Genetic potential of black bean genotypes with predictable behaviors in multienvironment trials.
Torga, P P; Melo, P G S; Pereira, H S; Faria, L C; Melo, L C
2016-10-24
The aim of this study was to evaluate the phenotypic stability and specific and broad adaptability of common black bean genotypes for the Central and Center-South regions of Brazil by using the Annicchiarico and AMMI (weighted average of absolute scores: WAAS, and weighted average of absolute scores and productivity: WAASP) methodologies. We carried out 69 trials, with 43 and 26 trials in the Central and Center-South regions, respectively. Thirteen genotypes were evaluated in a randomized block design with three replications, during the rainy, dry, and winter seasons in 2 years. To obtain estimates of specific adaptation, we analyzed the parameters for each method obtained in the two geographic regions separately. To estimate broad adaptation, we used the average of the parameters obtained from each region. The lines identified with high specific adaptation in each region were not the same based on the Annicchiarico and AMMI (WAAS) methodologies. It was not possible to identify the same genotypes with specific or broad stability by using these methods. By contrast, the Annicchiarico and AMMI (WAASP) methods presented very similar estimates of broad and specific adaptation. Based on these methods, the lines with more specific adaptation were CNFP 8000 and CNFP 7994, in the Central and Center-South regions, respectively, of which the CNFP 8000 line was more widely adapted.
Variability of broad and blueshifted component of [OIII]λ5007 in I ZWI
NASA Astrophysics Data System (ADS)
Wang, J.; Wei, J. Y.; He, X. T.
2005-04-01
Although the existence of asymmetrical profile of [OIII]λ5007 has been discovered for ages, its filiation and physics are poorly understood. Two new spectra of I ZWI taken on November 16, 2001 and on December 3, 2002 were compared with the spectra taken by BG92. Following results are obtained. (1) The certain variations of broad [OIII] during about 10 years separating the observations are identified. The inferred length scale of broad [OIII] emitting region ranges from 0.3 to 3 pc. By assuming a Keplerian motion in line emitting region, the material emitting broad [OIII] is likely to be located at the transient emission line region, between BLR and NLR. (2) We find a positive relation between the FeII emission and flux of Hβ (or continuum). On the other hand, the parameter RFe decreases with ionizing continuum marginally. (3) We detect a low ionized NLR in I ZWI, because of the low flux ratios [OIII]n/Hβn (∼1.7).
A Catalog of Broad Absorption Line Quasars from the Sloan Digital Sky Survey Third Data Release
NASA Astrophysics Data System (ADS)
Trump, Jonathan R.; Hall, Patrick B.; Reichard, Timothy A.; Richards, Gordon T.; Schneider, Donald P.; Vanden Berk, Daniel E.; Knapp, Gillian R.; Anderson, Scott F.; Fan, Xiaohui; Brinkman, J.; Kleinman, S. J.; Nitta, Atsuko
2006-07-01
We present a total of 4784 unique broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release. An automated algorithm was used to match a continuum to each quasar and to identify regions of flux at least 10% below the continuum over a velocity range of at least 1000 km s-1 in the C IV and Mg II absorption regions. The model continuum was selected as the best-fit match from a set of template quasar spectra binned in luminosity, emission line width, and redshift, with the power-law spectral index and amount of dust reddening as additional free parameters. We characterize our sample through the traditional ``balnicity'' index and a revised absorption index, as well as through parameters such as the width, outflow velocity, fractional depth, and number of troughs. From a sample of 16,883 quasars at 1.7<=z<=4.38, we identify 4386 (26.0%) quasars with broad C IV absorption, of which 1756 (10.4%) satisfy traditional selection criteria. From a sample of 34,973 quasars at 0.5<=z<=2.15, we identify 457 (1.31%) quasars with broad Mg II absorption, 191 (0.55%) of which satisfy traditional selection criteria. We also provide a supplementary list of 39 visually identified z>4.38 quasars with broad C IV absorption. We find that broad absorption line quasars may have broader emission lines on average than other quasars.
The HelCat dual-source plasma device.
Lynn, Alan G; Gilmore, Mark; Watts, Christopher; Herrea, Janis; Kelly, Ralph; Will, Steve; Xie, Shuangwei; Yan, Lincan; Zhang, Yue
2009-10-01
The HelCat (Helicon-Cathode) device has been constructed to support a broad range of basic plasma science experiments relevant to the areas of solar physics, laboratory astrophysics, plasma nonlinear dynamics, and turbulence. These research topics require a relatively large plasma source capable of operating over a broad region of parameter space with a plasma duration up to at least several milliseconds. To achieve these parameters a novel dual-source system was developed utilizing both helicon and thermionic cathode sources. Plasma parameters of n(e) approximately 0.5-50 x 10(18) m(-3) and T(e) approximately 3-12 eV allow access to a wide range of collisionalities important to the research. The HelCat device and initial characterization of plasma behavior during dual-source operation are described.
A Spatial Heterodyne Spectrometer for Laboratory Astrophysics; First Interferogram
NASA Technical Reports Server (NTRS)
Lawler, J. E.; Labby, Z. E.; Roesler, F. L.; Harlander, J.
2006-01-01
A Spatial Heterodyne Spectrometer with broad spectral coverage across the VUV - UV region and with a high (> 500,000 ) spectral resolving power is being built for laboratory measurements of spectroscopic data including emission branching fractions, improved level energies, and hyperfine/isotopic parameters.
Coherence Volume of an Optical Wave Field with Broad Frequency and Angular Spectra
NASA Astrophysics Data System (ADS)
Lyakin, D. V.; Mysina, N. Yu.; Ryabukho, V. P.
2018-03-01
We consider the sizes of a region in a three-dimensional space in which an optical wave field excites mutually coherent perturbations. We discuss the conditions under which the length of this region along the direction of propagation of the wave field and, correspondingly, its volume are determined either by the width of the frequency spectrum of the field or by the width of its angular spectrum, or by the parameters of these spectra simultaneously. We obtain expressions for estimating extremely small values of the coherence volume of the fields with a broad frequency spectrum and an extremely broad angular spectrum. Using the notion of instantaneous speckle-modulation of the wave field, we give a physical interpretation to the occurrence of a limited coherence volume of the field. The length of the spatiotemporal coherence region in which mutually coherent perturbations occur at different times is determined. The coherence volume of a wave field that illuminates an object in high-resolution microscopy with frequency broadband light is considered. The conditions for the dominant influence of the angular or frequency spectra on the longitudinal length of the coherence region are given, and the conditions for the influence of the frequency spectrum width on the transverse coherence of the wave field are examined. We show that, when using fields with broad and ultrabroad spectra in high-resolution microscopy, this influence should be taken into account.
Interactive color display for multispectral imagery using correlation clustering
NASA Technical Reports Server (NTRS)
Haskell, R. E. (Inventor)
1979-01-01
A method for processing multispectral data is provided, which permits an operator to make parameter level changes during the processing of the data. The system is directed to production of a color classification map on a video display in which a given color represents a localized region in multispectral feature space. Interactive controls permit an operator to alter the size and change the location of these regions, permitting the classification of such region to be changed from a broad to a narrow classification.
Steps Toward Unveiling the True Population of AGN: Photometric Selection of Broad-Line AGN
NASA Astrophysics Data System (ADS)
Schneider, Evan; Impey, C.
2012-01-01
We present an AGN selection technique that enables identification of broad-line AGN using only photometric data. An extension of infrared selection techniques, our method involves fitting a given spectral energy distribution with a model consisting of three physically motivated components: infrared power law emission, optical accretion disk emission, and host galaxy emission. Each component can be varied in intensity, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this model, both broad- and narrow-line AGN are seen to fall within discrete ranges of parameter space that have plausible bounds, allowing physical trends with luminosity and redshift to be determined. Based on a fiducial sample of AGN from the catalog of Trump et al. (2009), we find the region occupied by broad-line AGN to be distinct from that of quiescent or star-bursting galaxies. Because this technique relies only on photometry, it will allow us to find AGN at fainter magnitudes than are accessible in spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects. With the vast availability of photometric data in large surveys, this technique should have broad applicability and result in large samples that will complement X-ray AGN catalogs.
Application of heterogeneous pulse coupled neural network in image quantization
NASA Astrophysics Data System (ADS)
Huang, Yi; Ma, Yide; Li, Shouliang; Zhan, Kun
2016-11-01
On the basis of the different strengths of synaptic connections between actual neurons, this paper proposes a heterogeneous pulse coupled neural network (HPCNN) algorithm to perform quantization on images. HPCNNs are developed from traditional pulse coupled neural network (PCNN) models, which have different parameters corresponding to different image regions. This allows pixels of different gray levels to be classified broadly into two categories: background regional and object regional. Moreover, an HPCNN also satisfies human visual characteristics. The parameters of the HPCNN model are calculated automatically according to these categories, and quantized results will be optimal and more suitable for humans to observe. At the same time, the experimental results of natural images from the standard image library show the validity and efficiency of our proposed quantization method.
NASA Astrophysics Data System (ADS)
Ebisawa, Ken; Naoki, Iso
2012-07-01
X-ray intensities and spectra of the Seyfert galaxies are known to be variable. Some of the sources have characteristic seemingly broad iron line structure, and their spectral variations are small in the iron line energy band. MCG-6-30-15 is such an archetypal source, and Miyakawa (2011) proposed a "Variable Partial Covering (VPC)" model to explain its continuum spectral variation, seemingly broad iron line structure, and small spectral variation in the iron energy band simultaneously, only due to variation of a single parameter. That single parameter is the "partial covering fraction" to describe the geometrical fraction of the X-ray emitting area covered by the ionized absorbers in the line of sight. The intrinsic X-ray luminosity is hardly variable in this model. We have applied the VPC model to the 27 Seyfert galaxies observed with Suzaku, and found that spectral variations of the 22 sources are successfully explained by this model only varying the partial covering fraction. Intrinsic X-ray luminosities of Seyfert galaxies are not variable, as opposed to what they apparently seem, and gravitationally red-shifted iron line is not necessary. Those ionized absorbing clouds are most likely to be Broad Line Region (BLR) clouds, and we will be able to constrain the BLR structure from X-ray observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khajenabi, Fazeleh, E-mail: f.khajenabi@gu.ac.ir
We investigate the orbital motion of cold clouds in the broad-line region of active galactic nuclei subject to the gravity of a black hole, a force due to a non-isotropic central source, and a drag force proportional to the velocity square. The intercloud is described using the standard solutions for the advection-dominated accretion flows. The orbit of a cloud decays because of the drag force, but the typical timescale of clouds falling onto the central black hole is shorter compared to the linear drag case. This timescale is calculated when a cloud moves through a static or rotating intercloud. Wemore » show that when the drag force is a quadratic function of the velocity, irrespective of the initial conditions and other input parameters, clouds will generally fall onto the central region much faster than the age of whole system, and since cold clouds present in most of the broad-line regions, we suggest that mechanisms for the continuous creation of the clouds must operate in these systems.« less
Continuous wave power scaling in high power broad area quantum cascade lasers
NASA Astrophysics Data System (ADS)
Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.
2018-02-01
Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.
Correlation between the line width and the line flux of the double-peaked broad Hα of 3C390.3
NASA Astrophysics Data System (ADS)
Zhang, Xue-Guang
2013-03-01
In this paper, we carefully check the correlation between the line width (second moment) and the line flux of the double-peaked broad Hα of the well-known mapped active galactic nucleus (AGN) 3C390.3 in order to show some further distinctions between double-peaked emitters and normal broad-line AGN. Based on the virialization assumption MBH ∝ RBLR × V2(BLR) and the empirical relation RBLR ∝ L˜0.5, one strong negative correlation between the line width and the line flux of the double-peaked broad lines should be expected for 3C390.3, such as the negative correlation confirmed for the mapped broad-line object NGC 5548, RBLR × V2(BLR) ∝ L˜0.5 × σ2 = constant. Moreover, based on the public spectra around 1995 from the AGN WATCH project for 3C390.3, one reliable positive correlation is found between the line width and the line flux of the double-peaked broad Hα. In the context of the proposed theoretical accretion disc model for double-peaked emitters, the unexpected positive correlation can be naturally explained, due to different time delays for the inner and outer parts of the disc-like broad-line region (BLR) of 3C390.3. Moreover, the virialization assumption is checked and found to be still available for 3C390.3. However, the time-varying size of the BLR of 3C390.3 cannot be expected by the empirical relation RBLR ∝ L˜0.5. In other words, the mean size of the BLR of 3C390.3 can be estimated by the continuum luminosity (line luminosity), while the continuum emission strengthening leads to the size of BLR decreasing (not increasing) in different moments for 3C390.3. Then, we compared our results of 3C390.3 with the previous results reported in the literature for the other double-peaked emitters, and found that before to clearly correct the effects from disc physical parameters varying (such as the effects of disc precession) for long-term observed line spectra, it is not so meaningful to discuss the correlation of the line parameters of double-peaked broad lines. Furthermore, due to the probable `external' ionizing source with so far unclear structures, it is hard to give one conclusion that the positive correlation between the line width and the line flux can be found for all double-peaked emitters, even after the considerations of disc physical parameters varying. However, once one positive correlation of broad-line parameters is found, the accretion disc origination of the broad line should be considered first.
Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI.
Groeschel, Samuel; Hagberg, Gisela E; Schultz, Thomas; Balla, Dávid Z; Klose, Uwe; Hauser, Till-Karsten; Nägele, Thomas; Bieri, Oliver; Prasloski, Thomas; MacKay, Alex L; Krägeloh-Mann, Ingeborg; Scheffler, Klaus
2016-01-01
We investigate how known differences in myelin architecture between regions along the cortico-spinal tract and frontal white matter (WM) in 19 healthy adolescents are reflected in several quantitative MRI parameters that have been proposed to non-invasively probe WM microstructure. In a clinically feasible scan time, both conventional imaging sequences as well as microstructural MRI parameters were assessed in order to quantitatively characterise WM regions that are known to differ in the thickness of their myelin sheaths, and in the presence of crossing or parallel fibre organisation. We found that diffusion imaging, MR spectroscopy (MRS), myelin water fraction (MWF), Magnetization Transfer Imaging, and Quantitative Susceptibility Mapping were myelin-sensitive in different ways, giving complementary information for characterising WM microstructure with different underlying fibre architecture. From the diffusion parameters, neurite density (NODDI) was found to be more sensitive than fractional anisotropy (FA), underlining the limitation of FA in WM crossing fibre regions. In terms of sensitivity to different myelin content, we found that MWF, the mean diffusivity and chemical-shift imaging based MRS yielded the best discrimination between areas. Multimodal assessment of WM microstructure was possible within clinically feasible scan times using a broad combination of quantitative microstructural MRI sequences. By assessing new microstructural WM parameters we were able to provide normative data and discuss their interpretation in regions with different myelin architecture, as well as their possible application as biomarker for WM disorders.
Seismic Source Scaling and Discrimination in Diverse Tectonic Environments
2009-09-30
3349-3352. Imanishi, K., W. L. Ellsworth, and S. G. Prejean (2004). Earthquake source parameters determined by the SAFOD Pilot Hole seismic array ... seismic discrimination by performing a thorough investigation of* earthquake source scaling using diverse, high-quality datascts from varied tectonic...these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity
Variability of High-Resolution Sea Surface Heights on a Broad, Shallow Continental Shelf
NASA Astrophysics Data System (ADS)
Crout, R. L.; Rice, A. E.
2017-12-01
Recent satellite altimeter technologies and processing methodologies are allowing investigation of the dynamics of the continental shelf as never before. The region seaward of 20 km from the coast is a region where winds, tides, currents, river discharge, and bathymetry interact. All of these are important parameters to understand when applying coastal altimetry to coastal sea level monitoring. Processing of 8 years (July 2008 to July 2016) of Jason-2 altimeter 20 Hz data from the L2 AVISO-PISTACH experimental products yields nearly 300 crossings of the broad continental shelf to the southeast of Delaware Bay from Cape May, NJ. Removal of a mean surface yields individual crossings that, plotted together, form an envelope that shows high water level variability near the coast. Water level changes near the coast begin at a hinge point that occurs approximately 50 km from shore in less than 30 meters of water. Comparison of individual Jason-2 passes with regional weather patterns, cold front passages, local winds, tides, surface currents, river discharge, and regional oceanography provides information regarding the forcing factors for these regional water levels. The water levels farther than 20 km from shore show similar patterns to the low pass filtered tide data at Cape May, NJ and respond primarily to regional forcing.
Teleconnections of ENSO and IOD to summer monsoon and rice production potential of India
NASA Astrophysics Data System (ADS)
Jha, Somnath; Sehgal, Vinay Kumar; Raghava, Ramesh; Sinha, Mourani
2016-12-01
Regional trend of summer monsoon precipitation has been analyzed for broad physical regions of India namely, (i) Indo-Gangetic plain, (ii) Central and East India, (iii) Coastal and Peninsular India and (iv) Western India. A significantly drying trend has been found in the two regions namely, Indo-Gangetic plain and Central and East India with comparative seasonal rate of drying higher in the latter region. A complex relation between the regional trend of summer monsoon precipitation, global teleconnection parameters and rice production of the regions have been studied. El Niño-Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) have a significant role in the precipitation anomaly of Indo-Gangetic plain unlike Central and East India where the ENSO only plays role as global teleconnection parameter. Rice production of Central and East India has been found to be affected adversely during the El Nino years. Central and East India is found to be the worst affected region compared to the Indo-Gangetic plain with respect to its fragile rainfed rice production potential and strong adverse teleconnection of El Nino on the rice production in this zone.
Variability of the broad absorption lines in the QSO UM 232
NASA Technical Reports Server (NTRS)
Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. Margaret
1989-01-01
Low-resolution spectra of UM 232 taken in 1978, 1979, and 1988 at Lick Observatory are presented. Large changes in the Si IV lambda 1397, CIV lambda 1549, and Al III lambda 1857 broad absorption lines are apparent. The decrease in column density in all three ions and an observed brightening of the QSO suggests that these changes are due to an increase in the ionization level driven by an increase in the central source luminosity. This mechanism has been proposed by Smith and Penston to explain small changes in the absorption spectrum of the QSO 1246-057. The spectra of UM 232 show that the fractional decrease in optical depth is smaller at higher outflow velocies. The structure of the broad absorption-line region (BALR) is investigted by estimating an ionization parameter for each ion species as a function of velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchill, R. Michael
Apache Spark is explored as a tool for analyzing large data sets from the magnetic fusion simulation code XGCI. Implementation details of Apache Spark on the NERSC Edison supercomputer are discussed, including binary file reading, and parameter setup. Here, an unsupervised machine learning algorithm, k-means clustering, is applied to XGCI particle distribution function data, showing that highly turbulent spatial regions do not have common coherent structures, but rather broad, ring-like structures in velocity space.
Erikson, Li H.; Hemer, M.; Lionello, Piero; Mendez, Fernando J.; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan; Wolf, Judith
2015-01-01
Future changes in wind-wave climate have broad implications for coastal geomorphology and management. General circulation models (GCM) are now routinely used for assessing climatological parameters, but generally do not provide parameterizations of ocean wind-waves. To fill this information gap, a growing number of studies use GCM outputs to independently downscale wave conditions to global and regional levels. To consolidate these efforts and provide a robust picture of projected changes, we present strategies from the community-derived multi-model ensemble of wave climate projections (COWCLIP) and an overview of regional contributions. Results and strategies from one contributing regional study concerning changes along the eastern North Pacific coast are presented.
REVERBERATION AND PHOTOIONIZATION ESTIMATES OF THE BROAD-LINE REGION RADIUS IN LOW-z QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola
2013-07-01
Black hole mass estimation in quasars, especially at high redshift, involves the use of single-epoch spectra with signal-to-noise ratio and resolution that permit accurate measurement of the width of a broad line assumed to be a reliable virial estimator. Coupled with an estimate of the radius of the broad-line region (BLR) this yields the black hole mass M{sub BH}. The radius of the BLR may be inferred from an extrapolation of the correlation between source luminosity and reverberation-derived r{sub BLR} measures (the so-called Kaspi relation involving about 60 low-z sources). We are exploring a different method for estimating r{sub BLR}more » directly from inferred physical conditions in the BLR of each source. We report here on a comparison of r{sub BLR} estimates that come from our method and from reverberation mapping. Our ''photoionization'' method employs diagnostic line intensity ratios in the rest-frame range 1400-2000 A (Al III {lambda}1860/Si III] {lambda}1892, C IV {lambda}1549/Al III {lambda}1860) that enable derivation of the product of density and ionization parameter with the BLR distance derived from the definition of the ionization parameter. We find good agreement between our estimates of the density, ionization parameter, and r{sub BLR} and those from reverberation mapping. We suggest empirical corrections to improve the agreement between individual photoionization-derived r{sub BLR} values and those obtained from reverberation mapping. The results in this paper can be exploited to estimate M{sub BH} for large samples of high-z quasars using an appropriate virial broadening estimator. We show that the width of the UV intermediate emission lines are consistent with the width of H{beta}, thereby providing a reliable virial broadening estimator that can be measured in large samples of high-z quasars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichikawa, Kohei; Ueda, Yoshihiro; Packham, Christopher
2015-04-20
We present results from the fitting of infrared (IR) spectral energy distributions of 21 active galactic nuclei (AGNs) with clumpy torus models. We compiled high spatial resolution (∼0.3–0.7 arcsec) mid-IR (MIR) N-band spectroscopy, Q-band imaging, and nuclear near- and MIR photometry from the literature. Combining these nuclear near- and MIR observations, far-IR photometry, and clumpy torus models enables us to put constraints on the torus properties and geometry. We divide the sample into three types according to the broad line region (BLR) properties: type-1s, type-2s with scattered or hidden broad line region (HBLR) previously observed, and type-2s without any publishedmore » HBLR signature (NHBLR). Comparing the torus model parameters gives us the first quantitative torus geometrical view for each subgroup. We find that NHBLR AGNs have smaller torus opening angles and larger covering factors than HBLR AGNs. This suggests that the chance to observe scattered (polarized) flux from the BLR in NHBLR could be reduced by the dual effects of (a) less scattering medium due to the reduced scattering volume given the small torus opening angle and (b) the increased torus obscuration between the observer and the scattering region. These effects give a reasonable explanation for the lack of observed HBLR in some type-2 AGNs.« less
NASA Astrophysics Data System (ADS)
Suttinger, Matthew; Go, Rowel; Figueiredo, Pedro; Todi, Ankesh; Shu, Hong; Leshin, Jason; Lyakh, Arkadiy
2018-01-01
Experimental and model results for 15-stage broad area quantum cascade lasers (QCLs) are presented. Continuous wave (CW) power scaling from 1.62 to 2.34 W has been experimentally demonstrated for 3.15-mm long, high reflection-coated QCLs for an active region width increased from 10 to 20 μm. A semiempirical model for broad area devices operating in CW mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sublinearity of pulsed power versus current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall-plug efficiency can be achieved from 3.15 mm×25 μm devices with 21 stages of the same design, but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300 Å, pulsed rollover current density of 6 kA/cm2, and InGaAs waveguide layers, an optical power increase of 41% is projected. Finally, the model projects that power level can be increased to ˜4.5 W from 3.15 mm×31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.
[Collaborative application of BEPS at different time steps.
Lu, Wei; Fan, Wen Yi; Tian, Tian
2016-09-01
BEPSHourly is committed to simulate the ecological and physiological process of vegetation at hourly time steps, and is often applied to analyze the diurnal change of gross primary productivity (GPP), net primary productivity (NPP) at site scale because of its more complex model structure and time-consuming solving process. However, daily photosynthetic rate calculation in BEPSDaily model is simpler and less time-consuming, not involving many iterative processes. It is suitable for simulating the regional primary productivity and analyzing the spatial distribution of regional carbon sources and sinks. According to the characteristics and applicability of BEPSDaily and BEPSHourly models, this paper proposed a method of collaborative application of BEPS at daily and hourly time steps. Firstly, BEPSHourly was used to optimize the main photosynthetic parameters: the maximum rate of carboxylation (V c max ) and the maximum rate of photosynthetic electron transport (J max ) at site scale, and then the two optimized parameters were introduced into BEPSDaily model to estimate regional NPP at regional scale. The results showed that optimization of the main photosynthesis parameters based on the flux data could improve the simulate ability of the model. The primary productivity of different forest types in descending order was deciduous broad-leaved forest, mixed forest, coniferous forest in 2011. The collaborative application of carbon cycle models at different steps proposed in this study could effectively optimize the main photosynthesis parameters V c max and J max , simulate the monthly averaged diurnal GPP, NPP, calculate the regional NPP, and analyze the spatial distribution of regional carbon sources and sinks.
VizieR Online Data Catalog: BAL QSOs from SDSS DR3 (Trump+, 2006)
NASA Astrophysics Data System (ADS)
Trump, J. R.; Hall, P. B.; Reichard, T. A.; Richards, G. T.; Schneider, D. P.; vanden Berk, D. E.; Knapp, G. R.; Anderson, S. F.; Fan, X.; Brinkman, J.; Kleinman, S. J.; Nitta, A.
2007-11-01
We present a total of 4784 unique broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release (Cat. ). An automated algorithm was used to match a continuum to each quasar and to identify regions of flux at least 10% below the continuum over a velocity range of at least 1000km/s in the CIV and MgII absorption regions. The model continuum was selected as the best-fit match from a set of template quasar spectra binned in luminosity, emission line width, and redshift, with the power-law spectral index and amount of dust reddening as additional free parameters. We characterize our sample through the traditional balnicity index and a revised absorption index, as well as through parameters such as the width, outflow velocity, fractional depth, and number of troughs. (1 data file).
Power Radiated from ITER and CIT by Impurities
DOE R&D Accomplishments Database
Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.
1990-07-01
The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.
On Local Ionization Equilibrium and Disk Winds in QSOs
NASA Astrophysics Data System (ADS)
Pereyra, Nicolas A.
2014-11-01
We present theoretical C IV λλ1548,1550 absorption line profiles for QSOs calculated assuming the accretion disk wind (ADW) scenario. The results suggest that the multiple absorption troughs seen in many QSOs may be due to the discontinuities in the ion balance of the wind (caused by X-rays), rather than discontinuities in the density/velocity structure. The profiles are calculated from a 2.5-dimensional time-dependent hydrodynamic simulation of a line-driven disk wind for a typical QSO black hole mass, a typical QSO luminosity, and for a standard Shakura-Sunyaev disk. We include the effects of ionizing X-rays originating from within the inner disk radius by assuming that the wind is shielded from the X-rays from a certain viewing angle up to 90° ("edge on"). In the shielded region, we assume constant ionization equilibrium, and thus constant line-force parameters. In the non-shielded region, we assume that both the line-force and the C IV populations are nonexistent. The model can account for P-Cygni absorption troughs (produced at edge on viewing angles), multiple absorption troughs (produced at viewing angles close to the angle that separates the shielded region and the non-shielded region), and for detached absorption troughs (produced at an angle in between the first two absorption line types); that is, the model can account for the general types of broad absorption lines seen in QSOs as a viewing angle effect. The steady nature of ADWs, in turn, may account for the steady nature of the absorption structure observed in multiple-trough broad absorption line QSOs. The model parameters are M bh = 109 M ⊙ and L disk = 1047 erg s-1.
VizieR Online Data Catalog: GTC transit light curves of HAT-P-32b (Nortmann+, 2016)
NASA Astrophysics Data System (ADS)
Nortmann, L.; Palle, E.; Murgas, F.; Dreizler, S.; Iro, N.; Cabrera-Lavers, A.
2016-05-01
We provide two transit light curves of the hot Jupiter HAT-P-32b obtained on the nights of 2012/09/15 and 2012/09/30 using the OSIRIS instrument at the 10.4-m GTC telescope. The data was obtained by using OSIRIS in broad slit spectroscopy mode and covering the wavelength region between 518nm-918nm. For the night of 2012/09/30 we further provide twenty narrowband light curves which were created by summing the flux over 20-nm-wide channels instead over the whole wavelength region. We provide several auxiliary parameters of the observations which we have used to correct the data from correlated noise. These auxiliary parameters are the position drift of the stars on the CCD detector in spatial and dispersion direction, air mass and seeing (FWHM). (23 data files).
Degeneracy of gravitational waveforms in the context of GW150914
NASA Astrophysics Data System (ADS)
Creswell, James; Liu, Hao; Jackson, Andrew D.; von Hausegger, Sebastian; Naselsky, Pavel
2018-03-01
We study the degeneracy of theoretical gravitational waveforms for binary black hole mergers using an aligned-spin effective-one-body model. After appropriate truncation, bandpassing, and matching, we identify regions in the mass–spin parameter space containing waveforms similar to the template proposed for GW150914, with masses m1 = 36+5‑4 Msolar and m2 = 29+4‑4 Msolar, using the cross-correlation coefficient as a measure of the similarity between waveforms. Remarkably high cross-correlations are found across broad regions of parameter space. The associated uncertanties exceed these from LIGO's Bayesian analysis considerably. We have shown that waveforms with greatly increased masses, such as m1 = 70 Msolar and m2 = 35 Msolar, and strong anti-aligned spins (χ1 = 0.95 and χ2 = ‑0.95) yield almost the same signal-to-noise ratio in the strain data for GW150914.
Transition from the Unipolar Region to the Sector Zone: Voyager 2, 2013 and 2014
NASA Astrophysics Data System (ADS)
Burlaga, L. F.; Ness, N. F.; Richardson, J. D.
2017-05-01
We discuss magnetic field and plasma observations of the heliosheath made by Voyager 2 (V2) during 2013 and 2014 near solar maximum. A transition from a unipolar region to a sector zone was observed in the azimuthal angle λ between ˜2012.45 and 2013.82. The distribution of λ was strongly singly peaked at 270^\\circ in the unipolar region and double peaked in the sector zone. The δ-distribution was strongly peaked in the unipolar region and very broad in the sector zone. The distribution of daily averages of the magnetic field strength B was Gaussian in the unipolar region and lognormal in the sector zone. The correlation function of B was exponential with an e-folding time of ˜5 days in both regions. The distribution of hourly increments of B was a Tsallis distribution with nonextensivity parameter q = 1.7 ± 0.04 in the unipolar region and q = 1.44 ± 0.12 in the sector zone. The CR-B relationship qualitatively describes the 2013 observations, but not the 2014 observations. A 40 km s-1 increase in the bulk speed associated with an increase in B near 2013.5 might have been produced by the merging of streams. A “D sheet” (a broad depression in B containing a current sheet moved past V2 from days 320 to 345, 2013. The R- and N-components of the plasma velocity changed across the current sheet.
Performance of MarSite Multi parameter Borehole Instrumentation
NASA Astrophysics Data System (ADS)
Guralp, Cansun; Tunc, Suleyman; Ozel, Oguz; Meral Ozel, Nurcan; Necmioglu, Ocal
2017-04-01
In this paper we present two year results obtained from the integrated multiparameter borehole system at Marsite. The very broad band (VBB) system have been operating since installation in November 2014; one year in a water filled borehole and one year in a dry Borehole. from January 2016. The real time data has been available to the community. The two Borehole environments are compared showing the superior performance of dry borehole environ- ment compared to water filled for a very broad band (VBB) seismometer. The practical considerations applied in both borehole installations are compared and the best borehole practical installation techniques are presented and discussed. The data is also compared with a surface 120 second broad band sensor and the seismic arrays with in MarSite region. The very long term performance, (one year data in a dry hole) of the VBB Borehole seismometer and the Dilatometer will be presented The high frequency performance of the VBB seismometer which extends to 150 Hz and the dilatometer are compared characterizing the results from the dilatometer.
Laser induced fluorescence of BaS: Sm phosphor and energy level splitting of Sm 3+ ion
NASA Astrophysics Data System (ADS)
Thomas, Reethamma; Nampoori, V. P. N.
1990-03-01
Fluorescence of BaS: Sm phosphor has been studied using a pulsed Nitrogen laser (337.1 nm) as the excitation source. The spectrum consists of a broad band in the region 540-660nm superposed by the characteristic Sm 3+ lines. Energy level splitting pattern of Sm 3+ due to crystal field effects has been calculated and relevent field parameters are evaluated. Analysis shows that Sm 3+ takes up Ba 2+ substitutional sites.
Flat field concave holographic grating with broad spectral region and moderately high resolution.
Wu, Jian Fen; Chen, Yong Yan; Wang, Tai Sheng
2012-02-01
In order to deal with the conflicts between broad spectral region and high resolution in compact spectrometers based on a flat field concave holographic grating and line array CCD, we present a simple and practical method to design a flat field concave holographic grating that is capable of imaging a broad spectral region at a moderately high resolution. First, we discuss the principle of realizing a broad spectral region and moderately high resolution. Second, we provide the practical method to realize our ideas, in which Namioka grating theory, a genetic algorithm, and ZEMAX are used to reach this purpose. Finally, a near-normal-incidence example modeled in ZEMAX is shown to verify our ideas. The results show that our work probably has a general applicability in compact spectrometers with a broad spectral region and moderately high resolution.
Dergacheva, T I; Lykov, A P; Shurlygina, A V; Starkova, E V; Poveshchenko, O V; Bondarenko, N A; Kim, I I; Tenditnik, M V; Borodin, Yu I; Konenkov, V I
2015-10-01
We studied the effects of autologous biomedical cell product (bone marrow multipotent mesenchymal stromal cells and their conditioned media) on the parameters of the microcirculatory bed in the broad ligament of the uterus of normal Wistar rats were studied. The parameters of microcirculation and lymph drainage in the broad ligament changed in opposite directions in response to injection of autologous biomedical cell product via different routes. This fact should be taken into consideration when prescribing cell therapy for inflammatory degenerative processes in the pelvic organs.
Stability of the Broad-line Region Geometry and Dynamics in Arp 151 Over Seven Years
NASA Astrophysics Data System (ADS)
Pancoast, A.; Barth, A. J.; Horne, K.; Treu, T.; Brewer, B. J.; Bennert, V. N.; Canalizo, G.; Gates, E. L.; Li, W.; Malkan, M. A.; Sand, D.; Schmidt, T.; Valenti, S.; Woo, J.-H.; Clubb, K. I.; Cooper, M. C.; Crawford, S. M.; Hönig, S. F.; Joner, M. D.; Kandrashoff, M. T.; Lazarova, M.; Nierenberg, A. M.; Romero-Colmenero, E.; Son, D.; Tollerud, E.; Walsh, J. L.; Winkler, H.
2018-04-01
The Seyfert 1 galaxy Arp 151 was monitored as part of three reverberation mapping campaigns spanning 2008–2015. We present modeling of these velocity-resolved reverberation mapping data sets using a geometric and dynamical model for the broad-line region (BLR). By modeling each of the three data sets independently, we infer the evolution of the BLR structure in Arp 151 over a total of 7 yr and constrain the systematic uncertainties in nonvarying parameters such as the black hole mass. We find that the BLR geometry of a thick disk viewed close to face-on is stable over this time, although the size of the BLR grows by a factor of ∼2. The dynamics of the BLR are dominated by inflow, and the inferred black hole mass is consistent for the three data sets, despite the increase in BLR size. Combining the inference for the three data sets yields a black hole mass and statistical uncertainty of log10({M}BH}/{M}ȯ ) = {6.82}-0.09+0.09 with a standard deviation in individual measurements of 0.13 dex.
A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate-Mass Black Hole
NASA Astrophysics Data System (ADS)
Barth, Aaron
2004-07-01
We propose a comprehensive optical, UV, and X-ray investigation of the unique galaxy POX 52. POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy appears to be a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses, placing POX 52 in a region of AGN parameter space that is almost completely unexplored at present. We request ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACS imaging to detect the X-ray emission from the nucleus and investigate its spectral and variability properties. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.
NASA Astrophysics Data System (ADS)
Silins, U.; Bladon, K. D.; Stone, M.; Emelko, M. B.; Collins, A.; Boon, S.; Williams, C.; Wagner, M. J.; Martens, A. M.; Anderson, A.
2012-12-01
Broad regions of western North America rely on water supplies that originate from forested regions of the Rocky Mountain cordillera where landuse pressures, and stresses including changing natural disturbance regimes associated with shifting climates has been impacting critical source water supplies from this region. Increases in magnitude and severity of wildfires along with impacts on downstream water supplies has been observed along the length of the North American Rocky Mountain chain, however, the longevity of these impacts (including impacts to important water quality parameters) remain highly uncertain because processes regulating recovery from such disturbances can span a range of timescales from a few years to decades depending on both the hydro-climatic regime, and which water quality parameters are important. Studies document such long-term changes are few. The Southern Rockies Watershed Project (SRWP) was established to document the magnitude and recovery from the severe 2003 Lost Creek wildfire in the Crowsnest Pass region of southwest Alberta, Canada. Hydrology, water quality (physical & chemical) have been studies in 9 instrumented catchments (4-14 km2) encompassing burned, burned and salvage logged, prescribed burned, and unburned (reference) conditions since late winter 2004. While most important water quality parameters were strongly elevated in burned and burned-salvage logged catchments after the fire, strongly differential rates of recovery were observed for contaminant concentration, export, and yield across a range of water quality parameters (2004-2011). For example, while various nitrogen (N) species (total nitrogen, dissolved nitrogen, NO3-, NH4+) showed 2-7 fold increases in concentration the first 1-2 years after the wildfire, N recovered back to baseline concentrations 4-5 years after the wildfire. In contrast, eight full years after the wildfire (2011), no recovery of sediment or phosphorus (P) production (soluble reactive, total dissolved, particulate, and total P) has been evident. Incremental impacts of management intervention by salvage logging over wildfire alone were observed for most water quality parameters. Sedimentary geology, glacial history of this region, along with predominance of fine fluvial sediments are likely implicated in both the strong sediment-P coupling and longevity of wildfire impacts observed in this region.
NASA Astrophysics Data System (ADS)
Mert, A.
2016-12-01
The main motivation of this study is the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in Marmara Sea and the disaster risk around Marmara region, especially in İstanbul. This study provides the results of a physically-based Probabilistic Seismic Hazard Analysis (PSHA) methodology, using broad-band strong ground motion simulations, for sites within the Marmara region, Turkey, due to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically-based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We include the effects of all considerable magnitude earthquakes. To generate the high frequency (0.5-20 Hz) part of the broadband earthquake simulation, the real small magnitude earthquakes recorded by local seismic array are used as an Empirical Green's Functions (EGF). For the frequencies below 0.5 Hz the simulations are obtained using by Synthetic Green's Functions (SGF) which are synthetic seismograms calculated by an explicit 2D/3D elastic finite difference wave propagation routine. Using by a range of rupture scenarios for all considerable magnitude earthquakes throughout the PIF segments we provide a hazard calculation for frequencies 0.1-20 Hz. Physically based PSHA used here follows the same procedure of conventional PSHA except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes and this approach utilizes full rupture of earthquakes along faults. Further, conventional PSHA predicts ground-motion parameters using by empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitude earthquakes to obtain ground-motion parameters. PSHA results are produced for 2%, 10% and 50% hazards for all studied sites in Marmara Region.
Schütte, B; El Hajj, N; Kuhtz, J; Nanda, I; Gromoll, J; Hahn, T; Dittrich, M; Schorsch, M; Müller, T; Haaf, T
2013-11-01
Aberrant sperm DNA methylation patterns, mainly in imprinted genes, have been associated with male subfertility and oligospermia. Here, we performed a genome-wide methylation analysis in sperm samples representing a wide range of semen parameters. Sperm DNA samples of 38 males attending a fertility centre were analysed with Illumina HumanMethylation27 BeadChips, which quantify methylation of >27 000 CpG sites in cis-regulatory regions of almost 15 000 genes. In an unsupervised analysis of methylation of all analysed sites, the patient samples clustered into a major and a minor group. The major group clustered with samples from normozoospermic healthy volunteers and, thus, may more closely resemble the normal situation. When correlating the clusters with semen and clinical parameters, the sperm counts were significantly different between groups with the minor group exhibiting sperm counts in the low normal range. A linear model identified almost 3000 CpGs with significant methylation differences between groups. Functional analysis revealed a broad gain of methylation in spermatogenesis-related genes and a loss of methylation in inflammation- and immune response-related genes. Quantitative bisulfite pyrosequencing validated differential methylation in three of five significant candidate genes on the array. Collectively, we identified a subgroup of sperm samples for assisted reproduction with sperm counts in the low normal range and broad methylation changes (affecting approximately 10% of analysed CpG sites) in specific pathways, most importantly spermatogenesis-related genes. We propose that epigenetic analysis can supplement traditional semen parameters and has the potential to provide new insights into the aetiology of male subfertility. © 2013 American Society of Andrology and European Academy of Andrology.
NASA Astrophysics Data System (ADS)
Laha, Sibasish; Guainazzi, Matteo; Dewangan, Gulab C.; Chakravorty, Susmita; Kembhavi, Ajit K.
2014-07-01
We present results from a homogeneous analysis of the broad-band 0.3-10 keV CCD resolution as well as of the soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. Our goal is to characterize warm absorbers (WAs) along the line of sight to the active nucleus. We significantly detect WAs in 65 per cent of the sample sources. Our results are consistent with WAs being present in at least half of the Seyfert galaxies in the nearby Universe, in agreement with previous estimates. We find a gap in the distribution of the ionization parameter in the range 0.5 < log ξ < 1.5 which we interpret as a thermally unstable region for WA clouds. This may indicate that the WA flow is probably constituted by a clumpy distribution of discrete clouds rather than a continuous medium. The distribution of the WA column densities for the sources with broad Fe Kα lines are similar to those sources which do not have broadened emission lines. Therefore, the detected broad Fe Kα emission lines are bona fide and not artefacts of ionized absorption in the soft X-rays. The WA parameters show no correlation among themselves, with the exception of the ionization parameter versus column density. The shallow slope of the log ξ versus log vout linear regression (0.12 ± 0.03) is inconsistent with the scaling laws predicted by radiation or magnetohydrodynamic-driven winds. Our results also suggest that WA and ultra fast outflows do not represent extreme manifestation of the same astrophysical system.
VizieR Online Data Catalog: Optical spectroscopic atlas of MOJAVE AGNs (Torrealba+, 2012)
NASA Astrophysics Data System (ADS)
Torrealba, J.; Chavushyan, V.; Cruz-Gonzalez, I.; Arshakian, T. G.; Bertone, E.; Rosa-Gonzalez, D.
2014-09-01
The atlas includes spectral parameters for the emission lines Hβ, [OIII] 5007, MgII 2798 and/or CIV 1549 and corresponding data for the continuum, as well as the luminosities and equivalent widths of the FeII UV/optical. It also contains homogeneous photometric information in the B-band for 242 sources of the MOJAVE/2cm sample. These data were acquired at 2.1m mexican telescopes: Observatorio Astronomico Nacional in San Pedro Martir (OAN-SPM), B. C., Mexico and at Observatorio Astronomico Guillermo Haro, in Cananea, Sonora (OAGH), Mexico. It is supplemented with spectroscopic data found in the archives of the Sloan Digital Sky Survey (SDSS), the Hubble Space Telescope (HST), in the AGN sample of Marziani et al. (2003ApJS..145..199M, Cat. J/ApJS/145/199), and in Lawrence et al. 1996ApJS..107..541L. We present the continuum emission and/or line parameters for 41 sources in the Hβ region, 78 in the MgII region, and 35 in the CIV region. Also, there are 14 sources with information available for both Hβ and MgII regions, 12 with MgII and CIV, and 5 with Hβ, MgII and CIV. The spectroscopic information information for the statistically complete sample MOJAVE-1 (Lister & Homan, 2005AJ....130.1389L, Cat. J/AJ/130/1389) included in the Atlas is as follows: 28 sources in the Hβ region, 46 in the MgII region, and 23 in the CIV region. All the emission lines parameters are for the broad component of the line, except for [OIII] 5007. (7 data files).
SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Tian, Z; Song, T
Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accountingmore » for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.« less
Ou, Yangming; Resnick, Susan M.; Gur, Ruben C.; Gur, Raquel E.; Satterthwaite, Theodore D.; Furth, Susan; Davatzikos, Christos
2016-01-01
Atlas-based automated anatomical labeling is a fundamental tool in medical image segmentation, as it defines regions of interest for subsequent analysis of structural and functional image data. The extensive investigation of multi-atlas warping and fusion techniques over the past 5 or more years has clearly demonstrated the advantages of consensus-based segmentation. However, the common approach is to use multiple atlases with a single registration method and parameter set, which is not necessarily optimal for every individual scan, anatomical region, and problem/data-type. Different registration criteria and parameter sets yield different solutions, each providing complementary information. Herein, we present a consensus labeling framework that generates a broad ensemble of labeled atlases in target image space via the use of several warping algorithms, regularization parameters, and atlases. The label fusion integrates two complementary sources of information: a local similarity ranking to select locally optimal atlases and a boundary modulation term to refine the segmentation consistently with the target image's intensity profile. The ensemble approach consistently outperforms segmentations using individual warping methods alone, achieving high accuracy on several benchmark datasets. The MUSE methodology has been used for processing thousands of scans from various datasets, producing robust and consistent results. MUSE is publicly available both as a downloadable software package, and as an application that can be run on the CBICA Image Processing Portal (https://ipp.cbica.upenn.edu), a web based platform for remote processing of medical images. PMID:26679328
GAMMA–GAMMA ABSORPTION IN THE BROAD LINE REGION RADIATION FIELDS OF GAMMA-RAY BLAZARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Böttcher, Markus; Els, Paul, E-mail: Markus.Bottcher@nwu.ac.za
2016-04-20
The expected level of γγ absorption in the Broad Line Region (BLR) radiation field of γ -ray loud Flat Spectrum Radio Quasars (FSRQs) is evaluated as a function of the location of the γ -ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the γγ opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energymore » density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to γγ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the γ -ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the central engine and drops below unity for locations within the BLR. For locations outside the BLR, the BLR radiation energy density required for the production of GeV γ -rays rapidly increases beyond observational constraints, thus making the EC-BLR mechanism implausible. Therefore, in order to avoid significant γγ absorption by the BLR radiation field, the γ -ray emission region must therefore be located near the outer boundary of the BLR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, A
2000-12-28
This is an informal report on preliminary efforts to investigate earthquake focal mechanisms and earth structure in the Anatolian (Turkish) Plateau. Seismic velocity structure of the crust and upper mantle and earthquake focal parameters for event in the Anatolian Plateau are estimated from complete regional waveforms. Focal mechanisms, depths and seismic moments of moderately large crustal events are inferred from long-period (40-100 seconds) waveforms and compared with focal parameters derived from global teleseismic data. Using shorter periods (10-100 seconds) we estimate the shear and compressional velocity structure of the crust and uppermost mantle. Results are broadly consistent with previous studiesmore » and imply relatively little crustal thickening beneath the central Anatolian Plateau. Crustal thickness is about 35 km in western Anatolia and greater than 40 km in eastern Anatolia, however the long regional paths require considerable averaging and limit resolution. Crustal velocities are lower than typical continental averages, and even lower than typical active orogens. The mantle P-wave velocity was fixed to 7.9 km/s, in accord with tomographic models. A high sub-Moho Poisson's Ratio of 0.29 was required to fit the Sn-Pn differential times. This is suggestive of high sub-Moho temperatures, high shear wave attenuation and possibly partial melt. The combination of relatively thin crust in a region of high topography and high mantle temperatures suggests that the mantle plays a substantial role in maintaining the elevation.« less
Hints of correlation between broad-line and radio variations for 3C 120
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H. T.; Bai, J. M.; Li, S. K.
2014-01-01
In this paper, we investigate the correlation between broad-line and radio variations for the broad-line radio galaxy 3C 120. By the z-transformed discrete correlation function method and the model-independent flux randomization/random subset selection (FR/RSS) Monte Carlo method, we find that broad Hβ line variations lead the 15 GHz variations. The FR/RSS method shows that the Hβ line variations lead the radio variations by a factor of τ{sub ob} = 0.34 ± 0.01 yr. This time lag can be used to locate the position of the emitting region of radio outbursts in the jet, on the order of ∼5 lt-yr frommore » the central engine. This distance is much larger than the size of the broad-line region. The large separation of the radio outburst emitting region from the broad-line region will observably influence the gamma-ray emission in 3C 120.« less
NASA Technical Reports Server (NTRS)
Davis, J. M.; Gerassimenko, M.; Krieger, A. S.; Vaiana, G. S.
1975-01-01
Simultaneous soft X-ray spectroscopic and broad-band imaging observations of an active region have been analyzed together to determine the parameters which describe the coronal plasma. From the spectroscopic data, models of temperature-emission measure-elemental abundance have been constructed which provide acceptable statistical fits. By folding these possible models through the imaging analysis, models which are not self-consistent can be rejected. In this way, only the oxygen, neon, and iron abundances of Pottasch (1967), combined with either an isothermal or exponential temperature-emission-measure model, are consistent with both sets of data. Contour maps of electron temperature and density for the active region have been constructed from the imaging data. The implications of the analysis for the determination of coronal abundances and for future satellite experiments are discussed.
The Blume-Capel model on hierarchical lattices: Exact local properties
NASA Astrophysics Data System (ADS)
Rocha-Neto, Mário J. G.; Camelo-Neto, G.; Nogueira, E., Jr.; Coutinho, S.
2018-03-01
The local properties of the spin one ferromagnetic Blume-Capel model defined on hierarchical lattices with dimension two and three are obtained by a numerical recursion procedure and studied as functions of the temperature and the reduced crystal-field parameter. The magnetization and the density of sites in the configuration S = 0 state are carefully investigated at low temperature in the region of the phase diagram that presents the phenomenon of phase reentrance. Both order parameters undergo transitions from the ferromagnetic to the ordered paramagnetic phase with abrupt discontinuities that decrease along the phase boundary at low temperatures. The distribution of magnetization in a typical profile was determined on the transition line presenting a broad multifractal spectrum that narrows towards the fractal limit (single point) as the discontinuities of the order parameters grow towards a maximum. The amplitude of the order-parameter discontinuities and the narrowing of the multifractal spectra were used to delimit the low temperature interval for the possible locus of the tricritical point.
NASA Astrophysics Data System (ADS)
Saleem, M.; Resmi, L.; Misra, Kuntal; Pai, Archana; Arun, K. G.
2018-03-01
Short duration Gamma Ray Bursts (SGRB) and their afterglows are among the most promising electromagnetic (EM) counterparts of Neutron Star (NS) mergers. The afterglow emission is broad-band, visible across the entire electromagnetic window from γ-ray to radio frequencies. The flux evolution in these frequencies is sensitive to the multidimensional afterglow physical parameter space. Observations of gravitational wave (GW) from BNS mergers in spatial and temporal coincidence with SGRB and associated afterglows can provide valuable constraints on afterglow physics. We run simulations of GW-detected BNS events and assuming that all of them are associated with a GRB jet which also produces an afterglow, investigate how detections or non-detections in X-ray, optical and radio frequencies can be influenced by the parameter space. We narrow down the regions of afterglow parameter space for a uniform top-hat jet model, which would result in different detection scenarios. We list inferences which can be drawn on the physics of GRB afterglows from multimessenger astronomy with coincident GW-EM observations.
Nonstandard neutrino interactions in supernovae
NASA Astrophysics Data System (ADS)
Stapleford, Charles J.; Väänänen, Daavid J.; Kneller, James P.; McLaughlin, Gail C.; Shapiro, Brandon T.
2016-11-01
Nonstandard interactions (NSI) of neutrinos with matter can significantly alter neutrino flavor evolution in supernovae with the potential to impact explosion dynamics, nucleosynthesis, and the neutrinos signal. In this paper, we explore, both numerically and analytically, the landscape of neutrino flavor transformation effects in supernovae due to NSI and find a new, heretofore unseen transformation processes can occur. These new transformations can take place with NSI strengths well below current experimental limits. Within a broad swath of NSI parameter space, we observe symmetric and standard matter-neutrino resonances for supernovae neutrinos, a transformation effect previously only seen in compact object merger scenarios; in another region of the parameter space we find the NSI can induce neutrino collective effects in scenarios where none would appear with only the standard case of neutrino oscillation physics; and in a third region the NSI can lead to the disappearance of the high density Mikheyev-Smirnov-Wolfenstein resonance. Using a variety of analytical tools, we are able to describe quantitatively the numerical results allowing us to partition the NSI parameter according to the transformation processes observed. Our results indicate nonstandard interactions of supernova neutrinos provide a sensitive probe of beyond the Standard Model physics complementary to present and future terrestrial experiments.
Jamming of three-dimensional prolate granular materials.
Desmond, K; Franklin, Scott V
2006-03-01
We have found that the ability of long thin rods to jam into a solidlike state in response to a local perturbation depends upon both the particle aspect ratio and the container size. The dynamic phase diagram in this parameter space reveals a broad transition region separating granular stick-slip and solidlike behavior. In this transition region the pile displays both solid and stick-slip behavior. We measure the force on a small object pulled through the pile, and find the fluctuation spectra to have power law tails with an exponent characteristic of the region. The exponent varies from beta=-2 in the stick-slip region to beta=-1 in the solid region. These values reflect the different origins--granular rearrangements vs dry friction--of the fluctuations. Finally, the packing fraction shows only a slight dependence on container size, but depends on aspect ratio in a manner predicted by mean-field theory and implies an aspect-ratio-independent contact number of
Goddard High-Resolution Spectrograph Observations of Procyon and HR1099
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Harper, Graham M.; Linsky, Jeffrey L.; Dempsey, Robert C.
1996-01-01
Goddard High Resolution Spectrograph (GHRS) observations have revealed the presence of broad wings in the transition-region lines of AU Mic and Capella. It has been proposed that these wings are signatures of microflares in the transition regions of these stars and that the solar analog for this phenomenon might be the 'transition region explosive events' discussed by Dere, Bartoe, & Brueckner. We have analyzed GHRS observations of Procyon (F5 IV-V) and HR 1099 (K1 IV + G5 IV) to search for broad wings in the UV emission lines of these stars. We find that the transition-region lines of HR 1099, which are emitted almost entirely by the K1 star, do indeed have broad wings that are even more prominent than those of AU Mic and Capella. This is consistent with the association of the broad wings with microflaring since HR 1099 is a very active binary system. In contrast, the transition-region lines of Procyon, a relatively inactive star, do not show evidence for broad wings, with the possible exception of N v lambda1239. However, Procyon's lines do appear to have excess emission in their blue wings. Linsky et al. found no evidence for broad wings in Capella's chromospheric lines, but we find that the Mg II resonance lines of HR 1099 do have broad wings. The striking resemblance between HR 1099's Mg II and C iv lines suggests that the Mg II line profiles may be regulated by turbulent processes similar to those that control the transition-region line profiles. If this is the case, microflaring may be occurring in the K1 star's chromosphere as well as in its transition region. However, radiative transfer calculations suggest that the broad wings of the Mg II lines can also result from normal chromospheric opacity effects rather than pure turbulence. The prominence of broad wings in the transition region and perhaps even chromospheric lines of active stars suggests that microflaring is very prevalent in the outer atmospheres of active stars.
McMahon, Christopher J; Toomey, Joshua P; Kane, Deb M
2017-01-01
We have analysed large data sets consisting of tens of thousands of time series from three Type B laser systems: a semiconductor laser in a photonic integrated chip, a semiconductor laser subject to optical feedback from a long free-space-external-cavity, and a solid-state laser subject to optical injection from a master laser. The lasers can deliver either constant, periodic, pulsed, or chaotic outputs when parameters such as the injection current and the level of external perturbation are varied. The systems represent examples of experimental nonlinear systems more generally and cover a broad range of complexity including systematically varying complexity in some regions. In this work we have introduced a new procedure for semi-automatically interrogating experimental laser system output power time series to calculate the correlation dimension (CD) using the commonly adopted Grassberger-Proccacia algorithm. The new CD procedure is called the 'minimum gradient detection algorithm'. A value of minimum gradient is returned for all time series in a data set. In some cases this can be identified as a CD, with uncertainty. Applying the new 'minimum gradient detection algorithm' CD procedure, we obtained robust measurements of the correlation dimension for many of the time series measured from each laser system. By mapping the results across an extended parameter space for operation of each laser system, we were able to confidently identify regions of low CD (CD < 3) and assign these robust values for the correlation dimension. However, in all three laser systems, we were not able to measure the correlation dimension at all parts of the parameter space. Nevertheless, by mapping the staged progress of the algorithm, we were able to broadly classify the dynamical output of the lasers at all parts of their respective parameter spaces. For two of the laser systems this included displaying regions of high-complexity chaos and dynamic noise. These high-complexity regions are differentiated from regions where the time series are dominated by technical noise. This is the first time such differentiation has been achieved using a CD analysis approach. More can be known of the CD for a system when it is interrogated in a mapping context, than from calculations using isolated time series. This has been shown for three laser systems and the approach is expected to be useful in other areas of nonlinear science where large data sets are available and need to be semi-automatically analysed to provide real dimensional information about the complex dynamics. The CD/minimum gradient algorithm measure provides additional information that complements other measures of complexity and relative complexity, such as the permutation entropy; and conventional physical measurements.
McMahon, Christopher J.; Toomey, Joshua P.
2017-01-01
Background We have analysed large data sets consisting of tens of thousands of time series from three Type B laser systems: a semiconductor laser in a photonic integrated chip, a semiconductor laser subject to optical feedback from a long free-space-external-cavity, and a solid-state laser subject to optical injection from a master laser. The lasers can deliver either constant, periodic, pulsed, or chaotic outputs when parameters such as the injection current and the level of external perturbation are varied. The systems represent examples of experimental nonlinear systems more generally and cover a broad range of complexity including systematically varying complexity in some regions. Methods In this work we have introduced a new procedure for semi-automatically interrogating experimental laser system output power time series to calculate the correlation dimension (CD) using the commonly adopted Grassberger-Proccacia algorithm. The new CD procedure is called the ‘minimum gradient detection algorithm’. A value of minimum gradient is returned for all time series in a data set. In some cases this can be identified as a CD, with uncertainty. Findings Applying the new ‘minimum gradient detection algorithm’ CD procedure, we obtained robust measurements of the correlation dimension for many of the time series measured from each laser system. By mapping the results across an extended parameter space for operation of each laser system, we were able to confidently identify regions of low CD (CD < 3) and assign these robust values for the correlation dimension. However, in all three laser systems, we were not able to measure the correlation dimension at all parts of the parameter space. Nevertheless, by mapping the staged progress of the algorithm, we were able to broadly classify the dynamical output of the lasers at all parts of their respective parameter spaces. For two of the laser systems this included displaying regions of high-complexity chaos and dynamic noise. These high-complexity regions are differentiated from regions where the time series are dominated by technical noise. This is the first time such differentiation has been achieved using a CD analysis approach. Conclusions More can be known of the CD for a system when it is interrogated in a mapping context, than from calculations using isolated time series. This has been shown for three laser systems and the approach is expected to be useful in other areas of nonlinear science where large data sets are available and need to be semi-automatically analysed to provide real dimensional information about the complex dynamics. The CD/minimum gradient algorithm measure provides additional information that complements other measures of complexity and relative complexity, such as the permutation entropy; and conventional physical measurements. PMID:28837602
Saboo, Sugandha; Tumban, Ebenezer; Peabody, Julianne; Wafula, Denis; Peabody, David S.; Chackerian, Bryce; Muttil, Pavan
2016-01-01
Existing vaccines against human papillomavirus (HPV) require continuous cold-chain storage. Previously, we developed a bacteriophage virus-like particle (VLP) based vaccine for Human Papillomavirus (HPV) infection, which elicits broadly neutralizing antibodies against diverse HPV types. Here, we formulated these VLPs into a thermostable dry powder using a multi-component excipient system and by optimizing the spray drying parameters using a half-factorial design approach. Dry powder VLPs were stable after spray drying and after long-term storage at elevated temperatures. Immunization of mice with a single dose of reconstituted dry powder VLPs that were stored at 37°C for more than a year elicited high anti-L2 IgG antibody titers. Spray dried thermostable, broadly protective L2 bacteriophage VLPs vaccine could be accessible to remote regions of the world (where ~84% of cervical cancer patients reside) by eliminating the cold-chain requirement during transportation and storage. PMID:27019231
NASA Astrophysics Data System (ADS)
Bassett, D.; Watts, A. B.; Sandwell, D. T.; Fialko, Y. A.
2016-12-01
We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PYROPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters φ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).
NASA Astrophysics Data System (ADS)
Bonnin, Mickaël; Chevrot, Sébastien; Gaudot, Ianis; Haugmard, Méric
2017-08-01
We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PyrOPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters ϕ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).
NASA Astrophysics Data System (ADS)
Bonnin, M. J. A.; Chevrot, S.; Gaudot, I.; Haugmard, M.
2017-12-01
We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PYROPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters φ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).
Optimization of radar imaging system parameters for geological analysis
NASA Technical Reports Server (NTRS)
Waite, W. P.; Macdonald, H. C.; Kaupp, V. H.
1981-01-01
The use of radar image simulation to model terrain variation and determine optimum sensor parameters for geological analysis is described. Optimum incidence angle is determined by the simulation, which evaluates separately the discrimination of surface features possible due to terrain geometry and that due to terrain scattering. Depending on the relative relief, slope, and scattering cross section, optimum incidence angle may vary from 20 to 80 degrees. Large incident angle imagery (more than 60 deg) is best for the widest range of geological applications, but in many cases these large angles cannot be achieved by satellite systems. Low relief regions require low incidence angles (less than 30 deg), so a satellite system serving a broad range of applications should have at least two selectable angles of incidence.
Automatic high-throughput screening of colloidal crystals using machine learning
NASA Astrophysics Data System (ADS)
Spellings, Matthew; Glotzer, Sharon C.
Recent improvements in hardware and software have united to pose an interesting problem for computational scientists studying self-assembly of particles into crystal structures: while studies covering large swathes of parameter space can be dispatched at once using modern supercomputers and parallel architectures, identifying the different regions of a phase diagram is often a serial task completed by hand. While analytic methods exist to distinguish some simple structures, they can be difficult to apply, and automatic identification of more complex structures is still lacking. In this talk we describe one method to create numerical ``fingerprints'' of local order and use them to analyze a study of complex ordered structures. We can use these methods as first steps toward automatic exploration of parameter space and, more broadly, the strategic design of new materials.
The diversity of quasars unified by accretion and orientation.
Shen, Yue; Ho, Luis C
2014-09-11
Quasars are rapidly accreting supermassive black holes at the centres of massive galaxies. They display a broad range of properties across all wavelengths, reflecting the diversity in the physical conditions of the regions close to the central engine. These properties, however, are not random, but form well-defined trends. The dominant trend is known as 'Eigenvector 1', in which many properties correlate with the strength of optical iron and [O III] emission. The main physical driver of Eigenvector 1 has long been suspected to be the quasar luminosity normalized by the mass of the hole (the 'Eddington ratio'), which is an important parameter of the black hole accretion process. But a definitive proof has been missing. Here we report an analysis of archival data that reveals that the Eddington ratio indeed drives Eigenvector 1. We also find that orientation plays a significant role in determining the observed kinematics of the gas in the broad-line region, implying a flattened, disk-like geometry for the fast-moving clouds close to the black hole. Our results show that most of the diversity of quasar phenomenology can be unified using two simple quantities: Eddington ratio and orientation.
