15 nuclei over the aforementioned ranges of timescales. The main variability pattern is related to intrinsic changes in the sources, which are observed in ten nuclei. Changes in the column density are also frequent, as they are observed in six nuclei, and variations at soft energies, possibly related to scattered nuclear emission, are detected in six sources. X-ray intra-day variations are detected in six out of the eight studied sources. Variations at UV frequencies are detected in seven out of nine sources. Conclusions: A comparison between the samples of Seyfert 1.8/1.9 and 2 shows that, even if the main variability pattern is due to intrinsic changes of the sources in the two families, these nuclei exhibit different variability properties in the UV and X-ray domains. In particular, variations in the broad X-ray band on short timescales (days to weeks), and variations in the soft X-rays and UV on long timescales (months to years) are detected in Seyfert 1.8/1.9 but not in Seyfert 2. Overall, we suggest that optically classified Seyfert 1.8/1.9 should be kept separated from Seyfert 2 galaxies in UV/X-ray studies of the obscured AGN population because their intrinsic properties might be different.

  19. A 93Nb solid-state NMR and density functional theory study of four- and six-coordinate niobate systems.

    PubMed

    Hanna, John V; Pike, Kevin J; Charpentier, Thibault; Kemp, Thomas F; Smith, Mark E; Lucier, Bryan E G; Schurko, Robert W; Cahill, Lindsay S

    2010-03-08

    A variable B(0) field static (broadline) NMR study of a large suite of niobate materials has enabled the elucidation of high-precision measurement of (93)Nb NMR interaction parameters such as the isotropic chemical shift (delta(iso)), quadrupole coupling constant and asymmetry parameter (C(Q) and eta(Q)), chemical shift span/anisotropy and skew/asymmetry (Omega/Deltadelta and kappa/eta(delta)) and Euler angles (alpha, beta, gamma) describing the relative orientation of the quadrupolar and chemical shift tensorial frames. These measurements have been augmented with ab initio DFT calculations by using WIEN2k and NMR-CASTEP codes, which corroborate these reported values. Unlike previous assertions made about the inability to detect CSA (chemical shift anisotropy) contributions from Nb(V) in most oxo environments, this study emphasises that a thorough variable B(0) approach coupled with the VOCS (variable offset cumulative spectroscopy) technique for the acquisition of undistorted broad (-1/2<-->+1/2) central transition resonances facilitates the unambiguous observation of both quadrupolar and CSA contributions within these (93)Nb broadline data. These measurements reveal that the (93)Nb electric field gradient tensor is a particularly sensitive measure of the immediate and extended environments of the Nb(V) positions, with C(Q) values in the 0 to >80 MHz range being measured; similarly, the delta(iso) (covering an approximately 250 ppm range) and Omega values (covering a 0 to approximately 800 ppm range) characteristic of these niobate systems are also sensitive to structural disposition. However, their systematic rationalisation in terms of the Nb-O bond angles and distances defining the immediate Nb(V) oxo environment is complicated by longer-range influences that usually involve other heavy elements comprising the structure. It has also been established in this study that the best computational method(s) of analysis for the (93)Nb NMR interaction parameters generated here are the all-electron WIEN2k and the gauge included projector augmented wave (GIPAW) NMR-CASTEP DFT approaches, which account for the short- and long-range symmetries, periodicities and interaction-potential characteristics for all elements (and particularly the heavy elements) in comparison with Gaussian 03 methods, which focus on terminated portions of the total structure.

