Photoluminescence study of ZnS and ZnS:Pb nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virpal,, E-mail: virpalsharma.sharma@gmail.com; Hastir, Anita; Kaur, Jasmeet
2015-05-15
Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered atmore » 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states.« less
The phase-resolved photoacoustic method to indicate chemical assignments of paracetamol
NASA Astrophysics Data System (ADS)
Camilotti, J. G.; Somer, A.; Costa, G. F.; Ribeiro, M. A.; Bonardi, C.; Cruz, G. K.; Gómez, S. L.; Beltrame, F. L.; Medina, A. N.; Sato, F.; Astrath, N. G. C.; Novatski, A.
2014-03-01
In this work, the phase-resolved photoacoustic method was applied to provide specific information on the chemical assignments of paracetamol in the near-infrared region. Two broad bands, centered at 1370 and 1130 nm, were well-resolved using this method, making it possible to assign the peaks centered at 1398, 1355 and 1295 nm to a C-H combination from a CH3 structure and the peak at 1305 nm to a C-H combination from the aromatic ring. This information represents a new finding in chemical studies regarding this medicament.
Blue light emission from the heterostructured ZnO/InGaN/GaN
2013-01-01
ZnO/InGaN/GaN heterostructured light-emitting diodes (LEDs) were fabricated by molecular beam epitaxy and atomic layer deposition. InGaN films consisted of an Mg-doped InGaN layer, an undoped InGaN layer, and a Si-doped InGaN layer. Current-voltage characteristic of the heterojunction indicated a diode-like rectification behavior. The electroluminescence spectra under forward biases presented a blue emission accompanied by a broad peak centered at 600 nm. With appropriate emission intensity ratio, the heterostructured LEDs had potential application in white LEDs. Moreover, a UV emission and an emission peak centered at 560 nm were observed under reverse bias. PMID:23433236
Fabrication and characterization of n-ZnO nanonails array/p(+)-GaN heterojunction diode.
Zhu, G Y; Chen, G F; Li, J T; Shi, Z L; Lin, Y; Ding, T; Xu, X Y; Dai, J; Xu, C X
2012-10-01
A novel heterojunctional structure of n-ZnO nanonails array/p(+)-GaN light-emitting diode was fabricated by Chemical Vapor Deposition method. A broad electroluminescence spectrum shows two peaks centered at 435 nm and 478 nm at room temperature, respectively. By comparing the photoluminescence and electroluminescence spectra, together with analyzing the energy band structure of heterojunction light emitting diode, it suggested that the electroluminescence peak located at 435 nm originates from Mg acceptor level of p(+)-GaN layer, whereas the electroluminescence peak located at 478 nm originates from the defects of n-ZnO nanonails array.
Luminescence studies of a combustion-synthesized blue-green BaAlxOy:Eu2+,Dy3+ nanoparticles
NASA Astrophysics Data System (ADS)
Bem, Daniel B.; Dejene, F. B.; Luyt, A. S.; Swart, H. C.
2012-05-01
Blue-green emitting BaAlxOy:Eu2+,Dy3+ phosphor was synthesized by the combustion method. The influence of various parameters on the structural, photoluminescence (PL) and thermoluminescence (TL) properties of the phosphor were investigated by various techniques. Phosphor nanocrystallites with high brightness were obtained without significantly changing the crystalline structure of the host. In the PL studies, broad-band excitation and emission spectra were observed with major peaks at 340 and 505 nm, respectively. The observed afterglow is ascribed to the generation of suitable traps due to the presence of the co-doped Dy3+ ions. Though generally broad, the peak structure of the TL glow curves obtained after irradiation with UV light was non-uniform with suggesting the contribution to afterglow from multiple events at the luminescent centers. Further insight on the afterglow behavior of the phosphor was deduced from TL decay results.
Studies on nickel-tungsten oxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usha, K. S.; Sivakumar, R., E-mail: krsivakumar1979@yahoo.com; Sanjeeviraja, C.
2014-10-15
Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup −1} and 1100 cm{sup −1} correspond to Ni-O vibration and the peak at 860 cm{sup −1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created duemore » to the addition of tungsten, respectively.« less
Santana, Guillermo; de Melo, Osvaldo; Aguilar-Hernández, Jorge; Mendoza-Pérez, Rogelio; Monroy, B Marel; Escamilla-Esquivel, Adolfo; López-López, Máximo; de Moure, Francisco; Hernández, Luis A; Contreras-Puente, Gerardo
2013-03-15
Photoluminescence (PL) studies in GaN thin films grown by infrared close space vapor transport (CSVT-IR) in vacuum are presented in this work. The growth of GaN thin films was done on a variety of substrates like silicon, sapphire and fused silica. Room temperature PL spectra of all the GaN films show near band-edge emission (NBE) and a broad blue and green luminescence (BL, GL), which can be seen with the naked eye in a bright room. The sample grown by infrared CSVT on the silicon substrate shows several emission peaks from 2.4 to 3.22 eV with a pronounced red shift with respect to the band gap energy. The sample grown on sapphire shows strong and broad ultraviolet emission peaks (UVL) centered at 3.19 eV and it exhibits a red shift of NBE. The PL spectrum of GaN films deposited on fused silica exhibited a unique and strong blue-green emission peak centered at 2.38 eV. The presence of yellow and green luminescence in all samples is related to native defects in the structure such as dislocations in GaN and/or the presence of amorphous phases. We analyze the material quality that can be obtained by CSVT-IR in vacuum, which is a high yield technique with simple equipment set-up, in terms of the PL results obtained in each case.
Santana, Guillermo; de Melo, Osvaldo; Aguilar-Hernández, Jorge; Mendoza-Pérez, Rogelio; Monroy, B. Marel; Escamilla-Esquivel, Adolfo; López-López, Máximo; de Moure, Francisco; Hernández, Luis A.; Contreras-Puente, Gerardo
2013-01-01
Photoluminescence (PL) studies in GaN thin films grown by infrared close space vapor transport (CSVT-IR) in vacuum are presented in this work. The growth of GaN thin films was done on a variety of substrates like silicon, sapphire and fused silica. Room temperature PL spectra of all the GaN films show near band-edge emission (NBE) and a broad blue and green luminescence (BL, GL), which can be seen with the naked eye in a bright room. The sample grown by infrared CSVT on the silicon substrate shows several emission peaks from 2.4 to 3.22 eV with a pronounced red shift with respect to the band gap energy. The sample grown on sapphire shows strong and broad ultraviolet emission peaks (UVL) centered at 3.19 eV and it exhibits a red shift of NBE. The PL spectrum of GaN films deposited on fused silica exhibited a unique and strong blue-green emission peak centered at 2.38 eV. The presence of yellow and green luminescence in all samples is related to native defects in the structure such as dislocations in GaN and/or the presence of amorphous phases. We analyze the material quality that can be obtained by CSVT-IR in vacuum, which is a high yield technique with simple equipment set-up, in terms of the PL results obtained in each case. PMID:28809356
Kurkal-Siebert, Vandana; Smith, Jeremy C
2006-02-22
An understanding of low-frequency, collective protein dynamics at low temperatures can furnish valuable information on functional protein energy landscapes, on the origins of the protein glass transition and on protein-protein interactions. Here, molecular dynamics (MD) simulations and normal-mode analyses are performed on various models of crystalline myoglobin in order to characterize intra- and interprotein vibrations at 150 K. Principal component analysis of the MD trajectories indicates that the Boson peak, a broad peak in the dynamic structure factor centered at about approximately 2-2.5 meV, originates from approximately 10(2) collective, harmonic vibrations. An accurate description of the environment is found to be essential in reproducing the experimental Boson peak form and position. At lower energies other strong peaks are found in the calculated dynamic structure factor. Characterization of these peaks shows that they arise from harmonic vibrations of proteins relative to each other. These vibrations are likely to furnish valuable information on the physical nature of protein-protein interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Fulai; Mathews, William G., E-mail: fulai@ucolick.or
2010-07-10
Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy {approx}10{sup 61}-10{sup 62} erg. Using two-dimensional hydrodynamic simulations, we showmore » that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.« less
First Spectroscopic Identification of Massive Young Stellar Objects in the Galactic Center
NASA Technical Reports Server (NTRS)
An, Deokkeun; Ramirez, V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C.; Schultheis, Mathias; Stolovy, Susan R.; Cotera, Angela S.; Robitaille, Thomas P.; Smith, Howard A.
2009-01-01
We report the detection of several molecular gas-phase and ice absorption features in three photometrically-selected young stellar object (YSO) candidates in the central 280 pc of the Milky Way. Our spectra, obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, reveal gas-phase absorption from CO2 (15.0 microns), C2H2 (13.7 microns) and HCN (14.0 microns). We attribute this absorption to warm, dense gas in massive YSOs. We also detect strong and broad 15 microns CO2 ice absorption features, with a remarkable double-peaked structure. The prominent long-wavelength peak is due to CH3OH-rich ice grains, and is similar to those found in other known massive YSOs. Our IRS observa.tions demonstra.te the youth of these objects, and provide the first spectroscopic identification of massive YSOs in the Galactic Center.
Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots
NASA Astrophysics Data System (ADS)
Singamaneni, Srinivasa Rao; van Tol, Johan; Ye, Ruquan; Tour, James M.
2015-11-01
In this letter, we report on the high frequency (239.2 and 336 GHz) electron spin resonance (ESR) studies performed on graphene quantum dots (GQDs), prepared through a wet chemistry route from three types of coal: (a) bituminous, (b) anthracite, and (c) coke; and from non-coal derived GQDs. The microwave frequency-, power-, and temperature-dependent ESR spectra coupled with computer-aided simulations reveal four distinct magnetic defect centers. In bituminous- and anthracite-derived GQDs, we have identified two of them as intrinsic carbon-centered magnetic defect centers (a broad signal of peak to peak width = 697 (10-4 T), g = 2.0023; and a narrow signal of peak to peak width = 60 (10-4 T), g = 2.003). The third defect center is Mn2+ (6S5/2, 3d5) (signal width = 61 (10-4 T), g = 2.0023, Aiso = 93(10-4 T)), and the fourth defect is identified as Cu2+ (2D5/2, 3d9) (g⊥ = 2.048 and g‖ = 2.279), previously undetected. Coke-derived and non-coal derived GQDs show Mn2+ and two-carbon related signals, and no Cu2+ signal. The extrinsic impurities most likely originate from the starting coal. Furthermore, Raman, photoluminescence, and ESR measurements detected no noticeable changes in the properties of the bituminous GQDs after one year. This study highlights the importance of employing high frequency ESR spectroscopy in identifying the (magnetic) defects, which are roadblocks for spin relaxation times of graphene-based materials. These defects would not have been possible to probe by other spin transport measurements.
The origin of 2.7 eV blue luminescence band in zirconium oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perevalov, T. V., E-mail: timson@isp.nsc.ru; Zhuravlev, K. S.; Gritsenko, V. A.
2014-12-28
The luminescence spectra of non-stoichiometric zirconium oxide film series with different oxygen vacancies' concentrations show the blue photoluminescence band centered near a 2.7 eV peak. There is a broad band at 5.2 eV in the luminescence excitation spectrum for blue emission. The ab-initio quantum-chemical calculation gives a peak in the optical absorption at 5.1 eV for the oxygen vacancy in cubic ZrO{sub 2}. It was concluded that the 2.7 eV blue luminescence excited near 5.2 eV in a zirconium oxide film is associated with the oxygen vacancy.
NASA Astrophysics Data System (ADS)
Arshad Kamran, Muhammad
2018-06-01
For the first time, 1D Ni ion doped CdS nanowires (NWs) were synthesized via chemical vapour deposition (CVD). The synthesized Cd0.886Ni0.114S NWs were single crystalline. We have reported here the investigation of optical, electrical and magnetic properties of prepared NWs for optoelectronic and spintronic applications. Successful incorporation of Ni ions in an individual CdS NW has been confirmed through several characterization tools: significantly higher angle and phonon mode shift were observed in the XRD and Raman spectra. SEM-EDX and XPS analysis also confirmed the presence of Ni2+ ions. Room temperature photoluminescence (RT-PL) showed multiple peaks: two emission peaks in the visible region centered at 517.1 nm (green), 579.2 nm (orange), and a broad-band near infra-red (NIR) emission centered at 759.9 nm. The first peak showed 5 nm red shift upon Ni2+ doping, hinting at the formation of exciton magnetic polarons (EMPs), and broad NIR emission was observed in both chlorides and bromides, which was assigned to d‑d transition of Ni ions whose energy levels lying at 749.51 nm (13 342 cm–1) and 750.98 nm (13 316 cm–1) are very close to NIR emission. Orange emission not only remained at same peak position—its PL intensity was also significantly enhanced at 78 K; this was assigned to d‑d transition (3A2g → 1Eg) of Ni2+ ions. It was observed that 11.4% Ni2+ ion doping enhanced the conductivity of our sample around 20 times, and saturation magnetization (Ms) increased from 7.2 × 10‑5 Am2/Kg to 1.17 × 10‑4 Am2/Kg, which shows promise for optoelectronic and spintronic applications.
Kamran, Muhammad Arshad
2018-06-29
For the first time, 1D Ni ion doped CdS nanowires (NWs) were synthesized via chemical vapour deposition (CVD). The synthesized Cd 0.886 Ni 0.114 S NWs were single crystalline. We have reported here the investigation of optical, electrical and magnetic properties of prepared NWs for optoelectronic and spintronic applications. Successful incorporation of Ni ions in an individual CdS NW has been confirmed through several characterization tools: significantly higher angle and phonon mode shift were observed in the XRD and Raman spectra. SEM-EDX and XPS analysis also confirmed the presence of Ni 2+ ions. Room temperature photoluminescence (RT-PL) showed multiple peaks: two emission peaks in the visible region centered at 517.1 nm (green), 579.2 nm (orange), and a broad-band near infra-red (NIR) emission centered at 759.9 nm. The first peak showed 5 nm red shift upon Ni 2+ doping, hinting at the formation of exciton magnetic polarons (EMPs), and broad NIR emission was observed in both chlorides and bromides, which was assigned to d-d transition of Ni ions whose energy levels lying at 749.51 nm (13 342 cm -1 ) and 750.98 nm (13 316 cm -1 ) are very close to NIR emission. Orange emission not only remained at same peak position-its PL intensity was also significantly enhanced at 78 K; this was assigned to d-d transition ( 3 A 2g → 1 E g ) of Ni 2+ ions. It was observed that 11.4% Ni 2+ ion doping enhanced the conductivity of our sample around 20 times, and saturation magnetization (M s ) increased from 7.2 × 10 -5 Am 2 /Kg to 1.17 × 10 -4 Am 2 /Kg, which shows promise for optoelectronic and spintronic applications.
Doppler broadening in the β-proton- γ decay sequence
NASA Astrophysics Data System (ADS)
Schwartz, Sarah; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Perez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; McNeice, E.; Montes, F.; Naqvi, F.; Ortez, R.; Pain, S. D.; Pereira, J.; Prokop, C.; Quaglia, J.; Quinn, S. J.; Sakstrup, J.; Santia, M.; Shanab, S.; Simon, A.; Spyrou, A.; Thiagalingam, E.
2015-10-01
We report the first observation of Doppler-broadening in β delayed proton- γ decay. The broadening occurs because the daughter nucleus γ decays while recoiling from proton emission. A method to analyze β delayed nucleon emission was applied to two Doppler-broadened 25Al peaks from the 26P(βpγ)25Al decay. The method was first tested on the broad 1613 keV γ-ray peak using known center-of-mass proton energies as constraints. The method was then applied to the 1776 keV γ-ray peak from the 2720 keV excited state of 25Al. The broadening was used to determine a 26Si excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.7 (syst.) MeV. This energy is consistent with proton emission from the known T = 2 isobaric analog state of 26P in 26Si.
Impulsive Phase Transport. Chapter 3,
1988-03-30
workshop series held at NASA Goddard Space Flight Center Greenbelt, Maryland --- January 24-28. 1983 I AccOsSionr June 9-14. 1983 G--7i5 CRA&I and...resolved Intercosmos series ) were improving the quality of hard X-ray optical lines by the Sac Peak Vacuum Tower. Hard X- and measurements and extending the...usually obtained either from a series of broad band filter- gams at several widely spaced points in the spectrum (e.g., 1 Zirin and Neidig 1981) or from
MSL SAM-Like Evolved Gas Analyses of Si-rich Amorphous Materials
NASA Technical Reports Server (NTRS)
McAdam, Amy; Knudson, Christine; Sutter, Brad; Andrejkovicova, Slavka; Archer, P. Douglas; Franz, Heather; Eigenbrode, Jennifer; Morris, Richard; Ming, Douglas; Sun, Vivian;
2016-01-01
Chemical and mineralogical analyses of several samples from Murray Formation mudstones and Stimson Formation sandstones by the Mars Science Laboratory (MSL) revealed the presence of Si-rich amorphous or poorly ordered materials. It is possible to identify the presence of high-SiO2 vs. lower SiO2 amorphous materials (e.g., basaltic glasses), based on the position of the resulting wide diffraction features in XRD patterns from the Chemistry and Mineralogy (CheMin) instrument, but it is not possible to distinguish between several candidate high-SiO2 amorphous materials such as opal-A or rhyolitic glass. In the Buckskin (BS) sample from the upper Murray Formation, and the Big Sky (BY) and Greenhorn (GH) samples from the Stimson Formation, analyses by the Sample Analysis at Mars (SAM) instrument showed very broad H2O evolutions during sample heating at temperatures >450-500degC which had not been observed from previous samples. BS also had a significant broad evolution <450-500degC. We have undertaken a laboratory study targeted at understanding if the data from SAM can be used to place constraints on the nature of the amorphous phases. SAM-like evolved gas analyses have been performed on several opal and rhyolitic glass samples. Opal-A samples exhibited wide <500degC H2O evolutions, with lesser H2O evolved above 500degC. H2O evolution traces from rhyolitic glasses varied, having either two broad H2O peaks, <300degC and >500degC, or a broad peak centered around 400degC. For samples that produced two evolutions, the lower temperature peak is more intense than the higher temperature peak, a trend also exhibited by opal-A. This trend is consistent with data from BS, but does not seem consistent with data from BY and GH which evolved most of their H2O >500degC. It may be that dehydration of opal-A and/or rhyolitic glass can result in some preferential loss of lower temperature H2O, to produce traces that more closely resemble BY and GH. This is currently under investigation and results will be reported.
NASA Astrophysics Data System (ADS)
McAdam, A.; Knudson, C. A.; Sutter, B.; Andrejkovicova, S. C.; Archer, P. D., Jr.; Franz, H. B.; Eigenbrode, J. L.; Morris, R. V.; Ming, D. W.; Sun, V. Z.; Milliken, R.; Wilhelm, M. B.; Mahaffy, P. R.; Navarro-Gonzalez, R.
2016-12-01
The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Science Laboratory (MSL) rover detected Si-rich amorphous or poorly ordered materials in several samples from Murray Formation mudstones and Stimson Formation sandstones. High-SiO2 amorphous materials such as opal-A or rhyolitic glass are candidate phases, but CheMin data cannot be used to distinguish between these possibilities. In the Buckskin (BS) sample from the upper Murray Formation, and the Big Sky (BY) and Greenhorn (GH) samples from the Stimson Formation, evolved gas analyses by the Sample Analysis at Mars (SAM) instrument showed very broad H2O evolutions during sample heating at temperatures >450-500°C, which had not been observed from previous samples. BS also had a significant broad evolution <450-500°C. We have undertaken a laboratory study targeted at understanding if the data from SAM analyses can be used to place constraints on the nature of the amorphous phases. SAM-like evolved gas analyses have been performed on several opal and rhyolitic glass samples. Opal-A samples exhibited wide <500°C H2O evolutions, with lesser H2O evolved above 500°C. H2O evolution traces from rhyolitic glasses varied, having either two broad H2O peaks, <300°C and >500°C, or a broad peak centered around 400°C. For samples that produced two evolutions, the lower temperature peak was more intense than the higher temperature peak, a trend also exhibited by opal-A. This trend is consistent with data from BS, but does not seem consistent with data from BY and GH which evolved most of their H2O >500°C. It may be that dehydration of opal-A and/or rhyolitic glass can result in some preferential loss of lower temperature H2O, to produce traces that more closely resemble BY and GH. This is currently under investigation and results will be reported.
Chen, Kaifu; Chen, Zhong; Wu, Dayong; Zhang, Lili; Lin, Xueqiu; Su, Jianzhong; Rodriguez, Benjamin; Xi, Yuanxin; Xia, Zheng; Chen, Xi; Shi, Xiaobing; Wang, Qianben; Li, Wei
2015-10-01
Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs and our experimental data from clinical samples, we discovered broad peaks for trimethylation of histone H3 at lysine 4 (H3K4me3; wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity, which together lead to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Genes with broad H3K4me3 peaks conserved across normal cells may represent pan-cancer tumor suppressors, such as TP53 and PTEN, whereas genes with cell type-specific broad H3K4me3 peaks may represent cell identity genes and cell type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 peaks in cancers is associated with repression of tumor suppressors. Thus, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of new tumor suppressors.
Ma, Wen; Waffo-Téguo, Pierre; Alessandra Paissoni, Maria; Jourdes, Michäel; Teissedre, Pierre-Louis
2018-05-30
Polymeric tannins from grapes have always been reported as an unresolved broad peak in HPLC chromatograms, and this has severely limited their identification to date. This study aimed to disassemble this broad peak and explore the polymeric tannin molecules inside. By applying centrifugal partition chromatography (CPC), an efficient separation approach was developed to split the broad peak of grape seed tannins into fractions. Then, the fractions were analyzed by Q-ToF (quadrupole time-of-flight mass spectrometry) to determine the corresponding structures of the tannins. The results suggest that grape seed polymeric tannins were eluted consecutively according to their degree of polymerization (DP). Condensed tannins identified in wine grape seed have a range of DP and degree of galloylation (DG) up to 20 and 11, respectively. The molecular mass of the largest molecule detected was 6067. To our knowledge, this is the first report to offer an insight into the broad peak of polymeric tannins found with HPLC and to characterize the tannins with a DP up to 20 as shown by HRMS and MS/MS data. Copyright © 2018 Elsevier Ltd. All rights reserved.
Correlation between the line width and the line flux of the double-peaked broad Hα of 3C390.3
NASA Astrophysics Data System (ADS)
Zhang, Xue-Guang
2013-03-01
In this paper, we carefully check the correlation between the line width (second moment) and the line flux of the double-peaked broad Hα of the well-known mapped active galactic nucleus (AGN) 3C390.3 in order to show some further distinctions between double-peaked emitters and normal broad-line AGN. Based on the virialization assumption MBH ∝ RBLR × V2(BLR) and the empirical relation RBLR ∝ L˜0.5, one strong negative correlation between the line width and the line flux of the double-peaked broad lines should be expected for 3C390.3, such as the negative correlation confirmed for the mapped broad-line object NGC 5548, RBLR × V2(BLR) ∝ L˜0.5 × σ2 = constant. Moreover, based on the public spectra around 1995 from the AGN WATCH project for 3C390.3, one reliable positive correlation is found between the line width and the line flux of the double-peaked broad Hα. In the context of the proposed theoretical accretion disc model for double-peaked emitters, the unexpected positive correlation can be naturally explained, due to different time delays for the inner and outer parts of the disc-like broad-line region (BLR) of 3C390.3. Moreover, the virialization assumption is checked and found to be still available for 3C390.3. However, the time-varying size of the BLR of 3C390.3 cannot be expected by the empirical relation RBLR ∝ L˜0.5. In other words, the mean size of the BLR of 3C390.3 can be estimated by the continuum luminosity (line luminosity), while the continuum emission strengthening leads to the size of BLR decreasing (not increasing) in different moments for 3C390.3. Then, we compared our results of 3C390.3 with the previous results reported in the literature for the other double-peaked emitters, and found that before to clearly correct the effects from disc physical parameters varying (such as the effects of disc precession) for long-term observed line spectra, it is not so meaningful to discuss the correlation of the line parameters of double-peaked broad lines. Furthermore, due to the probable `external' ionizing source with so far unclear structures, it is hard to give one conclusion that the positive correlation between the line width and the line flux can be found for all double-peaked emitters, even after the considerations of disc physical parameters varying. However, once one positive correlation of broad-line parameters is found, the accretion disc origination of the broad line should be considered first.
Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs
NASA Astrophysics Data System (ADS)
Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien
2018-01-01
Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.
Pressure-Photoluminescence Study of the Zn Vacancy and Donor Zn-Vacancy Complexes in ZnSe
NASA Astrophysics Data System (ADS)
Iota, V.; Weinstein, B. A.
1997-03-01
We report photoluminescence (PL) results to 65kbar (at 8K) on n-type electron irradiated ZnSe containing high densities of isolated Zn vacancies (V_Zn) and donor-V_Zn complexes (A-centers).^1 Isotropic pressure is applied using a diamond-anvil cell with He medium, and laser excitations above and below the ZnSe bandgap (2.82eV) are employed. The 1 atm. spectra exhibit excitonic lines, shallow donor-acceptor pair (DAP) peaks, and two broad bands due to DAP transitions between shallow donors and deep acceptor states at A-centers (2.07eV) or V_Zn (1.72eV). At all pressures, these broad bands are prominent only for sub-gap excitation, which results in: i) A-center PL at energies above the laser line, and ii) strong enhancement of the first LO-replica in the shallow DAP series compared to 3.41eV UV excitation. This suggests that sub-gap excitation produces long-lived metastable acceptor states. The broad PL bands shift to higher energy with pressure faster than the ZnSe direct gap, indicating that compression causes the A-center and V_Zn deep acceptor levels to approach the hole continuum. This behavior is similar to that found by our group for P and As deep acceptor levels in ZnSe, supporting the view that deep substitutional defects often resemble the limiting case of a vacancy. ^1D. Y. Jeon, H. P. Gislason, G. D. Watkins Phys. Rev. B 48, 7872 (1993); we thank G. D. Watkins for providing the samples. (figures)
Variability of the composition of Io's exosphere deduced from the spectrum of ion cyclotron waves
NASA Astrophysics Data System (ADS)
Wang, Y. L.; Russell, C. T.; Raeder, J.; Kivelson, M. G.
2000-10-01
The spectrum of ion cyclotron waves seen during the Io flybys, I0, I24, I25 and I27 is quite varied. On I0 the cyclotron waves had a single strong peak near the gyrofrequency of SO2+. On I24 there were two peaks, one at the SO+ gyrofrequency and one at the SO2+ gyrofrequency, with the former stronger. On I25, the spectrum was similar but the relative strength of the peaks reversed. On I27 the spectrum was similar to I24 with the addition of a broad band centered on the H2S+ gyrofrequency. These varying strength emissions centered at the gyrofrequency of discrete ion gyrofrequencies imply that the chemical composition of the upper atmosphere is quite variable. The strength of the waves also appears to vary from one pass to the next, with the weakest signals occurring furthest from noon solar phase angle. This latter effect may be a geometrical in origin, associated with the varying dayside atmosphere relative to the corotating plasma. A simple model of the ion pickup process and transport of fast neutrals across field lines can explain the observed local time effect, and some of the radial variation of the torus properties.
GaSb superluminescent diodes with broadband emission at 2.55 μm
NASA Astrophysics Data System (ADS)
Zia, Nouman; Viheriälä, Jukka; Koivusalo, Eero; Virtanen, Heikki; Aho, Antti; Suomalainen, Soile; Guina, Mircea
2018-01-01
We report the development of superluminescent diodes (SLDs) emitting mW-level output power in a broad spectrum centered at a wavelength of 2.55 μm. The emitting structure consists of two compressively strained GaInAsSb/GaSb-quantum wells placed within a lattice-matched AlGaAsSb waveguide. An average output power of more than 3 mW and a peak power of 38 mW are demonstrated at room temperature under pulsed operation. A cavity suppression element is used to prevent lasing at high current injection allowing emission in a broad spectrum with a full width at half maximum (FWHM) of 124 nm. The measured far-field of the SLD confirms a good beam quality at different currents. These devices open further development possibilities in the field of spectroscopy, enabling, for example, detection of complex molecules and mixtures of gases that manifest a complex absorption spectrum over a broad spectral range.
Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu, E-mail: tour@rice.edu; Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695; Tol, Johan van
In this letter, we report on the high frequency (239.2 and 336 GHz) electron spin resonance (ESR) studies performed on graphene quantum dots (GQDs), prepared through a wet chemistry route from three types of coal: (a) bituminous, (b) anthracite, and (c) coke; and from non-coal derived GQDs. The microwave frequency-, power-, and temperature-dependent ESR spectra coupled with computer-aided simulations reveal four distinct magnetic defect centers. In bituminous- and anthracite-derived GQDs, we have identified two of them as intrinsic carbon-centered magnetic defect centers (a broad signal of peak to peak width = 697 (10{sup −4} T), g = 2.0023; and a narrow signal of peak tomore » peak width = 60 (10{sup −4} T), g = 2.003). The third defect center is Mn{sup 2+} ({sup 6}S{sub 5/2}, 3d{sup 5}) (signal width = 61 (10{sup −4} T), g = 2.0023, A{sub iso} = 93(10{sup −4} T)), and the fourth defect is identified as Cu{sup 2+} ({sup 2}D{sub 5/2}, 3d{sup 9}) (g{sub ⊥} = 2.048 and g{sub ‖} = 2.279), previously undetected. Coke-derived and non-coal derived GQDs show Mn{sup 2+} and two-carbon related signals, and no Cu{sup 2+} signal. The extrinsic impurities most likely originate from the starting coal. Furthermore, Raman, photoluminescence, and ESR measurements detected no noticeable changes in the properties of the bituminous GQDs after one year. This study highlights the importance of employing high frequency ESR spectroscopy in identifying the (magnetic) defects, which are roadblocks for spin relaxation times of graphene-based materials. These defects would not have been possible to probe by other spin transport measurements.« less
Structure and luminescence properties of 10-BN sheets
NASA Astrophysics Data System (ADS)
Han, Wei-Qiang; Liu, Lijia; Sham, T. K.; Liu, Zhenxian
2012-10-01
Isotopic 10BN sheets were first prepared using graphene sheets as templates to react with 10B2O3. The edge-areas of BN sheets have much higher oxygen-doping ratios compared to other areas. The emission peak of X-ray excited optical luminescence spectra of the 10BN-sheets is broader and red-shifted because of the isotopic effect. A broad violet-blue emission at a wavelength centered at ~400 nm is assigned to the defect emission due to oxygen-doping and defects in the BN network.
Broad-Enrich: functional interpretation of large sets of broad genomic regions.
Cavalcante, Raymond G; Lee, Chee; Welch, Ryan P; Patil, Snehal; Weymouth, Terry; Scott, Laura J; Sartor, Maureen A
2014-09-01
Functional enrichment testing facilitates the interpretation of Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) data in terms of pathways and other biological contexts. Previous methods developed and used to test for key gene sets affected in ChIP-seq experiments treat peaks as points, and are based on the number of peaks associated with a gene or a binary score for each gene. These approaches work well for transcription factors, but histone modifications often occur over broad domains, and across multiple genes. To incorporate the unique properties of broad domains into functional enrichment testing, we developed Broad-Enrich, a method that uses the proportion of each gene's locus covered by a peak. We show that our method has a well-calibrated false-positive rate, performing well with ChIP-seq data having broad domains compared with alternative approaches. We illustrate Broad-Enrich with 55 ENCODE ChIP-seq datasets using different methods to define gene loci. Broad-Enrich can also be applied to other datasets consisting of broad genomic domains such as copy number variations. http://broad-enrich.med.umich.edu for Web version and R package. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Color-Center Production and Formation in Electron-Irradiated Magnesium Aluminate Spinel and Ceria
Costantini, Jean-Marc; Lelong, Gerald; Guillaumet, Maxime; ...
2016-06-20
Single crystals of magnesium aluminate spinel (MgAl2O4) with (100) or (110) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0-MeV and 2.5-MeV electrons in a high fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly-ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in colour-centre formation were observed for the two crystal orientations. Using calculationsmore » of displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at RT. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200°C with almost full bleaching at 600°C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub band-gap absorption feature peaked at ~3.1 eV was recorded for 2.5-MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.« less
NASA Technical Reports Server (NTRS)
Siegmund, Oswald H. W.; Everman, E.; Vallerga, J. V.; Sokolowski, J.; Lampton, M.
1987-01-01
The quantum detection efficiency (QDE) of potassium bromide as a photocathode applied directly to the surface of a microchannel plate over the 250-1600 A wavelength range has been measured. The contributions of the photocathode material in the channels and on the interchannel web to the QDE have been determined. Two broad peaks in the QDE centered at about 450 and about 1050 A are apparent, the former with about 50 percent peak QDE and the latter with about 40 percent peak QDE. The photoelectric threshold is observed at about 1600 A, and there is a narrow QDE minimum at about 750 A which correlates with 2X the band gap energy for KBr. The angular variation of the QDE from 0 to 40 deg to the channnel axis has also been examined. The stability of Kbr with time is shown to be good with no significant degradation of QDE at wavelengths below 1216 A over a 15-day period in air.
NASA Astrophysics Data System (ADS)
Iordanov, I.; Gunaratne, K. D. D.; Harmon, C. L.; Sofo, J. O.; Castleman, A. W.
2012-06-01
We report a combined experimental and theoretical photoelectron spectroscopy study of ZnOH-. We find that the electron binding energy spectrum of ZnOH- reveals a broad and featureless peak between 1.4 and 2.4 eV in energy. The vertical detachment energy (VDE) of ZnOH- is determined to be 1.78 eV, which is lower than the 2.08 eV VDE of ZnO-. Our theoretical calculations match the VDE of ZnOH- accurately, but we find that the broadness of the peak cannot be explained by rotational or vibrational state excitation. The broadness of this peak is in strong contrast to the narrow and easily understood first peak of the ZnO spectrum, which features a well-resolved vibrational progression that can be readily explained by calculating the Franck-Condon transition factors. This study provides spectroscopic evidence of the effect of hydrogen on diatomic ZnO.
Iordanov, I; Gunaratne, K D D; Harmon, C L; Sofo, J O; Castleman, A W
2012-06-07
We report a combined experimental and theoretical photoelectron spectroscopy study of ZnOH(-). We find that the electron binding energy spectrum of ZnOH(-) reveals a broad and featureless peak between 1.4 and 2.4 eV in energy. The vertical detachment energy (VDE) of ZnOH(-) is determined to be 1.78 eV, which is lower than the 2.08 eV VDE of ZnO(-). Our theoretical calculations match the VDE of ZnOH(-) accurately, but we find that the broadness of the peak cannot be explained by rotational or vibrational state excitation. The broadness of this peak is in strong contrast to the narrow and easily understood first peak of the ZnO spectrum, which features a well-resolved vibrational progression that can be readily explained by calculating the Franck-Condon transition factors. This study provides spectroscopic evidence of the effect of hydrogen on diatomic ZnO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eley, J; Zhang, C; Wolfe, T
Purpose: Minibeam therapy using protons or light-ions offers a theoretical reduction of biologic damage to tissues upstream of a tumor compared to broad-beam therapy while providing equal tumor control. The purpose of this study was to investigate behavioral and pathologic differences in mice after exposure of healthy brain to proton minibeam arrays versus proton broad beams. Methods: Twenty-four C57BL/6J juvenile mice were divided into 5 study arms: sham irradiation (NoRT), broad-beam 10 Gy (BB10), minibeam 10Gy (MB10), broad-beam 30 Gy (BB30), and minibeam 30 Gy (MB30), approximate integral entrance doses. Circular beams of 100 MeV protons with 7-mm diameter weremore » delivered laterally through the brain, either as broad beams or as planar minibeam arrays having 300-micron beam width and 1-mm spacing on center. Mice were followed for 8 months using standard behavioral tests. Pathologic studies were carried out at 8 months after irradiation. Results: Peak entrance doses were 10.0, 23.8, 30.0, and 71.3 Gy for mice in BB10, MB10, BB30, and MB30, respectively. Despite the high single-fraction doses, no animals showed signs of radiation sickness or neurophysical impairment over the 8-month study duration. The Morris water maze alternate-starting-position trial showed significant evidence of better spatial learning for mice in MB10 versus BB10 (p=0.026), but other behavioral tests showed no significant differences. Glial fibrillary acidic protein stains showed gliosis in arms BB10, BB30, and MB30 but not in NoRT or MB10. A secondary finding was categorically higher epilation in broad-beam arms compared with their minibeam dose counterparts. Conclusion: Our findings indicate trends that, despite the higher peak doses, proton minibeam therapy can reduce radiation side effects in shallow tissue and brain compared to proton broadbeam therapy. As the behavioral findings were mixed, confirmation studies are needed with larger numbers of animals. AAPM Research Seed Funding Grant.« less
Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures.
Nogales, E; Hidalgo, P; Lorenz, K; Méndez, B; Piqueras, J; Alves, E
2011-07-15
Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga(2)O(3) and GeO(2) structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the (5)D(0)-(7)F(2) Eu(3+) intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga(2)O(3), which is assigned to the lattice recovery. Gd(3+) as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd(3+) is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd(3+) (6)P(7/2)-(8)S(7/2) intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.
NASA Astrophysics Data System (ADS)
Moriizumi, M.; Mutsunaga, T.
2012-04-01
The application of compost can improve the fertility of the agricultural soils. The compost organic nitrogen is absorbed by plants after degradation and mineralization. To investigate the degradation process of compost organic nitrogen in soil, we conducted soil burial test of compost and observed the molecular weight distribution of hot-water extractable organic nitrogen from the compost. The cattle manure compost (1g) was mixed with soil (25g), put into glass fiber-filter paper bag and buried in 15 cm under surface of the ground for 6 months. The soils used were Andosol, Gray Lowland soil, and Yellow soil without organic matter application for 25 years in Tsukuba, Japan. Organic matter was extracted from the buried sample with 80° C of water for 16 hours. The molecular weight distribution of the hot-water extractable organic matter (HWEOM) was measured by high-performance size exclusion chromatography and chemiluminescent nitrogen detection (HPSEC/CLND). In this system, N-containing compound eluted from a SEC column was introduced into a furnace at 1050° C, and N in the compound was oxidized to nitric oxide and then detected using a chemiluminescent reaction with ozone. The N chromatogram showed that N in the HWEOM from the soil with compost had various molecular weights ranging from 0.1 to 100 kDa. A void peak (>100 kDa), a broad peak around 30 kDa, and several sharp peaks less than 30 kDa were observed in the chromatogram. The broad peak (~ 30kDa) was likely to be derived from the compost, because it was not observed in the chromatogram of HWEOM from soil alone. The N intensities of all peaks decreased with burial time, especially, the broad peak (~30 kDa) intensity rapidly decreased by 10 - 50 % in only first 2 months. The decreasing rates of the broad peak were higher than that of the sharp peaks, indicating that the organic nitrogen with a larger molecular weight decomposed faster. The broad peak (~ 30 kDa) had visible (420nm) absorption and less fulvic acid like florescence (Ex340nm, Em440 nm). The several sharp peaks had small visible absorption and intense florescence. Further studies are needed to assign the chemical forms for each peak.
Study of Sb2S3 thin films deposited by SILAR method
NASA Astrophysics Data System (ADS)
Deshpande, M. P.; Chauhan, Krishna; Patel, Kiran N.; Rajput, Piyush; Bhoi, Hiteshkumar R.; Chaki, S. H.
2018-05-01
In the present work, we deposited Sb2S3 thin films on glass slide by successive ionic layer adsorption and reaction (SILAR) technique with different time cycles. From EDAX, we could observe that the films were non-stoichiometric and contained few elements from glass slide. X-ray diffraction has shown that these films are orthorhombic in structure from where we have calculated the lattice parameter and crystallize size. SEM images shows that SILAR synthesized Sb2S3 thin films are homogenous and well distributed indicating the formation of uniform thin films at lower concentration. The room temperature Raman spectra of Sb2S3 thin films showed sharp peaks at 250 cm‑1 and 300 cm‑1 for all cases. Room temperature photoluminescence emission spectrum shows broad bands over 430–480 nm range with strong blue emission peak centered at same wavelength of 460 nm (2.70 eV) for all cases.
Lyα vs. fundamental properties of galaxies
NASA Astrophysics Data System (ADS)
Wofford, Aida; Leitherer, Claus; Salzer, John; COS Science Team
2013-03-01
We obtained HST COS Lyα spectroscopy for 20 galaxies that were Hα-selected from the Kitt Peak International Spectroscopic Survey data release. We cover redshifts of z=0.02-0.06 and a broad range in metallicity, reddening, and luminosity. We investigate correlations between the properties of the Lyα-lines and fundamental properties of the galaxies. Our seven emitters have: equivalent widths in the range EW(Lyα)=1-12 Å, i.e., below the completeness limits of higher redshift studies; extinction corrected Lyα/Hα ratios of at most 12-15% of the case B recombination theory value; and O I λ1302 ISM absorptions blueshifted to
Abdelghany, A M; ElBatal, H A; EzzElDin, F M
2015-10-05
Glasses of lithium fluoroborate of the composition LiF 15%-B2O3 85% with increasing CuO as added dopant were prepared and characterized by combined optical and FTIR spectroscopy before and after gamma irradiation. The optical spectrum of the undoped glass reveals strong UV absorption with two distinct peaks at about 235 and 310 nm and with no visible bands. This strong UV absorption is related to the presence of unavoidable trace iron impurity (Fe(3+)) within the materials used for the preparation of this glass. After irradiation, the spectrum of the undoped glass shows a decrease of the intensity of the UV bands together with the resolution of an induced visible broad band centered at about 520 nm. The CuO doped glasses reveal the same UV absorption beside a very broad visible band centered at 780 nm and this band shows extension and splitting to several component peaks with higher CuO contents. Upon gamma irradiation, the spectra of all CuO-doped glasses reveal pronounced decrease of their intensities. The response of irradiation on the studied glasses is correlated with suggested photochemical reactions together with some shielding effect of the copper ions. The observed visible band is related to the presence of copper as distorted octahedral Cu(2+) ions. Infrared absorption spectra of the prepared glasses show repetitive characteristic triangular and tetrahedral borate units similar to that published from alkali or alkaline earth oxides B2O3 glasses. A suggested formation of (BO3/2F) tetrahedral units is advanced through action of LiF on B2O3 and these suggested units showing the same position and number as BO4 tetrahedra. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Duvall, Thomas L.; Hanasoge, Shravan M.
2012-01-01
With large separations (10-24 deg heliocentric), it has proven possible to cleanly separate the horizontal and vertical components of supergranular flow with time-distance helioseismology. These measurements require very broad filters in the k-$\\omega$ power spectrum as apparently supergranulation scatters waves over a large area of the power spectrum. By picking locations of supergranulation as peaks in the horizontal divergence signal derived from f-mode waves, it is possible to simultaneously obtain average properties of supergranules and a high signal/noise ratio by averaging over many cells. By comparing ray-theory forward modeling with HMI measurements, an average supergranule model with a peak upflow of 240 m/s at cell center at a depth of 2.3 Mm and a peak horizontal outflow of 700 m/s at a depth of 1.6 Mm. This upflow is a factor of 20 larger than the measured photospheric upflow. These results may not be consistent with earlier measurements using much shorter separations (<5 deg heliocentric). With a 30 Mm horizontal extent and a few Mm in depth, the cells might be characterized as thick pancakes.
NASA Astrophysics Data System (ADS)
Hewitt, J. D.; Spinka, T. M.; Senin, A. A.; Eden, J. G.
2011-07-01
Photoexcitation of Nd3+ (2H9/2, 4F5/2) states by the broad (˜70 nm FWHM), near-infrared continuum provided by Fe3+ has been observed at 300 K in bulk yttrium aluminum garnet (YAG) crystals doped with trace concentrations (<50 ppm) of Fe, Cr, and Eu. Irradiation of YAG at 248 nm with a KrF laser, which excites the oxygen deficiency center (ODC) in YAG having peak absorption at ˜240 nm, culminates in ODC→Fe3+ excitation transfer and subsequent Fe3+ emission. This internal optical pumping mechanism for rare earth ions is unencumbered by the requirement for donor-acceptor proximity that constrains conventional Förster-Dexter excitation transfer in co-doped crystals.
Tailoring the dispersion behavior of silicon nanophotonic slot waveguides.
Mas, Sara; Caraquitena, José; Galán, José V; Sanchis, Pablo; Martí, Javier
2010-09-27
We investigate the chromatic dispersion properties of silicon channel slot waveguides in a broad spectral region centered at ~1.5 μm. The variation of the dispersion profile as a function of the slot fill factor, i.e., the ratio between the slot and waveguide widths, is analyzed. Symmetric as well as asymmetric geometries are considered. In general, two different dispersion regimes are identified. Furthermore, our analysis shows that the zero and/or the peak dispersion wavelengths can be tailored by a careful control of the geometrical waveguide parameters including the cross-sectional area, the slot fill factor, and the slot asymmetry degree.
NASA Astrophysics Data System (ADS)
Kim, YoungJae; Yuan, Ke; Ellis, Brian R.; Becker, Udo
2017-02-01
Although previous studies have demonstrated redox transformations of selenium (Se) in the presence of Fe-bearing minerals, the specific mechanism of magnetite-mediated Se electron transfer reactions are poorly understood. In this study, the redox chemistry of Se on magnetite is investigated over an environmentally relevant range of Eh and pH conditions (+0.85 to -1.0 V vs. Ag/AgCl; pH 4.0-9.5). Se redox peaks are found via cyclic voltammetry (CV) experiments at pH conditions of 4.0-8.0. A broad reduction peak centered at -0.5 V represents a multi-electron transfer process involving the transformation of selenite to Se(0) and Se(-II) and the comproportionation reaction between Se(-II) and Se(IV). Upon anodic scans, the oxidation peak centered at -0.25 V is observed and is attributed to the oxidation of Se(-II) to higher oxidation states. Deposited Se(0) may be oxidized at +0.2 V when pH is below 7.0. Over a pH range of 4.0-8.0, the pH dependence of peak potentials is less pronounced than predicted from equilibrium redox potentials. This is attributed to pH gradients in the microporous media of the cavity where the rate of proton consumption by the selenite reduction is faster relative to mass transfer from the solution. In chronoamperometry measurements at potentials ⩾-0.6 V, the current-time transients show good linearity between the current and time in a log-log scale. In contrast, deviation from the linear trend is observed at more negative potentials. Such a trend is indicative of Se(0) nucleation and growth on the magnetite surface, which can be theoretically explained by the progressive nucleation model. XPS analysis reveals the dominance of elemental selenium at potentials ⩽-0.5 V, in good agreement with the peak assignment on the cyclic voltammograms and the nucleation kinetic results.
Echolocation signals of foraging killer whales (Orcinus orca)
NASA Astrophysics Data System (ADS)
Au, Whitlow W. L.; Ford, John K. B.; Allman, Kelly A.
2002-05-01
Fish eating resident killer whales that frequent the coastal waters of Vancouver Island, Canada have a strong preference for chinook salmon. The whales in Johnston Strait often forage along the steep cliffs that extend into the water, echolocating their prey. Echolocation signals were measured with a four hydrophone symmetrical star array and the signals were simultaneous digitized at a sample rate of 500 kHz using a lunch-box PC. A portable VCR recorded the images from an underwater camera located close to the array center. Only signals emanated from close to the beam axis (1185 total) were chosen for a detailed analysis. Killer whales project very broad band echolocation signals (Q 1.3 to 1.5) that tend to have a bimodal frequency structure. Ninety seven percent of the signals had center frequencies between 45 and 80 kHz with a band-width between 35 and 50 kHz. The peak-to-peak source level of the echolocation signal decreased as a function of the one way transmission loss to the array. Source levels varied between 200 and 225 dB re 1 μPa. Using a model of target strength for chinook salmons, the echo levels from the echolocation signals are estimated for different ranges between whale and salmon.
Dosimetric characteristics of LKB:Cu,P solid TL detector
NASA Astrophysics Data System (ADS)
Hashim, S.; Alajerami, Y. S. M.; Ghoshal, S. K.; Saleh, M. A.; Saripan, M. I.; Kadir, A. B. A.; Bradley, D. A.; Alzimami, K.