The Moon Zoo citizen science project: Preliminary results for the Apollo 17 landing site
NASA Astrophysics Data System (ADS)
Bugiolacchi, Roberto; Bamford, Steven; Tar, Paul; Thacker, Neil; Crawford, Ian A.; Joy, Katherine H.; Grindrod, Peter M.; Lintott, Chris
2016-06-01
Moon Zoo is a citizen science project that utilises internet crowd-sourcing techniques. Moon Zoo users are asked to review high spatial resolution images from the Lunar Reconnaissance Orbiter Camera (LROC), onboard NASA's LRO spacecraft, and perform characterisation such as measuring impact crater sizes and identify morphological 'features of interest'. The tasks are designed to address issues in lunar science and to aid future exploration of the Moon. We have tested various methodologies and parameters therein to interrogate and reduce the Moon Zoo crater location and size dataset against a validated expert survey. We chose the Apollo 17 region as a test area since it offers a broad range of cratered terrains, including secondary-rich areas, older maria, and uplands. The assessment involved parallel testing in three key areas: (1) filtering of data to remove problematic mark-ups; (2) clustering methods of multiple notations per crater; and (3) derivation of alternative crater degradation indices, based on the statistical variability of multiple notations and the smoothness of local image structures. We compared different combinations of methods and parameters and assessed correlations between resulting crater summaries and the expert census. We derived the optimal data reduction steps and settings of the existing Moon Zoo crater data to agree with the expert census. Further, the regolith depth and crater degradation states derived from the data are also found to be in broad agreement with other estimates for the Apollo 17 region. Our study supports the validity of this citizen science project but also recommends improvements in key elements of the data acquisition planning and production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat; Cole, Wesley
Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less
NASA Astrophysics Data System (ADS)
Alipour, M.; Kibler, K. M.
2017-12-01
Despite advances in flow prediction, managers of ungauged rivers located within broad regions of sparse hydrometeorologic observation still lack prescriptive methods robust to the data challenges of such regions. We propose a multi-objective streamflow prediction framework for regions of minimum observation to select models that balance runoff efficiency with choice of accurate parameter values. We supplement sparse observed data with uncertain or low-resolution information incorporated as `soft' a priori parameter estimates. The performance of the proposed framework is tested against traditional single-objective and constrained single-objective calibrations in two catchments in a remote area of southwestern China. We find that the multi-objective approach performs well with respect to runoff efficiency in both catchments (NSE = 0.74 and 0.72), within the range of efficiencies returned by other models (NSE = 0.67 - 0.78). However, soil moisture capacity estimated by the multi-objective model resonates with a priori estimates (parameter residuals of 61 cm versus 289 and 518 cm for maximum soil moisture capacity in one catchment, and 20 cm versus 246 and 475 cm in the other; parameter residuals of 0.48 versus 0.65 and 0.7 for soil moisture distribution shape factor in one catchment, and 0.91 versus 0.79 and 1.24 in the other). Thus, optimization to a multi-criteria objective function led to very different representations of soil moisture capacity as compared to models selected by single-objective calibration, without compromising runoff efficiency. These different soil moisture representations may translate into considerably different hydrological behaviors. The proposed approach thus offers a preliminary step towards greater process understanding in regions of severe data limitations. For instance, the multi-objective framework may be an adept tool to discern between models of similar efficiency to select models that provide the "right answers for the right reasons". Managers may feel more confident to utilize such models to predict flows in fully ungauged areas.
On the probability distribution of daily streamflow in the United States
Blum, Annalise G.; Archfield, Stacey A.; Vogel, Richard M.
2017-01-01
Daily streamflows are often represented by flow duration curves (FDCs), which illustrate the frequency with which flows are equaled or exceeded. FDCs have had broad applications across both operational and research hydrology for decades; however, modeling FDCs has proven elusive. Daily streamflow is a complex time series with flow values ranging over many orders of magnitude. The identification of a probability distribution that can approximate daily streamflow would improve understanding of the behavior of daily flows and the ability to estimate FDCs at ungaged river locations. Comparisons of modeled and empirical FDCs at nearly 400 unregulated, perennial streams illustrate that the four-parameter kappa distribution provides a very good representation of daily streamflow across the majority of physiographic regions in the conterminous United States (US). Further, for some regions of the US, the three-parameter generalized Pareto and lognormal distributions also provide a good approximation to FDCs. Similar results are found for the period of record FDCs, representing the long-term hydrologic regime at a site, and median annual FDCs, representing the behavior of flows in a typical year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xin; Shen, Yue; Bian, Fuyan
2014-07-10
A small fraction of quasars have long been known to show bulk velocity offsets (of a few hundred to thousands of km s{sup –1}) in the broad Balmer lines with respect to the systemic redshift of the host galaxy. Models to explain these offsets usually invoke broad-line region gas kinematics/asymmetry around single black holes (BHs), orbital motion of massive (∼sub-parsec (sub-pc)) binary black holes (BBHs), or recoil BHs, but single-epoch spectra are unable to distinguish between these scenarios. The line-of-sight (LOS) radial velocity (RV) shifts from long-term spectroscopic monitoring can be used to test the BBH hypothesis. We have selectedmore » a sample of 399 quasars with kinematically offset broad Hβ lines from the Sloan Digital Sky Survey (SDSS) Seventh Data Release quasar catalog, and have conducted second-epoch optical spectroscopy for 50 of them. Combined with the existing SDSS spectra, the new observations enable us to constrain the LOS RV shifts of broad Hβ lines with a rest-frame baseline of a few years to nearly a decade. While previous work focused on objects with extreme velocity offset (>10{sup 3} km s{sup –1}), we explore the parameter space with smaller (a few hundred km s{sup –1}) yet significant offsets (99.7% confidence). Using cross-correlation analysis, we detect significant (99% confidence) radial accelerations in the broad Hβ lines in 24 of the 50 objects, of ∼10-200 km s{sup –1} yr{sup –1} with a median measurement uncertainty of ∼10 km s{sup –1} yr{sup –1}, implying a high fraction of variability of the broad-line velocity on multi-year timescales. We suggest that 9 of the 24 detections are sub-pc BBH candidates, which show consistent velocity shifts independently measured from a second broad line (either Hα or Mg II) without significant changes in the broad-line profiles. Combining the results on the general quasar population studied in Paper I, we find a tentative anti-correlation between the velocity offset in the first-epoch spectrum and the average acceleration between two epochs, which could be explained by orbital phase modulation when the time separation between two epochs is a non-negligible fraction of the orbital period of the motion causing the line displacement. We discuss the implications of our results for the identification of sub-pc BBH candidates in offset-line quasars and for the constraints on their frequency and orbital parameters.« less
An MCMC determination of the primordial helium abundance
NASA Astrophysics Data System (ADS)
Aver, Erik; Olive, Keith A.; Skillman, Evan D.
2012-04-01
Spectroscopic observations of the chemical abundances in metal-poor H II regions provide an independent method for estimating the primordial helium abundance. H II regions are described by several physical parameters such as electron density, electron temperature, and reddening, in addition to y, the ratio of helium to hydrogen. It had been customary to estimate or determine self-consistently these parameters to calculate y. Frequentist analyses of the parameter space have been shown to be successful in these parameter determinations, and Markov Chain Monte Carlo (MCMC) techniques have proven to be very efficient in sampling this parameter space. Nevertheless, accurate determination of the primordial helium abundance from observations of H II regions is constrained by both systematic and statistical uncertainties. In an attempt to better reduce the latter, and continue to better characterize the former, we apply MCMC methods to the large dataset recently compiled by Izotov, Thuan, & Stasińska (2007). To improve the reliability of the determination, a high quality dataset is needed. In pursuit of this, a variety of cuts are explored. The efficacy of the He I λ4026 emission line as a constraint on the solutions is first examined, revealing the introduction of systematic bias through its absence. As a clear measure of the quality of the physical solution, a χ2 analysis proves instrumental in the selection of data compatible with the theoretical model. Nearly two-thirds of the observations fall outside a standard 95% confidence level cut, which highlights the care necessary in selecting systems and warrants further investigation into potential deficiencies of the model or data. In addition, the method also allows us to exclude systems for which parameter estimations are statistical outliers. As a result, the final selected dataset gains in reliability and exhibits improved consistency. Regression to zero metallicity yields Yp = 0.2534 ± 0.0083, in broad agreement with the WMAP result. The inclusion of more observations shows promise for further reducing the uncertainty, but more high quality spectra are required.
NASA Astrophysics Data System (ADS)
Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. A. H.
2017-03-01
Satellite-based near-surface (0-2 cm) soil moisture estimates have global coverage, but do not capture variations of soil moisture in the root zone (up to 100 cm depth) and may be biased with respect to ground-based soil moisture measurements. Here, we present an ensemble Kalman filter (EnKF) hydrologic data assimilation system that predicts bias in satellite soil moisture data to support the physically based Soil Moisture Analytical Relationship (SMAR) infiltration model, which estimates root zone soil moisture with satellite soil moisture data. The SMAR-EnKF model estimates a regional-scale bias parameter using available in situ data. The regional bias parameter is added to satellite soil moisture retrievals before their use in the SMAR model, and the bias parameter is updated continuously over time with the EnKF algorithm. In this study, the SMAR-EnKF assimilates in situ soil moisture at 43 Soil Climate Analysis Network (SCAN) monitoring locations across the conterminous U.S. Multivariate regression models are developed to estimate SMAR parameters using soil physical properties and the moderate resolution imaging spectroradiometer (MODIS) evapotranspiration data product as covariates. SMAR-EnKF root zone soil moisture predictions are in relatively close agreement with in situ observations when using optimal model parameters, with root mean square errors averaging 0.051 [cm3 cm-3] (standard error, s.e. = 0.005). The average root mean square error associated with a 20-fold cross-validation analysis with permuted SMAR parameter regression models increases moderately (0.082 [cm3 cm-3], s.e. = 0.004). The expected regional-scale satellite correction bias is negative in four out of six ecoregions studied (mean = -0.12 [-], s.e. = 0.002), excluding the Great Plains and Eastern Temperate Forests (0.053 [-], s.e. = 0.001). With its capability of estimating regional-scale satellite bias, the SMAR-EnKF system can predict root zone soil moisture over broad extents and has applications in drought predictions and other operational hydrologic modeling purposes.
NASA Astrophysics Data System (ADS)
Hu, Yong; Li, Zongbin; Yang, Bo; Qian, Suxin; Gan, Weimin; Gong, Yuanyuan; Li, Yang; Zhao, Dewei; Liu, Jian; Zhao, Xiang; Zuo, Liang; Wang, Dunhui; Du, Youwei
2017-04-01
Solid-state refrigeration based on the caloric effects is promising to replace the traditional vapor-compressing refrigeration technology due to environmental protection and high efficiency. However, the narrow working temperature region has hindered the application of these refrigeration technologies. In this paper, we propose a method of combined caloric, through which a broad refrigeration region can be realized in a multiferroic alloy, Ni-Mn-Ga, by combining its elastocaloric and magnetocaloric effects. Moreover, the materials' efficiency of elastocaloric effect has been greatly improved in our sample. These results illuminate a promising way to use multiferroic alloys for refrigeration with a broad refrigeration temperature region.
Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands
Syphard, A.D.; Yang, J.; Franklin, J.; He, H.S.; Keeley, J.E.
2007-01-01
In Mediterranean-type ecosystems (MTEs), fire disturbance influences the distribution of most plant communities, and altered fire regimes may be more important than climate factors in shaping future MTE vegetation dynamics. Models that simulate the high-frequency fire and post-fire response strategies characteristic of these regions will be important tools for evaluating potential landscape change scenarios. However, few existing models have been designed to simulate these properties over long time frames and broad spatial scales. We refined a landscape disturbance and succession (LANDIS) model to operate on an annual time step and to simulate altered fire regimes in a southern California Mediterranean landscape. After developing a comprehensive set of spatial and non-spatial variables and parameters, we calibrated the model to simulate very high fire frequencies and evaluated the simulations under several parameter scenarios representing hypotheses about system dynamics. The goal was to ensure that observed model behavior would simulate the specified fire regime parameters, and that the predictions were reasonable based on current understanding of community dynamics in the region. After calibration, the two dominant plant functional types responded realistically to different fire regime scenarios. Therefore, this model offers a new alternative for simulating altered fire regimes in MTE landscapes. ?? 2007 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezdrogina, M. M., E-mail: Margaret.M@mail.ioffe.ru; Eremenko, M. V.; Levitskii, V. S.
The effects of the parameters of ZnO-film deposition onto different substrates using the method of ac magnetron sputtering in a gas mixture of argon and oxygen hare studied. The phenomenon of self-organization is observed, which leads to invariability of the surface morphology of the ZnO films upon a variation in the substrate materials and deposition parameters. The parameters of the macro- and micro-photoluminescence spectra of the films differ insignificantly from the parameters of the photoluminescence spectra of bulk ZnO crystals obtained by the method of hydrothermal growth. The presence of intense emission with a narrow full-width at half-maximum (FWHM) inmore » different regions of the spectrum allows ZnO films obtained by magnetron sputtering doped with rare-earth metal impurities (REIs) to be considered as a promising material for the creation of optoelectronic devices working in a broad spectral range. The possibility of the implementation of magnetic ordering upon legierung with REIs significantly broadens the functional possibilities of ZnO films. The parameters of the photoluminescence spectra of ZnO nanorods are determined by their geometrical parameters and by the concentration and type of the impurities introduced.« less
Magnetization of AGN jets as imposed by leptonic models of luminous blazars
NASA Astrophysics Data System (ADS)
Janiak, Mateusz; Sikora, Marek; Moderski, Rafal
2015-03-01
Recent measurements of frequency-dependent shift of radio-core locations indicate that the ratio of the magnetic to kinetic energy flux (the σ parameter) is of the order of unity. These results are consistent with predictions of magnetically-arrested-disk (MAD) models of a jet formation, but contradict the predictions of leptonic models of γ-ray production in luminous blazars. We demonstrate this discrepancy by computing the γ-ray-to-synchrotron luminosity ratio (the q parameter) as a function of a distance from the black hole for different values of σ and using both spherical and planar models for broad-line region and dusty torus. We find that it is impossible to reproduce observed q >> 1 for jets with σ >= 1. This may indicate that blazar radiation is produced in reconnection layers or in spines of magnetically stratified jets.
Photoionization Modelling of the Giant Broad-Line Region in NGC 3998.
NASA Astrophysics Data System (ADS)
Devereux, Nicholas
2018-01-01
Prior high angular resolution spectroscopic observations of the low-ionization nuclear emission-line region in NGC 3998 obtained with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope revealed a rich UV-visible spectrum consisting of broad permitted and broad forbidden emission lines. The photoionization code XSTAR is employed together with reddening-insensitive emission line diagnostics to constrain a dynamical model for the broad-line region (BLR) in NGC 3998. The BLR is modelled as a large H+ region ~ 7 pc in radius consisting of dust-free, low density ~ 104 cm-3, low metallicity ~ 0.01 Z/Z⊙ gas. Modelling the shape of the broad Hα emission line significantly discriminates between two independent measures of the black hole mass, favouring the estimate of de Francesco (2006). Interpreting the broad Hα emission line in terms of a steady-state spherically symmetric inflow leads to a mass inflow rate of 1.4 x 10-2 M⊙/yr, well within the present uncertainty of calculations that attempt to explain the observed X-ray emission in terms of an advection-dominated accretion flow (ADAF). Collectively, the model provides an explanation for the shape of the Hα emission line, the relative intensities and luminosities for the H Balmer, [OIII], and potentially several of the broad UV emission lines, as well as refining the initial conditions needed for future modelling of the ADAF.
MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerras, E.; Mediavilla, E.; Jimenez-Vicente, J.
2013-02-20
We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s}more » = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.« less
NASA Astrophysics Data System (ADS)
Beucler, E.; Haugmard, M.; Mocquet, A.
2016-12-01
The most widely used inversion schemes to locate earthquakes are based on iterative linearized least-squares algorithms and using an a priori knowledge of the propagation medium. When a small amount of observations is available for moderate events for instance, these methods may lead to large trade-offs between outputs and both the velocity model and the initial set of hypocentral parameters. We present a joint structure-source determination approach using Bayesian inferences. Monte-Carlo continuous samplings, using Markov chains, generate models within a broad range of parameters, distributed according to the unknown posterior distributions. The non-linear exploration of both the seismic structure (velocity and thickness) and the source parameters relies on a fast forward problem using 1-D travel time computations. The a posteriori covariances between parameters (hypocentre depth, origin time and seismic structure among others) are computed and explicitly documented. This method manages to decrease the influence of the surrounding seismic network geometry (sparse and/or azimuthally inhomogeneous) and a too constrained velocity structure by inferring realistic distributions on hypocentral parameters. Our algorithm is successfully used to accurately locate events of the Armorican Massif (western France), which is characterized by moderate and apparently diffuse local seismicity.
X-Ray Reflected Spectra from Accretion Disk Models. II. Diagnostic Tools for X-Ray Observations
NASA Technical Reports Server (NTRS)
Garcia, J.; Kallman, T. R.; Mushotzky, R. F.
2011-01-01
We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2 - 10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe Ka with the ionization parameter. The maximum value of the EW is approx. 800 eV for models with log Epsilon approx. 1.5, and decreases monotonically as Epsilon increases. For lower values of Epsilon the Fe K(alpha) EW decreases to a minimum near log Epsilon approx. 0.8. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2 -10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power-law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S L(alpha) lines, a blend of Ar VIII-XI lines, and the Ca x K(alpha) line. In some cases the S xv blends with the He-like Si RRC producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.
Femtosecond soliton source with fast and broad spectral tunability.
Masip, Martin E; Rieznik, A A; König, Pablo G; Grosz, Diego F; Bragas, Andrea V; Martinez, Oscar E
2009-03-15
We present a complete set of measurements and numerical simulations of a femtosecond soliton source with fast and broad spectral tunability and nearly constant pulse width and average power. Solitons generated in a photonic crystal fiber, at the low-power coupling regime, can be tuned in a broad range of wavelengths, from 850 to 1200 nm using the input power as the control parameter. These solitons keep almost constant time duration (approximately 40 fs) and spectral widths (approximately 20 nm) over the entire measured spectra regardless of input power. Our numerical simulations agree well with measurements and predict a wide working wavelength range and robustness to input parameters.
NASA Astrophysics Data System (ADS)
Ionita, M.; Grosfeld, K.; Scholz, P.; Lohmann, G.
2016-12-01
Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad information interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability depends on various climate parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal, we developed a robust statistical model based on ocean heat content, sea surface temperature and atmospheric variables to calculate an estimate of the September minimum sea ice extent for every year. Although previous statistical attempts at monthly/seasonal forecasts of September sea ice minimum show a relatively reduced skill, here it is shown that more than 97% (r = 0.98) of the September sea ice extent can predicted three months in advance by using previous months conditions via a multiple linear regression model based on global sea surface temperature (SST), mean sea level pressure (SLP), air temperature at 850hPa (TT850), surface winds and sea ice extent persistence. The statistical model is based on the identification of regions with stable teleconnections between the predictors (climatological parameters) and the predictand (here sea ice extent). The results based on our statistical model contribute to the sea ice prediction network for the sea ice outlook report (https://www.arcus.org/sipn) and could provide a tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.
Asian Monsoons: Variability, Predictability, and Sensitivity to External Forcing
NASA Technical Reports Server (NTRS)
Yang, Song; Lau, K.-M.; Kim, K.-M.
1999-01-01
In this study, we have addressed the interannual variations of Asian monsoons including both broad-scale and regional monsoon components. Particular attention is devoted to the identities of the South China Sea monsoon and Indian monsoon. We use CPC Merged Analysis of Precipitation and NCEP reanalyses to define regional monsoon indices and to depict the various monsoons. Parallel modeling studies have also been carried out to assess the potential predictability of the broad-scale and regional monsoons. Each monsoon is characterized by its unique features. While the South Asian monsoon represents a classical monsoon in which anomalous circulation is governed by Rossby-wave dynamics, the Southeast Asian monsoon symbolizes a "hybrid" monsoon that features multi-cellular meridional circulation over eastern Asia. The broad-scale Asian monsoon links to the basin-wide atmospheric circulation over the Indian-Pacific oceans. Both Sea Surface Temperatures (SST) and land surface processes are important for determining the variations of all monsoons. For the broad-scale monsoon, SST anomalies are more important than land surface processes. However, for regional monsoons, land surface processes may become equally important. Both observation and model shows that the broad-scale monsoon is potentially more predictable than regional monsoons, and that the Southeast Asian monsoon may possess higher predictability than the South Asian monsoon.
Broad NE 8 lambda 774 emission from quasars in the HST-FOS snapshot survey (ABSNAP)
NASA Technical Reports Server (NTRS)
Hamann, Fred; Zuo, Lin; Tytler, David
1995-01-01
We discuss the strength and frequency of broad Ne VIII lambda 774 emission from quasars measured in the Hubble Space Telescope Faint Object Spectrograph (HST-FOS) snapshot survey (Absnap). Five sources in the survey have suitable redshifts (0.86 less than or equal to Z(sub em) less than or equal to 1.31), signal-to-noise ratios and no Lyman limit absorptions. Three of the five sources have a strong broad emission line near 774 A (rest), and the remaining two sources have a less securely measured line near this wavelength. We identify these lines with Ne VIII lambda 774 based on the measured wavelengths and theoretical estimates of various line fluxes (Hamann et al. 1995a). Secure Ne VIII detections occur in both radio-loud and radio-quiet sources. We tentatively conclude that broad Ne VIII lambda 774 emission is common in quasars, with typical strengths between approximately 25% and approximately 200% of O VI lambda 1034. These Ne VIII lambda 774 measurements imply that the broad emission line regions have a much hotter and more highly ionized component than previously recognized. They also suggest that quasar continua have substantial ionizing flux out to energies greater than 207 eV (greater than 15.2 ryd, lambda less than 60 A). Photoionization calculations using standard incident spectra indicate that the Ne VIII emission requires ionization parameters U greater than or = 5, total column densities N(sub H) greater than or = 10(sub 22)/sq cm and covering factors greater than or = 25%. The temperatures could be as high as approximately 10(exp 5) K. If the gas is instead collisionally ionized, strong Ne VIII would imply equilibrium temperatures in the range approximately 400,000 less than or approximately = T(sub e) less than or approximately = 10(exp 6) K. In either case, the highly ionized Ne VIII emission regions would appear as X-ray 'warm absorbers' if they lie along our line of sight to the X-ray continuum source.
Photoionization modelling of the giant broad-line region in NGC 3998
NASA Astrophysics Data System (ADS)
Devereux, Nick
2018-01-01
Prior high angular resolution spectroscopic observations of the Low-ionization nuclear emission-line region (Liner) in NGC 3998 obtained with the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST) revealed a rich UV-visible spectrum consisting of broad permitted and broad forbidden emission lines. The photoionization code XSTAR is employed together with reddening-insensitive emission line diagnostics to constrain a dynamical model for the broad-line region (BLR) in NGC 3998. The BLR is modelled as a large H+ region ∼ 7 pc in radius consisting of dust-free, low-density ∼ 104 cm-3, low-metallicity ∼ 0.01 Z/Z⊙ gas. Modelling the shape of the broad H α emission line significantly discriminates between two independent measures of the black hole (BH) mass, favouring the estimate of de Francesco, Capetti & Marconi (2006). Interpreting the broad H α emission line in terms of a steady-state spherically symmetric inflow leads to a mass inflow rate of 1.4 × 10-2 M⊙ yr-1, well within the present uncertainty of calculations that attempt to explain the observed X-ray emission in terms of an advection-dominated accretion flow (ADAF). Collectively, the model provides an explanation for the shape of the H α emission line, the relative intensities and luminosities for the H Balmer, [O III], and potentially several of the broad UV emission lines, as well as refining the initial conditions needed for future modelling of the ADAF.
NASA Astrophysics Data System (ADS)
Czerny, B.; Li, Yan-Rong; Hryniewicz, K.; Panda, S.; Wildy, C.; Sniegowska, M.; Wang, J.-M.; Sredzinska, J.; Karas, V.
2017-09-01
The physical origin of the broad line region in active galactic nuclei is still unclear despite many years of observational studies. The reason is that the region is unresolved, and the reverberation mapping results imply a complex velocity field. We adopt a theory-motivated approach to identify the principal mechanism responsible for this complex phenomenon. We consider the possibility that the role of dust is essential. We assume that the local radiation pressure acting on the dust in the accretion disk atmosphere launches the outflow of material, but higher above the disk the irradiation from the central parts causes dust evaporation and a subsequent fallback. This failed radiatively accelerated dusty outflow is expected to represent the material forming low ionization lines. In this paper we formulate simple analytical equations to describe the cloud motion, including the evaporation phase. The model is fully described just by the basic parameters of black hole mass, accretion rate, black hole spin, and viewing angle. We study how the spectral line generic profiles correspond to this dynamic. We show that the virial factor calculated from our model strongly depends on the black hole mass in the case of enhanced dust opacity, and thus it then correlates with the line width. This could explain why the virial factor measured in galaxies with pseudobulges differs from that obtained from objects with classical bulges, although the trend predicted by the current version of the model is opposite to the observed trend.
Broad-band spectrophotometry of the hot Jupiter HAT-P-12b from the near-UV to the near-IR
NASA Astrophysics Data System (ADS)
Mallonn, M.; Nascimbeni, V.; Weingrill, J.; von Essen, C.; Strassmeier, K. G.; Piotto, G.; Pagano, I.; Scandariato, G.; Csizmadia, Sz.; Herrero, E.; Sada, P. V.; Dhillon, V. S.; Marsh, T. R.; Künstler, A.; Bernt, I.; Granzer, T.
2015-11-01
Context. The detection of trends or gradients in the transmission spectrum of extrasolar planets is possible with observations at very low spectral resolution. Transit measurements of sufficient accuracy using selected broad-band filters allow for an initial characterization of the atmosphere of the planet. Aims: We want to investigate the atmosphere of the hot Jupiter HAT-P-12b for an increased absorption at the very blue wavelength regions caused by scattering. Furthermore, we aim for a refinement of the transit parameters and the orbital ephemeris. Methods: We obtained time series photometry of 20 transit events and analyzed them homogeneously, along with eight light curves obtained from the literature. In total, the light curves span a range from 0.35 to 1.25 microns. During two observing seasons over four months each, we monitored the host star to constrain the potential influence of starspots on the derived transit parameters. Results: We rule out the presence of a Rayleigh slope extending over the entire optical wavelength range, a flat spectrum is favored for HAT-P-12b with respect to a cloud-free atmosphere model spectrum. A potential cause of such gray absorption is the presence of a cloud layer at the probed latitudes. Furthermore, in this work we refine the transit parameters, the ephemeris and perform a TTV analysis in which we found no indication for an unseen companion. The host star showed a mild non-periodic variability of up to 1%. However, no stellar rotation period could be detected to high confidence.
Tailoring the dispersion behavior of silicon nanophotonic slot waveguides.
Mas, Sara; Caraquitena, José; Galán, José V; Sanchis, Pablo; Martí, Javier
2010-09-27
We investigate the chromatic dispersion properties of silicon channel slot waveguides in a broad spectral region centered at ~1.5 μm. The variation of the dispersion profile as a function of the slot fill factor, i.e., the ratio between the slot and waveguide widths, is analyzed. Symmetric as well as asymmetric geometries are considered. In general, two different dispersion regimes are identified. Furthermore, our analysis shows that the zero and/or the peak dispersion wavelengths can be tailored by a careful control of the geometrical waveguide parameters including the cross-sectional area, the slot fill factor, and the slot asymmetry degree.
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2013-05-01
We have developed a simple method for solving the radiation transport equation, permitting us to rapidly calculate (with accuracy acceptable in practice) the diffuse reflection coeffi cient for a broad class of biological tissues in the spectral region of strong and weak absorption of light, and also the light flux distribution over the depth of the tissue. We show that it is feasible to use the proposed method for quantitative estimates of tissue parameters from its diffuse reflectance spectrum and also for selecting the irradiation dose which is optimal for a specifi c patient in laser therapy for various diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minissale, S.; Yerci, S.; Dal Negro, L.
We investigate the nonlinear optical properties of Si-rich silicon oxide (SRO) and Si-rich silicon nitride (SRN) samples as a function of silicon content, annealing temperature, and excitation wavelength. Using the Z-scan technique, we measure the non-linear refractive index n{sub 2} and the nonlinear absorption coefficient {beta} for a large number of samples fabricated by reactive co-sputtering. Moreover, we characterize the nonlinear optical parameters of SRN in the broad spectral region 1100-1500 nm and show the strongest nonlinearity at 1500 nm. These results demonstrate the potential of the SRN matrix for the engineering of compact devices with enhanced Kerr nonlinearities formore » silicon photonics applications.« less
Research on infrared astrophysics and X ray and XUV astronomy
NASA Technical Reports Server (NTRS)
1974-01-01
The infrared research was divided into two related subjects, observations at wavelengths less than 34 microns and millimeter wavelength observations. A new complex of infrared sources in the Orion Nebula observed along with a broad range of galactic and extragalactic objects. The Comet Kohoutek was measured in the 1-20 micron wavelength region and its thermal properties agreed closely with those of Comet Ikeya-Seki. Combined infrared and photoelectric studies of the Makarian galaxies showed them to have a composite spectrum with a large emission feature in the far infrared. The development of one millimeter photometry and composited bolometers is described. A technique of reconstructing two dimensional surface brightness distributions with appropriate errors from individual strip scans was developed. Model parameters were determined by fitting data in non-linear systems. Results show spectral parameter uncertainties are underestimated or incorrectly evaluated in most studies.
Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat; Cole, Wesley
2016-11-14
Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less
NASA Astrophysics Data System (ADS)
Singh, Uday Veer; Abhishek, Amar; Singh, Kunwar P.; Dhakate, Ratnakar; Singh, Netra Pal
2014-06-01
India's growing population enhances great pressure on groundwater resources. The Ghaziabad region is located in the northern Indo-Gangetic alluvium plain of India. Increased population and industrial activities make it imperative to appraise the quality of groundwater system to ensure long-term sustainability of resources. A total number of 250 groundwater samples were collected in two different seasons, viz., pre-monsoon and post monsoon and analyzed for major physico-chemical parameters. Broad range and great standard deviation occurs for most parameters, indicating chemical composition of groundwater affected by process, including water-rock interaction and anthropogenic effect. Iron was found as predominant heavy metal in groundwater samples followed by copper and lead. An exceptional high concentration of Chromium was found in some locations. Industrial activities as chrome plating and wood preservative are the key source to metal pollution in Ghaziabad region. On the basis of classification the area water shows normal sulfate, chloride and bi-carbonate type, respectively. Base-exchange indices classified 76 % of the groundwater sources was the sodium-bicarbonate type. The meteoric genesis indices demonstrated that 80 % of groundwater sources belong to a shallow meteoric water percolation type. Chadha's diagram suggested that the hydro-chemical faces belong to the HCO3 - dominant Ca2+-Mg2+ type along with Cl--dominant Ca2+-Mg2+-type. There was no significant change in pollution parameters in the selected seasons. Comparison of groundwater quality with Indian standards proves that majority of water samples are suitable for irrigation purposes but not for drinking.
NASA Astrophysics Data System (ADS)
Du, Shihong; Guo, Luo; Wang, Qiao; Qin, Qimin
The extended 9-intersection matrix is used to formalize topological relations between uncertain regions while it is designed to satisfy the requirements at a concept level, and to deal with the complex regions with broad boundaries (CBBRs) as a whole without considering their hierarchical structures. In contrast to simple regions with broad boundaries, CBBRs have complex hierarchical structures. Therefore, it is necessary to take into account the complex hierarchical structure and to represent the topological relations between all regions in CBBRs as a relation matrix, rather than using the extended 9-intersection matrix to determine topological relations. In this study, a tree model is first used to represent the intrinsic configuration of CBBRs hierarchically. Then, the reasoning tables are presented for deriving topological relations between child, parent and sibling regions from the relations between two given regions in CBBRs. Finally, based on the reasoning, efficient methods are proposed to compute and derive the topological relation matrix. The proposed methods can be incorporated into spatial databases to facilitate geometric-oriented applications.
NASA Technical Reports Server (NTRS)
Kahler, S.; Krieger, A. S.
1978-01-01
The technique commonly used for the analysis of data from broad-band X-ray imaging systems for plasma diagnostics is the filter ratio method. This requires the use of two or more broad-band filters to derive temperatures and line-of-sight emission integrals or emission measure distributions as a function of temperature. Here an alternative analytical approach is proposed in which the temperature response of the imaging system is matched to the physical parameter being investigated. The temperature response of a system designed to measure the total radiated power along the line of sight of any coronal structure is calculated. Other examples are discussed.
Williams, Richard AJ; Peterson, A Townsend
2009-01-01
Background The emerging highly pathogenic avian influenza strain H5N1 ("HPAI-H5N1") has spread broadly in the past decade, and is now the focus of considerable concern. We tested the hypothesis that spatial distributions of HPAI-H5N1 cases are related consistently and predictably to coarse-scale environmental features in the Middle East and northeastern Africa. We used ecological niche models to relate virus occurrences to 8 km resolution digital data layers summarizing parameters of monthly surface reflectance and landform. Predictive challenges included a variety of spatial stratification schemes in which models were challenged to predict case distributions in broadly unsampled areas. Results In almost all tests, HPAI-H5N1 cases were indeed occurring under predictable sets of environmental conditions, generally predicted absent from areas with low NDVI values and minimal seasonal variation, and present in areas with a broad range of and appreciable seasonal variation in NDVI values. Although we documented significant predictive ability of our models, even between our study region and West Africa, case occurrences in the Arabian Peninsula appear to follow a distinct environmental regime. Conclusion Overall, we documented a variable environmental "fingerprint" for areas suitable for HPAI-H5N1 transmission. PMID:19619336
Broad ion energy distributions in helicon wave-coupled helium plasma
NASA Astrophysics Data System (ADS)
Woller, K. B.; Whyte, D. G.; Wright, G. M.
2017-05-01
Helium ion energy distributions were measured in helicon wave-coupled plasmas of the dynamics of ion implantation and sputtering of surface experiment using a retarding field energy analyzer. The shape of the energy distribution is a double-peak, characteristic of radiofrequency plasma potential modulation. The broad distribution is located within a radius of 0.8 cm, while the quartz tube of the plasma source has an inner radius of 2.2 cm. The ion energy distribution rapidly changes from a double-peak to a single peak in the radius range of 0.7-0.9 cm. The average ion energy is approximately uniform across the plasma column including the double-peak and single peak regions. The widths of the broad distribution, ΔE , in the wave-coupled mode are large compared to the time-averaged ion energy, ⟨E ⟩. On the axis (r = 0), ΔE / ⟨E ⟩ ≲ 3.4, and at a radius near the edge of the plasma column (r = 2.2 cm), ΔE / ⟨E ⟩ ˜ 1.2. The discharge parameter space is scanned to investigate the effects of the magnetic field, input power, and chamber fill pressure on the wave-coupled mode that exhibits the sharp radial variation in the ion energy distribution.
Lu, Wei; Fan, Wen Yi; Tian, Tian
2016-05-01
Keeping other parameters as empirical constants, different numerical combinations of the main photosynthetic parameters V c max and J max were conducted to estimate daily GPP by using the iteration method in this paper. To optimize V c max and J max in BEPSHourly model at hourly time steps, simulated daily GPP using different numerical combinations of the parameters were compared with the flux tower data obtained from the temperate deciduous broad-leaved forest of the Maoershan Forest Farm in Northeast China. Comparing the simulated daily GPP with the observed flux data in 2011, the results showed that optimal V c max and J max for the deciduous broad-leaved forest in Northeast China were 41.1 μmol·m -2 ·s -1 and 82.8 μmol·m -2 ·s -1 respectively with the minimal RMSE and the maximum R 2 of 1.10 g C·m -2 ·d -1 and 0.95. After V c max and J max optimization, BEPSHourly model simulated the seasonal variation of GPP better.
Spatial and Temporal Ionospheric Monitoring Using Broadband Sferic Measurements
NASA Astrophysics Data System (ADS)
McCormick, J. C.; Cohen, M. B.; Gross, N. C.; Said, R. K.
2018-04-01
The D region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales up to many hundreds of kilometers. Very low frequency (VLF) and low-frequency (LF) (3-30 kHz and 30-300 kHz) radio waves are guided to global distances by reflections from the ground and the D region. Therefore, information about its current state is encoded in received VLF/LF signals. VLF transmitters have been used in the past for D region studies, with ionospheric disturbances manifesting as perturbations in amplitude and/or phase. The return stroke of lightning is an impulsive VLF radiator, but unlike VLF transmitters, lightning events are distributed broadly in space allowing for much greater spatial coverage of the D region compared to VLF transmitter-based remote sensing in addition to the broadband spectral advantage over the narrowband transmitters. The challenge is that individual lightning-generated waveforms, or "sferics," vary due to the lightning current parameters and uncertainty in the time/location information, in addition to D region ionospheric variability. These factors make it difficult to utilize the VLF/LF emissions from lightning in a straightforward manner. We describe a technique to recover the time domain and amplitude/phase spectra for both Bϕ and Br with high fidelity and consider the utility of our technique with ambient and varied ionospheric conditions. We demonstrate a technique to simulate sferics and infer a parameterized ionosphere with the Wait and Spies parameters (h
NASA Astrophysics Data System (ADS)
Laha, S.; Guainazzi, M.; Dewangan, G.; Chakravorty, S.; Kembhavi, A.
2014-07-01
We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. We could put a strict lower limit on the detection fraction of 50%. We find a gap in the distribution of the ionisation parameter in the range 0.5
NASA Astrophysics Data System (ADS)
Pazos, Antonio; Martín Davila, José; Buforn, Elisa; Gárate Pasquín, Jorge; Catalán Morollón, Manuel; Hanka, Winfried; Udías, Agustín.; Benzzeghoud, Mourad; Harnafi, Mimoun
2010-05-01
The plate boundary between Eurasia and Africa plates crosses the called "Ibero-Maghrebian" region from the San Vicente Cape (SW Portugal) to Tunisia including the South of Iberia, Alboran Sea, and northern Morocco and Algeria. In this area, the convergence, with a low rate, is accommodated over a wide and diffuse deformation zone, characterized by a significant and widespread moderate seismic activity [Buforn et al., 1995], and the occurrence of large earthquakes is separated by long time intervals. Since more than hundred years ago San Fernando Naval Observatory (ROA), in collaboration with other Institutes, has deployed different geophysical and geodetic equipment in the Southern Spain - North-western Africa area in order to study this broad deformation zone. Currently a Broad Band seismic net (Western Mediterranean, WM net) is deployed, in collaboration with other institutions, around the Gulf of Cádiz and the Alboran sea, with stations in the South of Iberia and in North Africa (at Spanish places and Morocco), together with the seismic stations a permanent geodetic GPS net is co-installed at the same sites. Also, other geophysical instruments have been installed: a Satellite Laser Ranging (SLR) station at San Fernando Observatory Headquarter, a Geomagnetic Observatory in Cádiz bay area and some meteorological stations. These networks have been recently improved with the deployment of a new submarine and on-land geophysical observatory in the Alboran island (ALBO Observatory), where a permanent GPS, a meteorological station were installed on land and a permanent submarine observatory in 50 meters depth was also deploy in last October (with a broad band seismic sensor, a 3 C accelerometer and a DPG). This work shows the present status and the future plans of these networks and some results.
NASA Astrophysics Data System (ADS)
Vandana; Kumar, Ashwani; Gupta, S. C.; Mishra, O. P.; Kumar, Arjun; Sandeep
2017-04-01
Source parameters of 41 local events (0.5 ≤ M L ≤ 2.9) occurred around Bilaspur region of the Himachal Lesser Himalaya from May 2013 to March 2014 have been estimated adopting Brune model. The estimated source parameters include seismic moments ( M o), source radii ( r), and stress drops (Δ σ), and found to vary from 4.9 × 1019 to 7 × 1021 dyne-cm, about 187-518 m and less than 1 bar to 51 bars, respectively. The decay of high frequency acceleration spectra at frequencies above f max has been modelled using two functions: a high-cut filter and κ factor. Stress drops of 11 events, with M 0 between 1 × 1021 and 7 × 1021 dyne-cm, vary from 11 bars to 51 bars with an average of 22 bars. From the variation of the maximum stress drop with focal depth it appears that the strength of the upper crust decreases below 20 km. A scaling law M 0 = 2 × 1022 f c -3.03 between M 0, and corner frequency (f c), has been developed for the region. This law almost agrees with that for the Kameng region of the Arunachal Lesser Himalaya. f c is found to be source dependent whereas f max is source independent and seems to indicate that the size of the cohesive zone is not sensitive to the earthquake size. At four sites f max is found to vary from 14 to 23, 11 to 19, 9 to 23 and 4 to 11 Hz, respectively. The κ is found to vary from 0.01 to 0.035 s with an average of 0.02 s. This range of variation is a large compared to the κ variation between 0.023 and 0.07 s for the Garhwal and Kumaon Himalaya. For various regions of the world, the κ varies over a broad range from 0.003 to 0.08 s, and for the Bilaspur region the κ estimates are found to be consistent with other regions of the world.
Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Echániz, T.; Pérez-Sáez, R. B., E-mail: raul.perez@ehu.es; Tello, M. J.
When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ε{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ε{sub peak} increases with the emission angle but its position, λ{sub peak}, is constant. Copper directional emissivity measurements as well asmore » emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p = 1.« less
NASA Astrophysics Data System (ADS)
Şeker, Cevdet; Hüseyin Özaytekin, Hasan; Negiş, Hamza; Gümüş, İlknur; Dedeoğlu, Mert; Atmaca, Emel; Karaca, Ümmühan
2017-05-01
Sustainable agriculture largely depends on soil quality. The evaluation of agricultural soil quality is essential for economic success and environmental stability in rapidly developing regions. In this context, a wide variety of methods using vastly different indicators are currently used to evaluate soil quality. This study was conducted in one of the most important irrigated agriculture areas of Konya in central Anatolia, Turkey, to analyze the soil quality indicators of Çumra County in combination with an indicator selection method, with the minimum data set using a total of 38 soil parameters. We therefore determined a minimum data set with principle component analysis to assess soil quality in the study area and soil quality was evaluated on the basis of a scoring function. From the broad range of soil properties analyzed, the following parameters were chosen: field capacity, bulk density, aggregate stability, and permanent wilting point (from physical soil properties); electrical conductivity, Mn, total nitrogen, available phosphorus, pH, and NO3-N (from chemical soil properties); and urease enzyme activity, root health value, organic carbon, respiration, and potentially mineralized nitrogen (from biological properties). According to the results, the chosen properties were found as the most sensitive indicators of soil quality and they can be used as indicators for evaluating and monitoring soil quality at a regional scale.
NASA Technical Reports Server (NTRS)
Rouse, J. W., Jr. (Principal Investigator); Haas, R. H.; Deering, D. W.; Schell, J. A.
1973-01-01
The author has identified the following significant results. The Great Plains Corridor rangeland project utilizes natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. A method has been developed for quantitative measurement of vegetation conditions over broad regions using ERTS-1 MSS data. Radiance values recorded in ERTS-1 spectral bands 5 and 7, corrected for sun angle, are used to compute a band ratio parameter which is shown to be correlated with green biomass and vegetation moisture content. This report details the progress being made toward determining factors associated with the transformed vegetation index (TVI) and limitations on the method. During the first year of ERTS-1 operation (cycles 1-20), an average of 50% usable ERTS-1 data was obtained for the ten Great Plains Corridor test sites.
Visual attention capacity: a review of TVA-based patient studies.
Habekost, Thomas; Starrfelt, Randi
2009-02-01
Psychophysical studies have identified two distinct limitations of visual attention capacity: processing speed and apprehension span. Using a simple test, these cognitive factors can be analyzed by Bundesen's Theory of Visual Attention (TVA). The method has strong specificity and sensitivity, and measurements are highly reliable. As the method is theoretically founded, it also has high validity. TVA-based assessment has recently been used to investigate a broad range of neuropsychological and neurological conditions. We present the method, including the experimental paradigm and practical guidelines to patient testing, and review existing TVA-based patient studies organized by lesion anatomy. Lesions in three anatomical regions affect visual capacity: The parietal lobes, frontal cortex and basal ganglia, and extrastriate cortex. Visual capacity thus depends on large, bilaterally distributed anatomical networks that include several regions outside the visual system. The two visual capacity parameters are functionally separable, but seem to rely on largely overlapping brain areas.
Characterizing bar structures: application to NGC 1300, NGC 7479 and NGC 7723
NASA Astrophysics Data System (ADS)
Aguerri, J. A. L.; Muñoz-Tuñón, C.; Varela, A. M.; Prieto, M.
2000-09-01
Detailed surface photometry has been carried out for three barred galaxies with use of high resolution CCD broad-band images in the B, V and I bands. Using azimuthal luminosity profiles and their decomposition into Fourier Series, the structural parameters (length and strength) of the bars in the three galaxies have been obtained. We have also inferred the corotation radii (CR) using information available in the B-I and B-V colour index profiles. The regions selected for the CR were the ends of the bars, or a little further out and with an older stellar population than the su rrounding regions. The resulting values, RCR ~ 100''+/-10'' for NGC 1300, RCR ~ 63'' for NGC 7479 and RCR ~ 23'' for NGC 7723, are in agreement with those previously reported in the literature. This demonstrates the utility of accurate photometry for this type of observation.
FLARE-LIKE VARIABILITY OF THE Mg II {lambda}2800 EMISSION LINE IN THE {gamma}-RAY BLAZAR 3C 454.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leon-Tavares, J.; Chavushyan, V.; Patino-Alvarez, V.
2013-02-01
We report the detection of a statistically significant flare-like event in the Mg II {lambda}2800 emission line of 3C 454.3 during the outburst of autumn 2010. The highest levels of emission line flux recorded over the monitoring period (2008-2011) coincide with a superluminal jet component traversing through the radio core. This finding crucially links the broad emission line fluctuations to the non-thermal continuum emission produced by relativistically moving material in the jet and hence to the presence of broad-line region clouds surrounding the radio core. If the radio core were located at several parsecs from the central black hole, thenmore » our results would suggest the presence of broad-line region material outside the inner parsec where the canonical broad-line region is envisaged to be located. We briefly discuss the implications of broad emission line material ionized by non-thermal continuum in the context of virial black hole mass estimates and gamma-ray production mechanisms.« less
Pavicic Zezelj, S; Cvijanovic, O; Micovic, V; Bobinac, D; Crncevic-Orlic, Z; Malatestinic, G
2010-10-01
The purpose of this study was to explore the influence of age, menopause, anthropometry, nutrition and lifestyle on bone status of women of the Northern Mediterranean Region ofCroatia, which is considered the Adriatic Coast of Southeast Europe. Quantitative ultrasound measurement was performed on the women's right heel and the values of the primary parameters (the Broad Ultrasonic Attenuation and the Speed of Sound [BUA and SOS]) were obtained. Dietary data were assessed with specially designed semi-quantitative food frequency questionnaire. Multiple regression analysis was employed to examine the influence of age and anthropometry, as well as hormonal and nutritional factors on BUA and SOS. In all female subjects, both primary parameters were predicted by menopause. Among nutrition and lifestyle factors, carbohydrates were significant predictors for BUA (beta = -0.151, p < 0.05), and smoking is significant predictor for SOS (beta = -0.113, p < 0.05). In premenopausal women, BUA is significantly predicted by body height (beta = 0.71, p < 0.05) and body mass index (beta = 1.44, p < 0.05). In postmenopausal women, both primary parameters are strongly predicted by age and anthropometric parameters. Besides, SOS is significantly predicted by smoking (beta = -0.18, p < 0.01) and alcohol (beta = -0.13, p < 0.05). Besides, SOS is significantly predicted by smoking (beta = -0.18, p < 0.01) and alcohol (beta = -0.13, p < 0.05). Bone quality in women from the Croatian Mediterranean Region mostly depends on their hormonal status. When the effect of menopause is controlled, bone status becomes dependent on age and anthropometry.
NASA Astrophysics Data System (ADS)
da Silva, Ricardo Siqueira; Kumar, Lalit; Shabani, Farzin; Picanço, Marcelo Coutinho
2018-04-01
A sensitivity analysis can categorize levels of parameter influence on a model's output. Identifying parameters having the most influence facilitates establishing the best values for parameters of models, providing useful implications in species modelling of crops and associated insect pests. The aim of this study was to quantify the response of species models through a CLIMEX sensitivity analysis. Using open-field Solanum lycopersicum and Neoleucinodes elegantalis distribution records, and 17 fitting parameters, including growth and stress parameters, comparisons were made in model performance by altering one parameter value at a time, in comparison to the best-fit parameter values. Parameters that were found to have a greater effect on the model results are termed "sensitive". Through the use of two species, we show that even when the Ecoclimatic Index has a major change through upward or downward parameter value alterations, the effect on the species is dependent on the selection of suitability categories and regions of modelling. Two parameters were shown to have the greatest sensitivity, dependent on the suitability categories of each species in the study. Results enhance user understanding of which climatic factors had a greater impact on both species distributions in our model, in terms of suitability categories and areas, when parameter values were perturbed by higher or lower values, compared to the best-fit parameter values. Thus, the sensitivity analyses have the potential to provide additional information for end users, in terms of improving management, by identifying the climatic variables that are most sensitive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czerny, B.; Panda, S.; Wildy, C.
2017-09-10
The physical origin of the broad line region in active galactic nuclei is still unclear despite many years of observational studies. The reason is that the region is unresolved, and the reverberation mapping results imply a complex velocity field. We adopt a theory-motivated approach to identify the principal mechanism responsible for this complex phenomenon. We consider the possibility that the role of dust is essential. We assume that the local radiation pressure acting on the dust in the accretion disk atmosphere launches the outflow of material, but higher above the disk the irradiation from the central parts causes dust evaporationmore » and a subsequent fallback. This failed radiatively accelerated dusty outflow is expected to represent the material forming low ionization lines. In this paper we formulate simple analytical equations to describe the cloud motion, including the evaporation phase. The model is fully described just by the basic parameters of black hole mass, accretion rate, black hole spin, and viewing angle. We study how the spectral line generic profiles correspond to this dynamic. We show that the virial factor calculated from our model strongly depends on the black hole mass in the case of enhanced dust opacity, and thus it then correlates with the line width. This could explain why the virial factor measured in galaxies with pseudobulges differs from that obtained from objects with classical bulges, although the trend predicted by the current version of the model is opposite to the observed trend.« less
Simultaneous X-ray and Far-Ultraviolet Spectra of AGN with ASCA and HUT
NASA Technical Reports Server (NTRS)
Kriss, Gerard A.
1997-01-01
We obtained ASCA spectra of the Seyfert 1 galaxy NGC 3516 in March 1995. Simultaneous far-UV observations were obtained with the Hopkins Ultraviolet Telescope on the Astro-2 shuttle mission. The ASCA spectrum shows a lightly absorbed power law of energy index 0.78. The low energy absorbing column is significantly less than previously seen. Prominent 0 VII and 0 VIII absorption edges are visible, but, consistent with the much lower total absorbing column, no Fe K absorption edge is detectable. A weak, narrow Fe K(alpha) emission line from cold material is present as well as a broad Fe K(alpha) line. These features are similar to those reported in other Seyfert 1 galaxies. A single warm absorber model provides only an imperfect description of the low energy absorption. In addition to a highly ionized absorber with ionization parameter U = 1.66 and a total column density of 1.4 x 10(exp 22)/sq cm, adding a lower ionization absorber with U = 0.32 and a total column of 6.9 x 10(exp 21)/sq cm significantly improves the fit. The contribution of resonant line scattering to our warm absorber models limits the Doppler parameter to less than 160 km/s at 90% confidence. Turbulence at the sound speed of the photoionized gas provides the best fit. None of the warm absorber models fit to the X-ray spectrum can match the observed equivalent widths of all the UV absorption lines. Accounting for the X-ray and UV absorption simultaneously requires an absorbing region with a broad range of ionization parameters and column densities.
NASA Technical Reports Server (NTRS)
Nessel, James A.; Simons, Rainee N.; Miranda, Felix A.
2007-01-01
The near field radiation characteristics of implantable Square Spiral Chip Inductor Antennas (SSCIA) for Bio-Sensors have been measured. Our results indicate that the measured near field relative signal strength of these antennas agrees with simulated results and confirm that in the near field region the radiation field is fairly uniform in all directions. The effects of parameters such as ground-plane, number of turns and microstrip-gap width on the performance of the SSCIA are presented. Furthermore, the SSCIA antenna with serrated ground plane produce a broad radiation pattern, with a relative signal strength detectable at distances within the range of operation of hand-held devices for self-diagnosis.
Seasonal land-cover regions of the United States
Loveland, Thomas R.; Merchant, James W.; Brown, Jesslyn F.; Ohlen, Donald O.; Reed, Bradley C.; Olson, Paul; Hutchinson, John
1995-01-01
Global-change investigations have been hindered by deficiencies in the availability and quality of land-cover data. The U.S. Geological Survey and the University of Nebraska-Lincoln have collaborated on the development of a new approach to land-cover characterization that attempts to address requirements of the global-change research community and others interested in regional patterns of land cover. An experimental 1 -kilometer-resolution database of land-cover characteristics for the coterminous U.S. has been prepared to test and evaluate the approach. Using multidate Advanced Very High Resolution Radiometer (AVHRR) satellite data complemented by elevation, climate, ecoregions, and other digital spatial datasets, the authors define 152, seasonal land-cover regions. The regionalization is based on a taxonomy of areas with respect to data on land cover, seasonality or phenology, and relative levels of primary production. The resulting database consists of descriptions of the vegetation, land cover, and seasonal, spectral, and site characteristics for each region. These data are used in the construction of an illustrative 1:7,500,000-scaIe map of the seasonal land-cover regions as well as of smaller-scale maps portraying general land cover and seasonality. The seasonal land-cover characteristics database can also be tailored to provide a broad range of other landscape parameters useful in national and global-scale environmental modeling and assessment.
Assessment of the geothermal potential of fault zones in Germany by numerical modelling
NASA Astrophysics Data System (ADS)
Kuder, Jörg
2017-04-01
Fault zones with significantly better permeabilities than host rocks can act as natural migration paths for ascending fluids that are able to transport thermal energy from deep geological formations. Under these circumstances, fault zones are interesting for geothermal utilization especially those in at least 7 km depth (Jung et al. 2002, Paschen et al. 2003). One objective of the joint project "The role of deep rooting fault zones for geothermal energy utilization" supported by the Federal Ministry for Economic Affairs and Energy was the evaluation of the geothermal potential of fault zones in Germany by means of numerical modelling with COMSOL. To achieve this goal a method was developed to estimate the potential of regional generalized fault zones in a simple but yet sophisticated way. The main problem for the development of a numerical model is the lack of geological and hydrological data. To address this problem the geothermal potential of a cube with 1 km side length including a 20 meter broad, 1000 m high and 1000 m long fault zone was calculated as a unified model with changing parameter sets. The properties of the surrounding host rock and the fault zone are assumed homogenous. The numerical models were calculated with a broad variety of fluid flow, rock and fluid property parameters for the depths of 3000-4000 m, 4000-5000 m, 5000-6000 m and 6000-7000 m. The fluid parameters are depending on temperature, salt load and initial pressure. The porosity and permeability values are provided by the database of the geothermal information system (GeotIS). The results are summarized in a table of values of geothermal energy modelled with different parameter sets and depths. The geothermal potential of fault zones in Germany was then calculated on the basis of this table and information of the geothermal atlas of Germany (2016).
NASA Astrophysics Data System (ADS)
Nguyen Duy Doan, Anh; Eracleous, Michael; Runnoe, Jessie; Halpern, Jules P.; Liu, Jia; Mathes, Gavin; Flohic, Helene M. L. G.
2018-01-01
Displaced peaks in the Balmer lines of quasars could serve as indirect evidence for the existence of close, bound supermassive black hole binaries (SBHBs) at sub-parsec separations. In this work, we test the SBHB hypothesis for 14 quasars with double-peaked emission lines using their long-term radial velocity curves. We make use of a Markov Chain Monte Carlo method to explore the parameter space efficiently. Compared to previous works, we have relaxed the assumption of circular orbits, adding two parameters (eccentricity and argument of periapsis) to the parameter space. We also account for jitter, i.e., short-term fluctuations in the radial velocity curves due to processes that are intrinsic to an individual broad-line region. We have found that the distribution of jitter about a smooth radial velocity curve resembles a Gaussian. Thus, jitter is equivalent to increasing measurement uncertainty in individual measurements. The resulting posterior distributions show the lower mass limit of the SBHBs to be in the range of 10^8 - 10^11 solar masses. For several objects, the mass limit drops by a few orders of magnitude compared to previous results by Liu et. al. However, we note that solutions corresponding to minimum masses often require very high orbital eccentricity ( > 0.9). We also calculate the orbital decay timescale of the binaries due to gravitational radiation, finding values in the range 10^6 - 10^11 years; these values correspond to the minimum-mass solutions. For one third of our targets, we can confidently disfavor the SBHB hypothesis on the basis that the minimum mass exceeds even the most massive black holes measured so far (2 x 10^10 solar masses). For the remaining objects, we must take into account the plausibility of a variety of parameters (e.g. eccentricity, lifetime, etc.) in our evaluation.
Observational Requirements for High-Fidelity Reverberation Mapping
NASA Technical Reports Server (NTRS)
Horne, Keith; Peterson, Bradley M.; Collier, Stefan J.; Netzer, Hagai
2004-01-01
We present a series of simulations to demonstrate that high-fidelity velocity-delay maps of the emission-line regions in active galactic nuclei can be obtained from time-resolved spectrophotometric data sets like those that will arise from the proposed Kronos satellite. While previous reverberation-mapping experiments have established the size scale R of the broad emission-line regions from the mean time delay tau = R/c between the line and continuum variations and have provided strong evidence for supermassive black holes, the detailed structure and kinematics of the broad-line region remain ambiguous and poorly constrained. Here we outline the technical improvements that will be required to successfully map broad-line regions by reverberation techniques. For typical AGN continuum light curves, characterized by power-law power spectra P (f) is proportional to f(exp -alpha) with a = -1.5 +/- 0.5, our simulations show that a small UV/optical spectrometer like Kronos will clearly distinguish between currently viable alternative kinematic models. From spectra sampled at time intervals Delta t and sustained for a total duration T(sub dur), we can reconstruct high-fidelity velocity-delay maps with velocity resolution comparable to that of the spectra, and delay resolution Delta tau approx. 2 Delta t, provided T(sub dur) exceeds the broad-line region light crossing time by at least a factor of three. Even very complicated kinematical models, such as a Keplerian flow with superimposed spiral wave pattern, are resolved in maps from our simulated Kronos datasets. Reverberation mapping with Kronos data is therefore likely deliver the first clear maps of the geometry and kinematics in the broad emission-line regions 1-100 microarcseconds from supermassive black holes.
Broad-line Type Ic supernova SN 2014ad
NASA Astrophysics Data System (ADS)
Sahu, D. K.; Anupama, G. C.; Chakradhari, N. K.; Srivastav, S.; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi
2018-04-01
We present optical and ultraviolet photometry and low-resolution optical spectroscopy of the broad-line Type Ic supernova SN 2014ad in the galaxy PGC 37625 (Mrk 1309), covering the evolution of the supernova during -5 to +87 d with respect to the date of maximum in the B band. A late-phase spectrum obtained at +340 d is also presented. With an absolute V-band magnitude at peak of MV = -18.86 ± 0.23 mag, SN 2014ad is fainter than supernovae associated with gamma ray bursts (GRBs), and brighter than most of the normal and broad-line Type Ic supernovae without an associated GRB. The spectral evolution indicates that the expansion velocity of the ejecta, as measured using the Si II line, is as high as ˜33 500 km s-1 around maximum, while during the post-maximum phase it settles at ˜15 000 km s-1. The expansion velocity of SN 2014ad is higher than that of all other well-observed broad-line Type Ic supernovae except for the GRB-associated SN 2010bh. The explosion parameters, determined by applying Arnett's analytical light-curve model to the observed bolometric light-curve, indicate that it was an energetic explosion with a kinetic energy of ˜(1 ± 0.3) × 1052 erg and a total ejected mass of ˜(3.3 ± 0.8) M⊙, and that ˜0.24 M⊙ of 56Ni was synthesized in the explosion. The metallicity of the host galaxy near the supernova region is estimated to be ˜0.5 Z⊙.
Consequences of hot gas in the broad line region of active galactic nuclei
NASA Technical Reports Server (NTRS)
Kallman, T.; Mushotzky, R.
1985-01-01
Models for hot gas in the broad line region of active galactic nuclei are discussed. The results of the two phase equilibrium models for confinement of broad line clouds by Compton heated gas are used to show that high luminosity quasars are expected to show Fe XXVI L alpha line absorption which will be observed with spectrometers such as those planned for the future X-ray spectroscopy experiments. Two phase equilibrium models also predict that the gas in the broad line clouds and the confining medium may be Compton thick. It is shown that the combined effects of Comptonization and photoabsorption can suppress both the broad emission lines and X-rays in the Einstein and HEAO-1 energy bands. The observed properties of such Compton thick active galaxies are expected to be similar to those of Seyfert 2 nuclei. The implications for polarization and variability are also discussed.
D-region Ionospheric Imaging Using VLF/LF Broadband Sferics, Forward Modeling, and Tomography
NASA Astrophysics Data System (ADS)
McCormick, J.; Cohen, M.
2017-12-01
The D-region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales from 10 km to many hundreds of km. VLF and LF (3-30kHz, 30-300kHz) radio waves are guided to global distances by reflecting off of the ground and the D-region, making the Earth-ionosphere waveguide (EIWG). Therefore, information about the current state of the ionosphere is encoded in received VLF/LF radio waves since they act like probes of the D-region. The return stroke of lightning is an impulsive event that radiates powerful broadband radio emissions in VLF/LF bands known as `radio atmospherics' or `sferics'. Lightning flashes occur about 40-50 times per second throughout the Earth. An average of 2000 lightning storms occur each day with a mean duration of 30 minutes creating a broad spatial and temporal distribution of lightning VLF/LF sources. With careful processing, we can recover high fidelity measurements of amplitude and phase of both the radial and azimuthal magnetic field sferic components. By comparison to a theoretical EIWG propagation model such as the Long Wave Propagation Capability (LWPC) developed by the US Navy, with a standard forward modeling approach, we can infer information about the current state of the D-region. Typically, the ionosphere is parametrized to reduce the dimensionality of the problem which usually results in an electron density vs altitude profile. For large distances (Greater than 1000 km), these results can be interpreted as path-averaged information. In contrast to studies using navy transmitters to study the D-region, the full spectral information allows for more complete information and less ambiguous inferred ionospheric parameters. With the spatial breadth of lightning sources taken together with a broadly distributed VLF/LF receiver network, a dense set of measurements are acquired in a tomographic sense. Using the wealth of linear algebra and imaging techniques it is possible to produce a 2D image of the D-region electron density profile.
NASA Astrophysics Data System (ADS)
Schutt, D.; Witt, D. R.; Aster, R. C.; Freymueller, J.; Cubley, J. F.
2017-12-01
Shear wave splitting results from the Northern Cordillera and surroundings will be presented. This complex tectonic setting contains a subduction zone responding to the Yakutat Indenter, an oceanic plateau fragment, a slab window under the Yukon Territory, and the actively uplifting Mackenzie Mountains. A particular goal of this project is to understand whether asthenospheric tractions play a significant role in Mackenzie Mountain uplift. Using a new method for calculating station-averaged splitting parameters, we have analyzed stations that span a large part of the region and therefore can see the variation in splitting parameters from the dynamic NA-PA subduction zone to the stable Slave Craton. Like other shear wave splitting studies in the Northern Cordillera, we find abrupt changes in fast axis direction along the continental margin, while the continental interior displays more coherent splitting parameters. This study is also the first to look at data from a recent deployment through center of the Mackenzie Mountains. Northeast of the Tintina Fault, we find average fast axes directions that are very close to the absolute NA plate motion but our large deviations from event to event suggest that there is some crustal anisotropy and/or dipping structure present. This observation appears to support the idea of a lower crustal décollement that has been put forth by Mazzoti and Hyndman [2002]. These results serve as a broad regional overview of mantle anisotropy and may also shed light on frozen lithospheric deformation.