  20. Storm Time Evolution of Outer Radiation Belt Relativistic Electrons by a Nearly Continuous Distribution of Chorus

    NASA Astrophysics Data System (ADS)

    Yang, Chang; Xiao, Fuliang; He, Yihua; Liu, Si; Zhou, Qinghua; Guo, Mingyue; Zhao, Wanli

    2018-03-01

    During the 13-14 November 2012 storm, Van Allen Probe A simultaneously observed a 10 h period of enhanced chorus (including quasi-parallel and oblique propagation components) and relativistic electron fluxes over a broad range of L = 3-6 and magnetic local time = 2-10 within a complete orbit cycle. By adopting a Gaussian fit to the observed wave spectra, we obtain the wave parameters and calculate the bounce-averaged diffusion coefficients. We solve the Fokker-Planck diffusion equation to simulate flux evolutions of relativistic (1.8-4.2 MeV) electrons during two intervals when Probe A passed the location L = 4.3 along its orbit. The simulating results show that chorus with combined quasi-parallel and oblique components can produce a more pronounced flux enhancement in the pitch angle range ˜45°-80°, consistent well with the observation. The current results provide the first evidence on how relativistic electron fluxes vary under the drive of almost continuously distributed chorus with both quasi-parallel and oblique components within a complete orbit of Van Allen Probe.

  1. Mapping dominant annual land cover from 2009 to 2013 across Victoria, Australia using satellite imagery

    PubMed Central

    Sheffield, Kathryn; Morse-McNabb, Elizabeth; Clark, Rob; Robson, Susan; Lewis, Hayden

    2015-01-01

    There is a demand for regularly updated, broad-scale, accurate land cover information in Victoria from multiple stakeholders. This paper documents the methods used to generate an annual dominant land cover (DLC) map for Victoria, Australia from 2009 to 2013. Vegetation phenology parameters derived from an annual time series of the Moderate Resolution Imaging Spectroradiometer Vegetation Indices 16-day 250 m (MOD13Q1) product were used to generate annual DLC maps, using a three-tiered hierarchical classification scheme. Classification accuracy at the broadest (primary) class level was over 91% for all years, while it ranged from 72 to 81% at the secondary class level. The most detailed class level (tertiary) had accuracy levels ranging from 61 to 68%. The approach used was able to accommodate variable climatic conditions, which had substantial impacts on vegetation growth patterns and agricultural production across the state between both regions and years. The production of an annual dataset with complete spatial coverage for Victoria provides a reliable base data set with an accuracy that is fit-for-purpose for many applications. PMID:26602009

  2. Breakdown of Spin-Waves in Anisotropic Magnets: Spin Dynamics in α-RuCl3

    NASA Astrophysics Data System (ADS)

    Winter, Stephen; Riedl, Kira; Honecker, Andreas; Valenti, Roser

    α -RuCl3 has recently emerged as a promising candidate for realizing the hexagonal Kitaev model in a real material. Similar to the related iridates (e.g. Na2IrO3), complex magnetic interactions arise from a competition between various similar energy scales, including spin-orbit coupling (SOC), Hund's coupling, and crystal-field splitting. Due to this complexity, the correct spin Hamiltonians for such systems remain hotly debated. For α-RuCl3, a combination of ab-initio calculations, microscopic considerations, and analysis of the static magnetic response have suggested off-diagonal couplings (Γ ,Γ') and long-range interactions in addition to the expected Kitaev exchange. However, the effect of such additional terms on the dynamic response remains unclear. In this contribution, we discuss the recently measured inelastic neutron scattering response in the context of realistic proposals for the microscopic spin Hamiltonian. We conclude that the observed scattering continuum, which has been taken as a signature of Kitaev spin liquid physics, likely persists over a broad range of parameters.

  3. Self-regulation of turbulence in low rotation DIII-D QH-mode with an oscillating transport barrier

    NASA Astrophysics Data System (ADS)