2014-11-01
The dosimetric characteristics of newly developed borate glass dosimeter modified with lithium and potassium carbonate (LKB) and co-doped with CuO and NH4H2PO4 are reported. Broad peaks in the absence of any sharp peak confirms the amorphous nature of the prepared glass. A simple glow curve of Cu doped sample is observed with a single prominent peak (Tm) at 220 °C. The TL intensity response shows an enhancement of ~100 times due to the addition of CuO (0.1 mol%) to LKB compound. A further enhancement of the intensity by a factor of 3 from the addition of 0.25 mol% NH4H2PO4 as a co-dopant impurity is attributed to the creation of extra electron traps with consequent increase in energy transfer of radiation recombination centers. The TL yield performance of LKB:Cu,P with Zeff ≈8.92 is approximately seventeen times less sensitive compared to LiF:Mg,Ti (TLD-100). The proposed dosimeter shows good linearity up to 103 Gy, minimal fading and photon energy independence. These attractive features offered by our dosimeter is expected to pave the way towards dosimetric applications.
Incommensurate spin correlations in highly oxidized cobaltates La2−xSrxCoO4
Li, Z. W.; Drees, Y.; Kuo, C. Y.; Guo, H.; Ricci, A.; Lamago, D.; Sobolev, O.; Rütt, U.; Gutowski, O.; Pi, T. W.; Piovano, A.; Schmidt, W.; Mogare, K.; Hu, Z.; Tjeng, L. H.; Komarek, A. C.
2016-01-01
We observe quasi-static incommensurate magnetic peaks in neutron scattering experiments on layered cobalt oxides La2−xSrxCoO4 with high Co oxidation states that have been reported to be paramagnetic. This enables us to measure the magnetic excitations in this highly hole-doped incommensurate regime and compare our results with those found in the low-doped incommensurate regime that exhibit hourglass magnetic spectra. The hourglass shape of magnetic excitations completely disappears given a high Sr doping. Moreover, broad low-energy excitations are found, which are not centered at the incommensurate magnetic peak positions but around the quarter-integer values that are typically exhibited by excitations in the checkerboard charge ordered phase. Our findings suggest that the strong inter-site exchange interactions in the undoped islands are critical for the emergence of hourglass spectra in the incommensurate magnetic phases of La2−xSrxCoO4. PMID:27117928
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang Yazhuo; Hu Jun; Liu Honglai, E-mail: yazhuoshang@ecust.edu.c
Novel large-scale hollow ZnO spherical shells were synthesized by ionic liquids assisted hydrothermal oxidization of pure zinc powder without any catalyst at a relatively low temperature of 160 deg. C. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) patterns show that the shells are composed of ZnO and the structure of the shells is very unique. Textured flower-like ZnO consisting of ZnO rods is grown on the outer surfaces of shells forming a triple assembly. Room-temperature photoluminescence spectra of the oxidized material show a sharp peak at 379 nm and a wider broad peak centeredmore » at 498 nm. The possible growth mechanism of the triple assembly of ZnO is discussed in detail. - Graphical abstract: A proposed growth mechanism of large scale hollow ZnO. Bubbles provide the aggregation center for ionic liquids that leads to the formation of hollow Zn particle-dotted shells, buoyancy promotes shells to go upward, the breach occurs when shells are subjected to overpressure.« less
Structural and photoluminescence properties of Ce, Dy, Er-doped ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayachandraiah, C.; Kumar, K. Siva; Krishnaiah, G., E-mail: ginnerik@gmail.com
2015-06-24
Undoped ZnO and rare earth elements (Ce, Dy and Er with 2 at. %) doped nanoparticles were synthesized by wet chemical co-precipitation method at 90°C with Polyvinylpyrrolidone (PVP) as capping agent. The structural, morphological, compositional and photoluminescence studies were performed with X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDS), FTIR spectroscopy and Photoluminescence (PL) respectively. XRD results revealed hexagonal wurtzite structure with average particle size around 18 nm - 14 nm and are compatible with TEM results. EDS confirm the incorporation of Ce, Dy and Er elements into the host ZnO matrix and is validated by FTIR analysis. PLmore » studies showed a broad intensive emission peak at 558 nm in all the samples. The intensity for Er- doped ZnO found maximum with additional Er shoulder peaks at 516nm and 538 nm. No Ce, Dy emission centers were found in spectra.« less
THz spectra of cortisone and the related medicine
NASA Astrophysics Data System (ADS)
Ma, Shihua; Ge, Min; Liu, Guifeng; Song, Xiyu; Zhang, Peng; Wang, Wenfeng
2009-07-01
THz-TDS are used to study four kinds of drug: cortisone, hydrocortisone, prednisone and prednisolone. The THz spectra of them are obtained and analyzed from 0.2 - 1.6 THz. The experimental results shows the four samples have the different THz spectra. Cortisone has a peak at 1.5 THz and a broad absorption peak at 0.96 THz, while hydrocortisone has a weak absorption peak that lies at 1.27 THz. At the same time the prednisone has the stronger absorption peaks than the others, and its two peaks shows at 1.24 THz and 1.5 THz. Prednisolone has a weak broad peak at 1.43 THz. The results of the theoretical calculation were performed using Gaussian 03 software with Density Functional Theory at the basis set of 6-31+G (d, p). The theoretical vibrational frequencies are compared with the experimental results, and the deviations are discussed. The THz spectra of the medicine show THz technique may be help to distinguish some different chemical bond and functional group.
Optical Studies of Nd-doped benzil, a potential luminescent and laser material
NASA Astrophysics Data System (ADS)
Noginov, M. A.; Curley, M.; Noginova, N.; Wang, W. S.; Aggarwal, M. D.
1998-08-01
Neodymium-doped benzil crystals have been synthesized and characterized for their absorption, emission, and kinetics properties. From Judd Ofelt analysis, the radiative decay time of Nd emission (peaking at 1055 nm) is estimated to be equal to 441 s. The experimental Nd lifetime (under Ar laser excitation) is equal to 19 s. The broad emission band centered at approximately 700 nm ( decay 15 ns) and the Raman scattering with characteristic frequency shift of 1600 cm 1 have been observed at excitation of benzil with 532-nm Q -switched laser pulses. We show that rare-earth-doped benzil can be considered as a potential candidate for luminescent and solid-state laser material.
Optical Studies of Nd-doped benzil, a potential luminescent and laser material.
Noginov, M A; Curley, M; Noginova, N; Wang, W S; Aggarwal, M D
1998-08-20
Neodymium-doped benzil crystals have been synthesized and characterized for their absorption, emission, and kinetics properties. From Judd-Ofelt analysis, the radiative decay time of Nd emission (peaking at 1055 nm) is estimated to be equal to 441 mus. The experimental Nd lifetime (under Ar+ laser excitation) is equal to 19 mus. The broad emission band centered at approximately 700 nm (tau(decay) approximately 15 ns) and the Raman scattering with characteristic frequency shift of 1600 cm(-1) have been observed at excitation of benzil with 532-nm Q-switched laser pulses. We show that rare-earth-doped benzil can be considered as a potential candidate for luminescent and solid-state laser material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia; Halpern, Jules P.; Eracleous, Michael
2016-01-20
One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocitymore » can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.« less
Broad ion energy distributions in helicon wave-coupled helium plasma
NASA Astrophysics Data System (ADS)
Woller, K. B.; Whyte, D. G.; Wright, G. M.
2017-05-01
Helium ion energy distributions were measured in helicon wave-coupled plasmas of the dynamics of ion implantation and sputtering of surface experiment using a retarding field energy analyzer. The shape of the energy distribution is a double-peak, characteristic of radiofrequency plasma potential modulation. The broad distribution is located within a radius of 0.8 cm, while the quartz tube of the plasma source has an inner radius of 2.2 cm. The ion energy distribution rapidly changes from a double-peak to a single peak in the radius range of 0.7-0.9 cm. The average ion energy is approximately uniform across the plasma column including the double-peak and single peak regions. The widths of the broad distribution, ΔE , in the wave-coupled mode are large compared to the time-averaged ion energy, ⟨E ⟩. On the axis (r = 0), ΔE / ⟨E ⟩ ≲ 3.4, and at a radius near the edge of the plasma column (r = 2.2 cm), ΔE / ⟨E ⟩ ˜ 1.2. The discharge parameter space is scanned to investigate the effects of the magnetic field, input power, and chamber fill pressure on the wave-coupled mode that exhibits the sharp radial variation in the ion energy distribution.
Simulations of cataclysmic outburst floods from Pleistocene Glacial Lake Missoula
Denlinger, Roger P.; O'Connell, D. R. H.
2009-01-01
Using a flow domain that we constructed from 30 m digital-elevation model data of western United States and Canada and a two-dimensional numerical model for shallow-water flow over rugged terrain, we simulated outburst floods from Pleistocene Glacial Lake Missoula. We modeled a large, but not the largest, flood, using initial lake elevation at 1250 m instead of 1285 m. Rupture of the ice dam, centered on modern Lake Pend Oreille, catastrophically floods eastern Washington and rapidly fills the broad Pasco, Yakima, and Umatilla Basins. Maximum flood stage is reached in Pasco and Yakima Basins 38 h after the dam break, whereas maximum flood stage in Umatilla Basin occurs 17 h later. Drainage of these basins through narrow Columbia gorge takes an additional 445 h. For this modeled flood, peak discharges in eastern Washington range from 10 to 20 × 106 m3/s. However, constrictions in Columbia gorge limit peak discharges to 6 m3/s and greatly extend the duration of flooding. We compare these model results with field observations of scabland distribution and high-water indicators. Our model predictions of the locations of maximum scour (product of bed shear stress and average flow velocity) match the distribution of existing scablands. We compare model peak stages to high-water indicators from the Rathdrum-Spokane valley, Walulla Gap, and along Columbia gorge. Though peak stages from this less-than-maximal flood model attain or exceed peak-stage indicators along Rathdrum-Spokane valley and along Columbia gorge, simulated peak stages near Walulla Gap are 10–40 m below observed peak-stage indicators. Despite this discrepancy, our match to field observations in most of the region indicates that additional sources of water other than Glacial Lake Missoula are not required to explain the Missoula floods.
Super-massive binary black holes and emission lines in active galactic nuclei
NASA Astrophysics Data System (ADS)
Popović, Luka Č.
2012-02-01
It is now agreed that mergers play an essential role in the evolution of galaxies and therefore that mergers of supermassive black holes (SMBHs) must have been common. We see the consequences of past supermassive binary black holes (SMBs) in the light profiles of so-called 'core ellipticals' and a small number of SMBs have been detected. However, the evolution of SMBs is poorly understood. Theory predicts that SMBs should spend a substantial amount of time orbiting at velocities of a few thousand kilometers per second. If the SMBs are surrounded by gas observational effects might be expected from accretion onto one or both of the SMBHs. This could result in a binary Active Galactic Nucleus (AGN) system. Like a single AGN, such a system would emit a broad band electromagnetic spectrum and broad and narrow emission lines. The broad emission spectral lines emitted from AGNs are our main probe of the geometry and physics of the broad line region (BLR) close to the SMBH. There is a group of AGNs that emit very broad and complex line profiles, showing two displaced peaks, one blueshifted and one redshifted from the systemic velocity defined by the narrow lines, or a single such peak. It has been proposed that such line shapes could indicate an SMB system. We discuss here how the presence of an SMB will affect the BLRs of AGNs and what the observational consequences might be. We review previous claims of SMBs based on broad line profiles and find that they may have non-SMB explanations as a consequence of a complex BLR structure. Because of these effects it is very hard to put limits on the number of SMBs from broad line profiles. It is still possible, however, that unusual broad line profiles in combination with other observational effects (line ratios, quasi-periodical oscillations, spectropolarimetry, etc.) could be used for SMBs detection. Some narrow lines (e.g., [O III]) in some AGNs show a double-peaked profile. Such profiles can be caused by streams in the Narrow Line Region (NLR), but may also indicate the presence of a kilo-parsec scale mergers. A few objects indicated as double-peaked narrow line emitters are confirmed as kpc-scale margers, but double-peaked narrow line profiles are mostly caused by the complex NLR geometry. We briefly discuss the expected line profile of broad Fe Kα that probably originated in the accretion disk(s) around SMBs. This line may also be very complex and indicate the complex disk geometry or/and an SMB presence. Finally we consider rare configurations where a SMB system might be gravitationally lensed by a foreground galaxy, and discuss the expected line profiles in these systems.
PeakRanger: A cloud-enabled peak caller for ChIP-seq data
2011-01-01
Background Chromatin immunoprecipitation (ChIP), coupled with massively parallel short-read sequencing (seq) is used to probe chromatin dynamics. Although there are many algorithms to call peaks from ChIP-seq datasets, most are tuned either to handle punctate sites, such as transcriptional factor binding sites, or broad regions, such as histone modification marks; few can do both. Other algorithms are limited in their configurability, performance on large data sets, and ability to distinguish closely-spaced peaks. Results In this paper, we introduce PeakRanger, a peak caller software package that works equally well on punctate and broad sites, can resolve closely-spaced peaks, has excellent performance, and is easily customized. In addition, PeakRanger can be run in a parallel cloud computing environment to obtain extremely high performance on very large data sets. We present a series of benchmarks to evaluate PeakRanger against 10 other peak callers, and demonstrate the performance of PeakRanger on both real and synthetic data sets. We also present real world usages of PeakRanger, including peak-calling in the modENCODE project. Conclusions Compared to other peak callers tested, PeakRanger offers improved resolution in distinguishing extremely closely-spaced peaks. PeakRanger has above-average spatial accuracy in terms of identifying the precise location of binding events. PeakRanger also has excellent sensitivity and specificity in all benchmarks evaluated. In addition, PeakRanger offers significant improvements in run time when running on a single processor system, and very marked improvements when allowed to take advantage of the MapReduce parallel environment offered by a cloud computing resource. PeakRanger can be downloaded at the official site of modENCODE project: http://www.modencode.org/software/ranger/ PMID:21554709
Pyrolytic Decomposition Studies of AA2, A Double-Base Propellent
2001-10-01
broad HMW peaks in each pyrolys - ate, these data were analyzed by manual integration of each major or identified peak. The total percent areas in... pyroly - sis to permit the air peak to elute. NG is highly energetic and it shares a common behavior with NC. The majority of the pyrolysate (96.1
Four Decades of Public Outreach at Kitt Peak
NASA Astrophysics Data System (ADS)
Fedele, R.
2005-12-01
Since its inception in 1958, Kitt Peak has served as the U.S. national center for nighttime astronomy and daytime studies of the Sun. The Kitt Peak Visitor Center, constructed in 1964, serves as the hub for the thousands of visitors each year who come to explore "their" national observatory. For over 40 years, the visitor center has functioned as part-museum, part-interpretive center, and part-comfort station, along with transitory functions as an auditorium, classroom and media center. More than 2 million people have come to learn about the science, history, and mission of Kitt Peak National Observatory, NOAO, AURA, and the National Science Foundation http://www.noao.edu/outreach/kpoutreach.html.
Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics
NASA Astrophysics Data System (ADS)
Usui, Yuki; Okada, Go; Kawaguchi, Noriaki; Masai, Hirokazu; Yanagida, Takayuki
2018-04-01
13TiO2-xZnO-17Al2O3-(70 - x)B2O3 (x = 17, 26, and 35) glasses were prepared by a melt-quenching method, and the obtained glass samples were heated at temperatures 30 °C above the glass transition temperature of corresponding glass in order to obtain glass-ceramics. The obtained glass-ceramic samples were confirmed to have anatase (x = 17) and rutile (x = 26 and 35) phases from X-ray diffraction analysis. Then, the scintillation and optical properties were evaluated and discussed the difference between the glass-ceramic and glass samples. In the scintillation spectra under X-ray irradiation, a broad emission peak was observed around 450 nm in all the samples, and the new peak around 500 nm appeared in the anatase-precipitated glass-ceramic. The intensities of the glass-ceramic samples were enhanced in comparison with the corresponding glasses because the glass-ceramics includes TiO2 crystallites with defect centers which act as effective emission centers. The scintillation decay curves of the glass and glass-ceramic samples were approximated by one and a sum of two exponential decay functions, respectively. The faster component of glass and glass-ceramic samples would be caused by the host emission, and the slower component of glass-ceramic sample would be ascribed to the emission of Ti3+.
NASA Astrophysics Data System (ADS)
Gelija, Devarajulu; Kadathala, Linganna; Borelli, Deva Prasad Raju
2018-04-01
The fluorescence and upconversion studies of Er3+ doped and Er3+/Nd3+ co-doped silicate based oxyfluoride glasses have been systematically analyzed. The broad band NIR emissions (830-1700 nm), includes optical bands like O, E, S, C and L were observed in the Er3+-Nd3+ co-doped glasses. The NIR emission intensity peaks centered at 876, 1057, 1329 and 1534 nm were observed for the Er3+-Nd3+ co-doped glasses. In the co-doped samples the strongest emission intensity at 1534 nm increased up to 0.5 mol % and then decreased to 3.0 mol % of Nd3+ ions under the excitation of 980 nm. The upconversion studies of the co-doped samples were recorded under the excitation of 980 and 808 nm and found the upconversion emission peaks centered at 524, 530, 547, 590 and 656 nm. The energy transfer processes between the relevant excitation levels of Er3+ and Nd3+ ions and energy transfer efficiency were discussed. The obtained results indicate that Nd3+ can be an efficient sensitizer for Er3+ to enhance upconversion emission at green laser transition for sensors and NIR emission at 1534 nm for optical communication applications.
Studies of Radiation-Induced Defects in Li2SiO3:Sm Phosphor Material
NASA Astrophysics Data System (ADS)
Singh, N.; Singh, Vijay; Watanabe, S.; Gundu Rao, T. K.; Chubaci, J. F. D.; Cano, N. F.; Pathak, M. S.; Singh, Pramod K.; Dhoble, S. J.
2017-01-01
Li2SiO3:Sm was synthesized by the solution combustion method. Powder x-ray diffraction technique was used to find the phase formation. Li2SiO3:Sm exhibits thermoluminescence (TL) peaks at approximately 140°C, 155°C, 190°C, 250°C, and 405°C. Three defect centers contribute to the observed electron spin resonance spectrum from the gamma irradiated phosphor. Center I with principal g-values g || = 2.0206 and g ⊥ = 2.0028 is identified as an O2 - ion while center II, with an isotropic g-factor 2.0039, is assigned to an F +-type center. Center III is assigned to a Ti3+ center. The Ti3+ center is related to the 250°C TL peak while the O2 - ion also correlates with the main TL peak at 250°C. An additional defect center is observed during thermal annealing experiments, and the center (assigned to F + center) seems to originate from an F center. The F center appears to be associated with the high temperature TL peak in a Li2SiO3:Sm phosphor. The luminescence spectrum reveals the dominant emission peaks at 605 (4G5/2 → 6H7/2) nm under the excitation wavelength of 402 nm.
Synthesis and photoluminescence properties of ZnS nanobowl arrays via colloidal monolayer template
2014-01-01
Two-dimensional Zinc sulfide (ZnS) nanobowl arrays were synthesized via self-assembled monolayer polystyrene sphere template floating on precursor solution surface. A facile approach was proposed to investigate the morphology evolution of nanobowl arrays by post-annealing procedure. Photoluminescence (PL) measurement of as-grown nanoarrays shows that the spectrum mainly includes two parts: a purple emission peak at 382 nm and a broad blue emission band centering at 410 nm with a shoulder around 459 nm, and a blue emission band at 440 nm was obtained after the annealing procedure. ZnS nanoarrays with special morphologies and PL emission are benefits to their promising application in novel photoluminescence nanodevice. PMID:25246857
Stability of hypersonic compression cones
NASA Astrophysics Data System (ADS)
Reed, Helen; Kuehl, Joseph; Perez, Eduardo; Kocian, Travis; Oliviero, Nicholas
2012-11-01
Our activities focus on the identification and understanding of the second-mode instability for representative configurations in hypersonic flight. These include the Langley 93-10 flared cone and the Purdue compression cone, both at 0 degrees angle of attack at Mach 6. Through application of nonlinear parabolized stability equations (NPSE) and linear parabolized stability equations (PSE) to both geometries, it is concluded that mean-flow distortion tends to amplify frequencies less than the peak frequency and stabilize those greater by modifying the boundary-layer thickness. As initial disturbance amplitude is increased and/or a broad spectrum disturbance is introduced, direct numerical simulations (DNS) or NPSE appear to be the proper choices to model the evolution, and relative evolution, because these computational tools include these nonlinear effects (mean-flow distortion). Support from AFOSR/NASA National Center for Hypersonic Research in Laminar-Turbulent Transition through Grant FA9550-09-1-0341 is gratefully acknowledged. The authors also thank Pointwise, AeroSoft, and Texas Advanced Computing Center (TACC).
NASA Astrophysics Data System (ADS)
Patel, Swarnim; Shrivas, Sandhya; Dubey, R. K.; Keller, J. M.
2018-05-01
Short circuit thermally stimulated depolarization current measurement techniques has been employed to investigate the dielectric relaxation behavior of PSF: PVDF blends. The samples taken were blends of composition PSF: PVDF:: 80:20; 85:15; 90:10 and 95:05 percent by weight. The thermograms were characterized by a high value of initial current, a low temperature peak around 75-80°C and a prominent broad peak in the temperature interval 130 to 160°C. The two polymers are found to form compatible blend in the studied composition range.
SEISMICITY OF THE LASSEN PEAK AREA, CALIFORNIA: 1981-1983.
Walter, Stephen R.; Rojas, Vernonica; Kollmann, Auriel
1984-01-01
Over 700 earthquakes occurred in the vicinity of Lassen Peak, California, from February 1981 through December 1983. These earthquakes define a broad, northwest-trending seismic zone that extends from the Sierra Nevada through the Lassen Peak area and either terminates or is offset to the northeast about 20 kilometers northwest of Lassen Peak. Approximately 25% of these earthquakes are associated with the geothermal system south of Lassen Peak. Earthquakes in the geothermal area generally occur at depths shallower than 6 kilometers.
Double-peaked broad line emission from the LINER nucleus of NGC 1097
NASA Technical Reports Server (NTRS)
Storchi-Bergmann, Thaisa; Baldwin, Jack A.; Wilson, Andrew S.
1993-01-01
We report the recent appearance of a very broad component in the H-alpha and H-beta emission lines of the weakly active nucleus of the Sersic-Pastoriza galaxy NGC 1097. The FWZI of the broad component is about 21,000 km/s, and its profile is double-peaked; the presence of a blue, featureless continuum in the nucleus is also suggested. The broad component was first observed in H-alpha in November 2, 1991, and confirmed 11 months later. The H-alpha profile and flux did not change in this time interval. Comparison with previously published spectral data indicates that the broad lines have only recently appeared. Together with the relatively high X-ray luminosity and the compact nuclear radio source, our results characterize the presence of a Seyfert 1 nucleus in a galaxy which had previously shown only LINER characteristics. Obscuring material along our line of sight to the nucleus appears to have recently cleared, permitting a direct view of the active nucleus. We discuss two possible structures for the broad line region, biconical outflow and an accretion disk, that could give rise to the observed profile.
Deep-levels in gallium arsenide for device applications
NASA Astrophysics Data System (ADS)
McManis, Joseph Edward
Defects in semiconductors have been studied for over 40 years as a diagnostic of the quality of crystal growth. In this thesis, we investigate GaAs deep-levels specifically intended for devices. This thesis summarizes our efforts to characterize the near-infrared photoluminescence from deep-levels, study optical transitions via absorption, and fabricate and characterize deep-level light-emitting diodes (LEDs). This thesis also describes the first tunnel diodes which explicitly make use of GaAs deep-levels. Photoluminescence measurements of GaAs deep-levels showed a broad peak around a wavelength extending from 1.0--1.7 mum, which includes important wavelengths for fiber-optic communications (1.3--1.55 mum). Transmission measurements show the new result that very little of the radiative emission is self-absorbed. We measured the deep-level photoluminescence at several temperatures. We are also the first to report the internal quantum efficiency associated with the deep-level transitions. We have fabricated LEDs that, utilize the optical transitions of GaAs deep-levels. The electroluminescence spectra showed a broad peak from 1.0--1.7 mum at low currents, but the spectrum exhibited a blue-shift as the current was increased. To improve device performance, we designed an AlGaAs layer into the structure of the LEDs. The AlGaAs barrier layer acts as a resistive barrier so that the holes in the p-GaAs layer are swept away from underneath the gold p-contact. The AlGaAs layer also reduces the blue-shift by acting as a potential barrier so that only higher-energy holes are injected. We found that the LEDs with AlGaAs were brighter at long wavelengths, which was a significant improvement. Photoluminescence measurements show that the spectral blue-shift is not due to sample heating. We have developed a new physical model to explain the blue-shift: it is caused by Coloumb charging of the deep-centers. We have achieved the first tunnel diodes with which specifically utilize deep-levels in low-temperature-grown (LTG) GaAs. Our devices show the largest ever peak current density in a GaAs tunnel diode at room temperature. Our devices also show significant room-temperature peak-to-valley current ratios. The shape of the current-voltage characteristic and the properties of the optical emission enable us to determine the peak and valley transport mechanisms.
Detail; south (front) elevation, second floor, center portal of loggia ...
Detail; south (front) elevation, second floor, center portal of loggia - North Philadelphia Station, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA
Graphene Oxide from Carbon Rod Waste
NASA Astrophysics Data System (ADS)
Rahmawati, F.; Prasasti, B. L. W.; Mudjijono, M.
2018-03-01
Carbon rods extracted from Zn-C primary battery waste was used as raw material for graphene oxide (GO) synthesis. The synthesis used a modified Hummers method by providing potassium permanganate-sulfuric acid as the oxidizing agent. XRD analysis confirms a significant change between the graphite waste pattern and the produced graphene oxide pattern. A major peak at 2θ 27 ° which present in the graphite waste pattern is disappeared after it converts to the product, as well as a broad peak under 25 ° referring the presence of amorphous carbon. A broad peak at low angle of 12.02 ° dominantly present in the prepared GO pattern as a characteristic peak of GO. Meanwhile, some small peaks at 2θ of 17.76 °, 28.58 °, and 37.28 ° confirming the presence of manganese oxide which was used as oxidizing agent. A sharp peak at 1700 – 1500 cm-1 in the FT-IR spectrum indicates the presence of –C=O group, and at 1600 cm-1 refers to –C=C group. It confirms that this research has produced the targeted GO. Even though, the purity is need to be enhanced by removing the rest of oxidizing agent that still exist in the material.
Are the triple surface plasmon resonances in Zn nanoparticles true?
Amekura, H; Shinotsuka, H; Yoshikawa, H
2017-12-08
It has been experimentally and numerically confirmed that zinc (Zn) nanoparticles (NPs) dispersed in silica exhibit two optical extinction peaks around ∼250 nm (1st peak) and ∼1050 nm (2nd peak), both of which were ascribed to surface plasmon resonances (SPRs) in the broad sense, i.e., the dual SPRs. Recently, Kuiri and Majhi (KM) observed the 3rd peak around ∼900 nm by calculations, and proposed the triple SPRs for Zn NPs without any experimental confirmation. This paper claims that the 3rd peak has never been observed in any experiments nor in any calculations except given by KM. They justified the triple resonances from an approximated SPR criterion, ε 1 Zn (ω) + 2ε 1 SiO 2 (ω) = 0, which is not valid for non-idealized metals like Zn, because the imaginary part of the dielectric function ε 2 Zn (ω) is not negligible. Instead, a rigorous SPR criterion predicts the dual resonances only. From comparisons with ab initio band calculations, the 1st and 2nd extinction peak are ascribed to resonantly enhanced inter-band transitions (so-called electronic resonance) and intra-band transitions (SPR in the narrow sense), respectively. Since either of the peaks arises from the resonant enhancement due to the dielectric function, both the peaks are regarded as SPRs in the broad sense, i.e. the dual SPRs.
Origin of the Hadži ABC structure: An ab initio study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoozen, Brian L.; Petersen, Poul B.
2015-11-14
Medium and strong hydrogen bonds are well known to give rise to broad features in the vibrational spectrum often spanning several hundred wavenumbers. In some cases, these features can span over 1000 cm{sup −1} and even contain multiple broad peaks. One class of strongly hydrogen-bonded dimers that includes many different phosphinic, phosphoric, sulfinic, and selenic acid homodimers exhibits a three-peaked structure over 1500 cm{sup −1} broad. This unusual feature is often referred to as the Hadži ABC structure. The origin of this feature has been debated since its discovery in the 1950s. Only a couple of theoretical studies have attemptedmore » to interpret the origin of this feature; however, no previous study has been able to reproduce this feature from first principles. Here, we present the first ab initio calculation of the Hadži ABC structure. Using a reduced dimensionality calculation that includes four vibrational modes, we are able to reproduce the three-peak structure and much of the broadness of the feature. Our results indicate that Fermi resonances of the in-plane bend, out-of-plane bend, and combination of these bends play significant roles in explaining this feature. Much of the broadness of the feature and the ability of the OH stretch mode to couple with many overtone bending modes are captured by including an adiabatically separated dimer stretch mode in the model. This mode modulates the distance between the monomer units and accordingly the strength of the hydrogen-bonds causing the OH stretch frequency to shift from 2000 to 3000 cm{sup −1}. Using this model, we were also able to reproduce the vibrational spectrum of the deuterated isotopologue which consists of a single 500 cm{sup −1} broad feature. Whereas previous empirical studies have asserted that Fermi resonances contribute very little to this feature, our study indicates that while not appearing as a separate peak, a Fermi resonance of the in-plane bend contributes substantially to the feature.« less
NASA Astrophysics Data System (ADS)
Chao, Tsi-Chian; Tsai, Yi-Chun; Chen, Shih-Kuan; Wu, Shu-Wei; Tung, Chuan-Jong; Hong, Ji-Hong; Wang, Chun-Chieh; Lee, Chung-Chi
2017-08-01
The purpose of this study was to investigate the density heterogeneity pattern as a factor affecting Bragg peak degradation, including shifts in Bragg peak depth (ZBP), distal range (R80 and R20), and distal fall-off (R80-R20) using Monte Carlo N-Particles, eXtension (MCNPX). Density heterogeneities of different patterns with increasing complexity were placed downstream of commissioned proton beams at the Proton and Radiation Therapy Centre of Chang Gung Memorial Hospital, including one 150 MeV wobbling broad beam (10×10 cm2) and one 150 MeV proton pencil beam (FWHM of cross-plane=2.449 cm, FWHM of in-plane=2.256 cm). MCNPX 2.7.0 was used to model the transport and interactions of protons and secondary particles in density heterogeneity patterns and water using its repeated structure geometry. Different heterogeneity patterns were inserted into a 21×21×20 cm3 phantom. Mesh tally was used to track the dose distribution when the proton beam passed through the different density heterogeneity patterns. The results show that different heterogeneity patterns do cause different Bragg peak degradations owing to multiple Coulomb scattering (MCS) occurring in the density heterogeneities. A trend of increasing R20 and R80-R20 with increasing geometry complexity was observed. This means that Bragg peak degradation is mainly caused by the changes to the proton spectrum owing to MCS in the density heterogeneities. In contrast, R80 did not change considerably with different heterogeneity patterns, which indicated that the energy spectrum has only minimum effects on R80. Bragg peak degradation can occur both for a broad proton beam and a pencil beam, but is less significant for the broad beam.
Analysis and Assessment of Peak Lightning Current Probabilities at the NASA Kennedy Space Center
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Vaughan, W. W.
1999-01-01
This technical memorandum presents a summary by the Electromagnetics and Aerospace Environments Branch at the Marshall Space Flight Center of lightning characteristics and lightning criteria for the protection of aerospace vehicles. Probability estimates are included for certain lightning strikes (peak currents of 200, 100, and 50 kA) applicable to the National Aeronautics and Space Administration Space Shuttle at the Kennedy Space Center, Florida, during rollout, on-pad, and boost/launch phases. Results of an extensive literature search to compile information on this subject are presented in order to answer key questions posed by the Space Shuttle Program Office at the Johnson Space Center concerning peak lightning current probabilities if a vehicle is hit by a lightning cloud-to-ground stroke. Vehicle-triggered lightning probability estimates for the aforementioned peak currents are still being worked. Section 4.5, however, does provide some insight on estimating these same peaks.
Growth and characterization of V2O5 nanorods deposited by spray pyrolysis at low temperatures
NASA Astrophysics Data System (ADS)
Abd-Alghafour, N. M.; Ahmed, Naser M.; Hassan, Zai.; Mohammad, Sabah M.; Bououdina, M.
2016-07-01
Vanadium pentoxide (V2O5) nanorods were deposited by spray pyrolysis on preheated glass substrates at low temperatures. The influence of substrate temperature on the crystallization of V2O5 has been investigated. X-ray diffraction analysis (XRD) revealed that the films deposited at Tsub = 300°C were orthorhombic structures with preferential along (001) direction. Formation of nanorods from substrate surface which led to the formation of films with small-sized and rod-shaped nanostructure is observed by field scanning electron microscopy. Optical transmittance in the visible range increases to reach a maximum value of about 80% for a substrate temperature of 350°C. PL spectra reveal one main broad peak centered around 540 nm with high intensity.
2013-01-01
Eu2O3/Si multilayer nanostructured films are deposited on Si substrates by magnetron sputtering. Transmission electron microscopy and X-ray diffraction measurements demonstrate that multicrystalline Eu silicate is homogeneously distributed in the film after high-temperature treatment in N2. The Eu2+ silicate is formed by the reaction of Eu2O3 and Si layers, showing an intense and broad room-temperature photoluminescence peak centered at 610 nm. It is found that the Si layer thickness in nanostructures has great influence on Eu ion optical behavior by forming different Eu silicate crystalline phases. These findings open a promising way to prepare efficient Eu2+ materials for photonic application. PMID:23618344
NASA powered lift facility internally generated noise and its transmission to the acoustic far field
NASA Technical Reports Server (NTRS)
Huff, Ronald G.
1988-01-01
Noise tests of NASA Lewis Research Center's Powered Lift Facility (PLF) were performed to determine the frequency content of the internally generated noise that reaches the far field. The sources of the internally generated noise are the burner, elbows, valves, and flow turbulence. Tests over a range of nozzle pressure ratios from 1.2 to 3.5 using coherence analysis revealed that low frequency noise below 1200 Hz is transmitted through the nozzle. Broad banded peaks at 240 and 640 Hz were found in the transmitted noise. Aeroacoustic excitation effects are possible in this frequency range. The internal noise creates a noise floor that limits the amount of jet noise suppression that can be measured on the PLF and similar facilities.
NASA Astrophysics Data System (ADS)
Shivaramu, N. J.; Lakshminarasappa, B. N.; Nagabhushana, K. R.; Singh, Fouran
2016-02-01
Nanocrystalline Y2O3 is synthesized by solution combustion technique using urea and glycine as fuels. X-ray diffraction (XRD) pattern of as prepared sample shows amorphous nature while annealed samples show cubic nature. The average crystallite size is calculated using Scherrer's formula and is found to be in the range 14-30 nm for samples synthesized using urea and 15-20 nm for samples synthesized using glycine respectively. Field emission scanning electron microscopy (FE-SEM) image of 1173 K annealed Y2O3 samples show well separated spherical shape particles and the average particle size is found to be in the range 28-35 nm. Fourier transformed infrared (FTIR) and Raman spectroscopy reveals a stretching of Y-O bond. Electron spin resonance (ESR) shows V- center, O2- and Y2 + defects. A broad photoluminescence (PL) emission with peak at 386 nm is observed when the sample is excited with 252 nm. Thermoluminescence (TL) properties of γ-irradiated Y2O3 nanopowder are studied at a heating rate of 5 K s- 1. The samples prepared by using urea show a prominent and well resolved peak at 383 K and a weak one at 570 K. It is also found that TL glow peak intensity (Im1) at 383 K increases with increase in γ-dose up to 6.0 kGy and then decreases with increase in dose. However, glycine used Y2O3 shows a prominent TL glow with peaks at 396 K and 590 K. Among the fuels, urea used Y2O3 shows simple and well resolved TL glows. This might be due to fuel and hence particle size effect. The kinetic parameters are calculated by Chen's glow curve peak shape method and results are discussed in detail.
Line Profile of H Lyman-Beta Emission from Dissociative Excitation of H2
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Ahmed, Syed M.; Liu, Xian-Ming
1996-01-01
A high-resolution ultraviolet spectrometer was employed for a measurement of the H Lyman-Beta(H L(sub Beta)) emission Doppler line profile at 1025.7 A from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak, less than 30 mA full width at half maximum (FWHM), and a broad pedestal base about 260 mA FWHM. Analysis of the red wing of the line profile is complicated by a group of Wemer and Lyman rotational lines 160-220 mA from the line center. Analysis of the blue wing of the line profile gives the kinetic-energy distribution. There are two main kinetic-energy components to the H(3p) distribution: (1) a slow distribution with a peak value near 0 eV from singly excited states, and (2) a fast distribution with a peak contribution near 7 eV from doubly excited states. Using two different techniques, the absolute cross section of H L(sub Beta)p is found to be 3.2+/-.8 x 10(exp -19)sq cm at 100-eV electron impact energy. The experimental cross-section and line-profile results can be compared to previous studies of H(alpha) (6563.7 A) for principal quantum number n=3 and L(sub alpha)(1215.7 A) for n=2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahab, Rizwan; Ansari, S.G.; Kim, Y.S.
Synthesis of flower-shaped ZnO nanostructures composed of hexagonal ZnO nanorods was achieved by the solution process using zinc acetate dihydrate and sodium hydroxide at very low temperature of 90 deg. C in 30 min. The individual nanorods are of hexagonal shape with sharp tip, and base diameter of about 300-350 nm. Detailed structural characterizations demonstrate that the synthesized products are single crystalline with the wurtzite hexagonal phase, grown along the [0 0 0 1] direction. The IR spectrum shows the standard peak of zinc oxide at 523 cm{sup -1}. Raman scattering exhibits a sharp and strong E{sub 2} mode atmore » 437 cm{sup -1} which further confirms the good crystallinity and wurtzite hexagonal phase of the grown nanostructures. The photoelectron spectroscopic measurement shows the presence of Zn, O, C, zinc acetate and Na. The binding energy ca. 1021.2 eV (Zn 2p{sub 3/2}) and 1044.3 eV (Zn 2p{sub 1/2}), are found very close to the standard bulk ZnO binding energy values. The O 1s peak is found centered at 531.4 eV with a shoulder at 529.8 eV. Room-temperature photoluminescence (PL) demonstrate a strong and dominated peak at 381 nm with a suppressed and broad green emission at 515 nm, suggests that the flower-shaped ZnO nanostructures have good optical properties with very less structural defects.« less
Single particle excitations in RbAg/sub 4/I/sub 5/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, S.M.; Salamon, M.B.
1979-01-01
In an inelastic neutron experiment on RbAg/sub 4/I/sub 5/ a broad quasielastic peak was observed throughout Q-space. As the temperature was lowered, the quasielastic peak became a broad propagating excitation with dirac constant ..omega.. approx. 2.2 meV. This excitation was measured along several symmetry directions and it exhibited little dispersion. This confirms that the original idea of a single particle excitation corresponding to the Ag/sup +/ ions moving within a potential well created by the rest of the lattice. The temperature dependence of this excitation is consistent with recent calculations of neutron scattering in superionic conductors.
WISE J233237.05-505643.5: A Double-Peaked Broad-Lined AGN with Spiral-Shaped Radio Morphology
NASA Technical Reports Server (NTRS)
Tsai, Chao Wei; Jarrett, Thomas H.; Stern, Daniel; Emonts, Bjorn; Barrows, R. Scott; Assef, Roberto J.; Norris, Ray P.; Eisenhardt, Peter R. M.; Lonsdale, Carol; Blain, Andrew W.;
2013-01-01
We present radio continuum mapping, optical imaging and spectroscopy of the newly discovered double-peaked broad-lined AGN WISE J233237.05-505643.5 at redshift z = 0.3447. This source exhibits an FR-I and FR-II hybrid-morphology, characterized by bright core, jet, and Doppler-boosted lobe structures in ATCA continuum maps at 1.5, 5.6, and 9 GHz. Unlike most FR-II objects, W2332-5056 is hosted by a disk-like galaxy. The core has a projected 5" linear radio feature that is perpendicular to the curved primary jet, hinting at unusual and complex activity within the inner 25 kpc. The multi-epoch optical-near-IR photometric measurements indicate significant variability over a 3-20 year baseline from the AGN component. Gemini-South optical data shows an unusual double-peaked emission-line features: the centroids of the broad-lined components of H-alpha and H-beta are blueshifted with respect to the narrow lines and host galaxy by approximately 3800 km/s. We examine possible cases which involve single or double supermassive black holes in the system, and discuss required future investigations to disentangle the mystery nature of this system.
NASA Astrophysics Data System (ADS)
Pawlak, A.; Gülpınar, G.; Erdem, R.; Ağartıoğlu, M.
2015-12-01
The expressions for the dipolar and quadrupolar susceptibilities are obtained within the mean-field approximation in the Blume-Emery-Griffiths model. Temperature as well as crystal field dependences of the susceptibilities are investigated for two different phase diagram topologies which take place for K/J=3 and K/J=5.0.Their behavior near the second and first order transition points as well as multi-critical points such as tricritical, triple and critical endpoint is presented. It is found that in addition to the jumps connected with the phase transitions there are broad peaks in the quadrupolar susceptibility. It is indicated that these broad peaks lie on a prolongation of the first-order line from a triple point to a critical point ending the line of first-order transitions between two distinct paramagnetic phases. It is argued that the broad peaks are a reminiscence of very strong quadrupolar fluctuations at the critical point. The results reveal the fact that near ferromagnetic-paramagnetic phase transitions the quadrupolar susceptibility generally shows a jump whereas near the phase transition between two distinct paramagnetic phases it is an edge-like.
The Effect of Aging on the Microstructure of Selective Laser Melted Cu-Ni-Si
NASA Astrophysics Data System (ADS)
Ventura, Anthony P.; Marvel, Christopher J.; Pawlikowski, Gregory; Bayes, Martin; Watanabe, Masashi; Vinci, Richard P.; Misiolek, Wojciech Z.
2017-12-01
Precipitation hardening copper alloy C70250 was selectively laser melted to successfully produce components around 98 pct dense with high mechanical strength and electrical conductivity. Aging heat treatments were carried out at 723 K (450 °C) directly on as-printed samples up to 128 hours. Mechanical testing found that peak yield strength of around 590 MPa could be attained with an electrical conductivity of 34.2 pct IACS after 8 hours of aging. Conductivity continues to increase with further aging while the peak strength appears to be less sensitive to aging time exhibiting a broad range of time where near-peak properties exist. After aging for 128 hours, there is a drop in yield strength to 546 MPa with an increase in conductivity to 43.2 pct IACS. Electron microscopy analysis revealed nanometer-scale silicon-rich oxide particles throughout the material that persist during aging. Deformation twinning is observed in the peak-age condition after tensile testing and several strengthening mechanisms appear to be active to varying degrees throughout aging which account for the broad range of aging time where nearly the peak mechanical properties exist.
Bridgman growth and scintillation properties of calcium tungstate single crystal
NASA Astrophysics Data System (ADS)
Wang, Zhenhai; Jiang, Linwen; Chen, Yaping; Chen, Peng; Chen, Hongbing; Mao, Rihua
2017-12-01
CaWO4 single crystal with large size was grown by Bridgman method. The results of transmission spectra show that the transmittance of CaWO4 crystal reaches 79-85% in 320-800 nm wavelength range. The refraction index is near 1.80 in visible and infrared region. CaWO4 crystal shows a broad emission band centered at 424 nm under X-ray excitation and centered at 416 nm under ultraviolet (λex = 280 nm) excitation. The decay kinetics of CaWO4 single crystal shows double-exponential decay with fast decay constant τ1 = 5.4 μs and slow decay constant τ2 = 177.1 μs. The energy resolution of CaWO4 crystal was found to be 31.6% in the net peak of 545.9 channel. Meanwhile, the absolute output is at the lever of 19,000 ± 1000 photons/MeV. The results indicate the scintillator of CaWO4 single crystal has great potential in the applications of high-energy physics and nuclear physics due to its high light output and great energy resolution.
Ratcheting rotation or speedy spinning: EPR and dynamics of Sc3C2@C80.
Roukala, Juho; Straka, Michal; Taubert, Stefan; Vaara, Juha; Lantto, Perttu
2017-08-08
Besides their technological applications, endohedral fullerenes provide ideal conditions for investigating molecular dynamics in restricted geometries. A representative of this class of systems, Sc 3 C 2 @C 80 displays complex intramolecular dynamics. The motion of the 45 Sc trimer has a remarkable effect on its electron paramagnetic resonance (EPR) spectrum, which changes from a symmetric 22-peak pattern at high temperature to a single broad lineshape at low temperature. The scandium trimer consists of two equivalent and one inequivalent metal atom, due to the carbon dimer rocking through the Sc 3 triangle. We demonstrate through first-principles molecular dynamics (MD), EPR parameter tensor averaging, and spectral modelling that, at high temperatures, three-dimensional movement of the enclosed Sc 3 C 2 moiety takes place, which renders the metal centers equivalent and their magnetic parameters effectively isotropic. In contrast, at low temperatures the dynamics becomes restricted to two dimensions within the equatorial belt of the I h symmetric C 80 host fullerene. This restores the inequivalence of the scandium centers and causes their anisotropic hyperfine couplings to broaden the experimental spectrum.
Development of Novel Composite and Random Materials for Nonlinear Optics and Lasers
NASA Technical Reports Server (NTRS)
Noginov, Mikhail
2002-01-01
A qualitative model explaining sharp spectral peaks in emission of solid-state random laser materials with broad-band gain is proposed. The suggested mechanism of coherent emission relies on synchronization of phases in an ensemble of emitting centers, via time delays provided by a network of random scatterers, and amplification of spontaneous emission that supports the spontaneously organized coherent state. Laser-like emission from powders of solid-state luminophosphors, characterized by dramatic narrowing of the emission spectrum and shortening of emission pulses above the threshold, was first observed by Markushev et al. and further studied by a number of research groups. In particular, it has been shown that when the pumping energy significantly exceeds the threshold, one or several narrow emission lines can be observed in broad-band gain media with scatterers, such as films of ZnO nanoparticles, films of pi-conjugated polymers or infiltrated opals. The experimental features, commonly observed in various solid-state random laser materials characterized by different particle sizes, different values of the photon mean free path l*, different indexes of refraction, etc.. can be described as follows. (Liquid dye random lasers are not discussed here.)
Ultrafast Graphene Light Emitters.
Kim, Young Duck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Bae, Myung-Ho; Kim, Hyungsik; Seo, Dongjea; Choi, Heon-Jin; Kim, Suk Hyun; Nemilentsau, Andrei; Low, Tony; Tan, Cheng; Efetov, Dmitri K; Taniguchi, Takashi; Watanabe, Kenji; Shepard, Kenneth L; Heinz, Tony F; Englund, Dirk; Hone, James
2018-02-14
Ultrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ultrafast light sources with a small footprint remain a challenge. Here, we demonstrate electrically driven ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth across a broad spectral range from the visible to the near-infrared. The fast response results from ultrafast charge-carrier dynamics in graphene and weak electron-acoustic phonon-mediated coupling between the electronic and lattice degrees of freedom. We also find that encapsulating graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by changing the local optical density of states, thus providing up to 460% enhancement compared to the gray-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN encapsulation layers permit stable and bright visible thermal radiation with electronic temperatures up to 2000 K under ambient conditions as well as efficient ultrafast electronic cooling via near-field coupling to hybrid polaritonic modes under electrical excitation. These high-speed graphene light emitters provide a promising path for on-chip light sources for optical communications and other optoelectronic applications.
Snow Peak, OR: Miocene and Pliocene Tholeiitic Volcanism in the Cascadia Forearc
NASA Astrophysics Data System (ADS)
Hatfield, A. K.; Kent, A. J.; Nielsen, R. L.; Rowe, M. C.; Duncan, R. A.