A multi-wavelength investigation of Seyfert 1.8 and 1.9 galaxies
NASA Astrophysics Data System (ADS)
Trippe, Margaret L.
We focus on determining the underlying physical cause of a Seyfert galaxy's appearance as type a 1.8 or 1.9. Are these "intermediate" Seyfert types typical Seyfert 1 nuclei reddened by central dusty tori or by nuclear dust lanes/spirals in the narrow-line region? Or, are they similar to NGC 2992, objects that have intrinsically weak continua and weak broad emission lines? Our study compares measurements of the reddenings of the narrow and broad-line regions with each other and with the X-ray column derived from XMM Newton 0.5--10 keV spectra to determine the presence and location of dust in the line of sight for a sample of 35 Seyfert 1.8s and 1.9s. From this, we find that Seyfert 1.9s are an almost equal mix of low-flux objects with unreddened broad line regions, and objects with broad line regions reddened by an internal dust source, either the torus or dust structures on the same size scale as the narrow line region. The 1.9s that recieved this designation due to a low continuum flux state showed variable type classifications. All three of the Seyfert 1.8s in our study are probably in low continuum states. Many objects have been misclassified as Seyfert 1.8/1.9s in the past, probably due to improper [N II]/Halpha deconvolution leading to a false detection of weak broad Halpha. INDEX WORDS: Active galaxies, Seyfert galaxies, Optical spectroscopy, X-ray spectroscopy, Astronomical dust
Yuan, Xiang-Yang; Zhang, Li-Guang; Huang, Lei; Yang, Hui-Jie; Zhong, Yan-Ting; Ning, Na; Wen, Yin-Yuan; Dong, Shu-Qi; Song, Xi-E; Wang, Hong-Fu; Guo, Ping-Yi
2017-09-11
To explore the role of Brassinolide (BR) in improving the tolerance of Sigma Broad in foxtail millet (Setaria italica L.), effects of 0.1 mg/L of BR foliar application 24 h before 3.37 g/ha of Sigma Broad treatment at five-leaf stage of foxtail millet on growth parameters, antioxidant enzymes, malondialdehyde (MDA), chlorophyll, net photosynthetic rate (P N ), chlorophyll fluorescence and P 700 parameters were studied 7 and 15 d after herbicide treatment, respectively. Results showed that Sigma Broad significantly decreased plant height, activities of superoxide dismutase (SOD), chlorophyll content, P N , PS II effective quantum yield (Y (II)), PS II electron transport rate (ETR (II)), photochemical quantum yield of PSI(Y (I)) and PS I electron transport rate ETR (I), but significantly increased MDA. Compared to herbicide treatment, BR dramatically increased plant height, activities of SOD, Y (II), ETR (II), Y (I) and ETR (I). This study showed BR pretreatment could improve the tolerance of Sigma Broad in foxtail millet through improving the activity of antioxidant enzymes, keeping electron transport smooth, and enhancing actual photochemical efficiency of PS II and PSI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulds, James E.; Hinz, Nicholas H.; Coolbaugh, Mark F.
We have undertaken an integrated geologic, geochemical, and geophysical study of a broad 240-km-wide, 400-km-long transect stretching from west-central to eastern Nevada in the Great Basin region of the western USA. The main goal of this study is to produce a comprehensive geothermal potential map that incorporates up to 11 parameters and identifies geothermal play fairways that represent potential blind or hidden geothermal systems. Our new geothermal potential map incorporates: 1) heat flow; 2) geochemistry from springs and wells; 3) structural setting; 4) recency of faulting; 5) slip rates on Quaternary faults; 6) regional strain rate; 7) slip and dilationmore » tendency on Quaternary faults; 8) seismologic data; 9) gravity data; 10) magnetotelluric data (where available); and 11) seismic reflection data (primarily from the Carson Sink and Steptoe basins). The transect is respectively anchored on its western and eastern ends by regional 3D modeling of the Carson Sink and Steptoe basins, which will provide more detailed geothermal potential maps of these two promising areas. To date, geological, geochemical, and geophysical data sets have been assembled into an ArcGIS platform and combined into a preliminary predictive geothermal play fairway model using various statistical techniques. The fairway model consists of the following components, each of which are represented in grid-cell format in ArcGIS and combined using specified weights and mathematical operators: 1) structural component of permeability; 2) regional-scale component of permeability; 3) combined permeability, and 4) heat source model. The preliminary model demonstrates that the multiple data sets can be successfully combined into a comprehensive favorability map. An initial evaluation using known geothermal systems as benchmarks to test interpretations indicates that the preliminary modeling has done a good job assigning relative ranks of geothermal potential. However, a major challenge is defining logical relative rankings of each parameter and how best to combine the multiple data sets into the geothermal potential/ permeability map. Ongoing feedback and data analysis are in use to revise the grouping and weighting of some parameters in order to develop a more robust, optimized, final model. The final product will incorporate more parameters into a geothermal potential map than any previous effort in the region and may serve as a prototype to develop comprehensive geothermal potential maps for other regions.« less
A Bayesian Multilevel Model for Microcystin Prediction in ...
The frequency of cyanobacteria blooms in North American lakes is increasing. A major concernwith rising cyanobacteria blooms is microcystin, a common cyanobacterial hepatotoxin. Toexplore the conditions that promote high microcystin concentrations, we analyzed the US EPANational Lake Assessment (NLA) dataset collected in the summer of 2007. The NLA datasetis reported for nine eco-regions. We used the results of random forest modeling as a means ofvariable selection from which we developed a Bayesian multilevel model of microcystin concentrations.Model parameters under a multilevel modeling framework are eco-region specific, butthey are also assumed to be exchangeable across eco-regions for broad continental scaling. Theexchangeability assumption ensures that both the common patterns and eco-region specific featureswill be reflected in the model. Furthermore, the method incorporates appropriate estimatesof uncertainty. Our preliminary results show associations between microcystin and turbidity, totalnutrients, and N:P ratios. The NLA 2012 will be used for Bayesian updating. The results willhelp develop management strategies to alleviate microcystin impacts and improve lake quality. This work provides a probabilistic framework for predicting microcystin presences in lakes. It would allow for insights to be made about how changes in nutrient concentrations could potentially change toxin levels.
Constraints on the outer radius of the broad emission line region of active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Ward, Martin J.; Elvis, Martin; Karovska, Margarita
2014-03-01
Here we present observational evidence that the broad emission line region (BELR) of active galactic nuclei (AGN) generally has an outer boundary. This was already clear for sources with an obvious transition between the broad and narrow components of their emission lines. We show that the narrow component of the higher-order Paschen lines is absent in all sources, revealing a broad emission line profile with a broad, flat top. This indicates that the BELR is kinematically separate from the narrow emission line region. We use the virial theorem to estimate the BELR outer radius from the flat top width of the unblended profiles of the strongest Paschen lines, Paα and Paβ, and find that it scales with the ionizing continuum luminosity roughly as expected from photoionization theory. The value of the incident continuum photon flux resulting from this relationship corresponds to that required for dust sublimation. A flat-topped broad emission line profile is produced by both a spherical gas distribution in orbital motion and an accretion disc wind if the ratio between the BELR outer and inner radius is assumed to be less than ˜100-200. On the other hand, a pure Keplerian disc can be largely excluded, since for most orientations and radial extents of the disc the emission line profile is double-horned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat; Cole, Wesley
This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solarmore » modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less
Efforts to monitor and characterize the recent increasing seismicity in central Oklahoma
McNamara, Daniel E.; Rubinstein, Justin L.; Myers, Emma; Smoczyk, Gregory M.; Benz, Harley M.; Williams, Robert; Hayes, Gavin; Wilson, David; Herrmann, Robert B.; McMahon, Nicole D; Aster, R.C.; Bergman, E.; Holland, Austin; Earle, Paul
2015-01-01
The sharp increase in seismicity over a broad region of central Oklahoma has raised concerns regarding the source of the activity and its potential hazard to local communities and energy-industry infrastructure. Efforts to monitor and characterize the earthquake sequences in central Oklahoma are reviewed. Since early 2010, numerous organizations have deployed temporary portable seismic stations in central Oklahoma to record the evolving seismicity. A multiple-event relocation method is applied to produce a catalog of central Oklahoma earthquakes from late 2009 into early 2015. Regional moment tensor (RMT) source parameters were determined for the largest and best-recorded earthquakes. Combining RMT results with relocated seismicity enabled determination of the length, depth, and style of faulting occurring on reactivated subsurface fault systems. It was found that the majority of earthquakes occur on near-vertical, optimally oriented (northeast-southwest and northwest-southeast) strike-slip faults in the shallow crystalline basement. In 2014, 17 earthquakes occurred with magnitudes of 4 or larger. It is suggested that these recently reactivated fault systems pose the greatest potential hazard to the region.
Exo-Milankovitch Cycles. I. Orbits and Rotation States
NASA Astrophysics Data System (ADS)
Deitrick, Russell; Barnes, Rory; Quinn, Thomas R.; Armstrong, John; Charnay, Benjamin; Wilhelm, Caitlyn
2018-02-01
The obliquity of the Earth, which controls our seasons, varies by only ∼2.°5 over ∼40,000 years, and its eccentricity varies by only ∼0.05 over 100,000 years. Nonetheless, these small variations influence Earth’s ice ages. For exoplanets, however, variations can be significantly larger. Previous studies of the habitability of moonless Earth-like exoplanets have found that high obliquities, high eccentricities, and dynamical variations can extend the outer edge of the habitable zone by preventing runaway glaciation (snowball states). We expand upon these studies by exploring the orbital dynamics with a semianalytic model that allows us to map broad regions of parameter space. We find that, in general, the largest drivers of obliquity variations are secular spin–orbit resonances. We show how the obliquity varies in several test cases, including Kepler-62 f, across a wide range of orbital and spin parameters. These obliquity variations, alongside orbital variations, will have a dramatic impact on the climates of such planets.
Gamma-Ray Burst Prompt Emission Light Curves and Power Density Spectra in the ICMART Model
NASA Astrophysics Data System (ADS)
Zhang, Bo; Zhang, Bing
2014-02-01
In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.
A novel ultra-broadband single polarization single mode photonic crystal fiber
NASA Astrophysics Data System (ADS)
Jiang, Linghong; Zheng, Yi; Hou, Lantian; Zheng, Kai; Peng, Jiying; Zhao, Xingtao
2017-08-01
The concept of employing a central hole infiltrated with nematic liquid crystal (NLC) and two additional air holes in the core region is exploited to obtain an ultra-broadband single polarization single mode photonic crystal fiber (SPSM-PCF). The effects of structural parameters on the SPSM operation are studied using the full-vectorial finite element method. Numerical results show that the proposed structure can attain the SPSM operation bandwidth of 1610 nm (from 1.51 to 3.12 μm) with confinement loss lower than 0.01 dB/km. The SPSM operation range can also be widely tuned to shorter wavelengths by adjusting the structure parameters. And meanwhile, a broad dispersion-flattened SPSM PCF is also obtained around the communication wavelength. Moreover, the dual-core SPSM PCF has also been investigated, enabling potential applications in the wavelength splitter of 1.31 and 1.55 μm bands at a short fiber length of 1.629 mm with SPSM operation.
Crystal growth and fluid mechanics problems in directional solidification
NASA Technical Reports Server (NTRS)
Tanveer, Saleh; Baker, Gregory R.; Foster, Michael R.
1994-01-01
Broadly speaking, our efforts have been concentrated in two aspects of directional solidification: (A) a more complete theoretical understanding of convection effects in a Bridgman apparatus; and (B) a clear understanding of scalings of various features of dendritic crystal growth in the sensitive limit of small capillary effects. For studies that fall within class A, the principal objectives are as follows: (A1) Derive analytical formulas for segregation, interfacial shape and fluid velocities in mathematically amenable asymptotic limits. (A2) Numerically verify and extend asymptotic results to other ranges of parameter space with a view to a broader physical understanding of the general trends. With respect to studies that fall within class B, the principal objectives include answering the following questions about dendritic crystal growth: (B1) Are there unsteady dendrite solutions in 2-D to the completely nonlinear time evolving equations in the small surface tension limit with only a locally steady tip region with well defined tip radius and velocity? Is anisotropy in surface tension necessary for the existence of such solutions as it is for a true steady state needle crystal? How does the size of such a local region depend on capillary effects, anisotropy and undercooling? (B2) How do the different control parameters affect the nonlinear amplification of tip noise and dendritic side branch coarsening?
Optical and Structural Properties of Zn2TiO4:Mn2+
NASA Astrophysics Data System (ADS)
Sosman, L. P.; López, A.; Camara, A. R.; Pedro, S. S.; Carvalho, I. C. S.; Cella, N.
2017-12-01
Polycrystalline Zn2TiO4 samples with Mn2+ doping level of 0%, 0.1%, 1.0%, and 5.0% have been produced by conventional solid-state method and their optical and structural properties investigated. Rietveld refinement of x-ray diffraction patterns revealed the formed phases and the crystallographic parameters. The chemical composition was obtained by x-ray fluorescence measurements. The optical properties were studied by photoluminescence, excitation, reflectance, and photoacoustic spectroscopy. All measurements were performed at room temperature. The photoluminescence spectrum of the pure sample (0% Mn2+) showed a band in the red region associated with Zn2TiO4, while the sample with 0.1% Mn2+ exhibited two bands, in the green and red spectral regions, assigned to Mn2+ ions at tetrahedral and octahedral sites. No emission was observed for the samples with 1.0% or 5.0% Mn2+. The excitation results for the sample with 0.1% Mn2+ ions showed characteristic peaks of Mn2+ transitions. Tanabe-Sugano theory was used to obtain the crystal field Dq, B, and C Racah parameters from the energy peak positions in the excitation spectrum of the sample with 0.1% Mn2+. Photoacoustic measurements revealed a broad band, characteristic of semiconductor materials, hiding the Mn2+ transitions.
Souza, W.R.; Voss, C.I.
1987-01-01
The groundwater system in southern Oahu, Hawaii consists of a thick, areally extensive freshwater lens overlying a zone of transition to a thick saltwater body. This system is analyzed in cross section with a variable-density groundwater flow and solute transport model on a regional scale. The simulation is difficult, because the coastal aquifer system has a saltwater transition zone that is broadly dispersed near the discharge area, but is very sharply defined inland. Steady-state simulation analysis of the transition zone in the layered basalt aquifer of southern Oahu indicates that a small transverse dispersivity is characteristic of horizontal regional flow. Further, in this system flow is generally parallel to isochlors and steady-state behavior is insensitive to the longitudinal dispersivity. Parameter analysis identifies that only six parameters control the complex hydraulics of the system: horizontal and vertical hydraulic conductivity of the basalt aquifer; hydraulic conductivity of the confining "caprock" layer; leakance below the caprock; specific yield; and aquifer matrix compressibility. The best-fitting models indicate the horizontal hydraulic conductivity is significantly greater than the vertical hydraulic conductivity. These models give values for specific yield and aquifer compressibility which imply a considerable degree of compressive storage in the water table aquifer. ?? 1987.
EPIC-Simulated and MODIS-Derived Leaf Area Index (LAI) ...
Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric conditions yielding sub-optimal values, or complete non-returns. The United States Environmental Protection Agency’s Exposure Methods and Measurements and Computational Exposure Divisions are investigating the viability of supplemental modelled LAI inputs into satellite-derived data streams to support various regional and local scale air quality models for retrospective and future climate assessments. In this present study, one-year (2002) of plot level stand characteristics at four study sites located in Virginia and North Carolina are used to calibrate species-specific plant parameters in a semi-empirical biogeochemical model. The Environmental Policy Integrated Climate (EPIC) model was designed primarily for managed agricultural field crop ecosystems, but also includes managed woody species that span both xeric and mesic sites (e.g., mesquite, pine, oak, etc.). LAI was simulated using EPIC at a 4 km2 and 12 km2 grid coincident with the regional Community Multiscale Air Quality Model (CMAQ) grid. LAI comparisons were made between model-simulated and MODIS-derived LAI. Field/satellite-upscaled LAI was also compared to the corresponding MODIS LAI value. Preliminary results show field/satel
NASA Astrophysics Data System (ADS)
Sichevskij, S. G.
2018-01-01
The feasibility of the determination of the physical conditions in star's atmosphere and the parameters of interstellar extinction from broad-band photometric observations in the 300-3000 nm wavelength interval is studied using SDSS and 2MASS data. The photometric accuracy of these surveys is shown to be insufficient for achieving in practice the theoretical possibility of estimating the atmospheric parameters of stars based on ugriz and JHK s photometry exclusively because such determinations result in correlations between the temperature and extinction estimates. The uncertainty of interstellar extinction estimates can be reduced if prior data about the temperature are available. The surveys considered can nevertheless be potentially valuable sources of information about both stellar atmospheric parameters and the interstellar medium.
NUTRIENT CONCENTRATIONS IN FLOWING WATERS OF THE SOUTH FORK BROAD RIVER, GEORGIA WATERSHED
We monitored concentrations of nutrients, dissolved organic matter (DOM) and other parameters in 17 headwater streams, at three sites on the main stem, and in three major tributaries near their confluence with the South Fork Broad River on a monthly basis for over a year. Concent...
NASA Astrophysics Data System (ADS)
Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping
2017-05-01
The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.
Assessing the quality of life history information in publicly available databases.
Thorson, James T; Cope, Jason M; Patrick, Wesley S
2014-01-01
Single-species life history parameters are central to ecological research and management, including the fields of macro-ecology, fisheries science, and ecosystem modeling. However, there has been little independent evaluation of the precision and accuracy of the life history values in global and publicly available databases. We therefore develop a novel method based on a Bayesian errors-in-variables model that compares database entries with estimates from local experts, and we illustrate this process by assessing the accuracy and precision of entries in FishBase, one of the largest and oldest life history databases. This model distinguishes biases among seven life history parameters, two types of information available in FishBase (i.e., published values and those estimated from other parameters), and two taxa (i.e., bony and cartilaginous fishes) relative to values from regional experts in the United States, while accounting for additional variance caused by sex- and region-specific life history traits. For published values in FishBase, the model identifies a small positive bias in natural mortality and negative bias in maximum age, perhaps caused by unacknowledged mortality caused by fishing. For life history values calculated by FishBase, the model identified large and inconsistent biases. The model also demonstrates greatest precision for body size parameters, decreased precision for values derived from geographically distant populations, and greatest between-sex differences in age at maturity. We recommend that our bias and precision estimates be used in future errors-in-variables models as a prior on measurement errors. This approach is broadly applicable to global databases of life history traits and, if used, will encourage further development and improvements in these databases.
The physical driver of the optical Eigenvector 1 in Quasar Main Sequence
NASA Astrophysics Data System (ADS)
Panda, Swayamtrupta; Czerny, Bożena; Wildy, Conor
2017-11-01
Quasars are complex sources, characterized by broad band spectra from radio through optical to X-ray band, with numerous emission and absorption features. This complexity leads to rich diagnostics. However, tet{bg92} used Principal Component Analysis (PCA), and with this analysis they were able to show significant correlations between the measured parameters. The leading component, related to Eigenvector 1 (EV1) was dominated by the anticorrelation between the Fe II optical emission and [OIII] line and EV1 alone contained 30% of the total variance. It opened a way in defining a quasar main sequence, in close analogy to the stellar main sequence on the Hertzsprung-Russel (HR) diagram ( tealt{sul01}). The question still remains which of the basic theoretically motivated parameters of an active nucleus (Eddington ratio, black hole mass, accretion rate, spin, and viewing angle) is the main driver behind the EV1. Here we limit ourselves to the optical waveband, and concentrate on theoretical modelling the Fe II to Hβ ratio, and we test the hypothesis that the physical driver of EV1 is the maximum of the accretion disk temperature, reflected in the shape of the spectral energy distribution (SED). We performed computations of the Hβ and optical Fe II for a broad range of SED peak position using CLOUDY photoionisation code. We assumed that both Hβ and Fe II emission come from the Broad Line Region represented as a constant density cloud in a plane-parallel geometry. We expected that a hotter disk continuum will lead to more efficient production of Fe II but our computations show that the Fe II to Hβ ratio actually drops with the rise of the disk temperature. Thus either hypothesis is incorrect, or approximations used in our paper for the description of the line emissivity is inadequate.
NASA Technical Reports Server (NTRS)
Burke, H. H. K.; Bowley, C. J.; Barnes, J. C.
1979-01-01
The spatial and temporal measurement requirements of satellite sensors for monitoring regional air pollution episodes were evaluated. Use was made of two sets of data from the Sulfate Regional Experiment (SURE), which provided the first ground-based aerosol measurements from a regional-scale station network. The sulfate data were analyzed for two air pollution episode cases. The results of the analysis indicate that the key considerations required for episode mapping from satellite sensors are the following: (1) detection of sulfate levels exceeding 20 micron-g/cu m; (2) capability to view a broad area (of the order of 1500 km swath) because of regional extent of pollution episodes; (3) spatial resolution sufficient to detect variations in sulfate levels of greater than 10 micron-g/cu m over distances of the order of 50 to 75 km; (4) repeat coverage at least on a daily basis; and (5) satellite observations during the mid to late morning local time, when the sulfate levels have begun to increase after the early morning minimum levels, and convective-type cloud cover has not yet increased to the amount reached later in the afternoon. Analysis of the satellite imagery shows that convective clouds can obscure haze patterns. Additional parameters based on spectral analysis include wavelength and bandwidth requirements.
Modeling Blazar Spectra by Solving an Electron Transport Equation
NASA Astrophysics Data System (ADS)
Lewis, Tiffany; Finke, Justin; Becker, Peter A.
2018-01-01
Blazars are luminous active galaxies across the entire electromagnetic spectrum, but the spectral formation mechanisms, especially the particle acceleration, in these sources are not well understood. We develop a new theoretical model for simulating blazar spectra using a self-consistent electron number distribution. Specifically, we solve the particle transport equation considering shock acceleration, adiabatic expansion, stochastic acceleration due to MHD waves, Bohm diffusive particle escape, synchrotron radiation, and Compton radiation, where we implement the full Compton cross-section for seed photons from the accretion disk, the dust torus, and 26 individual broad lines. We used a modified Runge-Kutta method to solve the 2nd order equation, including development of a new mathematical method for normalizing stiff steady-state ordinary differential equations. We show that our self-consistent, transport-based blazar model can qualitatively fit the IR through Fermi g-ray data for 3C 279, with a single-zone, leptonic configuration. We use the solution for the electron distribution to calculate multi-wavelength SED spectra for 3C 279. We calculate the particle and magnetic field energy densities, which suggest that the emitting region is not always in equipartition (a common assumption), but sometimes matter dominated. The stratified broad line region (based on ratios in quasar reverberation mapping, and thus adding no free parameters) improves our estimate of the location of the emitting region, increasing it by ~5x. Our model provides a novel view into the physics at play in blazar jets, especially the relative strength of the shock and stochastic acceleration, where our model is well suited to distinguish between these processes, and we find that the latter tends to dominate.
NASA Astrophysics Data System (ADS)
Feng, Haike; Zhang, Wei; Zhang, Jie; Chen, Xiaofei
2017-05-01
The perfectly matched layer (PML) is an efficient absorbing technique for numerical wave simulation. The complex frequency-shifted PML (CFS-PML) introduces two additional parameters in the stretching function to make the absorption frequency dependent. This can help to suppress converted evanescent waves from near grazing incident waves, but does not efficiently absorb low-frequency waves below the cut-off frequency. To absorb both the evanescent wave and the low-frequency wave, the double-pole CFS-PML having two poles in the coordinate stretching function was developed in computational electromagnetism. Several studies have investigated the performance of the double-pole CFS-PML for seismic wave simulations in the case of a narrowband seismic wavelet and did not find significant difference comparing to the CFS-PML. Another difficulty to apply the double-pole CFS-PML for real problems is that a practical strategy to set optimal parameter values has not been established. In this work, we study the performance of the double-pole CFS-PML for broad-band seismic wave simulation. We find that when the maximum to minimum frequency ratio is larger than 16, the CFS-PML will either fail to suppress the converted evanescent waves for grazing incident waves, or produce visible low-frequency reflection, depending on the value of α. In contrast, the double-pole CFS-PML can simultaneously suppress the converted evanescent waves and avoid low-frequency reflections with proper parameter values. We analyse the different roles of the double-pole CFS-PML parameters and propose optimal selections of these parameters. Numerical tests show that the double-pole CFS-PML with the optimal parameters can generate satisfactory results for broad-band seismic wave simulations.
Structural and spectral properties of MgZnO2:Sm3+ phosphor
NASA Astrophysics Data System (ADS)
Rajput, Preasha; Sharma, Pallavi; Biswas, Pankaj; Kamni
2018-05-01
The samarium doped MgZnO2 phosphor was synthesized by the low-cost combustion method. The powder X-ray diffraction (XRD) analysis confirmed the crystallinity and phase purity of the phosphor. The lattice parameters were determined by indexing the diffraction peaks. The photoluminescence (PL) study revealed that the phosphor exhibited a broad excitation band in the UV region ranging between 200 to 350 nm. The 601 nm emission was ascribed to 4G5/2 to 6H7/2 transitions of the Sm3+ ion. The optical bandgap of MgZnO2:Sm3+ was obtained to be 3.56 eV. The phosphor can be projected as a useful material in X- and gamma-ray scintillators.
Numerical details and SAS programs for parameter recovery of the SB distribution
Bernard R. Parresol; Teresa Fidalgo Fonseca; Carlos Pacheco Marques
2010-01-01
The four-parameter SB distribution has seen widespread use in growth-and-yield modeling because it covers a broad spectrum of shapes, fitting both positively and negatively skewed data and bimodal configurations. Two recent parameter recovery schemes, an approach whereby characteristics of a statistical distribution are equated with attributes of...
NASA Astrophysics Data System (ADS)
Li, J.; Guo, G.; WANG, X.; Chen, Q.
2017-12-01
The northwest Pacific subduction region is an ideal location to study the interaction between the subducting slab and upper mantle discontinuities. Various and complex geometry of the Pacific subducting slab can be well traced downward from the Kuril, Japan and Izu-Bonin trench using seismicity and tomography images (Fukao and Obayashi, 2013). Due to the sparse distribution of seismic stations in the sea, investigation of the deep mantle structure beneath the broad sea regions is very limited. In this study, we applied the well- developed multiple-ScS reverberations method (Wang et al., 2017) to analyze waveforms recorded by the Chinese Regional Seismic Network, the densely distributed temporary seismic array stations installed in east Asia. A map of the topography of the upper mantle discontinuities beneath the broad oceanic regions in northwest Pacific subduction zone is imaged. We also applied the receiver function analysis to waveforms recorded by stations in northeast China and obtain the detailed topography map beneath east Asia continental regions. We then combine the two kinds of topography of upper mantle discontinuities beneath oceanic and continental regions respectively, which are obtained from totally different methods. A careful image matching and spatial correlation is made in the overlapping study regions to calibrate results with different resolution. This is the first time to show systematically a complete view of the topography of the 410-km and 660-km discontinuities beneath the east Asia "Big mantle wedge" (Zhao and Ohtani, 2009) covering the broad oceanic and continental regions in the Northwestern Pacific Subduction zone. Topography pattern of the 660 and 410 is obtained and discussed. Especially we discovered a broad depression of the 410-km discontinuity covering more than 1000 km in lateral, which seems abnormal in the cold subducting tectonic environment. Based on plate tectonic reconstruction studies and HTHP mineral experiments, we argue that the east-retreat trench motion of the subducting Pacific slab might play an important role in the observed broad depression of the 410-km discontinuity.
A VLT VIMOS study of the anomalous BCD Mrk996: mapping the ionized gas kinematics and abundances
NASA Astrophysics Data System (ADS)
James, B. L.; Tsamis, Y. G.; Barlow, M. J.; Westmoquette, M. S.; Walsh, J. R.; Cuisinier, F.; Exter, K. M.
2009-09-01
A study of the blue compact dwarf (BCD) galaxy Mrk996 based on high-resolution optical Very Large Telescope Visible Multi-Object Spectrograph integral field unit spectroscopy is presented. Mrk996 displays multicomponent line emission, with most line profiles consisting of a narrow, central Gaussian [full width at half-maximum (FWHM) ~ 110kms-1] with an underlying broad component (FWHM ~ 400kms-1). The broad HI Balmer component splits into two separate broad components inside a 1.5-arcsec radius from the nucleus; these are attributed to a two-armed minispiral. This spiral-like nucleus rotates in the same sense as the extended narrow line ionized gas but is offset by ~50kms-1 from the systemic velocity of the galaxy. The rotation curve of Mrk996 derived from the Hα narrow component yields a total mass of 5 × 108Msolar within a radius of 3kpc. From the Hα luminosity we infer a global star formation rate of ~2Msolaryr-1. The high excitation energy, high critical density [OIII] λ4363 and [NII] λ5755 lines are only detected from the inner region and exist purely in broad component form, implying unusual excitation conditions. Surface brightness, radial velocity and FWHM maps for several emission components are presented. A separate physical analysis of the broad and narrow emission line regions is undertaken. We derive an upper limit of 10000K for the electron temperature of the narrow line gas, together with an electron density of 170cm-3, typical of normal HII regions. For the broad line component, measured [OIII] and [FeIII] diagnostic line ratios are consistent with a temperature of 11000K and an electron density of 107cm-3. The broad line emission regions show N/H and N/O enrichment factors of ~20 relative to the narrow line regions, but no He/H, O/H, S/H or Ar/H enrichment is inferred. Previous studies indicated that Mrk996 showed anomalously high N/O ratios compared with BCDs of a similar metallicity. Our multicomponent analysis yields a revised metallicity of >=0.5Zsolar (12 + logO/H = 8.37) for both the narrow and broad gas components, significantly higher than previous studies. As a result the narrow line region's N/O ratio is now typical for the galaxy's metallicity. The narrow line component's N/O ratio peaks outside the core region, spatially correlating with ~3-Myr-old stellar populations. The dominant line excitation mechanism is photoionization by the ~3000 Wolf-Rayet stars and ~150000 O-type stars estimated to be present in the core. This is indeed a peculiar BCD, with extremely dense zones of gas in the core, through which stellar outflows and possible shock fronts permeate contributing to the excitation of the broad line emission. Based on observations made with ESO telescopes at the Paranal Observatory under programme ID 078.B-0353(A). E-mail: bj@star.ucl.ac.uk (BLJ); tsamis@iaa.es (YGT)
Asian Monsoons: Variability, Predictability, and Sensitivity to External Forcing
NASA Technical Reports Server (NTRS)
Yang, Song; Lau, K.-M.
1999-01-01
In this study, we have addressed the interannual variations of Asian monsoons including both broad-scale and regional monsoon components. Particular attention is devoted to the identities of the South China Sea monsoon and Indian monsoon. We use CPC Merged Analysis of Precipitation and NCEP reanalyses to define regional monsoon indices and to depict the various monsoons. Parallel modeling studies have also been carried out to assess the role of boundary forcing and the potential predictability of the monsoons. Each monsoon is characterized by its unique features. While the South Asian monsoon represents a classical monsoon in which anomalous circulation is governed by Rossby-wave dynamics, the Southeast Asian monsoon symbolizes a "hybrid" monsoon that features multi-cellular meridional circulation over eastern Asia. The broad-scale Asian monsoon links to the basin-wide atmospheric circulation over the Indian-Pacific oceans. Both SST and land surface processes are important for determining the variations of all monsoons. For the broad-scale monsoon, SST anomalies are more important than land surface processes. For regional monsoons, however, land surface processes may become equally important. Both observation and model shows that the broad-scale monsoon is potentially more predictable than regional monsoons, and that the Southeast Asian monsoon may possess higher predictability than the South Asian monsoon.
NASA Astrophysics Data System (ADS)
Braibant, L.; Hutsemékers, D.; Sluse, D.; Anguita, T.
2016-07-01
We investigate the kinematics and ionization structure of the broad emission line region of the gravitationally lensed quasar QSO2237+0305 (the Einstein cross) using differential microlensing in the high- and low-ionization broad emission lines. We combine visible and near-infrared spectra of the four images of the lensed quasar and detect a large-amplitude microlensing effect distorting the high-ionization CIV and low-ionization Hα line profiles in image A. While microlensing only magnifies the red wing of the Balmer line, it symmetrically magnifies the wings of the CIV emission line. Given that the same microlensing pattern magnifies both the high- and low-ionization broad emission line regions, these dissimilar distortions of the line profiles suggest that the high- and low-ionization regions are governed by different kinematics. Since this quasar is likely viewed at intermediate inclination, we argue that the differential magnification of the blue and red wings of Hα favors a flattened, virialized, low-ionization region whereas the symmetric microlensing effect measured in CIV can be reproduced by an emission line formed in a polar wind, without the need of fine-tuned caustic configurations. Based on observations made with the ESO-VLT, Paranal, Chile; Proposals 076.B-0197 and 076.B-0607 (PI: Courbin).
Deriving physical parameters of unresolved star clusters. V. M 31 PHAT star clusters
NASA Astrophysics Data System (ADS)
de Meulenaer, P.; Stonkutė, R.; Vansevičius, V.
2017-06-01
Context. This study is the fifth of a series that investigates the degeneracy and stochasticity problems present in the determination of physical parameters such as age, mass, extinction, and metallicity of partially resolved or unresolved star cluster populations in external galaxies when using HST broad-band photometry. Aims: In this work we aim to derive parameters of star clusters using models with fixed and free metallicity based on the HST WFC3+ACS photometric system. The method is applied to derive parameters of a subsample of 1363 star clusters in the Andromeda galaxy observed with the HST. Methods: Following Paper III, we derive the star cluster parameters using a large grid of stochastic models that are compared to the six observed integrated broad-band WFC3+ACS magnitudes of star clusters. Results: We show that the age, mass, and extinction of the M 31 star clusters, derived assuming fixed solar metallicity, are in agreement with previous studies. We also demonstrate the ability of the WFC3+ACS photometric system to derive metallicity of star clusters older than 1 Gyr. We show that the metallicity derived using broad-band photometry of 36 massive M 31 star clusters is in good agreement with the metallicity derived using spectroscopy. Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A112
Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process
NASA Technical Reports Server (NTRS)
Huang, Chao-Song; Retterer, J. M.; Beaujardiere, O. De La; Roddy, P. A.; Hunton, D.E.; Ballenthin, J. O.; Pfaff, Robert F.
2012-01-01
Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions.
Recent progress of erbium-doped fiber amplifiers and their components
NASA Astrophysics Data System (ADS)
Fukushima, Masaru; Miura, Jutaro
2007-09-01
The Erbium-doped fiber amplifiers (EDFA) are widely available in a today's commercial market, and are deployed in various optical transmission applications from terrestrial system to undersea system. Broad gain spectrum over 9 THz enabled huge growth of bandwidth usage in 1550nm region aimed at broadband Internet, and its broad gain characteristics triggered bandwidth competition on dense wavelength division multiplex (DWDM) network these ten years. At first, we briefly review the evolutional history of EDFA with previous achievements. And we will explain the primary and important key devices which compose EDFA. We will discuss design parameters, and recent trend and achievements of the devices, which cover Erbium-doped fibers (EDF), 980-nm laser diodes (LD), and gain flattening filters (GFFs). The chip structure of 980-nm LD is explained to achieve high power and to realize high reliability. These key devices enabled EDFA to prevail in commercial area. After the discussion of key components, we will introduce recent achievements of gain controlled EDFAs which are applied in conjunction with Re-configurable Optical Add/Drop Multiplexer (ROADM). We will report the transient gain dynamics of the cascaded EDFAs with a recirculating loop experiment.
NASA Astrophysics Data System (ADS)
Grafen, M.; Nalpantidis, K.; Ihrig, D.; Heise, H. M.; Ostendorf, A.
2016-03-01
Mid-infrared (MIR) spectroscopy is a valuable analytical method for patient monitoring within point-of-care diagnostics. For implementation, quantum cascade lasers (QCL) appear to be most suited regarding miniaturization, complexity and eventually also costs. External cavity (EC) - QCLs offer broad tuning ranges and recently, ultra-broadly tunable systems covering spectral ranges around the mid-infrared fingerprint region became commercially available. Using such a system, transmission spectra from the wavenumber interval of 780 to 1920 cm-1, using a thermoelectrically cooled MCT-detector, were recorded while switching the aqueous glucose concentrations between 0, 50 and 100 mg/dL. In order to optimize the system performance, a multi-parameter study was carried out, varying laser pulse width, duty cycle, sweep speed and the optical sample pathlength for scoring the absorbance noise. Exploratory factor analysis with pattern recognition tools (PCA, LDA) was used for the raw data, providing more than 10 significantly contributing factors. With the glucose signal causing 20 % of the total variance, further factors include short-term drift possibly related to thermal effects, long-term drift due to varying atmospheric water vapour in the lab, as well as wavenumber shifts and drifts of the single tuners. For performance testing, the noise equivalent concentration was estimated based on cross-validated Partial-Least Squares (PLS) predictions and the a-posteriori obtained scores of the factor analysis. Based on the optimized parameters, a noise equivalent glucose concentration of 1.5 mg/dL was achieved.
Particle and field characteristics of the high-latitude plasma sheet boundary layer
NASA Technical Reports Server (NTRS)
Parks, G. K.; Mccarthy, M.; Fitzenreiter, R. J.; Ogilvie, K. W.; Etcheto, J.; Anderson, K. A.; Lin, R. P.; Anderson, R. R.; Eastman, T. E.; Frank, L. A.
1984-01-01
Particle and field data obtained by eight ISEE spacecraft experiments are used to define more precisely the characteristics of the high-latitude boundary region of the plasma sheet. A region immediately adjacent to the high-latitude plasma sheet boundary has particle and field characteristics distinctly different from those observed in the lobe and deeper in the central plasma sheet. Electrons over a broad energy interval are 'field-aligned' and bidirectional, whereas in the plasma sheet the distributions are more isotropic. The region supports intense ion flows, large-amplitude electric fields, and enhanced broad-band electrostatic noise.
Investigating the Fraction of Radio-Loud Quasars with High Velocity Broad Emission LInes
NASA Astrophysics Data System (ADS)
Bhattacharjee, Anirban; Gilbert, Miranda; Brotherton, Michael S.
2018-06-01
Quasars show a bimodal distribution in their radio emission, with some having powerful radio-emitting jets (radio-loud), and most having weak or no jets (radio-quiet). Surveys have shown around 10% of of quasars have detectable radio emissions. These quasars are called radio-loud. Several multiwavelength studies have shown that radio-loud quasars have different properties than radio-quiet quasars. This fraction of radio-loud quasars to radio-quiet quasars has been assumed to be constant across all parameter space. In this study, we breakdown the parameter space with respect to the increasing velocity dispersion of broad emission lines. Our sample has been drawn from 2011 Shen et al. catalog of more than 100,000 quasars. In this study, we demonstrate that this fraction varies with respect to the increasing velocity dispersion (FWHM) of broad emission lines. We compare three different emission lines: H-Beta, MgII, and CIV. We observe with increasing FWHM of these three emission lines, fraction of radio-loud quasars within the subset increases. This poster presents our initial results into investigating whether the fraction of RL quasars remains 10% in different parameter space.
Mesospheric turbulence and related parameters over the low latitude region
NASA Astrophysics Data System (ADS)
Chakravarty, S.; Datta, J.; Kamala, S.; Gupta, S.
Recently a number of studies have been carried out primarily by using ground based radar techniques to understand the phenomena of wave dynamics and turbulence in the mesosphere. While such studies have covered the middle and high latitude region quite well there is a lack of such data for the low latitude region. Extensive studies using MST radar conducted from middle and high latitude stations have resulted in providing a clear picture of the mesospheric dynamics and related structures (? n) responsible for radar backscattered echoes from mesosphere. The experiments have also enabled determination of various turbulence related parameters such as e , , LB, uz etc. A major discovery in this region is the, occurrence of PMSE layers in the mesopause regions which considerably enhances the SNR of radar return power. Only in recent times MST radar systems have been set up over the low latitude region even though the technique itself was first demonstrated at equatorial station Jicamarca using the available incoherent backscatter radar. Using these facilities broad characteristics of the turbulence structures in the mesosphere have been brought out showing similarities and differences of such results when compared with middle and high latitude stations. In all these observations it has not been possible to characterise the mesospheric turbulence with respect to the energy spectrum and its micro structure. Rocket measurements have been carried out to study the ionization parameters such as electron density irregularities in the mesosphere ( Ne) either independently or? simultaneously with MST radar observations wherever possible. Some consistency has been noticed in the occurrence of ? Ne and simultaneous radar return echo power from the height range of these irregularities. The main aim of this paper is to analyse the existing results on mesospheric dynamics and turbulence with the associated modulation in mesospheric ionization from sounding rockets launched from Thumba (8.5o N, 70.8o E) and SHAR (13o N, 80o E) and MST radar data over the Indian station Gadanki (13.5o N, 79.2o E). The emphasis of the study is to present the high resolution dynamical and ionization structures available from these two techniques and examine them in terms of theories of turbulence. It is observed that the turbulence in the mesosphere has a very complicated 3 D configuration and it manifests as a number of thin layers- superimposed on a larger area of influence.
A Bayesian Multilevel Model for Microcystin Prediction in ...
The frequency of cyanobacteria blooms in North American lakes is increasing. A major concern with rising cyanobacteria blooms is microcystin, a common cyanobacterial hepatotoxin. To explore the conditions that promote high microcystin concentrations, we analyzed the US EPA National Lake Assessment (NLA) dataset collected in the summer of 2007. The NLA dataset is reported for nine eco-regions. We used the results of random forest modeling as a means ofvariable selection from which we developed a Bayesian multilevel model of microcystin concentrations. Model parameters under a multilevel modeling framework are eco-region specific, butthey are also assumed to be exchangeable across eco-regions for broad continental scaling. The exchangeability assumption ensures that both the common patterns and eco-region specific features will be reflected in the model. Furthermore, the method incorporates appropriate estimates of uncertainty. Our preliminary results show associations between microcystin and turbidity, total nutrients, and N:P ratios. Upon release of a comparable 2012 NLA dataset, we will apply Bayesian updating. The results will help develop management strategies to alleviate microcystin impacts and improve lake quality. This work provides a probabilistic framework for predicting microcystin presences in lakes. It would allow for insights to be made about how changes in nutrient concentrations could potentially change toxin levels.
DISCERNING THE GAMMA-RAY-EMITTING REGION IN THE FLAT SPECTRUM RADIO QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Y. G.; Yang, C. Y.; Wang, J. C.
2017-01-01
A model-dependent method is proposed to determine the location of the γ -ray-emitting region for a given flat spectrum radio quasar (FSRQ). In the model, the extra-relativistic electrons are injected at the base of the jet and non-thermal photons are produced by both synchrotron radiation and inverse-Compton (IC) scattering in the energy dissipation region. The target photons dominating IC scattering originate from both synchrotron photons and external ambient photon fields, and the energy density of external radiation field is a function of the distance between the position of the dissipation region and a central supermassive black hole, and their spectramore » are seen in the comoving frame. Moreover, the energy dissipation region could be determined by the model parameter through reproducing the γ -ray spectra. Such a model is applied to reproduce the quasi-simultaneous multi-wavelength observed data for 36 FSRQs. In order to define the width of the broad-line region (BLR) shell and dusty molecular torus (MT) shell, a simple numerical constraint is used to determine the outer boundary of the BLR and dusty MT. Our results show that (1) the γ -ray-emitting regions are located at the range from 0.1 to 10 pc; (2) the γ -ray-emitting regions are located outside the BLRs and within the dusty molecular tori; and (3) the γ -ray-emitting regions are located closer to the dusty MT ranges than the BLRs. Therefore, it may be concluded that direct evidence for the far site scenario could be obtained on the basis of the model results.« less
NASA Astrophysics Data System (ADS)
Pasyanos, Michael E.; Ford, Sean R.; Walter, William R.
2014-03-01
We test the performance of high-frequency regional P/S discriminants to differentiate between earthquakes and explosions at test sites and over broad regions using a historical dataset of explosions recorded at the Borovoye Observatory in Kazakhstan. We compare these explosions to modern recordings of earthquakes at the same location. We then evaluate the separation of the two types of events using the raw measurements and those where the amplitudes are corrected for 1-D and 2-D attenuation structure. We find that high-frequency P/S amplitudes can reliably identify earthquakes and explosions, and that the discriminant is applicable over broad regions as long as propagation effects are properly accounted for. Lateral attenuation corrections provide the largest improvement in the 2-4 Hz band, the use of which may successfully enable the identification of smaller, distant events that have lower signal-to-noise at higher frequencies. We also find variations in P/S ratios among the three main nuclear testing locations within the Semipalatinsk Test Site which, due to their nearly identical paths to BRVK, must be a function of differing geology and emplacement conditions.
Nematoda of Kinosternon scorpioides (Testudines: Kinosternidae) from Northeastern Brazil.
Viana, Diego C; Rodrigues, João Fabrício M; Madelaire, Carla B; Clara, Ana; Santos, G; Sousa, Alana L
2016-02-01
The scorpion mud turtle (Kinosternon scorpioides) is a small freshwater turtle broadly distributed in South America and commonly consumed in some Brazilian regions. This study aimed to identify the species of helminths that parasitize the digestive tract of K. scorpioides and report infection parameters such as parasite prevalence, mean intensity of the infection, abundance, and the relationship between these nematodes and host body size in this species. We captured 20 adult male K. scorpioides, and 6 animals had nematodes in their gastrointestinal tract. These animals had Serpinema magathi (prevalence = 0.3) and Spiroxys figueiredoi (prevalence = 0.25). There were no correlations between the number of total parasites and carapace length (rs = 0.17, n = 6, P = 0.74) or the length of the gastrointestinal tract (rs = 0.18, n = 6, P = 0.73).
Magnetohydrodynamic Simulations of a Plunging Black Hole into a Molecular Cloud
NASA Astrophysics Data System (ADS)
Nomura, Mariko; Oka, Tomoharu; Yamada, Masaya; Takekawa, Shunya; Ohsuga, Ken; Takahashi, Hiroyuki R.; Asahina, Yuta
2018-05-01
Using two-dimensional magnetohydrodynamic simulations, we investigated the gas dynamics around a black hole (BH) plunging into a molecular cloud. In these calculations, we assumed a parallel-magnetic-field layer in the cloud. The size of the accelerated region is far larger than the Bondi–Hoyle–Lyttleton radius, being approximately inversely proportional to the Alfvén Mach number for the plunging BH. Our results successfully reproduce the “Y” shape in position–velocity maps of the “Bullet” in the W44 molecular cloud. The size of the Bullet is also reproduced within an order of magnitude using a reasonable parameter set. This consistency supports the shooting model of the Bullet, according to which an isolated BH plunged into a molecular cloud to form a compact broad-velocity-width feature.
HIS Design: Big Data that Supports Hydrologic Modeling from Continental to Hillslope Scales
NASA Astrophysics Data System (ADS)
Rasmussen, T. C.; Deemy, J. B.; Younger, S. E.; Kirk, S. E.; Brockman, L. E.
2016-12-01
Analogous to Google Maps, hydrologic data, information, and knowledge resolve differently depending upon the spatial and temporal scales of interest. We show how a multi-scale hydrologic information system (HIS) can be designed and populated for a broad range of spatial (e.g., hillslope, local, regional, continental) and temporal (e.g., current, recent, historic, geologic) scales. Surface and subsurface hydrologic and transport processes are assumed to be scale-dependent, requiring unique governing equations and parameters at each scale. This robust and flexible framework is designed to meet the inventory, monitoring, and management needs of multiple federal agencies (i.e., Forest Service, National Park Service, Fish and Wildlife Service, National Wildlife Reserves). Multi-scale HIS examples are provided using Geographic Information Systems (GIS) for the Southeastern US.
Ab Initio Analysis of Auger-Assisted Electron Transfer.
Hyeon-Deuk, Kim; Kim, Joonghan; Prezhdo, Oleg V
2015-01-15
Quantum confinement in nanoscale materials allows Auger-type electron-hole energy exchange. We show by direct time-domain atomistic simulation and analytic theory that Auger processes give rise to a new mechanism of charge transfer (CT) on the nanoscale. Auger-assisted CT eliminates the renown Marcus inverted regime, rationalizing recent experiments on CT from quantum dots to molecular adsorbates. The ab initio simulation reveals a complex interplay of the electron-hole and charge-phonon channels of energy exchange, demonstrating a variety of CT scenarios. The developed Marcus rate theory for Auger-assisted CT describes, without adjustable parameters, the experimental plateau of the CT rate in the region of large donor-acceptor energy gap. The analytic theory and atomistic insights apply broadly to charge and energy transfer in nanoscale systems.
NASA Astrophysics Data System (ADS)
Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi
2014-01-01
We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica (http://rmt.earth.sinica.edu.tw). The long-term goal of this system is to provide real-time source information for rapid seismic hazard assessment during large earthquakes.
COLLIMATION AND SCATTERING OF THE ACTIVE GALACTIC NUCLEUS EMISSION IN THE SOMBRERO GALAXY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br
2013-03-10
We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the H{alpha} emission line. The collimation and scattering of this broad H{alpha} component was also revealed by fitting the [N II] {lambda}{lambda}6548, 6583 and H{alpha} emission linesmore » as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = -18 Degree-Sign {+-} 13 Degree-Sign and P.A. = 162 Degree-Sign {+-} 13 Degree-Sign ) along a direction perpendicular to the torus/disk (P.A. = 72 Degree-Sign {+-} 14 Degree-Sign ) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the H{alpha} emission line is visible and also why many previous studies detected no broad H{alpha}. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.« less
NASA Astrophysics Data System (ADS)
Yadav, R. B. S.; Tsapanos, T. M.; Bayrak, Yusuf; Koravos, G. Ch.
2013-03-01
A straightforward Bayesian statistic is applied in five broad seismogenic source zones of the northwest frontier of the Himalayas to estimate the earthquake hazard parameters (maximum regional magnitude M max, β value of G-R relationship and seismic activity rate or intensity λ). For this purpose, a reliable earthquake catalogue which is homogeneous for M W ≥ 5.0 and complete during the period 1900 to 2010 is compiled. The Hindukush-Pamir Himalaya zone has been further divided into two seismic zones of shallow ( h ≤ 70 km) and intermediate depth ( h > 70 km) according to the variation of seismicity with depth in the subduction zone. The estimated earthquake hazard parameters by Bayesian approach are more stable and reliable with low standard deviations than other approaches, but the technique is more time consuming. In this study, quantiles of functions of distributions of true and apparent magnitudes for future time intervals of 5, 10, 20, 50 and 100 years are calculated with confidence limits for probability levels of 50, 70 and 90 % in all seismogenic source zones. The zones of estimated M max greater than 8.0 are related to the Sulaiman-Kirthar ranges, Hindukush-Pamir Himalaya and Himalayan Frontal Thrusts belt; suggesting more seismically hazardous regions in the examined area. The lowest value of M max (6.44) has been calculated in Northern-Pakistan and Hazara syntaxis zone which have estimated lowest activity rate 0.0023 events/day as compared to other zones. The Himalayan Frontal Thrusts belt exhibits higher earthquake magnitude (8.01) in next 100-years with 90 % probability level as compared to other zones, which reveals that this zone is more vulnerable to occurrence of a great earthquake. The obtained results in this study are directly useful for the probabilistic seismic hazard assessment in the examined region of Himalaya.
NASA Astrophysics Data System (ADS)
Diaz Cusí, Jordi; Gallart, Josep; Villaseñor, Antonio
2010-05-01
The Rif-Betic region, comprising the Gibraltar Arc and the extensional Alboran basin and including the diffuse limit between the Eurasia and African plates, is complex and there is still not a commonly accepted hypothesis about the mechanism responsible for its formation, as models including lithospheric delamination, convective removal or subduction have been proposed. In this context, the knowledge about the presence and properties of upper mantle anisotropy from SKS splitting measurements can provide valuable information to constrain the different geodynamical models. The installation of new permanent and semi-permanent broadband stations in the region has allowed obtaining a first insight into the anisotropic properties (Buontempo et al, 2008) and evidenced the presence of geographical variations in the anisotropic parameters, even if the lack of data in the Northern part of Morocco did not allow to obtain a detailed image. We present here the first analysis of the data provided by the IberArray broad-band seismic network that will allow a significant improvement the coverage of this area. The IberArray broad-band seismic network was deployed over this region for about 18 months, beginning in summer/fall 2007 in the framework of the large-scale Topo-Iberia project. This portable array, formed by up to 55 new generation dataloggers equipped with broad-band seismometers, has covered the southern part of Iberia (35 stations) and northern Morocco (20 stations) in an approximately regular grid, with a nominal spacing of 60 km. Data from more than 35 permanent broadband stations maintained by different institutions operating in the region has also been integrated into the IberArray database. Events with epicentral distances between 85 and 120 degrees and magnitude greater than 6.0 are systematically extracted from the continuous dataset and SKS and SKKS phases are inspected for anisotropy using the SplitLab software. Processing of the whole dataset is still ongoing, but the available results, including those for the entire year 2008, significantly improve the spatial resolution of SKS measurements in this region. The inferred fast velocity directions (FVD) clearly show a spectacular rotation along the Gibraltar arc, following the curvature of the Rif-Betic chain, from roughly N65E beneath the Betics to close to N65W beneath the Rif chain. Stations located in the South and South-east edges of the array, show a distinct pattern, with FVD oriented NE-SW to E-W. The results for some sites suggest the presence of complex anisotropy features, probably including two anisotropic layers. The obtained FVD results are compatible with rollback / subduction models, while convective-removal and delamination models seem unlikely to be compatible with our results. The FVD variations along the Gibraltar arc could be explained by fossil anisotropy acquired during the Eocene Western Mediterranean subduction, while the change in FVD observed to the South and South-East of the Rif-Betic chain can be related to the imprint of a flow episode around the Alboran high velocity slab during its Miocene fragmentation from the Algerian slab.
VizieR Online Data Catalog: MALT-45, a 7mm survey of the southern Galaxy (Jordan+, 2015)
NASA Astrophysics Data System (ADS)
Jordan, C. H.; Walsh, A. J.; Lowe, V.; Voronkov, M. A.; Ellingsen, S. P.; Breen, S. L.; Purcell, C. R.; Barnes, P. J.; Burton, M. G.; Cunningham, M. R.; Hill, T.; Jackson, J. M.; Longmore, S. N.; Peretto, N.; Urquhart, J. S.
2018-03-01
MALT-45 is an untargeted Galactic plane survey for spectral lines which are commonly bright in star-forming regions at 45GHz (7mm waveband). We have so far observed 5 square degrees within the region bounded by 330°<=l<=335°, b=+/-0.5°. MALT-45 observations were conducted on the Australia Telescope Compact Array (ATCA), which provides 2x2048MHz broad-band continuum windows for observing. Section 1.1 discusses the primary lines surveyed, and their rest frequencies dictate the positions of the broad-band windows for MALT-45. Within the frequency ranges of the broad-band windows, we survey for 12 spectral lines. (2 data files).
NASA Technical Reports Server (NTRS)
Green, Robert O.; Roberts, Dar A.
1995-01-01
Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring, and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local to regional and even synoptic scales. Classical approaches rely on vegetation indices such as the normalized difference vegetation index (NDVI) to estimate biophysical parameters such as leaf area index or intercepted photosynthetically active radiation (IPAR). Another approach is to apply a variety of classification schemes to map vegetation and thus extrapolate fine-scale information about specific sites to larger areas of similar composition. Imaging spectrometry provides additional information that is not obtainable through broad-band sensors and that may provide improved inputs both to direct biophysical estimates as well as classification schemes. Some of this capability has been demonstrated through improved discrimination of vegetation, estimates of canopy biochemistry, and liquid water estimates from vegetation. We investigate further the potential of leaf water absorption estimated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data as a means for discriminating vegetation types and deriving canopy architectural information. We expand our analysis to incorporate liquid water estimates from two spectral regions, the 1000-nm region and the 2200-nm region. The study was conducted in the vicinity of Jasper Ridge, California, which is located on the San Francisco peninsula to the west of the Stanford University campus. AVIRIS data were acquired over Jasper Ridge, CA, on June 2, 1992, at 19:31 UTC. Spectra from three sites in this image were analyzed. These data are from an area of healthy grass, oak woodland, and redwood forest, respectively. For these analyses, the AVIRIS-measured upwelling radiance spectra for the entire Jasper Ridge scene were transformed to apparent surface reflectance using a radiative transfer code-based inversion algorithm.
Microcavity morphology optimization
NASA Astrophysics Data System (ADS)
Ferdous, Fahmida; Demchenko, Alena A.; Vyatchanin, Sergey P.; Matsko, Andrey B.; Maleki, Lute
2014-09-01
High spectral mode density of conventional optical cavities is detrimental to the generation of broad optical frequency combs and to other linear and nonlinear applications. In this work we optimize the morphology of high-Q whispering gallery (WG) and Fabry-Perot (FP) cavities and find a set of parameters that allows treating them, essentially, as single-mode structures, thus removing limitations associated with a high density of cavity mode spectra. We show that both single-mode WGs and single-mode FP cavities have similar physical properties, in spite of their different loss mechanisms. The morphology optimization does not lead to a reduction of quality factors of modes belonging to the basic family. We study the parameter space numerically and find the region where the highest possible Q factor of the cavity modes can be realized while just having a single bound state in the cavity. The value of the Q factor is comparable with that achieved in conventional cavities. The proposed cavity structures will be beneficial for generation of octave spanning coherent frequency combs and will prevent undesirable effects of parametric instability in laser gravitational wave detectors.
NASA Astrophysics Data System (ADS)
Kutz, J. Nathan; Brunton, Steven L.
2015-12-01
We demonstrate that a software architecture using innovations in machine learning and adaptive control provides an ideal integration platform for self-tuning optics. For mode-locked lasers, commercially available optical telecom components can be integrated with servocontrollers to enact a training and execution software module capable of self-tuning the laser cavity even in the presence of mechanical and/or environmental perturbations, thus potentially stabilizing a frequency comb. The algorithm training stage uses an exhaustive search of parameter space to discover best regions of performance for one or more objective functions of interest. The execution stage first uses a sparse sensing procedure to recognize the parameter space before quickly moving to the near optimal solution and maintaining it using the extremum seeking control protocol. The method is robust and equationfree, thus requiring no detailed or quantitatively accurate model of the physics. It can also be executed on a broad range of problems provided only that suitable objective functions can be found and experimentally measured.
Regionalising MUSLE factors for application to a data-scarce catchment
NASA Astrophysics Data System (ADS)
Gwapedza, David; Slaughter, Andrew; Hughes, Denis; Mantel, Sukhmani
2018-04-01
The estimation of soil loss and sediment transport is important for effective management of catchments. A model for semi-arid catchments in southern Africa has been developed; however, simplification of the model parameters and further testing are required. Soil loss is calculated through the Modified Universal Soil Loss Equation (MUSLE). The aims of the current study were to: (1) regionalise the MUSLE erodibility factors and; (2) perform a sensitivity analysis and validate the soil loss outputs against independently-estimated measures. The regionalisation was developed using Geographic Information Systems (GIS) coverages. The model was applied to a high erosion semi-arid region in the Eastern Cape, South Africa. Sensitivity analysis indicated model outputs to be more sensitive to the vegetation cover factor. The simulated soil loss estimates of 40 t ha-1 yr-1 were within the range of estimates by previous studies. The outcome of the present research is a framework for parameter estimation for the MUSLE through regionalisation. This is part of the ongoing development of a model which can estimate soil loss and sediment delivery at broad spatial and temporal scales.
Mean and extreme radio properties of quasars and the origin of radio emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kratzer, Rachael M.; Richards, Gordon T.
2015-02-01
We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio loudness of quasars. We consider how these properties evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission-line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high redshift, we find that both the RLF and the mean radio luminosity increasemore » for increasing BH mass and decreasing accretion rate. Similarly, both the RLF and mean radio loudness increase for quasars that are argued to have weaker radiation line driven wind components of the broad emission-line region. In agreement with past work, we find that the RLF increases with increasing optical/UV luminosity and decreasing redshift, while the mean radio loudness evolves in the exact opposite manner. This difference in behavior between the mean radio loudness and the RLF in L−z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences, but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.« less
NASA Astrophysics Data System (ADS)
Waters, Tim; Kashi, Amit; Proga, Daniel; Eracleous, Michael; Barth, Aaron J.; Greene, Jenny
2016-08-01
The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized BLR models such as randomly orbiting clouds and thin Keplerian disks. We conduct a parameter survey exploring how echo images, line profiles, and transfer functions depend on both the inclination angle and the line opacity. We find that the line profiles are almost always single peaked, while transfer functions tend to have tails extending to large time delays. The outflow, despite being primarily equatorially directed, causes an appreciable blueshifted excess on both the echo image and line profile when seen from lower inclinations (I≲ 45^\\circ ). This effect may be observable in low ionization lines such as {{H}}β .
Integral field spectroscopy of H II regions in M33
NASA Astrophysics Data System (ADS)
López-Hernández, Jesús; Terlevich, Elena; Terlevich, Roberto; Rosa-González, Daniel; Díaz, Ángeles; García-Benito, Rubén; Vílchez, José; Hägele, Guillermo
2013-03-01
Integral field spectroscopy is presented for star-forming regions in M33. A central area of 300 × 500 pc2 and the external H II region IC 132, at a galactocentric distance ˜19 arcmin (4.69 kpc), were observed with the Potsdam Multi-Aperture Spectrophotometer instrument at the 3.5-m telescope of the Centro Astronómico Hispano-Alemán (CAHA, aka Calar Alto Observatory). The spectral coverage goes from 3600 Å to 1 μm to include from [O II] λ3727 Å to the near-infrared lines required for deriving sulphur electron temperature and abundance diagnostics. Local conditions within individual H II regions are presented in the form of emission-line fluxes and physical conditions for each spatial resolution element (spaxel) and for segments with similar Hα surface brightness. A clear dichotomy is observed when comparing the central to outer disc H II regions. While the external H II region has higher electron temperature plus larger Hβ equivalent width, size and excitation, the central region has higher extinction and metal content. The dichotomy extends to the Baldwin-Phillips-Terlevich (BPT) diagnostic diagrams that show two orthogonal broad distributions of points. By comparing with pseudo-3D photoionization models, we conclude that the bulk of observed differences are probably related to a different ionization parameter and metallicity. Wolf-Rayet (WR) features are detected in IC 132, and resolved into two concentrations whose integrated spectra were used to estimate the characteristic number of WR stars. No WR features were detected in the central H II regions despite their higher metallicity.
Putting Parameters in Their Proper Place
ERIC Educational Resources Information Center
Montrul, Silvina; Yoon, James
2009-01-01
Seeing the logical problem of second language acquisition as that of primarily selecting and re-assembling bundles of features anew, Lardiere proposes to dispense with the deductive learning approach and its broad range of consequences subsumed under the concept of parameters. While we agree that feature assembly captures more precisely the…
[Analysis of Camellia rosthorniana populations fecundity].
Cao, Guoxing; Zhong, Zhangcheng; Xie, Deti; Liu, Yun
2004-03-01
With the method of space substituting time, the structure of Camellia rosthorniana populations in three forest communities, i.e., Jiant bamboo forest, coniferous and broad-leaved mixed forest, and evergreen broad-leaved forest in Mt. Jinyun was investigated, and based on static life-tables, the fecundity tables and reproductive value tables of C. rosthorniana populations were constructed. Each reproductive parameter and its relation to bionomic strategies of C. rosthorniana populations were also analyzed. The results indicated that in evergreen broad-leaved forest, C. rosthorniana population had the longest life span and the greatest fitness. The stage of maximum reproductive value increased with increasing stability of the community. The sum of each population's reproductive value, residual reproductive value and total reproductive value for the whole life-history of C. rosthorniana also increased with increasing maturity of the community, showing their inherent relationships with reproductive fitness. As regards to bionomic strategy, C. rosthorniana showed mainly the characteristics of a k-strategies, but in less stable community, the reproductive parameters were greatly changed, showing some characteristics of a r-strategies.