    Barada, Kshitish; Rhodes, T. L.; Burrell, K. H.; Zeng, L.; Chen, Xi

    2016-10-01

    We present observations of turbulence and flow shear limit cycle oscillations (LCOs) in wide pedestal QH-mode DIII-D tokamak plasmas that are consistent with turbulence self-regulation. In this low input torque regime, both edge harmonic oscillations (EHOs) and ELMs are absent. LCOs of ExB velocity shear and ñ present predator-prey like behavior in these fully developed QH-mode plasmas. During these limit cycle oscillations, the ExB poloidal flows possess a long-range toroidal correlation consistent with turbulence generated zonal flow activity. Further, these limit cycle oscillations are observed in a broad range of edge parameters including ne, Te, floor Langmuir probe ion saturation current, and radial electric field Er. TRANSP calculations of transport indicate little change between the EHO and LCO wide pedestal phases. These observations are consistent with LCO driven transport that may play a role in maintaining the profiles below ELM threshold in the EHO-free steady state wide pedestal QH-mode regime. Work supported by the US DOE under DE-FG02-08ER54984 and DE-FC02-04ER54698.

  4. Engineering stategies and implications of using higher plants for throttling gas and water exchange in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.

    1993-01-01

    Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.

  5. Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhlir, V.; Arregi, J. A.; Fullerton, E. E.

    Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less

  6. Light Scattering by Lunar Exospheric Dust: What could be Learned from LRO LAMP and LADEE UVS?

    NASA Astrophysics Data System (ADS)

    Glenar, D. A.; Stubbs, T. J.; Richard, D. T.; Stern, S. A.; Retherford, K. D.; Gladstone, R.; Feldman, P. D.; Colaprete, A.; Delory, G. T.

    2011-12-01

    Two complementary spectrometers, namely the Lunar Reconnaissance Orbiter, Lyman Alpha Mapping Project (LAMP) and the planned Lunar Atmosphere and Dust Environment Explorer (LADEE) Ultraviolet Explorer (UVS) will carry out sensitive searches for high altitude exospheric dust, via detection of scattered sunlight. The combined spectral coverage of these instruments extends from far-UV to near-IR wavelengths. Over this wavelength range, grain size parameter (X=2πr/λ, with r the grain radius and λ the wavelength) changes dramatically, which makes broad wavelength coverage a good diagnostic of grain size. Utilizing different pointing geometries, both LAMP and UVS are able to observe dust over a range of scattering angles, as well as measure the dust vertical profile via limb measurements at multiple tangent heights. We summarize several categories of information that can be inferred from the data sets, using broadband simulations of horizon glow as observed at the limb. Grain scattering properties used in these simulations were computed for multiple grain shapes using Discrete-Dipole theory. Some cautionary remarks are included regarding the use of Mie theory to interpret scattering measurements.

  7. Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes

    DOE PAGES

    Uhlir, V.; Arregi, J. A.; Fullerton, E. E.

    2016-10-11

    Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less

  8. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  9. Phenotypic Variability in the Coccolithophore Emiliania huxleyi

    PubMed Central

    Lebrato, Mario; Stoll, Heather M.; Iglesias-Rodriguez, Debora; Müller, Marius N.; Méndez-Vicente, Ana; Oschlies, Andreas

    2016-01-01

    Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean. PMID:27348427

  10. A Haloalkane Dehalogenase from a Marine Microbial Consortium Possessing Exceptionally Broad Substrate Specificity.

    PubMed

    Buryska, Tomas; Babkova, Petra; Vavra, Ondrej; Damborsky, Jiri; Prokop, Zbynek

    2018-01-15

    The haloalkane dehalogenase enzyme DmmA was identified by marine metagenomic screening. Determination of its crystal structure revealed an unusually large active site compared to those of previously characterized haloalkane dehalogenases. Here we present a biochemical characterization of this interesting enzyme with emphasis on its structure-function relationships. DmmA exhibited an exceptionally broad substrate specificity and degraded several halogenated environmental pollutants that are resistant to other members of this enzyme family. In addition to having this unique substrate specificity, the enzyme was highly tolerant to organic cosolvents such as dimethyl sulfoxide, methanol, and acetone. Its broad substrate specificity, high overexpression yield (200 mg of protein per liter of cultivation medium; 50% of total protein), good tolerance to organic cosolvents, and a broad pH range make DmmA an attractive biocatalyst for various biotechnological applications. IMPORTANCE We present a thorough biochemical characterization of the haloalkane dehalogenase DmmA from a marine metagenome. This enzyme with an unusually large active site shows remarkably broad substrate specificity, high overexpression, significant tolerance to organic cosolvents, and activity under a broad range of pH conditions. DmmA is an attractive catalyst for sustainable biotechnology applications, e.g., biocatalysis, biosensing, and biodegradation of halogenated pollutants. We also report its ability to convert multiple halogenated compounds to corresponding polyalcohols. Copyright © 2018 American Society for Microbiology.