2007-12-01
Snow Peak is a voluminous (>150 km3), glacially dissected shield volcano located approximately 50 km southeast of Salem, OR, with a summit height of 1,310 m above sea level. Snow Peak lies approximately 60 km west of the current High Cascade arc axis. Lavas from the southeast face of Snow Peak have been previously dated using K-Ar at ~3 Ma. New Ar-Ar dating indicates that lavas from the northwest face are ~5.4 Ma, and the summit plug is ~6 Ma. Snow Peak volcanics unconformably overlie western Cascade volcanics aged from middle to late Miocene (~10- 17 Ma). The age of Snow Peak is broadly contemporaneous with the initiation of modern High Cascade volcanism. Snow Peak's location provides a rare opportunity to study magmas produced within the modern High Cascades forearc region. The goal of this investigation is to characterize the composition and timing of volcanism at Snow Peak and the role of volatiles in magma genesis. Hypotheses for the formation of Snow Peak include flux melting associated with the Cascadia subduction zone and/or decompression melting associated with extensional faulting. Preliminary geochemical data on the basalts from Snow Peak indicate that they are low-to-medium-K tholeiites (SiO2 47.9-51.7 wt.%, MgO 5.5- 8.3 wt.%, K2O, 0.36-0.55 wt.%) and that they range from primitive to moderately evolved (Mg# 0.51-0.61). Common phenocryst phases are plagioclase, olivine, and clinopyroxene. Textures are typically hypocrystalline, and fine-grained to porphyritic. Mantle-normalized multi-element plots indicate Snow Peak lavas are generally HFSE depleted and LILE enriched. These data are consistent with a preliminary interpretation of a subduction zone signature, yet the major element composition most closely resembles high alumina olivine tholeiite (HAOT), more indicative of extensional environments. The degree of LILE enrichment is significantly lower than in calc alkaline lavas from the High Cascades and western Cascades. Determining the petrogenesis of this forearc center will include a comprehensive analysis of the volcano's major and trace element geochemistry, and additional age dating to constrain eruption rates. Direct measurement of volatiles in olivine-hosted melt inclusions will complement the major and trace element geochemistry in order to measure pre-eruptive water contents.
Mid-infrared laser filaments in the atmosphere
Mitrofanov, A. V.; Voronin, A. A.; Sidorov-Biryukov, D. A.; Pugžlys, A.; Stepanov, E. A.; Andriukaitis, G.; Flöry, T.; Ališauskas, S.; Fedotov, A. B.; Baltuška, A.; Zheltikov, A. M.
2015-01-01
Filamentation of ultrashort laser pulses in the atmosphere offers unique opportunities for long-range transmission of high-power laser radiation and standoff detection. With the critical power of self-focusing scaling as the laser wavelength squared, the quest for longer-wavelength drivers, which would radically increase the peak power and, hence, the laser energy in a single filament, has been ongoing over two decades, during which time the available laser sources limited filamentation experiments in the atmosphere to the near-infrared and visible ranges. Here, we demonstrate filamentation of ultrashort mid-infrared pulses in the atmosphere for the first time. We show that, with the spectrum of a femtosecond laser driver centered at 3.9 μm, right at the edge of the atmospheric transmission window, radiation energies above 20 mJ and peak powers in excess of 200 GW can be transmitted through the atmosphere in a single filament. Our studies reveal unique properties of mid-infrared filaments, where the generation of powerful mid-infrared supercontinuum is accompanied by unusual scenarios of optical harmonic generation, giving rise to remarkably broad radiation spectra, stretching from the visible to the mid-infrared. PMID:25687621
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández-Perea, Mónica; Soufli, Regina; Robinson, Jeff C.
2012-01-01
We have developed new, corrosion-resistant Mg/SiC multilayer coatings which can be used to efficiently and simultaneously reflect extreme ultraviolet (EUV) radiation in single or multiple narrow bands centered at wavelengths in the spectral region from 25 to 80 nm. Corrosion mitigation is achieved through the use of partially amorphous Al-Mg thin layers. Three different multilayer design concepts were developed and deposited by magnetron sputtering and the reflectance was measured at near-normal incidence in a broad spectral range. Unprotected Mg/SiC multilayers were also deposited and measured for comparison. They were shown to efficiently reflect radiation at a wavelength of 76.9 nmmore » with a peak reflectance of 40.6% at near-normal incidence, the highest experimental reflectance reported at this wavelength for a narrowband coating. The demonstration of multilayer coatings with corrosion resistance and multiplewavelength EUV performance is of great interest in the development of mirrors for space-borne solar physics telescopes and other applications requiring long-lasting coatings with narrowband response in multiple emission lines across the EUV range.« less
The influence of microlensing on spectral line shapes generated by a relativistic accretion disc
NASA Astrophysics Data System (ADS)
Popović, L. Č; Mediavilla, E. G.; Muñoz, J. A.
2001-10-01
We study the influence of gravitational microlensing on the spectral line profiles originating from a relativistic accretion disc. Using the Chen & Halpern model for the disc, we show the noticeable changes that microlensing can induce in the line shape when the Einstein radius associated with the microlens is of a size comparable to that of the accretion disc. Of special interest is the relative enhancement between the blue and red peaks of the line when an off-center microlens affects the approaching and receding parts of the accretion disc asymmetrically. In an AGN formed by a super-massive binary in which the accretion disc is located around one of the super-massive companions (the primary), we discuss the possibility of microlensing by the secondary. In this case the ratio between the blue and red peaks of the line profile would depend on the orbital phase. We have also considered the more standard configuration of microlensing by a star-sized object in an intervening galaxy and find that microlensing may also be detected in the broad emission lines of multiply imaged QSOs. The changes observed in the line profile of Arp 102 B are taken as a reference for exploring both scenarios.
High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region
NASA Technical Reports Server (NTRS)
Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.
1994-01-01
Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps to refine and extend previous observations; for example, we show that ionospheric contribution to O(+3)) is negligible. Through comparison with model ion trajectories, we interpret the lack of pronounced secondary ion density peaks colocated with the primary density peaks to indicate that: (1) negligible charge exchange occurs at L greater than 7, that is, solar wind secondaries are produced at L less than 7, and (2) solar wind secondaries do not form a significant portion of the plasma sheet population injected into the QTR. We conclude that little of the energetic solar wind secondary ion population is recirculated through the magnetosphere.
Fidder, Henk; Yang, Ming; Nibbering, Erik T J; Elsaesser, Thomas; Röttger, Katharina; Temps, Friedrich
2013-02-07
Dynamics and couplings of N-H stretching vibrations of chemically modified guanosine-cytidine (G·C) base pairs in chloroform are investigated with linear infrared spectroscopy and ultrafast two-dimensional infrared (2D-IR) spectroscopy. Comparison of G·C absorption spectra before and after H/D exchange reveals significant N-H stretching absorption in the region from 2500 up to 3300 cm(-1). Both of the local stretching modes ν(C)(NH(2))(b) of the hydrogen-bonded N-H moiety of the cytidine NH(2) group and ν(G)(NH) of the guanosine N-H group contribute to this broad absorption band. Its complex line shape is attributed to Fermi resonances of the N-H stretching modes with combination and overtones of fingerprint vibrations and anharmonic couplings to low-frequency modes. Cross-peaks in the nonlinear 2D spectra between the 3491 cm(-1) free N-H oscillator band and the bands centered at 3145 and 3303 cm(-1) imply N-H···O═C hydrogen bond character for both of these transitions. Time evolution illustrates that the 3303 cm(-1) band is composed of a nearly homogeneous band absorbing at 3301 cm(-1), ascribed to ν(G)(NH(2))(b), and a broad inhomogeneous band peaking at 3380 cm(-1) with mainly guanosine carbonyl overtone character. Kinetics and signal strengths indicate a <0.2 ps virtually complete population transfer from the excited ν(G)(NH(2))(b) mode to the ν(G)(NH) mode at 3145 cm(-1), suggesting lifetime broadening as the dominant source for the homogeneous line shape of the 3301 cm(-1) transition. For the 3145 cm(-1) band, a 0.3 ps population lifetime was obtained.
Call-Center Based Disease Management of Pediatric Asthmatics
2005-04-01
study locations. Purchase peak flow meters. Prepare and reproduce patient education materials, and informed consent work sheets. Contract Oracle data...identified. Electronic peak flow meters have been purchased. Patient education materials and informed consent documents have been reproduced. A web-based...Research Center * Study population identified via military and Foundation Health databases * Electronic peak flow meters purchased * Patient education materials
Ice Action on Pairs of Cylindrical and Conical Structures,
1983-09-01
correlation because the forces generated ficult to pick a distinct peak in the autospectra for between the structure and the ice sheet are af- the...against two conical structures ...... 20 24. Normalized maximum ice force versus ice velocity ................. 20 25. Normalized initial peak force...versus ice velocity .................. 21 26. Ratio of initial peak ice force to theoretical ice force versus ratio of center-to-center distance
2009-06-25
41G-43-016 (5-13 Oct 1984) --- The Gulf of Alaska, with the great peaks of the Saint Elias Range of Alaska, Yukon, and British Columbia. Mount Logan, Canada's highest mountain peak at 19,850 feet, is to the left of the center of the photograph. Between Saint Elias Peak and Mount Vancouver, right of center, flows the great Malaspina Glacier in a great lobe of ice shaped like a human ear.
Liu, Jue; Yin, Liang; Wu, Lijun; ...
2016-08-17
Here, ordered and disordered samples of honeycomb-lattice Na 3Ni 2BiO 6 were investigated as cathodes for Na-ion batteries, and it was determined that the ordered sample exhibits better electrochemical performance, with a specific capacity of 104 mA h/g delivered at plateaus of 3.5 and 3.2 V (vs Na +/Na) with minimal capacity fade during extended cycling. Advanced imaging and diffraction investigations showed that the primary difference between the ordered and disordered samples is the amount of number-type stacking faults associated with the three possible centering choices for each honeycomb layer. A labeling scheme for assigning the number position of honeycombmore » layers is described, and it is shown that the translational shift vectors between layers provide the simplest method for classifying different repeat patterns. We demonstrate that the number position of honeycomb layers can be directly determined in high-angle annular dark-field scanning transmission electron microscopy (STEM-HAADF) imaging studies. By the use of fault models derived from STEM studies, it is shown that both the sharp, symmetric subcell peaks and the broad, asymmetric superstructure peaks in powder diffraction patterns can be quantitatively modeled. About 20% of the layers in the ordered monoclinic sample are faulted in a nonrandom manner, while the disordered sample stacking is not fully random but instead contains about 4% monoclinic order. Furthermore, it is shown that the ordered sample has a series of higher-order superstructure peaks associated with 6-, 9-, 12-, and 15-layer periods whose existence is transiently driven by the presence of long-range strain that is an inherent consequence of the synthesis mechanism revealed through the present diffraction and imaging studies. This strain is closely associated with a monoclinic shear that can be directly calculated from cell lattice parameters and is strongly correlated with the degree of ordering in the samples. The present results are broadly applicable to other honeycomb-lattice systems, including Li 2MnO 3 and related Li-excess cathode compositions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jue; Yin, Liang; Wu, Lijun
Here, ordered and disordered samples of honeycomb-lattice Na 3Ni 2BiO 6 were investigated as cathodes for Na-ion batteries, and it was determined that the ordered sample exhibits better electrochemical performance, with a specific capacity of 104 mA h/g delivered at plateaus of 3.5 and 3.2 V (vs Na +/Na) with minimal capacity fade during extended cycling. Advanced imaging and diffraction investigations showed that the primary difference between the ordered and disordered samples is the amount of number-type stacking faults associated with the three possible centering choices for each honeycomb layer. A labeling scheme for assigning the number position of honeycombmore » layers is described, and it is shown that the translational shift vectors between layers provide the simplest method for classifying different repeat patterns. We demonstrate that the number position of honeycomb layers can be directly determined in high-angle annular dark-field scanning transmission electron microscopy (STEM-HAADF) imaging studies. By the use of fault models derived from STEM studies, it is shown that both the sharp, symmetric subcell peaks and the broad, asymmetric superstructure peaks in powder diffraction patterns can be quantitatively modeled. About 20% of the layers in the ordered monoclinic sample are faulted in a nonrandom manner, while the disordered sample stacking is not fully random but instead contains about 4% monoclinic order. Furthermore, it is shown that the ordered sample has a series of higher-order superstructure peaks associated with 6-, 9-, 12-, and 15-layer periods whose existence is transiently driven by the presence of long-range strain that is an inherent consequence of the synthesis mechanism revealed through the present diffraction and imaging studies. This strain is closely associated with a monoclinic shear that can be directly calculated from cell lattice parameters and is strongly correlated with the degree of ordering in the samples. The present results are broadly applicable to other honeycomb-lattice systems, including Li 2MnO 3 and related Li-excess cathode compositions.« less
Addiction research centres and the nurturing of creativity. RAND's Drug Policy Research Center.
Reuter, Peter; Pacula, Rosalie Liccardo; Caulkins, Jonathan P
2011-02-01
In September 1989, amid an emotional and ideological debate regarding problematic drug use in the United States and the 'war on drugs', RAND's Drug Policy Research Center (DPRC) was created through private foundation funds. The purpose of this new research center was to provide objective empirical analysis on which to base sound drug policy. Twenty years later, RAND's DPRC continues its work, drawing on a broad range of analytical expertise to evaluate, compare and assess the effectiveness of a similarly broad range of drug policies. More than 60 affiliated researchers in the United States and Europe make up the Center, which attempts to provide objective empirical analyses to better inform drug policies within the United States and abroad. This paper provides a look back at the creation, evolution and growth of the Center. It then describes how the Center operates today and how it has maintained its clear identity and focus by drawing on the analytical capabilities of a talented group of researchers from a broad range of academic disciplines. © 2010 The Authors, Addiction © 2010 Society for the Study of Addiction.
An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers
NASA Technical Reports Server (NTRS)
Short, David A.; Wells, Leonard A.; Merceret, Francis J.; Roeder, William P.
2005-01-01
This study focuses on a comparison of peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. The legacy mechanical wind instruments on CCAFS/KSC and VAFB weather towers are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. The wind tower networks on KSC/CCAFS and VAFB have 41 and 27 towers, respectively. Launch Weather Officers, forecasters, and Range Safety analysts at both locations need to understand the performance of the new wind sensors for a myriad of reasons that include weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The Legacy sensors measure wind speed and direction mechanically. The ultrasonic RSA sensors have no moving parts. Ultrasonic sensors were originally developed to measure very light winds (Lewis and Dover 2004). The technology has evolved and now ultrasonic sensors provide reliable wind data over a broad range of wind speeds. However, because ultrasonic sensors respond more quickly than mechanical sensors to rapid fluctuations in speed, characteristic of gusty wind conditions, comparisons of data from the two sensor types have shown differences in the statistics of peak wind speeds (Lewis and Dover 2004). The 45th Weather Squadron (45 WS) and the 30 WS requested the Applied Meteorology Unit (AMU) to compare data from RSA and Legacy sensors to determine if there are significant differences in peak wind speed information from the two systems.
5. An elevated view of the south face of the ...
5. An elevated view of the south face of the Broad Street bridge looking northwest from Civic Center Drive. - Broad Street Bridge, Spanning Scioto River at U.S. Route 40 (Broad Street), Columbus, Franklin County, OH
Effects of altering heel wedge properties on gait with the Intrepid Dynamic Exoskeletal Orthosis.
Ikeda, Andrea J; Fergason, John R; Wilken, Jason M
2018-06-01
The Intrepid Dynamic Exoskeletal Orthosis is a custom-made dynamic response carbon fiber device. A heel wedge, which sits in the shoe, is an integral part of the orthosis-heel wedge-shoe system. Because the device restricts ankle movement, the system must compensate to simulate plantarflexion and allow smooth forward progression during gait. To determine the influence of wedge height and durometer on the walking gait of individuals using the Intrepid Dynamic Exoskeletal Orthosis. Repeated measures. Twelve individuals walked over level ground with their Intrepid Dynamic Exoskeletal Orthosis and six different heel wedges of soft or firm durometer and 1, 2, or 3 cm height. Center of pressure velocity, joint moments, and roll-over shape were calculated for each wedge. Height and durometer significantly affected time to peak center of pressure velocity, time to peak internal dorsiflexion and knee extension moments, time to ankle moment zero crossing, and roll-over shape center of curvature anterior-posterior position. Wedge height had a significant influence on peak center of pressure velocity, peak dorsiflexion moment, time to peak knee extension moment, and roll-over shape radius and vertical center of curvature. Changes in wedge height and durometer systematically affected foot loading. Participants preferred wedges which produced ankle moment zero crossing timing, peak internal knee extension moment timing, and roll-over shape center of curvature anterior-posterior position close to that of able-bodied individuals. Clinical relevance Adjusting the heel wedge is a simple, straightforward way to adjust the orthosis-heel wedge-shoe system. Changing wedge height and durometer significantly alters loading of the foot and has great potential to improve an individual's gait.
Measurement of peak discharge at dams by indirect methods
Hulsing, Harry
1967-01-01
This chapter describes procedures for measuring peak discharges using dams, weirs, and embankments. Field and office procedures limited to this method are described. Discharge coefficients and formulas are given for three general classes of weirs-sharp-crested, broad-crested, and round-crested-and for highway embankments and weirs of unusual shape. The effects of submergence are defined for most forms.
Broadband terahertz dynamics of propylene glycol monomer and oligomers
NASA Astrophysics Data System (ADS)
Koda, Shota; Mori, Tatsuya; Kojima, Seiji
2016-12-01
We investigated the broadband terahertz spectra (0.1-5.0 THz) of glass-forming liquids, propylene glycol (PG), its oligomers poly (propylene glycol)s (PPGs), and poly (propylene glycol) diglycidyl ether (PPG-de) using broadband terahertz time-domain spectroscopy and low-frequency Raman scattering. The numerical value of the dielectric loss at around 1.5 THz, which is the peak position of broad peaks in all samples, decreased as the molecular weight increased. Furthermore, the peak at around 1.5 THz is insensitive to the molecular weight. For PPGs, the side chain effect of the oligomer was observed in the terahertz region. Based on the experimental and calculation results for the PPGs and PPG-de, whose end groups are epoxy groups, the beginnings of the increases in the observed dielectric loss above 3.5 THz of the PPGs are assigned to the OH bending vibration. The higher value of the dielectric loss in the terahertz region for the PPG-de can be the tail of a broad peak located in the MHz region. The difference between the Raman susceptibility and dielectric loss reflects the difference in the observable molecular dynamics between the infrared and Raman spectroscopies.
NASA Astrophysics Data System (ADS)
Araki, Shouhei; Watanabe, Yukinobu; Kitajima, Mizuki; Sadamatsu, Hiroki; Nakano, Keita; Kin, Tadahiro; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki; Yashima, Hiroshi; Shima, Tatsushi
2017-01-01
Double-differential neutron production cross sections (DDXs) for deuteron-induced reactions on Li, Be, C, Al, Cu, and Nb at 102 MeV were measured at forward angles ≤25° by means of a time of flight (TOF) method with NE213 liquid organic scintillators at the Research Center of Nuclear Physics (RCNP), Osaka University. The experimental DDXs and energy-integrated cross sections were compared with TENDL-2015 data and Particle and Heavy Ion Transport code System (PHITS) calculation using a combination of the KUROTAMA model, the Liege Intra-Nuclear Cascade model, and the generalized evaporation model. The PHITS calculation showed better agreement with the experimental results than TENDL-2015 for all target nuclei, although the shape of the broad peak around 50 MeV was not satisfactorily reproduced by the PHITS calculation.
Ultra-broadband amplification properties of Ni2+-doped glass-ceramics amplifiers.
Jiang, Chun
2009-04-13
The energy level, transition configuration and mathematical model of Ni(2+)-doped glass-ceramics amplifiers are presented for the first time, to the best of one's knowledge. A quasi-three-level system is employed to model the gain and noise characteristics of the doped system, and the rate and power propagation equations of the mathematical model are solved to analyze the effect of the active ion concentration, fiber length, pump power as well as thermal-quenching on the gain spectra. It is shown that our model is in agreement with experimental result, and when excited at longer wavelength, the center of gain spectra of the amplifier red shifts, the ultra-broad band room-temperature gain spectra can cover 1.25-1.65 microm range for amplification of signal in the low-loss windows of the all-wave fiber without absorption peak caused by OH group.
Correlation structures from soft and semi-hard components in p-p collisions at √s =200 GeV
Porter, R. J.; Trainor, T. A.
2005-02-01
We present preliminary two-particle correlations for unidentified hadrons in p-p collisions at √s =200 GeV. On two-particle transverse rapidity space y t Ⓧ y t two distinct regions of correlated pairs are observed: a peaked structure at low y t (P t ≤ 0.4 GeV/c) and a broad structure at higher y t , where the correlation is distributed as a 2D Gaussian centered at y t1 = y t2 ≃ 2.8 (p t1 , p t2 ≃ 1.2 GeV/c). We select those regions separately, projecting correlations onto momentum- difference variables (ηΔ, φΔ), and observe structures interpretable in the contextmore » of string and parton fragmentations from soft and semi-hard components of p-p collisions.« less
Optical properties of diamond like carbon nanocomposite thin films
NASA Astrophysics Data System (ADS)
Alam, Md Shahbaz; Mukherjee, Nillohit; Ahmed, Sk. Faruque
2018-05-01
The optical properties of silicon incorporated diamond like carbon (Si-DLC) nanocomposite thin films have been reported. The Si-DLC nanocomposite thin film deposited on glass and silicon substrate by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process. Fourier transformed infrared spectroscopic analysis revealed the presence of different bonding within the deposited films and deconvolution of FTIR spectra gives the chemical composition i.e., sp3/sp2 ratio in the films. Optical band gap calculated from transmittance spectra increased from 0.98 to 2.21 eV with a variation of silicon concentration from 0 to 15.4 at. %. Due to change in electronic structure by Si incorporation, the Si-DLC film showed a broad photoluminescence (PL) peak centered at 467 nm, i.e., in the visible range and its intensity was found to increase monotonically with at. % of Si.
Optical transitions of Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 glass.
Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Gao, Yuan
2005-10-01
Optical absorption and emission properties of the Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 (TWB) glass has been investigated. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. The broad 1.5 microm fluorescence was observed under 970 nm excitation, and its full width at half maximum (FWHM) is 77 nm. The emission cross-section is calculated using the McCumber theory, and the peak emission cross-section is 1.03 x 10(-21) cm2 at 1.531 microm. This value is much larger than those of the silicate and phosphate glasses. Efficient green and weak red upconversion luminescence from Er3+ centers in the glass sample was observed at room temperature, and the upconversion excitation processes have been analyzed.
Improvement of UV electroluminescence of n-ZnO/p-GaN heterojunction LED by ZnS interlayer.
Zhang, Lichun; Li, Qingshan; Shang, Liang; Wang, Feifei; Qu, Chong; Zhao, Fengzhou
2013-07-15
n-ZnO/p-GaN heterojunction light emitting diodes with different interfacial layers were fabricated by pulsed laser deposition. The electroluminescence (EL) spectra of the n-ZnO/p-GaN diodes display a broad blue-violet emission centered at 430 nm, whereas the n-ZnO/ZnS/p-GaN and n-ZnO/AlN/p-GaN devices exhibit ultraviolet (UV) emission. Compared with the AlN interlayer, which is blocking both electron and hole at hetero-interface, the utilization of ZnS as intermediate layer can lower the barrier height for holes and keep an effective blocking for electron. Thus, an improved UV EL intensity and a low turn-on voltage (~5V) were obtained. The results were studied by peak-deconvolution with Gaussian functions and were discussed using the band diagram of heterojunctions.
Radiation hardness of Ce-doped sol-gel silica fibers for high energy physics applications.
Cova, Francesca; Moretti, Federico; Fasoli, Mauro; Chiodini, Norberto; Pauwels, Kristof; Auffray, Etiennette; Lucchini, Marco Toliman; Baccaro, Stefania; Cemmi, Alessia; Bártová, Hana; Vedda, Anna
2018-02-15
The results of irradiation tests on Ce-doped sol-gel silica using x- and γ-rays up to 10 kGy are reported in order to investigate the radiation hardness of this material for high-energy physics applications. Sol-gel silica fibers with Ce concentrations of 0.0125 and 0.05 mol. % are characterized by means of optical absorption and attenuation length measurements before and after irradiation. The two different techniques give comparable results, evidencing the formation of a main broad radiation-induced absorption band, peaking at about 2.2 eV, related to radiation-induced color centers. The results are compared with those obtained on bulk silica. This study reveals that an improvement of the radiation hardness of Ce-doped silica fibers can be achieved by reducing Ce content inside the fiber core, paving the way for further material development.
Trivalent cerium coped crystals as tunable laser systems: two bad apples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, D.S.
1985-01-01
The 5d-4f transitions of trivalent doped crystals have broad emission bands with large oscillator strengths and near unity quantum efficiency. These characteristics make cerium systems strong candidates for tunable solid state lasers. However, two such cerium crystals will probably never lase. The first is Ce/sup 3 +/:YAG where a strong excited state absorption quenches the lasing transition. Our recent measurements have indicated that the excited state absorption terminates in the YAG conduction band with a peak cross section of 1.0 x 10/sup -17/ cm/sup 2/ at 700 nm. Some of the general features of impurity ion to band spectra aremore » discussed. The second system is Ce/sup 3 +/:CaF/sub 2/ where a uv pump induced photochromic center is produced following excitation of the cerium ions. The initial measurements of cerium related transient absorptions in Ce/sup 3 +/:YLF are also presented.« less
VizieR Online Data Catalog: Broad Hβ emission line in 102 Seyfert galaxies (Runco+, 2016)
NASA Astrophysics Data System (ADS)
Runco, J. N.; Cosens, M.; Bennert, V. N.; Scott, B.; Komossa, S.; Malkan, M. A.; Lazarova, M. S.; Auger, M. W.; Treu, T.; Park, D.
2018-02-01
A sample of 102 local (0.02=
IGR J12319-0749: Evidence for Another Extreme Blazar Found with INTEGRAL
NASA Technical Reports Server (NTRS)
Bassani, L.; Landi, R.; Marshall, F. E.; Malizia, A.; Bazzano, A.; Bird, A. J.; Gehrels, N.; Ubertini, P.; Masetti, N.
2012-01-01
We report on the identification of a new soft gamma-ray source, IGR J12319 C0749, detected with the IBIS imager on board the INTEGRAL satellite. The source, which has an observed 20 C100 keV flux of 8.3 10.12 erg cm.2 s.1, is spatially coincident with an AGN at redshift z = 3.12. The broad-band continuum, obtained by combining XRT and IBIS data, is flat ( =1.3) with evidence for a spectral break around 25 keV (100 keV in the source rest frame). X-ray observations indicate flux variability which is further supported by a comparison with a previous ROSAT measurement. IGR J12319 C0749 is also a radio emitting object likely characterized by a flat spectrum and high radio loudness; optically it is a broad-line emitting object with a massive black hole (2.8 109 solar masses) at its center. The source Spectral Energy Distribution is similar to another high redshift blazar, 225155+2217 at z = 3.668: both objects are bright, with a large accretion disk luminosity and a Compton peak located in the hard X-ray/soft gamma-ray band. IGR J12319 C0749 is likely the second most distant blazar detected so far by INTEGRAL.
Spectral Behavior of Irradiated Sodium Chloride Crystals Under Europa-Like Conditions
NASA Astrophysics Data System (ADS)
Poston, Michael J.; Carlson, Robert W.; Hand, Kevin P.
2017-12-01
F- and M-color center formation (decay) was observed during (after) irradiation of sodium chloride crystal grains with 10 keV electrons as a function of temperature, radiation dose rate, and radiation dose. The F centers (peak center: 460 nm) were found to form and decay at a faster rate than the M centers (peak center: 720 nm). These effects were influenced by temperature and possibly by irradiation dose rate. Tracking the band depth ratio of the color center features during irradiation could enable age determination of geologically very young features on the surface of Europa and other icy ocean worlds.
2015-02-19
JSC2015E053686 (04/30/2015) --- Expedition 44 backup crew ESA (European Space Agency) astronaut Timothy Peake (left), Russian cosmonaut Yuri Malenchenko (ROSCOSMOS) (center), and NASA astronaut Timothy L. Kopra .
Kinetic-Energy Distribution of D(2p) Atoms from Analysis of the D Lyman-Alpha Line Profile
NASA Technical Reports Server (NTRS)
Ciocca, M.; Ajello, Joseph M.; Liu, Xianming; Maki, Justin
1997-01-01
The kinetic-energy distribution of D(2p) atoms resulting from electron-impact dissociation of D2 has been measured. A high-resolution vacuum ultraviolet spectrometer was employed for the first measurement of the D Lyman-alpha (D L(alpha)) emission line profiles at 20- and 100-eV excitation energies. Analysis of the deconvoluted line profile of D L(alpha) at 100 eV reveals the existence of a narrow line central peak of 29+/-2 mA full width at half maximum and a broad pedestal wing structure about 190 mA wide. The wings of the line can be used to determine the fast atom distribution. The wings of D L(alpha) arise from dissociative excitation of a series of doubly excited states that cross the Franck-Condon region between 23 and 40 eV. The fast atom distribution at 100-eV electron impact energy spans the energy range from 1 to 10 eV with a peak value near 6 eV. Slow D(2p) atoms characterized by a distribution function with peak energy near 100 meV produce the central peak profile, which is nearly independent of the impact energy. The deconvoluted line profiles of the central peak at 20 eV for dissociative excitation of D2 and H2 are fitted with an analytical function for use in calibration of space flight instrumentation equipped with a D/H absorption cell. The kinetic-energy and line profile results are compared to similar measurements for H2. The absolute cross sections for the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coefficients are given for the energy dependence of the measured slow atom cross section.
Shivaramu, N J; Lakshminarasappa, B N; Nagabhushana, K R; Singh, Fouran
2016-02-05
Nanocrystalline Y2O3 is synthesized by solution combustion technique using urea and glycine as fuels. X-ray diffraction (XRD) pattern of as prepared sample shows amorphous nature while annealed samples show cubic nature. The average crystallite size is calculated using Scherrer's formula and is found to be in the range 14-30 nm for samples synthesized using urea and 15-20 nm for samples synthesized using glycine respectively. Field emission scanning electron microscopy (FE-SEM) image of 1173 K annealed Y2O3 samples show well separated spherical shape particles and the average particle size is found to be in the range 28-35 nm. Fourier transformed infrared (FTIR) and Raman spectroscopy reveals a stretching of Y-O bond. Electron spin resonance (ESR) shows V(-) center, O2(-) and Y(2+) defects. A broad photoluminescence (PL) emission with peak at ~386nm is observed when the sample is excited with 252 nm. Thermoluminescence (TL) properties of γ-irradiated Y2O3 nanopowder are studied at a heating rate of 5 K s(-1). The samples prepared by using urea show a prominent and well resolved peak at ~383 K and a weak one at ~570 K. It is also found that TL glow peak intensity (I(m1)) at ~383 K increases with increase in γ-dose up to ~6.0 kGy and then decreases with increase in dose. However, glycine used Y2O3 shows a prominent TL glow with peaks at 396 K and 590 K. Among the fuels, urea used Y2O3 shows simple and well resolved TL glows. This might be due to fuel and hence particle size effect. The kinetic parameters are calculated by Chen's glow curve peak shape method and results are discussed in detail. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Shunkeyev, K.; Myasnikova, L.; Barmina, A.; Zhanturina, N.; Sagimbaeva, Sh; Aimaganbetova, Z.; Sergeyev, D.
2017-05-01
The efficiency of radiation defects formation in alkali halide crystals (AHC) was studied by the method of absorption spectroscopy. However, it is not possible to study the deformation-stimulated processes in detail by the absorption spectrum of radiation defects due to the limited sensitivity compared with luminescent spectroscopy. In this regard, thermally stimulated luminescence (TSL) of radiation defects at elastic and plastic deformation was applied in AHC. In the absence of deformation, the dominant peaks in TSL are ≤ft( {X_3^ - } \\right)aca^0-centers. After elastic deformation, low temperature peaks of TSL corresponding to F‧-, VK- and VF-centers became dominant. After plastic deformation, the peaks of TSL corresponding to ≤ft( {X_3^ - } \\right)aca^0-centers became dominant. The elastic deformation contributes to the increase in concentration of low-temperature F‧-, VK- and VF-centers, and the plastic one contributes to that of high temperature ≤ft( {X_3^ - } \\right)aca^0-centers (peaks of TSL in KCl at 360K, in KBr at 365K, in KI at 340K), composed by divacancies created by plastic deformation. At elastic deformation, unrelaxed interstitial halogen atoms are converted into VK- and VF-centers, and due to this fact the long-range interaction is absent, the result of which are the X_3^ - -centers.
Global-scale modes of surface temperature variability on interannual to century timescales
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Park, Jeffrey
1994-01-01
Using 100 years of global temperature anomaly data, we have performed a singluar value decomposition of temperature variations in narrow frequency bands to isolate coherent spatio-temporal modes of global climate variability. Statistical significance is determined from confidence limits obtained by Monte Carlo simulations. Secular variance is dominated by a globally coherent trend; with nearly all grid points warming in phase at varying amplitude. A smaller, but significant, share of the secular variance corresponds to a pattern dominated by warming and subsequent cooling in the high latitude North Atlantic with a roughly centennial timescale. Spatial patterns associated with significant peaks in variance within a broad period range from 2.8 to 5.7 years exhibit characteristic El Nino-Southern Oscillation (ENSO) patterns. A recent transition to a regime of higher ENSO frequency is suggested by our analysis. An interdecadal mode in the 15-to-18 years period and a mode centered at 7-to-8 years period both exhibit predominantly a North Atlantic Oscillation (NAO) temperature pattern. A potentially significant decadal mode centered on 11-to-12 years period also exhibits an NAO temperature pattern and may be modulated by the century-scale North Atlantic variability.
2002-03-29
KENNEDY SPACE CENTER, FLA. - Water droplets fall from the broad bill of a Roseate Spoonbill after lifting its head from the water. The site is near Kennedy Space Center. Spoonbills obtain food by sweeping their broad bills from side to side. They inhabit mangroves, ranging from the coasts of southern Florida and Texas (sometimes Louisiana), the West Indies, Mexico and Central and South America.
Public Address Set AN/UIQ-10 (XLW-1)
1972-01-01
case. /,320 Hz No visible indication. Major Horizontal Broadband Resonance Resonance center located 300 to 500 peak at on case over relay bracket. ’ 375 ... Hz No visible indication. Minor Horizontal Broadband Resonance Resonance center located 150 to 190 peak at case over relay bracket. Hz Slight
Evidence for Langmuir Envelope Solitons in Solar Type III Burst Source Regions
NASA Technical Reports Server (NTRS)
Thejappa, G.; Goldstein, M. L.; MacDowall, R. J.; Papadopoulos, K.; Stone, R. G.
1998-01-01
We present observational evidence for the generation of Langmuir envelope solitons in the source regions of solar type III radio bursts. The solitons appear to be formed by electron beams which excite either the modulational instability or oscillating two-stream instability (OTSI). Millisecond data from the Ulysses Unified Radio and Plasma Wave Experiment (URAP) show that Langmuir waves associated with type III bursts occur as broad intense peaks with time scales ranging from 15 to 90 milliseconds (6 - 27 km). These broad field structures have the properties expected of Langmuir envelope solitons, viz.: the normalized peak energy densities, W(sub L)/n(sub e)T(sub e) approximately 10(exp -5), are well above the modulational instability threshold; the spatial scales, L, which range from 1 - 5 Langmuir wavelengths, show a high degree of inverse correlation with (W(sub L)/n(sub e)T(sub e))(sup 1/2); and the observed widths of these broad peaks agree well with the predicted widths of envelope solitons. We show that the orientation of the Langmuir field structures is random with respect to the ambient magnetic field, indicating that they are probably isotropic structures that have evolved from initially pancake-like solitons. These observations suggest that strong turbulence processes, such as the modulational instability or the OTSI, stabilize the electron beams that produce type III bursts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nhalil, Hariharan; Whiteside, Vincent R.; Sellers, Ian R.
Here, we report synthesis, crystal and electronic structures, and optical properties of two new Hg-based zero-dimensional hybrid organic-inorganic halides (HIm)2Hg3Cl8 and (HIm)HgI3 (HIm = imidazolium). (HIm) 2Hg 3Cl 8 crystallizes in the triclinic P-1 space group with a pseudo-layered structure made of organic imidazolium cation layers and anionic inorganic layers containing [Hg 2Cl 6] 2- units and linear [HgCl 2] 0 molecules. (HIm)HgI 3 crystallizes in the monoclinic P2 1/c space group featuring anionic [HgI 3]- units that are surrounded by imidazolium cations. Based on density functional theory calculations, (HIm) 2Hg 3Cl 8 has an indirect band gap, whereas (HIm)HgImore » 3 has a direct band gap with the measured onsets of optical absorption at 3.43 and 2.63 eV, respectively. (HIm) 2Hg 3Cl 8 and (HIm)HgI 3 are broadband light emitters with broad photoluminescence peaks centered at 548 nm (2.26 eV) and 582 nm (2.13 eV), respectively. In conclusion, following the crystal and electronic structure considerations, the PL peaks are assigned to self-trapped excitons.« less
NASA Astrophysics Data System (ADS)
Torardi, C. C.; Miao, C. R.; Li, J.
2003-02-01
Potassium hafnium-zirconium phosphates, K 2Hf 1- xZr x(PO 4) 2 and KHf 2(1- x) Zr 2 x(PO 4) 3, are broad-band UV-emitting phosphors. At room temperature, they have emission peak maxima at approximately 322 and 305 nm, respectively, under 30 kV peak molybdenum X-ray excitation. Both phosphors demonstrate luminescence efficiencies that make them up to ˜60% as bright as commercially available CaWO 4 Hi-Plus. The solid-state and flux synthesis conditions, and X-ray excited UV luminescence of these two phosphors are discussed. Even though the two compounds have different atomic structures, they contain zirconium in the same active luminescence environment as that found in highly efficient UV-emitting BaHf 1- xZr x(PO 4) 2. All the three materials have hafnium and zirconium in octahedral coordination via oxygen-atom corner sharing with six separate PO 4 tetrahedra. This octahedral Zr(PO 4) 6 moiety appears to be an important structural element for efficient X-ray excited luminescence, as are the edge-sharing octahedral TaO 6 chains for tantalate emission.
THE ALLEN TELESCOPE ARRAY SEARCH FOR ELECTROSTATIC DISCHARGES ON MARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Marin M.; Siemion, Andrew P. V.; Bower, Geoffrey C.
The Allen Telescope Array was used to monitor Mars between 2010 March 9 and June 2, over a total of approximately 30 hr, for radio emission indicative of electrostatic discharge. The search was motivated by the report from Ruf et al. of the detection of non-thermal microwave radiation from Mars characterized by peaks in the power spectrum of the kurtosis, or kurtstrum, at 10 Hz, coinciding with a large dust storm event on 2006 June 8. For these observations, we developed a wideband signal processor at the Center for Astronomy Signal Processing and Electronics Research. This 1024 channel spectrometer calculatesmore » the accumulated power and power-squared, from which the spectral kurtosis is calculated post-observation. Variations in the kurtosis are indicative of non-Gaussianity in the signal, which can be used to detect variable cosmic signals as well as radio frequency interference (RFI). During the three-month period of observations, dust activity occurred on Mars in the form of small-scale dust storms; however, no signals indicating lightning discharge were detected. Frequent signals in the kurtstrum that contain spectral peaks with an approximate 10 Hz fundamental were seen at both 3.2 and 8.0 GHz, but were the result of narrowband RFI with harmonics spread over a broad frequency range.« less
NASA Astrophysics Data System (ADS)
Marzouk, M. A.; ElBatal, F. H.; ElBadry, K. M.; ElBatal, H. A.
2017-01-01
Sodium metaphosphate glasses with successive increasing added Bi2O3 contents (5-40%) were prepared to improve their chemical stability and increase their optical and thermal properties through the additional building BiO6 and BiO3 units. The optical spectrum of the base metaphosphate glass reveals strong UV absorption due to the presence of trace iron (Fe3 +) ions present as impurities. Glasses containing additional 5, 7.5 and 10% Bi2O3 show further band around 406 nm which can be related to absorption of Bi3 + ions. With increasing the Bi2O3 content, this near visible band is observed to disappear indicating peculiar behavior needing further work. Gamma irradiation causes only minor changes in the position of the strong UV peaks but an obvious induced visible broad band centered at 452-460 nm in the base and Bi2O3 containing glasses. This induced band is related to the generation of phosphorus oxygen hole center or non bridging oxygen hole center as revealed by various authors. FTIR results reveal characteristic vibrational bands due to phosphate groups and with the addition of Bi2O3, some interference of Bisbnd O vibrational units are expected. Gamma irradiation causes limited changes in the IR spectra due to suggested shielding effect of the heavy metal oxide Bi2O3.
Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study
NASA Astrophysics Data System (ADS)
Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.
2015-04-01
Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd3Ga3Al2O12:0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu)3Ga3Al2O12:1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal.
NASA Astrophysics Data System (ADS)
Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.
2011-12-01
Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid-state NMR experiments, most notably in the spectral region corresponding to glycogen H and C, respectively. Interestingly, whereas in both experiments the predominant site of incorporation was in the membrane lipids, the line width of the aliphatic-D resonance in the D2O enriched experiment is 67 % wider than that observed in the D-glucose enriched experiment. This difference could be due to greater residual 1H-2H dipolar coupling in membrane lipids synthesized with 10 % D2O due to D being incorporated during NADP(D) reduction of the fatty acid precursor during synthesis and the H-glucose being the source of carbon and hydrogen starting with acetyl-CoA. In the case of the D-glucose experiment, the narrower absorption line may be consistent with individual FA's being more homogeneously deuterated. Analysis of the membrane lipids is currently being performed via GCMS in order to gain potentially more insight to guide interpretation of the 2H solid state NMR spectra.
NASA Technical Reports Server (NTRS)
Lambert, WInifred; Roeder, William
2007-01-01
This conference presentation describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations. The tool will include climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.
NASA Technical Reports Server (NTRS)
Crawford, Winifred
2010-01-01
This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations.The tool includes climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.
A Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station
NASA Technical Reports Server (NTRS)
Crawford, Winifred; Roeder, William
2008-01-01
This conference abstract describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violatioas.The tool will include climatologies of the 5-minute mean end peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.
NASA Technical Reports Server (NTRS)
Crawford, Winifred
2011-01-01
This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds arc an important forecast clement for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to update the statistics in the current peak-wind forecast tool to assist in forecasting LCC violations. The tool includes onshore and offshore flow climatologies of the 5-minute mean and peak winds and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.
[Effects of different annealing conditions on the photoluminescence of nanoporous alumina film].
Xie, Ning; Ma, Kai-Di; Shen, Yi-Fan; Wang, Qian
2013-12-01
The nanoporous alumina films were prepared by two-step anodic oxidation in 0.5 mol L-1 oxalic acid electrolyte at 40 V. Photoluminescence (PL) of nanoporous alumina films was investigated under different annealing atmosphere and different temperature. The authors got three results about the PL measurements. In the same annealing atmosphere, when the annealling temperature T< or =600 degreeC, the intensity of the PL peak increases with elevated annealing temperature and reaches a maximum value at 500 degreeC, but the intensity decreases with a further increase in the annealing temperature, and the PL peak intensity of samples increases with the increase in the annealing temperature when the annealling temperature T> or =800 degreeC. In the different annealling atmosphere, the change in the photoluminescence peak position for nanoporous alumina films with the increase in the annealing temperature is different: With the increase in the annealling temperature, the PL peak position for the samples annealed in air atmosphere is blue shifted, while the PL peak position for the samples annealed in vacuum atmosphere will not change. The PL spectra of nanoporous alumina films annealed at 1100 degreeC in air atmosphere can be de-convoluted by three Gaussian components at an excitation wavelength of 350 nm, with bands centered at 387, 410 and 439 nm, respectively. These results suggest that there might be three luminescence centers for the PL of annealed alumina films. At the same annealling temperature, the PL peak intensity of samples annealed in air atmosphere is stronger than that annealed in the vacuum. Based on the experimental results and the X-ray dispersive energy spectrum (EDS) combined with infrared reflect spectra, the luminescence mechanisms of nanoporous alumina films are discussed. There are three luminescence centers in the annealed nanoporous alumina films, which originate from the F center, F+ center and the center associated with the oxalic impurities. The effects of different annealing conditions on the photoluminescence of nanoporous alumina film are reasonably explained.
Broad Consent for Research on Biospecimens: The Views of Actual Donors at Four U.S. Medical Centers.
Warner, Teddy D; Weil, Carol J; Andry, Christopher; Degenholtz, Howard B; Parker, Lisa; Carithers, Latarsha J; Feige, Michelle; Wendler, David; Pentz, Rebecca D
2018-04-01
Commentators are concerned that broad consent may not provide biospecimen donors with sufficient information regarding possible future research uses of their tissue. We surveyed with interviews 302 cancer patients who had recently provided broad consent at four diverse academic medical centers. The majority of donors believed that the consent form provided them with sufficient information regarding future possible uses of their biospecimens. Donors expressed very positive views regarding tissue donation in general and endorsed the use of their biospecimens in future research across a wide range of contexts. Concerns regarding future uses were limited to for-profit research and research by investigators in other countries. These results support the use of broad consent to store and use biological samples in future research.
Climate and Weather Analysis of Afghanistan Thunderstorms
2011-09-01
dry, continental polar (cP) air. The subtropical jet (STJ) and Extratropical storm track tend to lie south of Kabul. Mean high SFC temperatures...March-April-May (MAM). Note that AFG lies to the east of a broad trough centered over southern Europe and to the west of broad ridge centered over... Extratropical Cyclone FAR False Alarm Rate FOB Forward Operating Base FRN Forecaster Reference Notebook GFS Global Forecast System GoA
Infrared spectroscopic study of CaFe0.7Co0.3O3
NASA Astrophysics Data System (ADS)
Zhang, C. X.; Xia, H. L.; Dai, Y. M.; Qiu, Z. Y.; Sui, Q. T.; Long, Y. W.; Qiu, X. G.
2017-08-01
Temperature-dependent infrared spectroscopy has been investigated for CaFe0.7Co0.3O3 which undergoes a ferromagnetic transition at TC≈177 K . It is observed that the spectral weight is transferred from ˜4800 -14 000 cm-1 to ˜0 -4800 cm-1 as the temperature is lowered around TC. Such a large-range spectral weight transfer is attributed to the Hund's interaction. The phonons in CaFe0.7Co0.3O3 show minor asymmetric line shapes, implying relatively weak electron-phonon coupling compared with the parent compound CaFeO3. The optical conductivity also reveals a broad peak structure in the range of ˜700 -1500 cm-1. Fit by the model of single-polaron absorption, the broad peak is interpreted by the excitation of polarons. From the fitting parameters of the polaron peak, we estimate the electron-phonon coupling constant α ˜ 0.4 -0.5 , implying that CaFe0.7Co0.3O3 falls into the weak-coupling regime.