Do Periodic Plate Reorganisations Control Late-stage Volcanism across a Broad Galápagos Hotspot?
NASA Astrophysics Data System (ADS)
O'Connor, J. M.; Hoernle, K.; Wijbrans, J. R.; Werner, R.; Hauff, S. F.; Stoffers, P.
2010-12-01
Much of the Galápagos Volcanic Province (GVP), consisting of the Cocos, Carnegie, Coiba and Malpelo aseismic ridges and related seamount provinces, remains poorly understood due to a lack of direct age and geochemical data. In recent years reconnaissance dredge/grab sampling of these submerged regions of the GVP provides some new insights that can be re-evaluated in the context of the three new cruises to the region in 2010. The distribution of 40Ar/39Ar basement ages [1-3] suggest that volcanism migrated time-progressively across GVP in broad regions of long-lived, possible concurrent, hotspot volcanism. Development of the GVP via such broad zones of overlapping volcanism leads to multiple phases of volcanism post-dating the onset of hotspot volcanism, similar to rejuvenescent volcanism that occurs million years after the main shield-building phase of mid-plate oceanic volcano, most notably along the Hawaiian-Emperor Seamount Chain. Evidence for rejuvenescent volcanism across the GVP provides an opportunity to evaluate this poorly understood process in a very different physical setting compared to the Hawaiian-Emperor Chain (mid-plate versus on/near spreading axis). Widespread episodes of coeval GVP volcanism show that the Galápagos hotspot influences broad regions of the lithosphere implying relative motion between the Cocos and Nazca plates and a broad Galápagos hotspot. The complex spreading history of the Cocos-Nazca spreading centre likely controlled the relative distribution of GVP volcanism between the Cocos and Nazca plates while creating lithosphere of variable age/thickness across the region [3]. But recent age and geochemical studies of other hotspot systems show that lithosphere influenced in the past by hotspot activity is more likely to generate late-stage volcanism in response to changing patterns of stress in the lithosphere. Late stage volcanism across a broad Galápagos hotspot might therefore reflect periodic reorganisations of the Galápagos spreading centre. [1] Werner, D.R. et al., 1999. A drowned 14-m.y.-old Galápagos Archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geology 27. [2] Werner, D.R. et al., 2003. Geodynamic evolution of the Galápagos hot spot system (Central East Pacific) over the past 20 m.y. Constraints from morphology, geochemistry, and magnetic anomalies. Geochem. Geophys. Geosyst. 4, 1108. [3] O’Connor et al., 2007. Migration of widespread long-lived volcanism across the Galápagos Volcanic Province: Evidence for a broad hotspot melting anomaly? Earth Planet. Sci. Letts. 263.
Circumsolar Energetic Particle Distribution on 2011 November 3
NASA Astrophysics Data System (ADS)
Gómez-Herrero, R.; Dresing, N.; Klassen, A.; Heber, B.; Lario, D.; Agueda, N.; Malandraki, O. E.; Blanco, J. J.; Rodríguez-Pacheco, J.; Banjac, S.
2015-01-01
Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.
R. McManamay; D. Orth; C. Dolloff; E. Frimpong
2011-01-01
Regional frameworks have been used extensively in recent years to aid in broad-scale management. Widely used landscape-based regional frameworks, such as hydrologic landscape regions (HLRs) and physiographic provinces, may provide predictive tools of hydrologic variability. However, hydrologic-based regional frameworks, created using only streamflow data, are also...
Results of Detailed Modeling of the Narrow-Line Region of Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Moore, David; Cohen, Ross D.
1996-01-01
We present model line profiles of [O II] lambda3727, [Ne III] lambda3869, [O I] lambda5007, [Fe VII] lambda6087, [Fe X] lambda6374, [O I] lambda6300, H(alpha) lambda6563, and [S 2] lambda6731. The profiles presented here illustrate explicitly the pronounced effects that collisional de-excitation, and that spatial variations in both the ionization parameter and cloud column density, have on Narrow-Line Region (NLR) model profiles. The above effects were included only qualitatively in a previous analytical treatment by Moore and Cohen. By making a direct correspondence between these model profiles and the analytical model profiles of Moore and Cohen, and by comparing with the observed profiles presented in a companion paper and also with those presented elsewhere in the literature, we strengthen some of the conclusions of Moore and Cohen. Most notably, we argue for constant ionization parameter, uniformly accelerated outflow of clouds that are individually stratified in ionization, and the interpretation of emission-line width correlations with ionization potential as a column density effect. For comparison with previous observational studies, such as our own in a companion paper, we also calculate profile parameters for some of the models, and we present and discuss the resulting line width correlations with critical density (n(sub cr)) and Ionization Potential (IP). Because the models we favor are those that produce extended profile wings as observed in high spectral resolution studies, the line width correlations of our favoured models are of particular interest. Line width correlations with n(sub cr) and/or IP result only if the width parameter is more sensitive to extended profile wings than is the Full Width at Half-Maximum (FWHM). Correlations between FWHM and n(sub cr) and/or IP result only after convolving the model profiles with a broad instrumental profile that simulates the lower spectral resolution used in early observational studies. The model in agreement with the greatest number of observational considerations has electron density decreasing outward from n(sub e) approx. equals 10(exp 6)/cu cm to n(sub e) approx. equals 10(exp 2)/cu cm and, due to collisional de-excitation effects in the lowest velocity clouds, it generates broad flat-topped profile peaks in the lines of lowest critical density (e.g., [O II] lambda3727 and [S II] lambda(lambda)6716, 6731). Because the observed profile peaks of both low and high critical density lines are often very similar, our favored model requires a contribution to NLR emission-line spectra from low-velocity, low-density, and low-ionization gas not included in the model NLR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yue; Liu, Xin; Loeb, Abraham
We perform a systematic search for sub-parsec binary supermassive black holes (BHs) in normal broad-line quasars at z < 0.8, using multi-epoch Sloan Digital Sky Survey (SDSS) spectroscopy of the broad Hβ line. Our working model is that (1) one and only one of the two BHs in the binary is active; (2) the active BH dynamically dominates its own broad-line region (BLR) in the binary system, so that the mean velocity of the BLR reflects the mean velocity of its host BH; (3) the inactive companion BH is orbiting at a distance of a few R{sub BLR}, where R{submore » BLR} ∼ 0.01-0.1 pc is the BLR size. We search for the expected line-of-sight acceleration of the broad-line velocity from binary orbital motion by cross-correlating SDSS spectra from two epochs separated by up to several years in the quasar rest frame. Out of ∼700 pairs of spectra for which we have good measurements of the velocity shift between two epochs (1σ error ∼40 km s{sup –1}), we detect 28 systems with significant velocity shifts in broad Hβ, among which 7 are the best candidates for the hypothesized binaries, 4 are most likely due to broad-line variability in single BHs, and the rest are ambiguous. Continued spectroscopic observations of these candidates will easily strengthen or disprove these claims. We use the distribution of the observed accelerations (mostly non-detections) to place constraints on the abundance of such binary systems among the general quasar population. Excess variance in the velocity shift is inferred for observations separated by longer than 0.4 yr (quasar rest frame). Attributing all the excess to binary motion would imply that most of the quasars in this sample must be in binaries, that the inactive BH must be on average more massive than the active one, and that the binary separation is at most a few times the size of the BLR. However, if this excess variance is partly or largely due to long-term broad-line variability, the requirement of a large population of close binaries is much weakened or even disfavored for massive companions. Future time-domain spectroscopic surveys of normal quasars can provide vital prior information on the structure function of stochastic velocity shifts induced by broad-line variability in single BHs. Such surveys with improved spectral quality, increased time baseline, and more epochs can greatly improve the statistical constraints of this method on the general binary population in broad-line quasars, further shrink the allowed binary parameter space, and detect true sub-parsec binaries.« less
Massive Statistics of VLF-Induced Ionospheric Disturbances
NASA Astrophysics Data System (ADS)
Pailoor, N.; Cohen, M.; Golkowski, M.
2017-12-01
The impact of lightning of the D-region of the ionosphere has been measured by Very Low Frequency (VLF) remote sensing, and can be seen through the observance of Early-Fast events. Previous research has indicated that several factors control the behavior and occurrence of these events, including the transmitter-receiver geometry, as well as the peak current and polarity of the strike. Unfortunately, since each event is unique due to the wide variety of impacting factors, it is difficult to make broad inferences about the interactions between the lightning and ionosphere. By investigating a large database of lightning-induced disturbances over a span of several years and over a continental-scale region, we seek to quantify the relationship between geometry, lightning parameters, and the apparent disturbance of the ionosphere as measured with VLF transmitters. We began with a set of 860,000 cases where an intense lightning stroke above 150 kA occurred within 300 km of a transmiter-receiver path. To then detect ionospheric disturbances from the large volume of VLF data and lightning incidents, we applied a number of classification methods to the actual VLF amplitude data, and find that the most accurate is a convolutional neural network, which yielded a detection efficiency of 95-98%, and a false positive rate less than 25%. Using this model, we were able to assemble a database of more than 97,000 events, with each event stored with its corresponding time, date, receiver, transmitter, and lightning parameters. Estimates for the peak and slope of each disruption were also calculated. From this data, we were able to chart the relationships between geometry and lightning parameters (peak current and polarity) towards the occurrence probability, perturbation intensity, and recovery time, of the VLF perturbation. The results of this analysis are presented here.
Phase diagram of an extended Agassi model
NASA Astrophysics Data System (ADS)
García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.
2018-05-01
Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.
C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Sulentic, Jack W.; Bachev, Rumen; Marziani, Paola; Negrete, C. Alenka; Dultzin, Deborah
2007-09-01
We are exploring a spectroscopic unification for all types of broad-line emitting AGNs. The four-dimensional Eigenvector 1 (4DE1) parameter space organizes quasar diversity in a sequence primarily governed by Eddington ratio. This paper considers the role of C IV λ1549 measures as 4DE1 diagnostics. We use HST archival spectra for 130 sources with S/N high enough to permit reliable C IV λ1549 broad-component measures. We find a C IV λ1549BC profile blueshift that is strongly concentrated among (largely radio-quiet [RQ]) sources with FWHM(HβBC)<~4000 km s-1 (which we call Population A). Narrow-line Seyfert 1 (NLSy1; with FWHM Hβ<=2000 km s-1) sources belong to this population but do not emerge as a distinct class. The systematic blueshift, widely interpreted as arising in a disk wind/outflow, is not observed in broader line AGNs (including most radio-loud [RL] sources), which we call Population B. We find new correlations involving FWHM(C IV λ1549BC), C IV λ1549 line shift, and equivalent width only among Population A sources. Sulentic et al. suggested C IV λ1549 measures enhance an apparent dichotomy between sources with FWHM(HβBC) less and greater than 4000 km s-1, suggesting that it has more significance in the context of broad-line region structure than the more commonly discussed RL versus RQ dichotomy. Black hole masses computed from FWHM C IV λ1549BC for about 80 AGNs indicate that the C IV λ1549 width is a poor virial estimator. Comparison of mass estimates derived from HβBC and C IV λ1549 reveals that the latter show different and nonlinear offsets for Population A and B sources. A significant number of sources also show narrow-line C IV λ1549 emission that must be removed before C IV λ1549BC measures can be made and interpreted effectively. We present a recipe for C IV λ1549 narrow-component extraction.
Patterns and determinants of plant biodiversity in non-commercial forests of eastern China
Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru
2017-01-01
Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken. PMID:29161324
Patterns and determinants of plant biodiversity in non-commercial forests of eastern China.
Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru; Yu, Mingjian
2017-01-01
Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken.
An Analytical Quality Framework for Learning Cities and Regions
ERIC Educational Resources Information Center
Preisinger-Kleine, Randolph
2013-01-01
There is broad agreement that innovation, knowledge and learning have become the main source of wealth, employment and economic development of cities, regions and nations. Over the past two decades, the number of European cities and regions which label themselves as "learning city" or "learning region" has constantly grown.…
Scaling behavior of immersed granular flows
NASA Astrophysics Data System (ADS)
Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.
2017-06-01
The shear behavior of granular materials immersed in a viscous fluid depends on fluid properties (viscosity, density), particle properties (size, density) and boundary conditions (shear rate, confining pressure). Using computational fluid dynamics simulations coupled with molecular dynamics for granular flow, and exploring a broad range of the values of parameters, we show that the parameter space can be reduced to a single parameter that controls the packing fraction and effective friction coefficient. This control parameter is a modified inertial number that incorporates viscous effects.
NASA Technical Reports Server (NTRS)
Reeves, J. N.; Gofford, J.; Braito, V.; Sambruna, R.
2010-01-01
We present evidence for X-ray line emitting and absorbing gas in the nucleus of the Broad-Line Radio Galaxy (BLRG), 3C445. A 200 ks Chandra LETG observation of 3C 445 reveals the presence of several highly ionized emission lines in the soft X-ray spectrum, primarily from the He and H-like ions of O, Ne, Mg and Si. Radiative recombination emission is detected from O VII and O VIII, indicating that the emitting gas is photoionized. The He-like emission appears to be resolved into forbidden and intercombination line components, which implies a high density of greater than 10(sup 10) cm(sup -3), while the lines are velocity broadened with a mean width of 2600 km s(sup -1). The density and widths of the ionized lines indicate an origin of the gas on sub-parsec scales in the Broad Line Region (BLR). The X-ray continuum of 3C 445 is heavily obscured by a photoionized absorber of column density N(sub H) = 2 x 10(sup 23) cm(sup -2) and ionization parameter log xi = 1.4 erg cm s(sup -1). However the view of the X-ray line emission is unobscured, which requires the absorber to be located at radii well within any parsec scale molecular torus. Instead we suggest that the X-ray absorber in 3C 445 may be associated with an outflowing, but clumpy accretion disk wind, with an observed outflow velocity of approximately 10000 km s(sup -1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tombesi, F.; Kallman, T.; Leutenegger, M. A.
2016-10-20
We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory . The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700–1000 eV associated with ionized Fe L transitions (Fe XVII–XX). An emission line at the energy of E ≃ 6.4 keV consistent with the Fe K α is also observed. Our best-fit model requires at least three different components: (i) amore » hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 ± 0.1 keV; (ii) a warm absorber with ionization parameter log ξ = 2.3 ± 0.5 erg s{sup −1} cm, column density log N {sub H} = 20.7 ± 0.1 cm{sup −2}, and outflow velocity v {sub out} < 150 km s{sup −1}; and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.« less
NASA Technical Reports Server (NTRS)
Tombesi, F.; Reeves, J. N.; Kallman, Timothy R.; Reynolds, C. S.; Mushotzky, R. F.; Braito, V.; Behar, E.; Leutenegger, Maurice A.; Cappi, M.
2016-01-01
We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory. The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700-1000 eV associated with ionized Fe L transitions (Fe XVIIXX). An emission line at the energy of E approximately equal to 6.4 keV consistent with the Fe K alpha is also observed. Our best-fit model requires at least three different components: (i) a hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 +/- 0.1 keV; (ii) a warm absorber with ionization parameter log Epislon = 2.3 +/- 0.5 erg s(exp 1) cm, column density logN(sub H) = 20.7 +/- 0.1 cm(exp -2), and outflow velocity v(sub out) less than 150 km s(exp -1); and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.
NASA Astrophysics Data System (ADS)
Gaillot, P.; Bardaine, T.; Lyon-Caen, H.
2004-12-01
Since recent years, various automatic phase pickers based on the wavelet transform have been developed. The main motivation for using wavelet transform is that they are excellent at finding the characteristics of transient signals, they have good time resolution at all periods, and they are easy to program for fast execution. Thus, the time-scale properties and flexibility of the wavelets allow detection of P and S phases in a broad frequency range making their utilization possible in various context. However, the direct application of an automatic picking program in a different context/network than the one for which it has been initially developed is quickly tedious. In fact, independently of the strategy involved in automatic picking algorithms (window average, autoregressive, beamforming, optimization filtering, neuronal network), all developed algorithms use different parameters that depend on the objective of the seismological study, the region and the seismological network. Classically, these parameters are manually defined by trial-error or calibrated learning stage. In order to facilitate this laborious process, we have developed an automated method that provide optimal parameters for the picking programs. The set of parameters can be explored using simulated annealing which is a generic name for a family of optimization algorithms based on the principle of stochastic relaxation. The optimization process amounts to systematically modifying an initial realization so as to decrease the value of the objective function, getting the realization acceptably close to the target statistics. Different formulations of the optimization problem (objective function) are discussed using (1) world seismicity data recorded by the French national seismic monitoring network (ReNass), (2) regional seismicity data recorded in the framework of the Corinth Rift Laboratory (CRL) experiment, (3) induced seismicity data from the gas field of Lacq (Western Pyrenees), and (4) micro-seismicity data from glacier monitoring. The developed method is discussed and tested using our wavelet version of the standard STA-LTA algorithm.
Gorzo, Jessica; Pidgeon, Anna M.; Thogmartin, Wayne E.; Allstadt, Andrew J.; Radeloff, Volker C.; Heglund, Patricia J.; Vavrus, Stephen J.
2016-01-01
Avian populations can respond dramatically to extreme weather such as droughts and heat waves, yet patterns of response to weather at broad scales remain largely unknown. Our goal was to evaluate annual variation in abundance of 14 grassland bird species breeding in the northern mixed-grass prairie in relation to annual variation in precipitation and temperature. We modeled avian abundance during the breeding season using North American Breeding Bird Survey (BBS) data for the U.S. Badlands and Prairies Bird Conservation Region (BCR 17) from 1980 to 2012. We used hierarchical Bayesian methods to fit models and estimate the candidate weather parameters standardized precipitation index (SPI) and standardized temperature index (STI) for the same year and the previous year. Upland Sandpiper (Bartramia longicauda) responded positively to within-year STI (β = 0.101), and Baird's Sparrow (Ammodramus bairdii) responded negatively to within-year STI (β = −0.161) and positively to within-year SPI (β = 0.195). The parameter estimates were superficially similar (STI β = −0.075, SPI β = 0.11) for Grasshopper Sparrow (Ammodramus savannarum), but the best-selected model included an interaction between SPI and STI. The best model for both Eastern Kingbird (Tyrannus tyrannus) and Vesper Sparrow (Pooecetes gramineus) included the additive effects of within-year SPI (β = −0.032 and β = −0.054, respectively) and the previous-year's SPI (β = −0.057 and −0.02, respectively), although for Vesper Sparrow the lag effect was insignificant. With projected warmer, drier weather during summer in the Badlands and Prairies BCR, Baird's and Grasshopper sparrows may be especially threatened by future climate change.
Titus, K.; Fuller, M.R.; Stauffer, D.F.; Sauer, J.R.; Pendleton, Beth Giron; LeFranc, Maurice N.=; Moss, Mary Beth
1989-01-01
Red-tailed, red-shouldered, and broad-winged hawks nest throughout the 11 northeastern states, and red-tailed, red-shouldered, and rough-legged hawks winter in this region. Historical and present ranges of these species are similar, although red-shouldered and broad-winged hawk ranges now have more vacant patches at a local and regional level. Only the red-shouldered hawk is of special concern or officially listed as threatened by some state agencies. Analysis of Breeding Bird Survey (BBS) data indicated positive trends in counts of red-tailed hawks along the more developed Northeast corridor. No trends were found in analyses of BBS data for red-shouldered hawks in either more- or less-developed regions of the Northeast. Based on the BBS, we found a decreasing trend in counts of broad-winged hawks along the more-developed Northeast corridor, and an increasing trend in less-developed regions of the Northeast. Our analyses of Christmas Bird Count data indicated no trend in counts of red-shouldered nor rough-legged hawks, but an increase in counts of red-tailed hawks from 1962 to 1983. Many individuals believe that species such as the red-shouldered hawk are declining in the Northeast, but no trends were detected in our analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian-Min; Qiu, Jie; Du, Pu
2014-12-10
Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR) from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energymore » distributions depending on their location relative to the disk, resulting in the diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected to reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ and other broad emission lines (e.g., Fe II), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.« less
Brenna, Elenka; Gitto, Lara
2017-01-01
The ageing of European population has been rapidly increasing during the last decades, and the problem of elderly care financing has become an issue for policy-makers. Long-term care (LTC) financing is considered a suitable proxy of the resources committed to elderly care by each government, but the preciseness of this approximation depends on the extent to which LTC is representative of elderly care within each country. Since there is a broad heterogeneity in LTC funding, organization and setting among European States, it is difficult to find a common parameter representing the public resources destined to the elderly care. We address these topics employing as a case study an Italian region, Lombardy, which in terms of population, dimension, healthcare organization and economic development could be compared to other European countries. The method we suggest, which consists basically in a careful estimate of all the public resources employed in the provision of services exclusively destined to the elderly, could be applied, with the due differences, to other European countries or regions. PMID:28812846
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plogmaker, Stefan; Johansson, Erik M. J.; Rensmo, Haakan
A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of {approx}8 to {approx}120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses ormore » pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.« less
Investigation of finite element: ABC methods for electromagnetic field simulation. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Volakis, John L.; Nguyen, J.
1994-01-01
The mechanics of wave propagation in the presence of obstacles is of great interest in many branches of engineering and applied mathematics like electromagnetics, fluid dynamics, geophysics, seismology, etc. Such problems can be broadly classified into two categories: the bounded domain or the closed problem and the unbounded domain or the open problem. Analytical techniques have been derived for the simpler problems; however, the need to model complicated geometrical features, complex material coatings and fillings, and to adapt the model to changing design parameters have inevitably tilted the balance in favor of numerical techniques. The modeling of closed problems presents difficulties primarily in proper meshing of the interior region. However, problems in unbounded domains pose a unique challenge to computation, since the exterior region is inappropriate for direct implementation of numerical techniques. A large number of solutions have been proposed but only a few have stood the test of time and experiment. The goal of this thesis is to develop an efficient and reliable partial differential equation technique to model large three dimensional scattering problems in electromagnetics.
Geomagnetic Pulsations as Observed from Ground-Based Searchcoil Magnetometers (P52)
NASA Astrophysics Data System (ADS)
Sinha, A. K.; Pathan, B. M.; Vohat, P.
2006-11-01
ak50266@yahoo.com Magnetometer data from Searchcoil magnetometers in the Indian sectors have been analyzed to study geomagnetic pulsations in the low latitude region. On April 01 2005, we observe Pc 4 events at ~ 19 UT in the frequency range 10-15 mHz. The oscillations are seen in all the components (H, D, Z) indicating thereby that oscillations are compressional in nature. These pulsations are very much on the line of expectations at these latitudes. Apart from these normal pulsations, we observe the presence of pearl-type oscillations (~ 4 Hz) which is very unlikely at these latitude. These waves are common features of high latitude regions. The interesting aspect of these observed pearl-type features is that they follow a spike of broad-band source as revealed by the dynamic spectra. We are examining the role of thunderstorm lightening in generating these pearl-type pulses. Schumann resonances serve as indicators of lightning phenomena and we use their occurrences as parameter for lightening for correlating observed pulses to spiky broadband features preceding these pulses.
FAR-ULTRAVIOLET OBSERVATIONS OF THE SPICA NEBULA AND THE INTERACTION ZONE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yeon-Ju; Min, Kyoung-Wook; Lim, Tae-Ho
2013-09-01
We report the analysis results of far-ultraviolet (FUV) observations, made for a broad region around {alpha} Vir (Spica) including the interaction zone of Loop I and the Local Bubble. The whole region was optically thin and a general correlation was seen between the FUV continuum intensity and the dust extinction, except in the neighborhood of the bright central star, indicating the dust scattering nature of the FUV continuum. We performed Monte Carlo radiative transfer simulations to obtain the optical parameters related to the dust scattering as well as to the geometrical structure of the region. The albedo and asymmetry factormore » were found to be 0.38 {+-} 0.06 and 0.46 {+-} 0.06, respectively, in good agreement with the Milky Way dust grain models. The distance to and the thickness of the interaction zone were estimated to be 70{sup +4}{sub -8} pc and 40{sup +8}{sub -10} pc, respectively. The diffuse FUV continuum in the northern region above Spica was mostly the result of scattering of the starlight from Spica, while that in the southern region was mainly due to the background stars. The C IV {lambda}{lambda}1548, 1551 emission was found throughout the whole region, in contrast to the Si II* {lambda}1532 emission which was bright only within the H II region. This indicates that the C IV line arises mostly at the shell boundaries of the bubbles, with a larger portion likely from the Loop I than from the Local Bubble side, whereas the Si II* line is from the photoionized Spica Nebula.« less
Multiparameter Estimation in Networked Quantum Sensors
NASA Astrophysics Data System (ADS)
Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.
2018-02-01
We introduce a general model for a network of quantum sensors, and we use this model to consider the following question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. This immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or nonlinear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.
NASA Astrophysics Data System (ADS)
Saccorotti, G.; Nisii, V.; Del Pezzo, E.
2008-07-01
Long-Period (LP) and Very-Long-Period (VLP) signals are the most characteristic seismic signature of volcano dynamics, and provide important information about the physical processes occurring in magmatic and hydrothermal systems. These events are usually characterized by sharp spectral peaks, which may span several frequency decades, by emergent onsets, and by a lack of clear S-wave arrivals. These two latter features make both signal detection and location a challenging task. In this paper, we propose a processing procedure based on Continuous Wavelet Transform of multichannel, broad-band data to simultaneously solve the signal detection and location problems. Our method consists of two steps. First, we apply a frequency-dependent threshold to the estimates of the array-averaged WCO in order to locate the time-frequency regions spanned by coherent arrivals. For these data, we then use the time-series of the complex wavelet coefficients for deriving the elements of the spatial Cross-Spectral Matrix. From the eigenstructure of this matrix, we eventually estimate the kinematic signals' parameters using the MUltiple SIgnal Characterization (MUSIC) algorithm. The whole procedure greatly facilitates the detection and location of weak, broad-band signals, in turn avoiding the time-frequency resolution trade-off and frequency leakage effects which affect conventional covariance estimates based upon Windowed Fourier Transform. The method is applied to explosion signals recorded at Stromboli volcano by either a short-period, small aperture antenna, or a large-aperture, broad-band network. The LP (0.2 < T < 2s) components of the explosive signals are analysed using data from the small-aperture array and under the plane-wave assumption. In this manner, we obtain a precise time- and frequency-localization of the directional properties for waves impinging at the array. We then extend the wavefield decomposition method using a spherical wave front model, and analyse the VLP components (T > 2s) of the explosion recordings from the broad-band network. Source locations obtained this way are fully compatible with those retrieved from application of more traditional (and computationally expensive) time-domain techniques, such as the Radial Semblance method.
Wavelength dependence of the bidirectional reflectance distribution function (BRDF) of beach sands.
Doctor, Katarina Z; Bachmann, Charles M; Gray, Deric J; Montes, Marcos J; Fusina, Robert A
2015-11-01
The wavelength dependence of the dominant directional reflective properties of beach sands was demonstrated using principal component analysis and the related correlation matrix. In general, we found that the hyperspectral bidirectional reflectance distribution function (BRDF) of beach sands has weak wavelength dependence. Its BRDF varies slightly in three broad wavelength regions. The variations are more evident in surfaces of greater visual roughness than in smooth surfaces. The weak wavelength dependence of the BRDF of beach sand can be captured using three broad wavelength regions instead of hundreds of individual wavelengths.
NASA Astrophysics Data System (ADS)
Tlidi, M.; Averlant, E.; Vladimirov, A.; Panajotov, K.
2012-09-01
We consider a broad area vertical-cavity surface-emitting laser (VCSEL) operating below the lasing threshold and subject to optical injection and time-delayed feedback. We derive a generalized delayed Swift-Hohenberg equation for the VCSEL system, which is valid close to the nascent optical bistability. We first characterize the stationary-cavity solitons by constructing their snaking bifurcation diagram and by showing clustering behavior within the pinning region of parameters. Then, we show that the delayed feedback induces a spontaneous motion of two-dimensional (2D) cavity solitons in an arbitrary direction in the transverse plane. We characterize moving cavity solitons by estimating their threshold and calculating their velocity. Numerical 2D solutions of the governing semiconductor laser equations are in close agreement with those obtained from the delayed generalized Swift-Hohenberg equation.
Fish assemblages at 16 sites in the upper French Broad River basin, North Carolina were related to environmental variables using detrended correspondence analysis (DCA) and linear regression. This study was conducted at the landscape scale because regional variables are controlle...
September Arctic Sea Ice minimum prediction - a new skillful statistical approach
NASA Astrophysics Data System (ADS)
Ionita-Scholz, Monica; Grosfeld, Klaus; Scholz, Patrick; Treffeisen, Renate; Lohmann, Gerrit
2017-04-01
Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability is complex and it depends on various climate and oceanic parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal of sea ice evolution, we developed a robust statistical model based on ocean heat content, sea surface temperature and different atmospheric variables to calculate an estimate of the September Sea ice extent (SSIE) on monthly time scale. Although previous statistical attempts at monthly/seasonal forecasts of SSIE show a relatively reduced skill, we show here that more than 92% (r = 0.96) of the September sea ice extent can be predicted at the end of May by using previous months' climate and oceanic conditions. The skill of the model increases with a decrease in the time lag used for the forecast. At the end of August, our predictions are even able to explain 99% of the SSIE. Our statistical model captures both the general trend as well as the interannual variability of the SSIE. Moreover, it is able to properly forecast the years with extreme high/low SSIE (e.g. 1996/ 2007, 2012, 2013). Besides its forecast skill for SSIE, the model could provide a valuable tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.
Phenological response of sea turtles to environmental variation across a species' northern range.
Mazaris, Antonios D; Kallimanis, Athanasios S; Pantis, John D; Hays, Graeme C
2013-01-22
Variations in environmental parameters (e.g. temperature) that form part of global climate change have been associated with shifts in the timing of seasonal events for a broad range of organisms. Most studies evaluating such phenological shifts of individual taxa have focused on a limited number of locations, making it difficult to assess how such shifts vary regionally across a species range. Here, by using 1445 records of the date of first nesting for loggerhead sea turtles (Caretta caretta) at different breeding sites, on different continents and in different years across a broad latitudinal range (25-39° 'N), we demonstrate that the gradient of the relationship between temperature and the date of first breeding is steeper at higher latitudes, i.e. the phenological responses to temperature appear strongest at the poleward range limit. These findings support the hypothesis that biological changes in response to climate change will be most acute at the poleward range limits and are in accordance with the predictions of MacArthur's hypothesis that poleward range limit for species range is environmentally limited. Our findings imply that the poleward populations of loggerheads are more sensitive to climate variations and thus they might display the impacts of climate change sooner and more prominently.
Phenological response of sea turtles to environmental variation across a species' northern range
Mazaris, Antonios D.; Kallimanis, Athanasios S.; Pantis, John D.; Hays, Graeme C.
2013-01-01
Variations in environmental parameters (e.g. temperature) that form part of global climate change have been associated with shifts in the timing of seasonal events for a broad range of organisms. Most studies evaluating such phenological shifts of individual taxa have focused on a limited number of locations, making it difficult to assess how such shifts vary regionally across a species range. Here, by using 1445 records of the date of first nesting for loggerhead sea turtles (Caretta caretta) at different breeding sites, on different continents and in different years across a broad latitudinal range (25–39° ′N), we demonstrate that the gradient of the relationship between temperature and the date of first breeding is steeper at higher latitudes, i.e. the phenological responses to temperature appear strongest at the poleward range limit. These findings support the hypothesis that biological changes in response to climate change will be most acute at the poleward range limits and are in accordance with the predictions of MacArthur's hypothesis that poleward range limit for species range is environmentally limited. Our findings imply that the poleward populations of loggerheads are more sensitive to climate variations and thus they might display the impacts of climate change sooner and more prominently. PMID:23193130
Chandra Detection of a Parsec Scale Wind in the Broad Line Radio Galaxy 3C 382
NASA Technical Reports Server (NTRS)
Reeves, J. N.; Sambruna, R. M.; Braito, V.; Eracleous, Michael
2009-01-01
We present unambiguous evidence for a parsec scale wind in the Broad-Line Radio Galaxy (BLRG) 3C 382, the first radio-loud AGN whereby an outflow has been measured with X-ray grating spectroscopy. A 118 ks Chandra grating (HETG) observation of 3C 382 has revealed the presence of several high ionization absorption lines in the soft X-ray band, from Fe, Ne, Mg and Si. The absorption lines are blue-shifted with respect to the systemic velocity of 3C 382 by -840+/-60 km/s and are resolved by Chandra with a velocity width of sigma = 340+/-70 km/s. The outflow appears to originate from a single zone of gas of column density N(sub H) = 1.3 x 10(exp 21)/sq cm and ionization parameter log(E/erg/cm/s) = 2.45. From the above measurements we calculate that the outflow is observed on parsec scales, within the likely range from 10-1000 pc, i.e., consistent with an origin in the Narrow Line Region. Finally we also discuss the possibility of a much faster (0.1c) outflow component, based on a blue-shifted iron K(alpha) emission line in the Suzaku observation of 3C 382, which could have an origin in an accretion disk wind.
A novel Bayesian change-point algorithm for genome-wide analysis of diverse ChIPseq data types.
Xing, Haipeng; Liao, Willey; Mo, Yifan; Zhang, Michael Q
2012-12-10
ChIPseq is a widely used technique for investigating protein-DNA interactions. Read density profiles are generated by using next-sequencing of protein-bound DNA and aligning the short reads to a reference genome. Enriched regions are revealed as peaks, which often differ dramatically in shape, depending on the target protein(1). For example, transcription factors often bind in a site- and sequence-specific manner and tend to produce punctate peaks, while histone modifications are more pervasive and are characterized by broad, diffuse islands of enrichment(2). Reliably identifying these regions was the focus of our work. Algorithms for analyzing ChIPseq data have employed various methodologies, from heuristics(3-5) to more rigorous statistical models, e.g. Hidden Markov Models (HMMs)(6-8). We sought a solution that minimized the necessity for difficult-to-define, ad hoc parameters that often compromise resolution and lessen the intuitive usability of the tool. With respect to HMM-based methods, we aimed to curtail parameter estimation procedures and simple, finite state classifications that are often utilized. Additionally, conventional ChIPseq data analysis involves categorization of the expected read density profiles as either punctate or diffuse followed by subsequent application of the appropriate tool. We further aimed to replace the need for these two distinct models with a single, more versatile model, which can capably address the entire spectrum of data types. To meet these objectives, we first constructed a statistical framework that naturally modeled ChIPseq data structures using a cutting edge advance in HMMs(9), which utilizes only explicit formulas-an innovation crucial to its performance advantages. More sophisticated then heuristic models, our HMM accommodates infinite hidden states through a Bayesian model. We applied it to identifying reasonable change points in read density, which further define segments of enrichment. Our analysis revealed how our Bayesian Change Point (BCP) algorithm had a reduced computational complexity-evidenced by an abridged run time and memory footprint. The BCP algorithm was successfully applied to both punctate peak and diffuse island identification with robust accuracy and limited user-defined parameters. This illustrated both its versatility and ease of use. Consequently, we believe it can be implemented readily across broad ranges of data types and end users in a manner that is easily compared and contrasted, making it a great tool for ChIPseq data analysis that can aid in collaboration and corroboration between research groups. Here, we demonstrate the application of BCP to existing transcription factor(10,11) and epigenetic data(12) to illustrate its usefulness.
Coco, Andrew S; Horst, Michael A; Gambler, Angela S
2009-01-01
Background Overuse of broad-spectrum antibiotics is associated with antibiotic resistance. Acute otitis media (AOM) is responsible for a large proportion of antibiotics prescribed for US children. Rates of broad-spectrum antibiotic prescribing for AOM are unknown. Methods Analysis of the National Ambulatory Medical Care Survey and National Hospital Ambulatory Medical Care Survey, 1998 to 2004 (N = 6,878). Setting is office-based physicians, hospital outpatient departments, and emergency departments. Patients are children aged 12 years and younger prescribed antibiotics for acute otitis media. Main outcome measure is percentage of broad-spectrum antibiotics, defined as amoxicillin/clavulanate, macrolides, cephalosporins and quinolones. Results Broad-spectrum prescribing for acute otitis media increased from 34% of visits in 1998 to 45% of visits in 2004 (P < .001 for trend). The trend was primarily attributable to an increase in prescribing of amoxicillin/clavulanate (8% to 15%; P < .001 for trend) and macrolides (9% to 15%; P < .001 for trend). Prescribing remained stable for amoxicillin and cephalosporins while decreasing for narrow-spectrum agents (12% to 3%; P < .001 for trend) over the study period. Independent predictors of broad-spectrum antibiotic prescribing were ear pain, non-white race, public and other insurance (compared to private), hospital outpatient department setting, emergency department setting, and West region (compared to South and Midwest regions), each of which was associated with lower rates of broad-spectrum prescribing. Age and fever were not associated with prescribing choice. Conclusion Prescribing of broad-spectrum antibiotics for acute otitis media has steadily increased from 1998 to 2004. Associations with non-clinical factors suggest potential for improvement in prescribing practice. PMID:19552819
Fourastié, María Florencia; Gottlieb, Alexandra Marina; Poggio, Lidia; González, Graciela Esther
2018-03-01
The Northwestern Argentina (NWA) highland region is one of the southernmost areas of native maize cultivation. We studied variations of different cytological parameters, such as DNA contents, presence/absence of B chromosomes (Bs), and number and sequence composition of heterochromatic knobs in ten accessions of four maize landraces growing along a broad altitudinal cline in NWA. The aim of this work was to assess variations in cytological parameters and their relationship with the crop altitude of cultivation, in an adaptive context. The A-DNA content of the A chromosome complements showed 40% of difference between the lowest (4.5 pg) and the highest (6.3 pg) 2C value. This variation could be attributed to differences in number and size of heterochromatic knobs. Fluorescent in situ hybridization studies revealed the sequence composition of each knob, with a higher proportion of knobs composed of 180-bp repeats rather than TR-1 repeats, in all accessions. We also found numerical polymorphisms and the highest frequency of Bs reported in maize to this date. These results lead us to propose that the frequencies and doses of Bs are influenced by the landrace genotypical make-up. The Bs might be maintained in higher frequencies in those accessions having lower heterochromatin content, so as to preserve an optimal nucleotype. Furthermore, selective forces acting along the altitudinal gradient might be modulating the cytological parameters studied, as suggested by the significant correlations found among them.
Morphology of ionospheric F2 region variability associated with sudden stratospheric warmings
NASA Astrophysics Data System (ADS)
Gupta, Sumedha; Upadhayaya, A. K.
2017-07-01
The effect of sudden stratospheric warming (SSW) on the F2 region ionosphere has been extensively analyzed for the major event of year 2009, apart from a few reports on other major and minor events. Morphology of ionospheric responses during SSW can be better comprehended by analyzing such warming events under different solar, geomagnetic, and meteorological conditions. We investigate the features of F2 region variability following the SSW events of 2010, 2011, 2012, 2013, 2014, 2015, and 2016, using ionosonde data from the Asian region covering a broad latitudinal range from 26.6°N to 45.1°N. We find perceptible ionospheric variations in electron densities during these warming events which is accompanied by a large variation of 117% within enhancements, as compared to a meagre variation of 11% within depressions, during these events. We also examine 6 months data at these latitudes and longitudes and find that the maximum and minimum variations in F2 layer critical frequency are observed during each SSW period. The influence of quasi-stationary 16 day planetary waves is seen during these SSW events. Further, a recently proposed parameter "SSW integrated strength" by Vieira et al. (2017) to characterize SSW event with respect to ionosphere is also examined. It is seen that it does not fit well for these seven SSW events at these latitudes and longitudes.
Appalachian Regional Commission: 1985 Annual Report.
ERIC Educational Resources Information Center
Appalachian Regional Commission, Washington, DC.
In the third year of its finish-up program, the Appalachian Regional Commission (ARC) used its area development appropriation of $44 million to target three broad areas: (1) creating and retaining jobs in the region; (2) providing basic public facilities in the worst-off Appalachian counties; and (3) improving health care throughout the region.…
DOT National Transportation Integrated Search
1999-09-01
This is one of seven studies exploring processes for developing Intelligent Transportation Systems (ITS) architectures for regional, statewide, or commercial vehicle applications. This study was prepared for a broad-based, non-technical audience. The...
COLLABORATIVE RESEARCH, MONITORING AND ASSESSMENT IN THE MID-ATLANTIC REGION
EPA Region 3 to implement a long-term research, monitoring, and assessment program in the Mid-Atlantic region - the Mid-Atlantic Integrated Assessment (MAIA). The MAIA mission is to develop a broad-based partnership to integrate scientific knowledge into the decision-making proc...
Emergency medical services key performance measurement in Asian cities.
Rahman, Nik Hisamuddin; Tanaka, Hideharu; Shin, Sang Do; Ng, Yih Yng; Piyasuwankul, Thammapad; Lin, Chih-Hao; Ong, Marcus Eng Hock
2015-01-01
One of the key principles in the recommended standards is that emergency medical service (EMS) providers should continuously monitor the quality and safety of their services. This requires service providers to implement performance monitoring using appropriate and relevant measures including key performance indicators. In Asia, EMS systems are at different developmental phases and maturity. This will create difficultly in benchmarking or assessing the quality of EMS performance across the region. An attempt was made to compare the EMS performance index based on the structure, process, and outcome analysis. The data was collected from the Pan-Asian Resuscitation Outcome Study (PAROS) data among few Asian cities, namely, Tokyo, Osaka, Singapore, Bangkok, Kuala Lumpur, Taipei, and Seoul. The parameters of inclusions were broadly divided into structure, process, and outcome measurements. The data was collected by the site investigators from each city and keyed into the electronic web-based data form which is secured strictly by username and passwords. Generally, there seems to be a more uniformity for EMS performance parameters among the more developed EMS systems. The major problem with the EMS agencies in the cities of developing countries like Bangkok and Kuala Lumpur is inadequate or unavailable data pertaining to EMS performance. There is non-uniformity in the EMS performance measurement across the Asian cities. This creates difficulty for EMS performance index comparison and benchmarking. Hopefully, in the future, collaborative efforts such as the PAROS networking group will further enhance the standardization in EMS performance reporting across the region.
NASA Astrophysics Data System (ADS)
Rudowicz, C.; Gnutek, P.
2010-01-01
Central quantities in spectroscopy and magnetism of transition ions in crystals are crystal (ligand) field parameters (CFPs). For orthorhombic, monoclinic, and triclinic site symmetry CF analysis is prone to misinterpretations due to large number of CFPs and existence of correlated sets of alternative CFPs. In this review, we elucidate the intrinsic features of orthorhombic and lower symmetry CFPs and their implications. The alternative CFP sets, which yield identical energy levels, belong to different regions of CF parameter space and hence are intrinsically incompatible. Only their ‘images’ representing CFP sets expressed in the same region of CF parameter space may be directly compared. Implications of these features for fitting procedures and meaning of fitted CFPs are categorized into negative: pitfalls and positive: blessings. As a case study, the CFP sets for Tm 3+ ions in KLu(WO 4) 2 are analysed and shown to be intrinsically incompatible. Inadvertent, so meaningless, comparisons of incompatible CFP sets result in various pitfalls, e.g., controversial claims about the values of CFPs obtained by other researchers as well as incorrect structural conclusions or faulty systematics of CF parameters across rare-earth ion series based on relative magnitudes of incompatible CFPs. Such pitfalls bear on interpretation of, e.g., optical spectroscopy, inelastic neutron scattering, and magnetic susceptibility data. An extensive survey of pertinent literature was carried out to assess recognition of compatibility problems. Great portion of available orthorhombic and lower symmetry CFP sets are found intrinsically incompatible, yet these problems and their implications appear barely recognized. The considerable extent and consequences of pitfalls revealed by our survey call for concerted remedial actions of researchers. A general approach based on the rhombicity ratio standardization may solve compatibility problems. Wider utilization of alternative CFP sets in the multiple correlated fitting techniques may improve reliability ( blessing) of fitted CFPs. This review may be of interest to a broad range of researchers from condensed matter physicists to physical chemists working on, e.g., high temperature superconductors, luminescent, optoelectronic, laser, and magnetic materials.
NASA Astrophysics Data System (ADS)
Wang, Tao; Tong, Cunzhu; Wang, Lijie; Zeng, Yugang; Tian, Sicong; Shu, Shili; Zhang, Jian; Wang, Lijun
2016-11-01
High-power broad-area (BA) diode lasers often suffer from low beam quality, broad linewidth, and a widened slow-axis far field with increasing current. In this paper, a two-dimensional current-modulated structure is proposed and it is demonstrated that it can reduce not only the far-field sensitivity to the injection current but also the linewidth of the lasing spectra. Injection-insensitive lateral divergence was realized, and the beam parameter product (BPP) was improved by 36.5%. At the same time, the linewidth was decreased by about 45% without significant degradations of emission power and conversion efficiency.
Quantification of Uncertainty in Full-Waveform Moment Tensor Inversion for Regional Seismicity
NASA Astrophysics Data System (ADS)
Jian, P.; Hung, S.; Tseng, T.
2013-12-01
Routinely and instantaneously determined moment tensor solutions deliver basic information for investigating faulting nature of earthquakes and regional tectonic structure. The accuracy of full-waveform moment tensor inversion mostly relies on azimuthal coverage of stations, data quality and previously known earth's structure (i.e., impulse responses or Green's functions). However, intrinsically imperfect station distribution, noise-contaminated waveform records and uncertain earth structure can often result in large deviations of the retrieved source parameters from the true ones, which prohibits the use of routinely reported earthquake catalogs for further structural and tectonic interferences. Duputel et al. (2012) first systematically addressed the significance of statistical uncertainty estimation in earthquake source inversion and exemplified that the data covariance matrix, if prescribed properly to account for data dependence and uncertainty due to incomplete and erroneous data and hypocenter mislocation, cannot only be mapped onto the uncertainty estimate of resulting source parameters, but it also aids obtaining more stable and reliable results. Over the past decade, BATS (Broadband Array in Taiwan for Seismology) has steadily devoted to building up a database of good-quality centroid moment tensor (CMT) solutions for moderate to large magnitude earthquakes that occurred in Taiwan area. Because of the lack of the uncertainty quantification and reliability analysis, it remains controversial to use the reported CMT catalog directly for further investigation of regional tectonics, near-source strong ground motions, and seismic hazard assessment. In this study, we develop a statistical procedure to make quantitative and reliable estimates of uncertainty in regional full-waveform CMT inversion. The linearized inversion scheme adapting efficient estimation of the covariance matrices associated with oversampled noisy waveform data and errors of biased centroid positions is implemented and inspected for improving source parameter determination of regional seismicity in Taiwan. Synthetic inversion tests demonstrate the resolved moment tensors would better match the hypothetical CMT solutions, and tend to suppress unreal non-double-couple components and reduce the trade-off between focal mechanism and centroid depth if individual signal-to-noise ratios and correlation lengths for 3-component seismograms at each station and mislocation uncertainties are properly taken into account. We further testify the capability of our scheme in retrieving the robust CMT information for mid-sized (Mw~3.5) and offshore earthquakes in Taiwan, which offers immediate and broad applications in detailed modelling of regional stress field and deformation pattern and mapping of subsurface velocity structures.
Neural correlates of emotional regulation while viewing films.
Shimamura, Arthur P; Marian, Diane E; Haskins, Andrew L
2013-03-01
Negative and arousal-inducing film clips were used to assess the neural correlates of emotional expression and suppression. Compared to viewing neutral clips, both negative (disgusting) and arousal (action) clips activated primarily posterior regions in the parietal and occipital cortex when participants were instructed to express their emotions. When instructed to suppress their emotions while viewing negative clips, a broad frontoparietal network was activated that included lateral, medial, and orbital regions in the prefrontal cortex as well as lateral and medial regions of the posterior parietal cortex. The suppression of arousal clips also activated prefrontal and parietal regions, though not to the same extent as the suppression of negative clips. The findings demonstrate the potency of using movies to engage emotional processes and highlight a broad frontoparietal network that is engaged during the suppression of negative film clips.
Prompt identification of tsunamigenic earthquakes from 3-component seismic data
NASA Astrophysics Data System (ADS)
Kundu, Ajit; Bhadauria, Y. S.; Basu, S.; Mukhopadhyay, S.
2016-10-01
An Artificial Neural Network (ANN) based algorithm for prompt identification of shallow focus (depth < 70 km) tsunamigenic earthquakes at a regional distance is proposed in the paper. The promptness here refers to decision making as fast as 5 min after the arrival of LR phase in the seismogram. The root mean square amplitudes of seismic phases recorded by a single 3-component station have been considered as inputs besides location and magnitude. The trained ANN has been found to categorize 100% of the new earthquakes successfully as tsunamigenic or non-tsunamigenic. The proposed method has been corroborated by an alternate mapping technique of earthquake category estimation. The second method involves computation of focal parameters, estimation of water volume displaced at the source and eventually deciding category of the earthquake. The method has been found to identify 95% of the new earthquakes successfully. Both the methods have been tested using three component broad band seismic data recorded at PALK (Pallekele, Sri Lanka) station provided by IRIS for earthquakes originating from Sumatra region of magnitude 6 and above. The fair agreement between the methods ensures that a prompt alert system could be developed based on proposed method. The method would prove to be extremely useful for the regions that are not adequately instrumented for azimuthal coverage.
NASA Astrophysics Data System (ADS)
Baili, Amira; Cherif, Rim; Zghal, Mourad
2015-01-01
A new design of all-normal and near-zero flattened dispersion based on chalcogenide nanophotonic crystal fiber (PCF) has been proposed to generate smooth and ultra-broadband supercontinuum (SC) in the midinfrared (IR) region. With the optimized geometric parameters, the As2Se3 nano-PCF has been found to be suitable for two-octave supercontinuum generation (SCG). We designed a nano-PCF having a flat top dispersion curve with a maximum value of -2.3 [ps/(nm km)] and a large nonlinear coefficient equal to 7250 W around the wavelength of 5.24 μm. By numerical simulations, we predict the generation of a very broadband SC in the mid-IR region extending from 2 to 10 μm in only 2-mm fiber lengths by using a femtosecond laser having a full-width at half-maximum of 50 fs and a relatively low energy of E=80 pJ. The generated SC demonstrates perfect coherence property over the entire bandwidth. SC generation extended into the mid-IR spectral region has potential usefulness in a variety of applications requiring a broad and mid-IR spectrum, such as WDM sources, fiber sensing, IR spectroscopy, fiber laser, and optical tomography coherence.
Dynamics of a neuron model in different two-dimensional parameter-spaces
NASA Astrophysics Data System (ADS)
Rech, Paulo C.
2011-03-01
We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades.
Practice Parameter on Child and Adolescent Mental Health Care in Community Systems of Care
ERIC Educational Resources Information Center
Journal of the American Academy of Child and Adolescent Psychiatry, 2007
2007-01-01
This parameter presents overarching principles and practices for child and adolescent mental health care in community systems of care. Community systems of care are defined broadly as comprising the wide array of child-serving agencies, programs, and practitioners (both public and private), in addition to natural community supports such as…
NASA Astrophysics Data System (ADS)
Chouaib, Wafa; Alila, Younes; Caldwell, Peter V.
2018-05-01
The need for predictions of flow time-series persists at ungauged catchments, motivating the research goals of our study. By means of the Sacramento model, this paper explores the use of parameter transfer within homogeneous regions of similar climate and flow characteristics and makes comparisons with predictions from a priori parameters. We assessed the performance using the Nash-Sutcliffe (NS), bias, mean monthly hydrograph and flow duration curve (FDC). The study was conducted on a large dataset of 73 catchments within the eastern US. Two approaches to the parameter transferability were developed and evaluated; (i) the within homogeneous region parameter transfer using one donor catchment specific to each region, (ii) the parameter transfer disregarding the geographical limits of homogeneous regions, where one donor catchment was common to all regions. Comparisons between both parameter transfers enabled to assess the gain in performance from the parameter regionalization and its respective constraints and limitations. The parameter transfer within homogeneous regions outperformed the a priori parameters and led to a decrease in bias and increase in efficiency reaching a median NS of 0.77 and a NS of 0.85 at individual catchments. The use of FDC revealed the effect of bias on the inaccuracy of prediction from parameter transfer. In one specific region, of mountainous and forested catchments, the prediction accuracy of the parameter transfer was less satisfactory and equivalent to a priori parameters. In this region, the parameter transfer from the outsider catchment provided the best performance; less-biased with smaller uncertainty in medium flow percentiles (40%-60%). The large disparity of energy conditions explained the lack of performance from parameter transfer in this region. Besides, the subsurface stormflow is predominant and there is a likelihood of lateral preferential flow, which according to its specific properties further explained the reduced efficiency. Testing the parameter transferability using criteria of similar climate and flow characteristics at ungauged catchments and comparisons with predictions from a priori parameters are a novelty. The ultimate limitations of both approaches are recognized and recommendations are made for future research.
Abad-Franch, Fernando; Ferraz, Gonçalo; Campos, Ciro; Palomeque, Francisco S.; Grijalva, Mario J.; Aguilar, H. Marcelo; Miles, Michael A.
2010-01-01
Background Failure to detect a disease agent or vector where it actually occurs constitutes a serious drawback in epidemiology. In the pervasive situation where no sampling technique is perfect, the explicit analytical treatment of detection failure becomes a key step in the estimation of epidemiological parameters. We illustrate this approach with a study of Attalea palm tree infestation by Rhodnius spp. (Triatominae), the most important vectors of Chagas disease (CD) in northern South America. Methodology/Principal Findings The probability of detecting triatomines in infested palms is estimated by repeatedly sampling each palm. This knowledge is used to derive an unbiased estimate of the biologically relevant probability of palm infestation. We combine maximum-likelihood analysis and information-theoretic model selection to test the relationships between environmental covariates and infestation of 298 Amazonian palm trees over three spatial scales: region within Amazonia, landscape, and individual palm. Palm infestation estimates are high (40–60%) across regions, and well above the observed infestation rate (24%). Detection probability is higher (∼0.55 on average) in the richest-soil region than elsewhere (∼0.08). Infestation estimates are similar in forest and rural areas, but lower in urban landscapes. Finally, individual palm covariates (accumulated organic matter and stem height) explain most of infestation rate variation. Conclusions/Significance Individual palm attributes appear as key drivers of infestation, suggesting that CD surveillance must incorporate local-scale knowledge and that peridomestic palm tree management might help lower transmission risk. Vector populations are probably denser in rich-soil sub-regions, where CD prevalence tends to be higher; this suggests a target for research on broad-scale risk mapping. Landscape-scale effects indicate that palm triatomine populations can endure deforestation in rural areas, but become rarer in heavily disturbed urban settings. Our methodological approach has wide application in infectious disease research; by improving eco-epidemiological parameter estimation, it can also significantly strengthen vector surveillance-control strategies. PMID:20209149
Climate change impacts on terrestrial ecosystems in the multi-state region centered on Chicago
USDA-ARS?s Scientific Manuscript database
This paper describes the potential impacts of warming temperatures and changing precipitation on plants wildlife, invasive species, pests and agricultural ecosystems across the multistate region centered on Chicago, Illinois. We define the region broadly to include several hundred kilometers. We c...
Janssen, Annika; Kaiser, Stefanie; Meißner, Karin; Brenke, Nils; Menot, Lenaick; Martínez Arbizu, Pedro
2015-01-01
Heightened interest in the exploitation of deep seafloor minerals is raising questions on the consequences for the resident fauna. Assessing species ranges and determination of processes underlying current species distributions are prerequisites to conservation planning and predicting faunal responses to changing environmental conditions. The abyssal central Pacific nodule belt, located between the Clarion and Clipperton Fracture Zones (CCZ), is an area prospected for mining of polymetallic nodules. We examined variations in genetic diversity and broad-scale connectivity of isopods and polychaetes across the CCZ. Faunal assemblages were studied from two mining claims (the eastern German and French license areas) located 1300 km apart and influenced by different productivity regimes. Using a reverse taxonomy approach based on DNA barcoding, we tested to what extent distance and large-scale changes in environmental parameters lead to differentiation in two macrofaunal taxa exhibiting different functions and life-history patterns. A fragment of the mitochondrial gene Cytochrome Oxidase Subunit 1 (COI) was analyzed. At a 97% threshold the molecular operational taxonomic units (MOTUs) corresponded well to morphological species. Molecular analyses indicated high local and regional diversity mostly because of large numbers of singletons in the samples. Consequently, variation in composition of genotypic clusters between sites was exceedingly large partly due to paucity of deep-sea sampling and faunal patchiness. A higher proportion of wide-ranging species in polychaetes was contrasted with mostly restricted distributions in isopods. Remarkably, several cryptic lineages appeared to be sympatric and occurred in taxa with putatively good dispersal abilities, whereas some brooding lineages revealed broad distributions across the CCZ. Geographic distance could explain variation in faunal connectivity between regions and sites to some extent, while assumed dispersal capabilities were not as important. PMID:25671322
Kevin M. Potter; Christopher W. Woodall; Christopher M. Oswalt; Basil V. III Iannone; Songlin Fei
2015-01-01
Biodiversity is expected to convey numerous functional benefits to forested ecosystems, including increased productivity and resilience. When assessing biodiversity, however, statistics that account for evolutionary relationships among species may be more ecologically meaningful than traditional measures such as species richness. In three broad-scale studies, we...
Explaining abrupt spatial transitions in agro-ecosystem responses to periods of extended drought
USDA-ARS?s Scientific Manuscript database
During the 1930’s, the North American central grassland region (CGR) experienced an extreme multi-year drought that resulted in broad scale plant mortality, massive dust storms and losses of soil and nutrients. Southern mixed grasslands were among the worst affected and experienced severe broad scal...
Socioeconomic evaluation of broad-scale land management strategies.
Lisa K. Crone; Richard W. Haynes
2001-01-01
This paper examines the socioeconomic effects of alternative management strategies for Forest Service and Bureau of Land Management lands in the interior Columbia basin. From a broad-scale perspective, there is little impact or variation between alternatives in terms of changes in total economic activity or social conditions in the region. However, adopting a finer...
Switchable Scattering Meta-Surfaces for Broadband Terahertz Modulation
Unlu, M.; Hashemi, M. R.; Berry, C. W.; Li, S.; Yang, S.-H.; Jarrahi, M.
2014-01-01
Active tuning and switching of electromagnetic properties of materials is of great importance for controlling their interaction with electromagnetic waves. In spite of their great promise, previously demonstrated reconfigurable metamaterials are limited in their operation bandwidth due to their resonant nature. Here, we demonstrate a new class of meta-surfaces that exhibit electrically-induced switching in their scattering parameters at room temperature and over a broad range of frequencies. Structural configuration of the subwavelength meta-molecules determines their electromagnetic response to an incident electromagnetic radiation. By reconfiguration of the meta-molecule structure, the strength of the induced electric field and magnetic field in the opposite direction to the incident fields are varied and the scattering parameters of the meta-surface are altered, consequently. We demonstrate a custom-designed meta-surface with switchable scattering parameters at a broad range of terahertz frequencies, enabling terahertz intensity modulation with record high modulation depths and modulation bandwidths through a fully integrated, voltage-controlled device platform at room temperature. PMID:25028123
Extending semi-numeric reionization models to the first stars and galaxies
NASA Astrophysics Data System (ADS)
Koh, Daegene; Wise, John H.
2018-03-01
Semi-numeric methods have made it possible to efficiently model the epoch of reionization (EoR). While most implementations involve a reduction to a simple three-parameter model, we introduce a new mass-dependent ionizing efficiency parameter that folds in physical parameters that are constrained by the latest numerical simulations. This new parametrization enables the effective modelling of a broad range of host halo masses containing ionizing sources, extending from the smallest Population III host haloes with M ˜ 106 M⊙, which are often ignored, to the rarest cosmic peaks with M ˜ 1012 M⊙ during EoR. We compare the resulting ionizing histories with a typical three-parameter model and also compare with the latest constraints from the Planck mission. Our model results in an optical depth due to Thomson scattering, τe = 0.057, that is consistent with Planck. The largest difference in our model is shown in the resulting bubble size distributions that peak at lower characteristic sizes and are broadened. We also consider the uncertainties of the various physical parameters, and comparing the resulting ionizing histories broadly disfavours a small contribution from galaxies. The smallest haloes cease a meaningful contribution to the ionizing photon budget after z = 10, implying that they play a role in determining the start of EoR and little else.
NASA Technical Reports Server (NTRS)
Sherman, J. W., III
1975-01-01
The papers presented in the marine session may be broadly grouped into several classes: microwave region instruments compared to infrared and visible region sensors, satellite techniques compared to aircraft techniques, open ocean applications compared to coastal region applications, and basic research and understanding of ocean phenomena compared to research techniques that offer immediate applications.
Extraterrestrial intelligence: an observational approach.
Murray, B; Gulkis, S; Edelson, R E
1978-02-03
The microwave region of the electromagnetic spectrum, a plausible regime for signals from extraterrestrial intelligences, is largely unexplored. With new technology, particularly in data processing and low-noise reception, surveys can be conducted over broad regions of frequency and space with existing antennas at flux densities plausible for interstellar signals. An all-sky, broad-band survey lasting perhaps 5 years can be structured so that even negative results would establish significant boundaries on the regime in which such signals may be found. The technology and techniques developed and much of the data acquired would be applicable to radio astronomy and deep-space communications.
Phenomenological MSSM interpretation of CMS searches in pp collisions at $$ \\sqrt{s}=7 $$ and 8 TeV
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2016-10-24
Searches for new physics by the CMS collaboration are interpreted in the framework of the phenomenological minimal supersymmetric standard model (pMSSM). The data samples used in this study were collected atmore » $$ \\sqrt{s}=7 $$ and 8 TeV and have integrated luminosities of 5.0 fb$$^{-1}$$ and 19.5 fb$$^{-1}$$, respectively. A global Bayesian analysis is performed, incorporating results from a broad range of CMS supersymmetry searches, as well as constraints from other experiments. Because the pMSSM incorporates several well-motivated assumptions that reduce the 120 parameters of the MSSM to just 19 parameters defined at the electroweak scale, it is possible to assess the results of the study in a relatively straightforward way. Approximately half of the model points in a potentially accessible subspace of the pMSSM are excluded, including all pMSSM model points with a gluino mass below 500 GeV, as well as models with a squark mass less than 300 GeV. Models with chargino and neutralino masses below 200 GeV are disfavored, but no mass range of model points can be ruled out based on the analyses considered. Lastly, the nonexcluded regions in the pMSSM parameter space are characterized in terms of physical processes and key observables, and implications for future searches are discussed.« less
Phenomenological MSSM interpretation of CMS searches in pp collisions at $$ \\sqrt{s}=7 $$ and 8 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.
Searches for new physics by the CMS collaboration are interpreted in the framework of the phenomenological minimal supersymmetric standard model (pMSSM). The data samples used in this study were collected atmore » $$ \\sqrt{s}=7 $$ and 8 TeV and have integrated luminosities of 5.0 fb$$^{-1}$$ and 19.5 fb$$^{-1}$$, respectively. A global Bayesian analysis is performed, incorporating results from a broad range of CMS supersymmetry searches, as well as constraints from other experiments. Because the pMSSM incorporates several well-motivated assumptions that reduce the 120 parameters of the MSSM to just 19 parameters defined at the electroweak scale, it is possible to assess the results of the study in a relatively straightforward way. Approximately half of the model points in a potentially accessible subspace of the pMSSM are excluded, including all pMSSM model points with a gluino mass below 500 GeV, as well as models with a squark mass less than 300 GeV. Models with chargino and neutralino masses below 200 GeV are disfavored, but no mass range of model points can be ruled out based on the analyses considered. Lastly, the nonexcluded regions in the pMSSM parameter space are characterized in terms of physical processes and key observables, and implications for future searches are discussed.« less
Phenomenological MSSM interpretation of CMS searches in pp collisions at √{s}=7 and 8 TeV
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; de Visscher, S.; Delaere, C.; Delcourt, M.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Elkafrawy, T.; Mahmoud, M. A.; Mohammed, Y.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Kraml, S.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Ruiz Alvarez, J. D.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sakharov, A.; Sekmen, S.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Traczyk, P.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Chadeeva, M.; Danilov, M.; Markin, O.; Rusinov, V.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; Curras, E.; de Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kortelainen, M. J.; Kousouris, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Gunion, J.; Ko, W.; Lander, R.; McLean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lewis, J.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Bruner, C.; Kenny, R. P.; Majumder, D.; Malek, M.; McBrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.