  11. The influence of interspecific interactions on species range expansion rates

    USGS Publications Warehouse

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E.M.S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.

  12. The influence of interspecific interactions on species range expansion rates.

    PubMed

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D; Schurr, Frank M; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H; Dullinger, Stefan; Edwards, Thomas C; Hickler, Thomas; Higgins, Steven I; Nabel, Julia E M S; Pagel, Jörn; Normand, Signe

    2014-12-01

    Ongoing and predicted global change makes understanding and predicting species' range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.

  13. The influence of interspecific interactions on species range expansion rates

    PubMed Central

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E. M. S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species. PMID:25722537

  14. Spectroscopic measurements of soybeans used to parameterize physiological traits in the AgroIBIS ecosystem model

    NASA Astrophysics Data System (ADS)

    Singh, A.; Serbin, S.; Kucharik, C. J.; Townsend, P. A.

    2014-12-01

    Ecosystem models such AgroIBIS require detailed parameterizations of numerous vegetation traits related to leaf structure, biochemistry and photosynthetic capacity to properly assess plant carbon assimilation and yield response to environmental variability. In general, these traits are estimated from a limited number of field measurements or sourced from the literature, but rarely is the full observed range of variability in these traits utilized in modeling activities. In addition, pathogens and pests, such as the exotic soybean aphid (Aphis glycines), which affects photosynthetic pathways in soybean plants by feeding on phloem and sap, can potentially impact plant productivity and yields. Capturing plant responses to pest pressure in conjunction with environmental variability is of considerable interest to managers and the scientific community alike. In this research, we employed full-range (400-2500 nm) field and laboratory spectroscopy to rapidly characterize the leaf biochemical and physiological traits, namely foliar nitrogen, specific leaf area (SLA) and the maximum rate of RuBP carboxylation by the enzyme RuBisCo (Vcmax) in soybean plants, which experienced a broad range of environmental conditions and soybean aphid pressures. We utilized near-surface spectroscopic remote sensing measurements as a means to capture the spatial and temporal patterns of aphid impacts across broad aphid pressure levels. In addition, we used the spectroscopic data to generate a much larger dataset of key model parameters required by AgroIBIS than would be possible through traditional measurements of biochemistry and leaf-level gas exchange. The use of spectroscopic retrievals of soybean traits allowed us to better characterize the variability of plant responses associated with aphid pressure to more accurately model the likely impacts of soybean aphid on soybeans. Our next steps include the coupling of the information derived from our spectral measurements with the AgroIBIS model to project the impacts of increasing aphid pressures on yields expected with continued global change and altered environmental conditions.