Gerber, Jeffrey S; Ross, Rachael K; Bryan, Matthew; Localio, A Russell; Szymczak, Julia E; Wasserman, Richard; Barkman, Darlene; Odeniyi, Folasade; Conaboy, Kathryn; Bell, Louis; Zaoutis, Theoklis E; Fiks, Alexander G
2017-12-19
Acute respiratory tract infections account for the majority of antibiotic exposure in children, and broad-spectrum antibiotic prescribing for acute respiratory tract infections is increasing. It is not clear whether broad-spectrum treatment is associated with improved outcomes compared with narrow-spectrum treatment. To compare the effectiveness of broad-spectrum and narrow-spectrum antibiotic treatment for acute respiratory tract infections in children. A retrospective cohort study assessing clinical outcomes and a prospective cohort study assessing patient-centered outcomes of children between the ages of 6 months and 12 years diagnosed with an acute respiratory tract infection and prescribed an oral antibiotic between January 2015 and April 2016 in a network of 31 pediatric primary care practices in Pennsylvania and New Jersey. Stratified and propensity score-matched analyses to account for confounding by clinician and by patient-level characteristics, respectively, were implemented for both cohorts. Broad-spectrum antibiotics vs narrow-spectrum antibiotics. In the retrospective cohort, the primary outcomes were treatment failure and adverse events 14 days after diagnosis. In the prospective cohort, the primary outcomes were quality of life, other patient-centered outcomes, and patient-reported adverse events. Of 30 159 children in the retrospective cohort (19 179 with acute otitis media; 6746, group A streptococcal pharyngitis; and 4234, acute sinusitis), 4307 (14%) were prescribed broad-spectrum antibiotics including amoxicillin-clavulanate, cephalosporins, and macrolides. Broad-spectrum treatment was not associated with a lower rate of treatment failure (3.4% for broad-spectrum antibiotics vs 3.1% for narrow-spectrum antibiotics; risk difference for full matched analysis, 0.3% [95% CI, -0.4% to 0.9%]). Of 2472 children enrolled in the prospective cohort (1100 with acute otitis media; 705, group A streptococcal pharyngitis; and 667, acute sinusitis), 868 (35%) were prescribed broad-spectrum antibiotics. Broad-spectrum antibiotics were associated with a slightly worse child quality of life (score of 90.2 for broad-spectrum antibiotics vs 91.5 for narrow-spectrum antibiotics; score difference for full matched analysis, -1.4% [95% CI, -2.4% to -0.4%]) but not with other patient-centered outcomes. Broad-spectrum treatment was associated with a higher risk of adverse events documented by the clinician (3.7% for broad-spectrum antibiotics vs 2.7% for narrow-spectrum antibiotics; risk difference for full matched analysis, 1.1% [95% CI, 0.4% to 1.8%]) and reported by the patient (35.6% for broad-spectrum antibiotics vs 25.1% for narrow-spectrum antibiotics; risk difference for full matched analysis, 12.2% [95% CI, 7.3% to 17.2%]). Among children with acute respiratory tract infections, broad-spectrum antibiotics were not associated with better clinical or patient-centered outcomes compared with narrow-spectrum antibiotics, and were associated with higher rates of adverse events. These data support the use of narrow-spectrum antibiotics for most children with acute respiratory tract infections.
Broadly wavelength tunable acousto-optically Q-switched Tm:Lu2SiO5 laser.
Feng, T; Yang, K; Zhao, S; Zhao, J; Qiao, W; Li, T; Zheng, L; Xu, J
2014-09-20
A broadly wavelength tunable acousto-optically Q-switched Tm:Lu2SiO5 (Tm:LSO) laser is presented for the first time, to our best knowledge. The emission wavelength was tuned in a broad spectral region over 111 nm ranging from 1959 to 2070 nm. A shortest pulse duration of 345 ns with beam quality of M(2)≤1.65 was obtained at pulse repetition frequency (PRF) of 1 kHz, corresponding to a maximum single pulse energy of 0.26 mJ and peak power of 0.75 kW. The experimental results indicated that Tm:LSO crystal has outstanding potential for obtaining broadly wavelength tunable and low-PRF laser pulses at 2 μm.
1977-01-01
balanced at the mean, with the central part steeper ( platykurtic : broad mode or truncated tails) -r flatter (leptokurtic: peaked mode or extended...and NUPUR, have negative kurtosis (they are platykurtic , with truncated tails and/or broad modes relative to their standard deviations) FERRO, on the...the other areas, and its gradients are platykurtic but almost unskewed. Hence the square root of sine transformation (Fig,15) and the log tangent
Effects of broad frequency vibration on cultured osteoblasts
NASA Technical Reports Server (NTRS)
Tanaka, Shigeo M.; Li, Jiliang; Duncan, Randall L.; Yokota, Hiroki; Burr, David B.; Turner, Charles H.
2003-01-01
Bone is subjected in vivo to both high amplitude, low frequency strain, incurred by locomotion, and to low amplitude, broad frequency strain. The biological effects of low amplitude, broad frequency strain are poorly understood. To evaluate the effects of low amplitude strains ranging in frequency from 0 to 50 Hz on osteoblastic function, we seeded MC3T3-E1 cells into collagen gels and applied the following loading protocols for 3 min per day for either 3 or 7 days: (1) sinusoidal strain at 3 Hz, with 0-3000 microstrain peak-to-peak followed by 0.33 s resting time, (2) "broad frequency vibration" of low amplitude strain (standard deviation of 300 microstrain) including frequency components from 0 to 50 Hz, and (3) sinusoidal strain combined with broad frequency vibration (S + V). The cells were harvested on day 4 or 8. We found that the S + V stimulation significantly repressed cell proliferation by day 8. Osteocalcin mRNA was up-regulated 2.6-fold after 7 days of S + V stimulation, and MMP-9 mRNA was elevated 1.3-fold after 3 days of vibration alone. Sinusoidal stimulation alone did not affect the cell responses. No differences due to loading were observed in alkaline phosphatase activity and in mRNA levels of type I collagen, osteopontin, connexin 43, MMPs-1A, -3, -13. These results suggest that osteoblasts are more sensitive to low amplitude, broad frequency strain, and this kind of strain could sensitize osteoblasts to high amplitude, low frequency strain. This suggestion implies a potential contribution of stochastic resonance to the mechanical sensitivity of osteoblasts. Copyright 2002 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
From, Milton; Cheng, Li; Altounian, Zaven
2001-03-01
We have measured the Brillouin Light Scattering (BLS) spectra of [Fe/Ag] x N sputtered multilayers as a function of N, the number of bilayers in the multilayer. The thickness of the Fe and Ag layers was 1.5 nm and data was collected for samples with N = 5, 10, 25, and 40.The BLS instrument used was a 4-pass Fabry-Perot interferometer operated in the back-scattering geometry with 514.5 nm laser light. The number of peaks seen in the BLS spectra are seen to increase with N. Two peaks are seen for N=5, and four peaks are seen for N=10 and 25. For N = 40, we see two broad manifold peaks and a sharp surface mode peak. This N dependence and the detailed dependence of peak frequency on applied magnetic field are in good agreement with theoretical calculations.
Mass spectrometer calibration standard
NASA Technical Reports Server (NTRS)
Ross, D. S.
1978-01-01
Inert perfluorinated alkane and alkyl ethers mixture is used to calibrate mass spectrometer. Noncontaminating, commercially-available liquid provides series of reproducible reference peaks over broad mass spectrum that ranges over mass numbers from 1 to 200.
Broadband supercontinuum generation with femtosecond pulse width in erbium-doped fiber laser (EDFL)
NASA Astrophysics Data System (ADS)
Rifin, S. N. M.; Zulkifli, M. Z.; Hassan, S. N. M.; Munajat, Y.; Ahmad, H.
2016-11-01
We demonstrate two flat plateaus and the low-noise spectrum of supercontinuum generation (SCG) in a highly nonlinear fiber (HNLF), injected by an amplified picosecond pulse seed of a carbon nanotube-based passively mode locked erbium-doped fiber laser. A broad spectrum of width approximately 1090 nm spanning the range 1130-2220 nm is obtained and the pulse width is compressed to the shorter duration of 70 fs. Variations of the injected peak power up to 33.78 kW into the HNLF are compared and the broad spectrum SCG profiles slightly expand for each of the injected peak powers. This straightforward configuration of SCG offers low output power and ultra-narrow femtosecond pulse width. The results facilitate the development of all fiber time-domain spectroscopy systems based on the photoconductive antenna technique.
Changes to the Fossil Record of Insects through Fifteen Years of Discovery
Nicholson, David B.; Mayhew, Peter J.; Ross, Andrew J.
2015-01-01
The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well. PMID:26176667
Center removal amount control of magnetorheological finishing process by spiral polishing way
NASA Astrophysics Data System (ADS)
Wang, Yajun; He, Jianguo; Ji, Fang; Huang, Wen; Xiao, Hong; Luo, Qing; Zheng, Yongcheng
2010-10-01
Spiral polishing is a traditional process of computer-controlled optical surfacing. However, the additional polishing amount is great and the center polishing amount is difficult to control. At first, a simplified mathematics model is presented for magnetorheological finishing, which indicates that the center polishing amount and additional polishing amount are proportional to the length and peak value of magnetorheological finishing influence function, and are inversely proportional to pitch and rotation rate of spiral track, and the center polishing amount is much bigger than average polishing amount. Secondly, the relationships of "tool feed way and center polishing amount", "spiral pitch and calculation accuracy of influence matrix for dwell time function solution", "spiral pitch and center polishing amount" and "peak removal rate, dimensions of removal function and center removal amount" are studied by numerical computation by Archimedes spiral path. It shows that the center polishing amount is much bigger in feed stage than that in backhaul stage when the head of influence function is towards workpiece edge in feeding; and the bigger pitch, the bigger calculation error of influence matrix elements; and the bigger pitch, the smaller center polishing amount, and the smaller peak removal rate and dimensions of removal function, the smaller center removal amount. At last, the polishing results are given, which indicates that the center polishing amount is acceptable with a suitable polishing amount rate of feed stage and backhaul stage, and with a suitable spiral pitch during magnetorheological finishing procedure by spiral motion way.
Chen, Zhaoxue; Yu, Haizhong; Chen, Hao
2013-12-01
To solve the problem of traditional K-means clustering in which initial clustering centers are selected randomly, we proposed a new K-means segmentation algorithm based on robustly selecting 'peaks' standing for White Matter, Gray Matter and Cerebrospinal Fluid in multi-peaks gray histogram of MRI brain image. The new algorithm takes gray value of selected histogram 'peaks' as the initial K-means clustering center and can segment the MRI brain image into three parts of tissue more effectively, accurately, steadily and successfully. Massive experiments have proved that the proposed algorithm can overcome many shortcomings caused by traditional K-means clustering method such as low efficiency, veracity, robustness and time consuming. The histogram 'peak' selecting idea of the proposed segmentootion method is of more universal availability.
Spanish Peaks, Sangre de Cristo Range, Colorado
NASA Technical Reports Server (NTRS)
2002-01-01
The Spanish Peaks, on the eastern flank of the Sangre de Cristo range, abruptly rise 7,000 feet above the western Great Plains. Settlers, treasure hunters, trappers, gold and silver miners have long sighted on these prominent landmarks along the Taos branch of the Santa Fe trail. Well before the westward migration, the mountains figured in the legends and history of the Ute, Apache, Comanche, and earlier tribes. 'Las Cumbres Espanolas' are also mentioned in chronicles of exploration by Spaniards including Ulibarri in 1706 and later by de Anza, who eventually founded San Francisco (California). This exceptional view (STS108-720-32), captured by the crew of Space Shuttle mission STS108, portrays the Spanish Peaks in the context of the southern Rocky Mountains. Uplift of the Sangre de Cristo began about 75 million years ago and produced the long north-trending ridges of faulted and folded rock to the west of the paired peaks. After uplift had ceased (26 to 22 million years ago), the large masses of igneous rock (granite, granodiorite, syenodiorite) that form the Peaks were emplaced (Penn, 1995-2001). East and West Spanish Peaks are 'stocks'-bodies of molten rock that intruded sedimentary layers, cooled and solidified, and were later exposed by erosion. East Peak (E), at 12,708 ft is almost circular and is about 5 1/2 miles long by 3 miles wide, while West Peak (W), at 13,623 ft is roughly 2 3/4 miles long by 1 3/4 miles wide. Great dikes-long stone walls-radiate outward from the mountains like spokes of a wheel, a prominent one forms a broad arc northeast of East Spanish Peak. As the molten rock rose, it forced its way into vertical cracks and joints in the sedimentary strata; the less resistant material was then eroded away, leaving walls of hard rock from 1 foot to 100 feet wide, up to 100 feet high, and as long as 14 miles. Dikes trending almost east-west are also common in the region. For more information visit: Sangres.com: The Spanish Peaks (accessed January 16, 2002) Maher, Lewis J., Jr., 2001, Geology by Light Plane (accessed January 16, 2002) Penn, Brian, 1995-2001, Igneous Petrology of the Spanish Peaks (accessed January 16, 2002) Photograph STS-108-720-32 was taken in the December 2001 by the crew of Space Shuttle mission 108 using a Hasselblad camera with 250-mm lens, and is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.
About the Transportation Secure Data Center | Transportation Secure Data
Center | NREL About the Transportation Secure Data Center About the Transportation Secure Data Center The Transportation Secure Data Center (TSDC) makes vital transportation data broadly available large, colorful map of the United States. NREL data experts and engineers analyze large sets of complex
Laser and sunlight-induced fluorescence from chlorophyll pigments
NASA Technical Reports Server (NTRS)
Kim, H. H.; Brown, K. S.
1986-01-01
Fluorescence properties of chlorophyll pigment bearing plant foliage utilizing a 337 nm nitrogen laser and integrating sphere were studied. Measured yields, in terms of number of photons emitted per 100 photons absorbed, range from 1.5 to 0.1 for the 685 nm peak, and from 4.2 to 0.2 for the 730 nm peak. Decreasing order of magnitude puts herbaceous leaves ahead of all others followed by broad leaves of hardwoods and coniferous needles. Meaningful quantization for the fluorescence peaks at 430 and 530 nm could not be attained. Passive monitoring of these fluorescence peaks is successful only for the 685 nm from the ocean surface. Field data show the reflectance changes at 685 nm due to the algae presence amounts to 1% at most.
Moseley, Hunter N B; Riaz, Nadeem; Aramini, James M; Szyperski, Thomas; Montelione, Gaetano T
2004-10-01
We present an algorithm and program called Pattern Picker that performs editing of raw peak lists derived from multidimensional NMR experiments with characteristic peak patterns. Pattern Picker detects groups of correlated peaks within peak lists from reduced dimensionality triple resonance (RD-TR) NMR spectra, with high fidelity and high yield. With typical quality RD-TR NMR data sets, Pattern Picker performs almost as well as human analysis, and is very robust in discriminating real peak sets from noise and other artifacts in unedited peak lists. The program uses a depth-first search algorithm with short-circuiting to efficiently explore a search tree representing every possible combination of peaks forming a group. The Pattern Picker program is particularly valuable for creating an automated peak picking/editing process. The Pattern Picker algorithm can be applied to a broad range of experiments with distinct peak patterns including RD, G-matrix Fourier transformation (GFT) NMR spectra, and experiments to measure scalar and residual dipolar coupling, thus promoting the use of experiments that are typically harder for a human to analyze. Since the complexity of peak patterns becomes a benefit rather than a drawback, Pattern Picker opens new opportunities in NMR experiment design.
Fatigue failure of materials under broad band random vibrations
NASA Technical Reports Server (NTRS)
Huang, T. C.; Lanz, R. W.
1971-01-01
The fatigue life of material under multifactor influence of broad band random excitations has been investigated. Parameters which affect the fatigue life are postulated to be peak stress, variance of stress and the natural frequency of the system. Experimental data were processed by the hybrid computer. Based on the experimental results and regression analysis a best predicting model has been found. All values of the experimental fatigue lives are within the 95% confidence intervals of the predicting equation.
33 CFR 23.12 - Coast Guard identifying insignia.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (a) The distinctive identification insignia of the Coast Guard consists of a broad diagonal red.... The Coast Guard emblem, as described in § 23.10(b), is centered within the confines of the broad red...
33 CFR 23.12 - Coast Guard identifying insignia.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (a) The distinctive identification insignia of the Coast Guard consists of a broad diagonal red.... The Coast Guard emblem, as described in § 23.10(b), is centered within the confines of the broad red...
33 CFR 23.12 - Coast Guard identifying insignia.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (a) The distinctive identification insignia of the Coast Guard consists of a broad diagonal red.... The Coast Guard emblem, as described in § 23.10(b), is centered within the confines of the broad red...
33 CFR 23.12 - Coast Guard identifying insignia.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (a) The distinctive identification insignia of the Coast Guard consists of a broad diagonal red.... The Coast Guard emblem, as described in § 23.10(b), is centered within the confines of the broad red...
33 CFR 23.12 - Coast Guard identifying insignia.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (a) The distinctive identification insignia of the Coast Guard consists of a broad diagonal red.... The Coast Guard emblem, as described in § 23.10(b), is centered within the confines of the broad red...
Bartberger, Charles E.; Dyman, Thaddeus S.; Condon, Steven M.
2003-01-01
The potential of Lower Cretaceous sandstones of the Travis Peak Formation in the northern Gulf Coast Basin to harbor a basin-centered gas accumulation was evaluated by examining (1) the depositional and diagenetic history and reservoir properties of Travis Peak sandstones, (2) the presence and quality of source rocks for generating gas, (3) the burial and thermal history of source rocks and time of gas generation and migration relative to tectonic development of Travis Peak traps, (4) gas and water recoveries from drill-stem and formation tests, (5) the distribution of abnormal pressures based on shut-in-pressure data, and (6) the presence or absence of gas-water contacts associated with gas accumulations in Travis Peak sandstones. The Travis Peak Formation (and correlative Hosston Formation) is a basinward-thickening wedge of terrigenous clastic sedimentary rocks that underlies the northern Gulf Coast Basin from eastern Texas across northern Louisiana to southern Mississippi. Clastic infl ux was focused in two main fl uvial-deltaic depocenters?one located in northeastern Texas and the other in southeastern Mississippi and northeastern Louisiana. Across the main hydrocarbon-productive trend in eastern Texas and northern Louisiana, the Travis Peak Formation is about 2,000 ft thick. Most Travis Peak hydrocarbon production in eastern Texas comes from drilling depths between 6,000 and 10,000 ft. Signifi cant decrease in porosity and permeability occurs through that depth interval. Above 8,000-ft drilling depth in eastern Texas, Travis Peak sandstone matrix permeabilities often are signifi cantly higher than the 0.1-millidarcy (mD) cutoff that characterizes tight-gas reservoirs. Below 8,000 ft, matrix permeability of Travis Peak sandstones is low because of pervasive quartz cementation, but abundant natural fractures impart signifi cant fracture permeability. Although pressure data within the middle and lower Travis Peak Formation are limited in eastern Texas, overpressured reservoirs caused by thermal generation of gas, typical of basin-centered gas accumulations, are not common in the Travis Peak Formation. Signifi cant overpressure was found in only one Travis Peak sandstone reservoir in 1 of 24 oil and gas fi elds examined across eastern Texas and northern Louisiana. The presence of gas-water contacts is perhaps the most defi nitive criterion indicating that a gas accumulation is conventional rather than a ?sweet spot? within a basin-centered gas accumulation. Hydrocarbon-water contacts within Travis Peak sandstone reservoirs were documented in 17 fi elds and probably occur in considerably more fi elds across the productive Travis Peak trend in eastern Texas and northern Louisiana. All known hydrocarbon-water contacts in Travis Peak reservoirs in eastern Texas, however, occur within sandstones in the upper 500 ft of the formation. Although no gas-water contacts have been reported within the lower three-fourths of the Travis Peak Formation in northeastern Texas, gas production from that interval is limited. The best available data suggest that most middle and lower Travis Peak sandstones are water bearing in northeastern Texas. Insuffi cient hydrocarbon charge relative to permeability of Travis Peak reservoirs might be responsible for lack of overpressure and basin-centered gas within the Travis Peak Formation. Shales interbedded with Travis Peak sandstones in eastern Texas are primarily oxidized fl ood-plain deposits with insuffi cient organic-carbon content to be signifi cant sources of oil and gas. The most likely source rocks for hydrocarbons in Travis Peak reservoirs are two stratigraphically lower units, the Jurassic-age Bossier Shale of the Cotton Valley Group, and laminated, lime mudstones of the Jurassic Smackover Formation. Hydrocarbon charge, therefore, might be suffi cient for development of conventional gas accumulations, but it is insuffi cient for
Forcing of the Coupled Ionosphere-Thermosphere (IT) System During Magnetic Storms
NASA Technical Reports Server (NTRS)
Huang, Cheryl; Huang, Yanshi; Su, Yi-Jiun; Sutton, Eric; Hairston, Marc; Coley, W. Robin; Doornbos, Eelco; Zhang, Yongliang
2014-01-01
Poynting flux shows peaks around auroral zone AND inside polar cap. Energy enters IT system at all local times in polar cap. Track-integrated flux at DMSP often peaks at polar latitudes- probably due to increased area of polar cap during storm main phases. center dot lon temperatures at DMSP show large increases in polar region at all local times; cusp and auroral zones do not show distinctively high Ti. center dot I on temperatures in the polar cap are higher than in the auroral zones during quiet times. center dot Neutral densities at GRACE and GOCE show maxima at polar latitudes without clear auroral signatures. Response is fast, minutes from onset to density peaks. center dot GUVI observations of O/N2 ratio during storms show similar response as direct measurements of ion and neutral densities, i.e. high temperatures in polar cap during prestorm quiet period, heating proceeding from polar cap to lower latitudes during storm main phase. center dot Discrepancy between maps of Poynting flux and of ion temperatures/neutral densities suggests that connection between Poynting flux and Joule heating is not simple.
Graded Exercise Testing in a Pediatric Weight Management Center: The DeVos Protocol.
Eisenmann, Joey C; Guseman, Emily Hill; Morrison, Kyle; Tucker, Jared; Smith, Lucie; Stratbucker, William
2015-12-01
In this article, we describe a protocol used to test the functional capacity of the obese pediatric patient and describe the peak oxygen consumption (VO2peak) of patients seeking treatment at a pediatric weight management center. One hundred eleven (mean age, 12.5 ± 3.0 years) patients performed a multistage exercise test on a treadmill, of which 90 (81%) met end-test criteria and provided valid VO2peak data. Peak VO2 was expressed: (1) in absolute terms (L·min(-1)); (2) as the ratio of the volume of oxygen consumed per minute relative to total body mass (mL·kg(-1)·min(-1)); and (3) as the ratio of the volume of oxygen consumed per minute relative to fat-free mass (mL·FFM·kg(-1)·min(-1)). Mean BMI z-score was 2.4 ± 0.3 and the mean percent body fat was 36.5 ± 9.7%. Absolute VO2peak (L·min(-1)) was significantly different between sexes; however, relative values were similar between sexes. Mean VO2peak was 25.7 ± 4.8 mL·kg(-1)·min(-1) with a range of 13.5-36.7 mL·kg(-1)·min(-1). Obese youth seeking treatment at a stage 3 pediatric weight management center exhibit low VO2peak. The protocol outlined here should serve as a model for similar programs interested in the submaximal and peak responses to exercise in obese pediatric patients.
Marzouk, M A; ElBatal, F H; ElBadry, K M; ElBatal, H A
2017-01-15
Sodium metaphosphate glasses with successive increasing added Bi 2 O 3 contents (5-40%) were prepared to improve their chemical stability and increase their optical and thermal properties through the additional building BiO 6 and BiO 3 units. The optical spectrum of the base metaphosphate glass reveals strong UV absorption due to the presence of trace iron (Fe 3+ ) ions present as impurities. Glasses containing additional 5, 7.5 and 10% Bi 2 O 3 show further band around 406nm which can be related to absorption of Bi 3+ ions. With increasing the Bi 2 O 3 content, this near visible band is observed to disappear indicating peculiar behavior needing further work. Gamma irradiation causes only minor changes in the position of the strong UV peaks but an obvious induced visible broad band centered at 452-460nm in the base and Bi 2 O 3 containing glasses. This induced band is related to the generation of phosphorus oxygen hole center or non bridging oxygen hole center as revealed by various authors. FTIR results reveal characteristic vibrational bands due to phosphate groups and with the addition of Bi 2 O 3 , some interference of BiO vibrational units are expected. Gamma irradiation causes limited changes in the IR spectra due to suggested shielding effect of the heavy metal oxide Bi 2 O 3 . Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Bipin Kumar, E-mail: bipinbhu@yahoo.com; Kumar, Arun; Amity Institute of Applied Science, Amity University, Noida, Uttar Pradesh 201303
Herein, a novel green emitting long-persistent Sr{sub 3}SiAl{sub 4}O{sub 11}:Eu{sup 2+}/Dy{sup 3+} phosphor was synthesized in a single phase form using facile solid state reaction method under the reducing atmosphere of 10% H{sub 2} and 90% N{sub 2}. The resulting phosphor exhibits hyper-sensitive strong broad green emission, peaking at 510 nm upon 340 nm excitation wavelength, which is attributed to the 4f{sup 6}5d{sup 1}-4f{sup 7} transitions of emission center of europium (Eu{sup 2+}) ions. Moreover, the incorporation of dysprosium (Dy{sup 3+}) ions, which act as effective hole trap centers with appropriate depth, largely enhances the photoluminescence characteristics and greatly improves the persistentmore » intense luminescence behavior of Sr{sub 3}SiAl{sub 4}O{sub 11}:Eu{sup 2+}/Dy{sup 3+} phosphor under ultraviolet (UV) excitation. In addition, with the optimum doping concentration and sufficient UV excitation time period, the as-synthesized phosphor can be persisted afterglow for time duration ∼4 h with maximum luminescence intensity. Thus, these results suggest that this phosphor could be expected as an ultimate choice for next generation advanced luminescent materials in security applications such as latent finger-marks detection, photo-masking induced phosphorescent images, and security code detection.« less
Ambulatory surgery centers--current business and legal issues.
Becker, S; Biala, M
2000-01-01
This article explores a handful of critical trends that have broad implications for ambulatory surgery centers and health care entities as a whole. As of the year 2000, the health care delivery system is experiencing broad changes and reconstruction in a variety of manners. One of the largest changes revolves around the accelerating movement of patient care from inpatient models to outpatient models, and the commensurate investment and development in outpatient systems and outpatient bricks and mortar. This metamorphosis is particularly evident as it relates to freestanding ambulatory surgery centers. This change in health care delivery will prove to have severe economic impacts on many of the nation's hospital systems.
Comparing Wild 2 Particles to Chondrites and IDPS
NASA Technical Reports Server (NTRS)
Zolensky, Michael; Nakamura-Messenger, Keiko; Rietmeijer, Frans; Leroux, Hugues; Mikouchi, Takashi; Ohsumi, Kazumasa; Simon, Steven; Grossman, Lawrence; Stephan, Thomas; Weisberg, Michael;
2008-01-01
We compare the observed composition ranges of olivine, pyroxene and Fe-Ni sulfides in Wild 2 grains, comparing these with chondritic IDPs and chondrite classes to explore whether these data suggest affinities to known hydrous materials in particular. Wild 2 olivine has an extremely wide composition range, from Fo4-100 with a pronounced frequency peak at Fo99. The composition range displayed by the low-calcium pyroxene is also very extensive, from En52 to En100, with a significant frequency peak centered at En95. These ranges are as broad or broader than those reported for any other extraterrestrial material. Wild 2 Fe-Ni sulfides mainly have compositions close to that of FeS, with less than 2 atom % Ni - to date, only two pentlandite grains have been found among the Wild-grains suggesting that this mineral is not abundant. The complete lack of compositions between FeS and pentlandite (with intermediate solid solution compositions) suggests (but does not require) that FeS and pentlandite condensed as crystalline species, i.e. did not form as amorphous phases, which later became annealed. While we have not yet observed any direct evidence of water-bearing minerals, the presence of Ni-bearing sulfides, and magnesium-dominated olivine and low-Ca pyroxene does not rule out their presence at low abundance. We do conclude that modern major and minor element compositions of chondrite matrix and IDPs are needed.
Langmuir Probe Measurements of Inductively Coupled Plasma in CF4/AR/O2 Mixtures
NASA Technical Reports Server (NTRS)
Rao, M. V. V. S.; Cruden, Brett; Sharma, Surendra; Meyyappan, Meyya
2001-01-01
Inductively coupled plasmas of CF4:Ar:O2, which have been of importance to material processing, were studied in the GEC cell at 80:10:10, 60:20:20, and 40:30:30 mixture ratios. Radial distributions of plasma potential (V(sub p)), electron and ion number densities (n(sub e) and n(sub i)), electron temperature (T(sub e)), and electron energy distribution functions (EEDFs) were measured in the mid-plane of plasma across the electrodes in the pressure range of 10-50 mTorr, and RF power of 200 and 300 W. V(sub p), n(sub e) and n(sub i), which peak in the center of the plasma, increase with decrease of pressure. T(sub e) also increases with pressure but peaks toward the electrode edge. Both V(sub p) and T(sub e) remain nearly independent of RF power, whereas n(sub e) and n(sub i) increase with power. In all conditions the EEDFs exhibit non-Maxwellian shape and are more like Druyvesteyn form at higher energies. They exhibit a broad lip in the energy range 0-10 eV suggesting an electron loss mechanism, which could be due to via resonance electron attachment processes producing negative ions in this rich electronegative gas mixture. This behavior is more prominent towards the electrode edge.
Langmuir Probe Measurements of Inductively Coupled Plasmas in CF4/Ar/O2 Mixtures
NASA Technical Reports Server (NTRS)
Rao, M. V. V. S.; Cruden, Brett; Sharma, Surendra; Meyyappan, Meyya
2001-01-01
Inductively coupled plasmas of CF4:Ar:O2, which have been of importance to material processing, were studied in the GEC cell at 80:10:10, 60:20:20, and 40:30:30 mixture ratios. Radial distributions of plasma potential (V(sub p)), electron and ion number densities (n(sub e) and n(sub i), electron temperature (T(sub e)), and electron energy distribution functions (EEDFs) were measured in the mid-plane of plasma across the electrodes in the pressure range of 10-50 mTorr, and RF (radio frequency) power of 200 and 300 W. V(sub p), n(sub e) and n(sub i), which peak in the center of the plasma, increase with decrease of pressure. T(sub e) also increases with pressure but peaks toward the electrode edge. Both V(sub p) and T(sub e) remain nearly independent of RF power, whereas n(sub e) and n(sub i) increase with power. In all conditions the EEDFs exhibit non-Maxwellian shape and are more like Druyvesteyn form at higher energies. They exhibit a broad dip in the energy range 0-10 eV suggesting an electron loss mechanism, which could be due to via resonance electron attachment processes producing negative ions in this rich electronegative gas mixture. This behavior is more prominent towards the electrode edge.
Claritas Fossae Enhanced Color
1998-06-04
Mars Syria Planum-centered volcanism and tectonism produced fractures, narrow to broad grabens, large scarps, and broad fold and thrust ridges that deformed a basement complex captured by NASA's Viking Orbiter 2. http://photojournal.jpl.nasa.gov/catalog/PIA00154
von Knobelsdorff-Brenkenhoff, Florian; Karunaharamoorthy, Achudhan; Trauzeddel, Ralf Felix; Barker, Alex J; Blaszczyk, Edyta; Markl, Michael; Schulz-Menger, Jeanette
2016-03-01
Aortic stenosis (AS) leads to variable stress for the left ventricle (LV) and consequently a broad range of LV remodeling. The aim of this study was to describe blood flow patterns in the ascending aorta of patients with AS and determine their association with remodeling. Thirty-seven patients with AS (14 mild, 8 moderate, 15 severe; age, 63±13 years) and 37 healthy controls (age, 60±10 years) underwent 4-dimensional-flow magnetic resonance imaging. Helical and vortical flow formations and flow eccentricity were assessed in the ascending aorta. Normalized flow displacement from the vessel center and peak systolic wall shear stress in the ascending aorta were quantified. LV remodeling was assessed based on LV mass index and the ratio of LV mass:end-diastolic volume (relative wall mass). Marked helical and vortical flow formation and eccentricity were more prevalent in patients with AS than in healthy subjects, and patients with AS exhibited an asymmetrical and elevated distribution of peak systolic wall shear stress. In AS, aortic orifice area was strongly negatively associated with vortical flow formation (P=0.0274), eccentricity (P=0.0070), and flow displacement (P=0.0021). Bicuspid aortic valve was associated with more intense helical (P=0.0098) and vortical flow formation (P=0.0536), higher flow displacement (P=0.11), and higher peak systolic wall shear stress (P=0.0926). LV mass index and relative wall mass were significantly associated with aortic orifice area (P=0.0611, P=0.0058) and flow displacement (P=0.0058, P=0.0283). In this pilot study, AS leads to abnormal blood flow pattern and peak systolic wall shear stress in the ascending aorta. In addition to aortic orifice area, normalized flow displacement was significantly associated with LV remodeling. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Ko, Jae-Hyeon; Kim, Tae Hyun; Roleder, K.; Rytz, D.; Kojima, Seiji
2011-09-01
The acoustic anomalies and precursor dynamics of high-quality barium titanate single crystals were investigated by Brillouin light scattering and the birefringence measurements in the paraelectric phase above the cubic-to-tetragonal ferroelectric phase transition temperature (Tc). Two elastic stiffness coefficients C11 and C44, the related sound velocities, and their absorption coefficients were determined from Tc to 400∘C for the first time. The longitudinal acoustic (LA) mode showed a substantial softening over a wide temperature range above Tc which was accompanied by a remarkable increase in the acoustic damping as well as growth of central peaks. The broad central peak (CP) exhibited a two-mode and one-mode behavior in the paraelectric and ferroelectric phase, respectively, which was consistent with recent far-infrared reflectivity measurements and first-principle-based calculations [Ponomareva , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.77.012102 77, 012102 (2008)]. The acoustic anomalies and CP behavior were correlated with the anomalous birefringence, piezoelectric effect, and the deviation of the Curie-Weiss law observed from the same crystal. This strongly indicates similarity between the dynamics of polar clusters in typical ferroelectrics and the dynamics of polar nanoregions in relaxors, consistent with recent acoustic emission measurements [Dul’kin , Appl. Phys. Lett.APPLAB0003-695110.1063/1.3464968 97, 032903 (2010)]. The relaxation times estimated from the central peak and the LA mode anomalies exhibited similar temperature dependences with comparable orders of magnitude, indicating that the polarization fluctuations due to the precursor polar clusters couples to the LA mode through density fluctuations. All these anomalies share common microscopic origin, correlated Ti off-centered motions forming polar clusters having local symmetry breaking in the paraelectric phase. The existence of the polar clusters were directly evidenced by the temperature evolution of the precise birefringence map. The narrow central peak within ±5 GHz proposed before was not confirmed to exist in the present study.
NASA Astrophysics Data System (ADS)
Dhote, Sharvari; Yang, Zhengbao; Zu, Jean
2018-01-01
This paper presents the modeling and experimental parametric study of a nonlinear multi-frequency broad bandwidth piezoelectric vibration-based energy harvester. The proposed harvester consists of a tri-leg compliant orthoplanar spring (COPS) and multiple masses with piezoelectric plates attached at three different locations. The vibration modes, resonant frequencies, and strain distributions are studied using the finite element analysis. The prototype is manufactured and experimentally investigated to study the effect of single as well as multiple light-weight masses on the bandwidth. The dynamic behavior of the harvester with a mass at the center is modeled numerically and characterized experimentally. The simulation and experimental results are in good agreement. A wide bandwidth with three close nonlinear vibration modes is observed during the experiments when four masses are added to the proposed harvester. The current generator with four masses shows a significant performance improvement with multiple nonlinear peaks under both forward and reverse frequency sweeps.
Red persistent luminescence in rare earth-free AlN:Mn 2+ phosphor
Xu, Jian; Cherepy, Nerine J.; Ueda, Jumpei; ...
2017-07-03
Here, we investigated the persistent luminescence (PersL) properties of a rare earth-free Mn 2+ doped AlN (AlN:Mn) red phosphor together with a commercial SrAl 2O 4:Eu 2+, Dy 3+ green persistent phosphor as a reference. Similar to its photoluminescence (PL) spectrum, the PersL spectrum of the AlN:Mn phosphor exhibited a red emission band centered at 600 nm due to the Mn 2+: 4T 1( 4G) → 6A 1( 6S) transition with a relatively narrow full width at half maximum (FWHM) of 43 nm. The luminance of AlN:Mn powders was 0.65 mcd/m 2 at 60 min after ceasing ultraviolet (UV) illumination,more » and its duration upon 0.32 mcd/m 2 could reach over 110 min. An extremely broad thermoluminescence (TL) glow curve was observed ranging from 100 K to 600 K and peaked at around 310 K, indicating a wide trap distribution in this material.« less
Zhang, Lingling; Huang, Xinyu; Qin, Changyong; Brinkman, Kyle; Gong, Yunhui; Wang, Siwei; Huang, Kevin
2013-08-21
Identification of the existence of pyrocarbonate ion C2O5(2-) in molten carbonates exposed to a CO2 atmosphere provides key support for a newly established bi-ionic transport model that explains the mechanisms of high CO2 permeation flux observed in mixed oxide-ion and carbonate-ion conducting (MOCC) membranes containing highly interconnected three dimensional ionic channels. Here we report the first Raman spectroscopic evidence of C2O5(2-) as an active species involved in the CO2-transport process of MOCC membranes exposed to a CO2 atmosphere. The two new broad peaks centered at 1317 cm(-1) and 1582 cm(-1) are identified as the characteristic frequencies of the C2O5(2-) species. The measured characteristic Raman frequencies of C2O5(2-) are in excellent agreement with the DFT-model consisting of six overlapping individual theoretical bands calculated from Li2C2O5 and Na2C2O5.
Single crystal growth and anisotropic magnetic properties of HoAl2Ge2
NASA Astrophysics Data System (ADS)
Matin, Md.; Mondal, Rajib; Thamizhavel, A.; Provino, A.; Manfrinetti, P.; Dhar, S. K.
2018-05-01
We have grown a single crystal of HoAl2Ge2, which crystallizes in the hexagonal CaAl2Si2 type structure with Ho ions in the trigonal coordination in the ab plane. The data obtained from the bulk measurement techniques of magnetization, heat capacity and transport reveal that HoAl2Ge2 orders antiferromagnetically at TN ˜6.5 K. The susceptibility below TN and isothermal magnetization at 2 K indicate the ab plane as the easy plane of magnetization. Heat capacity data reveal a prominent Schottky anomaly with a broad peak centered around 25 K, suggesting a relatively low crystal electric field (CEF) splitting. The electrical resistivity reveals the occurrence of a superzone gap below TN. The point charge model of the CEF is applied to the magnetization and the heat capacity data. While a good fit to the paramagnetic susceptibility is obtained, the CEF parameters do not provide a satisfactory fit to the isothermal magnetization at 2 K and the Schottky anomaly.
Double perovskite Ca2GdNbO6:Mn4+ deep red phosphor: Potential application for warm W-LEDs
NASA Astrophysics Data System (ADS)
Lu, Zuizhi; Huang, Tianjiao; Deng, Ruopeng; Wang, Huan; Wen, Lingling; Huang, Meixin; Zhou, Liya; Yao, Chunying
2018-05-01
A novel Mn4+-doped Ca2GdNbO6 (CGN) phosphor was prepared by high-temperature solid-state reaction. The crystal structure was investigated by X-ray diffraction patterns and unit cell structure. Mn4+ replaced the location of Nb5+ in the CGN lattice, and the value of energy gap (Egap) decreased from 2.16 eV to 1.13 eV, indicating that Mn4+ ions play a great influence on the absorption of CGN hosts. The broad excitation band from 250 nm to 550 nm matches well with commercial near-UV light emitting diodes, and the emission peak centered at 680 nm is due to 2E→4A2g transition in Mn4+ ions. The CIE chromaticity coordinates (0.698, 0.303) of CGN:Mn4+ phosphor was close to standard red color coordinates (0.666, 0.333). These investigations demonstrate CGN:Mn4+ phosphor as an efficient red phosphor for potential applications.
Red persistent luminescence in rare earth-free AlN:Mn 2+ phosphor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jian; Cherepy, Nerine J.; Ueda, Jumpei
Here, we investigated the persistent luminescence (PersL) properties of a rare earth-free Mn 2+ doped AlN (AlN:Mn) red phosphor together with a commercial SrAl 2O 4:Eu 2+, Dy 3+ green persistent phosphor as a reference. Similar to its photoluminescence (PL) spectrum, the PersL spectrum of the AlN:Mn phosphor exhibited a red emission band centered at 600 nm due to the Mn 2+: 4T 1( 4G) → 6A 1( 6S) transition with a relatively narrow full width at half maximum (FWHM) of 43 nm. The luminance of AlN:Mn powders was 0.65 mcd/m 2 at 60 min after ceasing ultraviolet (UV) illumination,more » and its duration upon 0.32 mcd/m 2 could reach over 110 min. An extremely broad thermoluminescence (TL) glow curve was observed ranging from 100 K to 600 K and peaked at around 310 K, indicating a wide trap distribution in this material.« less
Effect of annealing on morphology and photoluminescence of beta-Ga2O3 nanostructures.
Zhang, Shiying; Zhuang, Huizhao; Xue, Chengshan; Li, Baoli
2008-07-01
A novel method was applied to prepare one-dimensional beta-Ga2O3 nanostructure films. In this method, beta-Ga2O3 nanostructures have been successfully synthesized on Si(111) substrates through annealing sputtered Ga22O3/Mo films for differernt time under flowing ammonia. The as-synthesized beta-Ga2O3 nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectrum. The results show that the formed nanostructures are single-crystalline Ga2O3 with monoclinic structure. The annealing time of the samples has an evident influence on the morphology and optical property of the nanostructured beta-Ga2O3 synthesized. The representative photoluminescence spectrum at room temperature exhibits a strong and broad emission band centered at 411.5 nm and a relatively weak emission peak located at 437.6 nm. The growth mechanism of the beta-Ga2O3 nanostructured materials is also discussed briefly.
NASA Astrophysics Data System (ADS)
Migliorato, Piero; Delwar Hossain Chowdhury, Md; Gwang Um, Jae; Seok, Manju; Jang, Jin
2012-09-01
The analysis of current-voltage (I-V) and capacitance-voltage (C-V) characteristics for amorphous indium gallium zinc oxide Thin film transistors as a function of active layer thickness shows that negative bias under illumination stress (NBIS) is quantitatively explained by creation of a bulk double donor, with a shallow singly ionized state ɛ(0/+) > EC-0.073 eV and a deep doubly ionized state ɛ(++/+) < EC-0.3 eV. The gap density of states, extracted from the capacitance-voltage curves, shows a broad peak between EC-E = 0.3 eV and 1.0 eV, which increases in height with NBIS stress time and corresponds to the broadened transition energy between singly and doubly ionized states. We propose that the center responsible is an oxygen vacancy and that the presence of a stable singly ionized state, necessary to explain our experimental results, could be due to the defect environment provided by the amorphous network.
Measuring Sister Chromatid Cohesion Protein Genome Occupancy in Drosophila melanogaster by ChIP-seq.
Dorsett, Dale; Misulovin, Ziva
2017-01-01
This chapter presents methods to conduct and analyze genome-wide chromatin immunoprecipitation of the cohesin complex and the Nipped-B cohesin loading factor in Drosophila cells using high-throughput DNA sequencing (ChIP-seq). Procedures for isolation of chromatin, immunoprecipitation, and construction of sequencing libraries for the Ion Torrent Proton high throughput sequencer are detailed, and computational methods to calculate occupancy as input-normalized fold-enrichment are described. The results obtained by ChIP-seq are compared to those obtained by ChIP-chip (genomic ChIP using tiling microarrays), and the effects of sequencing depth on the accuracy are analyzed. ChIP-seq provides similar sensitivity and reproducibility as ChIP-chip, and identifies the same broad regions of occupancy. The locations of enrichment peaks, however, can differ between ChIP-chip and ChIP-seq, and low sequencing depth can splinter broad regions of occupancy into distinct peaks.
Two dimensional imaging of photoluminescence from rice for quick and non-destructive evaluation
NASA Astrophysics Data System (ADS)
Katsumata, T.; Suzuki, T.; Aizawa, H.; Matashige, E.
2005-05-01
The visible PL with broad peak at wavelength of λ=462 nm are observed from polished rice, flour and corn starch under illumination of ultra-violet (UV) light. PL peaking at λ=462 nm is excited effectively with UV light at λ=365 nm. Peak intensity is found to vary with the source and the breed of the rice specimens. PL images from rice also reveal the uniformity of the rice products. Two-dimensional images of PL, which reavealed the uniformity of rice under UV irradiation, are potentially useful for the evaluation and the quality control of the rice products.
Yang, Yu; Fritzsching, Keith J; Hong, Mei
2013-11-01
A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative merit of these assignments. Our approach is modeled after the recently introduced Monte-Carlo simulated-annealing (MC/SA) protocol, with the key difference that NSGA-II simultaneously optimizes multiple assignment objectives instead of searching for possible assignments based on a single composite score. The multiple objectives include maximizing the number of consistently assigned peaks between multiple spectra ("good connections"), maximizing the number of used peaks, minimizing the number of inconsistently assigned peaks between spectra ("bad connections"), and minimizing the number of assigned peaks that have no matching peaks in the other spectra ("edges"). Using six SSNMR protein chemical shift datasets with varying levels of imperfection that was introduced by peak deletion, random chemical shift changes, and manual peak picking of spectra with moderately broad linewidths, we show that the NSGA-II algorithm produces a large number of valid and good assignments rapidly. For high-quality chemical shift peak lists, NSGA-II and MC/SA perform similarly well. However, when the peak lists contain many missing peaks that are uncorrelated between different spectra and have chemical shift deviations between spectra, the modified NSGA-II produces a larger number of valid solutions than MC/SA, and is more effective at distinguishing good from mediocre assignments by avoiding the hazard of suboptimal weighting factors for the various objectives. These two advantages, namely diversity and better evaluation, lead to a higher probability of predicting the correct assignment for a larger number of residues. On the other hand, when there are multiple equally good assignments that are significantly different from each other, the modified NSGA-II is less efficient than MC/SA in finding all the solutions. This problem is solved by a combined NSGA-II/MC algorithm, which appears to have the advantages of both NSGA-II and MC/SA. This combination algorithm is robust for the three most difficult chemical shift datasets examined here and is expected to give the highest-quality de novo assignment of challenging protein NMR spectra.