2016-10-01
Searches for new physics by the CMS collaboration are interpreted in the framework of the phenomenological minimal supersymmetric standard model (pMSSM). The data samples used in this study were collected at √{s}=7 and 8 TeV and have integrated luminosities of 5.0 fb-1 and 19.5 fb-1, respectively. A global Bayesian analysis is performed, incorporating results from a broad range of CMS supersymmetry searches, as well as constraints from other experiments. Because the pMSSM incorporates several well-motivated assumptions that reduce the 120 parameters of the MSSM to just 19 parameters defined at the electroweak scale, it is possible to assess the results of the study in a relatively straightforward way. Approximately half of the model points in a potentially accessible subspace of the pMSSM are excluded, including all pMSSM model points with a gluino mass below 500 GeV, as well as models with a squark mass less than 300 GeV. Models with chargino and neutralino masses below 200 GeV are disfavored, but no mass range of model points can be ruled out based on the analyses considered. The nonexcluded regions in the pMSSM parameter space are characterized in terms of physical processes and key observables, and implications for future searches are discussed. [Figure not available: see fulltext.
CLOSED-FIELD CORONAL HEATING DRIVEN BY WAVE TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downs, Cooper; Lionello, Roberto; Mikić, Zoran
To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditionsmore » is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duesbery, M.S.
1993-11-30
This program aims at improving current methods of lifetime assessment by building in the characteristics of the micro-mechanisms known to be responsible for damage and failure. The broad approach entails the integration and, where necessary, augmentation of the micro-scale research results currently available in the literature into a macro-sale model with predictive capability. In more detail, the program will develop a set of hierarchically structured models at different length scales, from atomic to macroscopic, at each level taking as parametric input the results of the model at the next smaller scale. In this way the known microscopic properties can bemore » transported by systematic procedures to the unknown macro-scale region. It may mot be possible to eliminate empiricism completely, because some of the quantities involved cannot yet be estimated to the required degree of precision. In this case the aim will be at least to eliminate functional empiricism. Restriction of empiricism to the choice of parameters to be input to known functional forms permits some confidence in extrapolation procedures and has the advantage that the models can readily be updated as better estimates of the parameters become available.« less
Bayesian multivariate Poisson abundance models for T-cell receptor data.
Greene, Joshua; Birtwistle, Marc R; Ignatowicz, Leszek; Rempala, Grzegorz A
2013-06-07
A major feature of an adaptive immune system is its ability to generate B- and T-cell clones capable of recognizing and neutralizing specific antigens. These clones recognize antigens with the help of the surface molecules, called antigen receptors, acquired individually during the clonal development process. In order to ensure a response to a broad range of antigens, the number of different receptor molecules is extremely large, resulting in a huge clonal diversity of both B- and T-cell receptor populations and making their experimental comparisons statistically challenging. To facilitate such comparisons, we propose a flexible parametric model of multivariate count data and illustrate its use in a simultaneous analysis of multiple antigen receptor populations derived from mammalian T-cells. The model relies on a representation of the observed receptor counts as a multivariate Poisson abundance mixture (m PAM). A Bayesian parameter fitting procedure is proposed, based on the complete posterior likelihood, rather than the conditional one used typically in similar settings. The new procedure is shown to be considerably more efficient than its conditional counterpart (as measured by the Fisher information) in the regions of m PAM parameter space relevant to model T-cell data. Copyright © 2013 Elsevier Ltd. All rights reserved.
Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor
NASA Astrophysics Data System (ADS)
Som, S.; Choubey, A.; Sharma, S. K.
2012-09-01
This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.
Transient chaos and crisis phenomena in butterfly valves driven by solenoid actuators
NASA Astrophysics Data System (ADS)
Naseradinmousavi, Peiman; Nataraj, C.
2012-11-01
Chilled water systems used in the industry and on board ships are critical for safe and reliable operation. It is hence important to understand the fundamental physics of these systems. This paper focuses in particular on a critical part of the automation system, namely, actuators and valves that are used in so-called "smart valve" systems. The system is strongly nonlinear, and necessitates a nonlinear dynamic analysis to be able to predict all critical phenomena that affect effective operation and efficient design. The derived mathematical model includes electromagnetics, fluid mechanics, and mechanical dynamics. Nondimensionalization has been carried out in order to reduce the large number of parameters to a few critical independent sets to help carry out a broad parametric analysis. The system stability analysis is then carried out with the aid of the tools from nonlinear dynamic analysis. This reveals that the system is unstable in a certain region of the parameter space. The system is also shown to exhibit crisis and transient chaotic responses; this is characterized using Lyapunov exponents and power spectra. Knowledge and avoidance of these dangerous regimes is necessary for successful and safe operation.
Closed-field Coronal Heating Driven by Wave Turbulence
NASA Astrophysics Data System (ADS)
Downs, Cooper; Lionello, Roberto; Mikić, Zoran; Linker, Jon A.; Velli, Marco
2016-12-01
To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.
NASA Astrophysics Data System (ADS)
Demirbaş, Şevki; Fidanboy, Hikmet; Kurt, Erol
2016-08-01
In this paper, detailed analyses of the chaotic behavior observed in a buck-boost converter are presented. Although this basic converter system is already known world-wide for the purpose of dc-dc conversion of the output of renewable energy systems, it indicates certain chaotic regimes where both the output amplitude and frequency change randomly. This chaotic regime can yield an unstable output over the resistive or resistive/inductive electrical loads. This study presents a detailed map for the regular and chaotic regions in terms of material parameters, such as converter capacitance C, resistive load R, and inductive load L. Thus, the stable area of operation for efficient and renewable electricity production will be ascertained for the studied converter system. We emphasize that the material parameters C, R, and L play important roles in generating energy from the solar cell; indeed, the stability increases with higher values of the converter capacitor and load inductance, whereas it decreases according to the resistive load. A number of periodic windows have been observed and the output frequency gives a broad-band spectrum of up to 50 kHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharrati, Hedi; Agrebi, Amel; Karaoui, Mohamed-Karim
2007-04-15
X-ray buildup factors of lead in broad beam geometry for energies from 15 to 150 keV are determined using the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C). The obtained buildup factors data are fitted to a modified three parameter Archer et al. model for ease in calculating the broad beam transmission with computer at any tube potentials/filters combinations in diagnostic energies range. An example for their use to compute the broad beam transmission at 70, 100, 120, and 140 kVp is given. The calculated broad beam transmission is compared to data derived from literature, presenting good agreement.more » Therefore, the combination of the buildup factors data as determined and a mathematical model to generate x-ray spectra provide a computationally based solution to broad beam transmission for lead barriers in shielding x-ray facilities.« less
Fatigue failure of materials under broad band random vibrations
NASA Technical Reports Server (NTRS)
Huang, T. C.; Lanz, R. W.
1971-01-01
The fatigue life of material under multifactor influence of broad band random excitations has been investigated. Parameters which affect the fatigue life are postulated to be peak stress, variance of stress and the natural frequency of the system. Experimental data were processed by the hybrid computer. Based on the experimental results and regression analysis a best predicting model has been found. All values of the experimental fatigue lives are within the 95% confidence intervals of the predicting equation.
NASA Astrophysics Data System (ADS)
Coatman, Liam; Hewett, Paul C.; Banerji, Manda; Richards, Gordon T.; Hennawi, Joseph F.; Prochaska, Jason X.
2017-01-01
Accurate black-hole (BH) mass estimates for high-redshift (z>2) quasars are essential for better understanding the relationship between super-massive BH accretion and star formation. Progress is currently limited by the large systematic errors in virial BH-masses derived from the CIV broad emission line, which is often significantly blueshifted relative to systemic, most likely due to outflowing gas in the quasar broad-line region. We have assembled Balmer-line based BH masses for a large sample of 230 high-luminosity (1045.5-1048 ergs-1), redshift 1.5
Wéra, A-C; Barazzuol, L; Jeynes, J C G; Merchant, M J; Suzuki, M; Kirkby, K J
2014-08-07
It is well known that broad beam irradiation with heavy ions leads to variation in the number of hit(s) received by each cell as the distribution of particles follows the Poisson statistics. Although the nucleus area will determine the number of hit(s) received for a given dose, variation amongst its irradiated cell population is generally not considered. In this work, we investigate the effect of the nucleus area's distribution on the survival fraction. More specifically, this work aims to explain the deviation, or tail, which might be observed in the survival fraction at high irradiation doses. For this purpose, the nucleus area distribution was added to the beam Poisson statistics and the Linear-Quadratic model in order to fit the experimental data. As shown in this study, nucleus size variation, and the associated Poisson statistics, can lead to an upward survival trend after broad beam irradiation. The influence of the distribution parameters (mean area and standard deviation) was studied using a normal distribution, along with the Linear-Quadratic model parameters (α and β). Finally, the model proposed here was successfully tested to the survival fraction of LN18 cells irradiated with a 85 keV µm(- 1) carbon ion broad beam for which the distribution in the area of the nucleus had been determined.
2007-06-11
Saturn A ring displays a marked asymmetry in brightness between the region nearer to the Cassini spacecraft and the region farther from it. The A ring is the broad, bright section of the rings outside of the dark B ring
Southern Florida River of Grass
2002-04-17
Florida Everglades is a region of broad, slow-moving sheets of water flowing southward over low-lying areas from Lake Okeechobeeto the Gulf of Mexico. These images fromNASA Terra satellite show the Everglades region on January 16, 2002.
Multiparameter Estimation in Networked Quantum Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.
We introduce a general model for a network of quantum sensors, and we use this model to consider the question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. Thismore » immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or non-linear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.« less
Multiparameter Estimation in Networked Quantum Sensors
Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.
2018-02-21
We introduce a general model for a network of quantum sensors, and we use this model to consider the question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. Thismore » immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or non-linear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.« less
There is an urgent need for EPA to develop protocols for establishing Total Maximum Daily Loads (TMDLs) in streams, lakes and estuaries. A cooperative TMDL field data collection project between ORD and Region 4 is ongoing in the South Fork Broad River Watershed (SFBR), a 245.18 ...
NASA Astrophysics Data System (ADS)
Krenn, Julia; Zangerl, Christian; Mergili, Martin
2017-04-01
r.randomwalk is a GIS-based, multi-functional, conceptual open source model application for forward and backward analyses of the propagation of mass flows. It relies on a set of empirically derived, uncertain input parameters. In contrast to many other tools, r.randomwalk accepts input parameter ranges (or, in case of two or more parameters, spaces) in order to directly account for these uncertainties. Parameter spaces represent a possibility to withdraw from discrete input values which in most cases are likely to be off target. r.randomwalk automatically performs multiple calculations with various parameter combinations in a given parameter space, resulting in the impact indicator index (III) which denotes the fraction of parameter value combinations predicting an impact on a given pixel. Still, there is a need to constrain the parameter space used for a certain process type or magnitude prior to performing forward calculations. This can be done by optimizing the parameter space in terms of bringing the model results in line with well-documented past events. As most existing parameter optimization algorithms are designed for discrete values rather than for ranges or spaces, the necessity for a new and innovative technique arises. The present study aims at developing such a technique and at applying it to derive guiding parameter spaces for the forward calculation of rock avalanches through back-calculation of multiple events. In order to automatize the work flow we have designed r.ranger, an optimization and sensitivity analysis tool for parameter spaces which can be directly coupled to r.randomwalk. With r.ranger we apply a nested approach where the total value range of each parameter is divided into various levels of subranges. All possible combinations of subranges of all parameters are tested for the performance of the associated pattern of III. Performance indicators are the area under the ROC curve (AUROC) and the factor of conservativeness (FoC). This strategy is best demonstrated for two input parameters, but can be extended arbitrarily. We use a set of small rock avalanches from western Austria, and some larger ones from Canada and New Zealand, to optimize the basal friction coefficient and the mass-to-drag ratio of the two-parameter friction model implemented with r.randomwalk. Thereby we repeat the optimization procedure with conservative and non-conservative assumptions of a set of complementary parameters and with different raster cell sizes. Our preliminary results indicate that the model performance in terms of AUROC achieved with broad parameter spaces is hardly surpassed by the performance achieved with narrow parameter spaces. However, broad spaces may result in very conservative or very non-conservative predictions. Therefore, guiding parameter spaces have to be (i) broad enough to avoid the risk of being off target; and (ii) narrow enough to ensure a reasonable level of conservativeness of the results. The next steps will consist in (i) extending the study to other types of mass flow processes in order to support forward calculations using r.randomwalk; and (ii) in applying the same strategy to the more complex, dynamic model r.avaflow.
Astrophysical hints of axion-like particles
NASA Astrophysics Data System (ADS)
Roncadelli, M.; Galanti, G.; Tavecchio, F.; Bonnoli, G.
2015-01-01
After reviewing three astrophysical hints of the existence of axion-like particles (ALPs), we describe in more detail a new similar hint involving flat spectrum radio quasars (FSRQs). Detection of FSRQs above about 20GeV pose a challenge to very-high-energy (VHE) astrophysics, because at those energies the ultraviolet emission from their broad line region should prevent photons produced by the central engine to leave the source. Although a few astrophysical explanations have been put forward, they are totally ad hoc. We show that a natural explanation instead arises within the conventional models of FSRQs provided that photon-ALP oscillations occur inside the source. Our analysis takes the FSRQ PKR 1222+206 as an example, and it looks tantalizing that basically the same choice of the free model parameters adopted in this case is consistent with those that provide the other three hints of the existence of ALPs.
Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets
NASA Astrophysics Data System (ADS)
Fujita, Hiroyuki; Sato, Masahiro
2017-02-01
Controlling electric and magnetic properties of matter by laser beams is actively explored in the broad region of condensed matter physics, including spintronics and magneto-optics. Here we theoretically propose an application of optical and electron vortex beams carrying intrinsic orbital angular momentum to chiral ferro- and antiferromagnets. We analyze the time evolution of spins in chiral magnets under irradiation of vortex beams by using the stochastic Landau-Lifshitz-Gilbert equation. We show that beam-driven nonuniform temperature leads to a class of ring-shaped magnetic defects, what we call skyrmion multiplex, as well as conventional skyrmions. We discuss the proper beam parameters and the optimal way of applying the beams for the creation of these topological defects. Our findings provide an ultrafast scheme of generating topological magnetic defects in a way applicable to both metallic and insulating chiral (anti-) ferromagnets.
Primordial black hole formation by vacuum bubbles
NASA Astrophysics Data System (ADS)
Deng, Heling; Vilenkin, Alexander
2017-12-01
Vacuum bubbles may nucleate during the inflationary epoch and expand, reaching relativistic speeds. After inflation ends, the bubbles are quickly slowed down, transferring their momentum to a shock wave that propagates outwards in the radiation background. The ultimate fate of the bubble depends on its size. Bubbles smaller than certain critical size collapse to ordinary black holes, while in the supercritical case the bubble interior inflates, forming a baby universe, which is connected to the exterior region by a wormhole. The wormhole then closes up, turning into two black holes at its two mouths. We use numerical simulations to find the masses of black holes formed in this scenario, both in subcritical and supercritical regime. The resulting mass spectrum is extremely broad, ranging over many orders of magnitude. For some parameter values, these black holes can serve as seeds for supermassive black holes and may account for LIGO observations.
Heating, Cooling, and Gravitational Instabilities in Protostellar and Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Pickett, B. K.; Mejia, A. C.; Durisen, R. H.
2001-12-01
We present three-dimensional hydrodynamic simulations of protostellar disk models, in order to explore how the interplay between heating and cooling regulates significant gravitational instabilities. Artificial viscosity is used to treat irreversible heating, such as would occur in shocks; volumetric cooling at several different rates is also applied throughout a broad radial region of the disk. We study the evolution of a disk that is already unstable (due to the low value of the Toomre Q parameter), and a marginally unstable disk that is cooled towards instability. The evolutions have implications for the transport of mass and angular momentum in protostellar disks, the effects of gravitational instabilities on the vertical structure of the disks, and the formation of stellar and substellar companions on dynamic time scales due to disk instabilties. This work is supported by grants from the NASA Planetary Geology and Geophysics and Origins of Solar Systems Programs.
Enhancing the spectral response of filled bolometer arrays for submillimeter astronomy.
Revéret, Vincent; Rodriguez, Louis; Agnèse, Patrick
2010-12-10
Future missions for astrophysical studies in the submillimeter region will need detectors with very high sensitivity and large fields of view. Bolometer arrays can fulfill these requirements over a very broad band. We describe a technique that enables bolometer arrays that use quarter-wave cavities to have a high spectral response over most of the submillimeter band. This technique is based on the addition on the front of the array of an antireflecting dielectric layer. The optimum parameters (layer thickness and distance to the array) are determined by a 2D analytic code. This general principle is applied to the case of Herschel PACS bolometers (optimized for the 60 to 210 μm band). As an example, we demonstrate experimentally that a PACS array covered by a 138 μm thick silicon layer can improve the spectral response by a factor of 1.7 in the 450 μm band.
Giant hub Src and Syk tyrosine kinase thermodynamic profiles recapitulate evolution
NASA Astrophysics Data System (ADS)
Phillips, J. C.
2017-10-01
Thermodynamic scaling theory, previously applied mainly to small proteins, here analyzes quantitative evolution of the titled functional network giant hub enzymes. The broad domain structure identified homologically is confirmed hydropathically using amino acid sequences only. The most surprising results concern the evolution of the tyrosine kinase globular surface roughness from avians to mammals, which is first order, compared to the evolution within mammals from rodents to humans, which is second order. The mystery of the unique amide terminal region of proto oncogene tyrosine protein kinase is resolved by the discovery there of a rare hydroneutral septad targeting cluster, which is paralleled by an equally rare octad catalytic cluster in tyrosine kinase in humans and a few other species (cat and dog). These results, which go far towards explaining why these proteins are among the largest giant hubs in protein interaction networks, use no adjustable parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roig, Benjamin; Blanton, Michael R.; Ross, Nicholas P.
2014-02-01
Many classes of active galactic nuclei (AGNs) have been observed and recorded since the discovery of Seyfert galaxies. In this paper, we examine the sample of luminous galaxies in the Baryon Oscillation Spectroscopic Survey. We find a potentially new observational class of AGNs, one with strong and broad Mg II λ2799 line emission, but very weak emission in other normal indicators of AGN activity, such as the broad-line Hα, Hβ, and the near-ultraviolet AGN continuum, leading to an extreme ratio of broad Hα/Mg II flux relative to normal quasars. Meanwhile, these objects' narrow-line flux ratios reveal AGN narrow-line regions withmore » levels of activity consistent with the Mg II fluxes and in agreement with that of normal quasars. These AGN may represent an extreme case of the Baldwin effect, with very low continuum and high equivalent width relative to typical quasars, but their ratio of broad Mg II to broad Balmer emission remains very unusual. They may also be representative of a class of AGN where the central engine is observed indirectly with scattered light. These galaxies represent a small fraction of the total population of luminous galaxies (≅ 0.1%), but are more likely (about 3.5 times) to have AGN-like nuclear line emission properties than other luminous galaxies. Because Mg II is usually inaccessible for the population of nearby galaxies, there may exist a related population of broad-line Mg II emitters in the local universe which is currently classified as narrow-line emitters (Seyfert 2 galaxies) or low ionization nuclear emission-line regions.« less
Regional geology and tectonics
Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.
2017-01-01
This chapter describes the regional geology and tectonic origins of the major geologic units for the Northern Cordillera. The goals of the chapter are to: (1) provide a summary and regional overview of this vast region that contains a complicated geologic history; and (2) describe the major geologic units and tectonic events that cover a broad geologic time span from the Proterozoic to the Holocene (Recent).
NASA Astrophysics Data System (ADS)
Kokubo, Mitsuru
2017-05-01
We examine the optical photometric and polarimetric variability of the luminous type 1 non-blazar quasar 3C 323.1 (PG 1545+210). Two optical spectropolarimetric measurements taken during the periods 1996-1998 and 2003 combined with a V-band imaging-polarimetric measurement taken in 2002 reveal that (1) as noted in the literature, the polarization of 3C 323.1 is confined only to the continuum emission, I.e. the emission from the broad-line region is unpolarized; (2) the polarized flux spectra show evidence of a time-variable broad absorption feature in the wavelength range of the Balmer continuum and other recombination lines; (3) weak variability in the polarization position angle (PA) of ˜4°over a time-scale of 4-6 yr is observed and (4) the V-band total flux and the polarized flux show highly correlated variability over a time-scale of 1 yr. Taking the above-mentioned photometric and polarimetric variability properties and the results from previous studies into consideration, we propose a geometrical model for the polarization source in 3C 323.1, in which an equatorial absorbing region and an axi-asymmetric equatorial electron-scattering region are assumed to be located between the accretion disc and the broad-line region. The scattering/absorbing regions can perhaps be attributed to the accretion disc wind or flared disc surface, but further polarimetric monitoring observations for 3C 323.1 and other quasars with continuum-confined polarization are needed to probe the true physical origins of these regions.
Constraints on the broad-line region properties and extinction in local Seyferts
NASA Astrophysics Data System (ADS)
Schnorr-Müller, Allan; Davies, R. I.; Korista, K. T.; Burtscher, L.; Rosario, D.; Storchi-Bergmann, T.; Contursi, A.; Genzel, R.; Graciá-Carpio, J.; Hicks, E. K. S.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Riffel, R.; Riffel, Rogemar A.; Schartmann, M.; Sternberg, A.; Sturm, E.; Tacconi, L.; Veilleux, S.; Ulrich, O. A.
2016-11-01
We use high-spectral resolution (R > 8000) data covering 3800-13 000 Å to study the physical conditions of the broad-line region (BLR) of nine nearby Seyfert 1 galaxies. Up to six broad H I lines are present in each spectrum. A comparison - for the first time using simultaneous optical to near-infrared observations - to photoionization calculations with our devised simple scheme yields the extinction to the BLR at the same time as determining the density and photon flux, and hence distance from the nucleus, of the emitting gas. This points to a typical density for the H I emitting gas of 1011 cm-3 and shows that a significant amount of this gas lies at regions near the dust sublimation radius, consistent with theoretical predictions. We also confirm that in many objects, the line ratios are far from case B, the best-fitting intrinsic broad-line Hα/H β ratios being in the range 2.5-6.6 as derived with our photoionization modelling scheme. The extinction to the BLR, based on independent estimates from H I and He II lines, is AV ≤ 3 for Seyfert 1-1.5s, while Seyfert 1.8-1.9s have AV in the range 4-8. A comparison of the extinction towards the BLR and narrow-line region (NLR) indicates that the structure obscuring the BLR exists on scales smaller than the NLR. This could be the dusty torus, but dusty nuclear spirals or filaments could also be responsible. The ratios between the X-ray absorbing column NH and the extinction to the BLR are consistent with the Galactic gas-to-dust ratio if NH variations are considered.
Effects of land use on lake nutrients: The importance of scale, hydrologic connectivity, and region
Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate
2015-01-01
Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales.
Effects of Land Use on Lake Nutrients: The Importance of Scale, Hydrologic Connectivity, and Region
Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate
2015-01-01
Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales. PMID:26267813
Dynamics in the Parameter Space of a Neuron Model
NASA Astrophysics Data System (ADS)
Paulo, C. Rech
2012-06-01
Some two-dimensional parameter-space diagrams are numerically obtained by considering the largest Lyapunov exponent for a four-dimensional thirteen-parameter Hindmarsh—Rose neuron model. Several different parameter planes are considered, and it is shown that depending on the combination of parameters, a typical scenario can be preserved: for some choice of two parameters, the parameter plane presents a comb-shaped chaotic region embedded in a large periodic region. It is also shown that there exist regions close to these comb-shaped chaotic regions, separated by the comb teeth, organizing themselves in period-adding bifurcation cascades.
Raffelt, David A.; Smith, Robert E.; Ridgway, Gerard R.; Tournier, J-Donald; Vaughan, David N.; Rose, Stephen; Henderson, Robert; Connelly, Alan
2015-01-01
In brain regions containing crossing fibre bundles, voxel-average diffusion MRI measures such as fractional anisotropy (FA) are difficult to interpret, and lack within-voxel single fibre population specificity. Recent work has focused on the development of more interpretable quantitative measures that can be associated with a specific fibre population within a voxel containing crossing fibres (herein we use fixel to refer to a specific fibre population within a single voxel). Unfortunately, traditional 3D methods for smoothing and cluster-based statistical inference cannot be used for voxel-based analysis of these measures, since the local neighbourhood for smoothing and cluster formation can be ambiguous when adjacent voxels may have different numbers of fixels, or ill-defined when they belong to different tracts. Here we introduce a novel statistical method to perform whole-brain fixel-based analysis called connectivity-based fixel enhancement (CFE). CFE uses probabilistic tractography to identify structurally connected fixels that are likely to share underlying anatomy and pathology. Probabilistic connectivity information is then used for tract-specific smoothing (prior to the statistical analysis) and enhancement of the statistical map (using a threshold-free cluster enhancement-like approach). To investigate the characteristics of the CFE method, we assessed sensitivity and specificity using a large number of combinations of CFE enhancement parameters and smoothing extents, using simulated pathology generated with a range of test-statistic signal-to-noise ratios in five different white matter regions (chosen to cover a broad range of fibre bundle features). The results suggest that CFE input parameters are relatively insensitive to the characteristics of the simulated pathology. We therefore recommend a single set of CFE parameters that should give near optimal results in future studies where the group effect is unknown. We then demonstrate the proposed method by comparing apparent fibre density between motor neurone disease (MND) patients with control subjects. The MND results illustrate the benefit of fixel-specific statistical inference in white matter regions that contain crossing fibres. PMID:26004503
Emotional processing in anterior cingulate and medial prefrontal cortex
Etkin, Amit; Egner, Tobias; Kalisch, Raffael
2010-01-01
Negative emotional stimuli activate a broad network, including the medial prefrontal (mPFC) and anterior cingulate (ACC) cortices. An early influential view dichotomized these regions into dorsal-caudal “cognitive” and ventral-rostral “affective” subdivisions. In this review, we examine a wealth of recent research on negative emotions in animals and humans, using the example of fear/anxiety, and conclude that, contrary to the traditional dichotomy, both subdivisions make key contributions to emotional processing. Specifically, dorsal-caudal regions of the ACC/mPFC are involved in appraisal and expression of negative emotion, while ventral-rostral portions of the ACC/mPFC have a regulatory role with respect to limbic regions involved in generating emotional responses. Moreover, this new framework is broadly consistent with emerging data on other negative and positive emotions. PMID:21167765
NASA Astrophysics Data System (ADS)
Wang, H.; Li, X.; Xiao, J.; Ma, M.
2017-12-01
Arid and semi-arid ecosystems cover more than one-third of the Earth's land surface, it is of great important to the global carbon cycle. However, the magnitude of carbon sequestration and its contribution to global atmospheric carbon cycle is poorly understood due to the worldwide paucity of measurements of carbon exchange in the arid ecosystems. Accurate and continuous monitoring the production of arid ecosystem is of great importance for regional carbon cycle estimation. The MOD17A2 product provides high frequency observations of terrestrial Gross Primary Productivity (GPP) over the world. Although there have been plenty of studies to validate the MODIS GPP products with ground based measurements over a range of biome types, few have comprehensively validated the performance of MODIS estimates in arid and semi-arid ecosystems. Thus, this study examined the performance of the MODIS-derived GPP comparing with the EC observed GPP at different timescales for the main arid ecosystems in the arid and semi-arid ecosystems in China, and optimized the performance of the MODIS GPP calculations by using the in-situ metrological forcing data, and optimization of biome-specific parameters with the Bayesian approach. Our result revealed that the MOD17 algorithm could capture the broad trends of GPP at 8-day time scales for all investigated sites on the whole. However, the GPP product was underestimated in most ecosystems in the arid region, especially the irrigated cropland and forest ecosystems, while the desert ecosystem was overestimated in the arid region. On the annual time scale, the best performance was observed in grassland and cropland, followed by forest and desert ecosystems. On the 8-day timescale, the RMSE between MOD17 products and in-situ flux observations of all sites was 2.22 gC/m2/d, and R2 was 0.69. By using the in-situ metrological data driven, optimizing the biome-based parameters of the algorithm, we improved the performances of the MODIS GPP calculation over the main ecosystems in arid region of China.
Why is Coastal Community Resilience Important in the Gulf of Mexico Region?
The Gulf of Mexico Program supports the regional collaborative approach and efforts of the Coastal Community Resilience Priority Issue Team of the Gulf of Mexico Governors’ Alliance and its broad spectrum of partners and stakeholders.
DOT National Transportation Integrated Search
2016-12-16
The concept of accessibility has made inroads into planning practice, largely at the system level. That is, accessibility is measured or modeled for current or future regional transportation and land-use scenarios for evaluation or broad policy guida...
Broad-Enrich: functional interpretation of large sets of broad genomic regions.
Cavalcante, Raymond G; Lee, Chee; Welch, Ryan P; Patil, Snehal; Weymouth, Terry; Scott, Laura J; Sartor, Maureen A
2014-09-01
Functional enrichment testing facilitates the interpretation of Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) data in terms of pathways and other biological contexts. Previous methods developed and used to test for key gene sets affected in ChIP-seq experiments treat peaks as points, and are based on the number of peaks associated with a gene or a binary score for each gene. These approaches work well for transcription factors, but histone modifications often occur over broad domains, and across multiple genes. To incorporate the unique properties of broad domains into functional enrichment testing, we developed Broad-Enrich, a method that uses the proportion of each gene's locus covered by a peak. We show that our method has a well-calibrated false-positive rate, performing well with ChIP-seq data having broad domains compared with alternative approaches. We illustrate Broad-Enrich with 55 ENCODE ChIP-seq datasets using different methods to define gene loci. Broad-Enrich can also be applied to other datasets consisting of broad genomic domains such as copy number variations. http://broad-enrich.med.umich.edu for Web version and R package. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Melting and its relationship to impact crater morphology
NASA Technical Reports Server (NTRS)
Okeefe, John D.; Ahrens, Thomas J.
1992-01-01
Shock-melting features occur on planets at scales that range from micrometers to megameters. It is the objective of this study to determine the extent of thickness, volume geometry of the melt, and relationship with crater morphology. The variation in impact crater morphology on planets is influenced by a broad range of parameters: e.g., planetary density, thermal state, strength, impact velocity, gravitational acceleration. We modeled the normal impact of spherical projectiles on a semi-infinite planet over a broad range of conditions using numerical techniques.
Laser stripping of hydrogen atoms by direct ionization
Brunetti, E.; Becker, W.; Bryant, H. C.; ...
2015-05-08
Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.
Laser stripping of hydrogen atoms by direct ionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunetti, E.; Becker, W.; Bryant, H. C.
Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.
2016-01-01
The kinetics of proteins at interfaces plays an important role in biological functions and inspires solutions to fundamental problems in biomedical sciences and engineering. Nonetheless, due to the lack of surface-specific and structural-sensitive biophysical techniques, it still remains challenging to probe protein kinetics in situ and in real time without the use of spectroscopic labels at interfaces. Broad-bandwidth chiral sum frequency generation (SFG) spectroscopy has been recently developed for protein kinetic studies at interfaces by tracking the chiral vibrational signals of proteins. In this article, we review our recent progress in kinetic studies of proteins at interfaces using broad-bandwidth chiral SFG spectroscopy. We illustrate the use of chiral SFG signals of protein side chains in the C–H stretch region to monitor self-assembly processes of proteins at interfaces. We also present the use of chiral SFG signals from the protein backbone in the N–H stretch region to probe the real-time kinetics of proton exchange between protein and water at interfaces. In addition, we demonstrate the applications of spectral features of chiral SFG that are typical of protein secondary structures in both the amide I and the N–H stretch regions for monitoring the kinetics of aggregation of amyloid proteins at membrane surfaces. These studies exhibit the power of broad-bandwidth chiral SFG to study protein kinetics at interfaces and the promise of this technique in research areas of surface science to address fundamental problems in biomedical and material sciences. PMID:26196215
The Surprising Absence of Absorption in the Far-ultraviolet Spectrum of Mrk 231
NASA Technical Reports Server (NTRS)
Veilleux, S.; Trippe, M.; Hamann, F.; Rupke, D. S. N.; Tripp, T. M.; Netzer, H.; Lutz, D.; Sembach, K. R.; Krug, H.; Teng, Stacy H.;
2013-01-01
Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering approx. 1150-1470A with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint (< or approx.2% of predictions based on H(alpha)), broad (> or approx.10,000 km/s at the base), and highly blueshifted (centroid at approx. 3500 km/s) Ly(aplpha) emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F(sub lambda) Alpha Lambda(sup 1.7)) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly(alpha) emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (Av approx. 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.
Visual Image Sensor Organ Replacement: Implementation
NASA Technical Reports Server (NTRS)
Maluf, A. David (Inventor)
2011-01-01
Method and system for enhancing or extending visual representation of a selected region of a visual image, where visual representation is interfered with or distorted, by supplementing a visual signal with at least one audio signal having one or more audio signal parameters that represent one or more visual image parameters, such as vertical and/or horizontal location of the region; region brightness; dominant wavelength range of the region; change in a parameter value that characterizes the visual image, with respect to a reference parameter value; and time rate of change in a parameter value that characterizes the visual image. Region dimensions can be changed to emphasize change with time of a visual image parameter.
Predicting macroinvertebrate MMI for geographic targeting
The US Environmental Protection Agency surveys the ecological conditions of streams across broad regions. We wish to identify specific streams in poor condition, as well as their regional extent. To identify such streams in Idaho, Oregon and Washington we built multiple regress...
The Heating of Solar Coronal Loops by Alfvén Wave Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Ballegooijen, A. A.; Asgari-Targhi, M.; Voss, A.
2017-11-01
In this paper we further develop a model for the heating of coronal loops by Alfvén wave turbulence (AWT). The Alfvén waves are assumed to be launched from a collection of kilogauss flux tubes in the photosphere at the two ends of the loop. Using a three-dimensional magnetohydrodynamic model for an active-region loop, we investigate how the waves from neighboring flux tubes interact in the chromosphere and corona. For a particular combination of model parameters we find that AWT can produce enough heat to maintain a peak temperature of about 2.5 MK, somewhat lower than the temperatures of 3–4 MKmore » observed in the cores of active regions. The heating rates vary strongly in space and time, but the simulated heating events have durations less than 1 minute and are unlikely to reproduce the observed broad differential emission measure distributions of active regions. The simulated spectral line nonthermal widths are predicted to be about 27 km s{sup −1}, which is high compared to the observed values. Therefore, the present AWT model does not satisfy the observational constraints. An alternative “magnetic braiding” model is considered in which the coronal field lines are subject to slow random footpoint motions, but we find that such long-period motions produce much less heating than the shorter-period waves launched within the flux tubes. We discuss several possibilities for resolving the problem of producing sufficiently hot loops in active regions.« less
Shahzad, Muhammad I; Nichol, Janet E; Wang, Jun; Campbell, James R; Chan, Pak W
2013-09-01
Hong Kong's surface visibility has decreased in recent years due to air pollution from rapid social and economic development in the region. In addition to deteriorating health standards, reduced visibility disrupts routine civil and public operations, most notably transportation and aviation. Regional estimates of visibility solved operationally using available ground and satellite-based estimates of aerosol optical properties and vertical distribution may prove more effective than standard reliance on a few existing surface visibility monitoring stations. Previous studies have demonstrated that such satellite measurements correlate well with near-surface optical properties, despite these sensors do not consider range-resolved information and indirect parameterizations necessary to solve relevant parameters. By expanding such analysis to include vertically resolved aerosol profile information from an autonomous ground-based lidar instrument, this work develops six models for automated assessment of surface visibility. Regional visibility is estimated using co-incident ground-based lidar, sun photometer visibility meter and MODerate-resolution maging Spectroradiometer (MODIS) aerosol optical depth data sets. Using a 355 nm extinction coefficient profile solved from the lidar MODIS AOD (aerosol optical depth) is scaled down to the surface to generate a regional composite depiction of surface visibility. These results demonstrate the potential for applying passive satellite depictions of broad-scale aerosol optical properties together with a ground-based surface lidar and zenith-viewing sun photometer for improving quantitative assessments of visibility in a city such as Hong Kong.
Echo Mapping of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Horne, K.
2004-01-01
Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.
There is an urgent need for EPA to develop protocols for establishing Total Maximum Daily Loads (TMDLs) in streams, lakes and estuaries. A cooperative TMDL field data collection project between ORD and Region 4 is ongoing in the South Fork Broad River Watershed (SFBR), a 245.18 ...
A Broad 22 Micron Emission Feature in the Carina Nebula H ii Region.
Chan; Onaka
2000-04-10
We report the detection of a broad 22 µm emission feature in the Carina Nebula H ii region by the Infrared Space Observatory (ISO) short-wavelength spectrometer. The feature shape is similar to that of the 22 µm emission feature of newly synthesized dust observed in the Cassiopeia A supernova remnant. This finding suggests that both of the features are arising from the same carrier and that supernovae are probably the dominant production sources of this new interstellar grain. A similar broad emission dust feature is also found in the spectra of two starburst galaxies from the ISO archival data. This new dust grain could be an abundant component of interstellar grains and can be used to trace the supernova rate or star formation rate in external galaxies. The existence of the broad 22 µm emission feature complicates the dust model for starburst galaxies and must be taken into account correctly in the derivation of dust color temperature. Mg protosilicate has been suggested as the carrier of the 22 µm emission dust feature observed in Cassiopeia A. The present results provide useful information in studies on the chemical composition and emission mechanism of the carrier.
Broad Halpha Wing Formation in the Planetary Nebula IC 4997.
Lee; Hyung
2000-02-10
The young and compact planetary nebula IC 4997 is known to exhibit very broad wings with a width exceeding 5000 km s-1 around Halpha. We propose that the broad wings are formed through Rayleigh-Raman scattering that involves atomic hydrogen, by which Lybeta photons with a velocity width of a few 102 km s-1 are converted to optical photons and fill the Halpha broad wing region. The conversion efficiency reaches 0.6 near the line center, where the scattering optical depth is much larger than 1, and rapidly decreases in the far wings. Assuming that close to the central star there exists an unresolved inner compact core of high density, nH approximately 109-1010 cm-3, we use the photoionization code "CLOUDY" to show that sufficient Lybeta photons for scattering are produced. Using a top-hat-incident profile for the Lybeta flux and a scattering region with a H i column density NHi=2x1020 cm-2 and a substantial covering factor, we perform a profile-fitting analysis in order to obtain a satisfactory fit to the observed flux. We briefly discuss the astrophysical implications of the Rayleigh-Raman processes in planetary nebulae and other emission objects.
Padilla-Buritica, Jorge I.; Martinez-Vargas, Juan D.; Castellanos-Dominguez, German
2016-01-01
Lately, research on computational models of emotion had been getting much attention due to their potential for understanding the mechanisms of emotions and their promising broad range of applications that potentially bridge the gap between human and machine interactions. We propose a new method for emotion classification that relies on features extracted from those active brain areas that are most likely related to emotions. To this end, we carry out the selection of spatially compact regions of interest that are computed using the brain neural activity reconstructed from Electroencephalography data. Throughout this study, we consider three representative feature extraction methods widely applied to emotion detection tasks, including Power spectral density, Wavelet, and Hjorth parameters. Further feature selection is carried out using principal component analysis. For validation purpose, these features are used to feed a support vector machine classifier that is trained under the leave-one-out cross-validation strategy. Obtained results on real affective data show that incorporation of the proposed training method in combination with the enhanced spatial resolution provided by the source estimation allows improving the performed accuracy of discrimination in most of the considered emotions, namely: dominance, valence, and liking. PMID:27489541
NASA Astrophysics Data System (ADS)
Watson, James R.; Stock, Charles A.; Sarmiento, Jorge L.
2015-11-01
Modeling the dynamics of marine populations at a global scale - from phytoplankton to fish - is necessary if we are to quantify how climate change and other broad-scale anthropogenic actions affect the supply of marine-based food. Here, we estimate the abundance and distribution of fish biomass using a simple size-based food web model coupled to simulations of global ocean physics and biogeochemistry. We focus on the spatial distribution of biomass, identifying highly productive regions - shelf seas, western boundary currents and major upwelling zones. In the absence of fishing, we estimate the total ocean fish biomass to be ∼ 2.84 ×109 tonnes, similar to previous estimates. However, this value is sensitive to the choice of parameters, and further, allowing fish to move had a profound impact on the spatial distribution of fish biomass and the structure of marine communities. In particular, when movement is implemented the viable range of large predators is greatly increased, and stunted biomass spectra characterizing large ocean regions in simulations without movement, are replaced with expanded spectra that include large predators. These results highlight the importance of considering movement in global-scale ecological models.
Higgs mass from D-terms: a litmus test
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Roberts, Hannes L.
2013-12-01
We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended U(1) X gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, g X , is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under U(1) X . This induces an irreducible rate, σBR, for pp → X → ℓℓ relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, ( σBR, m X ), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated X boson can only be observed within this window, providing a model independent `litmus test' for this broad class of scenarios at the LHC. Comparing limits, we find that current LHC results only exclude regions in parameter space which were already disfavored by precision electroweak data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutka, Michael S.; Carpenter, Bryce D.; Gehrels, Neil
2017-02-01
Quasi-simultaneous observations of the Flat Spectrum Radio Quasar PKS 2326−502 were carried out in the γ -ray, X-ray, UV, optical, near-infrared, and radio bands. Using these observations, we are able to characterize the spectral energy distribution (SED) of the source during two flaring and one quiescent γ -ray states. These data were used to constrain one-zone leptonic models of the SEDs of each flare and investigate the physical conditions giving rise to them. While modeling one flare required only changes in the electron spectrum compared to the quiescent state, modeling the other flare required changes in both the electron spectrummore » and the size of the emitting region. These results are consistent with an emerging pattern of two broad classes of flaring states seen in blazars. Type 1 flares are explained by changes solely in the electron distribution, whereas type 2 flares require a change in an additional parameter. This suggests that different flares, even in the same source, may result from different physical conditions or different regions in the jet.« less
Tiller, Thomas; Schuster, Ingrid; Deppe, Dorothée; Siegers, Katja; Strohner, Ralf; Herrmann, Tanja; Berenguer, Marion; Poujol, Dominique; Stehle, Jennifer; Stark, Yvonne; Heßling, Martin; Daubert, Daniela; Felderer, Karin; Kaden, Stefan; Kölln, Johanna; Enzelberger, Markus; Urlinger, Stefanie
2013-01-01
This report describes the design, generation and testing of Ylanthia, a fully synthetic human Fab antibody library with 1.3E+11 clones. Ylanthia comprises 36 fixed immunoglobulin (Ig) variable heavy (VH)/variable light (VL) chain pairs, which cover a broad range of canonical complementarity-determining region (CDR) structures. The variable Ig heavy and Ig light (VH/VL) chain pairs were selected for biophysical characteristics favorable to manufacturing and development. The selection process included multiple parameters, e.g., assessment of protein expression yield, thermal stability and aggregation propensity in fragment antigen binding (Fab) and IgG1 formats, and relative Fab display rate on phage. The framework regions are fixed and the diversified CDRs were designed based on a systematic analysis of a large set of rearranged human antibody sequences. Care was taken to minimize the occurrence of potential posttranslational modification sites within the CDRs. Phage selection was performed against various antigens and unique antibodies with excellent biophysical properties were isolated. Our results confirm that quality can be built into an antibody library by prudent selection of unmodified, fully human VH/VL pairs as scaffolds. PMID:23571156
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Oliveira Branco, M.; de Pedis, D.; de Saintignon, P.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, H. S.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration
2012-02-01
This Letter describes the measurement of elliptic flow of charged particles in lead-lead collisions at √{sNN} = 2.76 TeV using the ATLAS detector at the Large Hadron Collider (LHC). The results are based on an integrated luminosity of approximately 7 μb-1. Elliptic flow is measured over a wide region in pseudorapidity, | η | < 2.5, and over a broad range in transverse momentum, 0.5
Dutka, Michael S.; Carpenter, Bryce D.; Ojha, Roopesh; ...
2017-01-30
We present that quasi-simultaneous observations of the Flat Spectrum Radio Quasar PKS 2326-502 were carried out in the γ-ray, X-ray, UV, optical, near-infrared, and radio bands. Using these observations, we are able to characterize the spectral energy distribution (SED) of the source during two flaring and one quiescent γ-ray states. These data were used to constrain one-zone leptonic models of the SEDs of each flare and investigate the physical conditions giving rise to them. While modeling one flare required only changes in the electron spectrum compared to the quiescent state, modeling the other flare required changes in both the electronmore » spectrum and the size of the emitting region. These results are consistent with an emerging pattern of two broad classes of flaring states seen in blazars. Type 1 flares are explained by changes solely in the electron distribution, whereas type 2 flares require a change in an additional parameter. Finally, this suggests that different flares, even in the same source, may result from different physical conditions or different regions in the jet.« less
Leiomyoma of broad ligament mimicking ovarian malignancy- report of a unique case.
Mallick, D; Saha, M; Chakrabarti, S; Chakraborty, J
2014-01-01
Tumors of the broad ligament are uncommon. Leiomyoma, which is the commonest female genital neoplasm, is also the most common solid tumor of the broad ligament. Leiomyomas affect 30% of all women of reproductive age but the incidence of broad-ligament leiomyoma is <1%. These benign tumors are usually asymptomatic. A case is being described where a 52 year old presented with gradual abdominal swelling which was clinically and radiologically diagnosed as ovarian malignancy. On abdominal and bimanual palpation a soft cystic mass was noted in the right pelvic region. CA 125 was mildly raised. CEA, CA 19.9 levels were within normal limit. The radiological diagnosis was ovarian cyst with possibility of malignant changes. Staging laparotomy and histopathological examination of the resected specimen revealed a right sided broad ligament leiomyoma with cystic changes. The degenerative changes in the leiomyoma lead to the clinical and radiological diagnostic confusion. Thus, though uncommon, broad ligament leiomyoma should be considered during evaluation of adnexal masses for optimal patient management. The above description of leiomyoma in the broad ligament is a highly unique case and thus deserves appropriate attention.
Puerma, Eva; Orengo, Dorcas J; Salguero, David; Papaceit, Montserrat; Segarra, Carmen; Aguadé, Montserrat
2014-09-01
Inversions are an integral part of structural variation within species, and they play a leading role in genome reorganization across species. Work at both the cytological and genome sequence levels has revealed heterogeneity in the distribution of inversion breakpoints, with some regions being recurrently used. Breakpoint reuse at the molecular level has mostly been assessed for fixed inversions through genome sequence comparison, and therefore rather broadly. Here, we have identified and sequenced the breakpoints of two polymorphic inversions-E1 and E2 that share a breakpoint-in the extant Est and E1 + 2 chromosomal arrangements of Drosophila subobscura. The breakpoints are two medium-sized repeated motifs that mediated the inversions by two different mechanisms: E1 via staggered breaks and subsequent repair and E2 via repeat-mediated ectopic recombination. The fine delimitation of the shared breakpoint revealed its strict reuse at the molecular level regardless of which was the intermediate arrangement. The occurrence of other rearrangements in the most proximal and distal extended breakpoint regions reveals the broad reuse of these regions. This differential degree of fragility might be related to their sharing the presence outside the inverted region of snoRNA-encoding genes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Averill, Colin; Waring, Bonnie G; Hawkes, Christine V
2016-05-01
Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, it is not known if variation in the shape and magnitude of microbial functional responses to soil moisture can be predicted from historical climate at regional scales. To address this problem, we measured soil enzyme activity at 12 sites across a broad climate gradient spanning 442-887 mm mean annual precipitation. Measurements were made eight times over 21 months to maximize sampling during different moisture conditions. We then fit saturating functions of enzyme activity to soil moisture and extracted half saturation and maximum activity parameter values from model fits. We found that 50% of the variation in maximum activity parameters across sites could be predicted by 30-year mean annual precipitation, an indicator of historical climate, and that the effect is independent of variation in temperature, soil texture, or soil carbon concentration. Based on this finding, we suggest that variation in the shape and magnitude of soil microbial response to soil moisture due to historical climate may be remarkably predictable at regional scales, and this approach may extend to other systems. If historical contingencies on microbial activities prove to be persistent in the face of environmental change, this approach also provides a framework for incorporating historical climate effects into biogeochemical models simulating future global change scenarios. © 2016 John Wiley & Sons Ltd.
Multimodal Assessment of Recurrent MTBI across the Lifespan
Prehn, Kristin; Taud, Benedikt; List, Jonathan; Flöel, Agnes
2018-01-01
Recurrent mild traumatic brain injuries (mTBI) and its neurological sequelae have been the focus of a large number of studies, indicating cognitive, structural, and functional brain alterations. However, studies often focused on single outcome measures in small cohorts of specific populations only. We conducted a multimodal evaluation of the impact of recurrent mTBI on a broad range of cognitive functions, regional brain volume, white matter integrity, and resting state functional connectivity (RSFC) in young and older adults in the chronic stage (>6 months after the last mTBI). Seventeen young participants with mTBI (age: 24.2 ± 2.8 (mean ± SD)) and 21 group-wise matched healthy controls (age: 25.8 ± 5.4 (mean ± SD)), as well as 17 older participants with mTBI (age: 62.7 ± 7.7 (mean ± SD)) and 16 group-wise matched healthy controls (age: 61.7 ± 5.9 (mean ± SD)) were evaluated. We found significant differences in the verbal fluency between young participants with mTBI and young healthy controls. Furthermore, differences in the regional volume of precuneus and medial orbitofrontal gyrus between participants with mTBI and controls for both age groups were seen. A significant age by group interaction for the right hippocampal volume was noted, indicating an accelerated hippocampal volume loss in older participants with mTBI. Other cognitive parameters, white matter integrity, and RSFC showed no significant differences. We confirmed some of the previously reported detrimental effects of recurrent mTBI, but also demonstrated inconspicuous findings for the majority of parameters. PMID:29723976
Regional Wave Propagation in Southeastern United States
NASA Astrophysics Data System (ADS)
Jemberie, A. L.; Langston, C. A.
2003-12-01
Broad band seismograms from the April 29, 2003, M4.6 Fort Payne, Alabama earthquake are analyzed to infer mechanisms of crustal wave propagation, crust and upper mantle velocity structure in southeastern United States, and source parameters of the event. In particular, we are interested in producing deterministic models of the distance attenuation of earthquake ground motions through computation of synthetic seismograms. The method first requires constraining the source parameters of an earthquake and then modeling the amplitude and times of broadband arrivals within the waveforms to infer appropriate layered earth models. A first look at seismograms recorded by stations outside the Mississippi Embayment (ME) show clear body phases such P, sP, Pnl, Sn and Lg. The ME signals are qualitatively different from others because they have longer durations and large surface waves. A straightforward interpretation of P wave arrival times shows a typical upper mantle velocity of 8.18 km/s. However, there is evidence of significantly higher P phase velocities at epicentral distances between 400 and 600km, that may be caused by a high velocity upper mantle anomaly; triplication of P-waves is seen in these seismograms. The arrival time differences between regional P and the depth phase sP at different stations are used to constrain the depth of the earthquake. The source depth lies between 9.5 km and 13km which is somewhat more shallow than the network location that was constrained to 15km depth. The Fort Payne earthquake is the largest earthquake to have occurred within the Eastern Tennessee Seismic Zone.
NASA Technical Reports Server (NTRS)
Druyan, Leonard M.
2012-01-01
Climate models is a very broad topic, so a single volume can only offer a small sampling of relevant research activities. This volume of 14 chapters includes descriptions of a variety of modeling studies for a variety of geographic regions by an international roster of authors. The climate research community generally uses the rubric climate models to refer to organized sets of computer instructions that produce simulations of climate evolution. The code is based on physical relationships that describe the shared variability of meteorological parameters such as temperature, humidity, precipitation rate, circulation, radiation fluxes, etc. Three-dimensional climate models are integrated over time in order to compute the temporal and spatial variations of these parameters. Model domains can be global or regional and the horizontal and vertical resolutions of the computational grid vary from model to model. Considering the entire climate system requires accounting for interactions between solar insolation, atmospheric, oceanic and continental processes, the latter including land hydrology and vegetation. Model simulations may concentrate on one or more of these components, but the most sophisticated models will estimate the mutual interactions of all of these environments. Advances in computer technology have prompted investments in more complex model configurations that consider more phenomena interactions than were possible with yesterday s computers. However, not every attempt to add to the computational layers is rewarded by better model performance. Extensive research is required to test and document any advantages gained by greater sophistication in model formulation. One purpose for publishing climate model research results is to present purported advances for evaluation by the scientific community.
Spectral properties of the narrow-line region in Seyfert galaxies selected from the SDSS-DR7
NASA Astrophysics Data System (ADS)
Vaona, L.; Ciroi, S.; Di Mille, F.; Cracco, V.; La Mura, G.; Rafanelli, P.
2012-12-01
Although the properties of the narrow-line region (NLR) of active galactic nuclei (AGN) have been deeply studied by many authors in the past three decades, many questions are still open. The main goal of this work is to explore the NLR of Seyfert galaxies by collecting a large statistical spectroscopic sample of Seyfert 2 and Intermediate-type Seyfert galaxies having a high signal-to-noise ratio in order to take advantage of a high number of emission lines to be accurately measured. 2153 Seyfert 2 and 521 Intermediate-type Seyfert spectra were selected from Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) with a diagnostic diagram based on the oxygen emission-line ratios. All the emission lines, broad components included, were measured by means of a self-developed code, after the subtraction of the stellar component. Physical parameters, such as internal reddening, ionization parameter, temperature, density, gas and stellar velocity dispersion were determined for each object. Furthermore, we estimated mass and radius of the NLR, kinetic energy of the ionized gas and black hole accretion rate. From the emission-line analysis and the estimated physical properties, it appears that the NLR is similar in Seyfert 2 and Intermediate-Seyfert galaxies. The only differences, lower extinction, gas kinematics in general not dominated by the host galaxy gravitational potential and higher percentage of [O III]λ5007 blue asymmetries in Intermediate-Seyfert, can be ascribed to an effect of inclination of our line of sight with respect to the torus axis.
Broadly wavelength tunable acousto-optically Q-switched Tm:Lu2SiO5 laser.
Feng, T; Yang, K; Zhao, S; Zhao, J; Qiao, W; Li, T; Zheng, L; Xu, J
2014-09-20
A broadly wavelength tunable acousto-optically Q-switched Tm:Lu2SiO5 (Tm:LSO) laser is presented for the first time, to our best knowledge. The emission wavelength was tuned in a broad spectral region over 111 nm ranging from 1959 to 2070 nm. A shortest pulse duration of 345 ns with beam quality of M(2)≤1.65 was obtained at pulse repetition frequency (PRF) of 1 kHz, corresponding to a maximum single pulse energy of 0.26 mJ and peak power of 0.75 kW. The experimental results indicated that Tm:LSO crystal has outstanding potential for obtaining broadly wavelength tunable and low-PRF laser pulses at 2 μm.
ERIC Educational Resources Information Center
Higher Education Management and Policy, 2005
2005-01-01
Higher Education is widely seen as a crucial ingredient in the regional economic development mix, and as fundamental to the development of the knowledge economy (Barclays, 2002). Indeed the Higher Education Funding Council for England has issued broad guidelines for benchmarking good practice in assessing regional development contribution of a…
Southern Forest Resource Assessment Using the Subregional Timber Supply (SRTS) Model
Robert C. Abt; Frederick W. Cubbage; Gerardo Pacheco
2000-01-01
Most timber supply analyses are focused on broad regions. This paper describes a modeling system that uses a standard empirical framework applied to subregional inventory data in the South. Model results indicate significant within-region variation in supply responses across owners and regions. Projections of southern timber markets indicate that results are sensitive...
Assessing the accuracy of a regional land cover classification
William Clerke; Raymond Czaplewski; Jeff Campbell; Janet Fahringer
1996-01-01
The Southern Region USDA Forest Service recently completed the Southern Appalachian Assessment (SAA). The Assessment is a broad scale interagency analysis and sharing of existing information relative to the natural and human resources of the region. The SAA encompasses over 36 million acres extending from Northern Virginia to Northern Alabama. It was clear early in the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Bo; Zeng, Yong Quan; Liang, Guozhen
2015-09-14
We report our progress in the development of broadly tunable single-mode slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design. The electroluminescence spectrum of the continuum-to-continuum active region design has a full width at half maximum of 440 cm{sup −1} at center wavelength ∼10 μm at room temperature (300 K). Devices using the optimized slot waveguide structure and the continuum-to-continuum design can be tuned continuously with a lasing emission over 42 cm{sup −1}, from 9.74 to 10.16 μm, at room temperature by using only current tuning scheme, together with a side mode suppression ratio of above 15 dB within the whole tuning range.
Multi-gas sensing with quantum cascade laser array in the mid-infrared region
NASA Astrophysics Data System (ADS)
Bizet, Laurent; Vallon, Raphael; Parvitte, Bertrand; Brun, Mickael; Maisons, Gregory; Carras, Mathieu; Zeninari, Virginie
2017-05-01
Wide tunable lasers sources are useful for spectroscopy of complex molecules that have broad absorption spectra and for multiple sensing of smaller molecules. A region of interest is the mid-infrared region, where many species have strong ro-vibrational modes. In this paper a novel broad tunable source composed of a QCL DFB array and an arrayed waveguide grating (also called multiplexer) was used to perform multi-species spectroscopy (CO, C2H2, CO2). The array and the multiplexer are associated in a way to obtain a prototype that is non-sensitive to mechanical vibrations. A 2190-2220 cm^{-1} spectral range is covered by the chip. The arrayed waveguide grating combines beams to have a single output. A multi-pass White cell was used to demonstrate the efficiency of the multiplexer.
Meet EPA Scientist Blake Schaeffer, Ph.D.
EPA research ecologist Blake Schaeffer, Ph.D. focuses on ways to use satellite remote sensing technology to monitor water quality. His research interests broadly include deriving water quality parameters in coasts, estuaries, and lakes using satellites
van der Eerden, M M; Vlaspolder, F; de Graaff, C S; Groot, T; Bronsveld, W; Jansen, H; Boersma, W
2005-01-01
Background: There is much controversy about the ideal approach to the management of community acquired pneumonia (CAP). Recommendations differ from a pathogen directed approach to an empirical strategy with broad spectrum antibiotics. Methods: In a prospective randomised open study performed between 1998 and 2000, a pathogen directed treatment (PDT) approach was compared with an empirical broad spectrum antibiotic treatment (EAT) strategy according to the ATS guidelines of 1993 in 262 hospitalised patients with CAP. Clinical efficacy was primarily determined by the length of hospital stay (LOS). Secondary outcome parameters for clinical efficacy were assessment of therapeutic failure on antibiotics, 30 day mortality, duration of antibiotic treatment, resolution of fever, side effects, and quality of life. Results: Three hundred and three patients were enrolled in the study; 41 were excluded, leaving 262 with results available for analysis. No significant differences were found between the two treatment groups in LOS, 30 day mortality, clinical failure, or resolution of fever. Side effects, although they did not have a significant influence on the outcome parameters, occurred more frequently in patients in the EAT group than in those in the PDT group (60% v 17%, 95% CI –0.5 to –0.3; p<0.001). Conclusions: An EAT strategy with broad spectrum antibiotics for the management of hospitalised patients with CAP has comparable clinical efficacy to a PDT approach. PMID:16061709
Hwang, Joyce K.; Wang, Chong; Du, Zhou; Meyers, Robin M.; Kepler, Thomas B.; Neuberg, Donna; Kwong, Peter D.; Mascola, John R.; Joyce, M. Gordon; Bonsignori, Mattia; Haynes, Barton F.; Yeap, Leng-Siew; Alt, Frederick W.
2017-01-01
Variable regions of Ig chains provide the antigen recognition portion of B-cell receptors and derivative antibodies. Ig heavy-chain variable region exons are assembled developmentally from V, D, J gene segments. Each variable region contains three antigen-contacting complementarity-determining regions (CDRs), with CDR1 and CDR2 encoded by the V segment and CDR3 encoded by the V(D)J junction region. Antigen-stimulated germinal center (GC) B cells undergo somatic hypermutation (SHM) of V(D)J exons followed by selection for SHMs that increase antigen-binding affinity. Some HIV-1–infected human subjects develop broadly neutralizing antibodies (bnAbs), such as the potent VRC01-class bnAbs, that neutralize diverse HIV-1 strains. Mature VRC01-class bnAbs, including VRC-PG04, accumulate very high SHM levels, a property that hinders development of vaccine strategies to elicit them. Because many VRC01-class bnAb SHMs are not required for broad neutralization, high overall SHM may be required to achieve certain functional SHMs. To elucidate such requirements, we used a V(D)J passenger allele system to assay, in mouse GC B cells, sequence-intrinsic SHM-targeting rates of nucleotides across substrates representing maturation stages of human VRC-PG04. We identify rate-limiting SHM positions for VRC-PG04 maturation, as well as SHM hotspots and intrinsically frequent deletions associated with SHM. We find that mature VRC-PG04 has low SHM capability due to hotspot saturation but also demonstrate that generation of new SHM hotspots and saturation of existing hotspot regions (e.g., CDR3) does not majorly influence intrinsic SHM in unmutated portions of VRC-PG04 progenitor sequences. We discuss implications of our findings for bnAb affinity maturation mechanisms. PMID:28747530
Advances in Fabry-Perot and tunable quantum cascade lasers
NASA Astrophysics Data System (ADS)
Patel, C. Kumar N.
2017-05-01
Quantum cascade lasers (QCLs) are becoming mature infrared emitting devices that convert electrical power directly into optical power and generate laser radiation in the mid wave infrared (MWIR) and long wave infrared (LWIR) regions. These lasers operate at room temperature in the 3.5 μm to >12.0 μm region. QCLs operate at longer wavelengths into the terahertz region; however, these require some level of cryogenic cooling. Nonetheless, QCLs are the only solid-state sources that convert electrical power into optical power directly in these spectral regions. Three critical advances have contributed to the broad range of applications of QCLs, since their first demonstration in 1994 [1]. The first of these was the utilization of two phonon resonance for deexcitation of electrons from the lower lasing level [2]; the second is the utilization of epi-down mounting with hard solder of QCLs for practical applications [3]; and the third is the invention of nonresonant extraction for deexciting electrons from the lower laser level and simultaneously removing constraints on QCL structure design for extending high power room temperature operation to a broad range of wavelengths [4]. Although QCLs generate CW radiation at room temperature at wavelengths ranging from 3.5 μm to <12.0 μm, two spectral regions are very important for a broad range of applications. These are the first and the second atmospheric transmission windows from 3.5 μm to 5.0 μm and from 8.0 μm to 12.0 μm, respectively. Both of these windows (except for the spectral region near 4.2 μm, which is dominated by the infrared absorption from atmospheric carbon dioxide) are relatively free from atmospheric absorption and have a range of applications that involve long distance propagation.
Foliar anthocyanin content - Sensitivity of vegetation indices using green reflectance
NASA Astrophysics Data System (ADS)
Vina, A.; Gitelson, A. A.