  15. Generation of colour centres in yttria-stabilized zirconia by heavy ion irradiations in the GeV range.

    PubMed

    Costantini, Jean-Marc; Beuneu, François; Schwartz, Kurt; Trautmann, Christina

    2010-08-11

    We have studied the colour centre production in yttria-stabilized zirconia (ZrO(2):Y(3 +)) by heavy ion irradiation in the GeV range using on-line UV-visible optical absorption spectroscopy. Experiments were performed with 11.4 MeV amu(-1) (127)Xe, (197)Au, (208)Pb and (238)U ion irradiations at 8 K or room temperature (RT). A broad and asymmetrical absorption band peaked at a wavelength about 500 nm is recorded regardless of the irradiation parameters, in agreement with previous RT irradiations with heavy ions in the 100 MeV range. This band is de-convoluted into two broad Gaussian-shaped bands centred at photon energies about 2.4 and 3.1 eV that are respectively associated with the F(+)-type centres (involving a singly ionized oxygen vacancy, VO· and T centres (i.e. Zr(3+) in a trigonal symmetry) observed by electron paramagnetic resonance (EPR) spectroscopy. In the case of 8 K Au ion irradiation at low fluences, six bands are used at about 1.9, 2.3, 2.7, 3.1 and 4.0 eV. The three bands near 2.0-2.5 eV can be assigned to oxygen divacancies (i.e. F(2)(+) centres). No significant effect of the irradiation temperature is found on the widths of all absorption bands for the same ion and fluence. This is attributed to the inhomogeneous broadening arising from the static disorder due to the native charge-compensating oxygen vacancies. However, the colour centre production yield is strongly enhanced at 8 K with respect to RT. When heating irradiated samples from 8 K to RT, the extra colour centres produced at low temperature do not recover completely to the level of RT irradiation. The latter results are accounted for by an electronically driven defect recovery process.

  16. Selection of common bean to broad environmental adaptation in Haiti

    USDA-ARS?s Scientific Manuscript database

    Common bean (Phaseolus vulgaris L.) cultivars in Haiti need adaptation to a broad range of environments and resistance to the most important diseases such as Bean Golden Yellow Mosaic Virus. The Legume Breeding Program (LBP), a collaborative effort of the AREA project (USAID funded through IFAS/Univ...

  17. Using Mixed Methods to Assess Initiatives with Broad-Based Goals

    ERIC Educational Resources Information Center

    Inkelas, Karen Kurotsuchi

    2017-01-01

    This chapter describes a process for assessing programmatic initiatives with broad-ranging goals with the use of a mixed-methods design. Using an example of a day-long teaching development conference, this chapter provides practitioners step-by-step guidance on how to implement this assessment process.

  18. A Wider Spectrum of Opportunities.

    ERIC Educational Resources Information Center

    Council for Industry and Higher Education (United Kingdom).

    The United Kingdom must invest in a comprehensive system of post-18 education that is broadly inclusive and that offers a broad range of educational opportunities to meet the needs of both the increasing numbers of 16-year-olds choosing to pursue postsecondary education and the many older individuals needing additional education throughout their…

  19. Nitrogen-rich functional groups carbon nanoparticles based fluorescent pH sensor with broad-range responding for environmental and live cells applications.

    PubMed

    Shi, Bingfang; Su, Yubin; Zhang, Liangliang; Liu, Rongjun; Huang, Mengjiao; Zhao, Shulin

    2016-08-15

    A nitrogen-rich functional groups carbon nanoparticles (N-CNs) based fluorescent pH sensor with a broad-range responding was prepared by one-pot hydrothermal treatment of melamine and triethanolamine. The as-prepared N-CNs exhibited excellent photoluminesence properties with an absolute quantum yield (QY) of 11.0%. Furthermore, the N-CNs possessed a broad-range pH response. The linear pH response range was 3.0 to 12.0, which is much wider than that of previously reported fluorescent pH sensors. The possible mechanism for the pH-sensitive response of the N-CNs was ascribed to photoinduced electron transfer (PET). Cell toxicity experiment showed that the as-prepared N-CNs exhibited low cytotoxicity and excellent biocompatibility with the cell viabilities of more than 87%. The proposed N-CNs-based pH sensor was used for pH monitoring of environmental water samples, and pH fluorescence imaging of live T24 cells. The N-CNs is promising as a convenient and general fluorescent pH sensor for environmental monitoring and bioimaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A Chandra Survey of high-redshift (0.7 < z < 0.8) clusters selected in the 100 deg^2 SPT-Pol Deep Field

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2016-09-01

    We propose to observe a complete sample of 10 galaxy clusters at 1e14 < M500 < 5e14 and 0.7 < z < 0.8. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.

Top