NASA Astrophysics Data System (ADS)
Hwang, James Ho-Jin; Duran, Adam
2016-08-01
Most of the times pyrotechnic shock design and test requirements for space systems are provided in Shock Response Spectrum (SRS) without the input time history. Since the SRS does not describe the input or the environment, a decomposition method is used to obtain the source time history. The main objective of this paper is to develop a decomposition method producing input time histories that can satisfy the SRS requirement based on the pyrotechnic shock test data measured from a mechanical impact test apparatus. At the heart of this decomposition method is the statistical representation of the pyrotechnic shock test data measured from the MIT Lincoln Laboratory (LL) designed Universal Pyrotechnic Shock Simulator (UPSS). Each pyrotechnic shock test data measured at the interface of a test unit has been analyzed to produce the temporal peak acceleration, Root Mean Square (RMS) acceleration, and the phase lag at each band center frequency. Maximum SRS of each filtered time history has been calculated to produce a relationship between the input and the response. Two new definitions are proposed as a result. The Peak Ratio (PR) is defined as the ratio between the maximum SRS and the temporal peak acceleration at each band center frequency. The ratio between the maximum SRS and the RMS acceleration is defined as the Energy Ratio (ER) at each band center frequency. Phase lag is estimated based on the time delay between the temporal peak acceleration at each band center frequency and the peak acceleration at the lowest band center frequency. This stochastic process has been applied to more than one hundred pyrotechnic shock test data to produce probabilistic definitions of the PR, ER, and the phase lag. The SRS is decomposed at each band center frequency using damped sinusoids with the PR and the decays obtained by matching the ER of the damped sinusoids to the ER of the test data. The final step in this stochastic SRS decomposition process is the Monte Carlo (MC) simulation. The MC simulation identifies combinations of the PR and decays that can meet the SRS requirement at each band center frequency. Decomposed input time histories are produced by summing the converged damped sinusoids with the MC simulation of the phase lag distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan
Purpose: Optically stimulated luminescent detectors (OSLDs) have a number of advantages in radiation dosimetry making them excellent dosimeters for quality assurance and patient dose verification. Although the dosimeters have been investigated in several modalities, relatively little work has been done in examining the dosimeters for use in clinical proton beams. This study examined a number of characteristics of the response of the dosimeters in the spread-out Bragg peak (SOBP) region of clinical proton beams. Methods: Optically stimulated luminescence (OSL) dosimeters from Landauer, Inc., specifically the nanoDot dosimeter, were investigated. These dosimeters were placed in a special phantom with a recessmore » to fit the dosimeters without an air gap. Beams with nominal energies of 160, 200, and 250 MeV were used in the passively-scattered proton beam at the MD Anderson Cancer Center Proton Therapy Center. Dosimetric properties including linearity, field size dependence, energy dependence, residual signal as a function of cumulative dose, and postirradiation fading were investigated by taking measurements at the center of SOBPs. Results: The dosimeters showed 1% supralinearity at 200 cGy and 5% supralinearity at 1000 cGy. No noticeable field size dependence of the detector was found for field sizes from 2 x 2 cm{sup 2} to 18 x 18 cm{sup 2}. Residual signal as a function of cumulative dose showed a small increase for measurements up to 1000 cGy. Readout signal depletion of the dosimeters after consecutive readings showed a slightly larger depletion in protons for doses up to 500 cGy but not by a clinically significant amount. Within the center of various SOBP widths and proton energies the variation in response was less than 2%. An average beam quality factor of 1.089 with experimental standard deviation of 0.007 was determined and applied to the data such that the results were within 1.2% of ion chamber data. Conclusions: The nanoDot OSL dosimeter characteristics were studied in the SOBP region of clinical proton beams. To achieve accurate dosimetric readings, corrections to the dosimeter response were applied. Corrections tended to be minimal or broadly consistent. The nanoDot OSLD was found to be an acceptable dosimeter for measurement in the SOBP region for a range of clinical proton beams.« less
Kerns, James R; Kry, Stephen F; Sahoo, Narayan
2012-04-01
Optically stimulated luminescent detectors (OSLDs) have a number of advantages in radiation dosimetry making them excellent dosimeters for quality assurance and patient dose verification. Although the dosimeters have been investigated in several modalities, relatively little work has been done in examining the dosimeters for use in clinical proton beams. This study examined a number of characteristics of the response of the dosimeters in the spread-out Bragg peak (SOBP) region of clinical proton beams. Optically stimulated luminescence (OSL) dosimeters from Landauer, Inc., specifically the nanoDot dosimeter, were investigated. These dosimeters were placed in a special phantom with a recess to fit the dosimeters without an air gap. Beams with nominal energies of 160, 200, and 250 MeV were used in the passively-scattered proton beam at the MD Anderson Cancer Center Proton Therapy Center. Dosimetric properties including linearity, field size dependence, energy dependence, residual signal as a function of cumulative dose, and postirradiation fading were investigated by taking measurements at the center of SOBPs. The dosimeters showed 1% supralinearity at 200 cGy and 5% supralinearity at 1000 cGy. No noticeable field size dependence of the detector was found for field sizes from 2 × 2 cm(2) to 18 × 18 cm(2). Residual signal as a function of cumulative dose showed a small increase for measurements up to 1000 cGy. Readout signal depletion of the dosimeters after consecutive readings showed a slightly larger depletion in protons for doses up to 500 cGy but not by a clinically significant amount. Within the center of various SOBP widths and proton energies the variation in response was less than 2%. An average beam quality factor of 1.089 with experimental standard deviation of 0.007 was determined and applied to the data such that the results were within 1.2% of ion chamber data. The nanoDot OSL dosimeter characteristics were studied in the SOBP region of clinical proton beams. To achieve accurate dosimetric readings, corrections to the dosimeter response were applied. Corrections tended to be minimal or broadly consistent. The nanoDot OSLD was found to be an acceptable dosimeter for measurement in the SOBP region for a range of clinical proton beams.
Automated Processing of Two-Dimensional Correlation Spectra
Sengstschmid; Sterk; Freeman
1998-04-01
An automated scheme is described which locates the centers of cross peaks in two-dimensional correlation spectra, even under conditions of severe overlap. Double-quantum-filtered correlation (DQ-COSY) spectra have been investigated, but the method is also applicable to TOCSY and NOESY spectra. The search criterion is the intrinsic symmetry (or antisymmetry) of cross-peak multiplets. An initial global search provides the preliminary information to build up a two-dimensional "chemical shift grid." All genuine cross peaks must be centered at intersections of this grid, a fact that reduces the extent of the subsequent search program enormously. The program recognizes cross peaks by examining the symmetry of signals in a test zone centered at a grid intersection. This "symmetry filter" employs a "lowest value algorithm" to discriminate against overlapping responses from adjacent multiplets. A progressive multiplet subtraction scheme provides further suppression of overlap effects. The processed two-dimensional correlation spectrum represents cross peaks as points at the chemical shift coordinates, with some indication of their relative intensities. Alternatively, the information is presented in the form of a correlation table. The authenticity of a given cross peak is judged by a set of "confidence criteria" expressed as numerical parameters. Experimental results are presented for the 400-MHz double-quantum-filtered COSY spectrum of 4-androsten-3,17-dione, a case where there is severe overlap. Copyright 1998 Academic Press.
Evidence for a dynamical ground state in the frustrated pyrohafnate Tb2Hf2O7
NASA Astrophysics Data System (ADS)
Anand, V. K.; Opherden, L.; Xu, J.; Adroja, D. T.; Hillier, A. D.; Biswas, P. K.; Herrmannsdörfer, T.; Uhlarz, M.; Hornung, J.; Wosnitza, J.; Canévet, E.; Lake, B.
2018-03-01
We report the physical properties of Tb2Hf2O7 based on ac magnetic susceptibility χac(T ) , dc magnetic susceptibility χ (T ) , isothermal magnetization M (H ) , and heat capacity Cp(T ) measurements combined with muon spin relaxation (μ SR ) and neutron powder diffraction measurements. No evidence for long-range magnetic order is found down to 0.1 K. However, χac(T ) data present a frequency-dependent broad peak (near 0.9 K at 16 Hz) indicating slow spin dynamics. The slow spin dynamics is further evidenced from the μ SR data (characterized by a stretched exponential behavior) which show persistent spin fluctuations down to 0.3 K. The neutron powder diffraction data collected at 0.1 K show a broad peak of magnetic origin (diffuse scattering) but no magnetic Bragg peaks. The analysis of the diffuse scattering data reveals a dominant antiferromagnetic interaction in agreement with the negative Weiss temperature. The absence of long-range magnetic order and the presence of slow spin dynamics and persistent spin fluctuations together reflect a dynamical ground state in Tb2Hf2O7 .
Primordial black holes from single field models of inflation
NASA Astrophysics Data System (ADS)
García-Bellido, Juan; Ruiz Morales, Ester
2017-12-01
Primordial black holes (PBH) have been shown to arise from high peaks in the matter power spectra of multi-field models of inflation. Here we show, with a simple toy model, that it is also possible to generate a peak in the curvature power spectrum of single-field inflation. We assume that the effective dynamics of the inflaton field presents a near-inflection point which slows down the field right before the end of inflation and gives rise to a prominent spike in the fluctuation power spectrum at scales much smaller than those probed by Cosmic Microwave Background (CMB) and Large Scale Structure (LSS) observations. This peak will give rise, upon reentry during the radiation era, to PBH via gravitational collapse. The mass and abundance of these PBH is such that they could constitute the totality of the Dark Matter today. We satisfy all CMB and LSS constraints and predict a very broad range of PBH masses. Some of these PBH are light enough that they will evaporate before structure formation, leaving behind a large curvature fluctuation on small scales. This broad mass distribution of PBH as Dark Matter will be tested in the future by AdvLIGO and LISA interferometers.
Anomalous low temperature resistivity in CeCr0.8V0.2Ge3
NASA Astrophysics Data System (ADS)
Singh, Durgesh; Patidar, Manju Mishra; Mishra, A. K.; Krishnan, M.; Ganesan, V.
2018-04-01
Resistivity (8T) and heat capacity (0T) of CeCr0.8V0.2Ge3 at low temperatures and high magnetic fields are reported. Resistivity curve shows a Kondo like behavior at an anomalously high temperature of 250K. A broad peak at 20K is observed in resistivity. A sharp change in resistivity around 7.3K is due to magnetic ordering mediated by coherence effects. Similar low temperature peak is also observed in heat capacity around 7.2K. A small magnetic field of the order of 1T shifts the peak towards lower temperatures confirming the antiferromagnetic ordering. A broad feature, which appears in resistivity at 20K, is absent in heat capacity. This feature shift towards higher temperatures with magnetic field, and may be due to the partial ferromagnetic ordering or due to geometrical frustration which opposes the magnetic ordering. The system shows a moderate heavy fermion behavior with Sommerfeld coefficient (γ) of 111mJ/mol-K2. Debye temperature of the compound is 250K. Shifting of TN in magnetic fields towards 0K indicates a possibility of quantum criticality in this system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in, E-mail: sudheer.rrcat@gmail.com; Tiwari, P.; Srivastava, Himanshu
2016-07-28
The silver nanoparticle surface relief gratings of ∼10 μm period are fabricated using electron beam lithography on the silver halide film substrate. Morphological characterization of the gratings shows that the period, the shape, and the relief depth in the gratings are mainly dependent on the number of lines per frame, the spot size, and the accelerating voltage of electron beam raster in the SEM. Optical absorption of the silver nanoparticle gratings provides a broad localized surface plasmon resonance peak in the visible region, whereas the intensity of the peaks depends on the number density of silver nanoparticles in the gratings. Themore » maximum efficiency of ∼7.2% for first order diffraction is observed for the grating fabricated at 15 keV. The efficiency is peaking at 560 nm with ∼380 nm bandwidth. The measured profiles of the diffraction efficiency for the gratings are found in close agreement with the Raman-Nath diffraction theory. This technique provides a simple and efficient method for the fabrication of plasmonic nanoparticle grating structures with high diffraction efficiency having broad wavelength tuning.« less
Solid-state NMR characterization of copolymers of nylon 11 and nylon 12.
Johnson, C G; Mathias, L J
1997-05-01
Solid-state 13C and 15N NMR spectroscopy, in conjunction with differential scanning calorimetry, wide-angle X-ray diffraction and infrared spectroscopy, were used to characterize a series of nylon 11 and 12 copolymers with mole percentages of nylon 12 monomer of 0, 15, 35, 50, 65, 85, and 100%. Monotonic melting point (Tm) and heat of fusion depressions were observed for the copolymer series with the 65 mol% nylon 12 copolymer having the lowest apparent crystallinity and Tm at 148 degrees C. Solid-state 15N NMR spectra showed a smooth shift of the main peak position for the as-prepared copolymers from 84 ppm for the alpha-form of pure nylon 11 to 89 ppm for the gamma-form of pure nylon 12. Similar behavior was seen for FTIR amide V and VI modes which are also sensitive to the alpha- and gamma-crystal forms. 13C NMR T1 measurements showed that the overall most mobile sample was the 65:35 copolymer. The amide group of the 1:1 copolymer was labelled using 15N-labelled amino acids available through the Gabriel synthesis; an annealed, solution-cast film of this sample showed a T1N value of 349 s, similar to values seen for annealed nylon 11 and nylon 12 homopolymers. The WAXS pattern for the 65 mol% nylon 12 sample showed a sharp peak at 2 theta = 21.3, overlapping a broad peak centered at 2 theta = 21.0. These are consistent with the values seen for gamma-form nylon 12. The 1:1 copolymer (15N labelled) was shown to be polymorphic, like the homopolymers after specific treatments, with a gamma-like phase formed upon solvent casting, and an alpha-like phase dominating for as-polymerized material and precipitated flakes.
Simultaneous 13 cm/3 cm Single-pulse Observations of PSR B0329+54
NASA Astrophysics Data System (ADS)
Yan, Zhen; Shen, Zhi-Qiang; Manchester, R. N.; Ng, C.-Y.; Weltevrede, P.; Wang, Hong-Guang; Wu, Xin-Ji; Yuan, Jian-Ping; Wu, Ya-Jun; Zhao, Rong-Bing; Liu, Qing-Hui; Zhao, Ru-Shuang; Liu, Jie
2018-03-01
We have investigated the mode changing properties of PSR B0329+54 using 31 epochs of simultaneous 13 cm/3 cm single-pulse observations obtained with the Shanghai Tian Ma 65 m telescope. The pulsar was found in the abnormal emission mode 17 times, accounting for ∼13% of the 41.6 hr total observation time. Single-pulse analyses indicate that mode changes took place simultaneously at 13 cm/3 cm within a few rotational periods. We detected occasional bright and narrow pulses whose peak flux densities were 10 times higher than that of the integrated profile in both bands. At 3 cm, about 0.66% and 0.27% of single pulses were bright in the normal mode and abnormal mode, respectively, but at 13 cm the occurrence rate was only about 0.007%. We divided the pulsar radiation window into three components (C1, C2, and C3) corresponding to the main peaks of the integrated profile. The bright pulses preferentially occurred at pulse phases corresponding to the peaks of C2 and C3. Fluctuation spectra showed that C2 had excess red noise in the normal mode, but broad quasi-periodic features with central frequencies around 0.12 cycles/period in the abnormal mode. At 3 cm, C3 had a stronger quasi-periodic modulation centered around 0.06 cycles/period in the abnormal mode. Although there were some asymmetries in the two-dimensional fluctuation spectra, we found no clear evidence for systematic subpulse drifting. Consistent with previous low-frequency observations, we found a very low nulling probability for B0329+54, with upper limits of 0.13% and 1.68% at 13 cm/3 cm, respectively.
NASA Astrophysics Data System (ADS)
Kalirai, Jasonjot S.; Guhathakurta, Puragra; Gilbert, Karoline M.; Reitzel, David B.; Majewski, Steven R.; Rich, R. Michael; Cooper, Michael C.
2006-04-01
We present spectroscopic observations of red giant branch (RGB) stars in the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10 m telescope. The three fields targeted in this study are in the M31 spheroid, outer disk, and giant southern stream. In this paper, we focus on the kinematics and chemical composition of RGB stars in the stream field located at a projected distance of R=20 kpc from M31's center. A mix of stellar populations is found in this field. M31 RGB stars are isolated from Milky Way dwarf star contaminants using a variety of spectral and photometric diagnostics. The radial velocity distribution of RGB stars displays a clear bimodality-a primary peak centered at v¯1=-513 km s-1 and a secondary one at v¯2=-417 km s-1-along with an underlying broad component that is presumably representative of the smooth spheroid of M31. Both peaks are found to be dynamically cold with intrinsic velocity dispersions of σ(v)~16 km s-1. The mean metallicity and metallicity dispersion of stars in the two peaks is also found to be similar: <[Fe/H]>~-0.45 and σ([Fe/H])=0.2. The observed velocity of the primary peak is consistent with that predicted by dynamical models for the stream, but there is no obvious explanation for the secondary peak. The nature of the secondary cold population is unclear: it may represent (1) tidal debris from a satellite merger event that is superimposed on, but unrelated to, the giant southern stream; (2) a wrapped around component of the giant southern stream; or (3) a warp or overdensity in M31's disk at Rdisk>50 kpc (this component is well above the outward extrapolation of the smooth exponential disk brightness profile). Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.
Effect of storage conditions on carbon-centered radicals in soy protein products.
Boatright, William L; Lei, Qingxin; Shah Jahan, M
2009-09-09
Using electron paramagnetic resonance (EPR) spectroscopy, the levels of carbon-centered radicals in retail samples of isolated soy protein (ISP), soy protein concentrate (SPC), and powdered soy milk were estimated to contain from 6.12 x 10(14) to 1.98 x 10(15) spins/g of soy product. Roasted soy nuts contained about 5.70 x 10(15) spins/g. The peak to peak line width of the carbon-centered radicals from soy nuts was about 10 gauss, whereas ISP samples with a similar peak height had a peak to peak line width of about 8 gauss. Retail snack bars containing ISP, SPC, and/or roasted soy nuts with a total protein content of either 13, 21, or 29% contained 5.32 x 10(14), 6.67 x 10(14), and 5.74 x 10(14) spins/g of snack bar, respectively. Levels of carbon-centered radicals in newly prepared samples of ISP were much lower than levels in the retail soy protein products and levels previously reported for commercial ISP and laboratory ISP samples. The levels of radicals in ISP samples increased over a 12-25 week period of storage in the dark at 22 degrees C and exposed to air from about 8.00 x 10(13) spins/g immediately after preparation to 9.95 x 10(14) spins/g of ISP. Storing the ISP samples under nitrogen at 22 degrees C greatly reduced the increase in radical content, whereas storing the ISP in 99.9% oxygen at 40 degrees C accelerated the formation of stable carbon-centered radicals. ISP samples hydrated at either 22 or 92 degrees C, rapidly frozen, and dried lost about 92% of the trapped radicals. The level of carbon-centered radicals in these same ISP samples immediately began to increase during subsequent storage exposed to the air and gradually returned to similar levels obtained before they were hydrated.
The Importance of Information Analysis Centers in the Performance of Information Services.
ERIC Educational Resources Information Center
Weisman, Herman M.
It is necessary to distinguish the functions, services and products of various types of information services. For example, document centers, clearinghouses, referral centers, and special libraries deal mainly with information in a broad sense. The main function of information analysis centers, however, is to optimize the ratio of knowledge to…
Spectral investigation of somatotropin for different pH values
NASA Astrophysics Data System (ADS)
Otero de Joshi, Virginia; Gil, Herminia; Contreras, Silvia; Joshi, Narahari V.; Hernandez, Luis
1996-04-01
Spectral investigations of absorbance in deep ultra-violet region (from 200 nm to 350 nm) of (STM) was carried out for different pH values. On the high energy side the peak is located at 195 nm which is generally attributed to peptide bonds. This peak, as expected, does not show any shift with pH value (4.3 to 10.8). A rather broad peak is spread in the region from 200 nm to 240 nm which could be the superposition of the peaks corresponding to the absorption due to (alpha) helix and (beta) structure. This peak shows a red shift as pH value increases. The same hormone was glycated by a conventional method and the process was estimated with the absorption spectra. The results are discussed in the light of nonenzymatic glycation. It was found that glycation mucus somatotropin resistant towards the denaturation process.
Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F
2016-01-11
Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.
New types of high field pinning centers and pinning centers for the peak effect
NASA Astrophysics Data System (ADS)
Gajda, Daniel; Zaleski, Andrzej; Morawski, Andrzej; Hossain, Md Shahriar A.
2017-08-01
In this article, we report the results of a study that shows the existence of pinning centers inside grains and between grains in NbTi wires. We accurately show the ranges of magnetic fields in which the individual pinning centers operate. The pinning centers inside grains are activated in high magnetic fields above 6 T. We show the range of magnetic fields in which individual defects, dislocations, precipitates inside grains and substitutions in the crystal lattice can operate. We show the existence of a new kind of high field pinning center, which operates in high magnetic fields from 8 to ˜9.5 T. We indicate that dislocations create pinning centers in the range of magnetic fields from 6 to 8 T. In addition, our measurements suggest that the peak effect (increased critical current density (J c) near the upper critical field (B c2)) could be attributed to martensitic (needle-shaped) α‧-Ti inclusions inside grains. These centers are very important because they work very effectively in magnetic fields above 9.5-10 T. We also show that the α-Ti precipitates (between grains) with a thickness similar to the coherence length create pinning centers which work very effectively in magnetic fields from 3 to 6 T. In magnetic fields below 3 T, they act very efficiently in grain boundaries. The measurements indicate that the pinning centers created by dislocations only can be tested by transport measurements. This indicates that dislocations do not increase the magnetic critical current density (J cm). Cold drawing improves pinning centers at grain boundaries and increases the dislocation density, and cold-drawing pinning centers are responsible for the peak effect.
Evaluation of the shape of the specular peak for high glossy surfaces
NASA Astrophysics Data System (ADS)
Obein, Gaël.; Ouarets, Shiraz; Ged, Guillaume
2014-02-01
Gloss is the second most relevant visual attribute of a surface beside its colour. While the colour originates from the wavelength repartition of the reflected light, gloss originates from its angular distribution. When an observer is asked to evaluate the gloss of a surface, he always first orientate his eyes along the specular direction before lightly tilting the examined sample. This means that gloss is located in and around the specular direction, in a peak that is called the specular peak. On the one hand, this peak is flat and broad on matte surfaces on the other hand, it is narrow and sharp on high gloss surfaces. For the late ones, the FWHM of the specular peak is less than 2° which can be quite difficult to measure. We developed a dedicated facility capable of measuring specular peak with a FWHM up to 0,1 °. We measured the evolution of the peak according to the angle of illumination and the specular gloss of the sample in the restricted field of very glossy surface. The facility and peaks measured are presented in the paper. The next step will be to identify the correlations between the peak and the roughness of the sample.
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Dreher, Joseph; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry
2008-01-01
The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMTJ) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB. Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997- 2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUT was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and interpret peak wind climatology and likelihoods in a fast-paced operational environment. A summary of how the peak wind climatologies and probabilities were created and an overview of the GUT will be presented.
Gerendas, Bianca S; Waldstein, Sebastian M; Simader, Christian; Deak, Gabor; Hajnajeeb, Bilal; Zhang, Li; Bogunovic, Hrvoje; Abramoff, Michael D; Kundi, Michael; Sonka, Milan; Schmidt-Erfurth, Ursula
2014-11-01
To measure choroidal thickness on spectral-domain optical coherence tomography (SD OCT) images using automated algorithms and to correlate choroidal pathology with retinal changes attributable to diabetic macular edema (DME). Post hoc analysis of multicenter clinical trial baseline data. SD OCT raster scans/fluorescein angiograms were obtained from 284 treatment-naïve eyes of 142 patients with clinically significant DME and from 20 controls. Three-dimensional (3D) SD OCT images were evaluated by a certified independent reading center analyzing retinal changes associated with diabetic retinopathy. Choroidal thicknesses were analyzed using a fully automated algorithm. Angiograms were assessed manually. Multiple endpoint correction according to Bonferroni-Holm was applied. Main outcome measures were average retinal/choroidal thickness on fovea-centered or peak of edema (thickest point of edema)-centered Early Treatment Diabetic Retinopathy Study grid, maximum area of leakage, and the correlation between retinal and choroidal thicknesses. Total choroidal thickness is significantly reduced in DME (175 ± 23 μm; P = .0016) and nonedematous fellow eyes (177 ± 20 μm; P = .009) of patients compared with healthy control eyes (190 ± 23 μm). Retinal/choroidal thickness values showed no significant correlation (1-mm: P = .27, r(2) = 0.01; 3-mm: P = .96, r(2) < 0.0001; 6-mm: P = .42, r(2) = 0.006). No significant difference was found in the 1- or 3-mm circle of a retinal peak of edema-centered grid. All other measurements of choroidal/retinal thickness (DME vs healthy, DME vs peak of edema-centered, DME vs fellow, healthy vs fellow, peak of edema-centered vs healthy, peak of edema-centered vs fellow eyes) were compared but no statistically significant correlation was found. By tendency a thinner choroid correlates with larger retinal leakage areas. Automated algorithms can be used to reliably assess choroidal thickness in eyes with DME. Choroidal thickness was generally reduced in patients with diabetes if DME is present in 1 eye; however, no correlation was found between choroidal/retinal pathologies, suggesting different pathogenetic pathways. Copyright © 2014 Elsevier Inc. All rights reserved.
Lung, Chi-Wen; Yang, Tim D; Crane, Barbara A; Elliott, Jeannette; Dicianno, Brad E; Jan, Yih-Kuen
2014-01-01
The purpose of this study was to determine the effect of the sensel window's location and size when calculating the peak pressure index (PPI) of pressure mapping with varying degrees of wheelchair tilt-in-space (tilt) and recline in people with spinal cord injury (SCI). Thirteen power wheelchair users were recruited into this study. Six combinations of wheelchair tilt (15°, 25°, and 35°) and recline (10° and 30°) were used by the participants in random order. Displacements of peak pressure and center of pressure were extracted from the left side of the mapping system. Normalized PPI was computed for three sensel window dimensions (3 sensels × 3 sensels, 5 × 5, and 7 × 7). At least 3.33 cm of Euclidean displacement of peak pressures was observed in the tilt and recline. For every tilt angle, peak pressure displacement was not significantly different between 10° and 30° recline, while center of pressure displacement was significantly different (P < .05). For each recline angle, peak pressure displacement was not significantly different between pairs of 15°, 25°, and 35° tilt, while center of pressure displacement was significantly different between 15° versus 35° and 25° versus 35°. Our study showed that peak pressure displacement occurs in response to wheelchair tilt and recline, suggesting that the selected sensel window locations used to calculate PPI should be adjusted during changes in wheelchair configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devereux, Nick, E-mail: devereux@erau.edu
Dual epoch spectroscopy of the lenticular galaxy, NGC 4203, obtained with the Hubble Space Telescope has revealed that the double-peaked component of the broad H{alpha} emission line is time variable, increasing by a factor of 2.2 in brightness between 1999 and 2010. Modeling the gas distribution responsible for the double-peaked profiles indicates that a ring is a more appropriate description than a disk and most likely represents the contrail of a red supergiant star that is being tidally disrupted at a distance of {approx}1500 AU from the central black hole. There is also a bright core of broad H{alpha} linemore » emission that is not time variable and identified with a large-scale inflow from an outer radius of {approx}1 pc. If the gas number density is {>=}10{sup 6} cm{sup -3}, as suggested by the absence of similarly broad [O I] and [O III] emission lines, then the steady state inflow rate is {approx} 2 Multiplication-Sign 10{sup -2} M{sub Sun} yr{sup -1}, which exceeds the inflow requirement to explain the X-ray luminosity in terms of radiatively inefficient accretion by a factor of {approx}6. The central active galactic nucleus (AGN) is unable to sustain ionization of the broad-line region; the discrepancy is particularly acute in 2010 when the broad H{alpha} emission line is dominated by the contrail of the infalling supergiant star. However, ram pressure shock ionization produced by the interaction of the infalling supergiant with the ambient interstellar medium may help alleviate the ionizing deficit by generating a mechanical source of ionization supplementing the photoionization provided by the AGN.« less
De Boer, Rob J.; Perelson, Alan S.
2017-09-06
Many HIV-1-infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest-affinity receptors tend to acquire the most antigen from the follicular dendritic cell (FDC) network and present the highest density of cognate peptides to follicular helper T (Tfh) cells, which provide survival signals to the B cell. bnAbs are therefore expected to evolve only when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than othermore » lineages of more specific B cells. Here we develop mathematical models of Tfh cells in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process. Our results suggest that broadly reactive B cells presenting a high density of peptides bound to major histocompatibility complex class II molecules (pMHC) are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they can be rescued by a large fraction of the Tfh cell repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing either the magnitude of the Tfh cell response or the breadth of the Tfh cell repertoire markedly facilitates the evolution of bnAbs. Because both the magnitude and breadth can be increased by vaccination with several HIV-1 proteins, this calls for experimental testing. Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such broadly neutralizing antibodies (bnAbs) could in the future become therapeutic agents. bnAbs appear very late, and patients are typically not protected by them. At the moment, we fail to understand why this takes so long and how the immune system selects for broadly neutralizing capacity. Typically, antibodies are selected based on affinity and not on breadth. We developed mathematical models to study two different mechanisms by which the immune system can select for broadly neutralizing capacity. One of these is based upon the repertoire of different follicular helper T (Tfh) cells in germinal centers. In conclusion, we suggest that broadly reactive B cells may interact with a larger fraction of this repertoire and demonstrate that this would select for bnAbs. Intriguingly, this suggests that broadening the Tfh cell repertoire by vaccination may speed up the evolution of bnAbs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Boer, Rob J.; Perelson, Alan S.
Many HIV-1-infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest-affinity receptors tend to acquire the most antigen from the follicular dendritic cell (FDC) network and present the highest density of cognate peptides to follicular helper T (Tfh) cells, which provide survival signals to the B cell. bnAbs are therefore expected to evolve only when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than othermore » lineages of more specific B cells. Here we develop mathematical models of Tfh cells in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process. Our results suggest that broadly reactive B cells presenting a high density of peptides bound to major histocompatibility complex class II molecules (pMHC) are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they can be rescued by a large fraction of the Tfh cell repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing either the magnitude of the Tfh cell response or the breadth of the Tfh cell repertoire markedly facilitates the evolution of bnAbs. Because both the magnitude and breadth can be increased by vaccination with several HIV-1 proteins, this calls for experimental testing. Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such broadly neutralizing antibodies (bnAbs) could in the future become therapeutic agents. bnAbs appear very late, and patients are typically not protected by them. At the moment, we fail to understand why this takes so long and how the immune system selects for broadly neutralizing capacity. Typically, antibodies are selected based on affinity and not on breadth. We developed mathematical models to study two different mechanisms by which the immune system can select for broadly neutralizing capacity. One of these is based upon the repertoire of different follicular helper T (Tfh) cells in germinal centers. In conclusion, we suggest that broadly reactive B cells may interact with a larger fraction of this repertoire and demonstrate that this would select for bnAbs. Intriguingly, this suggests that broadening the Tfh cell repertoire by vaccination may speed up the evolution of bnAbs.« less
NASA Glenn Research Center Overview
NASA Technical Reports Server (NTRS)
Sehra, Arun K.
2002-01-01
This viewgraph presentation provides information on the NASA Glenn Research Center. The presentation is a broad overview, including the chain of command at the center, its aeronautics facilities, and the factors which shape aerospace product line integration at the center. Special attention is given to the future development of high fidelity probabilistic methods, and NPSS (Numerical Propulsion System Simulation).
NASA LANGLEY RESEARCH CENTER AND THE TIDEWATER INTERAGENCY POLLUTION PREVENTION PROGRAM
National Aeronautics and Space Administration (NASA)'s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. aRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implement...
Spectroscopy of high index contrast Yb:Ta2O5 waveguides for lasing applications
NASA Astrophysics Data System (ADS)
Aghajani, A.; Murugan, G. S.; Sessions, N. P.; Apostolopoulos, V.; Wilkinson, J. S.
2015-06-01
Ytterbium-doped waveguides are required for compact integrated lasers and Yb- doped Ta2O5 is a promising candidate material. The design, fabrication and spectroscopic characterisation of Yb:Ta2O5 rib waveguides are described. The peak absorption cross-section was measured to be 2.75×10-20 cm2 at 975 nm. The emission spectrum was found to have a fluorescence emission peak at a wavelength of 976 nm with a peak cross-section of 2.9×10-20 cm2 and a second broad fluorescence band spanning from 990 nm to 1090 nm. The excited- state life time was measured to be 260 μs.
NASA Astrophysics Data System (ADS)
Colangeli, L.; Mennella, V.; Bussoletti, E.; Merluzzi, P.; Rotundi, A.; Palumbo, P.; di Marino, C.
1993-07-01
It is well known that the infrared emission of many comets is characterized by a broad feature at 10 micrometers, that has been attributed to a Si-O stretching resonance in amorphous and/or hydrated silicate grains. In the case of comets Halley [1,2], Bradfield [3] and Levy [4] two spectral components have been observed: the wide peak centered at 9.8 micrometers and a sharp feature at 11.3 micrometers. This last band has been interpreted with crystalline olivine silicatic grains [1,2,5]. However, recently, it has been pointed out [6] that the laboratory data frequently used in the fits refer to grains embedded in a matrix, which should produce a significant shift of the peak position, according to Mie computations. We have performed laboratory experiments on various silicatic samples with the perspective of determining their optical properties, to study experimentally the influence of matrix effects, and to use the final spectra to perform comparisons with observations. The samples are four terrestrial materials, olivine forsterite, jadeite pyroxene, andesite feldspar and impactite glass, and two meteoritic samples, chondrite (Zacatecas, Mexico) and pallasite (Atacama, Chile). Fine powders of the bulk materials were obtained by grinding calibrated mass amounts of the various samples in an agata mill. The morphological characterization of the samples was performed by means of S.E.M. (scanning electron microscopy) technique. EDX analysis was also performed to determine elemental composition. IR transmission spectra were obtained by using a double beam spectrophotometer that covers the spectral range 2.5-50 micrometers. The standard pellet technique was used by embedding dust samples in KBr or CsI matrices. For comparison, measurements were also performed by depositing small amounts of dust onto KBr windows. In this last case, dust-matrix interaction should be practically absent as grains are simply sitting onto the matrix. The data obtained from the spectroscopic analysis have allowed us to evidence the following main results. Matrix effects do not appear as relevant as suggested by computations performed by the Mie theory. In particular, the peak shift observed for crystalline olivine is from 11.3 micrometers in CsI (n(sub)o = 1.7) to 11.2 micrometers in vacuum (n(sun)o = 1.0). On the other hand, jadeite and andesite grains present main peaks around 10 micrometers, in contrast to cometary spectra. We can, therefore, conclude that crystalline olivine grains are good candidates to simulate the cometary 11.3 micrometer sharp feature, even when matrix effects are accounted for. The impactite sample presents a main broad band around 9.2 micrometers, due to its mainly amorphous composition. This band could resemble the broad 10 micron cometary band; however, its profile is rather broader than that observed for cometary dust. Concerning the meteoritic samples, both chondrite and pallasite show a well defined main peak at 11.3-11.4 micrometers, comparable to cometary spectra. Again, chondrite band profile is too broad. On the contrary, pallasite appears to be a good candidate to reproduce observations. This result appears reasonable if one considers that the sample is formed by small olivine crystals embedded in a iron matrix. In conclusion, the comparison between the spectra of olivine-rich meteoritic grains and cometary dust could suggest either a common origin of the two classes of materials or, at least, a similarity in the processes experienced by them during past evolution. This result appears very relevant because it could imply that the systematic study in the laboratory of meteoritic materials can provide information about the past history of comets. Acknowledgements: This work was partly supported by ASI, CNR, and MURST 40% and 60%. References: [1] Bregman J. D. et al. (1987) Astron. Astrophys., 187, 616. [2] Campins H. and Ryan E. V. (1989) Ap. J., 341, 1059. [3] Hanner M. S. et al. (1990) Ap. J., 348, 312. [4] Lynch D. K. et al. (1990) 22nd annual meeting of the division for planetary sciences, Charlottesville, Virginia. [5] Sandford S. A. and Walker R. M. (1985) Ap. J., 291, 838. [6] Orofino V. et al. (1993) Astron. Astrophys., submitted.
27 CFR 9.138 - Benmore Valley.
Code of Federal Regulations, 2011 CFR
2011-04-01
....” (b) Approved Maps. The appropriate maps for determining the boundaries of the Benmore Valley... northeast in a straight line to the easternmost peak of an unnamed ridge with four peaks in the center of...
27 CFR 9.138 - Benmore Valley.
Code of Federal Regulations, 2010 CFR
2010-04-01
....” (b) Approved Maps. The appropriate maps for determining the boundaries of the Benmore Valley... northeast in a straight line to the easternmost peak of an unnamed ridge with four peaks in the center of...
Genetic potential of black bean genotypes with predictable behaviors in multienvironment trials.
Torga, P P; Melo, P G S; Pereira, H S; Faria, L C; Melo, L C
2016-10-24
The aim of this study was to evaluate the phenotypic stability and specific and broad adaptability of common black bean genotypes for the Central and Center-South regions of Brazil by using the Annicchiarico and AMMI (weighted average of absolute scores: WAAS, and weighted average of absolute scores and productivity: WAASP) methodologies. We carried out 69 trials, with 43 and 26 trials in the Central and Center-South regions, respectively. Thirteen genotypes were evaluated in a randomized block design with three replications, during the rainy, dry, and winter seasons in 2 years. To obtain estimates of specific adaptation, we analyzed the parameters for each method obtained in the two geographic regions separately. To estimate broad adaptation, we used the average of the parameters obtained from each region. The lines identified with high specific adaptation in each region were not the same based on the Annicchiarico and AMMI (WAAS) methodologies. It was not possible to identify the same genotypes with specific or broad stability by using these methods. By contrast, the Annicchiarico and AMMI (WAASP) methods presented very similar estimates of broad and specific adaptation. Based on these methods, the lines with more specific adaptation were CNFP 8000 and CNFP 7994, in the Central and Center-South regions, respectively, of which the CNFP 8000 line was more widely adapted.
Krishnan, Anup; Sharma, Deep; Bhatt, Madhu; Dixit, Apoorv; Pradeep, P
2017-04-01
Lower limb explosive power is an important motor quality for sporting performance and indicates use of anaerobic energy systems like stored ATP and Creatine phosphate system. Weightlifting, Fencing and Wrestling use it for monitoring and identification of potential sportsmen. The Wingate test and Standing Broad Jump (SBJ) test are reliable and accurate tests for its assessment. This study conducted on elite Indian sportsmen tries to analyse feasibility of use of the SBJ test in sports and military medicine when Wingate test is impractical. 95 elite sportsmen (51 Fencers, 17 Weight lifters and 27 Wrestlers) of a sports institute were administered Wingate cycle ergometer test and SBJ under standardised conditions. The results were analysed for mass and inter-discipline correlation. Analysis using Pearson's correlation showed significant positive correlation between Peak power ( r = 0.446, p < 0.0001) and SBJ (distance) in all sportsmen. Inter-sport correlation showed positive correlation between SBJ and peak power ( r = 0.335, p < 0.016) in Fencers and between SBJ, peak power ( r = 0.686, p < 0.002) in Weightlifters. Bland-Altman plot analysis showed that about 94% pairs of peak power and SBJ were within limits of agreement for each discipline as well as among all sportsmen. The test results show definite correlation and SBJ test can be used as a field test in performance monitoring, talent identification, military recruit screening and injury prevention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedmann, T.A.; Tallant, D.R.; Barbour, J.C.
Carbon Nitride (CN{sub x}) films have been grown by ion-assisted pulsed-laser deposition (IAPLD). Graphite targets were laser ablated while bombarding the substrate with ions from a broad-beam Kaufman-type ion source. Ion voltage, current density, substrate temperature, and feed gas composition (N{sub 2} in Ar) were varied. Resultant films were characterized by Raman. Fourier transform infrared (FTIR), and Rutherford back scattering (RBS) spectroscopy. Samples with {approximately} 30% N/C ratio have been fabricated. The corresponding Raman and FTIR spectra indicate that nitrogen is incorporated into the samples by insertion into sp{sup 2}-bonded structures. A low level of C{identical_to}N triple bonds is alsomore » found. As the ion current and voltage are increased with a pure Ar ion beam, Raman peaks associated with nanocrystalline graphite appear in the spectra. Adding low levels of nitrogen to the ion beam first reduces the Raman intensity in the vicinity of the graphite disorder peak without adding detectable amounts of nitrogen to the films (as measured by RBS). At higher nitrogen levels in the ion beam, significant amounts of nitrogen are incorporated into the samples, and the magnitude of the ``disorder`` peak increases. By increasing the temperature of the substrate during deposition, the broad peak due mainly to sp{sup 2}-bonded C-N in the FTIR spectra is shifted to lower wavenumber. This could be interpreted as evidence of single-bonded C-N; however, it is more likely that the character of the sp{sup 2} bonding is changing.« less
Center for School and Community Services
ERIC Educational Resources Information Center
Academy for Educational Development, 2004
2004-01-01
The AED Center for School and Community Services has applied decades of research to pioneering successful approaches to school reform. It has also evaluated--and helped to advance--some of the most exciting initiatives in American education. In the tradition of AED, the Center defines "education" broadly. Recognizing the interdependence of many…
Lee, Woobin; Choi, Seungbeom; Kim, Kyung Tae; Kang, Jingu; Park, Sung Kyu; Kim, Yong-Hoon
2015-12-23
We report a derivative spectroscopic method for determining insulator-to-semiconductor transition during sol-gel metal-oxide semiconductor formation. When an as-spun sol-gel precursor film is photochemically activated and changes to semiconducting state, the light absorption characteristics of the metal-oxide film is considerable changed particularly in the ultraviolet region. As a result, a peak is generated in the first-order derivatives of light absorption ( A' ) vs. wavelength (λ) plots, and by tracing the peak center shift and peak intensity, transition from insulating-to-semiconducting state of the film can be monitored. The peak generation and peak center shift are described based on photon-energy-dependent absorption coefficient of metal-oxide films. We discuss detailed analysis method for metal-oxide semiconductor films and its application in thin-film transistor fabrication. We believe this derivative spectroscopy based determination can be beneficial for a non-destructive and a rapid monitoring of the insulator-to-semiconductor transition in sol-gel oxide semiconductor formation.
[The spectrum studies of structure characteristics in magma contact metamorphic coal].
Wu, Dun; Sun, Ruo-Yu; Liu, Gui-Jian; Yuan, Zi-Jiao
2013-10-01
The structural parameters evolution of coal due to the influence of intrusions of hot magma was investigated and analyzed. X-ray diffraction and laser confocal microscope Raman spectroscopy were used to test and analyze 4 coal samples undergoing varying contact-metamorphism by igneous magmas in borehole No. 13-4 of Zhuji coal mine, Huainan coalfield. The result showed that coal XRD spectrum showed higher background intensity, with the 26 degrees and 42 degrees nearby apparent graphite diffraction peak. Two significant vibration peaks of coal Raman spectra were observed in the 1 000-2 000 cm(-1) frequency range: broad "D" peak at 1 328-1 369 cm(-1) and sharp "G" peak at 1 564-1 599 cm(-1). With the influence of magma intrusion, the relationship between coal structural parameters and coal ranks was excellent.
Raman spectroscopic study of synthesized Na-bearing majoritic garnets
NASA Astrophysics Data System (ADS)
Okamoto, K.
2003-12-01
Majoritic garnets in diamond have been considered as the sample from mantle transition zone (e.g. Moore and Gurney, 1985). For non-destructive, in-situ Raman analysis, Gillet et al. (2002) systematically checked chemistry and Raman peak of various majoritic garnets in diamond. They treated majoritic component as number of excess-silica than 3.0 per formula unit. However, in the basaltic system, majorite garnets also have significant amounts of Na. Na substitution is coupled with Si and Ti as follows; Na +Ti = Ca +Al (Ringwood and Lovering, 1970), Na +Si = Ca + Al (Sobolev and Labrentav, 1971; Ringwood and Major, 1971) or Na + Si = Mg + Al (Gasparik, 1989). Each component in garnet is defined as follows; Mj (majorite) component = ((Si-3)-Na)/2), NaSi (Na2MSi5O12 where M= Ca, Mg, Fe2+) component = (Na-T)/2, and NaTi component = Ti/2. Okamoto and Maruyama (2003) conducted UHP experiments in the MORB + H2O system (KNCFMATSH) at 10-19 GPa. They show that 1) Mj and NaTi component are constant and lower than 0.1 at T = 900 \\deg C, and 2) NaSi component increases drastically above 15 GPa although it is neglibly small at P<15 GPa. Raman spectra was newly analyzed using Okamoto and Maruyama (2003)'s run charges. Above 15 GPa, there is a characteristic sharp peak at 910 cm-1 and broad shoulder between 800 and 900 cm-1 as well as broad band near 960 cm-1. Gillet et at (2002) concluded that the former peak at 910cm-1 is the only reliable signature for the majoritic garnet (Si>3). They also implied that the latter two broad peaks are diagnostic feature for Ti rich garnet (> 1wt% of TiO2) as well as peak at 1030 cm-1. However, in all P range (10-19 GPa) of the present study, TiO2 is higher than 1wt%, and there is a peak at 1030 cm-1. Additional Ti-free experiment at 16 GPa, 1200 \\deg C clearly revealed that Na-bearing majoritic garnet has a significant shoulder at 800-900 cm-1. Ref; Gasparik (1989) CMP, 102,389, Gillet et al. (2002) Am.Min., 87, 312, Moore and Gurney (1985)Nature, 318, 553, Okamoto and Maruyama (2003)PEPI, in press, Ringwood and Lovering (1970) EPSL, 7, 371, Ringwood and Major (1971)EPSL, 12, 411, Sobolev and Labrentav (1971)CMP, 31, 1.
NASA Astrophysics Data System (ADS)
Huo, Qiuyue; Tu, Weixia; Guo, Lin
2017-10-01
ZnGa2O4 phosphors co-composited with nanoscale carbon dots (CDs) and Eu3+ were presented for the tunable color emission. Novel single phase CDs or/and Eu3+ composited ZnGa2O4 phosphors were synthesized by microwave hydrothermal method and their optical properties were investigated. The ZnGa2O4 phosphors composited with CDs exhibited an intense broad blue light emission at 421 nm and a more enhanced photoluminescence intensity than those without CDs. The Eu3+ composited ZnGa2O4 phosphors gave an ideal red color emission. The CDs/Eu3+ co-composited ZnGa2O4 phosphors exhibited a wide emission band peak at 450 nm and narrow emission peak at 618 nm. Furthermore, the tunable color emissions of CDs/Eu3+ co-composited ZnGa2O4 phosphors from blue to the white light region, and then to red were obtained with the increasing Eu3+ concentration, which can be a promising single phased phosphor candidate in light emitting diodes. Broadly tunable emission single phased phosphor is tuned firstly through the synergistic role of the non-metal element and the rare earth metal ions.
Disc origin of broad optical emission lines of the TDE candidate PTF09djl
NASA Astrophysics Data System (ADS)
Liu, F. K.; Zhou, Z. Q.; Cao, R.; Ho, L. C.; Komossa, S.
2017-11-01
An otherwise dormant supermassive black hole (SMBH) in a galactic nucleus flares up when it tidally disrupts a star passing by. Most of the tidal disruption events (TDEs) and candidates discovered in the optical/UV have broad optical emission lines with complex and diverse profiles of puzzling origin. In this Letter, we show that the double-peaked broad H α line of the TDE candidate PTF09djl can be well modelled with a relativistic elliptical accretion disc and the peculiar substructures with one peak at the line rest wavelength and the other redshifted to about 3.5 × 104 km s-1 are mainly due to the orbital motion of the emitting matter within the disc plane of large inclination 88° and pericentre orientation nearly vertical to the observer. The accretion disc has an extreme eccentricity 0.966 and semimajor axis of 340 BH Schwarzschild radii. The viewing angle effects of large disc inclination lead to significant attenuation of He emission lines originally produced at large electron scattering optical depth and to the absence/weakness of He emission lines in the spectra of PTF09djl. Our results suggest that the diversities of line intensity ratios among the line species in optical TDEs are probably due to the differences of disc inclinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa; Grupe, Dirk
2015-02-10
Recent studies have suggested that the short-timescale (≲ 7 days) variability of the broad (∼10,000 km s{sup –1}) double-peaked Hα profile of the LINER nucleus of NGC 1097 could be driven by a variable X-ray emission from a central radiatively inefficient accretion flow. To test this scenario, we have monitored the NGC 1097 nucleus in X-ray and UV continuum with Swift and the Hα flux and profile in the optical spectrum using SOAR and Gemini-South from 2012 August to 2013 February. During the monitoring campaign, the Hα flux remained at a very low level—three times lower than the maximum flux observed in previousmore » campaigns and showing only limited (∼20%) variability. The X-ray variations were small, only ∼13% throughout the campaign, while the UV did not show significant variations. We concluded that the timescale of the Hα profile variation is close to the sampling interval of the optical observations, which results in only a marginal correlation between the X-ray and Hα fluxes. We have caught the active galaxy nucleus in NGC 1097 in a very low activity state, in which the ionizing source was very weak and capable of ionizing just the innermost part of the gas in the disk. Nonetheless, the data presented here still support the picture in which the gas that emits the broad double-peaked Balmer lines is illuminated/ionized by a source of high-energy photons which is located interior to the inner radius of the line-emitting part of the disk.« less
NASA Technical Reports Server (NTRS)
2012-01-01
We present time-resolved broad-band observations of the quasar 3C 279 obtained from multiwavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported gamma-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears delayed with respect to the gamma-ray emission by about 10 days. X-ray observations reveal a pair of 'isolated' flares separated. by approx. 90 days, with only weak gamma-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the gamma-ray flare, while the peak appears in the mm/sub-mm band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broad-band spectra during the gamma-ray flaring event by a shift of its location from approx. 1 pc to approx. 4 pc from the central black hole. On the other hand, if the gamma-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.
Impulse noise: can hitting a softball harm your hearing?
Cook, Korrine; Atcherson, Samuel R
2014-01-01
The purpose of this study is to identify whether or not different materials of softball bats (wooden, aluminum, and composite) are a potential risk harm to hearing when batting players strike a 12'' core .40 softball during slow, underhand pitch typical of recreational games. Peak sound pressure level measurements and spectral analyses were conducted for three controlled softball pitches to a batting participant using each of the different bat materials in an unused outdoor playing field with regulation distances between the pitcher's mound and batter's box. The results revealed that highest recorded peak sound pressure level was recorded from the aluminum (124.6 dBC) bat followed by the composite (121.2 dBC) and wooden (120.0 dBC) bats. Spectral analysis revealed composite and wooden bats with similar broadly distributed amplitude-frequency response. The aluminum bat also produced a broadly distributed amplitude-frequency response, but there were also two very distinct peaks at around 1700 Hz and 2260 Hz above the noise floor that produced its ringing (or ping) sound after being struck. Impulse (transient) sounds less than 140 dBC may permit multiple exposures, and softball bats used in a recreational slow pitch may pose little to no risk to hearing.