2009-12-01
The amount and composition of photosynthetic and non-photosynthetic foliar pigments varies primarily as a function of species, developmental and phenological stages, and environmental stresses. Information on the absolute and relative amounts of these pigments thus provides insights onto the physiological conditions of plants and their responses to stress, and has the potential to be used for evaluating plant species composition and diversity across broad geographic regions. Anthocyanins in particular, are non-photosynthetic pigments associated with the resistance of plants to environmental stresses (e.g., drought, low soil nutrients, high radiation, herbivores, and pathogens). As they absorb radiation primarily in the green region of the electromagnetic spectrum (around 540-560 nm), broad-band vegetation indices that use this region in their formulation will respond to their presence. We evaluated the sensitivity of three vegetation indices using reflectance in the green spectral region (the green Normalized Difference Vegetation Index, gNDVI, the green Chlorophyll Index, CIg, and the Visible Atmospherically Resistant Vegetation Index, VARI) to foliar anthocyanins in five different species. For comparison purposes the widely used Normalized Difference Vegetation Index, NDVI was also evaluated. Among the four indices tested, the VARI, which uses only spectral bands in the visible region of the electromagnetic spectrum, was found to be inversely and linearly related to the relative amount of foliar anthocyanins. While this result was obtained at leaf level, it opens new possibilities for analyzing anthocyanin content across multiple scales, by means of currently operational aircraft- and spacecraft-mounted broad-band sensor systems. Further studies that evaluate the sensitivity of the VARI to the relative content of anthocyanins across space (e.g., at canopy and regional scales) and time, and its relationship with plant biodiversity and vegetation stresses, are needed.
Properties of Narrow line Seyfert 1 galaxies
NASA Astrophysics Data System (ADS)
Rakshit, Suvendu; Stalin, Chelliah Subramonian; Chand, Hum; Zhang, Xue-Guang
2018-04-01
Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the Hα broad emission line <2000 km s-1 and the flux ratio of [O III] to Hα <3. Their properties are not well understood since only a few NLSy1 galaxies were known earlier. We have studied various properties of NLSy1 galaxies using an enlarged sample and compared them with the conventional broad-line Seyfert 1 (BLSy1) galaxies. Both the sample of sources have z˜ 0.8 and their optical spectra from SDSS-DR12 that are used to derive various physical parameters have a median signal to noise (S/N) ratio >10 pixel-1. A strong correlation between the Hα and Hα emission lines is found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of Hα, Hα and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the R4570 - λEdd diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R>10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 ± 0.9) than BLSy1 galaxies (2.4 ± 0.8). It is anti-correlated with the Hα width but correlated with the FeII strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.; Lopez-Loera, H.; Rebolledo-Vieyra, M.
2011-12-01
We present the initial results of a low-altitude high-resolution aeromagnetic study over the Yucatan peninsula. Area surveyed extends from 86W to 91W and 18N to 21N, covering the peninsula and adjacent continental margin of Gulf of Mexico and Caribbean Sea. Aeromagnetic surveys are integrated into a regional map, and regional and residual anomalies are separated using spectral and least-squares methods. For the study, aeromagnetic field was reduced to the pole and several data filtering techniques were used, including first and second vertical derivatives, analytical signal, and upward and downward analytical continuations. The region is characterized by large amplitude broad elongated magnetic anomalies oriented north-south in the northern sector of the continental shelf, and northwest-southeast and northeast-southwest over the western and eastern sides of the peninsula, respectively. Major regional anomalies extend from the continental shelf into the peninsula, whereas other anomaly trends in the central northern sector, at northeast limit of Chicxulub crater, are restricted to the shelf. Largest anomaly on the east extends over the Holbox fracture zone. At its southern end, south of Chetumal a parallel trend extends over the Rio Hondo fault zone between Quintana Roo and Belize. On the western peninsula the anomaly is characterized by two parallel trends offset between Yucatan and Campeche. The central zone of Chicxulub is characterized by a semi-circular anomaly pattern, surrounded by long wavelength small amplitude anomalies extending to the east on the peninsula and shelf, isolated from the regional broad anomalies. To the south of Chicxulub anomaly, there is an elongated low with a central high extending southward from the terrace zone inside the crater rim. The elongated magnetic anomaly correlates with a broad gravity low, which is apparent south of the concentric zone of anomalies. To the north of Chicxulub anomaly, a magnetic high inside the crater is followed by a low outside, which extend to the north and northwest. The regional broad anomalies crossing the peninsula and shelf are interpreted as crustal structures on the Yucatan block related to pre- and rifting deformation, which include basement uplift. The southward elongated magnetic anomaly and gravity low may correspond to a pre-impact structure. From analysis of residual anomalies, we found no clear indication of secondary craters or multiple impacts.
Multipayer patient-centered medical home implementation guided by the chronic care model.
Gabbay, Robert A; Bailit, Michael H; Mauger, David T; Wagner, Edward H; Siminerio, Linda
2011-06-01
A unique statewide multipayer ini Pennsylvania was undertaken to implement the Patient-Centered Medical Home (PCMH) guided by the Chronic Care Model (CCM) with diabetes as an initial target disease. This project represents the first broad-scale CCM implementation with payment reform across a diverse range of practice organizations and one of the largest PCMH multipayer initiatives. Practices implemented the CCM and PCMH through regional Breakthrough Series learning collaboratives, supported by Improving Performance in Practice (IPIP) practice coaches, with required monthly quality reporting enhanced by multipayer infrastructure payments. Some 105 practices, representing 382 primary care providers, were engaged in the four regional collaboratives. The practices from the Southeast region of Pennsylvania focused on diabetes patients (n = 10,016). During the first intervention year (May 2008-May 2009), all practices achieved at least Level 1 National Committee for Quality Assurance (NCQA) Physician Practice Connections Patient-Centered Medical Home (PPC-PCMH) recognition. There was significant improvement in the percentage of patients who had evidence-based complications screening and who were on therapies to reduce morbidity and mortality (statins, angiotensin-converting enzyme inhibitors). In addition, there were small but statistically significant improvements in key clinical parameters for blood pressure and cholesterol levels, with the greatest absolute improvement in the highest-risk patients. Transforming primary care delivery through implementation of the PCMH and CCM supported by multipayer infrastructure payments holds significant promise to improve diabetes care.
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Bandara, S. V.
2004-01-01
A 640x512 pixel, long-wavelength cutoff, narrow-band (delta(lambda)/approx. 10%) quantum well infrared photodetector (QWIP) focal plane array (FPA), a four-band QWIP FPA in the 4-16 m spectral region, and a broad-band (delta(lambda)/approx. 42%) QWIP FPA having 15.4 m cutoff have been demonstrated.
ERIC Educational Resources Information Center
Dillon, William P.; And Others
1988-01-01
Describes some of the geologic characteristics of the Caribbean region. Discusses the use of some new techniques, including broad-range swath imaging of the sea floor that produces photograph-like images, and satellite measurement of crustal movements, which may help to explain the complex geology of the region. (TW)
NASA Astrophysics Data System (ADS)
Lee, Seok Jae; Koo, Ja Ryong; Lee, Ho Won; Lee, Song Eun; Yang, Hyung Jin; Yoon, Seung Soo; Park, Jaehoon; Kim, Young Kwan
2014-11-01
The device characteristics of blue phosphorescent organic lightemitting diodes (PHOLEDs) with a broad recombination region within emitting layers (EMLs) were investigated by changing the combination and the composition of the host materials. Six types of devices were fabricated with the novel host material 9-(4-(triphenylsilyl)phenyl)-9H-carbazole, hole transport-type host material N,N'-dicarbazolyl-3,5-benzene, and electron transporttype host material 2,2',2″-(1,3,5-benzenetriyl)tris-[1-phenyl-1H-benzimidazole] as diverse EML structures. Balanced chargecarrier injection and a distributed recombination zone within EMLs were achieved through a triple-emitting layer (T-EML). The properties of a device with a T-EML using a stepwise structure without any mixed host system were found to be superior to the other PHOLEDs. This can be explained in terms of improved charge balance and triplet-exciton confinement within the broad recombination region. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Satoliya, Anil Kumar; Vyas, B. M.; Shekhawat, M. S.
2018-05-01
The first time satellite space based measurement of atmospheric black carbon (BC) aerosols scattering coefficient at 550nm (BC SC at 550nm), dust aerosols scattering and dust aerosols extinction coefficient (DSC at 550nm and DEC at 550nm) parameters have been used to understand their long term trend of natural and anthropogenic aerosols behavior with its close association with ground based measured precipitation parameters such as Total Rain Fall (TRF), and Total Number of Rainy Days (TNRD) for the same period over western Indian regions concerned to the primary aerosols sources of natural activities. The basic objective of this study is an attempt to investigate the inter-correlation between dust and black carbon aerosols loading characteristics with a variation of rainfall pattern parameters as indirect aerosols induced effect i.e., aerosols-cloud interaction. The black carbon aerosols generated by diverse anthropogenic or human made activities are studied by choosing of measured atmospheric BC SC at 550nm parameter, whereas desert dust mineral aerosols primarily produced by varieties of natural activities pre-dominated of dust mineral desert aerosols mainly over Thar desert influenced area of hot climate and rural tropical site are investigated by selecting DSC at 550nm and DEC at 550nm of first semi-urban site i.e., Udaipur (UDP, 24.6°N, 73.35°E, 580m above surface level (asl)) situated in southern Rajasthan part as well as over other two Great Indian Thar desert locations i.e., Jaisalmer (JSM, 26.90°N, 69.90°E, 220m asl)) and Bikaner (BKN, 28.03°N, 73.30°E, 224m asl) located in the vicinity of the Thar desert region situated in Rajasthan state of the western Indian region. The source of the present study would be collection of longer period of monthly values of the above parameters of spanning 35 years i.e., 1980 to 2015. Such types of atmospheric aerosols-cloud monsoon interaction investigation is helpful in view of understanding their direct and indirect aerosols active role of optical absorption and scattering of solar light radiation at useful wavelength 550nm as well as heating of clouds over least explored region, i.e., the Thar desert region and also away from less dust dominated influenced provinces for longer period. The analysis of the above the result would also give a clear scientific evidence of alteration in enhancement in DSC at 550nm and DEC at 550nm and BC SC at 550nm variables with simultaneous corresponding reduction in the five yearly mean precipitation activity parameters such as TRF and TNRD. It is quite evident that anthropogenic BC aerosols activity are showing the significant increasing trend at all three locations, but it is more prominent over central Thar Desert influenced regime, i.e., JSM and BKN relative to semi-urban region i.e., UDP. The systematic increasing pattern of average monthly mean value of DSC at 550nm and DEC at 550nm or increasing aerosol loading have been revealed from acquiring their lowest value in January month and the highest values in July and retained with the broad peak values in pre-monsoon months. Subsequently, their respective values reduce sharply downward from August to December onwards. The mountain value of dust aerosols parameters, i.e., DSC at 550nm and DEC at 550nm are systematically enhanced toward from UDP to BKN and then maximized at JSM. It is clearly obvious fact that the following ascending order of desert aerosols loading influenced activity in different areas has been recorded, i.e., JSM> BKN>UDP. Several other interesting features of the earth-climate change implication in reference to the altering nature of reduction of precipitation parameter pattern with simultaneous observed elevated dust aerosol and BC aerosol loading have been also noticed in the course of present investigation. Overall reduction in rainfall pattern effect with increasing of dust aerosols loading or vice versa are seen more pronounced over JSM and lees prevalence over UDP. The more detailed investigations about other interesting results of Aerosols-Indian monsoon over western Indian locations are also discussed thoroughly in this paper.
NASA Astrophysics Data System (ADS)
Pujari, P. K.; Datta, T.; Manohar, S. B.; Prakash, Satya; Sastry, P. V. P. S. S.; Yakhmi, J. V.; Iyer, R. M.
1990-03-01
Doppler broadened annihilation radiation (DBAR) spectral parameters have been reported- for the first time- between 77 K and 300 K, for several Bi-based oxide superconductors, viz. A: single phase (2122) Bi 2CaSr 2Cu 2O x with Tc=85 K (R=0), B: a mixed phase lead doped sample containing both 2122 and 2223 with a nominal composition Bi 1.6Pb 0.4Ca 2Sr 2Cu 3O y, and, C: another 2122+2223 sample with same nominal composition as that of B but synthesised under a different heat-treatment schedule so as to yield a Tc=85 K (R=0). Analyses of these spectra using PAACFIT program yielded two components, of which the intensity of the narrow component, I N, and, the width of the broad component, T B, were seen to be the only temperature dependent parameters. At the onset of superconducting transition both T B and I N were seen to increase to a maximum value and decrease on further cooling. A double peak structure in T B vs temperature profile were observed in sample B and C, similar to one reported by us in Tl-Ca-Ba-Cu-O systems. In addition, presence of a magnetic field (1 KG) yielded no significant change in the DBAR spectral parameters. The results are discussed.
NASA Astrophysics Data System (ADS)
Douilly, Roby; Mavroeidis, George P.; Calais, Eric
2017-10-01
The devastating 2010 Mw 7.0 Haiti earthquake demonstrated the need to improve mitigation and preparedness for future seismic events in the region. Previous studies have shown that the earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown transpressional Léogâne Fault. Slip on that fault has increased stresses on the segment of Enriquillo Fault to the east of Léogâne, which terminates in the ˜3-million-inhabitant capital city of Port-au-Prince. In this study, we investigate ground shaking in the vicinity of Port-au-Prince, if a hypothetical rupture similar to the 2010 Haiti earthquake occurred on that segment of the Enriquillo Fault. We use a finite element method and assumptions on regional tectonic stress to simulate the low-frequency ground motion components using dynamic rupture propagation for a 52-km-long segment. We consider eight scenarios by varying parameters such as hypocentre location, initial shear stress and fault dip. The high-frequency ground motion components are simulated using the specific barrier model in the context of the stochastic modeling approach. The broad-band ground motion synthetics are subsequently obtained by combining the low-frequency components from the dynamic rupture simulation with the high-frequency components from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. Results show that rupture on a vertical Enriquillo Fault generates larger horizontal permanent displacements in Léogâne and Port-au-Prince than rupture on a south-dipping Enriquillo Fault. The mean horizontal peak ground acceleration (PGA), computed at several sites of interest throughout Port-au-Prince, has a value of ˜0.45 g, whereas the maximum horizontal PGA in Port-au-Prince is ˜0.60 g. Even though we only consider a limited number of rupture scenarios, our results suggest more intense ground shaking for the city of Port-au-Prince than during the already very damaging 2010 Haiti earthquake.
Origin of Bright Dust Devil Track on Mars
NASA Astrophysics Data System (ADS)
Hamada, K.; Kurita, K.; Nishizawa, S.
2017-09-01
we performed detailed in- vestigation on DDT in specific regions where BDDT are abundantly observed; in and around Schiaparelli Crater and Amazonis Planitia by using CTX images. We found 1) BDDT are confined to localized regions while DDDT are distributed broadly in these regions, 2) in 10km scale both BDDT and DDDT exhibit dom- inant orientations, 3) existence of banded DDT.
Meta-analyses of habitat selection by fishers at resting sites in the Pacific coastal region
Keith B. Aubry; Catherine M. Raley; Steven W. Buskirk; William J. Zielinski; Michael K. Schwartz; Richard T. Golightly; Kathryn L. Purcell; Richard D. Weir; J. Scott Yaeger
2013-01-01
The fisher (Pekania pennanti) is a species of conservation concern throughout the Pacific coastal region in North America. A number of radiotelemetry studies of habitat selection by fishers at resting sites have been conducted in this region, but the applicability of observed patterns beyond the boundaries of each study area is unknown. Broadly...
NASA Astrophysics Data System (ADS)
Majidinejad, A.; Zafarani, H.; Vahdani, S.
2018-05-01
The North Tehran fault (NTF) is known to be one of the most drastic sources of seismic hazard on the city of Tehran. In this study, we provide broad-band (0-10 Hz) ground motions for the city as a consequence of probable M7.2 earthquake on the NTF. Low-frequency motions (0-2 Hz) are provided from spectral element dynamic simulation of 17 scenario models. High-frequency (2-10 Hz) motions are calculated with a physics-based method based on S-to-S backscattering theory. Broad-band ground motions at the bedrock level show amplifications, both at low and high frequencies, due to the existence of deep Tehran basin in the vicinity of the NTF. By employing soil profiles obtained from regional studies, effect of shallow soil layers on broad-band ground motions is investigated by both linear and non-linear analyses. While linear soil response overestimate ground motion prediction equations, non-linear response predicts plausible results within one standard deviation of empirical relationships. Average Peak Ground Accelerations (PGAs) at the northern, central and southern parts of the city are estimated about 0.93, 0.59 and 0.4 g, respectively. Increased damping caused by non-linear soil behaviour, reduces the soil linear responses considerably, in particular at frequencies above 3 Hz. Non-linear deamplification reduces linear spectral accelerations up to 63 per cent at stations above soft thick sediments. By performing more general analyses, which exclude source-to-site effects on stations, a correction function is proposed for typical site classes of Tehran. Parameters for the function which reduces linear soil response in order to take into account non-linear soil deamplification are provided for various frequencies in the range of engineering interest. In addition to fully non-linear analyses, equivalent-linear calculations were also conducted which their comparison revealed appropriateness of the method for large peaks and low frequencies, but its shortage for small to medium peaks and motions with higher than 3 Hz frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.
2014-06-20
We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly fullmore » coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.« less
On the origin of gamma-rays in Fermi blazars: beyondthe broad-line region
NASA Astrophysics Data System (ADS)
Costamante, L.; Cutini, S.; Tosti, G.; Antolini, E.; Tramacere, A.
2018-07-01
The gamma-ray emission in broad-line blazars is generally explained as inverse Compton (IC) radiation of relativistic electrons in the jet scattering optical-UV photons from the broad-line region (BLR), the so-called BLR external Compton (EC) scenario. We test this scenario on the Fermi gamma-ray spectra of 106 broad-line blazars detected with the highest significance or largest BLR, by looking for cut-off signatures at high energies compatible with γ-γ interactions with BLR photons. We do not find evidence for the expected BLR absorption. For 2/3 of the sources, we can exclude any significant absorption (τmax < 1), while for the remaining 1/3 the possible absorption is constrained to be 1.5-2 orders of magnitude lower than expected. This result holds also dividing the spectra in high- and low-flux states, and for powerful blazars with large BLR. Only 1 object out of 10 seems compatible with substantial attenuation (τmax > 5). We conclude that for 9 out of 10 objects, the jet does not interact with BLR photons. Gamma-rays seem either produced outside the BLR most of the time, or the BLR is ˜100 × larger than given by reverberation mapping. This means that (i) EC on BLR photons is disfavoured as the main gamma-ray mechanism, versus IC on IR photons from the torus or synchrotron self-Compton; (ii) the Fermi gamma-ray spectrum is mostly intrinsic, determined by the interaction of the particle distribution with the seed-photon spectrum; and (iii) without suppression by the BLR, broad-line blazars can become copious emitters above 100 GeV, as demonstrated by 3C 454.3. We expect the CTA sky to be much richer of broad-line blazars than previously thought.
On the origin of gamma rays in Fermi blazars: beyond the broad line region.
NASA Astrophysics Data System (ADS)
Costamante, L.; Cutini, S.; Tosti, G.; Antolini, E.; Tramacere, A.
2018-05-01
The gamma-ray emission in broad-line blazars is generally explained as inverse Compton (IC) radiation of relativistic electrons in the jet scattering optical-UV photons from the Broad Line Region (BLR), the so-called BLR External Compton scenario. We test this scenario on the Fermi gamma-ray spectra of 106 broad-line blazars detected with the highest significance or largest BLR, by looking for cut-off signatures at high energies compatible with γ-γ interactions with BLR photons. We do not find evidence for the expected BLR absorption. For 2/3 of the sources, we can exclude any significant absorption (τmax < 1), while for the remaining 1/3 the possible absorption is constrained to be 1.5-2 orders of magnitude lower than expected. This result holds also dividing the spectra in high and low-flux states, and for powerful blazars with large BLR. Only 1 object out of 10 seems compatible with substantial attenuation (τmax > 5). We conclude that for 9 out of 10 objects, the jet does not interact with BLR photons. Gamma-rays seem either produced outside the BLR most of the time, or the BLR is ˜100 × larger than given by reverberation mapping. This means that i) External Compton on BLR photons is disfavoured as the main gamma-ray mechanism, vs IC on IR photons from the torus or synchrotron self-Compton; ii) the Fermi gamma-ray spectrum is mostly intrinsic, determined by the interaction of the particle distribution with the seed-photons spectrum; iii) without suppression by the BLR, broad-line blazars can become copious emitters above 100 GeV, as demonstrated by 3C 454.3. We expect the CTA sky to be much richer of broad-line blazars than previously thought.
NASA Astrophysics Data System (ADS)
Dutta, Somenath; Narkhedkar, Sanjay G.; Mukhopadhyay, Parthasarathi; Yadav, Mamta; Sunitha Devi
2018-06-01
An attempt has been made to understand the dynamics of contrasting Indian summer monsoon rainfall (ISMR) in different years during 1979-2017, from large-scale atmospheric energetics aspects. Daily values of eddy and zonal available potential energy (APE), their generation, eddy and zonal kinetic energy (KE), conversions of zonal KE and eddy APE to eddy KE, and conversions of zonal APE to zonal KE and eddy APE were computed over the region bounded by 65°E-95°E and 5°N-35°N during the period 1 May to 30 September for 39 years (1979-2017), using daily ECMWF reanalyzed atmospheric data at 0.125° × 0.125° resolution (3 components of wind and temperature). ISMR was classified into three categories, viz., deficient and below normal, normal and above normal and excess. The daily anomaly of these energetics parameters in each of these years was computed using jackknife method and then the composite of the daily anomalies of these parameters constructed for the years with the above-mentioned three categories of ISMR. The following salient features emerge from this study: Analysis of composite anomaly shows that in case of excess and above normal (below normal and deficient) ISMR, C(A Z , K Z) was less (more) than normal. In case of excess and above normal (below normal and deficient) ISMR, C(A E , K E) was more (less) than normal. Broadly, C(A Z , A E) was more than normal in the years with deficient and below normal ISMR, whereas it was less than normal for years with excess and above normal ISMR. Broadly, G(A Z) was below normal for the years with above normal and excess ISMR, whereas it was above normal for the years with below normal and deficient ISMR. Total kinetic energy and total conversion to eddy kinetic energy was above normal for the years with above normal and excess ISMR.
NASA Astrophysics Data System (ADS)
Crump, P.; Decker, J.; Winterfeldt, M.; Fricke, J.; Maaßdorf, A.; Erbert, G.; Tränkle, G.
2015-03-01
High power broad-area diode lasers are the most efficient source of optical energy, but cannot directly address many applications due to their high lateral beam parameter product BPP = 0.25 × ΘL 95%× W95% (ΘL95% and W95% are emission angle and aperture at 95% power content), with BPP > 3 mm×mrad for W95%~90μm. We review here progress within the BRIDLE project, that is developing diode lasers with BPP < 2 mm×mrad for use in direct metal cutting systems, where the highest efficiencies and powers are required. Two device concepts are compared: narrow-stripe broad-area (NBA) and tapered lasers (TPL), both with monolithically integrated gratings. NBAs use W95% ~ 30 μm to cut-off higher order lateral modes and reduce BPP. TPLs monolithically combine a single mode region at the rear facet with a tapered amplifier, restricting the device to one lateral mode for lowest BPP. TPLs fabricated using ELoD (Extremely Low Divergence) epitaxial designs are shown to operate with BPP below 2mm×mrad, but at cost of low efficiency (<35%, due to high threshold current). In contrast, NBAs operate with BPP < 2 mm×mrad, but maintain efficiency >50% to output of > 7 W, so are currently the preferred design. In studies to further reduce BPP, lateral resonant anti-guiding structures have also been assessed. Optimized anti-guiding designs are shown to reduce BPP by 1 mm×mrad in conventional 90 μm stripe BA-lasers, without power penalty. In contrast, no BPP improvement is observed in NBA lasers, even though their spectrum indicates they are restricted to single mode operation. Mode filtering alone is therefore not sufficient, and further measures will be needed for reduced BPP.
Miller, M.W.; Greenstone, E.M.; Greenstone, W.; Bildstein, K.L.
2002-01-01
The Broad-winged Hawk (Buteo platypterus) breeds in eastern and central Canada and the United States, and winters in Central America and northern and central South America. Birders and ornithologists count migrating Broad-winged Hawks at dozens of traditional watch sites throughout the northeastern United States. We modeled counts of migrating Broad-winged Hawks from two raptor migration watch sites: Montclair Hawk Lookout, New Jersey, and Hawk Mountain Sanctuary, Pennsylvania, to determine whether annual abundance and trend estimates from individual sites within the mid-Atlantic states are representative of the region as a whole. We restricted ourselves to counts made between 10:00 and 16:00 EST during September to standardize count effort between sites. We created one model set for annual counts and another model set for daily counts. When modeling daily counts we incorporated weather and identity of individual observers. Akaike's Information Criteria were used to select the best model from an initial set of competing models. Annual counts declined at both sites during 1979-1998. Broad-winged Hawk migration began, peaked, and ended later at Montclair than at Hawk Mountain, even though Hawk Mountain is 155 km west-southwest of Montclair. Mean annual counts of hawks at Montclair were more than twice those at Hawk Mountain, but were not correlated. Broad-winged Hawks counted at Montclair may not be the same birds as those counted at Hawk Mountain. Rather, the two sites may be monitoring different regional subpopulations. Broad-winged Hawks counted at the two sites may use different migration tactics, with those counted at Hawk Mountain being more likely to slope soar, and those at Montclair more likely to use thermal soaring. A system of multiple watch sites is needed to monitor various breeding populations of this widely dispersed migrant.
NASA Technical Reports Server (NTRS)
Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.;
2001-01-01
We present a moderate-resolution (approximately 20 km s(exp -1) spectrum of the mini broad absorption line QSO PG 1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III (lambda)977, Ly(beta), O VI (lambda)(lambda)1032,1038, Ly(alpha), N V (lambda)(lambda)1238,1242, Si IV (lambda)(lambda)1393,1402, and C IV (lambda)(lambda)1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km s(exp -1) with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly(alpha) flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV (ultraviolet) continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21) cm(exp -2), unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.
NASA Technical Reports Server (NTRS)
Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.;
2001-01-01
We present a moderate-resolution (approximately 20 km/s) spectrum of the broad-absorption line QSO PG 1351+64 between 915-1180 angstroms, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III lambda977, Ly-beta, O VI lambda-lambda-1032,1038, Ly-alpha, N V lambda-lambda-1238,1242, Si IV lambda-lambda-1393,1402, and C IV lambda-lambda-1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly-alpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The ultraviolet continuum shows a significant change in slope near 1050 angstroms in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21)/s, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.
Uncertainty in temperature response of current consumption-based emissions estimates
NASA Astrophysics Data System (ADS)
Karstensen, J.; Peters, G. P.; Andrew, R. M.
2014-09-01
Several studies have connected emissions of greenhouse gases to economic and trade data to quantify the causal chain from consumption to emissions and climate change. These studies usually combine data and models originating from different sources, making it difficult to estimate uncertainties in the end results. We estimate uncertainties in economic data, multi-pollutant emission statistics and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to determine how uncertainty propagates to estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are largely dominated by the climate sensitivity and the parameters associated with the warming effects of CO2. The economic data have a relatively small impact on uncertainty at the global and national level, while much higher uncertainties are found at the sectoral level. Our results suggest that consumption-based national emissions are not significantly more uncertain than the corresponding production based emissions, since the largest uncertainties are due to metric and emissions which affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of ±9-±27% using the global temperature potential with a 50 year time horizon, with metric uncertainties dominating. National level uncertainties are similar in both perspectives due to the dominance of CO2 over other pollutants. The consumption emissions of the top 10 emitting regions have a broad uncertainty range of ±9-±25%, with metric and emissions uncertainties contributing similarly. The Absolute global temperature potential with a 50 year time horizon has much higher uncertainties, with considerable uncertainty overlap for regions and sectors, indicating that the ranking of countries is uncertain.
Dynamic, physical-based landslide susceptibility modelling based on real-time weather data
NASA Astrophysics Data System (ADS)
Canli, Ekrem; Glade, Thomas
2016-04-01
By now there seem to be a broad consensus that due to human-induced global change the frequency and magnitude of precipitation intensities within extensive rainstorm events is expected to increase in certain parts of the world. Given the fact, that rainfall serves as one of the most common triggers for landslide initiation, also an increased landside activity might be expected. Landslide occurrence is a globally spread phenomenon that clearly needs to be handled by a variety of concepts, methods, and models. However, most of the research done with respect to landslides deals with retrospect cases, thus classical back-analysis approaches do not incorporate real-time data. This is remarkable, as most destructive landslides are related to immediate events due to external triggering factors. Only few works so far addressed real-time dynamic components for spatial landslide susceptibility and hazard assessment. Here we present an approach for integrating real-time web-based rainfall data from different sources into an automated workflow. Rain gauge measurements are interpolated into a continuous raster which in return is directly utilized in a dynamic, physical-based model. We use the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis (TRIGRS) model that was modified in a way that it is automatically updated with the most recent rainfall raster for producing hourly landslide susceptibility maps on a regional scale. To account for the uncertainties involved in spatial modelling, the model was further adjusted by not only applying single values for given geotechnical parameters, but ranges instead. The values are determined randomly between user-defined thresholds defining the parameter ranges. Consequently, a slope failure probability from a larger number of model runs is computed rather than just the distributed factor of safety. This will ultimately allow a near-real time spatial landslide alert for a given region.
NASA Astrophysics Data System (ADS)
Ryckaert, Jana; Correia, António; Smet, Kevin; Tessier, Mickael D.; Dupont, Dorian; Hens, Zeger; Hanselaer, Peter; Meuret, Youri
2017-09-01
Combining traditional phosphors with a broad emission spectrum and non-scattering quantum dots with a narrow emission spectrum can have multiple advantages for white LEDs. It allows to reduce the amount of scattering in the wavelength conversion element, increasing the efficiency of the complete system. Furthermore, the unique possibility to tune the emission spectrum of quantum dots allows to optimize the resulting LED spectrum in order to achieve optimal color rendering properties for the light source. However, finding the optimal quantum dot properties to achieve optimal efficacy and color rendering is a non-trivial task. Instead of simply summing up the emission spectra of the blue LED, phosphor and quantum dots, we propose a complete simulation tool that allows an accurate analysis of the final performance for a range of different quantum dot synthesis parameters. The recycling of the reflected light from the wavelength conversion element by the LED package is taken into account, as well as the re-absorption and the associated red-shift. This simulation tool is used to vary two synthesis parameters (core size and cadmium fraction) of InP/CdxZn1-xSe quantum dots. We find general trends for the ideal quantum dot that should be combined with a specific YAG:Ce broad band phosphor to obtain optimal efficiency and color rendering for a white LED with a specific pumping LED and recycling cavity, with a desired CCT of 3500K.
Parameters of care for craniosynostosis.
McCarthy, Joseph G; Warren, Stephen M; Bernstein, Joseph; Burnett, Whitney; Cunningham, Michael L; Edmond, Jane C; Figueroa, Alvaro A; Kapp-Simon, Kathleen A; Labow, Brian I; Peterson-Falzone, Sally J; Proctor, Mark R; Rubin, Marcie S; Sze, Raymond W; Yemen, Terrance A
2012-01-01
A multidisciplinary meeting was held from March 4 to 6, 2010, in Atlanta, Georgia, entitled "Craniosynostosis: Developing Parameters for Diagnosis, Treatment, and Management." The goal of this meeting was to create parameters of care for individuals with craniosynostosis. Fifty-two conference attendees represented a broad range of expertise, including anesthesiology, craniofacial surgery, dentistry, genetics, hand surgery, neurosurgery, nursing, ophthalmology, oral and maxillofacial surgery, orthodontics, otolaryngology, pediatrics, psychology, public health, radiology, and speech-language pathology. These attendees also represented 16 professional societies and peer-reviewed journals. The current state of knowledge related to each discipline was reviewed. Based on areas of expertise, four breakout groups were created to reach a consensus and draft specialty-specific parameters of care based on the literature or, in the absence of literature, broad clinical experience. In an iterative manner, the specialty-specific draft recommendations were presented to all conference attendees. Participants discussed the recommendations in multidisciplinary groups to facilitate exchange and consensus across disciplines. After the conference, a pediatric intensivist and social worker reviewed the recommendations. Consensus was reached among the 52 conference attendees and two post hoc reviewers. Longitudinal parameters of care were developed for the diagnosis, treatment, and management of craniosynostosis in each of the 18 specialty areas of care from prenatal evaluation to adulthood. To our knowledge, this is the first multidisciplinary effort to develop parameters of care for craniosynostosis. These parameters were designed to help facilitate the development of educational programs for the patient, families, and health-care professionals; stimulate the creation of a national database and registry to promote research, especially in the area of outcome studies; improve credentialing of interdisciplinary craniofacial clinical teams; and improve the availability of health insurance coverage for all individuals with craniosynostosis.
Lee, Kyung-Eun; Park, Hyun-Seok
2015-01-01
Epigenetic computational analyses based on Markov chains can integrate dependencies between regions in the genome that are directly adjacent. In this paper, the BED files of fifteen chromatin states of the Broad Histone Track of the ENCODE project are parsed, and comparative nucleotide frequencies of regional chromatin blocks are thoroughly analyzed to detect the Markov property in them. We perform various tests to examine the Markov property embedded in a frequency domain by checking for the presence of the Markov property in the various chromatin states. We apply these tests to each region of the fifteen chromatin states. The results of our simulation indicate that some of the chromatin states possess a stronger Markov property than others. We discuss the significance of our findings in statistical models of nucleotide sequences that are necessary for the computational analysis of functional units in noncoding DNA.
Whitney L. Albright; David L. Peterson
2013-01-01
Climate change in the 21st century will affect tree growth in the Pacific Northwest region of North America, although complex climateâgrowth relationships make it difficult to identify how radial growth will respond across different species distributions. We used a novel method to examine potential growth responses to climate change at a broad geographical scale with a...
NASA Astrophysics Data System (ADS)
Andreicheva, L. N.; Marchenko-Vagapova, T. I.
2017-11-01
The data obtained from investigation of the Middle and Late Neopleistocene lake sediments in the European Subarctic Region of Russia are reported. Chirva, Rodionovo (Scklov), Sula (Mikulino), and Byzovaya (Leningrad) sediments were subject to palynological analysis and investigation of particle size distribution and mineral composition. The spore-pollen spectra of the Chirva sediments demonstrate two climatic optima: the lower optimum is dominated by the pollen of Pinus sylvestris and broad-leaved species (up to 10%); the upper optimum is dominated by Picea sp. and Pinus sylvestris, while the pollen of Picea sect. Omorica and broad-leaved species are sporadic. The Rodionovo flora is characterized by a more xerophilous composition relative to the Chirva flora and a higher pollen content of pine, birch, wormseed plants, and wormwood. The climatic optimum of the Sula interglacial is distinguished by boreal vegetation, including spruce, birch, and birch-spruce forests with sparse broad-leaved species. The Byzovaya interstadial is marked by seven stages of changes in the vegetation: from tundra and forest-tundra communities to taiga forests with some broad-leaved species. The natural climatic sedimentation conditions in the Middle and Late Neopleistocene interglacial periods are reconstructed. The mineral composition of sediments was largely formed owing to underlying deposits.
NASA Astrophysics Data System (ADS)
Diaz, J.; Gallart, J.
2009-12-01
The region formed by the Betic and Rift belts and the extensional Alboran basin, located in Southern Iberia and Northern Morocco, is one of the most complex and controversial geological zones in Western Europe. There is still not a commonly accepted hypothesis about the mechanism responsible for its formation, as models including lithospheric delamination, convective removal or subduction have been proposed by different authors. In this context, the knowledge about the presence and properties of upper mantle anisotropy from SKS splitting measurements can provide valuable information. Until few years ago, very scarce data regarding the presence of anisotropy in the Southern part of the Iberian Peninsula were available. The installation of new permanent and semi-permanent broadband stations in the region has allowed obtaining a first insight into the anisotropic properties (Buontempo et al, 2008). Those data have evidenced the presence of geographical variations in the anisotropic parameters, with fast velocity directions (FVD) parallel to the mountain belt in the Internal Betics and a rotation on fast split directions towards NS around the Gibraltar arc. However additional data, especially in the Northern part of Morocco, seem to be necessary to discern between the different geodynamical models proposed. In the framework of the large-scale TOPOIBERIA project, the IberArray broad-band seismic network was deployed over this region for about 18 months, beginning in summer 2007. This portable array, formed by up to 55 new generation dataloggers equipped with broad-band seismometers, covers the southern part of Iberia (35 stations) and northern Morocco (20 stations) in an approximately regular grid, with a nominal spacing of 60 km. Data from the permanent broadband stations maintained by different institutions operating in the region has been integrated into the IberArray database. Events with epicentral distances between 85 and 120 degrees and magnitude greater than 5.8 are systematically extracted from the continuous dataset and SKS, SKKS and PKS phases are inspected for anisotropy using the SplitLab software. Processing of the whole dataset is still ongoing, but the available results already improve significantly the spatial resolution of SKS measurements in this region. The inferred FVD clearly document a spectacular rotation along the Gibraltar arc, following the curvature of the Rif-Betic chain, from roughly N65E beneath the Betics to close to N65W beneath the Rif chain. Stations located in the south-eastern and southern edges of the array show a distinct pattern, with FVD oriented NE-SW to E-W. The results for some sites, especially those located in the Variscan units of SW Iberia, suggest the presence of complex anisotropy features, probably including two anisotropic layers. The FVD variations along the Gibraltar arc could be explained by fossil anisotropy acquired during the Eocene. However, at the present stage of analysis, we favour an anisotropic origin related to toroidal flow around the Alboran low velocity slab. These FVD results are compatible with rollback / subduction models. On the other hand, convective-removal and delamination models seem unlikely to be compatible with the anisotropic results.
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob; Belcastro, Christine; Khong, thuan
2006-01-01
Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems developed for failure detection, identification, and reconfiguration, as well as upset recovery, need to be evaluated over broad regions of the flight envelope or under extreme flight conditions, and should include various sources of uncertainty. To apply formal robustness analysis, formulation of linear fractional transformation (LFT) models of complex parameter-dependent systems is required, which represent system uncertainty due to parameter uncertainty and actuator faults. This paper describes a detailed LFT model formulation procedure from the nonlinear model of a transport aircraft by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The closed-loop system is evaluated over the entire flight envelope based on the generated LFT model which can cover nonlinear dynamics. The robustness analysis results of the closed-loop fault tolerant control system of a transport aircraft are presented. A reliable flight envelope (safe flight regime) is also calculated from the robust performance analysis results, over which the closed-loop system can achieve the desired performance of command tracking and failure detection.
The rotation of discs around neutron stars: dependence on the Hall diffusion
NASA Astrophysics Data System (ADS)
Faghei, Kazem; Salehi, Fatemeh
2018-01-01
In this paper, we study the dynamics of a geometrically thin, steady and axisymmetric accretion disc surrounding a rotating and magnetized star. The magnetic field lines of star penetrate inside the accretion disc and are twisted due to the differential rotation between the magnetized star and the disc. We apply the Hall diffusion effect in the accreting plasma, because of the Hall diffusion plays an important role in both fully ionized plasma and weakly ionized medium. In the current research, we show that the Hall diffusion is also an important mechanism in accreting plasma around neutron stars. For the typical system parameter values associated with the accreting X-ray binary pulsar, the angular velocity of the inner regions of disc departs outstandingly from Keplerian angular velocity, due to coupling between the magnetic field of neutron star and the rotating plasma of disc. We found that the Hall diffusion is very important in inner disc and increases the coupling between the magnetic field of neutron star and accreting plasma. On the other word, the rotational velocity of inner disc significantly decreases in the presence of the Hall diffusion. Moreover, the solutions imply that the fastness parameter decreases and the angular velocity transition zone becomes broad for the accreting plasma including the Hall diffusion.
Evolution of antero‐posterior patterning of the limb: Insights from the chick
2017-01-01
Summary The developing limbs of chicken embryos have served as pioneering models for understanding pattern formation for over a century. The ease with which chick wing and leg buds can be experimentally manipulated, while the embryo is still in the egg, has resulted in the discovery of important developmental organisers, and subsequently, the signals that they produce. Sonic hedgehog (Shh) is produced by mesenchyme cells of the polarizing region at the posterior margin of the limb bud and specifies positional values across the antero‐posterior axis (the axis running from the thumb to the little finger). Detailed experimental embryology has revealed the fundamental parameters required to specify antero‐posterior positional values in response to Shh signaling in chick wing and leg buds. In this review, the evolution of the avian wing and leg will be discussed in the broad context of tetrapod paleontology, and more specifically, ancestral theropod dinosaur paleontology. How the parameters that dictate antero‐posterior patterning could have been modulated to produce the avian wing and leg digit patterns will be considered. Finally, broader speculations will be made regarding what the antero‐posterior patterning of chick limbs can tell us about the evolution of other digit patterns, including those that were found in the limbs of the earliest tetrapods. PMID:28734068
Cao, Fan; Fang, Yiwen; Tan, Hong Kee; Goh, Yufen; Choy, Jocelyn Yeen Hui; Koh, Bryan Thean Howe; Hao Tan, Jiong; Bertin, Nicolas; Ramadass, Aroul; Hunter, Ewan; Green, Jayne; Salter, Matthew; Akoulitchev, Alexandre; Wang, Wilson; Chng, Wee Joo; Tenen, Daniel G; Fullwood, Melissa J
2017-05-19
Stretched histone regions, such as super-enhancers and broad H3K4me3 domains, are associated with maintenance of cell identity and cancer. We connected super-enhancers and broad H3K4me3 domains in the K562 chronic myelogenous leukemia cell line as well as the MCF-7 breast cancer cell line with chromatin interactions. Super-enhancers and broad H3K4me3 domains showed higher association with chromatin interactions than their typical counterparts. Interestingly, we identified a subset of super-enhancers that overlap with broad H3K4me3 domains and show high association with cancer-associated genes including tumor suppressor genes. Besides cell lines, we could observe chromatin interactions by a Chromosome Conformation Capture (3C)-based method, in primary human samples. Several chromatin interactions involving super-enhancers and broad H3K4me3 domains are constitutive and can be found in both cancer and normal samples. Taken together, these results reveal a new layer of complexity in gene regulation by super-enhancers and broad H3K4me3 domains.
Investigating the properties of low-mass AGN and their connection to unification models
NASA Astrophysics Data System (ADS)
Hood, Carol Elizabeth
The most basic model of active galactic nuclei (AGN) suggest the observational differences between Type 1 and Type 2 objects are solely due to the orientation angle of the object. Although there are still some unanswered questions about the structures surrounding the central engines of the AGN, such as if the obscuring region is due to a dusty torus or an outflowing wind, observations (e.g. the detections of broad lines in the polarized light of some Type 2 objects) have proved consistent with predictions and continue to strengthen the case for unification. However, many are still searching for "true" Type 2 objects. These objects optically look like other Type 2 objects, but instead of having their broad line region blocked from the line-of-sight by the obscuring region, they are believed to lack the broad line region altogether. Others have predicted that at low luminosity or low accretion rate, the broad line region will disappear, leaving all objects to optically look like Type 2 objects, despite their level of intrinsic absorption. Low-mass (< 10^6 solar masses) AGN provide interesting environments in which these unification models can be studied. We present an in-depth multi-wavelength study of one of the prototypical low-mass AGN, POX 52, investigating the properties of the central engine along with that of the host galaxy. In addition, we examine the X-ray properties of a sample of Type 2 objects observed with XMM-Newton and the IR properties of a sample of both Type 1 and 2 objects observed with the Spitzer Infrared Spectrograph, in order to study the absorption properties of these objects and test the validity of unification models in the low-mass regime. We find little to no evidence of any "true" Type 2 objects in any of our samples, and show that in all tests preformed, low-mass AGN appear to simply be scaled-down versions of their more massive counterparts, keeping current unification models intact down to the lowest black hole masses probed to date.
A postmenopausal woman with sciatica from broad ligament leiomyoma: a case report.
Tsai, Ya-Chu May
2016-10-31
Unilateral lower abdominal pain and/or sciatic nerve pain is a common presentation in the elderly population. The prevalence of broad ligament leiomyoma is <1 % with the prevalence declining after the menopause and it is rare for broad ligament leiomyomas to be clinically significant. Thus, we highlight a case of symptomatic broad ligament leiomyoma in a postmenopausal woman whose symptoms improved after definitive treatment. A 62-year-old postmenopausal Macedonian woman was referred to our gynecological department with unexplained pain in her left leg and left iliac fossa region on walking. There was minimal relief with increasing analgesia use prescribed by the family physician. Investigations revealed an ipsilateral adnexal mass and subsequent treatment with laparoscopic broad ligament myomectomy helped to alleviate her symptoms. Our case highlights the importance of staying mindful of alternate diagnoses when presented with a common presentation of iliac fossa pain and pain in the leg. Although broad ligament leiomyomas are benign tumors, the uncommon symptomatic presentation led us to report and focus some attention on this type of tumor.
SAN FRANCISCO BAY WETLANDS REGIONAL MONITORING PROGRAM
The geographic area to be monitored is the San Francisco Estuary and its watersheds from the Golden Gate to the Sacramento-San Joaquin Delta at Broad Slough. The initial focus will be the baylands of the region defined as the lands between the maximum and minimum elevations of t...
REGIONAL-SCALE FISH ECOLOGY IN NORTHEASTERN USA LAKES USING A PROBABILITY-BASED SURVEY DESIGN
Historically, most fish ecology has been done at local scales. As these data accumulate, the need to set this knowledge into landscape, regional, and historical context grows. There are important broad-scale issues (e.g., non-point source pollution, biodiversity loss, alien spe...
LINKING BROAD-SCALE LANDSCAPE APPROACHES WITH FINE-SCALE PROCESS MODELS: THE SEQL PROJECT
Regional landscape models have been shown to be useful in targeting watersheds in need of further attention at a local scale. However, knowing the proximate causes of environmental degradation at a regional scale, such as impervious surface, is not enough to help local decision m...
NASA Astrophysics Data System (ADS)
Lund, M. T.; Samset, B. H.; Skeie, R. B.; Berntsen, T.
2017-12-01
Several recent studies have used observations from the HIPPO flight campaigns to constrain the modeled vertical distribution of black carbon (BC) over the Pacific. Results indicate a relatively linear relationship between global-mean atmospheric BC residence time, or lifetime, and bias in current models. A lifetime of less than 5 days is necessary for models to reasonably reproduce these observations. This is shorter than what many global models predict, which will in turn affect their estimates of BC climate impacts. Here we use the chemistry-transport model OsloCTM to examine whether this relationship between global BC lifetime and model skill also holds for a broader a set of flight campaigns from 2009-2013 covering both remote marine and continental regions at a range of latitudes. We perform four sets of simulations with varying scavenging efficiency to obtain a spread in the modeled global BC lifetime and calculate the model error and bias for each campaign and region. Vertical BC profiles are constructed using an online flight simulator, as well by averaging and interpolating monthly mean model output, allowing us to quantify sampling errors arising when measurements are compared with model output at different spatial and temporal resolutions. Using the OsloCTM coupled with a microphysical aerosol parameterization, we investigate the sensitivity of modeled BC vertical distribution to uncertainties in the aerosol aging and scavenging processes in more detail. From this, we can quantify how model uncertainties in the BC life cycle propagate into uncertainties in its climate impacts. For most campaigns and regions, a short global-mean BC lifetime corresponds with the lowest model error and bias. On an aggregated level, sampling errors appear to be small, but larger differences are seen in individual regions. However, we also find that model-measurement discrepancies in BC vertical profiles cannot be uniquely attributed to uncertainties in a single process or parameter, at least in this model. Model development therefore needs to focus on improvements to individual processes, supported by a broad range of observational and experimental data, rather than tuning individual, effective parameters such as global BC lifetime.
Molpa: A newly recorded genus (Orthoptera: Tettigoniidae: Phaneropterinae) from China.
Wu, Chao; Yang, Zhen; Liu, Chun-Xiang; Zong, Cheng
2017-12-20
The genus Molpa Walker was previously considered to be disjunctly distributed in broad-leaf rain forests in India and Malaysia. Here we report one new species Molpa dulongensis sp. nov. from subtropic broad-leaf rain forests in southwestern Yunnan Province in China. This is a part of the Indo-Burma biodiversity hotspot area. So we can infer that Molpa is continuously distributed in broad-leaf rain forests found in Oriental Region. Redescription of the genus Molpa and description of the new species Molpa dulongensis sp. nov. are provided. The types are deposited in Insect Collection of Institute of Zoology, Chinese Academy of Sciences, Beijing, China (IZCAS).
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Schubert, Siegfried; Lin, Ching I.; Stajner, Ivanka; Einaudi, Franco (Technical Monitor)
2000-01-01
A method is developed for validating model-based estimates of atmospheric moisture and ground temperature using satellite data. The approach relates errors in estimates of clear-sky longwave fluxes at the top of the Earth-atmosphere system to errors in geophysical parameters. The fluxes include clear-sky outgoing longwave radiation (CLR) and radiative flux in the window region between 8 and 12 microns (RadWn). The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data, and multiple global four-dimensional data assimilation (4-DDA) products. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic clear-sky longwave fluxes from two different 4-DDA data sets. Simple linear regression is used to relate the clear-sky longwave flux discrepancies to discrepancies in ground temperature ((delta)T(sub g)) and broad-layer integrated atmospheric precipitable water ((delta)pw). The slopes of the regression lines define sensitivity parameters which can be exploited to help interpret mismatches between satellite observations and model-based estimates of clear-sky longwave fluxes. For illustration we analyze the discrepancies in the clear-sky longwave fluxes between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS2) and a recent operational version of the European Centre for Medium-Range Weather Forecasts data assimilation system. The analysis of the synthetic clear-sky flux data shows that simple linear regression employing (delta)T(sub g)) and broad layer (delta)pw provides a good approximation to the full radiative transfer calculations, typically explaining more thin 90% of the 6 hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters, Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for (delta)T(sub g) to approx. 20% for the lower tropospheric moisture between 500 hPa and surface. The regression relationships developed from the synthetic flux data, together with CLR and RadWn observed with the Clouds and Earth Radiant Energy System instrument, ire used to assess the quality of the GEOS2 T(sub g) and pw. Results showed that the GEOS2 T(sub g) is too cold over land, and pw in upper layers is too high over the tropical oceans and too low in the lower atmosphere.
Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying
2018-01-01
The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial heterogeneity under the three vegetation types. According to the temporal and spatial heterogeneity of the optimal values, the parameters of the BIOME-BGC model could be classified in order to adopt different parameter strategies in practical application. The conclusion could help to deeply understand the parameters and the optimal values of the ecological process models, and provide a way or reference for obtaining the reasonable values of parameters in models application.
NASA Astrophysics Data System (ADS)
Green, Paul; Duddy, Ian; Japsen, Peter
2015-04-01
Numerous low temperature thermochronology studies have defined regional cooling episodes which imply removal of several km of section over areas of several 104 km2. The origin of such events has long been the subject of debate, while their reality has sometimes been questioned because of the lack of a viable mechanism. Kilometre-scale denudation at rifted margins has traditionally been interpreted as related to rifting and breakup, magnified by the flexural response to denudation of the uplifted rift flanks. But it is now clear that at many margins the post-breakup history is more complex, with km-scale uplift and erosion commonly post-dating breakup by 10s of Myr and often affecting regions many 100s of kilometres inland of the margins (Green et al., 2013; Brown et al., 2014). Numerous examples around the world of km-scale exhumation affecting regions distant from continental margins, including cratonic regions traditionally regarded as stable over Phanerozoic time (e.g. Ault et al., 2009; Flowers & Kelley, 2011), cannot be explained by margin-related mechanisms. It has also become clear that periods of exhumation are separated by episodes of burial, defining a series of positive and negative vertical movements. Previous studies have defined a broad synchroneity of Early, Middle and Late Cenozoic exhumation events in regions from Alaska to Greenland, Norway and Svalbard (Green and Duddy, 2010). New results from SE Australia define a series of exhumation episodes ranging in time from Carboniferous to Cenozoic which are broadly synchronous with similar events previously defined in Brazil and South Africa (Green et al. 2013). While estimates of the timing of exhumation in different areas are subject to some uncertainty, data across three southern hemisphere continents show a broad synchronicity in similar fashion to the northern hemisphere examples cited above. Dynamic topography has been invoked as a possible mechanism for producing uplift, the effects of which might be magnified by the isostatic response to denudation, but until recently the vertical motions expected from this mechanism were thought to be restricted to 100s of metres while expected timescales of 100s of Myr are not consistent with observations. Braun et al. (2014) showed that movement of plates over areas of areas of mantle upwelling could produce much more rapid uplift and also much larger-scale vertical movements, but the predicted diachroneity of uplift across southern Africa differs from the apparent synchroneity across three continents described here. The processes described by Braun et al. are also specific to one location and one event. Japsen et al. (2012) suggested that broadly synchronous exhumation events on divergent continents resulted from lateral resistance to plate motion driven by forces transmitted in the asthenosphere, while Colli et al. (2014) proposed that dynamic topography caused by pressure-driven mantle flow could produce synchronous uplift (and erosion) in separate continents. Such processes appear to offer more viable mechanisms for producing broadly synchronous episodes of kilometre-scale exhumation and intervening burial in regions separated by large distances. Further geodynamic modelling is needed to develop and test likely mechanisms.
Cuellar, Trinna L.; Barnes, Dwight; Nelson, Christopher; Tanguay, Joshua; Yu, Shang-Fan; Wen, Xiaohui; Scales, Suzie J.; Gesch, Julie; Davis, David; van Brabant Smith, Anja; Leake, Devin; Vandlen, Richard; Siebel, Christian W.
2015-01-01
Delivery of siRNA is a key hurdle to realizing the therapeutic promise of RNAi. By targeting internalizing cell surface antigens, antibody–siRNA complexes provide a possible solution. However, initial reports of antibody–siRNA complexes relied on non-specific charged interactions and have not been broadly applicable. To assess and improve this delivery method, we built on an industrial platform of therapeutic antibodies called THIOMABs, engineered to enable precise covalent coupling of siRNAs. We report that such coupling generates monomeric antibody–siRNA conjugates (ARCs) that retain antibody and siRNA activities. To broadly assess this technology, we generated a battery of THIOMABs against seven targets that use multiple internalization routes, enabling systematic manipulation of multiple parameters that impact delivery. We identify ARCs that induce targeted silencing in vitro and extend tests to target prostate carcinoma cells following systemic administration in mouse models. However, optimal silencing was restricted to specific conditions and only observed using a subset of ARCs. Trafficking studies point to ARC entrapment in endocytic compartments as a limiting factor, independent of the route of antigen internalization. Our broad characterization of multiple parameters using therapeutic-grade conjugate technology provides a thorough assessment of this delivery technology, highlighting both examples of success as well as remaining challenges. PMID:25550431
Parameter regionalization of a monthly water balance model for the conterminous United States
Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight
2016-01-01
A parameter regionalization scheme to transfer parameter values from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash–Sutcliffe efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.
Parameter regionalization of a monthly water balance model for the conterminous United States
NASA Astrophysics Data System (ADS)
Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight
2016-07-01
A parameter regionalization scheme to transfer parameter values from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash-Sutcliffe efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Khai; Bogdanović, Tamara
Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks thatmore » are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.« less
A study of the effectiveness and energy efficiency of ultrasonic emulsification.
Li, Wu; Leong, Thomas S H; Ashokkumar, Muthupandian; Martin, Gregory J O
2017-12-20
Three essential experimental parameters in the ultrasonic emulsification process, namely sonication time, acoustic amplitude and processing volume, were individually investigated, theoretically and experimentally, and correlated to the emulsion droplet sizes produced. The results showed that with a decrease in droplet size, two kinetic regions can be separately correlated prior to reaching a steady state droplet size: a fast size reduction region and a steady state transition region. In the fast size reduction region, the power input and sonication time could be correlated to the volume-mean diameter by a power-law relationship, with separate power-law indices of -1.4 and -1.1, respectively. A proportional relationship was found between droplet size and processing volume. The effectiveness and energy efficiency of droplet size reduction was compared between ultrasound and high-pressure homogenisation (HPH) based on both the effective power delivered to the emulsion and the total electric power consumed. Sonication could produce emulsions across a broad range of sizes, while high-pressure homogenisation was able to produce emulsions at the smaller end of the range. For ultrasonication, the energy efficiency was higher at increased power inputs due to more effective droplet breakage at high ultrasound intensities. For HPH the consumed energy efficiency was improved by operating at higher pressures for fewer passes. At the laboratory scale, the ultrasound system required less electrical power than HPH to produce an emulsion of comparable droplet size. The energy efficiency of HPH is greatly improved at large scale, which may also be true for larger scale ultrasonic reactors.
Modulation of partition and localization of perfume molecules in sodium dodecyl sulfate micelles.
Fan, Yaxun; Tang, Haiqiu; Strand, Ross; Wang, Yilin
2016-01-07
The influence of perfume molecules on the self-assembly of the anionic surfactant sodium dodecyl sulfate (SDS) and their localization in SDS micelles have been investigated by ζ potential, small angle X-ray scattering (SAXS), one- and two-dimensional NMR and isothermal titration microcalorimetry (ITC). A broad range of perfume molecules varying in octanol/water partition coefficients P are employed. The results indicate that the surface charge, size and aggregation number of the SDS micelles strongly depend on the hydrophobicity/hydrophilicity degree of perfume molecules. Three distinct regions along the log P values are identified. Hydrophilic perfumes (log P < 2.0) partially incorporate into the SDS micelles and do not lead to micelle swelling, whereas hydrophobic perfumes (log P > 3.5) are solubilized close to the end of the hydrophobic chains in the SDS micelles and enlarge the micelles with higher ζ potential and a larger aggregation number. The incorporated fraction and micelle properties show increasing tendency for the perfumes in the intermediate log P region (2.0 < log P < 3.5). Besides, the molecular conformation of perfume molecules also affects these properties. The perfumes with a linear chain structure or an aromatic group can penetrate into the palisade layer and closely pack with the SDS molecules. Furthermore, the thermodynamic parameters obtained from ITC show that the binding of the perfumes in the intermediate log P region is more spontaneous than those in the other two log P regions, and the micellization of SDS with the perfumes is driven by entropy.
Stochastic control system parameter identifiability
NASA Technical Reports Server (NTRS)
Lee, C. H.; Herget, C. J.
1975-01-01
The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.
Brown, Lucy L.; Acevedo, Bianca; Fisher, Helen E.
2013-01-01
Four suites of behavioral traits have been associated with four broad neural systems: the 1) dopamine and related norepinephrine system; 2) serotonin; 3) testosterone; 4) and estrogen and oxytocin system. A 56-item questionnaire, the Fisher Temperament Inventory (FTI), was developed to define four temperament dimensions associated with these behavioral traits and neural systems. The questionnaire has been used to suggest romantic partner compatibility. The dimensions were named: Curious/Energetic; Cautious/Social Norm Compliant; Analytical/Tough-minded; and Prosocial/Empathetic. For the present study, the FTI was administered to participants in two functional magnetic resonance imaging studies that elicited feelings of love and attachment, near-universal human experiences. Scores for the Curious/Energetic dimension co-varied with activation in a region of the substantia nigra, consistent with the prediction that this dimension reflects activity in the dopamine system. Scores for the Cautious/Social Norm Compliant dimension correlated with activation in the ventrolateral prefrontal cortex in regions associated with social norm compliance, a trait linked with the serotonin system. Scores on the Analytical/Tough-minded scale co-varied with activity in regions of the occipital and parietal cortices associated with visual acuity and mathematical thinking, traits linked with testosterone. Also, testosterone contributes to brain architecture in these areas. Scores on the Prosocial/Empathetic scale correlated with activity in regions of the inferior frontal gyrus, anterior insula and fusiform gyrus. These are regions associated with mirror neurons or empathy, a trait linked with the estrogen/oxytocin system, and where estrogen contributes to brain architecture. These findings, replicated across two studies, suggest that the FTI measures influences of four broad neural systems, and that these temperament dimensions and neural systems could constitute foundational mechanisms in personality structure and play a role in romantic partnerships. PMID:24236043
Brown, Lucy L; Acevedo, Bianca; Fisher, Helen E
2013-01-01
Four suites of behavioral traits have been associated with four broad neural systems: the 1) dopamine and related norepinephrine system; 2) serotonin; 3) testosterone; 4) and estrogen and oxytocin system. A 56-item questionnaire, the Fisher Temperament Inventory (FTI), was developed to define four temperament dimensions associated with these behavioral traits and neural systems. The questionnaire has been used to suggest romantic partner compatibility. The dimensions were named: Curious/Energetic; Cautious/Social Norm Compliant; Analytical/Tough-minded; and Prosocial/Empathetic. For the present study, the FTI was administered to participants in two functional magnetic resonance imaging studies that elicited feelings of love and attachment, near-universal human experiences. Scores for the Curious/Energetic dimension co-varied with activation in a region of the substantia nigra, consistent with the prediction that this dimension reflects activity in the dopamine system. Scores for the Cautious/Social Norm Compliant dimension correlated with activation in the ventrolateral prefrontal cortex in regions associated with social norm compliance, a trait linked with the serotonin system. Scores on the Analytical/Tough-minded scale co-varied with activity in regions of the occipital and parietal cortices associated with visual acuity and mathematical thinking, traits linked with testosterone. Also, testosterone contributes to brain architecture in these areas. Scores on the Prosocial/Empathetic scale correlated with activity in regions of the inferior frontal gyrus, anterior insula and fusiform gyrus. These are regions associated with mirror neurons or empathy, a trait linked with the estrogen/oxytocin system, and where estrogen contributes to brain architecture. These findings, replicated across two studies, suggest that the FTI measures influences of four broad neural systems, and that these temperament dimensions and neural systems could constitute foundational mechanisms in personality structure and play a role in romantic partnerships.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-30
... or man-made infrasound sources including earthquakes, volcanic eruptions, rocket launch, and/or... rocket launch and/or nuclear explosions, or whether the parameters are overly broad. If the controls are...
Evaluating Possible Heating Mechanisms Using the Transition Region Line Profiles of Late-Type Stars
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Linsky, Jeffrey L.; Ayres, Thomas R.
1997-01-01
Our analysis of high-resolution Goddard High-Resolution Spectrograph (GHRS) spectra of late-type stars shows that the Si IV and C IV lines formed near 10(exp 5) K can be decomposed into the sum of two Gaussians, a broad component and a narrow component. We find that the flux contribution of the broad components is correlated with both the C IV and X-ray surface fluxes. For main-sequence stars, the widths of the narrow components suggest subsonic nonthermal velocities, and there appears to be a tight correlation between these nonthermal velocities and stellar surface gravity [xi(sub nc) varies as g(sup (-.68 +/-.07))]. For evolved stars with lower surface gravities, the nonthermal velocities suggested by the narrow components are at or just above the sound speed. Nonthermal velocities computed from the widths of the broad components are always highly supersonic. We propose that the broad components are diagnostics for microflare heating. Turbulent dissipation and Alfven waves are both viable candidates for the narrow component heating mechanism. A solar analog for the broad components might be the 'explosive events' detected by the High-Resolution Telescope and Spectrograph (HRTS) experiment. The broad component we observe for the Si IV lambda 1394 line of alpha Cen A, a star that is nearly identical to the Sun, has a FWHM of 109 +/- 10 km/s and is blueshifted by 9 +/- 3 km/s relative to the narrow component. Both of these properties are consistent with the properties of the solar explosive events. However, the alpha Cen A broad component accounts for 25% +/- 4% of the total Si IV line flux, while solar explosive events are currently thought to account for no more than 5% of the Sun's total transition region emission. This discrepancy must be resolved before the connection between broad components and explosive events can be positively established. In addition to our analysis of the Si IV and C IV lines of many stars, we also provide a more thorough analysis of all of the available GHRS data for alpha Cen A (G2 V) and alpha Cen B (K1 V). We find that the transition region lines of both stars have redshifts almost identical to those observed on the Sun: showing an increase with line formation temperature up to about log T = 5.2 and then a rapid decrease. Using the O IV] lines as density diagnostics, we compute electron densities of log n(sub e) = 9.65 +/- 0.20 and log n(sub e) = 9.50 +/- 0.30 for alpha Cen A and alpha Cen B, respectively.