Impulse Noise: Can Hitting a Softball Harm Your Hearing?
Atcherson, Samuel R.
2014-01-01
The purpose of this study is to identify whether or not different materials of softball bats (wooden, aluminum, and composite) are a potential risk harm to hearing when batting players strike a 12′′ core .40 softball during slow, underhand pitch typical of recreational games. Peak sound pressure level measurements and spectral analyses were conducted for three controlled softball pitches to a batting participant using each of the different bat materials in an unused outdoor playing field with regulation distances between the pitcher's mound and batter's box. The results revealed that highest recorded peak sound pressure level was recorded from the aluminum (124.6 dBC) bat followed by the composite (121.2 dBC) and wooden (120.0 dBC) bats. Spectral analysis revealed composite and wooden bats with similar broadly distributed amplitude-frequency response. The aluminum bat also produced a broadly distributed amplitude-frequency response, but there were also two very distinct peaks at around 1700 Hz and 2260 Hz above the noise floor that produced its ringing (or ping) sound after being struck. Impulse (transient) sounds less than 140 dBC may permit multiple exposures, and softball bats used in a recreational slow pitch may pose little to no risk to hearing. PMID:24778596
NASA Astrophysics Data System (ADS)
Ismail, Nur Arifah; Razali, Mohd Hasmizam; Amin, Khairul Anuar Mat
2017-09-01
The GG thin films were prepared by film casting technique using gelzan (GG1) and kelcogel (GG2) respectively. The physical appearances of the thin films were observed and their mechanical and chemical properties were investigated. Chemical characterizations were done by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), UV-Vis Spectroscopy, and Scanning Electron Microscopy (SEM). Based on the ATR-FTIR result, GG1 and GG2 thin films show a broad peak in the range of 3600-3200 cm-1 assigned to -OH functional group. A broad peaks also was observed at 3000-2600 cm-1 and 1800-1600 cm-1 which are belong to -CH and C=O functional group, respectively. The UV-Vis Spectroscopy analysis shows that single absorption peak was observed at 260 nm for both films. For mechanical properties, GG1 thin film has high tensile strength (80±12), but low strain at break (2±1), on the other hand GG2 thin film has low tensile strength (3±0.08) but high strain at break (13±0.58). The Water Vapour Transmission Rates (WVTR) and swelling of GG1 and GG2 thin films were (422±113, 415±26) and (987±113, 902±63), respectively.
View looking straightup at celing in center of entrance portico ...
View looking straight-up at celing in center of entrance portico showing stenciled and painted panel saying "C.R.R. 1856." - Central of Georgia Railway, Gray Building, 227 West Broad Street, Savannah, Chatham County, GA
Photoluminescence properties of LiF bismuth silicate glass
NASA Astrophysics Data System (ADS)
Krishnan, M. Laya; Kumar, V. V. Ravi Kanth
2018-04-01
The sample (60-X) Bi2O3-30SiO2-XLiF where X=10, 15, 25 were prepared by conventional melt quenching method. X-ray diffraction pattern conformed the amorphous nature of the prepared sample and a broad peak at 2θ=30°. The Raman spectra confirmed that the Bi can exist both network former (BiO3 pyramidal) and network modifier (BiO6 octahedral)in the glass matrix. The samples showing broad absorption at 470nm is due to the presence of Bi2+ ions, because of increasing optical basicity the absorption edge of the sample is blue shifted. The photoluminescence spectra of the glass under 350nm excitation are showing two main peaks at 430nm and 630 nm due to Bi3+ and Bi2+ respectively and 25 LBS glass showing yellow, 15LBS showing near bluish white and 10LBS showing blue luminescence. The color purity and correlated color temperature are also calculated.
Broad area quantum cascade lasers operating in pulsed mode above 100 °C λ ∼4.7 μm
NASA Astrophysics Data System (ADS)
Zhao, Yue; Yan, Fangliang; Zhang, Jinchuan; Liu, Fengqi; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Wang, Zhanguo
2017-07-01
We demonstrate a broad area (400 μm) high power quantum cascade laser (QCL). A total peak power of 62 W operating at room temperature is achieved at λ ∼4.7 μm. The temperature dependence of the peak power characteristic is given in the experiment, and also the temperature of the active zone is simulated by a finite-element-method (FEM). We find that the interface roughness of the active core has a great effect on the temperature of the active zone and can be enormously improved using the solid source molecular beam epitaxy (MBE) growth system. Project supported by the National Basic Research Program of China (No. 2013CB632801), the National Key Research and Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61306058, 61404131), the Key Projects of Chinese Academy of Sciences (No. ZDRW-XH-20164), and the Beijing Natural Science Foundation (No. 4162060).
Localized plasmon resonance in boron-doped multiwalled carbon nanotubes
NASA Astrophysics Data System (ADS)
Shuba, M. V.; Yuko, D. I.; Kuzhir, P. P.; Maksimenko, S. A.; Chigir, G. G.; Pyatlitski, A. N.; Sedelnikova, O. V.; Okotrub, A. V.; Lambin, Ph.
2018-05-01
Substitutionally boron-doped multiwalled carbon nanotubes (B-CNTs) with lengths mainly less than 0.5 μ m and diameters 10-30 nm have been obtained by arc-discharge evaporation of the graphite anode containing boron material. The broad peak has been observed in the midinfrared conductivity spectra of the thin film comprising B-CNTs. The peak was suggested to be associated with a phenomenon known as localized plasmon resonance. Theoretical analysis has been done to confirm the possibility of this phenomenon to occur in the B-CNTs.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Advisory Committee to the Director (ACD), Centers for Disease Control (CDC) and Prevention--Ethics Subcommittee (ES..., CDC, regarding a broad range of public health ethics questions and issues arising from programs...
Reconsiderations: After "The Idea of a Writing Center"
ERIC Educational Resources Information Center
Boquet, Elizabeth H.; Lerner, Neal
2008-01-01
Originally published in a 1984 issue of "College English," Stephen North's article "The Idea of a Writing Center" has over the years been much cited in writing center scholarship. Even so, this scholarship as a whole did not proceed to gain much presence in "CE" and other broadly-oriented composition journals. Reconsidering North's piece, the…
Yellowstone Lake/National Park
1994-09-30
STS068-247-061 (30 September-11 October 1994) --- Photographed through the Space Shuttle Endeavour's flight windows, this 70mm frame centers on Yellowstone Lake in the Yellowstone National Park. North will be at the top if picture is oriented with series of sun glinted creeks and river branches at top center. The lake, at 2,320 meters (7,732 feet) above sea level, is the largest high altitude lake in North America. East of the park part of the Absaroka Range can be traced by following its north to south line of snow capped peaks. Jackson Lake is southeast of Yellowstone Park, and the connected Snake River can be seen in the lower left corner. Yellowstone, established in 1872 is the world's oldest national park. It covers an area of 9,000 kilometers (3,500 square miles), lying mainly on a broad plateau of the Rocky Mountains on the Continental Divide. It's average altitude is 2,440 meters (8,000 feet) above sea level. The plateau is surrounded by mountains exceeding 3,600 meters (12,000 feet) in height. Most of the plateau was formed from once-molten lava flows, the last of which is said to have occurred 100,000 years ago. Early volcanic activity is still evident in the region by nearly 10,000 hot springs, 200 geysers and numerous vents found throughout the park.
The effect of PS porosity on the structure, optical and electrical properties of ZnS/PS
NASA Astrophysics Data System (ADS)
Wang, Cai-Feng; Hu, Bo; Yi, Hou-Hui; Li, Wei-Bing
2014-03-01
ZnS films were deposited on porous silicon (PS) substrates with different porosities by pulsed laser deposition (PLD). The crystalline structure, surface morphology of ZnS films on PS substrates and optical, electrical properties of ZnS/PS composites were studied. The results show that, ZnS films deposited on PS substrates were grown in preferred orientation along β-ZnS (111) direction corresponding to crystalline structure of cubic phase. With the increase of PS porosity, the XRD diffraction peak intensity of ZnS films decreases. Some voids and cracks appear in the films. Compared with as-prepared PS, the PL peak of PS for ZnS/PS has a blueshift. The larger the porosity of PS, the greater the blueshift is. A new green light emission located around 550 nm is observed with increasing PS porosity, which is ascribed to defect-center luminescence of ZnS. The blue, green emission of ZnS combined with the red emission of PS, a broad photoluminescence band (450-750 nm) is formed. ZnS/PS composites exhibited intense white light emission. The I-V characteristics of ZnS/PS heterojunctions showed rectifying behavior. Under forward bias conditions, the current density is large. Under reverse bias conditions, the current density nearly to be zero. The forward current increases with increasing PS porosity. This work lay a foundation for the realization of electroluminescence of ZnS/PS and solid white light emission devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lijie; Hu, Qiwei; Lei, Li, E-mail: lei@scu.edu.cn
2015-11-14
ZnO-based semiconductor alloys, Li{sub (1−x)/2}Ga{sub (1−x)/2}Zn{sub x}O (x = 0.036–0.515) with a layered-rocksalt-type structure, have been prepared under high pressure. The composition, pressure, and temperature dependence of phonons have been studied by Raman spectroscopy. We observe two disorder-activated Raman (DAR) modes when the Zn composition x increases: a broad Raman peak at ca. 400 cm{sup −1} and a left-shoulder peak at ca. 530 cm{sup −1} on the low-frequency side of A{sub 1g} mode at ca. 580 cm{sup −1}, which can be explained by reference to the phonon density of states for rocksalt-type ZnO. With the increase of the pressure and temperature, the left-shoulder DAR modemore » induced by substitution does not change at the same pace with the A{sub 1g} mode at Brillouin-zone center. We find that ion substitution can be seen as a kind of chemical pressure, and the chemical pressure caused by internal substitution and the physical pressure caused by external compression have equivalent effects on the shortening of correlation length, the distortion of crystal lattice, and the change of atomic occupation.« less
Ultraviolet photodissociation dynamics of the benzyl radical.
Song, Yu; Zheng, Xianfeng; Lucas, Michael; Zhang, Jingsong
2011-05-14
Ultraviolet (UV) photodissociation dynamics of jet-cooled benzyl radical via the 4(2)B(2) electronically excited state is studied in the photolysis wavelength region of 228 to 270 nm using high-n Rydberg atom time-of-flight (HRTOF) and resonance enhanced multiphoton ionization (REMPI) techniques. In this wavelength region, H-atom photofragment yield (PFY) spectra are obtained using ethylbenzene and benzyl chloride as the precursors of benzyl radical, and they have a broad peak centered around 254 nm and are in a good agreement with the previous UV absorption spectra of benzyl. The H + C(7)H(6) product translational energy distributions, P(E(T))s, are derived from the H-atom TOF spectra. The P(E(T)) distributions peak near 5.5 kcal mol(-1), and the fraction of average translational energy in the total excess energy,
Baker, Syed; Pasha, Azmath; Satish, Sreedharamurthy
2017-01-01
The present study emphasizes on synthesis of bimetallic silver-gold nanoparticles from cell free supernatant of Pseudomonas veronii strain AS41G inhabiting Annona squamosa L. The synthesized nanoparticles were characterized using hyphenated techniques with UV-Visible spectra ascertained absorbance peak between 400 and 800 nm. Possible interaction of biomolecules in mediating and stabilization of nanoparticles was depicted with Fourier transform infrared spectroscopy (FTIR). X-ray diffraction (XRD) displayed Bragg's peak conferring the 1 0 0, 1 1 1, 2 0 0, and 2 2 0 facets of the face centered cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. Size and shape of the nanoparticles were determined using Transmission electron microscopy (TEM) microgram with size ranging from 5 to 50 nm forming myriad shapes. Antibacterial activity of nanoparticles against significant human pathogens was conferred with well diffusion assay and its synergistic effect with standard antibiotics revealed 87.5% fold increased activity with antibiotic "bacitracin" against bacitracin resistant strains Bacillus subtilis , Escherichia coli and Klebsiella pneumoniae followed by kanamycin with 18.5%, gentamicin with 11.15%, streptomycin with 10%, erythromycin with 9.7% and chloramphenicol with 9.4%. Thus the study concludes with biogenic and ecofriendly route for synthesizing nanoparticles with antibacterial activity against drug resistant pathogens and attributes growing interest on endophytes as an emerging source for synthesis of nanoparticles.
Inelastic neutron scattering study on boson peaks of imidazolium-based ionic liquids
Kofu, Maiko; Inamura, Yasuhiro; Podlesnyak, Andrey A.; ...
2015-07-26
Low energy excitations of 1-alkyl-3-methylimidazolium ionic liquids (ILs) have been investigated by means of neutron spectroscopy. In the spectra of inelastic scattering, a broad excitation peak referred to as a “boson peak” appeared at 1–3 meV in all of the ILs measured. The intensity of the boson peak was enhanced at the Q positions corresponding to the diffraction peaks, reflecting the in-phase vibrational nature of the boson peak. Furthermore the boson peak energy (E BP) was insensitive to the length of the alkyl-chain but changed depending on the radius of the anion. From the correlation among E BP, the anionmore » radius, and the glass transition temperature T g, we conclude that both E BP and T g in ILs are predominantly governed by the inter-ionic Coulomb interaction which is less influenced by the alkyl-chain length. Furthermore, we also found that the E BP is proportional to the inverse square root of the molecular weight as observed in molecular glasses.« less
The DNA methylation landscape of human melanoma.
Jin, Seung-Gi; Xiong, Wenying; Wu, Xiwei; Yang, Lu; Pfeifer, Gerd P
2015-12-01
Using MIRA-seq, we have characterized the DNA methylome of metastatic melanoma and normal melanocytes. Individual tumors contained several thousand hypermethylated regions. We discovered 179 tumor-specific methylation peaks present in all (27/27) melanomas that may be effective disease biomarkers, and 3113 methylation peaks were seen in >40% of the tumors. We found that 150 of the approximately 1200 tumor-associated methylation peaks near transcription start sites (TSSs) were marked by H3K27me3 in melanocytes. DNA methylation in melanoma was specific for distinct H3K27me3 peaks rather than for broadly covered regions. However, numerous H3K27me3 peak-associated TSS regions remained devoid of DNA methylation in tumors. There was no relationship between BRAF mutations and the number of methylation peaks. Gene expression analysis showed upregulated immune response genes in melanomas presumably as a result of lymphocyte infiltration. Down-regulated genes were enriched for melanocyte differentiation factors; e.g., KIT, PAX3 and SOX10 became methylated and downregulated in melanoma. Copyright © 2015 Elsevier Inc. All rights reserved.
Very broad bandwidth klystron amplifiers
NASA Astrophysics Data System (ADS)
Faillon, G.; Egloff, G.; Farvet, C.
Large surveillance radars use transmitters at peak power levels of around one MW and average levels of a few kW, and possibly several tens of kW, in S band, or even C band. In general, the amplification stage of these transmitters is a microwave power tube, frequently a klystron. Although designers often turn to klystrons because of their good peak and average power capabilities, they still see them as narrow band amplifiers, undoubtedly because of their resonant cavities which, at first sight, would seem highly selective. But, with the progress of recent years, it has now become quite feasible to use these tubes in installations requiring bandwidths in excess of 10 - 12 percent, and even 15 percent, at 1 MW peak for example, in S-band.
Better Broader Impacts through National Science Foundation Centers
NASA Astrophysics Data System (ADS)
Campbell, K. M.
2010-12-01
National Science Foundation Science and Technology Centers (STCs) play a leading role in developing and evaluating “Better Broader Impacts”; best practices for recruiting a broad spectrum of American students into STEM fields and for educating these future professionals, as well as their families, teachers and the general public. With staff devoted full time to Broader Impacts activities, over the ten year life of a Center, STCs are able to address both a broad range of audiences and a broad range of topics. Along with other NSF funded centers, such as Centers for Ocean Sciences Education Excellence, Engineering Research Centers and Materials Research Science and Engineering Centers, STCs develop both models and materials that individual researchers can adopt, as well as, in some cases, direct opportunities for individual researchers to offer their disciplinary research expertise to existing center Broader Impacts Programs. The National Center for Earth-surface Dynamics is an STC headquartered at the University of Minnesota. NCED’s disciplinary research spans the physical, biological and engineering issues associated with developing an integrative, quantitative and predictive understanding of rivers and river basins. Funded in 2002, we have had the opportunity to partner with individuals and institutions ranging from formal to informal education and from science museums to Tribal and women’s colleges. We have developed simple table top physical models, complete museum exhibitions, 3D paper maps and interactive computer based visualizations, all of which have helped us communicate with this wide variety of learners. Many of these materials themselves or plans to construct them are available online; in many cases they have also been formally evaluated. We have also listened to the formal and informal educators with whom we partner, from whom we have learned a great deal about how to design Broader Impacts activities and programs. Using NCED as a case study, this session showcases NCED’s materials, approaches and lessons learned. We will also introduce the work of our sister STCs, whose disciplines span the STEM fields.
Free-beam soliton self-compression in air
NASA Astrophysics Data System (ADS)
Voronin, A. A.; Mitrofanov, A. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Pugžlys, A.; Panchenko, V. Ya; Shumakova, V.; Ališauskas, S.; Baltuška, A.; Zheltikov, A. M.
2018-02-01
We identify a physical scenario whereby soliton transients generated in freely propagating laser beams within the regions of anomalous dispersion in air can be compressed as a part of their free-beam spatiotemporal evolution to yield few-cycle mid- and long-wavelength-infrared field waveforms, whose peak power is substantially higher than the peak power of the input pulses. We show that this free-beam soliton self-compression scenario does not require ionization or laser-induced filamentation, enabling high-throughput self-compression of mid- and long-wavelength-infrared laser pulses within a broad range of peak powers from tens of gigawatts up to the terawatt level. We also demonstrate that this method of pulse compression can be extended to long-range propagation, providing self-compression of high-peak-power laser pulses in atmospheric air within propagation ranges as long as hundreds of meters, suggesting new ways towards longer-range standoff detection and remote sensing.
Kinetic Energy Distribution of H(2p) Atoms from Dissociative Excitation of H2
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Ahmed, Syed M.; Kanik, Isik; Multari, Rosalie
1995-01-01
The kinetic energy distribution of H(2p) atoms resulting from electron impact dissociation of H2 has been measured for the first time with uv spectroscopy. A high resolution uv spectrometer was used for the measurement of the H Lyman-alpha emission line profiles at 20 and 100 eV electron impact energies. Analysis of the deconvolved 100 eV line profile reveals the existence of a narrow line peak and a broad pedestal base. Slow H(2p) atoms with peak energy near 80 meV produce the peak profile, which is nearly independent of impact energy. The wings of H Lyman-alpha arise from dissociative excitation of a series of doubly excited Q(sub 1) and Q(sub 2) states, which define the core orbitals. The fast atom energy distribution peaks at 4 eV.
Phase behavior of mixtures of DPPC and POPG.
Wiedmann, T; Salmon, A; Wong, V
1993-04-07
The phase relation of dipalmitoylphosphatidylcholine (DPPC) and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) has been determined by measurement of the endothermic transitions of mixtures of DPPC and POPG in 100 mM NaCl, 50 mM PIPES (pH 7.0). With the use of differential scanning calorimetry, the gel-liquid crystalline phase transitions of pure POPG and DPPC were estimated to be 274 K and 315.8 K, respectively. With mixtures, there was considerable broadening of the endotherms, but there was no evidence of immiscibility. At high and low mole fractions of DPPC, the observed transition regions are not different from that calculated assuming ideal behavior. However in the central region of the phase diagram, there were deviations from both the ideal liquidus and solidus curves. The chemical shift anisotropy of the 13C-labelled carbonyl carbon of pure DPPC was determined as a function of temperature. At 298 K, a broad peak characteristic of axially symmetric motional averaging of the shielding tensor was observed. At a temperature of 300 K, a narrow peak at 173 ppm was superimposed upon the broad peak. The magnitude of the narrow resonance increased with temperature over the range of 300 to 315 K with the spectrum obtained at the latter point almost completely devoid of any broad features. Spectra obtained with a 9:1 mole ratio of DPPC/POPG was very similar to that obtained with pure DPPC. However, with increasing amounts of POPG, both the temperature at which the narrow resonance appeared and the temperature at which only a narrow resonance was observed were reduced. Over the range of 0 to 50 mol % POPG, there was no major change in the width or shape of the spectra which contained only a broad or narrow resonance. Also for mol % of POPG of 20% and less, there was agreement between the temperature at which only the narrow component was observed and the completion of the main phase transition based on the DSC scans. However, at the two higher mol % of 33 and 50%, the temperature at which only the narrow component was observed was lower than the temperature established for the completion of the main phase transition.
NASA Astrophysics Data System (ADS)
Majidinejad, A.; Zafarani, H.; Vahdani, S.
2018-05-01
The North Tehran fault (NTF) is known to be one of the most drastic sources of seismic hazard on the city of Tehran. In this study, we provide broad-band (0-10 Hz) ground motions for the city as a consequence of probable M7.2 earthquake on the NTF. Low-frequency motions (0-2 Hz) are provided from spectral element dynamic simulation of 17 scenario models. High-frequency (2-10 Hz) motions are calculated with a physics-based method based on S-to-S backscattering theory. Broad-band ground motions at the bedrock level show amplifications, both at low and high frequencies, due to the existence of deep Tehran basin in the vicinity of the NTF. By employing soil profiles obtained from regional studies, effect of shallow soil layers on broad-band ground motions is investigated by both linear and non-linear analyses. While linear soil response overestimate ground motion prediction equations, non-linear response predicts plausible results within one standard deviation of empirical relationships. Average Peak Ground Accelerations (PGAs) at the northern, central and southern parts of the city are estimated about 0.93, 0.59 and 0.4 g, respectively. Increased damping caused by non-linear soil behaviour, reduces the soil linear responses considerably, in particular at frequencies above 3 Hz. Non-linear deamplification reduces linear spectral accelerations up to 63 per cent at stations above soft thick sediments. By performing more general analyses, which exclude source-to-site effects on stations, a correction function is proposed for typical site classes of Tehran. Parameters for the function which reduces linear soil response in order to take into account non-linear soil deamplification are provided for various frequencies in the range of engineering interest. In addition to fully non-linear analyses, equivalent-linear calculations were also conducted which their comparison revealed appropriateness of the method for large peaks and low frequencies, but its shortage for small to medium peaks and motions with higher than 3 Hz frequencies.
Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves
NASA Astrophysics Data System (ADS)
García-Bellido, Juan
2017-05-01
Massive Primordial Black Holes (MPBH) can be formed after inflation due to broad peaks in the primordial curvature power spectrum that collapse gravitationally during the radiation era, to form clusters of black holes that merge and increase in mass after recombination, generating today a broad mass-spectrum of black holes with masses ranging from 0.01 to 105 M⊙ . These MPBH could act as seeds for galaxies and quick-start structure formation, initiating reionization, forming galaxies at redshift z > 10 and clusters at z > 1. They may also be the seeds on which SMBH and IMBH form, by accreting gas onto them and forming the centers of galaxies and quasars at high redshift. They form at rest with zero spin and have negligible cross-section with ordinary matter. If there are enough of these MPBH, they could constitute the bulk of the Dark Matter today. Such PBH could be responsible for the observed fluctuations in the CIB and X-ray backgrounds. MPBH could be directly detected by the gravitational waves emitted when they merge to form more massive black holes, as recently reported by LIGO. Their continuous merging since recombination could have generated a stochastic background of gravitational waves that could eventually be detected by LISA and PTA. MPBH may actually be responsible for the unidentified point sources seen by Fermi, Magic and Chandra. Furthermore, the ejection of stars from shallow potential wells like those of Dwarf Spheroidals (DSph), via the gravitational slingshot effect, could be due to MPBH, thus alleviating the substructure and too-big-to-fail problems of standard collisionless CDM. Their mass distribution peaks at a few tens of M⊙ today, and could therefore be detected also with long-duration microlensing events, as well as by the anomalous motion of stars in the field of GAIA. Their presence as CDM in the Universe could be seen in the time-dilation of strong-lensing images of quasars. The hierarchical large scale structure behaviour of MPBH does not differ from that of ordinary CDM.
ESR study of free radicals in mango
NASA Astrophysics Data System (ADS)
Kikuchi, Masahiro; Hussain, Mohammad S.; Morishita, Norio; Ukai, Mitsuko; Kobayashi, Yasuhiko; Shimoyama, Yuhei
2010-01-01
An electron spin resonance (ESR) spectroscopic study of radicals induced in irradiated fresh mangoes was performed. Mangoes in the fresh state were irradiated with γ-rays, lyophilized and then crushed into a powder. The ESR spectrum of the powder showed a strong main peak at g = 2.004 and a pair of peaks centered at the main peak. The main peak was detected from both flesh and skin specimens. This peak height gradually decreased during storage following irradiation. On the other hand, the side peaks showed a well-defined dose-response relationship even at 9 days post-irradiation. The side peaks therefore provide a useful means to define the irradiation of fresh mangoes.
NASA Technical Reports Server (NTRS)
Haskin, Larry A.; Wang, Alian; Rockow, Kaylynn M.; Jolliff, Bradley L.; Korotev, Randy L.; Viskupic, Karen M.
1997-01-01
Quantification of mineral proportions in rocks and soils by Raman spectroscopy on a planetary surface is best done by taking many narrow-beam spectra from different locations on the rock or soil, with each spectrum yielding peaks from only one or two minerals. The proportion of each mineral in the rock or soil can then be determined from the fraction of the spectra that contain its peaks, in analogy with the standard petrographic technique of point counting. The method can also be used for nondestructive laboratory characterization of rock samples. Although Raman peaks for different minerals seldom overlap each other, it is impractical to obtain proportions of constituent minerals by Raman spectroscopy through analysis of peak intensities in a spectrum obtained by broad-beam sensing of a representative area of the target material. That is because the Raman signal strength produced by a mineral in a rock or soil is not related in a simple way through the Raman scattering cross section of that mineral to its proportion in the rock, and the signal-to-noise ratio of a Raman spectrum is poor when a sample is stimulated by a low-power laser beam of broad diameter. Results obtained by the Raman point-count method are demonstrated for a lunar thin section (14161,7062) and a rock fragment (15273,7039). Major minerals (plagioclase and pyroxene), minor minerals (cristobalite and K-feldspar), and accessory minerals (whitlockite, apatite, and baddeleyite) were easily identified. Identification of the rock types, KREEP basalt or melt rock, from the 100-location spectra was straightforward.
Keiber, T; Bridges, F; Sales, B C
2013-08-30
PbTe is a well-known thermoelectric material. Recent x-ray total scattering studies suggest that Pb moves off center along 100 in PbTe, by ∼0.2 Å at 300 K, producing a split Pb-Te pair distribution. We present an extended x-ray absorption fine structure spectroscopy (EXAFS) study of PbTe (and Tl doped PbTe) to determine if Pb or Te is off center. EXAFS provides sensitive r- or k-space phase information which can differentiate between a split peak for the Pb-Te distribution (indicative of off-center Pb) and a thermally broadened peak. We find no evidence for a split peak for Pb-Te or Te-Pb. At 300 K, the vibration amplitude for Pb-Te (or Te-Pb) is large; this thermally induced disorder is indicative of weak bonds, and the large disorder is consistent with the low thermal conductivity at 300 K. We also find evidence of an anharmonic potential for the nearest Pb-Te bonds, consistent with the overall anharmonicity found for the phonon modes. This effect is modeled by a "skew" factor (C3) which significantly improves the fit of the Pb-Te and Te-Pb peaks for the high temperature EXAFS data; C3 becomes significant above approximately 150-200 K. The consequences of these results will be discussed.
VIEW SOUTH FROM HAMILTON AVENUE BUILDING 25 LEFT; BUILDING 32 ...
VIEW SOUTH FROM HAMILTON AVENUE BUILDING 25 LEFT; BUILDING 32 MACHINE SHOP (1890) LEFT CENTER BUILDING 31 RIGGER'S SHOP (1890) CENTER BUILDING 28 BLACKSMITH SHOP (1885) RIGHT CENTER; BUILDING 27 PATTERN SHOP (1853) RIGHT - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ
The College Resource Centre. Colleges of Applied Arts and Technology.
ERIC Educational Resources Information Center
Ontario Dept. of Education, Toronto. School Planning and Building Research Section.
This booklet provides general guidelines for those involved in planning a resource center for the Colleges of Applied Arts and Technology, CAAT. The first section of the document concerns the formation of a resource center building committee and a broad outline of the various considerations to be included in planning the center program. The second…
Center for Collegiate Mental Health (CCMH) 2016 Annual Report. Publication No. STA 17-74
ERIC Educational Resources Information Center
Center for Collegiate Mental Health, 2017
2017-01-01
During 2015-2016, the membership of the Center for Collegiate Mental Health (CCMH) grew to more than 400 institutions making this the largest and most comprehensive report on college students seeking mental health treatment to date. College and university counseling centers make this report possible by participating in a broad range of activities…
Teaching of the Holocaust as Part of a University's Catholic Identity
ERIC Educational Resources Information Center
Del Duca, Gemma
2011-01-01
This article sketches the development of the National Catholic Center for Holocaust Education, Seton Hill University, Greensburg, PA. It does so with broad strokes, which paint a picture of the program of the Center within the context of ecclesial and papal activities and documents. The article describes how the Center entered into dialogue with…
ERIC Educational Resources Information Center
McGuinness, Aims
2016-01-01
A decade ago, the National Center for Public Policy and Higher Education (the National Center) issued a policy brief, "State Capacity for Higher Education Policy." The National Center's core recommendation: States must have a broad-based, independent, credible public entity with a clear charge to increase the state's educational…
Irradiation effect on luminescence properties of fluoroperovskite single crystal (LiBaF3:Eu2+)
NASA Astrophysics Data System (ADS)
Daniel, D. Joseph; Madhusoodanan, U.; Nithya, R.; Ramasamy, P.
2014-03-01
Single crystals of pure and Eu2+ doped LiBaF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Effects induced by irradiation on europium doped LiBaF3 (lithium barium fluoride) single crystals were monitored by optical absorption, photoluminescence and thermoluminescence studies. The absorption bands of Eu2+ ions with peaks at 240, 290 and 320 nm were observed in the LiBaF3:Eu2+ crystal. Drastic increase in absorption was noted below 600 nm after gamma irradiation, which was dependent on the radiation dose. The additional absorption peak at around 570 nm was observed in irradiated crystal due to the ionization process Eu2+(-)e-→Eu3+. Photoluminescence of Eu2+ doped LiBaF3 single crystal shows sharp line peaked at ~359 nm and a broad band extending between 370 and 450 nm which shows a considerable reduction in Eu2+ PL intensity after gamma irradiation. Irradiated LiBaF3:Eu2+ sample has revealed three intense TL glow peaks at 128 °C (peak-1), 281 °C (peak-2) and 407 °C (peak-3). Activation energy (E) and frequency factor (s) of the latter two peaks were determined by various heating rate (VHR) method and graphical method.
De, Joydeep; Varma, Vishwanath; Saha, Soham; Sheeba, Vasu; Sharma, Vijay Kumar
2013-05-28
Studies on circadian entrainment have traditionally been performed under controlled laboratory conditions. Although these studies have served the purpose of providing a broad framework for our understanding of regulation of rhythmic behaviors under cyclic conditions, they do not reveal how organisms keep time in nature. Although a few recent studies have attempted to address this, it is not yet clear which environmental factors regulate rhythmic behaviors in nature and how. Here, we report the results of our studies aimed at examining (i) whether and how changes in natural light affect activity/rest rhythm and (ii) what the functional significance of this rhythmic behavior might be. We found that wild-type strains of fruit flies, Drosophila melanogaster, display morning (M), afternoon (A), and evening (E) peaks of activity under seminatural conditions (SN), whereas under constant darkness in otherwise SN, they exhibited M and E peaks, and under constant light in SN, only the E peak occurred. Unlike the A peak, which requires exposure to bright light in the afternoon, light information is dispensable for the M and E peaks. Visual examination of behaviors suggests that the M peak is associated with courtship-related locomotor activity and the A peak is due to an artifact of the experimental protocol and largely circadian clock independent.
Structure and photoluminescence properties of TeO2-core/TiO2-shell nanowires
NASA Astrophysics Data System (ADS)
Park, Sunghoon; An, Soyeon; Lee, Chongmu
2013-12-01
TeO2-core/TiO2-shell nanowires were fabricated by thermal evaporation of Te powders and MOCVD of TiO2. The as-synthesized TeO2 nanowires showed a weak broad violet band centered at approximately 430 nm. The emission peak was shifted to a bluish violet region (∼455 nm) by the encapsulation of the nanowires with a TiO2 thin film. The intensity of the major emission from the core-shell nanowires showed strong dependence on the shell layer thickness. The strongest emission was obtained for the shell layer thickness of ∼15 nm and its intensity was approximately 80 times higher than that of the violet emission from the as-synthesized TeO2 nanowires. This enhancement in emission intensity is attributed to the subwavelength optical resonant cavity formation in the shell layer. The major emission intensity was enhanced further and blue-shifted by annealing, which might be attributed to the increase in the Ti interstitial and O vacancy concentrations in the TeO2 cores during annealing.
Observing patchy reionization with future CMB polarization experiments
NASA Astrophysics Data System (ADS)
Roy, A.; Lapi, A.; Spergel, D.; Baccigalupi, C.
2018-05-01
We study the signal from patchy reionization in view of the future high accuracy polarization measurements of the Cosmic Microwave Background (CMB). We implement an extraction procedure of the patchy reionization signal analogous to CMB lensing. We evaluate the signal to noise ratio (SNR) for the future Stage IV (S4) CMB experiment. The signal has a broad peak centered on the degree angular scales, with a long tail at higher multipoles. The CMB S4 experiment can effectively constrain the properties of reionization by measuring the signal on degree scales. The signal amplitude depends on the properties of the structure determining the reionization morphology. We describe bubbles having radii distributed log-normally. The expected S/N is sensitive to the mean bubble radius: bar R=5 Mpc implies S/N ≈ 4, bar R=10 Mpc implies S/N ≈ 20. The spread of the radii distribution strongly affects the integrated SNR, that changes by a factor of 102 when σlnr goes from ln 2 to ln 3. Future CMB experiments will thus place important constraints on the physics of reionization.
Jennifer Miller; Lindsey Brown; Eddie Hill; Amy Shellman; Ron Ramsing; Edwin Gómez
2012-01-01
The Leave No Trace Center for Outdoor Ethics (LNT) is a nonprofit educational organization that teaches skills and values for recreating responsibly in the out-of-doors. LNT developed Promoting Environmental Awareness in Kids (PEAK), based on seven ethical principles. The PEAK program provides a pack that contains several interactive activities specifically designed to...
NASA Astrophysics Data System (ADS)
Tomioka, N.; Tani, R.; Kayama, M.; Chang, Y.; Nishido, H.; Kaushik, D.; Rae, A.; Ferrière, L.; Gulick, S. P. S.; Morgan, J. V.
2017-12-01
The Chicxulub impact structure, located in the northern Yucatan Peninsula, Mexico, was drilled by the joint IODP-ICDP Expedition 364 in April-May 2016. This expedition is the first attempt to obtain materials from the topographic peak ring within the crater previously identified by seismic imaging. A continuous core was successfully recovered from the peak ring at depths between 505.7 and 1334.7 mbsf. Uplifted, fractured, and shocked granitic basement rocks forming the peak ring were found below, in the impact breccia and impact melt rock unit (747.0-1334.7 mbsf; Morgan et al. 2016). In order to constrain impact crater formation, we investigated shock pressure distribution in the peak-ring basement rocks. Thin sections of the granitic rocks were prepared at intervals of 60 m. All the samples contains shocked minerals, with quartz grains frequently showing planar deformation features (PDFs). We determined shock pressures based on the cathodoluminescence (CL) spectroscopy of quartz. The strong advantage of the CL method is its applicability to shock pressure estimation for individual grains for both quartz and diaplectic SiO2 glass with high-spatial resolution ( 1 μm) (Chang et al. 2016). CL spectra of quartz shows a blue emission band caused by shock-induced defect centers, where its intensity increases with shock pressure. A total of 108 quartz grains in ten thin sections were analyzed using a scanning electron microscope with a CL spectrometer attached (an acceleration voltage of 15 kV and a beam current of 2 nA were used). Natural quartz single crystals, which were experimentally shocked at 0-30 GPa, were used for pressure calibration. CL spectra of all the quartz grains in the basement rocks showed broad blue emission band at the wavelength range of 300-500 nm and estimated shock pressures were in the range of 15-20 GPa. The result is consistent with values obtained from PDFs analysis in quartz using the universal stage (Ferrière et al. 2017; Rae et al. 2017). Although shock pressure gradient in the drilled section is small, the pressure slightly increases at depths of 1113.7 and 1167.0 m. The shock pressure variation could be due to dynamic perturbation of the basement rock during peak ring formation.
Business Information Centres: New Resources Are Not Used.
ERIC Educational Resources Information Center
Drummond, Janet
1984-01-01
Presents findings from survey of Canadian information centers specializing in business, economics, or finance (corporate library, government department library, fee-based service, commercial database, association information center). Questions focused on three broad categories: human resources organization, relative use of different types of…
NASA Astrophysics Data System (ADS)
Bansal, Preeti
2016-05-01
We simulate semi-central symmetric system reactions, for center-of-mass energies at which maximal number of light fragments (2 ≤ A ≤ 4) occurs and at a fixed Ec.m. = 60 AMeV. The study was carried out with soft EOS using isospin-dependent quantum molecular dynamics (IQMD) model. We studied various properties of fragments at peak Ec.m. and also at constant energy (Ec.m. = 60 AMeV) to find out the relative difference between the properties at both energies.
Shiozawa, Shinichiro; Hirata, Rogerio Pessoto; Graven-Nielsen, Thomas
2015-01-01
Postural control during rapid movements may be impaired due to musculoskeletal pain. The purpose of this study was to investigate the effect of experimental knee-related muscle pain on the center of pressure (CoP) displacement in a reaction time task condition. Nine healthy males performed two reaction time tasks (dominant side shoulder flexion and bilateral heel lift) before, during, and after experimental pain induced in the dominant side vastus medialis or the tibialis anterior muscles by hypertonic saline injections. The CoP displacement was extracted from the ipsilateral and contralateral side by two force plates and the net CoP displacement was calculated. Compared with non-painful sessions, tibialis anterior muscle pain during the peak and peak-to-peak displacement for the CoP during anticipatory postural adjustments (APAs) of the shoulder task reduced the peak-to-peak displacement of the net CoP in the medial-lateral direction (P<0.05). Tibialis anterior and vastus medialis muscle pain during shoulder flexion task reduced the anterior-posterior peak-to-peak displacement in the ipsilateral side (P<0.05). The central nervous system in healthy individuals was sufficiently robust in maintaining the APA characteristics during pain, although the displacement of net and ipsilateral CoP in the medial-lateral and anterior-posterior directions during unilateral fast shoulder movement was altered.
Voltage color tunable OLED with (Sm,Eu)-β-diketonate complex blend
NASA Astrophysics Data System (ADS)
Reyes, R.; Cremona, M.; Teotonio, E. E. S.; Brito, H. F.; Malta, O. L.
2004-09-01
Light emission from organic electroluminescent diodes (OLEDs) in which mixed samarium and europium β-diketonate complexes, [Sm 0.7Eu 0.3(TTA) 3(TPPO) 2], was used as the emitting layer is described. The electroluminescence spectra exhibit narrow peaks arising from 4f-intraconfigurational transitions of the Sm 3+ and Eu 3+ ions and a broad emission band attributed to the electrophosphorescence of the TTA ligand. The intensity ratio of the peaks determined by the bias voltage applied to the OLED, together with the ligand electrophosphorescence, allows to obtain a voltage-tunable color light source.
Acceleration of domain wall movement by photoirradiation in perovskite-type cobaltite
NASA Astrophysics Data System (ADS)
Okimoto, Y.; Kurashima, M.; Seko, K.; Ishikawa, T.; Onda, K.; Koshihara, S.; Kyomen, T.; Itoh, M.
2011-04-01
Femtosecond reflection spectroscopy was performed on a perovskite-type cobalt oxide, namely, Pr0.5Ca0.5CoO3, that undergoes a photoinduced spin-state transition. After photoirradiation at 30 K, the time profile of the reflectance change shows a broad peak reflecting the propagation of the photodomain (about 60 Co sites per one photon). Analysis of the peak position indicates the sudden increase of the velocity of the propagation with increasing the excitation intensity. Such acceleration with increase in fluence originates from an abrupt sound velocity change driven by a cooperative photoinduced structural transition.
Terahertz spectral change associated with glass transition of poly-ε-caprolactone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komatsu, Marina, E-mail: mkomatsu@toki.waseda.jp; Mizuno, Maya; Fukunaga, Kaori
2015-04-07
We measured absorption spectra of unidirectionally stretched poly-ε-caprolactone (PCL) film in a range from 0.3 to 3.6 THz at temperatures from 10 to 300 K. Several absorption peaks were observed, when the electric field of THz waves was set in directions parallel and perpendicular to the stretching direction. The absorption bandwidths became significantly broad at around 200 K and above at least in two specific peaks. This temperature is close to the glass transition temperature of PCL. Further, it is shown by quantum chemical calculations that all the peaks obtained experimentally originate in skeletal vibrations of PCL. Therefore, it has become clear thatmore » a specific feature appears in the THz absorption spectrum of PCL associated with its glass transition.« less
NDEA Language and Area Centers: A Report on the First Five Years.
ERIC Educational Resources Information Center
Bigelow, Donald N.; Legters, Lyman H.
This report documents a broad category of information concerning the first five years of the National Defense Education Act of 1958. Included in the report are the following chapters: (1) concept and practice in non-western area studies, (2) the language and area centers program, (3) impact of the centers program, (4) outlook for the program, and…
ERIC Educational Resources Information Center
Brickell, Henry; And Others
The National Center for Educational Communication (NCEC) has shifted its emphasis from dissemination of information toward the broad objective of improvement in educational practice. With this change, the Educational Resources Information Center (ERIC) system will no longer serve as the focal point of the operation. In its discussions of NCEC's…
Crane, Cameron C.; Wang, Feng; Li, Jun; ...
2017-02-21
Copper nanoparticles exhibit intense and sharp localized surface plasmon resonance (LSPR) in the visible region; however, the LSPR peaks become weak and broad when exposed to air due to the oxidation of Cu. In this work, the Cu nanoparticles are successfully encapsulated in SiO 2 by employing trioctyl-n-phosphine (TOP)-capped Cu nanoparticles for the sol–gel reaction, yielding an aqueous Cu–SiO 2 core–shell suspension with stable and well-preserved LSPR properties of the Cu cores. With the TOP capping, the oxidation of the Cu cores in the microemulsion was significantly reduced, thus allowing the Cu cores to sustain the sol–gel process used formore » coating the SiO 2 protection layer. It was found that the self-assembled TOP-capped Cu nanoparticles were spontaneously disassembled during the sol–gel reaction, thus recovering the LSPR of individual particles. During the disassembling progress, the extinction spectrum of the nanocube agglomerates evolved from a broad extinction profile to a narrow and sharp peak. For a mixture of nanocubes and nanorods, the spectra evolved to two distinct peaks during the dissembling process. The observed spectra match well with the numerical simulations. In conclusion, these Cu–SiO 2 core–shell nanoparticles with sharp and stable LSPR may greatly expand the utilization of Cu nanoparticles in aqueous environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crane, Cameron C.; Wang, Feng; Li, Jun
Copper nanoparticles exhibit intense and sharp localized surface plasmon resonance (LSPR) in the visible region; however, the LSPR peaks become weak and broad when exposed to air due to the oxidation of Cu. In this work, the Cu nanoparticles are successfully encapsulated in SiO 2 by employing trioctyl-n-phosphine (TOP)-capped Cu nanoparticles for the sol–gel reaction, yielding an aqueous Cu–SiO 2 core–shell suspension with stable and well-preserved LSPR properties of the Cu cores. With the TOP capping, the oxidation of the Cu cores in the microemulsion was significantly reduced, thus allowing the Cu cores to sustain the sol–gel process used formore » coating the SiO 2 protection layer. It was found that the self-assembled TOP-capped Cu nanoparticles were spontaneously disassembled during the sol–gel reaction, thus recovering the LSPR of individual particles. During the disassembling progress, the extinction spectrum of the nanocube agglomerates evolved from a broad extinction profile to a narrow and sharp peak. For a mixture of nanocubes and nanorods, the spectra evolved to two distinct peaks during the dissembling process. The observed spectra match well with the numerical simulations. In conclusion, these Cu–SiO 2 core–shell nanoparticles with sharp and stable LSPR may greatly expand the utilization of Cu nanoparticles in aqueous environments.« less
Plant Resources Center and the Vietnamese genebank system
USDA-ARS?s Scientific Manuscript database
The highly diverse floristic composition of Vietnam has been recognized as a center of angiosperm expansion and crop biodiversity. The broad range of climatic environments include habitats from tropical and subtropical, to temperate and alpine flora. The human component of the country includes 54 et...
VA Library Service--Today's look at Tomorrow's Library.
ERIC Educational Resources Information Center
Veterans Administration, Washington, DC.
The Conference Poceedings are divided into three broad topics: systems planning, audiovisuals in biomedical communication, and automation and networking. Speakers from within the Veterans Administration (VA), from the National Medical Audiovisual Center, and the Lister Hill National Center for Biomedical Communications, National Library of…
THE NATURE OF ACTIVE GALACTIC NUCLEI WITH VELOCITY OFFSET EMISSION LINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller-Sánchez, F.; Comerford, J.; Stern, D.
We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ∼0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offsetmore » of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Pa α emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Pa α emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1–0.″4 (0.1–0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies.« less
Head bobbing and the body movement of little egrets ( Egretta garzetta) during walking.
Fujita, Masaki
2003-01-01
Although previous studies have indicated that head bobbing of birds is an optokinetic movement, head bobbing can also be controlled by some biomechanical constraints when it occurs during walking. In the present study, the head bobbing, center of gravity, and body movements of little egrets (Egretta garzetta) during walking were examined by determination of the position of the center of gravity using carcasses and by motion analysis of video films of wild egrets during walking. The results showed that the hold phase occurs while the center of gravity is over the supporting foot during the single support phase. In addition, the peak speed of neck extension was coincident with the peak speed of the center of gravity. These movements are similar to those of pigeons, and suggest the presence of biomechanical constraints on the pattern of head bobbing and body movements during walking.
Iron K Features in the Quasar E 1821+643: Evidence for Gravitationally Redshifted Absorption?
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; Serlemitsos, Peter
2005-01-01
We report a Chandra high-energy grating detection of a narrow, redshifted absorption line superimposed on the red wing of a broad Fe K line in the z = 0.297 quasar E 1821+643. The absorption line is detected at a confidence level, estimated by two different methods, in the range approx. 2 - 3 sigma. Although the detection significance is not high enough to exclude a non-astrophysical origin, accounting for the absorption feature when modeling the X-ray spectrum implies that the Fe-K emission line is broad, and consistent with an origin in a relativistic accretion disk. Ignoring the apparent absorption feature leads to the conclusion that the Fe-K emission line is narrower, and also affects the inferred peak energy of the line (and hence the inferred ionization state of Fe). If the absorption line (at approx. 6.2 keV in the quasar frame) is real, we argue that it could be due to gravitationally redshifted Fe XXV or Fe XXVI resonance absorption within approx. 10 - 20 gravitational radii of the putative central black hole. The absorption line is not detected in earlier ASCA and Chandra low-energy grating observations, but the absorption line is not unequivocally ruled out by these data. The Chandra high-energy grating Fe-K emission line is consistent with an origin predominantly in Fe I-XVII or so. In an ASCA observation eight years earlier, the Fe-K line peaked at approx. 6.6 keV, closer to the energies of He-like Fe triplet lines. Further, in a Chandra low-energy grating observation the Fe-K line profile was double-peaked, one peak corresponding to Fe I-XVII or so, the other peak to Fe XXVI Ly alpha. Such a wide range in ionization state of Fe is not ruled out by the HEG and ASCA data either, and is suggestive of a complex structure for the line-emitter.
Theodore, Ted G.; Kotlyar, Boris B.; Berger, Vladimir I.; Moring, Barry C.; Singer, Donald A.; Edstrom, Sven A.
1999-01-01
A broad west-to-east increase of many metal concentrations has been found in stream sediments during a reconnaissance investigation conducted in conjunction with geologic studies in the Santa Renia Fields and Beaver Peak 7–1/2 minute quadrangles near the northern end of the Carlin trend of gold deposits in the Tuscarora Mountains. This regional increase in metal concentrations coincides with a dramatic change in landform wherein high concentrations of metals in stream sediments appear to correlate directly with areas of high elevations and steep slopes in the Beaver Peak quadrangle. Robust erosion combined with high flow rates in streams from these higher elevations are envisaged to have contributed significantly to increased metal concentrations in the stream sediments by an enhanced presence of minerals with high specific gravities and a correspondingly diminished presence of minerals with low specific gravities. Minerals with low specific gravities probably have been preferentially flushed down stream because of high transporting capacities for sediment by streams in the Beaver Peak quadrangle. In addition, the Carlin trend, a generally northwest-alignment of gold deposits in the Santa Renia Fields quadrangle, is well outlined by arsenic concentrations that include a maximum of approximately 54 parts per million. Further, a weakly developed distal-to-proximal metal zonation towards these gold deposits appears to be defined respectively in plots showing distributions of thallium, arsenic, antimony, and zinc. A broad area of high metal concentrations—including sharply elevated abundances of Ag, As, Au, Cd, Co, Cu, Mn, Ni, P, Sb, Sc, Te, V, and especially Zn—near the southeast corner of the Beaver Peak quadrangle primarily could be the result of stratiform mineralized rocks in the Ordovician Vinini Formation or Devonian Slaven Chert, or the result of a subsequent Mesozoic or Tertiary epigenetic overprint.
NASA Astrophysics Data System (ADS)
Yabe, Takuya; Komori, Masataka; Toshito, Toshiyuki; Yamaguchi, Mitsutaka; Kawachi, Naoki; Yamamoto, Seiichi
2018-02-01
Although the luminescence images of water during proton-beam irradiation using a cooled charge-coupled device camera showed almost the same ranges of proton beams as those measured by an ionization chamber, the depth profiles showed lower Bragg peak intensities than those measured by an ionization chamber. In addition, a broad optical baseline signal was observed in depths that exceed the depth of the Bragg peak. We hypothesize that this broad baseline signal originates from the interaction of proton-induced prompt gamma photons with water. These prompt gamma photons interact with water to form high-energy Compton electrons, which may cause luminescence or Cherenkov emission from depths exceeding the location of the Bragg peak. To clarify this idea, we measured the luminescence images of water during the irradiations of protons in water with minimized parallax errors, and also simulated the produced light by the interactions of prompt gamma photons with water. We corrected the measured depth profiles of the luminescence images by subtracting the simulated distributions of the produced light by the interactions of prompt gamma photons in water. Corrections were also conducted using the estimated depth profiles of the light of the prompt gamma photons, as obtained from the off-beam areas of the luminescence images of water. With these corrections, we successfully obtained depth profiles that have almost identical distributions as the simulated dose distributions for protons. The percentage relative height of the Bragg peak with corrections to that of the simulation data increased to 94% from 80% without correction. Also, the percentage relative offset heights of the deeper part of the Bragg peak with corrections decreased to 0.2%-0.4% from 4% without correction. These results indicate that the luminescence imaging of water has potential for the dose distribution measurements for proton therapy dosimetry.
NASA Astrophysics Data System (ADS)
Padilla, D.; Steiner, J. C.
2005-12-01
Fourier Transform Infrared (FTIR) examination of the combustion products of selected forest materials using a meeker burner flame at temperatures up to 500 degrees Celsius produces a cluster of broad distinct peaks throughout the 400 to 4000 cm-1 wavenumber interval. Distinct bands bracketed by wavenumbers 400-700, 1500-1700, 2200-2400 and 3300-3600 cm-1 show variable intensity with an average difference between the least absorbing and most strongly absorbing species of approximately fifty percent. Given that spectral band differences of ten percent are within the range of modern satellite spectrometers, these band differences are of potential value for discriminating between fires that are impacting a range of vegetation types. Corresponding scanning electron microscope and energy dispersive micro-chemical (SEM/ED) analysis establishes that the evolved soot particles exhibit a characteristic rounded morphology, are carbon rich and host a wide range of adsorbed elements, including calcium, aluminum, potassium, silicon, sulfur and trace nitrogen. Combustion experiments involving leaves and branches as a subset of the biomass experiments at 200-500 degrees Celsius yield a similar broad background, but with peak shifts for maxima residing at less than 1700 cm-1. Additional peaks appear in the ranges 1438-1444, 875 and 713 cm-1. These peak are of potential use for discriminating between hot and smoldering fires, and between soot and smoke yields from green woods and whole-wood or lumber. The spectral shifts noted for low temperature smoldering conditions are in the vicinity of those cited for green vegetation and may not be resolved by present satellite platforms. Nevertheless, the experimental peak data set is of potential use for discriminating between a conflagration or accentuated fire and one characterized by smoldering at low temperature. SEM/ED analysis of the combusted leaf, branch, bark and various crown assemblages yields comparable morphological and geochemical signatures although potassium and light elements are slightly concentrated in effluent from the leafy matrix.
α and 2 p 2 n emission in fast neutron-induced reactions on 60Ni
NASA Astrophysics Data System (ADS)
Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.
2015-06-01
Background: The cross sections for populating the residual nucleus in the reaction ZAX(n,x) Z -2 A -4Y exhibit peaks as a function of incident neutron energy corresponding to the (n ,n'α ) reaction and, at higher energy, to the (n ,2 p 3 n ) reaction. The relative magnitudes of these peaks vary with the Z of the target nucleus. Purpose: Study fast neutron-induced reactions on 60Ni. Locate experimentally the nuclear charge region along the line of stability where the cross sections for α emission and for 2 p 2 n emission in fast neutron-induced reactions are comparable as a further test of reaction models. Methods: Data were taken by using the Germanium Array for Neutron-Induced Excitations. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's Weapons Neutron Research facility provided neutrons in the energy range from 1 to 250 MeV. The time-of-flight technique was used to determine the incident-neutron energies. Results: Absolute partial cross sections for production of seven discrete Fe γ rays populated in 60Ni (n ,α /2 p x n γ ) reactions with 2 ≤x ≤5 were measured for neutron energies 1 MeV
A hetero-homogeneous investigation of chemical bath deposited Ga-doped ZnO nanorods
NASA Astrophysics Data System (ADS)
Rakhsha, Amir Hosein; Abdizadeh, Hossein; Pourshaban, Erfan; Golobostanfard, Mohammad Reza
2018-01-01
One-dimensional nanostructures of zinc oxide (ZnO) have been in the center of attention, mostly for electronic applications due to their distinctive properties such as high electron mobility (100 cm2V-1s-1) and crystallinity. Thanks to its high density of vacancies and interstitial sites, wurtzite lattice of ZnO is a suitable host for gallium (Ga) as a dopant element. Herein, ZnO nanorod arrays (NRAs) are synthesized by a low-temperature chemical bath deposition (CBD) method with various concentrations of gallium nitrate hydrate as a dopant precursor. Structural and morphological analyses confirm that optimum properties of gallium-doped ZnO (GZO) are obtained at 1% (Ga to Zn molar ratio). Owing to the replacement of smaller Ga3+ ions with Zn2+ ions in the GZO structure, a slight shift of (002) peak to higher angles could be observed in XRD pattern of GZO NRAs. The scanning electron microscope images demonstrate a proliferation in the ZnO NRAs length from 650 nm for undoped ZnO (UZO) to 1200 nm for GZO-1%. However, increasing the dopant concentration above 2.5% results in formation of homogeneous zinc gallium oxide in the bulk solution, which is a sign of inefficient process of doping in GZO NRAs. Furthermore, photoluminescence spectroscopy is used to characterize the band-gap variation of the samples, which demonstrates a small red-shift in the UV emission peak and a decrease in visible emission peak intensity with introducing Ga in ZnO lattice. Lower resistivity for GZO-1% (1.1 MΩ) sample compared to UZO (1.4 MΩ) is recorded, which is compelling evidence for the presence of Ga3+ in ZnO lattice. The results suggest that incorporating Ga into ZnO lattice using CBD method is an easy and effective technique to improve the electrical properties of ZnO NRAs that is an essential factor for a broad range of devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, T.N.
1994-05-06
We have optimized the reaction conditions under which unactivated metabolite of the food borne carcinogen 2-amino-1-methyl-6-phenylimidazo [4,5-{beta}]pyridine (PhIP) is covalently bound to the oligodeoxynucleotide d(CCTACGCATCC). Capillary electrophoresis (CE) was used to separate and characterize this DNA oligomer bound by PhIP. We observed 2 major and several minor PhIP adduct species. The 2 major adducts had different absorbance maxima; the major adduct eluates with faster and slower mobilities had absorbance maxima of 360 and 340 nm, respectively. One of the two major PhIP adduct species was resolvable but the peak was broad. Using detection at 260 nm, the other major PhIPmore » adduct with fastest electrophoretic mobility was not resolvable, but coelute with the huge broad unmodified DNA oligomer peak. However, at higher wavelengths (>320 nm) where DNA does not absorb, electropherograms generated by detection at these higher wavelengths showed very heterogeneous binding by PhIP to the DNA oligomer with no interfering absorbance by the DNA.« less
The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Young Galaxies from SDSS
NASA Astrophysics Data System (ADS)
Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine; Hainline, Kevin Nicholas; DiPompeo, Michael A.
2016-04-01
An important question in extragalactic astronomy concerns the distribution of black hole accretion rates, i.e. the Eddington ratio distribution, of active galactic nuclei (AGN). Specifically, it is matter of debate whether AGN follow a broad distribution in accretion rates, or if the distribution is more strongly peaked at characteristic Eddington ratios. Using a sample of galaxies from SDSS DR7, we test whether an intrinsic Eddington ratio distribution that takes the form of a broad Schechter function is in fact consistent with previous work that suggests instead that young galaxies in optical surveys have a more strongly peaked lognormal Eddington ratio distribution. Furthermore, we present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that the intrinsic Eddington ratio distribution of optically selected AGN is consistent with a power law with an exponential cutoff, as is observed in the X-rays. This work was supported in part by a NASA Jenkins Fellowship.
32 CFR Appendix A to Part 1285 - Gaining Access to DLA Records
Code of Federal Regulations, 2010 CFR
2010-07-01
..., medical, chemical, petroleum, industrial, construction, electronics, and general items of supply. The six... aircraft, surface ships, submarines, combat vehicles, and missile systems. b. Defense Electronics Supply... Center, Attn: DCSC-WXA, 3990 E. Broad Street, Columbus, OH 43216-5000. Defense Electronics Supply Center...
77 FR 74483 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-14
... outcomes- oriented health promotion and disease prevention research on a broad range of topics using a... days of this notice. Proposed Project Prevention Research Centers Program National Evaluation Reporting... Description The Prevention Research Centers (PRC) Program was established by Congress through the Health...
75 FR 18503 - Agency Forms Undergoing Paperwork Reduction Act Review
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... promotion and disease prevention research on a broad range of topics using a multi- disciplinary and... Project Prevention Research Centers Program National Evaluation Reporting System (OMB No. 0920-0650 exp. 8... Brief Description The Prevention Research Centers (PRC) Program was established by Congress through the...
Climate change impacts on terrestrial ecosystems in the multi-state region centered on Chicago
USDA-ARS?s Scientific Manuscript database
This paper describes the potential impacts of warming temperatures and changing precipitation on plants wildlife, invasive species, pests and agricultural ecosystems across the multistate region centered on Chicago, Illinois. We define the region broadly to include several hundred kilometers. We c...
On the Origin of the 1,000 Hz Peak in the Spectrum of the Human Tympanic Electrical Noise
Pardo-Jadue, Javiera; Dragicevic, Constantino D.; Bowen, Macarena; Delano, Paul H.
2017-01-01
The spectral analysis of the spontaneous activity recorded with an electrode positioned near the round window of the guinea pig cochlea shows a broad energy peak between 800 and 1,000 Hz. This spontaneous electric activity is called round window noise or ensemble background activity. In guinea pigs, the proposed origin of this peak is the random sum of the extracellular field potentials generated by action potentials of auditory nerve neurons. In this study, we used a non-invasive method to record the tympanic electric noise (TEN) in humans by means of a tympanic wick electrode. We recorded a total of 24 volunteers, under silent conditions or in response to stimuli of different modalities, including auditory, vestibular, and motor activity. Our results show a reliable peak of spontaneous activity at ~1,000 Hz in all studied subjects. In addition, we found stimulus-driven responses with broad-band noise that in most subjects produced an increase in the magnitude of the energy band around 1,000 Hz (between 650 and 1,200 Hz). Our results with the vestibular stimulation were not conclusive, as we found responses with all caloric stimuli, including 37°C. No responses were observed with motor tasks, like eye movements or blinking. We demonstrate the feasibility of recording neural activity from the electric noise of the tympanic membrane with a non-invasive method. From our results, we suggest that the 1,000 Hz component of the TEN has a mixed origin including peripheral and central auditory pathways. This research opens up the possibility of future clinical non-invasive techniques for the functional study of auditory and vestibular nerves in humans. PMID:28744193
On the Origin of the 1,000 Hz Peak in the Spectrum of the Human Tympanic Electrical Noise.
Pardo-Jadue, Javiera; Dragicevic, Constantino D; Bowen, Macarena; Delano, Paul H
2017-01-01
The spectral analysis of the spontaneous activity recorded with an electrode positioned near the round window of the guinea pig cochlea shows a broad energy peak between 800 and 1,000 Hz. This spontaneous electric activity is called round window noise or ensemble background activity. In guinea pigs, the proposed origin of this peak is the random sum of the extracellular field potentials generated by action potentials of auditory nerve neurons. In this study, we used a non-invasive method to record the tympanic electric noise (TEN) in humans by means of a tympanic wick electrode. We recorded a total of 24 volunteers, under silent conditions or in response to stimuli of different modalities, including auditory, vestibular, and motor activity. Our results show a reliable peak of spontaneous activity at ~1,000 Hz in all studied subjects. In addition, we found stimulus-driven responses with broad-band noise that in most subjects produced an increase in the magnitude of the energy band around 1,000 Hz (between 650 and 1,200 Hz). Our results with the vestibular stimulation were not conclusive, as we found responses with all caloric stimuli, including 37°C. No responses were observed with motor tasks, like eye movements or blinking. We demonstrate the feasibility of recording neural activity from the electric noise of the tympanic membrane with a non-invasive method. From our results, we suggest that the 1,000 Hz component of the TEN has a mixed origin including peripheral and central auditory pathways. This research opens up the possibility of future clinical non-invasive techniques for the functional study of auditory and vestibular nerves in humans.
Triple Differential Cross Sections for single ionization of the Ethane molecule
NASA Astrophysics Data System (ADS)
Ali, Esam; Nixon, Kate; Ning, Chuangang; Murray, Andrew; Madison, Don
2015-09-01
We report experimental and theoretical results for electron-impact (e,2e) ionization of the Ethane molecule (C2H6) in the coplanar scattering geometry for four different ejected electron energies Ea = 5,10,15, and 20 eV respectively, and for each ejected electron energy, the projectile scattering angle is fixed at 10°. We will show that the TDCS is very sensitive for the case of two heavy nuclei surrounded by lighter H nuclei. On the theoretical side, we have used the M3DW coupled with the Orientation Averaged Molecular Orbital (OAMO) approximation and proper average (PA) over all orientations. These approximations show good agreement with experimental data for the binary peaks. However, for the recoil peak region, experiment finds a noticeable peak while theory predicts no peak. No recoil peak suggests no (or very weak) nuclear scattering, so we have investigated the importance of nuclear scattering by moving the nuclei closer to the center of mass. This work is supported by the US National Science Foundation under Grant No. PHY-1068237 and XSEDE resources provided by the Texas Advanced Computing Center (Grant No. TG-MCA07S029).
ERIC Educational Resources Information Center
Tartt-Walker, Sheba Hollywood
2014-01-01
In light of the paradigm shift from teacher-centered to learner-centered instruction occurring globally, the need for committed teachers is critical. Due to the influx of foreign nationals securing positions in the U.S. educational system, the teacher workforce has become more diverse. This diversity manifests a broad range of beliefs and values…
NASA Astrophysics Data System (ADS)
Daniel, D. Joseph; Kim, H. J.; Kim, Sunghwan; Khan, Sajid
2017-08-01
Single crystal of pure Lithium Iodide (LiI) has been grown from melt by using the vertical Bridgman technique. Thermoluminescence (TL) Measurements were carried out at 1 K/s following X-ray irradiation. The TL glow curve consists of a dominant peak at (peak-maximum Tm) 393 K and one low temperature peak of weaker intensity at 343 K. The order of kinetics (b), activation energy (E), and the frequency factor (S) for a prominent TL glow peak observed around 393 K for LiI crystals are reported for the first time. The peak shape analysis of the glow peak indicates the kinetics to be of the first order. The value of E is calculated using various standard methods such as initial rise (IR), whole glow peak (WGP), peak shape (PS), computerized glow curve deconvolution (CGCD) and Variable Heating rate (VHR) methods. An average value of 1.06 eV is obtained in this case. In order to validate the obtained parameters, numerically integrated TL glow curve has been generated using experimentally determined kinetic parameters. The effective atomic number (Zeff) for this material was determined and found to be 52. X-ray induced emission spectra of pure LiI single crystal are studied at room temperature and it is found that the sample exhibit sharp emission at 457 nm and broad emission at 650 nm.
Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan
2011-01-01
The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485-1188 cm(-1)), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm(-1) with region and baseline: ca. 1292-1198 cm(-1)), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187-950 cm(-1)), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm(-1) with region and baseline: ca. 952-910 cm(-1)), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm(-1) with region and baseline: ca. 880-827 cm(-1)), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm(-1) with baseline: ca. 1485-1188 cm(-1)), H_1370 (structural carbohydrate, peak height at ca. 1370 cm(-1) with a baseline: ca. 1485-1188 cm(-1)). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P < 0.05), higher (P < 0.05) intensities of the non-structural carbohydrate of A_928 (17.3 vs. 2.0) and A_860 (20.7 vs. 7.6) than their co-products from bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292-1198 cm(-1) and A_CHO (total CHO) at 1187-950 cm(-1) with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This study indicated that the bioethanol processing changes carbohydrate molecular structural profiles, compared with the original grains. However, the sensitivities of different types of carbohydrates and different grains (corn and wheat) to the processing differ. In general, the bioethanol processing increases the molecular spectral intensities for the structural carbohydrates and decreases the intensities for the non-structural carbohydrates. Further study is needed to quantify carbohydrate related molecular spectral features of the bioethanol co-products in relation to nutrient supply and availability of carbohydrates.
Future Concepts for Realtime Data Interfaces for Control Centers
NASA Technical Reports Server (NTRS)
Kearney, Mike W., III
2004-01-01
Existing methods of exchanging realtime data between the major control centers in the International Space Station program have resulted in a patchwork of local formats being imposed on each Mission Control Center. This puts the burden on a data customer to comply with the proprietary data formats of each data supplier. This has increased the cost and complexity for each participant, limited access to mission data and hampered the development of efficient and flexible operations concepts. Ideally, a universal format should be promoted in the industry to prevent the unnecessary burden of each center processing a different data format standard for every external interface with another center. With the broad acceptance of XML and other conventions used in other industries, it is now time for the Aerospace industry to fully engage and establish such a standard. This paper will briefly consider the components that would be required by such a standard (XML schema, data dictionaries, etc.) in order to accomplish the goal of a universal low-cost interface, and acquire broad industry acceptance. We will then examine current approaches being developed by standards bodies and other groups. The current state of CCSDS panel work will be reviewed, with a survey of the degree of industry acceptance. Other widely accepted commercial approaches will be considered, sometimes complimentary to the standards work, but sometimes not. The question is whether de facto industry standards are in concert with, or in conflict with the direction of the standards bodies. And given that state of affairs, the author will consider whether a new program establishing its Mission Control Center should implement a data interface based on those standards. The author proposes that broad industry support to unify the various efforts will enable collaboration between control centers and space programs to a wider degree than is currently available. This will reduce the cost for programs to provide realtime access to their data, hence reducing the cost of access to space, and benefiting the industry as a whole.
Copper oxide thin films anchored on glass substrate by sol gel spin coating technique
NASA Astrophysics Data System (ADS)
Krishnaprabha, M.; Venu, M. Parvathy; Pattabi, Manjunatha
2018-05-01
Owing to the excellent optical, thermal, electrical and photocatalytic properties, copper oxide nanoparticles/films have found applications in optoelectronic devices like solar/photovoltaic cells, lithium ion batteries, gas sensors, catalysts, magnetic storage media etc. Copper oxide is a p-type semiconductor material having a band gap energy varying from 1.2 eV-2.1 eV. Syzygium Samarangense fruit extract was used as reducing agent to synthesize copper oxide nanostructures at room temperature from 10 mM copper sulphate pentahydrate solution. The synthesized nanostructures are deposited onto glass substrate by spin coating followed by annealing the film at 200 °C. Both the copper oxide colloid and films are characterized using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) techniques. Presence of 2 peaks at 500 nm and a broad peak centered around 800 nm in the UV-Vis absorbance spectra of copper oxide colloid/films is indicative of the formation of anisotropic copper oxide nanostructures is confirmed by the FESEM images which showed the presence of triangular shaped and rod shaped particles. The rod shaped particles inside island like structures were found in unannealed films whereas the annealed films contained different shaped particles with reduced sizes. The elemental analysis using EDS spectra of copper oxide nanoparticles/films showed the presence of both copper and oxygen. Electrical properties of copper oxide nanoparticles are affected due to quantum size effect. The electrical studies carried out on both unannealed and annealed copper oxide films revealed an increase in resistivity with annealing of the films.
Shea, Joan-Emma; Onuchic, José N.; Brooks, Charles L.
1999-01-01
Topological frustration in an energetically unfrustrated off-lattice model of the helical protein fragment B of protein A from Staphylococcus aureus was investigated. This Gō-type model exhibited thermodynamic and kinetic signatures of a well-designed two-state folder with concurrent collapse and folding transitions and single exponential kinetics at the transition temperature. Topological frustration is determined in the absence of energetic frustration by the distribution of Fersht φ values. Topologically unfrustrated systems present a unimodal distribution sharply peaked at intermediate φ, whereas highly frustrated systems display a bimodal distribution peaked at low and high φ values. The distribution of φ values in protein A was determined both thermodynamically and kinetically. Both methods yielded a unimodal distribution centered at φ = 0.3 with tails extending to low and high φ values, indicating the presence of a small amount of topological frustration. The contacts with high φ values were located in the turn regions between helices I and II and II and III, intimating that these hairpins are in large part required in the transition state. Our results are in good agreement with all-atom simulations of protein A, as well as lattice simulations of a three- letter code 27-mer (which can be compared with a 60-residue helical protein). The relatively broad unimodal distribution of φ values obtained from the all-atom simulations and that from the minimalist model for the same native fold suggest that the structure of the transition state ensemble is determined mostly by the protein topology and not energetic frustration. PMID:10535953
Identification of Atherosclerotic Plaques in Carotid Artery by Fluorescence Spectroscopy
NASA Astrophysics Data System (ADS)
Rocha, Rick; Villaverde, Antonio Balbin; Silveira, Landulfo; Costa, Maricília Silva; Alves, Leandro Procópio; Pasqualucci, Carlos Augusto; Brugnera, Aldo
2008-04-01
The aim of this work was to identify the presence of atherosclerotic plaques in carotid artery using the Fluorescence Spectroscopy. The most important pathogeny in the cardiovascular disorders is the atherosclerosis, which may affect even younger individuals. With approximately 1.2 million heart attacks and 750,000 strokes afflicting an aging American population each year, cardiovascular disease remains the number one cause of death. Carotid artery samples were obtained from the Autopsy Service at the University of São Paulo (São Paulo, SP, Brazil) taken from cadavers. After a histopathological analysis the 60 carotid artery samples were divided into two groups: normal (26) and atherosclerotic plaques (34). Samples were irradiated with the wavelength of 488 nm from an Argon laser. A 600 μm core optical fiber, coupled to the Argon laser, was used for excitation of the sample, whereas another 600 optical fiber, coupled to the spectrograph entrance slit, was used for collecting the fluorescence from the sample. Measurements were taken at different points on each sample and then averaged. Fluorescence spectra showed a single broad line centered at 549 nm. The fluorescence intensity for each sample was calculated by subtracting the intensity at the peak (550 nm) and at the bottom (510 nm) and then data were statistically analyzed, looking for differences between both groups of samples. ANOVA statistical test showed a significant difference (p<0,05) between both types of tissues, with regard to the fluorescence peak intensities. Our results indicate that this technique could be used to detect the presence of the atherosclerotic in carotid tissue.
STAR CLUSTERS IN M31. II. OLD CLUSTER METALLICITIES AND AGES FROM HECTOSPEC DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, Nelson; Schiavon, Ricardo; Morrison, Heather
2011-02-15
We present new high signal-to-noise spectroscopic data on the M31 globular cluster (GC) system, obtained with the Hectospec multifiber spectrograph on the 6.5 m MMT. More than 300 clusters have been observed at a resolution of 5 A and with a median S/N of 75 per A, providing velocities with a median uncertainty of 6 km s{sup -1}. The primary focus of this paper is the determination of mean cluster metallicities, ages, and reddenings. Metallicities were estimated using a calibration of Lick indices with [Fe/H] provided by Galactic GCs. These match well the metallicities of 24 M31 clusters determined frommore » Hubble Space Telescope color-magnitude diagrams, the differences having an rms of 0.2 dex. The metallicity distribution is not generally bimodal, in strong distinction with the bimodal Galactic globular distribution. Rather, the M31 distribution shows a broad peak, centered at [Fe/H] = -1, possibly with minor peaks at [Fe/H] = -1.4, -0.7, and -0.2, suggesting that the cluster systems of M31 and the Milky Way had different formation histories. Ages for clusters with [Fe/H] > - 1 were determined using the automatic stellar population analysis program EZ{sub A}ges. We find no evidence for massive clusters in M31 with intermediate ages, those between 2 and 6 Gyr. Moreover, we find that the mean ages of the old GCs are remarkably constant over about a decade in metallicity (-0.95{approx}< [Fe/H] {approx}<0.0).« less
NASA Astrophysics Data System (ADS)
Behrangi, A.; Kubar, T. L.; Lambrigtsen, B.
2011-12-01
Different cloud types have substantially different characteristics in terms of radiative forcing and microphysical properties, both important components of Earth's climate system. Relationships between tropical cloud type characteristics and sea surface temperature (SST) using two-years of A-train data are investigated in this presentation. Stratocumulus clouds are the dominant cloud type over SSTs less than 301K, and in fact their fraction is strongly inversely related to SST. This is physically logical as both static stability and large-scale subsidence scale well with decreasing SST. At SSTs greater than 301K, high clouds are the most abundant cloud type. All cloud types (except nimbostratus and stratocumulus) become sharply more abundant for SSTs greater than a window between 299K and 300.5K, depending on cloud type. The fraction of high, deep convective, altostratus, and altocumulus clouds peak at an SST close to 303K, while cumulus clouds have a broad cloud fraction peak centered near 301K. Deep convective and other high cloud types decrease sharply above SSTs of 303K. While overall early morning clouds are 10% (4%) more frequent than afternoon clouds as indicated by CloudSat (lidar-radar), certain cloud types occur more frequently in the early afternoon, such as high clouds. We also show that a large amount of warm precipitation mainly from stratocumulus clouds is missed or significantly underestimated by the current suite of satellite-based global precipitation measuring sensors. However, the operational sensitivity of Cloudsat cloud profiling radar permits to capture significant fraction of light drizzle and warm rain.
ZnO-nanorods: A possible white LED phosphor
NASA Astrophysics Data System (ADS)
Sarangi, Sachindra Nath; T., Arun; Ray, Dinseh K.; Sahoo, Pratap Kumar; Nozaki, Shinji; Sugiyama, Noriyuki; Uchida, Kazuo
2017-05-01
The white light-emitting diodes (LEDs) have drawn much attention to replace conventional lighting sources because of low energy consumption, high light efficiency and long lifetime. Although the most common approach to produce white light is to combine a blue LED chip and a yellow phosphor, such a white LED cannot be used for a general lighting application, which requires a broad luminescence spectrum in the visible wavelength range. We have successfully chemically synthesized the ZnO nanorods showing intense broad luminescence in the visible wavelength range and made a white LED using the ZnO nanorods as phosphor excited with a blue LED. Their lengths and diameters were 2 - 10 μm and 200 - 800 nm, respectively. The wurtzite structure was confirmed by the x-ray diffraction measurement. The PL spectrum obtained by exciting the ZnO nanorods with the He-Cd laser has two peaks, one associated with the near band-edge recombination and the other with recombination via defects. The peak intensity of the near band-edge luminescence at 388 nm is much weaker than that of the defect-related luminescence. The latter luminescence peak ranges from 450 to 850 nm and broad enough to be used as a phosphor for a white LED. A white LED has been fabricated using a blue LED with 450 nm emission and ZnO nanorod powders. The LED performances show a white light emission and the electroluminescence measurement shows a stiff increase in white light intensity with increasing blue LED current. The Commission International de1'Eclairage (CIE) chromaticity colour coordinates of 450 nm LED pumped white emission shows a coordinate of (0.31, 0.32) for white LED at 350 mA. These results indicate that ZnO nanorods provides an alternate and effective approach to achieve high-performance white LEDs and also other optoelectronic devices.
Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M
2014-05-01
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.
2014-05-01
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
A Very Large Array Survey of Polar BAL Quasar Candidates
NASA Astrophysics Data System (ADS)
Olson, Kianna Alexandra; Brotherton, Michael S.; DiPompeo, Michael; Maithil, Jaya
2018-06-01
Polar broad absorption line quasars posses flat radio spectra and jets seen at small angles to the line of sight. Using the VLA we observed twelve polar broad absorption line quasar candidates at L (1.5GHz), C (4.5-5.5GHz), and X (8.5-9.5GHz) bands, and found that their cores display flat spectra. Compared to previous observations in the NVSS and First surveys, the peak flux densities all show significant variation σvar > 3, and brightness temperatures TB ≥ 1012K. Based on these findings, our quasars have the properties expected for objects that posses jets seen nearly pole on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet
2014-05-15
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
LeToquin, Ronan P; Tong, Tao; Glass, Robert C
2014-12-30
Light emitting devices include a light emitting diode ("LED") and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In some embodiments, the recipient luminophoric medium includes a first broad-spectrum luminescent material and a narrow-spectrum luminescent material. The broad-spectrum luminescent material may down-convert radiation emitted by the LED to radiation having a peak wavelength in the red color range. The narrow-spectrum luminescent material may also down-convert radiation emitted by the LED into the cyan, green or red color range.
The distribution of atomic hydrogen and oxygen in the magnetosphere of Saturn
NASA Astrophysics Data System (ADS)
Melin, Henrik; Shemansky, Don E.; Liu, Xianming
2009-12-01
The intensity of H Ly α1216A˚ ( 2P- 1S) and OI 1304A˚ ( 2p33s3S-2p4P) is mapped in the magnetosphere of Saturn using the ultraviolet imaging spectrograph (UVIS) [Esposito, L.W., Barth, C.A., Colwell, J.E., Lawrence, G.M., McClintock, W.E., Stewart, A.I.F., Keller, H.U., Korth, A., Lauche, H., Festou, M.C., Lane, A.L., Hansen, C.J., Maki, J.N., West, R.A., Jahn, H., Reulke, R., Warlich, K., Shemansky, D.E., Yung, Y.L., 2004. The Cassini ultraviolet imaging spectrograph investigation. Space Science Reviews 115, 299-361] onboard Cassini. Spatial coverage is built up by stepping the slit sequentially across the system (system scan). Data are obtained at a large range of space-craft-Saturn distances. The observed atomic hydrogen distribution is very broad, extending beyond 40RS in the equatorial plane, with the intensity increasing with decreasing distances to Saturn. The distribution displays persistent local-time asymmetries, and is seen connecting continuously to the upper atmosphere of the planet at sub-solar latitudes located well outside of the equatorial (ring) plane. This is consistent with the source of the atomic hydrogen being located at the top of the atmosphere on the sun-lit side of the planet on the southern hemisphere. In addition there are a number of temporally persistent features in the intensity distribution, indicating a complex hydrogen energy distribution. The emission from OI 1304A˚ is generally distributed as a broad torus centered around ˜4RS although the position of the peak intensity can vary by as much as ±1RS. There is significant intensity present out to ±10RS. HST observations of hydroxyl (OH) are re-analyzed and display a distribution half as broad as that of oxygen, also centered at 4RS. The observed atomic oxygen distribution requires a sourcing of 1.3×1028atomss-1 against loss due to charge capture with the plasma. Using the ion partitioning of Schippers et al. [2008. Multi-instrument analysis of electron populations in Saturn's magnetosphere. Journal of Geophysical Research (Space Physics) 113 (A12) 7208-+] then recombination of H2O+ and H3O+ will account for about a quarter of the mass-loss in the inner magnetosphere, with charge capture of O+ accounting for the rest. The oxygen loss rate is seen to vary by 2×1027atomss-1 over periods of weeks.
Thermal desorption of CO and H2 from degassed 304 and 347 stainless steel
NASA Technical Reports Server (NTRS)
Rezaie-Serej, S.; Outlaw, R. A.
1994-01-01
Thermal desorption spectroscopy (TDS), along with Auger electron spectroscopy, was used to study the desorption of H2 and CO from baked 304 and 347 stainless-steel samples exposed only to residual gases. Both 347 and 304 samples gave identical TDS spectra. The spectra for CO contained a sharp leading peak centered in the temperature range 410-440C and an exponentially increasing part for temperatures higher than 500C, with a small peak around 600C appearing as a shoulder. The leading peak followed a second-order desorption behavior with an activation energy of 28+/-2 kcal/mol, suggesting that the rate-limiting step for this peak is most likely a surface reaction that produces the CO molecules in the surface layer. The amount of desorbed CO corresponding to this peak was approximately 0.5X10(exp 14) molecules/cm(exp 2) . The exponentially rising part of the CO spectrum appeared to originate from a bulk diffusion process. The TDS spectrum for H2 consisted of a main peak centered also in the temperature range 410-440C, with two small peaks appearing as shoulders at approximately 500 and 650C. The main peak in this case also displayed a second-order behavior with an activation energy of 14+/-2 kcal/mol. The amount of desorbed H2, approximately 1.9X 10(exp 15) molecules/cm(exp 2) , appeared to be independent of the concentration of hydrogen in the bulk, indicating that the majority of the desorbed H2 originated from the surface layer.
Faculty Perceptions of Technology Projects
ERIC Educational Resources Information Center
Ransom, Whitney; Graham, Charles R.; Mott, Jon
2007-01-01
The Center for Teaching and Learning (CTL), formerly the Center for Instructional Design at Brigham Young University (BYU), partners with faculty to help improve teaching and learning. The CTL currently supports a broad range of faculty projects to maintain and improve on-campus instruction. It has more than 35 full-time employees and…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... Research and Development Center (FFRDC) to facilitate the modernization of business processes and..., Simulations, and Cost Modeling Federally Funded Research and Development Center (FFRDC) to facilitate the modernization of business processes and supporting systems and their operations. Some of the broad task areas...
Nova Southeastern University (NSU) Guy Harvey Oceanographic Center
Mailman Segal Center for Human Development Ron and Kathy Assaf College of Nursing Shepard Broad College of . Continuing Education Financial Aid Career Development Regional Campuses International Affairs Veterans Arts and culture on campus including theatre, music, and art. Campus Housing Off-Campus Housing Campus
Risk management and disaster recovery planning for online libraries.
Uzwyshyn, Ray
2015-01-01
This article presents an overview of risk management and disaster recovery planning for online libraries. It is suitable for a broad audience interested in online libraries and research centers in universities and colleges. It outlines risk mitigation strategies, and disaster recover planning for online resource-centered information systems.
ERIC Educational Resources Information Center
Bowman, Darcia Harris
2004-01-01
The Broad Acres clinic is one of 1,500 school-based health centers nationwide that bring a wide range of medical, nutritional, and mental-health care to millions of students and their families. The centers provide an important safety net for children and adolescents--particularly the more than 10 million today who lack health insurance, according…
VIEW WESTBUILDING 23WIRE MILL & PATENTING (c.1853 & c.1900)CENTER BUILDING ...
VIEW WEST-BUILDING 23-WIRE MILL & PATENTING (c.1853 & c.1900)-CENTER BUILDING 25- NO 2 WIRE MILL (c.1853) BEHIND 23 TO RIGHT - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ
DOT National Transportation Integrated Search
2012-04-30
The Michigan Department of Transportation (MDOT) currently operates and maintains : 81 rest areas, including 14 welcome centers, along freeways and other major roadways. Public : rest areas in Michigan serve a broad range of travelers, including vaca...
Linguistic Globalization and the Call Center Industry: Imperialism, Hegemony or Cosmopolitanism?
ERIC Educational Resources Information Center
Sonntag, Selma K.
2009-01-01
Linguistic imperialism, linguistic hegemony and linguistic cosmopolitanism are broad and contrasting conceptualizations of linguistic globalization that are frequently, if implicitly, invoked in the literature, both academic and non-academic, on language practices and perceptions in the call center industry. I begin with outlining each of these…
Ahmed, Noor; Khan, Ghulam Abbas; Wang, Ruimin; Hou, Jingru; Gong, Rui; Yang, Lingmeng; Zhang, Yanpeng
2017-05-01
We study an optical transistor (switch and amplifier) and router by spontaneous parametric four-wave mixing and fluorescence in diamond nitrogen-vacancy (NV) center. The routing results from three peaks of fluorescence signal in the time domain, while the switching and amplification are realized by correlation and squeezing. The intensity switching speed is about 17 ns. The optical transistor and router are controlled by the power of incident beams. Our experimental results provide that the advance technique of peak division and channel equalization ratio of about 90% are applicable to all optical switching and routing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Preeti
We simulate semi-central symmetric system reactions, for center-of-mass energies at which maximal number of light fragments (2 ≤ A ≤ 4) occurs and at a fixed E{sub c.m.} = 60 AMeV. The study was carried out with soft EOS using isospin-dependent quantum molecular dynamics (IQMD) model. We studied various properties of fragments at peak E{sub c.m.} and also at constant energy (E{sub c.m.} = 60 AMeV) to find out the relative difference between the properties at both energies.
Anomalous Evolution of the Near-Side Jet Peak Shape in Pb-Pb Collisions at √{sN N}=2.76 TeV
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Llope, W.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Alice Collaboration
2017-09-01
The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a pT region inaccessible by direct jet identification. In these measurements pseudorapidity (Δ η ) and azimuthal (Δ φ ) differences are used to extract the shape of the near-side peak formed by particles associated with a higher pT trigger particle (1
Anomalous Evolution of the Near-Side Jet Peak Shape in Pb-Pb Collisions at sqrt[s_{NN}]=2.76 TeV.
Adam, J; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; An, M; Andrei, C; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Balasubramanian, S; Baldisseri, A; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Bjelogrlic, S; Blair, J T; Blau, D; Blume, C; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buitron, S A I; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cepila, J; Cerello, P; Cerkala, J; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Chelnokov, V; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Crkovská, J; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Duggal, A K; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Esumi, S; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Eyyubova, G; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Garg, K; Garg, P; Gargiulo, C; Gasik, P; Gauger, E F; Gay Ducati, M B; Germain, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grion, N; Gronefeld, J M; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Hladky, J; Horak, D; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Isakov, V; Islam, M S; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lazaridis, L; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Llope, W; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Mishra, T; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Molnar, L; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Negrao De Oliveira, R A; Nellen, L; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pacik, V; Pagano, D; Pagano, P; Paić, G; Pal, S K; Palni, P; Pan, J; Pandey, A K; Papikyan, V; Pappalardo, G S; Pareek, P; Park, J; Park, W J; Parmar, S; Passfeld, A; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rodríguez Cahuantzi, M; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sano, M; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Song, Z; Soramel, F; Sorensen, S; Sozzi, F; Spiriti, E; Sputowska, I; Srivastava, B K; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Tripathy, S; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Windelband, B; Winn, M; Yalcin, S; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zmeskal, J
2017-09-08
The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a p_{T} region inaccessible by direct jet identification. In these measurements pseudorapidity (Δη) and azimuthal (Δφ) differences are used to extract the shape of the near-side peak formed by particles associated with a higher p_{T} trigger particle (1
Anomalous Evolution of the Near-Side Jet Peak Shape in Pb-Pb Collisions at s N N = 2.76 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, J.; Adamová, D.; Aggarwal, M. M.
The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a p T region inaccessible by direct jet identification. Here, the differences in the pseudorapidity (Δη) and azimuthal (Δφ) measurements are used to extract the shape of the near-side peak formed by particles associated with a higher pT trigger particle (1 < p T,trig < 8 GeV/c). A combined fit of the near-side peak and long-range correlations is applied to the data allowing the extraction of the centrality evolution of the peak shape in Pb-Pb collisions at √ sNN=2.76 TeV. A significant broadening of themore » peak in the Δη direction at low pT is found from peripheral to central collisions, which vanishes above 4 GeV/c, while in the Δφ direction the peak is almost independent of centrality. For the 10% most central collisions and 1 < p T,assoc < 2 GeV/c, 1 < p T,trig < 3 GeV/c a novel feature is observed: a depletion develops around the center of the peak. Our results are compared to pp collisions at the same center of mass energy and ampt model simulations. The comparison to the investigated models suggests that the broadening and the development of the depletion is connected to the strength of radial and longitudinal flow.« less
Anomalous Evolution of the Near-Side Jet Peak Shape in Pb-Pb Collisions at s N N = 2.76 TeV
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2017-09-08
The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a p T region inaccessible by direct jet identification. Here, the differences in the pseudorapidity (Δη) and azimuthal (Δφ) measurements are used to extract the shape of the near-side peak formed by particles associated with a higher pT trigger particle (1 < p T,trig < 8 GeV/c). A combined fit of the near-side peak and long-range correlations is applied to the data allowing the extraction of the centrality evolution of the peak shape in Pb-Pb collisions at √ sNN=2.76 TeV. A significant broadening of themore » peak in the Δη direction at low pT is found from peripheral to central collisions, which vanishes above 4 GeV/c, while in the Δφ direction the peak is almost independent of centrality. For the 10% most central collisions and 1 < p T,assoc < 2 GeV/c, 1 < p T,trig < 3 GeV/c a novel feature is observed: a depletion develops around the center of the peak. Our results are compared to pp collisions at the same center of mass energy and ampt model simulations. The comparison to the investigated models suggests that the broadening and the development of the depletion is connected to the strength of radial and longitudinal flow.« less
Characterization of multiblock copolymers by chromatographic techniques.
N'Goma, Patrick Yoba; Radke, Wolfgang; Malz, Frank; Ziegler, Hans Jörg; Zierke, Michael; Behl, Marc; Lendlein, Andreas
2011-02-01
Multiblock copolymers (MBC) composed of blocks of poly(1,4-dioxanone) (PPDO) and poly(e-caprolactone) (PCL) were investigated in order to gain information on the extend of chemical heterogeneity of the samples. A gradient chromatographic method was established allowing separation of purely PPDO- from purely PCL-containing chains. Application of the gradient to MBC made of PPDO- and PCL-diols connected by trimethylhexamethylene diisocyanate (TMDI) resulted in two well separated peaks which were analyzed by means of FTIR, 1H-NMR and pyrolysis GC-MS. It was shown that the first peak was composed to a large extent of PPDO and only lower amounts of PCL were incorporated. Conversely, the second peak consisted predominantly of PCL with only a minor fraction of PPDO. Thus, the MBCs having PPDO and PCL segments show an unexpected broad chemical heterogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delice, S., E-mail: sdelice@metu.edu.tr; Isik, M.; Gasanly, N.M.
2015-10-15
Highlights: • Optical and thermoluminescence properties of Ga{sub 4}S{sub 3}Se crystals were investigated. • Indirect and direct band gap energies were found as 2.39 and 2.53 eV, respectively. • The activation energy of the trap center was determined as 495 meV. - Abstract: Optical and thermoluminescence properties on GaS{sub 0.75}Se{sub 0.25} crystals were investigated in the present work. Transmission and reflection measurements were performed at room temperature in the wavelength range of 400–1000 nm. Analysis revealed the presence of indirect and direct transitions with band gap energies of 2.39 and 2.53 eV, respectively. TL spectra obtained at low temperatures (10–300more » K) exhibited one peak having maximum temperature of 168 K. Observed peak was analyzed using curve fitting, initial rise and peak shape methods to calculate the activation energy of the associated trap center. All applied methods were consistent with the value of 495 meV. Attempt-to-escape-frequency and capture cross section of the trap center were determined using the results of curve fitting. Heating rate dependence studies of the glow curve in the range of 0.4–0.8 K/s resulted with decrease of TL intensity and shift of the peak maximum temperature to higher values.« less
Thermoluminescence dating of Hawaiian basalt
May, Rodd James
1979-01-01
The thermoluminescence (TL) properties of plagioclase separates from 11 independently dated alkalic basalts 4,500 years to 3.3 million years old and 17 tholeiitic basalts 16 years to 450,000 years old from the Hawaiian Islands were investigated for the purpose of developing a TL dating method for young volcanic rocks. Ratios of natural to artificial TL intensity, when normalized for natural radiation dose rates, were used to quantify the thermoluminescence response of individual samples for age-determination purposes. The TL ratios for the alkalic basalt plagioclase were found to increase with age at a predictable exponential rate that permits the use of the equation for the best-fit line through a plot of the TL ratios relative to known age as a TL age equation. The equation is applicable to rocks ranging in composition from basaltic andesite to trachyte over the age range from about 2,000 to at least 250,000 years before present (B.P.). The TL ages for samples older than 50,000 years have a calculated precision of less than :t 10 percent and a potential estimated accuracy relative to potassium-argon ages of approximately :t 10 percent. An attempt to develop a similar dating curve for the tholeiitic basalts was not as successful, primarily because the dose rates are on the average lower than those for the alkalic basalts by a factor of 6, resulting in lower TL intensities in the tholeiitic basalts for samples of equivalent age, and also because the age distribution of dated material is inadequate. The basic TL properties of the plagioclase from the two rock types are similar, however, and TL dating of tholeiitic basalts should eventually be feasible over the age range 10,000 to at least 200,000 years B.P. The average composition of the plagioclase separates from the alkalic basalts ranges from oligoclase to andesine; compositional variations within this range have no apparent effect on the TL ratios. The average composition of the plagioclase from the tholeiitic basalts is labradorite. The natural radiogenic dose rates for the alkalic basalts calculated on the basis of assumed secular equilibrium range from 0.228 to 0.462 rad per year and average 0.335 rad per year exclusive of the cosmic-ray energy dose and with the alpha-particle component equal to one-tenth of the total alpha decay energy. The TL measurements were made using material of a 37 to 44-micrometer size range; the crushing required during sample preparation was found to have a negligible effect on natural TL. Both natural and artificial TL were filtered to the bandwidth 3,500 A to 5,000 A to restrict the light detected to that from the plagioclase emission peak centered at about 4,500 A and associated with structural defects. Within this bandwidth, the natural TL from both the alkalic and tholeiitic basalt plagioclase consists of a single peak with a maximum amplitude at about 350?C; the artificial TL glow curves produced by an exposure of the drained samples to a standard dose of X-radiation consist of four broad, variably overlapping peaks with maxima at about 110?C, 150?C, 225?C, and 300?C. The maximum amplitude of the 350?C natural and 300?C artificial TL peaks, both produced by the same general activation energy distribution of trapping centers, were used for TL dating. The high-temperature artificial TL peak occurs at a lower temperature than the corresponding natural TL peak owing to the presence of a large number of electrons retained in traps near the lower end of the trap-depth energy range in samples whose TL is measured a short time after intense artificial irradiation. These traps remain essentially empty in the natural environment owing to spontaneous decay and do not produce measurable low-temperature natural TL peaks. With prolonged storage after irradiation, the 300?C artificial TL peak migrates to higher temperatures and decreases in amplitude.