Broad absorption-line time variability in the QSO CSO 203
NASA Technical Reports Server (NTRS)
Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. M.; Weymann, Ray J.; Morris, Simon L.; Korista, Kirk T.
1992-01-01
We present spectroscopy of the BALQSO CSO 203 during four epochs over a 17-month time span. These data show three distinct levels in the broad absorption lines (BALs) of Si IV 1397A and C IV 1549A. We also note possible variations in the N V 1240A and Al III 1857A absorption troughs. A broad-band monitoring effort during this period shows that the continuum level remained constant to within 10 percent. We argue that the triggering mechanism for the absorption-line changes is most likely synchronous with the continuum source photons; however, no correlation with the central source has yet been found. The observed variations are consistent with changes in the ionization level in the broad absorption-line region (BALR). We discuss possible mechanisms for these changes and the implications for the structure of the BALR.
Angiomyofibroblastoma of the Broad Ligament: A Case Report.
Huang, Hsiao-Chin; Chen, Ying-Ren; Tsai, Horng-Der; Cheng, Ya-Min; Hsiao, Yi-Hsuan
2017-09-01
Angiomyofibroblastoma (AMF) is a distinctive, rare, benign mesenchymal tumor that often occurs in the lower genital region of women. The most commonly reported location of an AMF is in the vulvovaginal area. We describe a rare case of an AMF located in the broad ligament in a 47-yr-old woman. The patient experienced menorrhagia, dysmenorrhea, and subsequent menstrual spotting. She sought help at the National Cheng Kung University Hospital. Ultrasonography showed an echo-complex mass in the left adnexal area. The patient underwent laparoscopic surgery to remove the soft tissue mass located in the left broad ligament. The final pathology of the mass was reported as an AMF. We reviewed all of the AMF cases reported in the English-language literature found in Pubmed. This case is the first of AMF located in the broad ligament.
Odioso, L L; Gibb, R D; Gerlach, R W
2000-01-01
A cross-sectional survey across broad age ranges was conducted to evaluate demographic, behavioral, and treatment parameters that impact tooth color and its perception. The sample included 180 US adults and teenagers, with a comparable representation of males and females in 6 different age strata, ranging from 13 to 64 years. Tooth color (L*a*b*) was measured on the maxillary central incisors using a spectrophotometer, and first-person satisfaction with tooth color was assessed using a five-point qualitative scale. Demographic, behavioral, and oral care parameters were modeled using multiple regression analysis. After adjusting for other explanatory variables, age, gender, coffee/tea consumption, and dental care all significantly affected yellowing (b*) and brightness (L*). Dental-visit frequency was the only factor that significantly predicted self-satisfaction with tooth color, explaining just 3% of the overall variability. First-person dissatisfaction with tooth color was common and found in most demographic and behavioral cohorts. Although age contributed to objectively measured tooth discoloration, personal satisfaction with tooth color was age-independent. These results suggest that the need or demand for esthetic dentistry may be broad-based and transcend stereotypical perceptions.
Electronic control of different generation regimes in mode-locked all-fibre F8 laser
NASA Astrophysics Data System (ADS)
Kobtsev, Sergey; Ivanenko, Aleksey; Kokhanovskiy, Alexey; Smirnov, Sergey
2018-04-01
We demonstrate for the first time an electronically controlled realisation of markedly different generation regimes in a mode-locked all-fibre figure-eight (F8) Yb-doped laser. Electronic adjustment of the ratio of pumping powers of two amplification stages in a nonlinear amplifying loop mirror enables the establishment of stable pulse generation regimes with different degrees of coherence and control over their parameters within relatively broad limits, with the pulse duration range exceeding a factor of two in the picosecond domain for coherent and incoherent pulses, the energy range exceeding an order of magnitude for incoherent pulses (2.2-24.8 nJ) and over a factor of 8 for coherent pulses (1.9-16.2 nJ). Adjustment of the pumping powers allows one to maintain the duration of the coherent pulses and to set their peak power in the range of 32.5-292.5 W. The proposed configuration of electronic control over the radiation parameters of a mode-locked all-fibre F8 laser enables reproducible generation of pulses of different types with specified parameters within a broad range of values.
Exploring spatial heterogeneity and resilience in northern peatlands
NASA Astrophysics Data System (ADS)
Malhotra, A.; Roulet, N. T.
2011-12-01
Northern peatlands cover only 3% of the worlds land area while storing approximately 30% of the world's soil carbon making them important players in the global and regional carbon (C) cycle (Gorham 1991). Current peatland research attempts to predict changes in peatland biogeochemistry given climate change scenarios. However, the focus is primarily on linear responses to changes rather than on self regulation properties that are present in complex systems. Studying peatlands as complex adaptive systems (CAS) is important to fully understand peatland resilience and therefore to better predict response to disturbances. Peatlands possess properties of CAS such as spatial heterogeneity (SH), localized flows, self-organizing structures and non-linearity (Belyea and Baird 2006). The broad hypothesis of our proposed research is that SH in peatlands is positively connected with ecosystem resilience. To address our broad hypothesis we propose to 1) characterize SH in peatlands (using two visible indices of microtopography [MT] and vegetation structure [VEG]), 2) quantify the auto-correlation between visible SH and biogeochemical parameters and 3) investigate short term resilience using the response of biogeochemical parameters to environmental changes. The selection of biogeochemical parameters is based on prevalent theories on the persistence of MT in peatlands and parameters are related to peat accumulation (function of decomposition and net primary production; NPP), hydrology and nutrients (Swanson and Grigal 1988, Belyea and Clymo 2001, Eppinga et al. 2009). Field measurements will be conducted in the Stordalen mire in Abisko, Sweden. This site provides a steep environmental gradient with the presence of 3 peatland types- palsa, bog and fen. Each of these peatland types have varying degrees of spatial heterogeneity, exogenous controls (related to hydrology and permafrost), and therefore hypothesized varying degrees of resilience. Measurements will include nutrients, NPP, decomposition, surface topography, vegetation distribution, hydrology and environmental parameters. Preliminary data will be presented on the auto-correlation between MT, VEG and plant tissue nutrient in bog, fen and palsa peatland subtypes in Stordalen. We hypothesize a tighter auto-correlation between SH and nutrients in the more self-regulated system (bog) vs less self-regulated systems (palsa and fen). This research aims to provide insight into peatland self-regulation as well as improve current peatland models by generating high resolution spatial data on SH and biogeochemical parameters. Belyea, LR Baird, A. (2006). Beyond "the limits to peat bog growth": Cross-scale feedback in peatland development. Ecological Monographs, 76(3), 299-322 Belyea, L R, & Clymo, R S. (2001). Feedback control of the rate of peat formation. Proceedings. Biological sciences / The Royal Society, 268(1473), 1315-21 Eppinga, M. B., Ruiter, P. C. de, Wassen, Martin J, & Rietkerk, Max. (2009). Nutrients and hydrology indicate the driving mechanisms of peatland surface patterning. The American naturalist, 173(6), 803-18 Gorham, E. (1991). Northern Peatlands : Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecological Applications, 1(2), 182-195 Swanson, D. K., & Grigal, D. F. (1988). A Simulation Model of Mire Patterning. Oikos, 53(3), 309
Structure and kinematics of the broad-line regions in active galaxies from IUE variability data
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha P.; Gaskell, C. Martin
1991-01-01
IUE archival data are used here to investigate the structure nad kinematics of the broad-line regions (BLRs) in nine AGN. It is found that the centroid of the line-continuum cross-correlation functions (CCFs) can be determined with reasonable reliability. The errors in BLR size estimates from CCFs for irregularly sampled light curves are fairly well understood. BLRs are found to have small luminosity-weighted radii, and lines of high ionization tend to be emitted closer to the central source than lines of low ionization, especially for low-luminosity objects. The motion of the gas is gravity-dominated with both pure inflow and pure outflow of high-velocity gas being excluded at a high confidence level for certain geometries.
Genome-wide heterogeneity of nucleotide substitution model fit.
Arbiza, Leonardo; Patricio, Mateus; Dopazo, Hernán; Posada, David
2011-01-01
At a genomic scale, the patterns that have shaped molecular evolution are believed to be largely heterogeneous. Consequently, comparative analyses should use appropriate probabilistic substitution models that capture the main features under which different genomic regions have evolved. While efforts have concentrated in the development and understanding of model selection techniques, no descriptions of overall relative substitution model fit at the genome level have been reported. Here, we provide a characterization of best-fit substitution models across three genomic data sets including coding regions from mammals, vertebrates, and Drosophila (24,000 alignments). According to the Akaike Information Criterion (AIC), 82 of 88 models considered were selected as best-fit models at least in one occasion, although with very different frequencies. Most parameter estimates also varied broadly among genes. Patterns found for vertebrates and Drosophila were quite similar and often more complex than those found in mammals. Phylogenetic trees derived from models in the 95% confidence interval set showed much less variance and were significantly closer to the tree estimated under the best-fit model than trees derived from models outside this interval. Although alternative criteria selected simpler models than the AIC, they suggested similar patterns. All together our results show that at a genomic scale, different gene alignments for the same set of taxa are best explained by a large variety of different substitution models and that model choice has implications on different parameter estimates including the inferred phylogenetic trees. After taking into account the differences related to sample size, our results suggest a noticeable diversity in the underlying evolutionary process. All together, we conclude that the use of model selection techniques is important to obtain consistent phylogenetic estimates from real data at a genomic scale.
NASA Astrophysics Data System (ADS)
Chenchouni, Haroun
2017-03-01
Assessing diet composition of White Storks ( Ciconia ciconia) breeding under North African conditions provides key information to understanding its trophic niche for conservation purpose. Since, climate controls productivities of foraging habitats and thus food availability for predators, this study examines how Storks' diet parameters varied following a climate gradient along with rural-to-urban landscapes in north-eastern Algeria. Feeding strategies to cope with severe conditions were discussed in light of climate aridity and urbanization and how these influence reproduction, population dynamics and distribution. While invertebrate prey accounted for 94 % of ingested individuals, the biomass intake was dominated by chicken remains scavenged from rubbish dumps (67 %) and small mammals (14 %). Generalized linear models revealed that prey numbers varied significantly between climatic regions and landscapes types, but no significant differences were observed for other dietary parameters, including prey biomass. The study showed high dietary similarity between study climates and landscapes, mainly among rural and urban colonies located in semi-arid and sub-humid areas, which differed from those in suburban and arid climate. Rarefaction and extrapolation curves indicated that prey species richness in White Stork diets was expected to be higher in urban colonies located in sub-humid climate. Despite low prey species diversity in arid regions, the White Stork demonstrates a broad trophic niche, which could be due to supplementary feeding from human refuse. This study suggests that regardless of the climate or landscape, White Storks ensure a constant food intake, despite prey biomass fluctuations, by adapting their diet. Foraging in diverse habitats, including trash dumps, ensures a sufficiently balanced diet to meet nutritional requirements.
Chenchouni, Haroun
2017-03-01
Assessing diet composition of White Storks (Ciconia ciconia) breeding under North African conditions provides key information to understanding its trophic niche for conservation purpose. Since, climate controls productivities of foraging habitats and thus food availability for predators, this study examines how Storks' diet parameters varied following a climate gradient along with rural-to-urban landscapes in north-eastern Algeria. Feeding strategies to cope with severe conditions were discussed in light of climate aridity and urbanization and how these influence reproduction, population dynamics and distribution. While invertebrate prey accounted for 94 % of ingested individuals, the biomass intake was dominated by chicken remains scavenged from rubbish dumps (67 %) and small mammals (14 %). Generalized linear models revealed that prey numbers varied significantly between climatic regions and landscapes types, but no significant differences were observed for other dietary parameters, including prey biomass. The study showed high dietary similarity between study climates and landscapes, mainly among rural and urban colonies located in semi-arid and sub-humid areas, which differed from those in suburban and arid climate. Rarefaction and extrapolation curves indicated that prey species richness in White Stork diets was expected to be higher in urban colonies located in sub-humid climate. Despite low prey species diversity in arid regions, the White Stork demonstrates a broad trophic niche, which could be due to supplementary feeding from human refuse. This study suggests that regardless of the climate or landscape, White Storks ensure a constant food intake, despite prey biomass fluctuations, by adapting their diet. Foraging in diverse habitats, including trash dumps, ensures a sufficiently balanced diet to meet nutritional requirements.
Brownridge, D J; Zaidi, S T R
2017-06-01
Chronic obstructive pulmonary disease (COPD) is associated with significant morbidity and mortality, and frequent exacerbations are associated with an increased risk of death, deterioration in lung function and reduced quality of life. Current Australian guidelines developed by the Lung Foundation of Australia (the COPD-X Plan) recommends the use of a short course of corticosteroids and oral antibiotics (amoxycillin or doxycycline) as part of the treatment of an AECOPD; however, it was noted that clinical practice at the study hospital had deviated from these guidelines. To evaluate the antibiotic prescribing practices in acute exacerbations of chronic obstructive pulmonary disease (AECOPD) patients, and to compare the differences in clinical outcomes (primarily mean length of stay and the rate of unplanned readmissions) between patients who received broad- vs. narrow-spectrum antibiotics in a large regional hospital. Retrospective audit of medical records for patients admitted with uncomplicated AECOPD during January-September, 2014 in a 224 acute bed regional hospital in Victoria, Australia. Fifty-nine per cent of patients received broad-spectrum antibiotics (ceftriaxone), whereas only 10% of prescriptions were concordant with current Australian guideline recommendations. Patients receiving a broad-spectrum regimen were more likely to be older (74·9 vs. 69·9 years; P = 0·009), have a higher COPD severity score (i.e. BAP-65 score, 1·55 vs. 1·06; P = 0·002) and a higher CRP (59·2 vs. 25·5 mg/L; P = 0·003) on admission. The mean LOS was not significantly different between those who received ceftriaxone and those who did not (5·09 vs. 4·55 days; P = 0·47). There was no significant difference between the groups in rates of readmissions. The antibiotic prescribing patterns for AECOPD in rural and regional Australian hospitals have not previously been examined in the current literature. In the study hospital, the majority of patients received broad-spectrum antibiotics in the initial treatment of AECOPD. No differences in hospital length of stay, or rate of readmission for AECOPD were observed between those who received broad- and narrow-spectrum antibiotics. © 2017 John Wiley & Sons Ltd.
Exploring the blazar zone in high-energy flares of FSRQs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacciani, L.; Donnarumma, I.; Tavecchio, F.
2014-07-20
The gamma-ray emission offers a powerful diagnostic tool to probe jets and their surroundings in flat-spectrum radio quasars (FSRQs). In particular, sources emitting at high energies (>10 GeV) give us the strongest constraints. This motivates us to start a systematic study of flares with bright emission above 10 GeV, examining archival data of the Fermi-LAT gamma-ray telescope. At the same time, we began to trigger Target of Opportunity observations to the Swift observatory at the occurrence of high-energy flares, obtaining a wide coverage of the spectral energy distributions (SEDs) for several FSRQs during flares. Among others, we investigate the SEDmore » of a peculiar flare of 3C 454.3, showing a remarkably hard gamma-ray spectrum, quite different from the brightest flares of this source, and a bright flare of CTA 102. We modeled the SED in the framework of the one-zone leptonic model, using also archival optical spectroscopic data to derive the luminosity of the broad lines and thus estimate the disk luminosity, from which the structural parameters of the FSRQ nucleus can be inferred. The model allowed us to evaluate the magnetic field intensity in the blazar zone and to locate the emitting region of gamma-rays in the particular case in which gamma-ray spectra show neither absorption from the broad-line region (BLR) nor the Klein-Nishina curvature expected in leptonic models assuming the BLR as the source of seed photons for the External Compton scenario. For FSRQs bright above 10 GeV, we were able to identify short periods lasting less than one day characterized by a high rate of high-energy gamma-rays and hard gamma-ray spectra. We discussed the observed spectra and variability timescales in terms of injection and cooling of energetic particles, arguing that these flares could be triggered by magnetic reconnection events or turbulence in the flow.« less
Li, Li-Guan; Yin, Xiaole; Zhang, Tong
2018-05-24
Antimicrobial resistance (AMR) has been a worldwide public health concern. Current widespread AMR pollution has posed a big challenge in accurately disentangling source-sink relationship, which has been further confounded by point and non-point sources, as well as endogenous and exogenous cross-reactivity under complicated environmental conditions. Because of insufficient capability in identifying source-sink relationship within a quantitative framework, traditional antibiotic resistance gene (ARG) signatures-based source-tracking methods would hardly be a practical solution. By combining broad-spectrum ARG profiling with machine-learning classification SourceTracker, here we present a novel way to address the question in the era of high-throughput sequencing. Its potential in extensive application was firstly validated by 656 global-scale samples covering diverse environmental types (e.g., human/animal gut, wastewater, soil, ocean) and broad geographical regions (e.g., China, USA, Europe, Peru). Its potential and limitations in source prediction as well as effect of parameter adjustment were then rigorously evaluated by artificial configurations with representative source proportions. When applying SourceTracker in region-specific analysis, excellent performance was achieved by ARG profiles in two sample types with obvious different source compositions, i.e., influent and effluent of wastewater treatment plant. Two environmental metagenomic datasets of anthropogenic interference gradient further supported its potential in practical application. To complement general-profile-based source tracking in distinguishing continuous gradient pollution, a few generalist and specialist indicator ARGs across ecotypes were identified in this study. We demonstrated for the first time that the developed source-tracking platform when coupling with proper experiment design and efficient metagenomic analysis tools will have significant implications for assessing AMR pollution. Following predicted source contribution status, risk ranking of different sources in ARG dissemination will be possible, thereby paving the way for establishing priority in mitigating ARG spread and designing effective control strategies.
NASA Technical Reports Server (NTRS)
Achilles, C. N.; Bish, D. L.; Rampe, E. B.; Morris, R. V.
2015-01-01
Soils on Mars have been analyzed by the Mars Exploration Rovers (MER) and most recently by the Mars Science Laboratory (MSL) rover. Chemical analyses from a majority of soil samples suggest that there is a relatively uniform global soil composition across much of the planet. A soil site, Rocknest, was sampled by the MSL science payload including the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS). Che- Min X-ray diffraction (XRD) data revealed crystalline phases and a broad, elevated background, indicating the presence of amorphous or poorly ordered materials (Fig 1). Based on the chemical composition of the bulk soil measured by APXS and the composition of crystalline phases derived from unit-cell parameters determined with CheMin data, the percentages of crystalline and amorphous phases were calculated at 51% and 49%, respectively. Attempts to model the amorphous contribution to CheMin XRD patterns were made using amorphous standards and full-pattern fitting methods and show that the broad, elevated background region can be fitted by basaltic glass, allophane, and palagonite. However, the modeling shows only that these phases have scattering patterns similar to that for the soil, not that they represent unique solutions. Here, we use pair distribution function (PDF) analysis to determine the short-range order of amorphous analogs in martian soils and better constrain the amorphous material detected by CheMin.
Evolution of the High Velocity X-Ray Emission in SN 1987A
NASA Astrophysics Data System (ADS)
Dewey, Daniel; Haberl, F.; Dwarkadas, V. V.; Burrows, D. N.; Park, S.
2011-01-01
Chandra HETG observations of SN 1987A in late 1999 showed very broad lines with observed FWHM of order 7000 km/s (Michael et al. 2002). At this time (SN day 4600) the blastwave was already interacting with the HII region around the progenitor and optical spots had recently appeared. High-resolution spectra taken from May 2003 ( day 5900) to the present by XMM-Newton and Chandra have been well fit by models with FWHM less than 2000 km/s (Zhekov et al. 2005; Dewey et al. 2008; Sturm et al 2010). The emission is increasingly dominated by these narrower components as the blastwave encounters more of the dense equatorial ring. However emission from the HII region out of the ring plane is still expected at late times and would contribute a high-velocity component to the spectra. We analyze 6 epochs of SN 1987A grating data and include an additional very broad component in the spectral model. We find that deep HETG 2007 data are better fit when one quarter of the flux comes from a component with FWHM 8500 km/s, and that RGS 2003 data show an improved fit with a very-broad fraction that is between the 1999 and 2007 values. Later data continue a progression to lower, but still significant, very-broad fractions. The measurements are discussed in terms of the density and extent of the out-of-plane HII region, hydrodynamical simulations, and 3D models of SN 1987A's emission. Support for this work was provided by NASA/USA through contract NAS8-03060 to the Smithsonian Astrophysical Observatory (SAO) and further SAO sub-contracts TM9-0004X to VVD (U Chicago) and SV3-73016 to MIT for support of the CXC.
NASA Astrophysics Data System (ADS)
Singh, R. P.; Ahmad, R.
2015-12-01
A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.
A Falling Corona Model for the Anomalous Behavior of the Broad Emission Lines in NGC 5548
NASA Astrophysics Data System (ADS)
Sun, Mouyuan; Xue, Yongquan; Cai, Zhenyi; Guo, Hengxiao
2018-04-01
NGC 5548 has been intensively monitored by the AGN Space Telescope and Optical Reverberation Mapping collaboration. Approximately after half of the light curves, the correlation between the broad emission lines and the lag-corrected ultraviolet (UV) continua becomes weak. This anomalous behavior is accompanied by an increase of soft X-ray emission. We propose a simple model to understand this anomalous behavior, i.e., the corona might fall down, thereby increasing the covering fraction of the inner disk. Therefore, X-ray and extreme-UV emission suffer from spectral variations. The UV continua variations are driven by both X-ray and extreme-UV variations. Consequently, the spectral variability induced by the falling corona would dilute the correlation between the broad emission lines and the UV continua. Our model can explain many additional observational facts, including the dependence of the anomalous behavior on velocity and ionization energy. We also show that the time lag and correlation between the X-ray and the UV variations change as NGC 5548 displays the anomalous behavior. The time lag is dramatically longer than the expectation from disk reprocessing if the anomalous behavior is properly excluded. During the anomalous state, the time lag approaches the light-travel timescale of disk reprocessing albeit with a much weaker correlation. We speculate that the time lag in the normal state is caused by reprocessing of the broad line region gas. As NGC 5548 enters the abnormal state, the contribution of the broad line region gas is smaller; the time lag reflects disk reprocessing. We also discuss alternative scenarios.
Orlando, Kelly A; Iosue, Christine L; Leone, Sarah G; Davies, Danielle L; Wykoff, Dennis D
2015-10-15
Inorganic phosphate is required for a range of cellular processes, such as DNA/RNA synthesis and intracellular signalling. The phosphate starvation-inducible phosphatase activity of Candida glabrata is encoded by the gene CgPMU2 (C. glabrata phosphomutase-like protein). CgPMU2 is part of a three-gene family (∼75% identical) created through gene duplication in the C. glabrata clade; only CgPmu2 is a PHO-regulated broad range acid phosphatase. We identified amino acids that confer broad range phosphatase activity on CgPmu2 by creating fusions of sections of CgPMU2 with CgPMU1, a paralogue with little broad range phosphatase activity. We used site-directed mutagenesis on various fusions to sequentially convert CgPmu1 to CgPmu2. Based on molecular modelling of the Pmu proteins on to a histidine phosphatase crystal structure, clusters of amino acids were found in two distinct regions that were able to confer phosphatase activity. Substitutions in these two regions together conferred broad phosphatase activity on CgPmu1. Interestingly, one change is a histidine adjacent to the active site histidine of CgPmu2 and it exhibits a novel ability to partially replace the conserved active site histidine in CgPmu2. Additionally, a second amino acid change was able to confer nt phosphatase activity to CgPmu1, suggesting single amino acid changes neofunctionalize CgPmu2. © 2015 Authors; published by Portland Press Limited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yifeng; Huang Jianfeng, E-mail: hjfnpu@163.com; Cao Liyun
2012-02-15
La{sub 2}CuO{sub 4} and La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites were prepared via a simple sol-gel process. The as-prepared La{sub 2}CuO{sub 4} and La{sub 2} {sub -x}Ca{sub x}CuO{sub 4} crystallites were characterized by X-ray diffraction, transmission electron microscope and UV-vis-NIR spectra. Results show that the grain size of La{sub 2}CuO{sub 4} crystallites increases with the increase of heat treatment temperature from 600 Degree-Sign C to 800 Degree-Sign C. Optical properties show that La{sub 2}CuO{sub 4} crystallites have broad absorption both in the UV-vis region and in the NIR region. The band gap of the as-prepared crystallites decreases from 1.367 eV tomore » 1.284 eV with the increase of calcination temperature from 600 Degree-Sign C to 800 Degree-Sign C. In the series of La{sub 2-x}Ca{sub x}CuO{sub 4} compounds (x = 0.05, 0.08, 0.10, 0.12, 0.15 and 0.20), all of the samples exhibit an orthogonal crystal structure and the solubility limit of Ca{sup 2+} in La{sub 2}CuO{sub 4} is within the range of x = 0.12-0.15. In the whole UV-vis-NIR region, La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites exhibit a broad absorption and the corresponding band gap first increases and then decreases with increasing of Ca{sup 2+} content. - Highlights: Black-Right-Pointing-Pointer The optical band gap can be tuned by adjusting the grain size and Ca{sup 2+} content. Black-Right-Pointing-Pointer La{sub 2}CuO{sub 4} crystallites exhibit a broad absorption band both in the UV-vis region and in the NIR region. Black-Right-Pointing-Pointer The band gap increases from 1.284 eV to 1.319 eV with the decrease of heat treatment temperature. Black-Right-Pointing-Pointer In the whole UV-vis-NIR region, the La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites displayed a broad absorption. Black-Right-Pointing-Pointer The band gap of La{sub 2-x}Ca{sub x}CuO{sub 4} increases linearly with doping level when 0 {<=} x {<=} 0.12.« less
Assessment of effects of neutrals on the power threshold for L to H transitions in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, L.W.; Carreras, B.A.; Maingi, R.
1998-11-01
To assess the effect of edge neutrals on the low-to-high confinement transition threshold, a broad range of plasma discharges has been analyzed. From this analysis, the transition power divided by the density, at constant magnetic field, appears to be a function of a single parameter measuring the neutrals` effect. This results suggest that there is a missing parameter linked to the neutrals in the power threshold scaling laws.
Selection Dynamics in Transient Compartmentalization
NASA Astrophysics Data System (ADS)
Blokhuis, Alex; Lacoste, David; Nghe, Philippe; Peliti, Luca
2018-04-01
Transient compartments have been recently shown to be able to maintain functional replicators in the context of prebiotic studies. Here, we show that a broad class of selection dynamics is able to achieve this goal. We identify two key parameters, the relative amplification of nonactive replicators (parasites) and the size of compartments. These parameters account for competition and diversity, and the results are relevant to similar multilevel selection problems, such as those found in virus-host ecology and trait group selection.
Jones, K.B.; Neale, A.C.; Wade, T.G.; Wickham, J.D.; Cross, C.L.; Edmonds, C.M.; Loveland, Thomas R.; Nash, M.S.; Riitters, K.H.; Smith, E.R.
2001-01-01
Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioritizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has been the development of methods to conduct such broad-scale assessments. Field-based methods have proven to be too costly and too inconsistent in their application to make estimates of ecological conditions over large areas. New spatial data derived from satellite imagery and other sources, the development of statistical models relating landscape composition and pattern to ecological endpoints, and geographic information systems (GIS) make it possible to evaluate ecological conditions at multiple scales over broad geographic regions. In this study, we demonstrate the application of spatially distributed models for bird habitat quality and nitrogen yield to streams to assess the consequences of landcover change across the mid-Atlantic region between the 1970s and 1990s. Moreover, we present a way to evaluate spatial concordance between models related to different environmental endpoints. Results of this study should help environmental managers in the mid-Atlantic region target those areas in need of conservation and protection.
Hidden sector dark matter and the Galactic Center gamma-ray excess: a closer look
Escudero, Miguel; Witte, Samuel J.; Hooper, Dan
2017-11-24
Stringent constraints from direct detection experiments and the Large Hadron Collider motivate us to consider models in which the dark matter does not directly couple to the Standard Model, but that instead annihilates into hidden sector particles which ultimately decay through small couplings to the Standard Model. We calculate the gamma-ray emission generated within the context of several such hidden sector models, including those in which the hidden sector couples to the Standard Model through the vector portal (kinetic mixing with Standard Model hypercharge), through the Higgs portal (mixing with the Standard Model Higgs boson), or both. In each case,more » we identify broad regions of parameter space in which the observed spectrum and intensity of the Galactic Center gamma-ray excess can easily be accommodated, while providing an acceptable thermal relic abundance and remaining consistent with all current constraints. Here, we also point out that cosmic-ray antiproton measurements could potentially discriminate some hidden sector models from more conventional dark matter scenarios.« less
Uncertainty Modeling for Robustness Analysis of Control Upset Prevention and Recovery Systems
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.; Khong, Thuan H.; Shin, Jong-Yeob; Kwatny, Harry; Chang, Bor-Chin; Balas, Gary J.
2005-01-01
Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems (developed for failure detection, identification, and reconfiguration, as well as upset recovery) need to be evaluated over broad regions of the flight envelope and under extreme flight conditions, and should include various sources of uncertainty. However, formulation of linear fractional transformation (LFT) models for representing system uncertainty can be very difficult for complex parameter-dependent systems. This paper describes a preliminary LFT modeling software tool which uses a matrix-based computational approach that can be directly applied to parametric uncertainty problems involving multivariate matrix polynomial dependencies. Several examples are presented (including an F-16 at an extreme flight condition, a missile model, and a generic example with numerous crossproduct terms), and comparisons are given with other LFT modeling tools that are currently available. The LFT modeling method and preliminary software tool presented in this paper are shown to compare favorably with these methods.
Initiating the Sierra Nevada catalogue of star-forming polar-ring galaxies
NASA Astrophysics Data System (ADS)
Garcia-Ribera, E.; Pérez-Montero, E.; García-Benito, R.; Vílchez, J. M.
2015-05-01
We describe photometric observations with the 1.5m. telescope of the Sierra Nevada Observatory of a preliminary sample of 16 candidates to polar-ring galaxies (PRGs) selected from Whitmore et al. (1990) and Moiseev et al. (2011). The images were taken in broad filters (BVR) in order to characterize the host galaxies and the rings and in narrow filter Hα at the corresponding redshifted wavelength to identify in the rings knots of on-going star-formation. These information allowed us to analyze different physical parameters (formation scenarios, morphological types, and stellar population) and to locate HII regions. The main aim of this work is the elaboration of a catalogue of PRGs with a star-forming ring. In a next future, the spatially-resolved spectroscopy study of these structures will help to understand their most probable mechanism of origin, formation and evolution by means of rotation curves, spectral fitting of stellar populations and chemical abundance analysis (e.g. Pérez-Montero et al. 2009)
Electrical impedance myography in facioscapulohumeral muscular dystrophy.
Statland, Jeffrey M; Heatwole, Chad; Eichinger, Katy; Dilek, Nuran; Martens, William B; Tawil, Rabi
2016-10-01
In this study we determined the reliability and validity of electrical impedance myography (EIM) in facioscapulohumeral muscular dystrophy (FSHD). We performed a prospective study of EIM on 16 bilateral limb and trunk muscles in 35 genetically defined and clinically affected FSHD patients (reliability testing on 18 patients). Summary scores based on body region were derived. Reactance and phase (50 and 100 kHz) were compared with measures of strength, FSHD disease severity, and functional outcomes. Participants were mostly men, mean age 53.0 years, and included a full range of severity. Limb and trunk muscles showed good to excellent reliability [intraclass correlation coefficients (ICC) 0.72-0.99]. Summary scores for the arm, leg, and trunk showed excellent reliability (ICC 0.89-0.98). Reactance was the most sensitive EIM parameter to a broad range of FSHD disease metrics. EIM is a reliable measure of muscle composition in FSHD that offers the possibility to serially evaluate affected muscles. Muscle Nerve 54: 696-701, 2016. © 2016 Wiley Periodicals, Inc.
Study of dark matter and QCD-charged mediators in the quasidegenerate regime
NASA Astrophysics Data System (ADS)
Davidson, Andrew; Kelso, Chris; Kumar, Jason; Sandick, Pearl; Stengel, Patrick
2017-12-01
We study a scenario in which the only light new particles are a Majorana fermion dark matter candidate and one or more QCD-charged scalars, which couple to light quarks. This scenario has several interesting phenomenological features if the new particles are nearly degenerate in mass. In particular, LHC searches for the light scalars have reduced sensitivity, since the visible and invisible products tend to be softer. Moreover, dark matter-scalar coannihilation can allow even relatively heavy dark matter candidates to be consistent thermal relics. Finally, the dark matter nucleon scattering cross section is enhanced in the quasidegenerate limit, allowing direct detection experiments to use both spin-independent and spin-dependent scattering to probe regions of parameter space beyond those probed by the LHC. Although this scenario has a broad application, we phrase this study in terms of the minimal supersymmetric standard model, in the limit where the only light sparticles are a binolike dark matter candidate and light-flavored squarks.
Eye-gaze control of the computer interface: Discrimination of zoom intent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, J.H.; Schryver, J.C.
1993-10-01
An analysis methodology and associated experiment were developed to assess whether definable and repeatable signatures of eye-gaze characteristics are evident, preceding a decision to zoom-in, zoom-out, or not to zoom at a computer interface. This user intent discrimination procedure can have broad application in disability aids and telerobotic control. Eye-gaze was collected from 10 subjects in a controlled experiment, requiring zoom decisions. The eye-gaze data were clustered, then fed into a multiple discriminant analysis (MDA) for optimal definition of heuristics separating the zoom-in, zoom-out, and no-zoom conditions. Confusion matrix analyses showed that a number of variable combinations classified at amore » statistically significant level, but practical significance was more difficult to establish. Composite contour plots demonstrated the regions in parameter space consistently assigned by the MDA to unique zoom conditions. Peak classification occurred at about 1200--1600 msec. Improvements in the methodology to achieve practical real-time zoom control are considered.« less
Hidden Sector Dark Matter and the Galactic Center Gamma-Ray Excess: A Closer Look
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escudero, Miguel; Witte, Samuel J.; Hooper, Dan
2017-09-20
Stringent constraints from direct detection experiments and the Large Hadron Collider motivate us to consider models in which the dark matter does not directly couple to the Standard Model, but that instead annihilates into hidden sector particles which ultimately decay through small couplings to the Standard Model. We calculate the gamma-ray emission generated within the context of several such hidden sector models, including those in which the hidden sector couples to the Standard Model through the vector portal (kinetic mixing with Standard Model hypercharge), through the Higgs portal (mixing with the Standard Model Higgs boson), or both. In each case,more » we identify broad regions of parameter space in which the observed spectrum and intensity of the Galactic Center gamma-ray excess can easily be accommodated, while providing an acceptable thermal relic abundance and remaining consistent with all current constraints. We also point out that cosmic-ray antiproton measurements could potentially discriminate some hidden sector models from more conventional dark matter scenarios.« less
Hidden sector dark matter and the Galactic Center gamma-ray excess: a closer look
NASA Astrophysics Data System (ADS)
Escudero, Miguel; Witte, Samuel J.; Hooper, Dan
2017-11-01
Stringent constraints from direct detection experiments and the Large Hadron Collider motivate us to consider models in which the dark matter does not directly couple to the Standard Model, but that instead annihilates into hidden sector particles which ultimately decay through small couplings to the Standard Model. We calculate the gamma-ray emission generated within the context of several such hidden sector models, including those in which the hidden sector couples to the Standard Model through the vector portal (kinetic mixing with Standard Model hypercharge), through the Higgs portal (mixing with the Standard Model Higgs boson), or both. In each case, we identify broad regions of parameter space in which the observed spectrum and intensity of the Galactic Center gamma-ray excess can easily be accommodated, while providing an acceptable thermal relic abundance and remaining consistent with all current constraints. We also point out that cosmic-ray antiproton measurements could potentially discriminate some hidden sector models from more conventional dark matter scenarios.
Hidden sector dark matter and the Galactic Center gamma-ray excess: a closer look
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escudero, Miguel; Witte, Samuel J.; Hooper, Dan
Stringent constraints from direct detection experiments and the Large Hadron Collider motivate us to consider models in which the dark matter does not directly couple to the Standard Model, but that instead annihilates into hidden sector particles which ultimately decay through small couplings to the Standard Model. We calculate the gamma-ray emission generated within the context of several such hidden sector models, including those in which the hidden sector couples to the Standard Model through the vector portal (kinetic mixing with Standard Model hypercharge), through the Higgs portal (mixing with the Standard Model Higgs boson), or both. In each case,more » we identify broad regions of parameter space in which the observed spectrum and intensity of the Galactic Center gamma-ray excess can easily be accommodated, while providing an acceptable thermal relic abundance and remaining consistent with all current constraints. Here, we also point out that cosmic-ray antiproton measurements could potentially discriminate some hidden sector models from more conventional dark matter scenarios.« less
Size determination of gold nanoparticles in silicate glasses by UV-Vis spectroscopy
NASA Astrophysics Data System (ADS)
Ali, Shahid; Khan, Younas; Iqbal, Yaseen; Hayat, Khizar; Ali, Muhammad
2017-01-01
A relatively easier and more accurate method for the determination of average size of metal nanoparticles/aggregates in silicate glasses based on ultraviolet visible (UV-Vis) spectra fitted with the Mie and Mie-Gans models was reported. Gold ions were diffused into sodalime silicate and borosilicate glasses by field-assisted solid-state ion-exchange technique using the same experimental parameters for both glasses. Transmission electron microscopy was performed to directly investigate the morphology and distribution of the dopant nanoparticles. UV-Vis spectra of the doped glasses showed broad surface plasmon resonance peaks in their fingerprint regions, i.e., at 525 and 500 nm for sodalime silicate and borosilicate glass matrices, respectively. These spectra were fitted with the Mie model for spherical nanoparticles and the Mie-Gans model for spheroidal nanoparticles. Although both the models were developed for colloidal nanoparticles, the size of the nanoparticles/aggregates calculated was accurate to within ˜10% in both the glass matrices in comparison to the size measured directly from the transmission electron microscope images.
McNamara, Daniel E.; Benz, Harley M.; Herrmann, Robert B.; Bergman, Eric A.; Earle, Paul S.; Holland, Austin F.; Baldwin, Randy W.; Gassner, A.
2015-01-01
The sharp increase in seismicity over a broad region of central Oklahoma has raised concern regarding the source of the activity and its potential hazard to local communities and energy industry infrastructure. Since early 2010, numerous organizations have deployed temporary portable seismic stations in central Oklahoma in order to record the evolving seismicity. In this study, we apply a multiple-event relocation method to produce a catalog of 3,639 central Oklahoma earthquakes from late 2009 through 2014. RMT source parameters were determined for 195 of the largest and best-recorded earthquakes. Combining RMT results with relocated seismicity enabled us to determine the length, depth and style-of-faulting occurring on reactivated subsurface fault systems. Results show that the majority of earthquakes occur on near vertical, optimally oriented (NE-SW and NW-SE), strike-slip faults in the shallow crystalline basement. These are necessary first order observations required to assess the potential hazards of individual faults in Oklahoma.
NASA Astrophysics Data System (ADS)
Sur, Ritobrata; Spearrin, R. Mitchell; Peng, Wen Y.; Strand, Christopher L.; Jeffries, Jay B.; Enns, Gregory M.; Hanson, Ronald K.
2016-05-01
We report measured line intensities and temperature-dependent broadening coefficients of NH3 with Ar, N2, O2, CO2, H2O, and NH3 for nine sQ(J,K) transitions in the ν2 fundamental band in the frequency range 961.5-967.5 cm-1. This spectral region was chosen due to the strong NH3 absorption strength and lack of spectral interference from H2O and CO2 for laser-based sensing applications. Spectroscopic parameters were determined by multi-line fitting using Voigt lineshapes of absorption spectra measured with two quantum cascade lasers in thermodynamically-controlled optical cells. The temperature dependence of broadening was measured over a range of temperatures between 300 and 600 K. These measurements aid the development of mid-infrared NH3 sensors for a broad range of gas mixtures and at elevated temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binder, Tobias; Covi, Laura; Kamada, Ayuki
Dark Matter (DM) models providing possible alternative solutions to the small-scale crisis of the standard cosmology are nowadays of growing interest. We consider DM interacting with light hidden fermions via well-motivated fundamental operators showing the resultant matter power spectrum is suppressed on subgalactic scales within a plausible parameter region. Our basic description of the evolution of cosmological perturbations relies on a fully consistent first principles derivation of a perturbed Fokker-Planck type equation, generalizing existing literature. The cosmological perturbation of the Fokker-Planck equation is presented for the first time in two different gauges, where the results transform into each other accordingmore » to the rules of gauge transformation. Furthermore, our focus lies on a derivation of a broadly applicable and easily computable collision term showing important phenomenological differences to other existing approximations. As one of the main results and concerning the small-scale crisis, we show the equal importance of vector and scalar boson mediated interactions between the DM and the light fermions.« less
NASA Astrophysics Data System (ADS)
Arsenault, Richard; Poissant, Dominique; Brissette, François
2015-11-01
This paper evaluated the effects of parametric reduction of a hydrological model on five regionalization methods and 267 catchments in the province of Quebec, Canada. The Sobol' variance-based sensitivity analysis was used to rank the model parameters by their influence on the model results and sequential parameter fixing was performed. The reduction in parameter correlations improved parameter identifiability, however this improvement was found to be minimal and was not transposed in the regionalization mode. It was shown that 11 of the HSAMI models' 23 parameters could be fixed with little or no loss in regionalization skill. The main conclusions were that (1) the conceptual lumped models used in this study did not represent physical processes sufficiently well to warrant parameter reduction for physics-based regionalization methods for the Canadian basins examined and (2) catchment descriptors did not adequately represent the relevant hydrological processes, namely snow accumulation and melt.
DEVELOPMENT OF LANDSCAPE INDICATORS FOR USE IN REGIONAL ECOLOGICAL RISK ASSESSMENTS
There is a growing need for cost effective ways to assess conditions of and risks to ecological resources at a variety of scales over broad regions. Indicators, models and assessment tools are needed to evaluate water bodies at risk to non-point source pollution and to be able t...
Coherent anti-stokes Raman spectroscopy for detecting explosives in real time
NASA Astrophysics Data System (ADS)
Dogariu, Arthur; Pidwerbetsky, Alex
2012-06-01
We demonstrate real-time stand-off detection and imaging of trace explosives using collinear, backscattered Coherent Anti-Stokes Raman Spectroscopy (CARS). Using a hybrid time-resolved broad-band CARS we identify nanograms of explosives on the millisecond time scale. The broad-band excitation in the near-mid-infrared region excites the vibrational modes in the fingerprint region, and the time-delayed probe beam ensures the reduction of any non-resonant contributions to the CARS signal. The strong coherent enhancement allows for recording Raman spectra in real-time. We demonstrate stand-off detection by acquiring, analyzing, and identifying vibrational fingerprints in real-time with very high sensitivity and selectivity. By extending the focused region from a 100-micron sized spot to a 5mm long line we can obtain the spectral information from an extended region of the remote target with high spatial resolution. We demonstrate fast hyperspectral imaging by one-dimensional scanning of the Line-CARS. The three-dimensional data structure contains the vibrational spectra of the target at each sampled location, which allows for chemical mapping of the remote target.
The near-infrared radius-luminosity relationship for active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Bentz, Misty C.; Peterson, Bradley M.; Elvis, Martin; Ward, Martin J.; Korista, Kirk T.; Karovska, Margarita
2011-05-01
Black hole masses for samples of active galactic nuclei (AGNs) are currently estimated from single-epoch optical spectra. In particular, the size of the broad-line emitting region needed to compute the black hole mass is derived from the optical or ultraviolet continuum luminosity. Here we consider the relationship between the broad-line region size, R, and the near-infrared (near-IR) AGN continuum luminosity, L, as the near-IR continuum suffers less dust extinction than at shorter wavelengths and the prospects for separating the AGN continuum from host-galaxy starlight are better in the near-IR than in the optical. For a relationship of the form R∝Lα, we obtain for a sample of 14 reverberation-mapped AGN a best-fitting slope of α= 0.5 ± 0.1, which is consistent with the slope of the relationship in the optical band and with the value of 0.5 naïvely expected from photoionization theory. Black hole masses can then be estimated from the near-IR virial product, which is calculated using the strong and unblended Paschen broad emission lines (Paα or Paβ).
Pyridones as NNRTIs against HIV-1 mutants: 3D-QSAR and protein informatics
NASA Astrophysics Data System (ADS)
Debnath, Utsab; Verma, Saroj; Jain, Surabhi; Katti, Setu B.; Prabhakar, Yenamandra S.
2013-07-01
CoMFA and CoMSIA based 3D-QSAR of HIV-1 RT wild and mutant (K103, Y181C, and Y188L) inhibitory activities of 4-benzyl/benzoyl pyridin-2-ones followed by protein informatics of corresponding non-nucleoside inhibitors' binding pockets from pdbs 2BAN, 3MED, 1JKH, and 2YNF were analysed to discover consensus features of the compounds for broad-spectrum activity. The CoMFA/CoMSIA models indicated that compounds with groups which lend steric-cum-electropositive fields in the vicinity of C5, hydrophobic field in the vicinity of C3 of pyridone region and steric field in aryl region produce broad-spectrum anti-HIV-1 RT activity. Also, a linker rendering electronegative field between pyridone and aryl moieties is common requirement for the activities. The protein informatics showed considerable alteration in residues 181 and 188 characteristics on mutation. Also, mutants' isoelectric points shifted in acidic direction. The study offered fresh avenues for broad-spectrum anti-HIV-1 agents through designing new molecules seeded with groups satisfying common molecular fields and concerns of mutating residues.
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Berlind, P.; Bertram, R.; Bischoff, K.; Bochkarev, N. G.; Burenkov, A. N.; Calkins, M.; Carrasco, L.; Chavushyan, V. H.
2002-01-01
We present the final installment of an intensive 13 year study of variations of the optical continuum and broad H beta emission line in the Seyfert 1 galaxy NGC 5548. The database consists of 1530 optical continuum measurements and 1248 H beta measurements. The H beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction between the size of the broad-line region and the ionizing luminosity, r is proportional to L(sup 1/2)(sub ion). Moreover, the apparently linear nature of the correlation between the H beta response time and the nonstellar optical continuum F(sub opt) arises as a consequence of the changing shape of the continuum as it varies, specifically F(sub opt) is proportional to F(sup 0.56)(sub UV).
NASA Astrophysics Data System (ADS)
Rubtsova, N. N.; Gol'dort, V. G.; Ishchenko, V. N.; Khvorostov, E. B.; Kochubei, S. A.; Borisov, G. M.; Ledovskikh, D. V.; Reshetov, V. A.
2018-04-01
For the first time, the collision induced stimulated photon echo generated at transition 1S0 → 3 P1 of 174Yb (type 0-1) in the mixture of gases Yb + Xe was investigated in the presence of weak longitudinal magnetic field, with experimental parameters corresponding to broad spectral line conditions. Comparison of the experimental echo amplitude versus magnetic field strength dependence with the theoretical curve shows a very good agreement, giving rise to an improved estimate for the difference between alignment and orientation decay rates.
Simulation-Based Probabilistic Tsunami Hazard Analysis: Empirical and Robust Hazard Predictions
NASA Astrophysics Data System (ADS)
De Risi, Raffaele; Goda, Katsuichiro
2017-08-01
Probabilistic tsunami hazard analysis (PTHA) is the prerequisite for rigorous risk assessment and thus for decision-making regarding risk mitigation strategies. This paper proposes a new simulation-based methodology for tsunami hazard assessment for a specific site of an engineering project along the coast, or, more broadly, for a wider tsunami-prone region. The methodology incorporates numerous uncertain parameters that are related to geophysical processes by adopting new scaling relationships for tsunamigenic seismic regions. Through the proposed methodology it is possible to obtain either a tsunami hazard curve for a single location, that is the representation of a tsunami intensity measure (such as inundation depth) versus its mean annual rate of occurrence, or tsunami hazard maps, representing the expected tsunami intensity measures within a geographical area, for a specific probability of occurrence in a given time window. In addition to the conventional tsunami hazard curve that is based on an empirical statistical representation of the simulation-based PTHA results, this study presents a robust tsunami hazard curve, which is based on a Bayesian fitting methodology. The robust approach allows a significant reduction of the number of simulations and, therefore, a reduction of the computational effort. Both methods produce a central estimate of the hazard as well as a confidence interval, facilitating the rigorous quantification of the hazard uncertainties.
Effects of Landscape Conditions and Management Practices ...
Lakes continue to face escalating pressures associated with land cover change and growing human populations. The U.S. EPA National Lakes Assessment, which sampled 1,028 lakes during the summer of 2007 using a probabilistic survey, was the first large scale effort to determine the condition of lakes across the country. In addition to broad trends, these data offer an abundance of new opportunities to examine biodiversity patterns, drivers of ecosystem change, and effectiveness of management practices that aim to reduce adverse effects of land cover change. Here, we use 2006 National Land Cover Data and sediment diatom samples collected from the tops of cores to examine how land cover at different spatial extents affects the habitat and diatom communities of lakes. We are examining the effects of land cover in basins, buffers in upstream networks, and buffers adjacent to 188 lakes in regions extending from the Mid-Atlantic to New England. Identifying relationships of diatom communities with land cover and physico-chemical parameters, along with generating stressor-response curves, will help with (1) developing diatom indicators responsive to anthropogenic impacts, (2) identifying how spatial locations of land cover affect lake conditions and diatoms, (3) informing future assessments and management efforts, and (4) characterizing potentially different patterns across regions and the effects of natural variation. Comparisons of study lakes to reference lake conditio
A multi-sensor analysis of Nimbus 5 data on 22 January 1973. [meteorological parameters
NASA Technical Reports Server (NTRS)
Allison, L. J.; Rodgers, E. B.; Wilheit, T. T.; Wexler, R.
1973-01-01
The Nimbus 5 meteorological satellite carried aloft a full complement of radiation sensors, the data from which were analyzed and intercompared during orbits 569-570 on 22 January 1973. The electrically scanning microwave radiometer (ESMR) which sensed passive microwave radiation in the 19.35 GHz region, delineated rain areas over the ocean off the U.S. east coast, in good agreement with WSR-57 and FPS-77 radar imagery and permitted the estimation of rainfall rates in this region. Residual ground water in the lower Mississippi Valley, which resulted from abnormal rainfall in previous months, was indicated under clear sky conditions by soil brightness temperature values in the Nimbus 5 ESMR and U.S. Air Force Data Acquisition and Processing Program (DAPP) IR data. The temperature-humidity infrared radiometer showed the height and spatial configuration of frontal clouds along the east coast and outlined the confluence of a polar jet stream with a broad sub-tropical jet stream along the U.S. Gulf Coast. Temperature profiles from three vertical temperature sounders, the infrared temperature profile radiometer (ITPR), the Nimbus E microwave spectrometer (NEMS) and the selective chopper radiometer (SCR) were found to be in good agreement with related radiosonde ascents along orbit 569 from the sub-tropics to the Arctic Circle.
NASA Astrophysics Data System (ADS)
Stechern, André; Just, Tobias; Holtz, François; Blume-Oeste, Magdalena; Namur, Olivier
2017-05-01
The petrology of quaternary andesites and dacites from Lastarria volcano was investigated to reconstruct the magma plumbing and storage conditions beneath the volcano. The mineral phase compositions and whole-rock major and trace element compositions were used to constrain temperature, pressure and possible mechanisms for magma differentiation. The applied thermobarometric models include two-pyroxene thermobarometry, plagioclase-melt thermometry, amphibole composition thermobarometry, and Fe-Ti oxide thermo-oxybarometry. The overall temperature estimation is in the range 840 °C to 1060 °C. Calculated oxygen fugacity ranges between NNO to NNO + 1. Results of the geo-barometric calculations reveal multiple magma storage regions, with a distinct storage level in the uppermost crust ( 6.5-8 km depth), a broad zone at mid-crustal levels ( 10-18 km depth), and a likely deeper zone at intermediate to lower crustal levels (> 20 km depth). The highest temperatures in the range 940-1040 °C are recorded in minerals stored in the mid-crustal levels ( 10-18 km depth). The whole-rock compositions clearly indicate that magma mixing is the main parameter controlling the general differentiation trends. Complex zoning patterns and textures in the plagioclase phenocrysts confirm reheating and remobilization processes due to magma replenishment.
Economic viability of access broadband multiservice networks
NASA Astrophysics Data System (ADS)
Castelli, Francesco; Dammicco, Giacinto; Mocci, Ugo
1995-02-01
In this paper the economic viability of alternative architectures for optical access networks providing broad band services to different subscriber classes in a metropolitan environment, is investigated by a specific tool, NEVE (Network Economic Viability Evaluator), developed for broad band multiservice network planning, service evolutionary scenarios assessment, evaluation of tariff strategies and other actions taken at stimulating the demand growth. As the viability target can be achieved in different ways, different studies can be carried out by NEVE. In the paper some of them are discussed, particularly the ones addressed: to evaluate the impact on viability of alternative service scenarios; to determine the critical mass of broad band subscribers and the critical joint service adoption cost; to evaluate cross subsidiary policies among different subscriber classes and services; to perform sensitivity analysis with respect to variations of demand parameters and tariffs.
Different regions of line formation in the envelope of the early emission line star HD 190073
NASA Technical Reports Server (NTRS)
Ringuelet, A. E.; Rovira, M.; Cidale, L.; Sahade, J.
1987-01-01
A description is presented of the spectral features that characterize the spectrum of HD 190073 both in the photographic region (360-660 nm), and in the IUE UV (115-320 nm). A number of different types of profiles can be distinguished, and this seems to imply that many different 'broad' regions of line formation coexist in the extended envelope of the star, including regions with densities differing in several orders of magnitude.
Parameter regionalization of a monthly water balance model for the conterminous United States
NASA Astrophysics Data System (ADS)
Bock, A. R.; Hay, L. E.; McCabe, G. J.; Markstrom, S. L.; Atkinson, R. D.
2015-09-01
A parameter regionalization scheme to transfer parameter values and model uncertainty information from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash-Sutcliffe Efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.
Cheng, Xiao-Fei; Shi, Pei-Jian; Hui, Cang; Wang, Fu-Sheng; Liu, Guo-Hua; Li, Bai-Lian
2015-04-01
Moso bamboos (Phyllostachys edulis) are important forestry plants in southern China, with substantial roles to play in regional economic and ecological systems. Mixing broad-leaved forests and moso bamboos is a common management practice in China, and it is fundamental to elucidate the interactions between broad-leaved trees and moso bamboos for ensuring the sustainable provision of ecosystem services. We examine how the proportion of broad-leaved forest in a mixed managed zone, topology, and soil profile affects the effective productivity of moso bamboos (i.e., those with significant economic value), using linear regression and generalized additive models. Bamboo's diameter at breast height follows a Weibull distribution. The importance of these variables to bamboo productivity is, respectively, slope (25.9%), the proportion of broad-leaved forest (24.8%), elevation (23.3%), gravel content by volume (16.6%), slope location (8.3%), and soil layer thickness (1.2%). Highest productivity is found on the 25° slope, with a 600-m elevation, and 30% broad-leaved forest. As such, broad-leaved forest in the upper slope can have a strong influence on the effective productivity of moso bamboo, ranking only after slope and before elevation. These factors can be considered in future management practice.
Defining the Canary Islands Oceanic Platform (PLOCAN) Observing System mission
NASA Astrophysics Data System (ADS)
Delory, Eric; Hernández-Brito, Joaquín.; Llínas, Octavio
2010-05-01
A permanent multidisciplinary ocean observing system is planned as both a technological and scientific infrastructure for the Canary Islands Oceanic Platform (PLOCAN). The first component of its two-fold mission is to respond to systems and processes' in-situ environmental testing, certification and benchmarking requirements. This will generally take place in dedicated oceanic experimental areas, from the vicinity of the platform to the deep ocean. While these areas and related infrastructures still are at definition stage, an anticipated prerequisite is that testbed observing assets will have to provide a broad range of measurements in agreement with, as well as in contribution to, current and upcoming environmental and technical standards. The second component is to contribute to the global effort towards continuous and real-time multidisciplinary ocean observations. Related activities will encompass climate change parameters characterization as well as important regional specificities like the preservation and study of the region's unique marine biodiversity and sparsely explored seabed. Continuous sampling is planned to progressively expand from the platform vicinity down to the end of the continental slope - to about 3000m depth, the surrounding seabed and water column, then scale up to the region, through mobile systems and fixed open-ocean stations. Such a large and diverse spectrum of observing activities stems from the fact that the PLOCAN observing system is at the center of a long-term strategy, thus granting the opportunity to plan its mission by way of an ambitious set of ocean measurement methods and technologies.
NASA Astrophysics Data System (ADS)
Harris, B.; McDougall, K.; Barry, M.
2012-07-01
Digital Elevation Models (DEMs) allow for the efficient and consistent creation of waterways and catchment boundaries over large areas. Studies of waterway delineation from DEMs are usually undertaken over small or single catchment areas due to the nature of the problems being investigated. Improvements in Geographic Information Systems (GIS) techniques, software, hardware and data allow for analysis of larger data sets and also facilitate a consistent tool for the creation and analysis of waterways over extensive areas. However, rarely are they developed over large regional areas because of the lack of available raw data sets and the amount of work required to create the underlying DEMs. This paper examines definition of waterways and catchments over an area of approximately 25,000 km2 to establish the optimal DEM scale required for waterway delineation over large regional projects. The comparative study analysed multi-scale DEMs over two test areas (Wivenhoe catchment, 543 km2 and a detailed 13 km2 within the Wivenhoe catchment) including various data types, scales, quality, and variable catchment input parameters. Historic and available DEM data was compared to high resolution Lidar based DEMs to assess variations in the formation of stream networks. The results identified that, particularly in areas of high elevation change, DEMs at 20 m cell size created from broad scale 1:25,000 data (combined with more detailed data or manual delineation in flat areas) are adequate for the creation of waterways and catchments at a regional scale.
Diversity of coding profiles of mechanoreceptors in glabrous skin of kittens.
Gibson, J M; Beitel, R E; Welker, W
1975-03-21
We examined stimulul-response (S-R) profiles of 35 single mechanoreceptive afferent units having small receptive fields in glabrous forepaw skin of 24 anesthetized domestic kittens. Single unit activity was recorded with tungsten microelectrodes from cervical dorsal root ganglia. The study was designed to be as quantitatively descriptive as possible. We indented each unit's receptive field with a broad battery of simple, carefully controlled stimuli whose major parameters, including amplitude, velocity, acceleration, duration, and interstimulus interval were systematically varied. Stimuli were delivered by a small probe driven by a feedback-controlled axial displacement generator. Single unit discharge data were analyzed by a variety of direct and derived measures including dot patterns, peristimulus histograms, instantaneous and mean instantaneous firing rates, tuning curves, thresholds for amplitude and velocity, adaptation rates, dynamic and static sensitivities, and others. We found that with respect to any of the S-R transactions examined, the properties of our sample of units were continuously and broadly distributed. Any one unit might exhibit either a slow or rapid rate of adaptation, or might superficially appear to preferentially code a single stimulus parameter such as amplitude or velocity. But when the entire range of responsiveness of units to the entire stimulus battery was surveyed by a variety of analytic techniques, we were unable to find any justifiable basis for designation of discrete categories of S-R profiles. Intermediate response types were always found, and in general, all units were both broadly tuned and capable of responding to integrals of several stimulus parameters, our data argue against the usefulness of evaluating a unit's S-R coding capabilities by means of a limited ste of stimulation of response analysis procedures.
Ultra-broad gain quantum cascade lasers tunable from 6.5 to 10.4 μm.
Xie, Feng; Caneau, C; Leblanc, H; Ho, M-T; Zah, C
2015-09-01
We present a quantum cascade laser structure with an ultra-broad gain profile that covers the wavelength range from 6.5 to 10.4 μm. In a grating-tuned external cavity, we demonstrated continuous tuning from 1027 cm(-1) to 1492 cm(-1) with this broad gain laser chip. We also fabricated distributed feedback quantum cascade laser arrays with this active region design and varied grating periods. We demonstrated single wavelength lasing from 962 (10.4) to 1542 cm(-1) (6.5 μm). The frequency coverage (580 cm(-1)) is about 46% of center frequency.
NASA Astrophysics Data System (ADS)
Sluse, D.; Tewes, M.
2014-11-01
The advent of large area photometric surveys has raised a great deal of interest in the possibility of using broadband photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei. We describe here a new method that uses time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single-band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images that is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques that use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.
Chim Chan, On; Casper, Peter; Sha, Li Qing; Feng, Zhi Li; Fu, Yun; Yang, Xiao Dong; Ulrich, Andreas; Zou, Xiao Ming
2008-06-01
Bacterial community structure is influenced by vegetation, climate and soil chemical properties. To evaluate these influences, terminal restriction fragment length polymorphism (T-RFLP) and cloning of the 16S rRNA gene were used to analyze the soil bacterial communities in different ecosystems in southwestern China. We compared (1) broad-leaved forest, shrub and pastures in a high-plateau region, (2) three broad-leaved forests representing a climate gradient from high-plateau temperate to subtropical and tropical regions and (3) the humus and mineral soil layers of forests, shrub lands and pastures with open and restricted grazing activities, having varied soil carbon and nutrient contents. Principal component analysis of the T-RFLP patterns revealed that soil bacterial communities of the three vegetation types were distinct. The broad-leaved forests in different climates clustered together, and relatively minor differences were observed between the soil layers or the grazing regimes. Acidobacteria dominated the broad-leaved forests (comprising 62% of the total clone sequences), but exhibited lower relative abundances in the soils of shrub (31%) and pasture (23%). Betaproteobacteria was another dominant taxa of shrub land (31%), whereas Alpha- (19%) and Gammaproteobacteria (13%) and Bacteriodetes (16%) were major components of pasture. Vegetation exerted more pronounced influences than climate and soil chemical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Hannah C.; Zuluaga, Manuel D.; Houze, Robert A.
We report the Tropical Rainfall Measurement Mission's (TRMM) Spectral Latent Heating algorithm shows the contributions of different forms of convection to the latent heating profiles of the Madden-Julian Oscillation over the central Indian and West Pacific Oceans. In both oceanic regions, storms containing broad stratiform regions produce increased upper level heating during active Madden-Julian Oscillation (MJO) phases. The largest differences between the central Indian and West Pacific Ocean heating are associated with heating produced by convective elements. Examination of the most extreme forms of convection shows that mesoscale organized convection often produces at least as much latent heat as youngmore » vigorous deep convection. Heating from nonextreme (often midlevel-topped) convection is an important component of the MJO heating in both regions in all stages of the MJO. Over the central Indian Ocean the heating profile changes from having a maximum at 2 km due to nonextreme convection to a profile during the active stage that has two maxima: one at 3 km due to nonextreme convection and 6 km owing to numerous mature mesoscale storms with broad stratiform precipitation components. Lastly, over the West Pacific, the maxima at 3 and 6 km are present in all MJO stages, but the magnitude of the 6 km maximum sharply increases in the active MJO stage due to an increase in the number of storms with broad stratiform precipitation areas.« less
Latent heating characteristics of the MJO computed from TRMM Observations
Barnes, Hannah C.; Zuluaga, Manuel D.; Houze, Robert A.
2015-01-14
We report the Tropical Rainfall Measurement Mission's (TRMM) Spectral Latent Heating algorithm shows the contributions of different forms of convection to the latent heating profiles of the Madden-Julian Oscillation over the central Indian and West Pacific Oceans. In both oceanic regions, storms containing broad stratiform regions produce increased upper level heating during active Madden-Julian Oscillation (MJO) phases. The largest differences between the central Indian and West Pacific Ocean heating are associated with heating produced by convective elements. Examination of the most extreme forms of convection shows that mesoscale organized convection often produces at least as much latent heat as youngmore » vigorous deep convection. Heating from nonextreme (often midlevel-topped) convection is an important component of the MJO heating in both regions in all stages of the MJO. Over the central Indian Ocean the heating profile changes from having a maximum at 2 km due to nonextreme convection to a profile during the active stage that has two maxima: one at 3 km due to nonextreme convection and 6 km owing to numerous mature mesoscale storms with broad stratiform precipitation components. Lastly, over the West Pacific, the maxima at 3 and 6 km are present in all MJO stages, but the magnitude of the 6 km maximum sharply increases in the active MJO stage due to an increase in the number of storms with broad stratiform precipitation areas.« less
The Lick AGN Monitoring Project 2016: Extending Reverberation Mapping to Higher Luminosity AGNs
NASA Astrophysics Data System (ADS)
U, Vivian; LAMP2016 Collaboration
2017-01-01
The technique of reverberation mapping has been used to estimate virial black hole masses and, more fundamentally, to probe the broad line region structure in Seyfert I galaxies. Efforts from the previous Lick AGN Monitoring Project (LAMP) campaigns and other studies to date have culminated in a large sample of reverberation mapped AGNs and measurements of their black hole masses, which in turn enabled major improvement to various AGN scaling relations. However, the high-luminosity end of such relations remains poorly constrained; this is because of observational challenges presented by the weaker continuum flux variations and longer time dilation in these sources. To this end, we have initiated a new LAMP2016 campaign to target AGNs with luminosities of 10^44 erg/s, with predicted H-beta lags of ~20 - 60 days or black hole masses of 10^7 - 10^8.5 Msun. Designed to monitor ~20 AGNs biweekly from Spring 2016 through Winter 2017 with the Kast spectrograph on the 3-m Shane Telescope at Lick Observatory, we aim to probe luminosity-dependent trends in broad line region structure and dynamics, improve calibrations for single-epoch estimates of high-redshift quasar black hole masses, and test photoionization models for the radially-stratified structure of the broad line region. In this talk, I will present the overview and scope of LAMP2016 and show preliminary results from our ongoing campaign.
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; Padmanabhan, Urmila; Kraemer, Steven B.; Crenshaw, D. Michael; Mckernan, Barry; George, Ian M.; Turner, T. Jane; White, Nicholas E. (Technical Monitor)
2002-01-01
We report the results of simultaneous Chandra and RXTE observations of the Seyfert 1 galaxy Mkn 509. We deconvolve the broad and narrow Fe-K emission-line components for which we measure rest-frame equivalent widths of 119+/-18 eV and 57+/-13 eV respectively. The broad line has a FWHM of 57,600((sup 14,400)(sub -21,000)) km/s and the narrow line is unresolved, with an upper limit on the FWHM of 4,940 km/s. Both components must originate in cool matter since we measure rest-frame center energies of 6.36((sup +0.13)(sub -0.12)) keV and 6.42+/-0.01 keV for the broad and narrow line respectively. This rules out He-like and H-like Fe for the origin of both the broad and narrow lines. If, as is widely accepted, the broad Fe-K line originates in Thomson-thick matter (such as an accretion disk), then one expects to observe spectral curvature above approximately 10 keV, (commensurate with the observed broad line), characteristic of the Compton-reflection continuum. However our data sets very stringent limits on deviations of the observed continuum from a power law. Light travel-time delays cannot be invoked to explain anomalies in the relative strengths of the broad Ferry line and Compton-reflection continuum since they are supposed to originate in the same physical location. We are forced to conclude that both the broad and narrow Fe-K lines had to originate in Thomson-thin matter during our observation. This result, for a single observation of just one source, means that our understanding of Fe K line emission and Compton reflection from accreting X-ray sources in general needs to be re-examined. For example, if an irradiated accretion disk existed in Mkn 509 at the time of the observations, the lack of spectral curvature above approximately 10 keV suggests two possibilities. Either the disk was Thomson-thick and highly ionized, having negligible Fe-K line emission and photoelectric absorption or the disk was Thomson-thin producing some or all of the broad Fe-K line emission. In the former case, the broad Fe-K line had to have produced in a Thomson-thin region elsewhere. In both cases the predicted spectral curvature above approximately 10 keV is negligible. An additional implication of our results is that any putative obscuring torus in the system, required by unification models of active galaxies, must also be Thomson-thin. The same applies to the optical broad line region (BLR) if it has a substantial covering factor.
Double-peaked broad line emission from the LINER nucleus of NGC 1097
NASA Technical Reports Server (NTRS)
Storchi-Bergmann, Thaisa; Baldwin, Jack A.; Wilson, Andrew S.
1993-01-01
We report the recent appearance of a very broad component in the H-alpha and H-beta emission lines of the weakly active nucleus of the Sersic-Pastoriza galaxy NGC 1097. The FWZI of the broad component is about 21,000 km/s, and its profile is double-peaked; the presence of a blue, featureless continuum in the nucleus is also suggested. The broad component was first observed in H-alpha in November 2, 1991, and confirmed 11 months later. The H-alpha profile and flux did not change in this time interval. Comparison with previously published spectral data indicates that the broad lines have only recently appeared. Together with the relatively high X-ray luminosity and the compact nuclear radio source, our results characterize the presence of a Seyfert 1 nucleus in a galaxy which had previously shown only LINER characteristics. Obscuring material along our line of sight to the nucleus appears to have recently cleared, permitting a direct view of the active nucleus. We discuss two possible structures for the broad line region, biconical outflow and an accretion disk, that could give rise to the observed profile.
NITRATE AND NITROUS OXIDE CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT
We are measuring dissolved nitrate and nitrous oxide concentrations and related parameters in 17 headwater streams in the South Fork Broad River, Georgia watershed on a monthly basis. The selected small streams drain watersheds dominated by forest, pasture, residential, or mixed...
DOT National Transportation Integrated Search
1971-04-01
During 1960-1963, the Civil Aeromedical Research Institute (CARI) conducted a broad spectrum of biomedical evaluations on a large number of air traffic control (ATC) students. Approximately 1270 of these students (20-50 years of age) underwent biodyn...
ORGANIC WASTE CONTAMINATION INDICATORS IN SMALL GEORGIA PIEDMONT STREAMS
We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 kilometers) of the South Fork Broad River waters...
POTENTIAL IMPACTS OF ORGANIC WASTES ON SMALL STREAM WATER QUALITY
We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. Our monthly monitoring results showed a strong inverse relationship betwe...
ERIC Educational Resources Information Center
Jones, Thomas N.
The purpose of this chapter is to offer an overview and analysis of all the cases rendered during 1980 concerning the legal parameters of employment issues in institutions of higher education. Judicial review of employment decisions encompassed a broad range of actions, including selection and appointment; dismissal and nonrenewal; the termination…
ERIC Educational Resources Information Center
Speismen, Joseph C.; And Others
While there is reasonable agreement about some of the broad parameters of men's and women's marriages, less has been written about their perspectives on marriage, or about the individual characteristics associated with marital satisfaction. Data on marital adjustment, demographics, sex role identity, and sexuality were taken from 50 participants…
Temperature Dependence of Errors in Parameters Derived from Van't Hoff Studies.
ERIC Educational Resources Information Center
Dec, Steven F.; Gill, Stanley J.
1985-01-01
The method of Clarke and Glew is broadly applicable to studies of the temperature dependence of equilibrium constant measurements. The method is described and examples of its use in comparing calorimetric results and temperature dependent gas solubility studies are provided. (JN)
Information content in Iris spectra. [Infrared Interferometer Spectrometer of Nimbus 4 satellite
NASA Technical Reports Server (NTRS)
Price, J. C.
1975-01-01
Spectra from the satellite instrument Iris (infrared interferometer spectrometer) were examined to find the number of independent variables needed to describe the broad-band high-resolution spectral data. The radiated power in the atmospheric window from 771 to 981 per cm was the first parameter chosen for fitting observed spectra. At succeeding levels of analysis, the residual variability (observed spectrum minus best-fit spectrum) in an ensemble of observations was partitioned into spectral eigenvectors. The eigenvector describing the largest fraction of this variability was examined for a strong spectral signature; the power in the corresponding spectral band was then used as the next fitting parameter. The measured power in nine spectral intervals, when it was inserted in the spectral-fitting functions, was adequate to describe most spectra to within the noise level of Iris. Considerations of relative signal strength and scales of atmospheric variability suggest a combination sounder (multichannel, broad field of view) scanner (window channel, small field of view) as an efficient observing instrument.
Estimation of kinematic parameters in CALIFA galaxies: no-assumption on internal dynamics
NASA Astrophysics Data System (ADS)
García-Lorenzo, B.; Barrera-Ballesteros, J.; CALIFA Team
2016-06-01
We propose a simple approach to homogeneously estimate kinematic parameters of a broad variety of galaxies (elliptical, spirals, irregulars or interacting systems). This methodology avoids the use of any kinematical model or any assumption on internal dynamics. This simple but novel approach allows us to determine: the frequency of kinematic distortions, systemic velocity, kinematic center, and kinematic position angles which are directly measured from the two dimensional-distributions of radial velocities. We test our analysis tools using the CALIFA Survey
Power systems for ocean regional cabled observatories
NASA Technical Reports Server (NTRS)
Kojima, Junichi; Asakawa, Kenichi; Howe, Bruce M.; Kirkham, Harold
2004-01-01
Development of power systems is the most challenging technical issue in the design of ocean regional cabled observatories. ARENA and NEPTUNE are two ocean regional cabled observatory networks with aims that are at least broadly similar. Yet the two designs are quite different in detail. This paper outlines the both systems and explores the reasons for the divergence of design, and shows that it arose because of differences in the priority of requirements.
What Quasars Really Look Like: Unification of the Emission and Absorption Line Regions
NASA Technical Reports Server (NTRS)
Elvis, Martin
2000-01-01
We propose a simple unifying structure for the inner regions of quasars and AGN. This empirically derived model links together the broad absorption line (BALS), the narrow UV/X-ray ionized absorbers, the BELR, and the 5 Compton scattering/fluorescing regions into a single structure. The model also suggests an alternative origin for the large-scale bi-conical outflows. Some other potential implications of this structure are discussed.
A Regionalization Approach to select the final watershed parameter set among the Pareto solutions
NASA Astrophysics Data System (ADS)
Park, G. H.; Micheletty, P. D.; Carney, S.; Quebbeman, J.; Day, G. N.
2017-12-01
The calibration of hydrological models often results in model parameters that are inconsistent with those from neighboring basins. Considering that physical similarity exists within neighboring basins some of the physically related parameters should be consistent among them. Traditional manual calibration techniques require an iterative process to make the parameters consistent, which takes additional effort in model calibration. We developed a multi-objective optimization procedure to calibrate the National Weather Service (NWS) Research Distributed Hydrological Model (RDHM), using the Nondominant Sorting Genetic Algorithm (NSGA-II) with expert knowledge of the model parameter interrelationships one objective function. The multi-objective algorithm enables us to obtain diverse parameter sets that are equally acceptable with respect to the objective functions and to choose one from the pool of the parameter sets during a subsequent regionalization step. Although all Pareto solutions are non-inferior, we exclude some of the parameter sets that show extremely values for any of the objective functions to expedite the selection process. We use an apriori model parameter set derived from the physical properties of the watershed (Koren et al., 2000) to assess the similarity for a given parameter across basins. Each parameter is assigned a weight based on its assumed similarity, such that parameters that are similar across basins are given higher weights. The parameter weights are useful to compute a closeness measure between Pareto sets of nearby basins. The regionalization approach chooses the Pareto parameter sets that minimize the closeness measure of the basin being regionalized. The presentation will describe the results of applying the regionalization approach to a set of pilot basins in the Upper Colorado basin as part of a NASA-funded project.
The Distribution of Wolf-Rayet Stars in NGC 6744
NASA Astrophysics Data System (ADS)
Sandford, Emily; Bibby, J. L.; Zurek, D.; Crowther, P.
2013-01-01
We undertake a survey of the Wolf-Rayet population of NGC 6744, a spiral galaxy located at an estimated distance of 11.6 Mpc, in order to determine whether the distribution of this population is consistent with the distributions of various ccSNe subtypes. 242 Wolf-Rayet candidate sources are identified, 40% of which are only detected in narrow-band helium II imaging, not in broad-band imaging. The spatial distribution of WR candidates is compared to the distributions of ccSNe subtype populations in the broad-band B filter and the narrow-band Hα filter. WR stars appear to follow the Type Ic distribution in the faintest 30% of the galaxy in the B image, but follow the Ib or II distribution in the brightest regions, possibly due to the difficulty of detecting WR stars in the brightest regions. WR candidates are found to be closely associated with HII regions; however, the treatment of the residual background strongly affects the distribution, and this result must be investigated further.
Sohl, Terry L.; Dornbierer, Jordan; Wika, Steve; Sayler, Kristi L.; Quenzer, Robert
2017-01-01
Land use and land cover (LULC) change occurs at a local level within contiguous ownership and management units (parcels), yet LULC models primarily use pixel-based spatial frameworks. The few parcel-based models being used overwhelmingly focus on small geographic areas, limiting the ability to assess LULC change impacts at regional to national scales. We developed a modified version of the Forecasting Scenarios of land use change model to project parcel-based agricultural change across a large region in the United States Great Plains. A scenario representing an agricultural biofuel scenario was modeled from 2012 to 2030, using real parcel boundaries based on contiguous ownership and land management units. The resulting LULC projection provides a vastly improved representation of landscape pattern over existing pixel-based models, while simultaneously providing an unprecedented combination of thematic detail and broad geographic extent. The conceptual approach is practical and scalable, with potential use for national-scale projections.
Parameter identifiability and regional calibration for reservoir inflow prediction
NASA Astrophysics Data System (ADS)
Kolberg, Sjur; Engeland, Kolbjørn; Tøfte, Lena S.; Bruland, Oddbjørn
2013-04-01
The large hydropower producer Statkraft is currently testing regional, distributed models for operational reservoir inflow prediction. The need for simultaneous forecasts and consistent updating in a large number of catchments supports the shift from catchment-oriented to regional models. Low-quality naturalized inflow series in the reservoir catchments further encourages the use of donor catchments and regional simulation for calibration purposes. MCMC based parameter estimation (the Dream algorithm; Vrugt et al, 2009) is adapted to regional parameter estimation, and implemented within the open source ENKI framework. The likelihood is based on the concept of effectively independent number of observations, spatially as well as in time. Marginal and conditional (around an optimum) parameter distributions for each catchment may be extracted, even though the MCMC algorithm itself is guided only by the regional likelihood surface. Early results indicate that the average performance loss associated with regional calibration (difference in Nash-Sutcliffe R2 between regionally and locally optimal parameters) is in the range of 0.06. The importance of the seasonal snow storage and melt in Norwegian mountain catchments probably contributes to the high degree of similarity among catchments. The evaluation continues for several regions, focusing on posterior parameter uncertainty and identifiability. Vrugt, J. A., C. J. F. ter Braak, C. G. H. Diks, B. A. Robinson, J. M. Hyman and D. Higdon: Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling. Int. J. of nonlinear sciences and numerical simulation 10, 3, 273-290, 2009.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espada, D.; Matsushita, S.; Sakamoto, K.
2010-09-01
We report on atomic gas (H I) and molecular gas (as traced by CO(2-1)) redshifted absorption features toward the nuclear regions of the closest powerful radio galaxy, Centaurus A (NGC 5128). Our H I observations using the Very Long Baseline Array allow us to discern with unprecedented sub-parsec resolution H I absorption profiles toward different positions along the 21 cm continuum jet in the inner 0.''3 (or 5.4 pc). In addition, our CO(2-1) data obtained with the Submillimeter Array probe the bulk of the absorbing molecular gas with little contamination by emission, which was not possible with previous CO single-dishmore » observations. We shed light on the physical properties of the gas in the line of sight with these data, emphasizing the still open debate about the nature of the gas that produces the broad absorption line ({approx}55 km s{sup -1}). First, the broad H I line is more prominent toward the central and brightest 21 cm continuum component than toward a region along the jet at a distance {approx}20 mas (or 0.4 pc) further from the nucleus. This indicates that the broad absorption line arises from gas located close to the nucleus, rather than from diffuse and more distant gas. Second, the different velocity components detected in the CO(2-1) absorption spectrum match well with other molecular lines, such as those of HCO{sup +}(1-0), except the broad absorption line that is detected in HCO{sup +}(1-0) (and most likely related to that of the H I). Dissociation of molecular hydrogen due to the active galactic nucleus seems to be efficient at distances r {approx}< 10 pc, which might contribute to the depth of the broad H I and molecular lines.« less
Appalachian Regional Commission: 1982 Annual Report.
ERIC Educational Resources Information Center
Appalachian Regional Commission, Washington, DC.
Fiscal year 1982 was transitional for the Appalachian Regional Commission (ARC), as it was the last year of the broad economic development program and a year of reduced funding and new limits on programs. In 1981, Congress had requested that ARC prepare a plan for completion of the Appalachian highway system and for a 3 to 5 year ARC finish-up…
Rural Poverty in Three Southern Regions: Mississippi Delta, Ozarks, Southeast Coastal Plain.
ERIC Educational Resources Information Center
McCoy, John L.
The focus of this report is on poverty and its relationships to certain individual characteristics as distributed across 3 regions: the Ozarks, Mississippi Delta, and Southeast Coastal Plain. After a broad description of these areas, the study looks at (1) age of household heads, (2) number of persons in households, (3) housing quality (running…
The Pacific Northwest region vegetation and monitoring system.
Timothy A. Max; Hans T. Schreuder; John W. Hazard; Daniel D. Oswald; John Teply; Jim. Alegria
1996-01-01
A grid sampling strategy was adopted for broad-scale inventory and monitoring of forest and range vegetation on National Forest System lands in the Pacific North-west Region, USDA Forest Service. This paper documents the technical details of the adopted design and discusses alternative sampling designs that were considered. A less technical description of the selected...
Sustaining Productivity of Planted Forests in the Gulf Coast Region
James P. Bamett; Allan E. Tiarks; Mary Anne Sword
2000-01-01
The forests of the Gulf Coastal Region provide the basis for its economic well-being. Because of the semitropical climate, abundant rainfall and availing topography, the nation's richest plant communities thrive. These forests are predominately privately owned. Millions of private landowners are committed to managing their forests for a broad array of values which...
ERIC Educational Resources Information Center
Department of Agriculture, Washington, DC.
At the request of Secretary of Agriculture, Robert Bergland, 10 regional meetings were held in which 210 scheduled speakers and 365 unscheduled speakers commented on 12 broad areas of concern to American agriculture. These concerns were: landownership, control and tenancy; barriers to entering and leaving farming; production efficiency, size of…
Effects of climate change on native fish and other aquatic species [Chapter 5
Daniel J. Isaak; Michael K. Young; Cynthia Tait; Daniel Duffield; Dona L. Horan; David E. Nagel; Matthew C. Groce
2018-01-01
The diverse landscapes of the Intermountain Adaptation Partnership (IAP) region contain a broad range of aquatic habitats and biological communities. A number of aquatic species are regional endemics, several are threatened or endangered under the U.S. Endangered Species Act (ESA), and many have declined because of the introduction of nonnative aquatic species, habitat...
There is a growing concern about broad-scale changes in landscape features and the consequences of changes on a range of ecological goods and services, including goods and services related to human health and natural systems. The US Environmental Protection Agency has developed a...
Assessment of effects of neutrals on the power threshold for L to H transitions in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, L.W.; Carreras, B.A.; Maingi, R.
1997-09-01
To assess the effect of edge neutrals on the low to high confinement transition threshold, a broad range of plasma discharges has been analyzed. From this analysis, the transition power divided by the density, at constant magnetic field, appears to be a function of a single parameter measuring the neutrals` effect, This parameter cannot be uniquely identified. For instance, it may be the radial decay length of the neutral profile or the charge exchange damping rate at about r/a {approx} 0.95. This results suggest that there is a missing parameter linked to the neutrals in the power threshold scaling laws.
NASA Astrophysics Data System (ADS)
Le, Loan T.
Over the span of more than 20 years of development, the Quantum Cascade (QC) laser has positioned itself as the most viable mid-infrared (mid-IR) light source. Today's QC lasers emit watts of continuous wave power at room temperature. Despite significant progress, the mid-IR region remains vastly under-utilized. State-of-the-art QC lasers are found in high power defense applications and detection of trace gases with narrow absorption lines. A large number of applications, however, do not require so much power, but rather, a broadly tunable laser source to detect molecules with broad absorption features. As such, a QC laser that is broadly tunable over the entire biochemical fingerprinting region remains the missing link to markets such as non- invasive biomedical diagnostics, food safety, and stand-off detection in turbid media. In this thesis, we detail how we utilized the inherent flexibility of the QC design space to conceive a new type of laser with the potential to bridge that missing link of the QC laser to large commercial markets. Our design concept, the Super Cascade (SC) laser, works contrary to conventional laser design principle by supporting multiple independent optical transitions, each contributing to broadening the gain spectrum. We have demonstrated a room temperature laser gain medium with electroluminescence spanning 3.3-12.5 ?m and laser emission from 6.2-12.5 ?m, the record spectral width for any solid state laser gain medium. This gain bandwidth covers the entire biochemical fingerprinting region. The achievement of such a spectrally broad gain medium presents engineering challenges of how to optimally utilize the bandwidth. As of this work, a monolithi- cally integrated array of Distributed Feedback QC (DFB-QC) lasers is one of the most promising ways to fully utilize the SC gain bandwidth. Therefore, in this thesis, we explore ways of improving the yield and ease of fabrication of DFB-QC lasers, including a re-examination of the role of current spreading in QC geometry.
NASA Astrophysics Data System (ADS)
Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.
2011-12-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
NASA Astrophysics Data System (ADS)
Qian, Y.; Yang, B.; Lin, G.; Leung, R.; Zhang, Y.
2012-04-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. The latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
NASA Astrophysics Data System (ADS)
Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.
2012-03-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic importance sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e. the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication and Characterization
NASA Astrophysics Data System (ADS)
Geels, Randall Scott
The theory, design, fabrication, and testing of vertical-cavity surface-emitting lasers (VCSELs) is explored in depth. The design of the distributed Bragg reflector (DBR) mirrors is thoroughly treated and both analytic and numerical approaches for computing the reflectivity are covered. The electrical properties of the DBR mirrors are also considered and graded interfaces are found to be critical in reducing the series voltage drop in the mirrors. Thickness variations due to growth rate uncertainties are considered and the permissible thickness inaccuracies are discussed. Layer thickness variations of several percent can be tolerated without large changes in the threshold current. The growth of VCSELs by molecular beam epitaxy (MBE) is described in detail as is the device processing technology for broad area as well as small area devices. Results from numerous devices are reported. Broad area in-plane lasers were used to characterize the material and determine the internal parameters. Broad area VCSELs were fabricated to determine the characteristics of the VCSEL cavity. Small area VCSELs were fabricated and extensively tested. Measured and derived parameters from small area devices include: threshold current (~0.7 mA), peak output power (>3 mW), maximum operation temperature (>110^ circC), output power at 100^ circC (~0.4 mW), and linewidth (85 MHz). The near field, far field, and polarization characteristics were also measured.
2003-02-03
A broad channel in the Deuteronilus Mensae region, shown in this NASA Mars Odyssey image, displays the strange landforms common to the northern mid-latitudes where ground ice likely plays a role in their formation.
Sheng, Mao-Ling; Broad, Gavin R.; Sun, Shu-Ping
2011-01-01
Abstract Three species of Ateleute Förster 1869 belonging to the tribe Cryptini of the subfamily Cryptinae (Hymenoptera, Ichneumonidae), collected from Jiangxi Province, China, are reported, of which two are new for science: Ateleute ferruginea Sheng, Broad & Sun, sp. n. and AAteleute zixiensis Sheng, Broad & Sun, sp. n. One, AAteleute densistriata (Uchida, 1955), was previously known from China and Japan. A key to the species of genus Ateleute known in the Oriental Region is provided. PMID:22287879
Military Review. Volume 58, Number 9
1978-09-01
broad panty w1th the modest military capab11it1es of the nation’s more substantial neighbors (most particularly Argentma). ~ Unswerv1ng allegiance to...than panty w1th Argentina m the Platma Basm or pro1ectmg much m the way of mfluence to other port1ons of the con- tment On the world stage...secunty affatrs Regionally, Brazil’s secunty posture was relatively mert. atmed only at the mamtenance of broad panty m capacity and mfluence wtth 1ts
Watanabe, K; Yoshioka, K; Ito, H; Ishigami, M; Takagi, K; Utsunomiya, S; Kobayashi, M; Kishimoto, H; Yano, M; Kakumu, S
1999-11-10
Hypervariable region 1 (HVR1) proteins of hepatitis C virus (HCV) have been reported to react broadly with sera of patients with HCV infection. However, the variability of the broad reactivity of individual HVR1 proteins has not been elucidated. We assessed the reactivity of 25 different HVR1 proteins (genotype 1b) with sera of 81 patients with HCV infection (genotype 1b) by Western blot. HVR1 proteins reacted with 2-60 sera. The number of sera reactive with each HVR1 protein significantly correlated with the number of amino acid residues identical to the consensus sequence defined by Puntoriero et al. (G. Puntoriero, A. Lahm, S. Zucchelli, B. B. Ercole, R. Tafi, M. Penzzanera, M. U. Mondelli, R. Cortese, A. Tramontano, G. Galfre', and A. Nicosia. 1998. EMBO J. 17, 3521-3533. ) (r = 0.561, P < 0.005). The most widely reactive HVR1 protein, 12-22, had a sequence similar to the consensus sequence. The peptide with C-terminal 13-amino-acids sequence of HVR1 protein 12-22 (NH2-CSFTSLFTPGPSQK) was injected into rabbits as an immunogen. The rabbit immune sera reacted with 9 of 25 HVR1 proteins of genotype 1b including HVR1 protein 12-22 and with 3 of 12 proteins of genotype 2a. These results indicate that the HVR1 protein broadly reactive with patients' sera has a sequence similar to the consensus sequence, can induce broadly reactive sera, and could be one of the candidate immunogens in a prophylactic vaccine against HCV. Copyright 1999 Academic Press.
APPLICATION OF THE HSPF MODEL TO THE SOUTH FORK OF THE BROAD RIVER WATERSHED IN NORTHEASTERN GEORGIA
The Hydrological Simulation Program-Fortran (HSPF) is a comprehensive watershed model which simulates hydrology and water quality at user-specified temporal and spatial scales. Well-established model calibration and validation procedures are followed when adjusting model paramete...
NASA Astrophysics Data System (ADS)
Zheng, Mingfei; Li, Hongjian; Chen, Zhiquan; He, Zhihui; Xu, Hui; Zhao, Mingzhuo
2017-11-01
We propose a compact plasmonic nanofilter in partitioned semicircle or semiring stub waveguide, and investigate the transmission characteristics of the two novel systems by using the finite-difference time-domain method. An ultra-broad stopband phenomenon is generated by partitioning a single stub into a double stub with a rectangular metal partition, which is caused by the destructive interference superposition of the reflected and transmitted waves from each stub. A tunable stopband is realized in the multiple plasmonic nanofilter by adjusting the width of the partition and the (outer) radius and inner radius of the stub, whose starting wavelength, ending wavelength, center wavelength, bandwidth and total tunable bandwidth are discussed, and specific filtering waveband and optimum structural parameter are obtained. The proposed structures realize asymmetrical stub and achieve ultra-broad stopband, and have potential applications in band-stop nanofilters and high-density plasmonic integrated optical circuits.
NASA Astrophysics Data System (ADS)
Anderson, C. J.; Wildhaber, M. L.; Wikle, C. K.; Moran, E. H.; Franz, K. J.; Dey, R.
2012-12-01
Climate change operates over a broad range of spatial and temporal scales. Understanding the effects of change on ecosystems requires accounting for the propagation of information and uncertainty across these scales. For example, to understand potential climate change effects on fish populations in riverine ecosystems, climate conditions predicted by course-resolution atmosphere-ocean global climate models must first be translated to the regional climate scale. In turn, this regional information is used to force watershed models, which are used to force river condition models, which impact the population response. A critical challenge in such a multiscale modeling environment is to quantify sources of uncertainty given the highly nonlinear nature of interactions between climate variables and the individual organism. We use a hierarchical modeling approach for accommodating uncertainty in multiscale ecological impact studies. This framework allows for uncertainty due to system models, model parameter settings, and stochastic parameterizations. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. We use NARCCAP data to determine confidence the capability of climate models to simulate relevant processes and to quantify regional climate variability within the context of the hierarchical model of uncertainty quantification. By confidence, we mean the ability of the regional climate model to replicate observed mechanisms. We use the NCEP-driven simulations for this analysis. This provides a base from which regional change can be categorized as either a modification of previously observed mechanisms or emergence of new processes. The management implications for these categories of change are significantly different in that procedures to address impacts from existing processes may already be known and need adjustment; whereas, an emergent processes may require new management strategies. The results from hierarchical analysis of uncertainty are used to study the relative change in weights of the endangered Missouri River pallid sturgeon (Scaphirhynchus albus) under a 21st century climate scenario.
DOT National Transportation Integrated Search
1999-09-01
This is one of seven studies exploring processes for developing Intelligent Transportation Systems (ITS) architectures for regional, statewide, or commercial vehicle applications. This study was prepared for a broad-based, non-technical audience. The...
2014-04-15
This image from NASA 2001 Mars Odyssey spacecraft shows a streamlined island in a broad channel in Chryse Planitia. The channel is part of the outflow region of Lobo Vallis, a northern branch of Kasei Valles.
Pauler, Florian M.; Sloane, Mathew A.; Huang, Ru; Regha, Kakkad; Koerner, Martha V.; Tamir, Ido; Sommer, Andreas; Aszodi, Andras; Jenuwein, Thomas; Barlow, Denise P.
2009-01-01
In mammals, genome-wide chromatin maps and immunofluorescence studies show that broad domains of repressive histone modifications are present on pericentromeric and telomeric repeats and on the inactive X chromosome. However, only a few autosomal loci such as silent Hox gene clusters have been shown to lie in broad domains of repressive histone modifications. Here we present a ChIP-chip analysis of the repressive H3K27me3 histone modification along chr 17 in mouse embryonic fibroblast cells using an algorithm named broad local enrichments (BLOCs), which allows the identification of broad regions of histone modifications. Our results, confirmed by BLOC analysis of a whole genome ChIP-seq data set, show that the majority of H3K27me3 modifications form BLOCs rather than focal peaks. H3K27me3 BLOCs modify silent genes of all types, plus flanking intergenic regions and their distribution indicates a negative correlation between H3K27me3 and transcription. However, we also found that some nontranscribed gene-poor regions lack H3K27me3. We therefore performed a low-resolution analysis of whole mouse chr 17, which revealed that H3K27me3 is enriched in mega-base-pair-sized domains that are also enriched for genes, short interspersed elements (SINEs) and active histone modifications. These genic H3K27me3 domains alternate with similar-sized gene-poor domains. These are deficient in active histone modifications, as well as H3K27me3, but are enriched for long interspersed elements (LINEs) and long-terminal repeat (LTR) transposons and H3K9me3 and H4K20me3. Thus, an autosome can be seen to contain alternating chromatin bands that predominantly separate genes from one retrotransposon class, which could offer unique domains for the specific regulation of genes or the silencing of autonomous retrotransposons. PMID:19047520
NASA Astrophysics Data System (ADS)
Toker, C.; Gokdag, Y. E.; Arikan, F.; Arikan, O.
2012-04-01
Ionosphere is a very important part of Space Weather. Modeling and monitoring of ionospheric variability is a major part of satellite communication, navigation and positioning systems. Total Electron Content (TEC), which is defined as the line integral of the electron density along a ray path, is one of the parameters to investigate the ionospheric variability. Dual-frequency GPS receivers, with their world wide availability and efficiency in TEC estimation, have become a major source of global and regional TEC modeling. When Global Ionospheric Maps (GIM) of International GPS Service (IGS) centers (http://iono.jpl.nasa.gov/gim.html) are investigated, it can be observed that regional ionosphere along the midlatitude regions can be modeled as a constant, linear or a quadratic surface. Globally, especially around the magnetic equator, the TEC surfaces resemble twisted and dispersed single centered or double centered Gaussian functions. Particle Swarm Optimization (PSO) proved itself as a fast converging and an effective optimization tool in various diverse fields. Yet, in order to apply this optimization technique into TEC modeling, the method has to be modified for higher efficiency and accuracy in extraction of geophysical parameters such as model parameters of TEC surfaces. In this study, a modified PSO (mPSO) method is applied to regional and global synthetic TEC surfaces. The synthetic surfaces that represent the trend and small scale variability of various ionospheric states are necessary to compare the performance of mPSO over number of iterations, accuracy in parameter estimation and overall surface reconstruction. The Cramer-Rao bounds for each surface type and model are also investigated and performance of mPSO are tested with respect to these bounds. For global models, the sample points that are used in optimization are obtained using IGS receiver network. For regional TEC models, regional networks such as Turkish National Permanent GPS Network (TNPGN-Active) receiver sites are used. The regional TEC models are grouped into constant (one parameter), linear (two parameters), and quadratic (six parameters) surfaces which are functions of latitude and longitude. Global models require seven parameters for single centered Gaussian and 13 parameters for double centered Gaussian function. The error criterion is the normalized percentage error for both the surface and the parameters. It is observed that mPSO is very successful in parameter extraction of various regional and global models. The normalized reconstruction error varies from 10-4 for constant surfaces to 10-3 for quadratic surfaces in regional models, sampled with regional networks. Even for the cases of a severe geomagnetic storm that affects measurements globally, with IGS network, the reconstruction error is on the order of 10-1 even though individual parameters have higher normalized errors. The modified PSO technique proved itself to be a useful tool for parameter extraction of more complicated TEC models. This study is supported by TUBITAK EEEAG under Grant No: 109E055.
Sleep spindles and intelligence: evidence for a sexual dimorphism.
Ujma, Péter P; Konrad, Boris Nikolai; Genzel, Lisa; Bleifuss, Annabell; Simor, Péter; Pótári, Adrián; Körmendi, János; Gombos, Ferenc; Steiger, Axel; Bódizs, Róbert; Dresler, Martin
2014-12-03
Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a higher number of spindles and higher spindle density than males. Sleep spindles have been associated with learning potential and intelligence; however, the details of this relationship have not been fully clarified yet. In a sample of 160 adult human subjects with a broad IQ range, we investigated the relationship between sleep spindle parameters and intelligence. In females, we found a positive age-corrected association between intelligence and fast sleep spindle amplitude in central and frontal derivations and a positive association between intelligence and slow sleep spindle duration in all except one derivation. In males, a negative association between intelligence and fast spindle density in posterior regions was found. Effects were continuous over the entire IQ range. Our results demonstrate that, although there is an association between sleep spindle parameters and intellectual performance, these effects are more modest than previously reported and mainly present in females. This supports the view that intelligence does not rely on a single neural framework, and stronger neural connectivity manifesting in increased thalamocortical oscillations in sleep is one particular mechanism typical for females but not males. Copyright © 2014 the authors 0270-6474/14/3416358-11$15.00/0.
Closed Field Coronal Heating Models Inspired by Wave Turbulence
NASA Astrophysics Data System (ADS)
Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M. M.
2013-12-01
To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence dissipation (WTD) phenomenology for the heating of closed coronal loops. To do so, we employ an implementation of non-WKB equations designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic equations in 1D for an idealized loop, and the relevance to a range of solar conditions is established by computing solutions for several hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-sun and active region conditions. The importance of the self-reflection term in producing realistic heating scale heights and thermal non-equilibrium cycles is discussed, and preliminary 3D thermodynamic MHD simulations using this formulation are presented. Research supported by NASA and NSF.
NASA Astrophysics Data System (ADS)
Menezes, R. B.; Steiner, J. E.
2017-04-01
NGC 1313 is a bulgeless nearby galaxy, classified as SB(s)d. Its proximity allows high spatial resolution observations. We performed the first detailed analysis of the emission-line properties in the nuclear region of NGC 1313, using an optical data cube obtained with the Gemini Multi-object Spectrograph. We detected four main emitting areas, three of them (regions 1, 2 and 3) having spectra typical of H II regions. Region 1 is located very close to the stellar nucleus and shows broad spectral features characteristic of Wolf-Rayet stars. Our analysis revealed the presence of one or two WC4-5 stars in this region, which is compatible with results obtained by previous studies. Region 4 shows spectral features (as a strong Hα emission line, with a broad component) typical of a massive emission-line star, such as a luminous blue variable, a B[e] supergiant or a B hypergiant. The radial velocity map of the ionized gas shows a pattern consistent with rotation. A significant drop in the values of the gas velocity dispersion was detected very close to region 1, which suggests that the young stars there were formed from this cold gas, possibly keeping low values of velocity dispersion. Therefore, although detailed measurements of the stellar kinematics were not possible (due to the weak stellar absorption spectrum of this galaxy), we predict that NGC 1313 may also show a drop in the values of the stellar velocity dispersion in its nuclear region.
Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F; Eszes, Marika; Faull, Richard L M; Curtis, Maurice A; Waldvogel, Henry J; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V; Coppola, Giovanni; Yang, X William
2016-07-01
Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=-0.41, p=5.5×10-8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels.
Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels
Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F.; Eszes, Marika; Faull, Richard L.M.; Curtis, Maurice A.; Waldvogel, Henry J.; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V.; Coppola, Giovanni; Yang, X. William
2016-01-01
Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=−0.41, p=5.5×10−8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels. PMID:27479945
Tarr, Alexander W.; Urbanowicz, Richard A.; Jayaraj, Dhanya; Brown, Richard J. P.; McKeating, Jane A.; Irving, William L.
2012-01-01
Chronic hepatitis C virus (HCV) infection can persist even in the presence of a broadly neutralizing antibody response. Various mechanisms that underpin viral persistence have been proposed, and one of the most recently proposed mechanisms is the presence of interfering antibodies that negate neutralizing responses. Specifically, it has been proposed that antibodies targeting broadly neutralizing epitopes located within a region of E2 encompassing residues 412 to 423 can be inhibited by nonneutralizing antibodies binding to a less conserved region encompassing residues 434 to 446. To investigate this phenomenon, we characterized the neutralizing and inhibitory effects of human-derived affinity-purified immunoglobulin fractions and murine monoclonal antibodies and show that antibodies to both regions neutralize HCV pseudoparticle (HCVpp) and cell culture-infectious virus (HCVcc) infection albeit with different breadths and potencies. Epitope mapping revealed the presence of overlapping but distinct epitopes in both regions, which may explain the observed differences in neutralizing phenotypes. Crucially, we failed to demonstrate any inhibition between these two groups of antibodies, suggesting that interference by nonneutralizing antibodies, at least for the region encompassing residues 434 to 446, does not provide a mechanism for HCV persistence in chronically infected individuals. PMID:22171278
Computer-oriented synthesis of wide-band non-uniform negative resistance amplifiers
NASA Technical Reports Server (NTRS)
Branner, G. R.; Chan, S.-P.
1975-01-01
This paper presents a synthesis procedure which provides design values for broad-band amplifiers using non-uniform negative resistance devices. Employing a weighted least squares optimization scheme, the technique, based on an extension of procedures for uniform negative resistance devices, is capable of providing designs for a variety of matching network topologies. It also provides, for the first time, quantitative results for predicting the effects of parameter element variations on overall amplifier performance. The technique is also unique in that it employs exact partial derivatives for optimization and sensitivity computation. In comparison with conventional procedures, significantly improved broad-band designs are shown to result.
Effect of dispersion forces on squeezing with Rydberg atoms
NASA Technical Reports Server (NTRS)
Ng, S. K.; Muhamad, M. R.; Wahiddin, M. R. B.
1994-01-01
We report exact results concerning the effect of dipole-dipole interaction (dispersion forces) on dynamic and steady-state characteristics of squeezing in the emitted fluorescent field from two identical coherently driven two-level atoms. The atomic system is subjected to three different damping baths in particular the normal vacuum, a broad band thermal field and a broad band squeezed vacuum. The atomic model is the Dicke model, hence possible experiments are most likely to agree with theory when performed on systems of Rydberg atoms making microwave transitions. The presence of dipole-dipole interaction can enhance squeezing for realizable values of the various parameters involved.
Novel approaches to increasing the brightness of broad area lasers
NASA Astrophysics Data System (ADS)
Crump, P.; Winterfeldt, M.; Decker, J.; Ekterai, M.; Fricke, J.; Knigge, S.; Maaßdorf, A.; Erbert, G.
2016-03-01
Progress in studies to increase the lateral brightness Blat of broad area lasers is reviewed. Blat=Pout/BPPlat is maximized by developing designs and technology for lowest lateral beam parameter product, BPPlat, at highest optical output power Pout. This can be achieved by limiting the number of guided lateral modes and by improving the beam quality of low-order lateral modes. Important effects to address include process and packaging induced wave-guiding, lateral carrier accumulation and the thermal lens profile. A careful selection of vertical design is also shown to be important, as are advanced techniques to filter out higher order modes.
Beam control of high-power broad-area photonic crystal lasers using ladderlike groove structure
NASA Astrophysics Data System (ADS)
Wang, Tao; Wang, Lijie; Shu, Shili; Tian, Sicong; Lu, Zefeng; Hou, Guanyu; Lu, Huanyu; Tong, Cunzhu; Wang, Lijun
2017-06-01
The high-power broad-area (BA) photonic bandgap crystal (PBC) diode laser is promising as a high-brightness laser source, however, it suffers from poor lateral beam quality owing to the intrinsic drawback of BA lasers. In this paper, a ladderlike groove structure (LLGS) was proposed to improve both the lateral beam quality and emission power of BA PBC lasers. An approximately 15.4% improvement in output power and 25.2% decrease in the lateral beam parameter product (BPP) were realized and the underlying mechanism was discussed. On the basis of the one-dimensional PBC epitaxial structure, a stable vertical far field was demonstrated.
Space-weather Parameters for 1,000 Active Regions Observed by SDO/HMI
NASA Astrophysics Data System (ADS)
Bobra, M.; Liu, Y.; Hoeksema, J. T.; Sun, X.
2013-12-01
We present statistical studies of several space-weather parameters, derived from observations of the photospheric vector magnetic field by the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory, for a thousand active regions. Each active region has been observed every twelve minutes during the entirety of its disk passage. Some of these parameters, such as energy density and shear angle, indicate the deviation of the photospheric magnetic field from that of a potential field. Other parameters include flux, helicity, field gradients, polarity inversion line properties, and measures of complexity. We show that some of these parameters are useful for event prediction.
Conserved neutralizing epitope at globular head of hemagglutinin in H3N2 influenza viruses.
Iba, Yoshitaka; Fujii, Yoshifumi; Ohshima, Nobuko; Sumida, Tomomi; Kubota-Koketsu, Ritsuko; Ikeda, Mariko; Wakiyama, Motoaki; Shirouzu, Mikako; Okada, Jun; Okuno, Yoshinobu; Kurosawa, Yoshikazu; Yokoyama, Shigeyuki
2014-07-01
Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular receptor. Since mutations are readily introduced into such epitopes, this type of antibody shows narrow strain specificity. Recently, however, broadly neutralizing antibodies have been isolated. Most of these bind either to conserved sites in the stem region or to the sialic acid-binding pocket itself. In the present study, we identified a new neutralizing epitope in the head region recognized by a broadly neutralizing human antibody against H3N2. This epitope may be useful for design of vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Conserved Neutralizing Epitope at Globular Head of Hemagglutinin in H3N2 Influenza Viruses
Iba, Yoshitaka; Fujii, Yoshifumi; Ohshima, Nobuko; Sumida, Tomomi; Kubota-Koketsu, Ritsuko; Ikeda, Mariko; Wakiyama, Motoaki; Shirouzu, Mikako; Okada, Jun; Okuno, Yoshinobu; Yokoyama, Shigeyuki
2014-01-01
ABSTRACT Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. IMPORTANCE Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular receptor. Since mutations are readily introduced into such epitopes, this type of antibody shows narrow strain specificity. Recently, however, broadly neutralizing antibodies have been isolated. Most of these bind either to conserved sites in the stem region or to the sialic acid-binding pocket itself. In the present study, we identified a new neutralizing epitope in the head region recognized by a broadly neutralizing human antibody against H3N2. This epitope may be useful for design of vaccines. PMID:24719430
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sameshima, H.; Yoshii, Y.; Kawara, K., E-mail: sameshima@cc.kyoto-su.ac.jp
2017-01-10
We present an analysis of Mg ii λ 2798 and Fe ii UV emission lines for archival Sloan Digital Sky Survey (SDSS) quasars to explore the diagnostics of the magnesium-to-iron abundance ratio in a broad-line region cloud. Our sample consists of 17,432 quasars selected from the SDSS Data Release 7 with a redshift range of 0.72 < z < 1.63. A strong anticorrelation between the Mg ii equivalent width (EW) and the Eddington ratio is found, while only a weak positive correlation is found between the Fe ii EW and the Eddington ratio. To investigate the origin of these differing behaviors ofmore » Mg ii and Fe ii emission lines, we perform photoionization calculations using the Cloudy code, where constraints from recent reverberation mapping studies are considered. We find from calculations that (1) Mg ii and Fe ii emission lines are created at different regions in a photoionized cloud, and (2) their EW correlations with the Eddington ratio can be explained by just changing the cloud gas density. These results indicate that the Mg ii/Fe ii flux ratio, which has been used as a first-order proxy for the Mg/Fe abundance ratio in chemical evolution studies with quasar emission lines, depends largely on the cloud gas density. By correcting this density dependence, we propose new diagnostics of the Mg/Fe abundance ratio for a broad-line region cloud. In comparing the derived Mg/Fe abundance ratios with chemical evolution models, we suggest that α -enrichment by mass loss from metal-poor intermediate-mass stars occurred at z ∼ 2 or earlier.« less
Expanding the Parameters of Academia
ERIC Educational Resources Information Center
Whitchurch, Celia
2012-01-01
This paper draws on qualitative data gathered from two studies funded by the UK Leadership Foundation for Higher Education to examine the expansion of academic identities in higher education. It builds on Whitchurch's earlier work, which focused primarily on professional staff, to suggest that the emergence of broadly based projects such as…
[Methods for measuring skin aging].
Zieger, M; Kaatz, M
2016-02-01
Aging affects human skin and is becoming increasingly important with regard to medical, social and aesthetic issues. Detection of intrinsic and extrinsic components of skin aging requires reliable measurement methods. Modern techniques, e.g., based on direct imaging, spectroscopy or skin physiological measurements, provide a broad spectrum of parameters for different applications.
Short-pulse amplification by strongly coupled stimulated Brillouin scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Matthew R., E-mail: mredward@princeton.edu; Mikhailova, Julia M.; Jia, Qing
2016-08-15
We examine the feasibility of strongly coupled stimulated Brillouin scattering as a mechanism for the plasma-based amplification of sub-picosecond pulses. In particular, we use fluid theory and particle-in-cell simulations to compare the relative advantages of Raman and Brillouin amplification over a broad range of achievable parameters.
Individual Differences in Online Spoken Word Recognition: Implications for SLI
ERIC Educational Resources Information Center
McMurray, Bob; Samelson, Vicki M.; Lee, Sung Hee; Tomblin, J. Bruce
2010-01-01
Thirty years of research has uncovered the broad principles that characterize spoken word processing across listeners. However, there have been few systematic investigations of individual differences. Such an investigation could help refine models of word recognition by indicating which processing parameters are likely to vary, and could also have…
BIOGEOCHEMICAL INDICATORS OF ORGANIC WASTE CONTAMINATION IN SMALL STREAMS OF THE GEORGIA PIEDMONT
We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 km2) of the South Fork Broad River, Georgia wate...
ORGANIC WASTE CONTAMINATION INDICATORS IN SMALL GEORGIA PIEDMONT STREAMS
We monitored concentrations of dissolved organic carbon(DOC) and dissolved oxygen (DO), and other parameters in 17 small streams of the South Fork Broad River watershed on a monthly basis for 15 months. Here we present estimates of the amounts of organic waste input to these wate...
BIOGEOCHEMICAL INDICATORS OF ORGANIC WASTE CONTAMINATION IN GEORGIA PIEDMONT STREAMS
We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 km2) of the South Fork Broad River, Georgia wate...
The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program develops and utilizes QSAR modeling approaches across a broad range of applications. In terms of physical chemistry we have a particular interest in the prediction of basic physicochemical parameters ...
NASA Astrophysics Data System (ADS)
Hawkins, L. R.; Rupp, D. E.; Li, S.; Sarah, S.; McNeall, D. J.; Mote, P.; Betts, R. A.; Wallom, D.
2017-12-01
Changing regional patterns of surface temperature, precipitation, and humidity may cause ecosystem-scale changes in vegetation, altering the distribution of trees, shrubs, and grasses. A changing vegetation distribution, in turn, alters the albedo, latent heat flux, and carbon exchanged with the atmosphere with resulting feedbacks onto the regional climate. However, a wide range of earth-system processes that affect the carbon, energy, and hydrologic cycles occur at sub grid scales in climate models and must be parameterized. The appropriate parameter values in such parameterizations are often poorly constrained, leading to uncertainty in predictions of how the ecosystem will respond to changes in forcing. To better understand the sensitivity of regional climate to parameter selection and to improve regional climate and vegetation simulations, we used a large perturbed physics ensemble and a suite of statistical emulators. We dynamically downscaled a super-ensemble (multiple parameter sets and multiple initial conditions) of global climate simulations using a 25-km resolution regional climate model HadRM3p with the land-surface scheme MOSES2 and dynamic vegetation module TRIFFID. We simultaneously perturbed land surface parameters relating to the exchange of carbon, water, and energy between the land surface and atmosphere in a large super-ensemble of regional climate simulations over the western US. Statistical emulation was used as a computationally cost-effective tool to explore uncertainties in interactions. Regions of parameter space that did not satisfy observational constraints were eliminated and an ensemble of parameter sets that reduce regional biases and span a range of plausible interactions among earth system processes were selected. This study demonstrated that by combining super-ensemble simulations with statistical emulation, simulations of regional climate could be improved while simultaneously accounting for a range of plausible land-atmosphere feedback strengths.
NASA Astrophysics Data System (ADS)
Huang, D.; Wang, G.
2014-12-01
Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.
Constraining the location of gamma-ray flares in luminous blazars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nalewajko, Krzysztof; Begelman, Mitchell C.; Sikora, Marek, E-mail: knalew@jila.colorado.edu
2014-07-10
Locating the gamma-ray emission sites in blazar jets is a long standing and highly controversial issue. We jointly investigate several constraints on the distance scale r and Lorentz factor Γ of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars). Working in the framework of one-zone external radiation Comptonization models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Γθ ≲ 1, from an upper limit on the synchrotron self-Compton (SSC)more » luminosity L{sub SSC} ≲ L{sub X}, and from an upper limit on the efficient cooling photon energy E{sub cool,obs} ≲ 100 MeV. These three constraints are particularly strong for sources with low accretion disk luminosity L{sub d}. The commonly used intrinsic pair-production opacity constraint on Γ is usually much weaker than the SSC constraint. The SSC and cooling constraints provide a robust lower limit on the collimation parameter Γθ ≳ 0.1-0.7. Typical values of r corresponding to moderate values of Γ ∼ 20 are in the range 0.1-1 pc, and are determined primarily by the observed variability timescale t{sub var,obs}. Alternative scenarios motivated by the observed gamma-ray/millimeter connection, in which gamma-ray flares of t{sub var,obs} ∼ a few days are located at r ∼ 10 pc, are in conflict with both the SSC and cooling constraints. Moreover, we use a simple light travel time argument to point out that the gamma-ray/millimeter connection does not provide a significant constraint on the location of gamma-ray flares. We argue that spine-sheath models of the jet structure do not offer a plausible alternative to external radiation fields at large distances; however, an extended broad-line region is an idea worth exploring. We propose that the most definite additional constraint could be provided by determination of the synchrotron self-absorption frequency for correlated synchrotron and gamma-ray flares.« less
NASA Astrophysics Data System (ADS)
Yolsal-Çevikbilen, Seda
2014-08-01
The Cyprean arc is considered to be a convergent boundary in the Eastern Mediterranean where the African plate is being subducted beneath the Anatolian plate. Mapping the lateral variations of seismic anisotropy parameters can provide essential hints to mantle dynamics and flow patterns in relation to the geometry and style of deformation developed under different pressure, temperature conditions around the subducting African lithosphere. In this study, seismic anisotropy parameters, fast polarization directions (ϕ) and delay times (δt) beneath the Cyprean arc and NE Mediterranean Sea are inferred from the shear wave splitting analysis performed on core-mantle refracted teleseismic shear waves (SKS phases). Earthquake data used in the present work are extracted from the continuous recordings of 8 broad-band seismic stations located in the study region for a time period during 1999 and 2012. The overall results exhibits clear evidences of mantle anisotropy with relatively uniform NE-SW aligned fast polarization directions. No abrupt changes in fast polarization directions (ϕ) are observed. However, near the Dead Sea Transform Fault, ϕ values tend to rotate from NE-SW to N-S and NW-SE in accordance with Pn anisotropy observations. Delay times (δt) vary between 0.61 s ± 0.10 s and 1.90 s ± 0.13 s. The range of delay times are generally consistent with those observed in the mantle rather than implying a crustal anisotropy. A predominant pattern of NNE-SSW fast polarization directions that is coherent with earlier SKS splitting measurements observed beneath north, central and East Anatolia suggests a SW directed asthenospheric flow caused by slab rollback process along the Hellenic and Cyprean arcs. Furthermore, apparent splitting parameters did not exhibit any significant directional dependence which may imply possibility of the presence of anisotropic models with two-layer anisotropy or dipping axis of symmetry beneath the northeast Mediterranean Sea and Cyprean arc. Consequently, a simple, single-layered and sub-horizontal anisotropy model is tentatively suggested for the study region.
African Governments’ Response to Insurgency
2016-09-01
these efforts through the four pillars of strengthening democratic institutions, spurring economic growth, advancing peace and security, and...meet the threat.23 Scholars and COIN practitioners have grouped counterinsurgency strategy and government courses of action into three broad...relevant groups . In this manner, regional instability would serve the needs of the center. In a region disloyal to the ruler, instability would not only
ERIC Educational Resources Information Center
Taghavian, Alexander H.
2013-01-01
Workforce development represents a central priority in a comprehensive effort to create wealth, industry thickening, and broad-based prosperity. From the onset of the Great Recession in 2007, the Sacramento Region experienced anemic economic growth and remained behind the nation in job creation. Contextualized in the aftermath of the economic…
E.A. Burakowski; S.V. Ollinger; G.B. Bonan; C.P. Wake; J.E. Dibb; D.Y. Hollinger
2016-01-01
The New England region of the northeastern United States has a land use history characterized by forest clearing for agriculture and other uses during European colonization and subsequent reforestation following widespread farm abandonment. Despite these broad changes, the potential influence on local and regional climate has received relatively little attention. This...
ERIC Educational Resources Information Center
Gade, Ole, Ed.
Representing a broad segment of people interested in rural America, this document presents 16 speeches. Speeches on rural development implementation at Federal, state, and regional levels include: "The Rural Development Concept" (calls for a national rural development policy which provides for a multicommunity, regional framework strengthened by…
Matthew B. Russell; Anthony W. D' Amato; Bethany K. Schulz; Christopher W. Woodall; Grant M. Domke; John B. Bradford
2014-01-01
The contribution of understorey vegetation (UVEG) to forest ecosystem biomass and carbon (C) across diverse forest types has, to date, eluded quantification at regional and national scales. Efforts to quantify UVEG C have been limited to field-intensive studies or broad-scalemodelling approaches lacking fieldmeasurements. Although large-scale inventories of UVEG C are...
NASA Astrophysics Data System (ADS)
Charaziak, Karolina K.; Siegel, Jonathan H.
2015-12-01
Otoacoustic emissions evoked with transient sounds (TEOAEs) are believed to originate within the tonotopic region of the stimulus in the cochlea via the same mechanisms as emissions evoked with single tones. However, we found that emissions evoked by low frequency (< 3 kHz) single-tones have an extended region of generation (> 6 mm) in chinchillas (Charaziak and Siegel, 2014, ARO Abst., 119). Here we test whether a broad region of generation for low-frequency stimuli is also a characteristic of TEOAEs evoked with 1-kHz tone pips extracted with compression and suppression methods. The TEOAE could be revealed with moderate level suppressors with frequencies extending beyond the stimulus bandwidth (up to 12.1 kHz), with the largest responses obtained with 3.1 - 4.1 kHz suppressors. There was a consistent decline in group delays of suppressor-revealed TEOAEs with increasing suppressor frequency, as expected if higher-frequency suppressors acted on more basal TEOAE generators. Effects of mid- to high-frequency acoustic trauma on TEOAE levels confirm the notion that the suppressors interact with emission components arising near the tonotopic place of the suppressor.
Multidisciplinary fingerprints: forensic reconstruction of an insect reinvasion
Kim, Kyung Seok; Jones, Gretchen D.; Westbrook, John K.; Sappington, Thomas W.
2010-01-01
An unexpected outbreak of boll weevils, Anthonomus grandis, an insect pest of cotton, across the Southern Rolling Plains (SRP) eradication zone of west-central Texas, USA, was detected soon after passage of Tropical Storm Erin through the Winter Garden district to the south on 16 August 2007. The synchrony and broad geographic distribution of the captured weevils suggest that long-distance dispersal was responsible for the reinvasion. We integrated three types of assessment to reconstruct the geographic origin of the immigrants: (i) DNA fingerprinting; (ii) pollen fingerprinting; and (iii) atmospheric trajectory analysis. We hypothesized the boll weevils originated in the Southern Blacklands zone near Cameron, or in the Winter Garden district near Uvalde, the nearest regions with substantial populations. Genetic tests broadly agree that the immigrants originated southeast of the SRP zone, probably in regions represented by Uvalde or Weslaco. The SRP pollen profile from weevils matched that of Uvalde better than that of Cameron. Wind trajectories supported daily wind-aided dispersal of weevils from the Uvalde region to the SRP from 17 to 24 August, but failed to support migration from the Cameron region. Taken together the forensic evidence strongly implicates the Winter Garden district near Uvalde as the source of reinvading boll weevils. PMID:19828497
Multi-Station Broad Regional Event Detection Using Waveform Correlation
NASA Astrophysics Data System (ADS)
Slinkard, M.; Stephen, H.; Young, C. J.; Eckert, R.; Schaff, D. P.; Richards, P. G.
2013-12-01
Previous waveform correlation studies have established the occurrence of repeating seismic events in various regions, and the utility of waveform-correlation event-detection on broad regional or even global scales to find events currently not included in traditionally-prepared bulletins. The computational burden, however, is high, limiting previous experiments to relatively modest template libraries and/or processing time periods. We have developed a distributed computing waveform correlation event detection utility that allows us to process years of continuous waveform data with template libraries numbering in the thousands. We have used this system to process several years of waveform data from IRIS stations in East Asia, using libraries of template events taken from global and regional bulletins. Detections at a given station are confirmed by 1) comparison with independent bulletins of seismicity, and 2) consistent detections at other stations. We find that many of the detected events are not in traditional catalogs, hence the multi-station comparison is essential. In addition to detecting the similar events, we also estimate magnitudes very precisely based on comparison with the template events (when magnitudes are available). We have investigated magnitude variation within detected families of similar events, false alarm rates, and the temporal and spatial reach of templates.
Hidden Broad-line Regions in Seyfert 2 Galaxies: From the Spectropolarimetric Perspective
NASA Astrophysics Data System (ADS)
Du, Pu; Wang, Jian-Min; Zhang, Zhi-Xiang
2017-05-01
The hidden broad-line regions (BLRs) in Seyfert 2 galaxies, which display broad emission lines (BELs) in their polarized spectra, are a key piece of evidence in support of the unified model for active galactic nuclei (AGNs). However, the detailed kinematics and geometry of hidden BLRs are still not fully understood. The virial factor obtained from reverberation mapping of type 1 AGNs may be a useful diagnostic of the nature of hidden BLRs in type 2 objects. In order to understand the hidden BLRs, we compile six type 2 objects from the literature with polarized BELs and dynamical measurements of black hole masses. All of them contain pseudobulges. We estimate their virial factors, and find the average value is 0.60 and the standard deviation is 0.69, which agree well with the value of type 1 AGNs with pseudobulges. This study demonstrates that (1) the geometry and kinematics of BLR are similar in type 1 and type 2 AGNs of the same bulge type (pseudobulges), and (2) the small values of virial factors in Seyfert 2 galaxies suggest that, similar to type 1 AGNs, BLRs tend to be very thick disks in type 2 objects.
Hidden Broad-line Regions in Seyfert 2 Galaxies: From the Spectropolarimetric Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Pu; Wang, Jian-Min; Zhang, Zhi-Xiang, E-mail: dupu@ihep.ac.cn
2017-05-01
The hidden broad-line regions (BLRs) in Seyfert 2 galaxies, which display broad emission lines (BELs) in their polarized spectra, are a key piece of evidence in support of the unified model for active galactic nuclei (AGNs). However, the detailed kinematics and geometry of hidden BLRs are still not fully understood. The virial factor obtained from reverberation mapping of type 1 AGNs may be a useful diagnostic of the nature of hidden BLRs in type 2 objects. In order to understand the hidden BLRs, we compile six type 2 objects from the literature with polarized BELs and dynamical measurements of blackmore » hole masses. All of them contain pseudobulges. We estimate their virial factors, and find the average value is 0.60 and the standard deviation is 0.69, which agree well with the value of type 1 AGNs with pseudobulges. This study demonstrates that (1) the geometry and kinematics of BLR are similar in type 1 and type 2 AGNs of the same bulge type (pseudobulges), and (2) the small values of virial factors in Seyfert 2 galaxies suggest that, similar to type 1 AGNs, BLRs tend to be very thick disks in type 2 objects.« less
Imaging the molecular outflows of the prototypical ULIRG NGC 6240 with ALMA
NASA Astrophysics Data System (ADS)
Saito, T.; Iono, D.; Ueda, J.; Espada, D.; Sliwa, K.; Nakanishi, K.; Lu, N.; Xu, C. K.; Michiyama, T.; Kaneko, H.; Yamashita, T.; Ando, M.; Yun, M. S.; Motohara, K.; Kawabe, R.
2018-03-01
We present 0.97 × 0.53 arcsec2 (470 pc × 250 pc) resolution CO (J = 2-1) observations towards the nearby luminous merging galaxy NGC 6240 with the Atacama Large Millimeter/submillimeter Array. We confirmed a strong CO concentration within the central 700 pc, which peaks between the double nuclei, surrounded by extended CO features along the optical dust lanes (˜11 kpc). We found that the CO emission around the central, a few kpc, has extremely broad velocity wings with full width at zero intensity ˜ 2000 km s-1, suggesting a possible signature of molecular outflow(s). In order to extract and visualize the high-velocity components in NGC 6240, we performed a multiple Gaussian fit to the CO data cube. The distribution of the broad CO components shows four extremely large line width regions (˜1000 km s-1) located 1-2 kpc away from both nuclei. Spatial coincidence of the large line width regions with H α, near-IR H2, and X-ray suggests that the broad CO (2-1) components are associated with nuclear outflows launched from the double nuclei.