Raman study of the Hg0.7Cr0.3Sr2CuO4+δ superconductors
NASA Astrophysics Data System (ADS)
Lee, S.-Y.; Chang, B.-Y.; Yang, I.-S.; Gwak, J.-H.; Kim, S.-J.; Choi, J.-H.; Lee, S.-I.; Yakhmi, J. V.; Mandal, J. B.; Bandyopadhyay, B.; Ghosh, B.
1997-08-01
The local environment of the apical oxygens (OA) in the Sr-substituted mercury-based superconductor Hg0.7Cr0.3Sr2CuO4+δ is investigated using Raman spectroscopy. Raman spectra from the Sr-substituted Hg-1201 samples show broad OA A1g double peaks at 553 and 583 cm-l, which are 10 - 20 cm-1 lower than the pristine Hg-1201. The existence of, and lower shift of, the double peaks in the Raman spectra of the Sr-substituted Hg-1201 superconductors indicate changes in the environment of OA in the Sr-substituted mercury-based superconductors.
Lommen, Arjen
2009-04-15
Hyphenated full-scan MS technology creates large amounts of data. A versatile easy to handle automation tool aiding in the data analysis is very important in handling such a data stream. MetAlign softwareas described in this manuscripthandles a broad range of accurate mass and nominal mass GC/MS and LC/MS data. It is capable of automatic format conversions, accurate mass calculations, baseline corrections, peak-picking, saturation and mass-peak artifact filtering, as well as alignment of up to 1000 data sets. A 100 to 1000-fold data reduction is achieved. MetAlign software output is compatible with most multivariate statistics programs.
A Gaussian measure of quantum phase noise
NASA Technical Reports Server (NTRS)
Schleich, Wolfgang P.; Dowling, Jonathan P.
1992-01-01
We study the width of the semiclassical phase distribution of a quantum state in its dependence on the average number of photons (m) in this state. As a measure of phase noise, we choose the width, delta phi, of the best Gaussian approximation to the dominant peak of this probability curve. For a coherent state, this width decreases with the square root of (m), whereas for a truncated phase state it decreases linearly with increasing (m). For an optimal phase state, delta phi decreases exponentially but so does the area caught underneath the peak: all the probability is stored in the broad wings of the distribution.
NASA Astrophysics Data System (ADS)
Liu, Jing; Shen, Zhijian; Yan, Haixue; Reece, Michael J.; Kan, Yanmei; Wang, Peiling
2007-11-01
By dynamic forging during Spark Plasma Sintering (SPS), grain-orientated ferroelectric Bi3.25La0.75Ti3O12 (BLT) ceramics were prepared. Their ferroelectric, piezoelectric, and dielectric properties are anisotropic. The textured ceramics parallel and perpendicular to the shear flow directions have similar thermal depoling behaviors. The d33 piezoelectric coefficient of BLT ceramics gradually reduces up to 350 °C; it then drops rapidly. The broadness of the dielectric constant and loss peaks and the existence of d33 above the permittivity peak, Tm, show that the BLT ceramic has relaxor-like behavior.
NASA Astrophysics Data System (ADS)
Iadlovska, Olena S.; Maxwell, Graham R.; Babakhanova, Greta; Mehl, Georg H.; Welch, Christopher; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.
2018-04-01
Selective reflection of light by oblique helicoidal cholesteric (ChOH) can be tuned in a very broad spectral range by an applied electric field. In this work, we demonstrate that the peak wavelength of the selective reflection can be controlled by surface alignment of the director in sandwich cells. The peak wavelength is blue-shifted when the surface alignment is perpendicular to the bounding plates and red-shifted when it is planar. The effect is explained by the electric field redistribution within the cell caused by spatially varying heliconical ChOH structure. The observed phenomenon can be used in sensing applications.
2011 Year in review - Earth Resources Observation and Science Center
Johnson, Rebecca L.
2012-01-01
The USGS Earth Resources Observation and Science (EROS) Center's 2011 Year in Review is an annual report recounting the broad scope of the Center's 2011 accomplishments. The report covers preparations for the Landsat Data Continuity Mission (LDCM) launch, the ever-increasing use of free Landsat data, monitoring the effects of natural hazards, and more to emphasize the importance of innovation in using satellite data to study change over time.
Lu, Jonathan; Trnka, Michael J; Roh, Soung-Hun; Robinson, Philip J J; Shiau, Carrie; Fujimori, Danica Galonic; Chiu, Wah; Burlingame, Alma L; Guan, Shenheng
2015-12-01
Native electrospray-ionization mass spectrometry (native MS) measures biomolecules under conditions that preserve most aspects of protein tertiary and quaternary structure, enabling direct characterization of large intact protein assemblies. However, native spectra derived from these assemblies are often partially obscured by low signal-to-noise as well as broad peak shapes because of residual solvation and adduction after the electrospray process. The wide peak widths together with the fact that sequential charge state series from highly charged ions are closely spaced means that native spectra containing multiple species often suffer from high degrees of peak overlap or else contain highly interleaved charge envelopes. This situation presents a challenge for peak detection, correct charge state and charge envelope assignment, and ultimately extraction of the relevant underlying mass values of the noncovalent assemblages being investigated. In this report, we describe a comprehensive algorithm developed for addressing peak detection, peak overlap, and charge state assignment in native mass spectra, called PeakSeeker. Overlapped peaks are detected by examination of the second derivative of the raw mass spectrum. Charge state distributions of the molecular species are determined by fitting linear combinations of charge envelopes to the overall experimental mass spectrum. This software is capable of deconvoluting heterogeneous, complex, and noisy native mass spectra of large protein assemblies as demonstrated by analysis of (1) synthetic mononucleosomes containing severely overlapping peaks, (2) an RNA polymerase II/α-amanitin complex with many closely interleaved ion signals, and (3) human TriC complex containing high levels of background noise. Graphical Abstract ᅟ.
Generation and application of ultrashort coherent mid-infrared electromagnetic radiation
NASA Astrophysics Data System (ADS)
Wandel, Scott
Particle accelerators are useful instruments that help address critical issues for the future development of nuclear energy. Current state-of-the-art accelerators based on conventional radio-frequency (rf) cavities are too large and expensive for widespread commercial use, and alternative designs must be considered for supplying relativistic beams to small-scale applications, including medical imaging, secu- rity screening, and scientific research in a university-scale laboratory. Laser-driven acceleration using micro-fabricated dielectric photonic structures is an attractive approach because such photonic microstructures can support accelerating fields that are 10 to 100 times higher than that of rf cavity-based accelerators. Dielectric laser accelerators (DLAs) use commercial lasers as a driving source, which are smaller and less expensive than the klystrons used to drive current rf-based accelerators. Despite the apparent need for compact and economical laser sources for laser-driven acceleration, the availability of suitable high-peak-power lasers that cover a broad spectral range is currently limited. To address the needs of several innovative acceleration mechanisms like DLA, it is proposed to develop a coherent source of mid-infrared (IR) electromagnetic radiation that can be implemented as a driving source of laser accelerators. The use of ultrashort mid-IR high peak power laser systems in various laser-driven acceleration schemes has shown the potential to greatly reduce the optical pump intensities needed to realize high acceleration gradients. The optical intensity needed to achieve a given ponderomotive potential is 25 times less when using a 5-mum mid-IR laser as compared to using a 1-mum near-IR solid-state laser. In addition, dielectric structure breakdown caused by multiphoton ionization can be avoided by using longer-wavelength driving lasers. Current mid-IR laser sources do not produce sufficiently short pulse durations, broad spectral bandwidths, or high energies as required by certain accelerator applications. The use of a high-peak-power mid-IR laser system in DLA could enable tabletop accelerators on the MeV to GeV scale for security scanners, medical therapy devices, and compact x-ray light sources. This dissertation reports on the design and construction of a simple and robust, short-pulse parametric source operating at a center wavelength of 5 mum. The design and construction of a high-energy, short-pulse 2-mum parametric source is also presented, which serves as a surrogate pumping source for the 5-mum source. An elegant method for mid-IR pulse characterization is demonstrated, which makes use of ubiquitous silicon photodetectors, traditionally reserved for the characterization of near-IR radiation. In addition, a dual-chirped parametric amplification technique is extended into the mid-IR spectral region, producing a bandwidth-tunable mid-IR source in a simple design without sacrificing conversion efficiency. The design and development of a compact single-shot mid-IR prism spectrometer is also reported, and its implementation in a number of condensed matter studies at the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center is discussed. Rapid tuning and optimization of a high-energy parametric laser system using the mid-IR spectrometer is demonstrated, which significantly enhances the capabilities of performing optical measurements on superconducting materials using the LCLS instrument. All of the laser sources and optical technologies presented in this dissertation were developed using relatively simple designs to provide compact and cost-e ective systems to address some of the challenges facing accelerator and IR spectroscopy technologies. (Abstract shortened by ProQuest.).
Recovery dynamics and climate change effects to future New England forests
Matthew J. Duveneck; Jonathan R. Thompson; Eric J. Gustafson; Yu Liang; Arjan M. G. de Bruijn
2017-01-01
Context. Forests throughout eastern North America continue to recover from broad-scale intensive land use that peaked in the nineteenth century. These forests provide essential goods and services at local to global scales. It is uncertain how recovery dynamics, the processes by which forests respond to past forest land use, will continue to...
NASA Astrophysics Data System (ADS)
Savage, B. D.; Sitko, M. L.
1984-03-01
The 2800 A feature of Karim et al. (1983) is shown to be the result of IUE detector saturation effects in overexposed spectra. A properly exposed spectrum and an overexposed one are shown. The latter shows a broad absorption peak at 2800 A while the former does not.
Spectroscopic Identification of Lipid, Protein and DNA Changes in Breast Cancer tissues
NASA Astrophysics Data System (ADS)
Badr, Y. A.; Hassab Elnaby, S. I.
2007-02-01
The FTIR spectroscopy, at the range 4000 - 6000 cm-1 showed a clear distinction between normal and cancer tissues. Normal tissues spectra contain a doublet structure at 4258 and 4332 cm-1. This structure is usually on top of a small band that extends from 3950 cm-1 to 4400 cm-1. This structure us also observed from pure lipid tissues from control patients. The origin of this structure could be attributed to combinations of lipid lines. This structure is completely absent in cancer tissues, instead a broad intense band appears from 5100 cm-1 to 5200 cm-1. The intensity of this band varies from one patient to another. The shape of this broad band indicates that it is the due to random orientation changes in the proteins. This band has a peak at 5164 cm-1, it contains another small kink at 4882 cm-1. This may lead also to the conclusion that this window band is associated with a short half life time energy levels. On The other hand the photoacoustic spectrum of the same tissues , shows that in normal tissues there are three very distinct peaks (namely 1097,1159 and 1232 cm-1) they disappear in malignant tissues and replaced by many weak ripples. Two peaks (1578, 1690 cm-1) changes their position in malignant tissues(1626, 1678 cm-1). A change in DNA markers was also noticed in the range 600-1700 cm-1.
Transition from the Unipolar Region to the Sector Zone: Voyager 2, 2013 and 2014
NASA Astrophysics Data System (ADS)
Burlaga, L. F.; Ness, N. F.; Richardson, J. D.
2017-05-01
We discuss magnetic field and plasma observations of the heliosheath made by Voyager 2 (V2) during 2013 and 2014 near solar maximum. A transition from a unipolar region to a sector zone was observed in the azimuthal angle λ between ˜2012.45 and 2013.82. The distribution of λ was strongly singly peaked at 270^\\circ in the unipolar region and double peaked in the sector zone. The δ-distribution was strongly peaked in the unipolar region and very broad in the sector zone. The distribution of daily averages of the magnetic field strength B was Gaussian in the unipolar region and lognormal in the sector zone. The correlation function of B was exponential with an e-folding time of ˜5 days in both regions. The distribution of hourly increments of B was a Tsallis distribution with nonextensivity parameter q = 1.7 ± 0.04 in the unipolar region and q = 1.44 ± 0.12 in the sector zone. The CR-B relationship qualitatively describes the 2013 observations, but not the 2014 observations. A 40 km s-1 increase in the bulk speed associated with an increase in B near 2013.5 might have been produced by the merging of streams. A “D sheet” (a broad depression in B containing a current sheet moved past V2 from days 320 to 345, 2013. The R- and N-components of the plasma velocity changed across the current sheet.
NASA Astrophysics Data System (ADS)
Prasad Sahu, Ishwar
2016-05-01
A series of Sr2MgSi2O7:xCe3+ (x = 1.0%, 2.0%, 3.0%, 4.0% and 5.0%) phosphors were synthesized by the solid-state reaction method. The phosphor with optimum thermoluminescence, photoluminescence and mechanoluminescence (ML) intensity was characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared techniques. The trapping parameters (i.e. activation energy, frequency factor and order of the kinetics) of each synthesized phosphor have been calculated using the peak shape method and the results have been discussed. Under ultraviolet excitation (325 nm), Sr2MgSi2O7:xCe3+ phosphors were composed of a broad band peaking at 385 nm, belonging to the broad emission band which emits violet-blue color. Commission International de I'Eclairage coordinates have been calculated for each sample and their overall emission is near violet-blue light. In order to investigate the suitability of the samples for industrial uses, color purity and color rendering index were calculated. An ML intensity of optimum [Sr2MgSi2O7:Ce3+ (3.0%)] phosphor increases linearly with increasing impact velocity of the moving piston which suggests that these phosphors can be used as fracto-ML-based devices. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity of the moving piston.
NASA Astrophysics Data System (ADS)
Ayres, Thomas R.; Brault, James W.
1990-11-01
Time series of the 2100/cm Delta v = 1 absorption bands of CO at the center of the solar disk and at the extreme limb have been recorded by Fourier transform spectrometer. The photospheric 5-min oscillation appears prominently at sun center. The peak-to-peak brightness temperature amplitude is roughly 300 K, and the peak-to-peak Doppler shift is roughly 1100 m/s. The 70 deg phase lag of maximum core intensity with respect to maximum redshift for the strongest Delta v = 1 absorptions is less than the 90 deg expected in the adiabatic limit. No dominant four-minute signal in the line intensity like that reported by Deming et al. (1984, 1986, and 1987) is found, nor is evidence for extreme fluctuations on short time scales like those proposed by Kalkofen et al. (1984). The strong Delta v = 1 lines exhibit systematic Doppler shifts of less than about 1 km/s, contrary to the predictions of transonic redshifts if the CO 'clouds' are associated with a dynamic cooling phase of the Ca II 'cell flashes.'
2015-11-23
With St. Basil’s Cathedral in Red Square in Moscow serving as a backdrop, Expedition 46-47 crewmembers Tim Kopra of NASA (left), Yuri Malenchenko of the Russian Federal Space Agency (Roscosmos, center) and Tim Peake of the European Space Agency (right) pose for pictures Nov. 23 after laying flowers at the Kremlin Wall where Russian space icons are interred. Peake, Malenchenko and Kopra will launch on Dec. 15 on the Soyuz TMA-19M spacecraft from the Baikonur Cosmodrome in Kazakhstan for a six-month mission on the International Space Station. NASA/Seth Marcantel
Symmetric Phase-Only Filtering in Particle-Image Velocimetry
NASA Technical Reports Server (NTRS)
Wemet, Mark P.
2008-01-01
Symmetrical phase-only filtering (SPOF) can be exploited to obtain substantial improvements in the results of data processing in particle-image velocimetry (PIV). In comparison with traditional PIV data processing, SPOF PIV data processing yields narrower and larger amplitude correlation peaks, thereby providing more-accurate velocity estimates. The higher signal-to-noise ratios associated with the higher amplitude correlation peaks afford greater robustness and reliability of processing. SPOF also affords superior performance in the presence of surface flare light and/or background light. SPOF algorithms can readily be incorporated into pre-existing algorithms used to process digitized image data in PIV, without significantly increasing processing times. A summary of PIV and traditional PIV data processing is prerequisite to a meaningful description of SPOF PIV processing. In PIV, a pulsed laser is used to illuminate a substantially planar region of a flowing fluid in which particles are entrained. An electronic camera records digital images of the particles at two instants of time. The components of velocity of the fluid in the illuminated plane can be obtained by determining the displacements of particles between the two illumination pulses. The objective in PIV data processing is to compute the particle displacements from the digital image data. In traditional PIV data processing, to which the present innovation applies, the two images are divided into a grid of subregions and the displacements determined from cross-correlations between the corresponding sub-regions in the first and second images. The cross-correlation process begins with the calculation of the Fourier transforms (or fast Fourier transforms) of the subregion portions of the images. The Fourier transforms from the corresponding subregions are multiplied, and this product is inverse Fourier transformed, yielding the cross-correlation intensity distribution. The average displacement of the particles across a subregion results in a displacement of the correlation peak from the center of the correlation plane. The velocity is then computed from the displacement of the correlation peak and the time between the recording of the two images. The process as described thus far is performed for all the subregions. The resulting set of velocities in grid cells amounts to a velocity vector map of the flow field recorded on the image plane. In traditional PIV processing, surface flare light and bright background light give rise to a large, broad correlation peak, at the center of the correlation plane, that can overwhelm the true particle- displacement correlation peak. This has made it necessary to resort to tedious image-masking and background-subtraction procedures to recover the relatively small amplitude particle-displacement correlation peak. SPOF is a variant of phase-only filtering (POF), which, in turn, is a variant of matched spatial filtering (MSF). In MSF, one projects a first image (denoted the input image) onto a second image (denoted the filter) as part of a computation to determine how much and what part of the filter is present in the input image. MSF is equivalent to cross-correlation. In POF, the frequency-domain content of the MSF filter is modified to produce a unitamplitude (phase-only) object. POF is implemented by normalizing the Fourier transform of the filter by its magnitude. The advantage of POFs is that they yield correlation peaks that are sharper and have higher signal-to-noise ratios than those obtained through traditional MSF. In the SPOF, these benefits of POF can be extended to PIV data processing. The SPOF yields even better performance than the POF approach, which is uniquely applicable to PIV type image data. In SPOF as now applied to PIV data processing, a subregion of the first image is treated as the input image and the corresponding subregion of the second image is treated as the filter. The Fourier transforms from both the firs and second- image subregions are normalized by the square roots of their respective magnitudes. This scheme yields optimal performance because the amounts of normalization applied to the spatial-frequency contents of the input and filter scenes are just enough to enhance their high-spatial-frequency contents while reducing their spurious low-spatial-frequency content. As a result, in SPOF PIV processing, particle-displacement correlation peaks can readily be detected above spurious background peaks, without need for masking or background subtraction.
Local atomic arrangement and scintillation properties of Eu- and Ce-doped NaYP{sub 2}O{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novais, S.M.V., E-mail: suellen.mvn@gmail.com; Macedo, Z.S.
2016-01-15
Direct determination of rare earth location and local environment in NaYP{sub 2}O{sub 7} are presented. Undoped and Ln-doped NaYP{sub 2}O{sub 7} (Ln=Eu, Ce) were produced via PVA-assisted sol–gel method. Lattice parameters were determined from Rietveld refinement, showing monoclinic structure. XAS results suggested Eu{sup 3+} and Ce{sup 3+} are incorporated into NaYP{sub 2}O{sub 7} host in substitution to Y{sup 3+} site, with first coordination shell formed by six oxygen ions. Measurements at Eu edge showed a single peak in R space for Eu–O distribution. In this case, uniform interatomic distances implied to absence of significant disorder. Analysis at Ce edge presentedmore » different behavior, with Ce–O distribution characterized by a split peak in R space. Nearest neighborhood was found to be distributed with Ce occupying an off-center position in Y site. Under X-ray excitation, {sup 5}D{sub 0}→{sup 7}F{sub J} emission lines of Eu{sup 3+} were identified for NaYP{sub 2}O{sub 7}:Eu. NaYP{sub 2}O{sub 7}:Ce presented a broad emission formed by 5d→{sup 2}F{sub J} transitions of Ce{sup 3+}, with the superposition attributed to the effect of distorted oxygen octahedra around the dopant ions. - Graphical abstract: EuO{sub 6} and CeO{sub 6} octahedral arrangement relative to Y site in NaYP{sub 2}O{sub 7} host, and XEOL emission of corresponding doped samples. - Highlights: • Lattice parameters of NaYP{sub 2}O{sub 7} undoped sample confirmed monoclinic structure. • Dopants Eu and Ce are incorporated in the trivalent state. • Local order of Eu{sup 3+} and Ce{sup 3+} dopants substituting Y{sup 3+} consist of octahedral symmetry. • Off-center displacement in the case of Ce{sup 3+} position was discussed. • Luminescent properties under X-ray excitation may allow practical applications.« less
NASA Astrophysics Data System (ADS)
Macpherson, K. A.
2017-12-01
The National Oceanographic and Atmospheric Administration's National and Pacific Tsunami Warning Centers currently rely on traditional seismic data in order to detect and evaluate potential tsunamigenic earthquakes anywhere on the globe. The first information products disseminated by the centers following a significant seismic event are based solely on seismically-derived earthquake locations and magnitudes, and are issued within minutes of the earthquake origin time. Thus, the rapid and reliable determination of the earthquake magnitude is a critical piece of information needed by the centers to generate the appropriate alert levels. However, seismically-derived magnitudes of large events are plagued by well-known problems, particularly during the first few minutes following the origin time; near-source broad-band instruments may go off scale, and magnitudes tend to saturate until sufficient teleseismic data arrive to represent the long-period signal that characterizes large events. However, geodetic data such as high-rate Global Positioning System (hGPS) displacements and seismogeodetic data that is a combination of collocated hGPS and accelerometer data do not suffer from these limitations. These sensors stay on scale, even for large events, and they record both dynamic and static displacements that may be used to estimate magnitude without saturation. Therefore, there is an ongoing effort to incorporate these data streams into the operations of the tsunami warning centers to enhance current magnitude determination capabilities, and eventually, to invert the geodetic displacements for mechanism and finite-fault information. These later quantities will be useful for tsunami modeling and forecasting. The tsunami warning centers rely on the Earthworm system for real-time data acquisition, so we have developed Earthworm modules for the Magnitude from Peak Ground Displacement (MPGD) algorithm, developed at the University of Washington and the University of California, Berkeley, and a module for a Static Offset Estimator algorithm that was developed by the NASA Jet Propulsion Laboratory. In this presentation we will discuss module architecture and show output computed by replaying both synthetic and historical scenarios in a simulated real-time Earthworm environment.
Gucsik, Arnold; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Ott, Ulrich; Tsuchiyama, Akira; Kayama, Masahiro; Simonia, Irakli; Boudou, Jean-Paul
2012-12-01
Color centers in selected micro- and nanodiamond samples were investigated by cathodoluminescence (CL) microscopy and spectroscopy at 298 K [room temperature (RT)] and 77 K [liquid-nitrogen temperature (LNT)] to assess the value of the technique for astrophysics. Nanodiamonds from meteorites were compared with synthetic diamonds made with different processes involving distinct synthesis mechanisms (chemical vapor deposition, static high pressure high temperature, detonation). A CL emission peak centered at around 540 nm at 77 K was observed in almost all of the selected diamond samples and is assigned to the dislocation defect with nitrogen atoms. Additional peaks were identified at 387 and 452 nm, which are related to the vacancy defect. In general, peak intensity at LNT at the samples was increased in comparison to RT. The results indicate a clear temperature-dependence of the spectroscopic properties of diamond. This suggests the method is a useful tool in laboratory astrophysics.
Can Australia Avoid Repeating American and European Mistakes?
ERIC Educational Resources Information Center
Breen, Myles P.
In today's world, broad societal trends tend to originate in the center and migrate to the periphery. Europe and North America are in the center, and Australia is on the periphery. Of specific interest to communication scholars is the growth or ebbing of communication theories or techniques. One trend, the use of computers in communication…
Automation of Oklahoma School Library Media Centers: Automation at the Local Level.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Education, Oklahoma City. Library and Learning Resources Section.
This document outlines a workshop for media specialists--"School Library Automation: Solving the Puzzle"--that is designed to reduce automation anxiety and give a broad overview of the concerns confronting school library media centers planning for or involved in automation. Issues are addressed under the following headings: (1) Levels of School…
School-Based Early Childhood Centers: Secrets of Success from Early Innovators.
ERIC Educational Resources Information Center
Jewett, Janet L.; Katzev, Aphra
School-based early childhood centers have the potential for responding effectively to a broad range of child and family needs and to society's demands for more effective schools. They have four defining features: (1) implementation of quality programs and developmentally appropriate practices for young children through age eight; (2) families as…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-21
... Committee to the Director (ACD), Centers for Disease Control and Prevention (CDC)--Ethics Subcommittee (ES..., regarding a broad range of public health ethics questions and issues arising from programs, scientists and... submitted on the ethical considerations document for the allocation of ventilators during a severe pandemic...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... Committee to the Director (ACD), Centers for Disease Control and Prevention (CDC)--Ethics Subcommittee (ES... ACD, CDC, regarding a broad range of public health ethics questions and issues arising from programs... ethics standards to the accreditation process for public health departments; ethical considerations...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-18
... Committee to the Director (ACD), Centers for Disease Control and Prevention (CDC)--Ethics Subcommittee (ES... will provide counsel to the ACD, CDC, regarding a broad range of public health ethics questions and... territorial health departments in their efforts to address public health ethics challenges, approaches for...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... Committee to the Director (ACD), Centers for Disease Control and Prevention--Ethics Subcommittee (ES) In..., regarding a broad range of public health ethics questions and issues arising from programs, scientists and practitioners. Matters To Be Discussed: Agenda items will include the following topics: Ethical considerations...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... Committee to the Director (ACD), Centers for Disease Control and Prevention (CDC)--Health Disparities... provide recommendations for consideration to the ACD on strategic and other broad issues facing CDC... collaboration with the CDC Health Equity Workgroup; CDC Director's Annual Health Disparity Report; and briefing...
ERIC Educational Resources Information Center
Najor, Michele A.; Motschall, Melissa
2001-01-01
Describes how the authors use a broad-based, client-centered model to teach an introductory course in public relations, integrating writing assignments for "clients" into course topics, which include history, ethics, theory, research, program planning, publicity, crisis management, and evaluation methods. Discusses course objectives, and notes…
Postdoctoral Fellow | Center for Cancer Research
The Lipkowitz lab in the Women's Malignancies Branch (WMB), Center for Cancer Research (CCR), National Cancer Institute (NCI) of the National Institutes of Health (NIH) is seeking outstanding postdoctoral candidates interested in studying the structure and function of Cbl proteins as negative regulators of signaling. Our broad goal is to explore the molecular and cellular
ERIC Educational Resources Information Center
Donahue-Kilburg, Gail
This book is designed to provide a broad range of information on family structure and function in an increasingly multicultural society, family system characteristics and the implications for intervention, communication development in the family context, the nature and delivery of family centered-services, specific requirements of Public Law…
Postdoctoral Fellow | Center for Cancer Research
The Women's Malignancies Branch (WMB), Center for Cancer Research (CCR), National Cancer Institute (NCI) of the National Institutes of Health (NIH) is seeking outstanding postdoctoral candidates interested in studying DNA repair and cell cycle pathways in the context of ovarian cancer and drug resistance. Our broad goal is to explore the molecular and cellular mechanisms of
Huang, H; Akustu, Y; Arai, M; Tamura, M
2001-07-01
In order to give an effective and rapid analysis of the photochemical pollution and information for emission control strategies, a photochemical box model (PBM) was applied to one moderate summer episode, 11 July 1996, and one typical winter episode, 3 December 1996, in the center of Tokyo, Japan. The box model gave a good prediction of the photochemical pollution with minimal investment. As expected, the peak ozone in summer is higher than in winter. The NOx concentrations in winter are higher than those in summer. In summer, NO and NO2 have one peak in the morning. In winter, NO and NO2 show two peaks during the day. Three model runs including no reactions, a zero ozone boundary condition and dark reactions were conducted to understand the photochemical processes. The effects of emission reduction on the formation of the photochemical pollution in the center of Tokyo have been studied. The results show that the reduction of NMHC emission can decrease the ozone, however, the reduction of NOx emission can increase the ozone. It can be concluded that if the NOx emission are reduced, the reduction of NMHC should be more emphasized in order to decrease the ozone concentration in the center of Tokyo, Japan, especially the reduction of the NMHC from stationary source emission.
Miasnikov, Alexandre A; Weinberger, Norman M
2012-11-01
Experience often does not produce veridical memory. Understanding false attribution of events constitutes an important problem in memory research. "Peak shift" is a well-characterized, controllable phenomenon in which human and animal subjects that receive reinforcement associated with one sensory stimulus later respond maximally to another stimulus in post-training stimulus generalization tests. Peak shift ordinarily develops in discrimination learning (reinforced CS+, unreinforced CS-) and has long been attributed to the interaction of an excitatory gradient centered on the CS+ and an inhibitory gradient centered on the CS-; the shift is away from the CS-. In contrast, we have obtained peak shifts during single tone frequency training, using stimulation of the cholinergic nucleus basalis (NB) to implant behavioral memory into the rat. As we also recorded cortical activity, we took the opportunity to investigate the possible existence of a neural frequency gradient that could account for behavioral peak shift. Behavioral frequency generalization gradients (FGGs, interruption of ongoing respiration) were determined twice before training while evoked potentials were recorded from the primary auditory cortex (A1), to obtain a baseline gradient of "habituatory" neural decrement. A post-training behavioral FGG obtained 24h after three daily sessions of a single tone paired with NB stimulation (200 trials/day) revealed a peak shift. The peak of the FGG was at a frequency lower than the CS while the cortical inhibitory gradient was at a frequency higher than the CS frequency. Further analysis indicated that the frequency location and magnitude of the gradient could account for the behavioral peak shift. These results provide a neural basis for a systematic case of memory misattribution and may provide an animal model for the study of the neural bases of a type of "false memory". Published by Elsevier Inc.
2015-11-30
The Expedition 46-47 crewmembers arrive in Baikonur, Kazakhstan Nov. 30 for final pre-launch training following a flight from their training base at the Gagarin Cosmonaut Training Center in Star City, Russia and are greeted by school children. Tim Peake of the European Space Agency (left), Yuri Malenchenko of the Russian Federal Space Agency (Roscosmos, center) and Tim Kopra of NASA (right), will launch Dec. 15 on the Soyuz TMA-19M spacecraft for a six-month mission on the International Space Station. NASA / Victor Zelentsov
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, D. Y., E-mail: cdy7659@126.com; Nanjing University of posts and Telecommunications, Nanjing 210046; Sun, Y.
We have investigated carrier transport in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers by room temperature current-voltage measurements. Resonant tunneling signatures accompanied by current peaks are observed. Carrier transport in the multi-layers were analyzed by plots of ln(I/V{sup 2}) as a function of 1/V and ln(I) as a function of V{sup 1/2}. Results suggest that besides films quality, nc-Si and barrier sub-layer thicknesses are important parameters that restrict carrier transport. When thicknesses are both small, direct tunneling dominates carrier transport, resonant tunneling occurs only at certain voltages and multi-resonant tunneling related current peaks can be observed but with peak to valley current ratiomore » (PVCR) values smaller than 1.5. When barrier thickness is increased, trap-related and even high field related tunneling is excited, causing that multi-current peaks cannot be observed clearly, only one current peak with higher PVCR value of 7.7 can be observed. While if the thickness of nc-Si is large enough, quantum confinement is not so strong, a broad current peak with PVCR value as high as 60 can be measured, which may be due to small energy difference between the splitting energy levels in the quantum dots of nc-Si. Size distribution in a wide range may cause un-controllability of the peak voltages.« less
CLAES blocker filter rejection requirements. [Cryogenic Limb Array Etalon Spectrometer
NASA Technical Reports Server (NTRS)
James, T. C.; Kumer, J. B.; Roche, A. E.; Sterritt, L. W.; Uplinger, W. G.
1986-01-01
Some details of the calculations of out-of-band spectral rejection requirements for the CLAES blocker filters are described. For a particular blocker centered within an etalon bandpass, the signal to be expected when a particular etalon transmission peak is centered at the central wavelength of the blocker filter is calculated. This signal is compared with the total signal arising from all other transmission peaks within the etalon bandpass and all of the radiation from the entire spectrum outside of the etalon bandpass. The results for a few of the blocker filters are listed, and the design goals are compared with theoretical design results.
Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan
2011-01-01
The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485–1188 cm−1), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm−1 with region and baseline: ca. 1292–1198 cm−1), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187–950 cm−1), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm−1 with region and baseline: ca. 952–910 cm−1), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm−1 with region and baseline: ca. 880–827 cm−1), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm−1 with baseline: ca. 1485–1188 cm−1), H_1370 (structural carbohydrate, peak height at ca. 1370 cm−1 with a baseline: ca. 1485–1188 cm−1). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P < 0.05), higher (P < 0.05) intensities of the non-structural carbohydrate of A_928 (17.3 vs. 2.0) and A_860 (20.7 vs. 7.6) than their co-products from bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292–1198 cm−1 and A_CHO (total CHO) at 1187–950 cm−1 with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This study indicated that the bioethanol processing changes carbohydrate molecular structural profiles, compared with the original grains. However, the sensitivities of different types of carbohydrates and different grains (corn and wheat) to the processing differ. In general, the bioethanol processing increases the molecular spectral intensities for the structural carbohydrates and decreases the intensities for the non-structural carbohydrates. Further study is needed to quantify carbohydrate related molecular spectral features of the bioethanol co-products in relation to nutrient supply and availability of carbohydrates. PMID:21673931
NASA Astrophysics Data System (ADS)
Jenkins, Neil Wayne
2000-12-01
A temperature-dependent spectroscopic analysis of the color center laser medium, LiF:F2+**, is presented. Special attention is devoted to the well-known thermal- and photo-stable F2 +** color center as well as a new F2+**- like color center, conclusively discovered in this work. The standard F2 +** color center is shown to have l0abs. = 615 nm and peak emission near l0ems. = 906 nm. This new F2+**-like color center is found to have a peak absorption near l0abs. = 812 nm and peak emission near l0ems. = 1080 nm. Justification for the association of this new center with F2+**-Iike color centers is explained in the text. Standard F2+** color centers have kinetics of fluorescence lifetime of τ13K = 32 ns, τ300 K = 21 ns, for a quantum efficiency of fluorescence, η = 66%. Concerning the new F2+**-like color center, the 13 K lifetime was found to be τ ~ 5 ns. We show that Alexandrite laser radiation can simultaneously excite the absorption bands of both F2 +**-like centers in their region of spectral overlap. The resulting emission from both centers is the mechanism responsible for the superbroadband range of tunability, ~800-1300 nm, from this laser medium at room temperature. By using the results of the spectroscopic analysis, theoretical calculations are performed to develop a superbroadband laser based on this active medium. A super broadband laser provides laser emission that coincides with nearly the entire fluorescence bands of the material. This type of laser is made possible with the use of a novel laser cavity described in the text. This superbroadband laser was successfully realized under 633 run excitation from a Raman shifted (D2) second harmonic output of a Q-switched, Nd:YAG laser. Comparison of the experimental results from the LIF:F2 +** superbroadband laser show good agreement with the theoretical calculations for both spectral output and temporal signatures. It is also shown that with further technological developments, this crystal is the heart of a potential ultrabroadband, near-IR laser; frequency doubling this fundamental output will realize a truly white-light laser.
Detection of cephradine through the electrochemical study of the degradation product of cephradine
NASA Astrophysics Data System (ADS)
Jiang, Qingfeng; Ying, Yibin; Wang, Jianping; Ye, Zunzhong; Li, Yanbin
2005-11-01
The degradation product of cephradine(CEP), a broad spectrum antibiotic, with NaOH was studied in solution by Cyclic Voltammetry and Differential Pulse Voltammetry at a three electrode system (Gold working electrode, Hg/HgCl reference electrode and Platinum counter electrode). Our experiment was based on that the R-SH in degradation product could cause a deoxidization peak at gold working electrode. The response was optimized with respect to accumulation time, ionic strength, drug concentration, reproducibility and other variables. We found that the degradation product of CEP in Na2HPO4-NaH2PO4 buffer could cause a sensitive deoxidization peak at -0.68V. A linear dependence of peak currents on the concentration was observed in the range of 10-7 - 10-6 mol/L, with a detection limit of 0.5*10-7mol/L. This method can achieve satisfactory results in the application of detecting human-made CEP.
High peak-power laser system tuneable from 8 to 10 μm
NASA Astrophysics Data System (ADS)
Gutty, François; Grisard, Arnaud; Larat, Christian; Papillon, Dominique; Schwarz, Muriel; Gérard, Bruno; Ostendorf, Ralf; Wagner, Joachim; Lallier, Eric
2017-04-01
A high peak-power rapidly tuneable laser system in the long-wave infrared is obtained using an external cavity quantum-cascade laser (EC-QCL) broadly tuneable from 8 to 10 μm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs). To provide an efficient amplification, the nonlinear crystal is pumped by a pulsed fiber laser source. With a pump laser source tuneable around 2 μm, quasi phase-matching remains satisfied with a fixed grating period in the OP-GaAs crystal when the EC-QCL wavelength is swept from 8 to 10 μm. The OPA demonstrates parametric amplification from 8 to 10 μm and achieves output peak powers up to 140 W, with spectral linewidths below 3.5 cm-1 and a beam profile quality (M2) below 3.4 in both horizontal and vertical directions.
Effects of Ga substitution in Ce:Tb3Ga x Al5- x O12 single crystals for scintillator applications
NASA Astrophysics Data System (ADS)
Nakauchi, Daisuke; Okada, Go; Kawano, Naoki; Kawaguchi, Noriaki; Yanagida, Takayuki
2018-02-01
Bulk single crystals of Ce-doped Tb3Ga x Al5- x O12 (x = 0-4) were successfully synthesized by the floating zone method. The samples exhibit photoluminescence and scintillation with an intense broad emission due to the 5d-4f transitions of Ce3+ peaking around 550 nm as well as a few sharp peaks due to the 4f-4f transitions of Tb3+. Pulse height spectrum measurements under 137Cs γ-ray irradiation demonstrated a clear photoabsorption peak, in which the scintillation light yields were estimated to be 57,000 (x = 0), 28,000 (x = 1), 19,000 (x = 2), and 10,000 (x = 3) photons/MeV. Afterglow level can be suppressed with an appropriate addition of Ga, in which the optimum concertation is x = 2 leading an afterglow level of 23 ppm.
Hakeem, D A; Park, K
2015-07-01
The photoluminescent properties of the Eu(3+)-activated Ca3Sr3(PO4)4 phosphors prepared by a solution combustion method were investigated. The excitation spectra of Ca3Sr3-x(PO4)4:xEu3+ (0.05 ≤ x ≤ 0.6) phosphors under 614 nm wavelength showed a broad band centered at 266 nm along with other peaks at 320, 362, 381, 394, 414, 464, and 534 nm. The emission spectra observed in the range of 450 to 750 nm under excitation at 394 nm were ascribed to the 5D0-7F1-4 transitions of Eu3+ ions. The Ca3Sr3-x(PO4)4:xEu3+ phosphors showed the strongest red emission at 614 nm due to the electric dipole 5DO -->7F2 transition of Eu3+. The strongest emission intensity was obtained for the Eu3+ ions of x = 0.5. The prepared Ca3Sr3-x(PO4)4:xEu3+ can be used as an efficient red phosphor for UV-based white LEDs.
Development of nanostructured EuAl2O4 phosphors with strong long-UV excitation.
Hirata, Gustavo A; Bosze, Eric J; McKittrick, Joanna
2008-12-01
Fueled by the need to develop novel materials for applications in solid state white-emitting lamps we have improved a new low-cost, clean and efficient technique to produce high luminescence phosphors with strong excitation in the long-UV range (350-400 nm) which makes them useful for applications in GaN-based solid state lamps. In this work, pressurized combustion synthesis has been successfully used to develop EuAl2O4 (europium aluminate), a new green photoluminescent material with monoclinic structure. The combustion synthesis reaction conditions can be adjusted to produce either the AlEuO3 orthorhombic phase at low pressures (0.1 MPa), or the new monoclinic EuAl2O4 phase, which is apparently more thermodynamically favorable at higher combustion reaction pressures (1.4 MPa). The luminescent material is a high surface area powder (approximately 50 m2/g) composed mainly of nanostructured needles and plates with 5-10 nm in diameter and 100-150 nm in length. A broad emission peak centered at 530 nm with a decay time of 1.5 approximately 2 ms is obtained at the maximum excitation wavelength lambda(exc) = 370 nm.
NASA Astrophysics Data System (ADS)
Guo, Bing; Qiu, Z. R.; Wong, K. S.
2003-04-01
We report room-temperature time-integrated and time-resolved photoluminescence (PL) measurements on a nominally undoped wurtzite ZnO thin film grown on (001) silicon. A linear and sublinear excitation intensity Iex dependence of the PL intensity were observed for the 379.48-nm exciton line and the weak broad green band (˜510 nm), respectively. The green luminescence was found to decay as hyperbolic t-1, and its peak energy was observed to increase nearly logarithmically with increased Iex. These results are in an excellent agreement with the tunnel-assisted donor-deep-acceptor pair (DAP) model so that its large blueshifts of about 25 meV per decade increase in Iex can be accounted for by the screening of the fluctuating impurity potential. Also, the 30-ps fast decay of the exciton emission was attributed to the rapid trapping of carriers at luminescent impurities, while the short lifetime of τ1/e=200 ps for the green luminescence may be due to an alternative trapping by deeper centers in the ZnO. Finally, singly ionized oxygen and zinc vacancies have been tentatively invoked to act as donor-deep-acceptor candidates for the DAP luminescence, respectively.
Liu, Yongfu; Zhang, Changhua; Cheng, Zhixuan; Zhou, Zhi; Jiang, Jun; Jiang, Haochuan
2016-09-06
We obtain a blue phosphor, Ba9Lu2Si6O24:Eu(2+) (BLS:Eu(2+)), which shows a strong emission peak at 460 nm and a weak tail from 460 to 750 nm. A 610 nm red emission is observed for the first time in this kind of rhombohedral structure material, which is much different from the same crystal structure of Ba9Sc2Si6O24:Eu(2+) and Ba9Y2Si6O24:Eu(2+). The luminescence properties and decays from 10 to 550 K are discussed. The new red emission arises from a trapped exciton state of Eu(2+) at the Ba site with a larger coordination number (12-fold). It exhibits abnormal luminescence properties with a broad bandwidth and a large Stokes shift. Under the 400 nm excitation, the external quantum efficiency of BLS:Eu(2+) is 45.4%, which is higher than the 35.7% for the commercial blue phosphor BAM:Eu(2+). If the thermal stability of BLS:Eu(2+) can be improved, it will show promising applications in efficient near-UV-based white LEDs.
National Ice Center Visiting Scientist Program
NASA Technical Reports Server (NTRS)
Austin, Meg
2002-01-01
The long-term goal of the University Corporation for Atmospheric Research (UCAR) Visiting Scientist Program at the National Ice Center (NIC) is to recruit the highest quality visiting scientists in the ice research community for the broad purpose of strengthening the relationship between the operational and research communities in the atmospheric and oceanic sciences. The University Corporation for Atmospheric Research supports the scientific community by creating, conducting, and coordinating projects that strengthen education and research in the atmospheric, oceanic and earth sciences. UCAR accomplishes this mission by building partnerships that are national or global in scope. The goal of UCAR is to enable researchers and educators to take on issues and activities that require the combined and collaborative capabilities of a broadly engaged scientific community.
5. VIEW TO THE EAST NORTH EAST FROM PEAK OF ...
5. VIEW TO THE EAST NORTH EAST FROM PEAK OF THE TURBINE HALL. THE BRICK STACK TO THE RIGHT EXHAUSTED BOILER 904 WHICH WAS INSTALLED IN 1944. STEEL SHEATHED STRUCTURE IN CENTER OF PHOTOGRAPH HOUSED BOILERS 902 AND 903. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT
Test of wind predictions for peak fire-danger stations in Oregon and Washington.
Owen P. Cramer
1957-01-01
Relative accuracy of several wind-speed forecasting methods was tested during the forest fire seasons of 1950 and 1951. For the study, three fire-weather forecast centers of the U. S. Weather Bureau prepared individual station forecasts for 11 peak stations within the national. forests of Oregon and Washington. These spot forecasts were considered...
Collector design for measuring high intensity time variant sprinkler application rates
USDA-ARS?s Scientific Manuscript database
Peak water application rate in relation to soil water infiltration rate and soil surface storage capacity is important in the design of center pivot sprinkler irrigation systems for efficient irrigation and soil erosion control. Measurement of application rates of center pivot irrigation systems ha...
NASA Technical Reports Server (NTRS)
2005-01-01
A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements, and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle-tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus the velocity. Combining these two techniques makes use of the higher spatial resolution available from the particle tracking. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two-staged velocimetric technique can measure particle velocities with high spatial resolution over a broad range of seeding densities.
Chang, Hsi-Tien
1989-01-01
A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.
2006-07-01
The ADT in 2025 is predicted to range from 38,000 to 40,000. Peak hour volumes are predicted to be 2,097 in the AM peak hour and 2,360 in the PM... peak hour. A variety of things could change this classification and improve traffic and the projected LOS by 2025. Several examples include the...vehicles, as well as numerous off- peak trips. Development proposals south at the adjacent Sandia Science and Technology Park and further south of the
Ferroelectricity of strained SrTiO3 in lithium tetraborate glass-nanocomposite and glass-ceramic
NASA Astrophysics Data System (ADS)
Abdel-Khalek, E. K.; Mohamed, E. A.; Kashif, I.
2018-02-01
Glass-nanocomposite (GNCs) sample of the composition [90Li2B4O7-10SrTiO3] (mol %) was prepared by conventional melt quenching technique. The glassy phase and the amorphous nature of the GNCs sample were identified by Differential thermal analysis (DTA) and X-ray diffraction (XRD) studies, respectively. DTA of the GNCs exhibits sharp and broad exothermic peaks which represent the crystallization of Li2B4O7 and SrTiO3, respectively. The tetragonal Li2B4O7 and tetragonal SrTiO3 crystalline phases in glass-ceramic (GC) were identified by XRD and scanning electron microscopic (SEM). The strain tetragonal SrTiO3 phase in GNCs and GC has been confirmed by SEM. The values of crystallization activation energies (Ec1 and Ec2) for the first and second exothermic peaks are equal to 174 and 1452 kJ/mol, respectively. The Ti3+ ions in tetragonal distorted octahedral sites in GNCs were identified by optical transmission spectrum. GNCs and GC samples exhibit broad dielectric anomalies at 303 and 319 K because of strained SrTiO3 ferroelectric, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inokuchi, Tomoaki, E-mail: tomoaki.inokuchi@toshiba.co.jp; Ishikawa, Mizue; Sugiyama, Hideyuki
2014-12-08
Spin-dependent transport properties in CoFe/MgO/n{sup +}-Si junctions were investigated by Hanle effect measurements and inelastic electron tunneling (IET) spectroscopy. The CoFe/MgO/n{sup +}-Si junctions examined in this study exhibited two different Hanle curves. In the low bias region, broad Hanle signals were mainly observed; in the high bias region, narrow Hanle signals were mainly observed. The d{sup 2}I/dV{sup 2}-V curves (which correspond to IET spectra) contain several peaks originating from phonon modes and other peaks originating from electron trap states. At the bias voltage where electron trap states are observed, Δd{sup 2}I/dV{sup 2} depends on the magnetic field and the fullmore » width at half-maximum of the Δd{sup 2}I/dV{sup 2}–H curves corresponds to that of the broad Hanle signals. These results indicate that electron trap states are located in the low energy region and cause a decrease in spin lifetime.« less
Rocker bottom soles alter the postural response to backward translation during stance.
Albright, Bruce C; Woodhull-Smith, Whitney M
2009-07-01
Shoes with rocker bottom soles are utilized by persons with diabetic peripheral neuropathy to reduce plantar pressures during gait. This population also has a high risk for falls. This study analyzed the effects of shoes with rocker bottom soles on the postural response during perturbed stance. Participants were 20 healthy subjects (16 women, 4 men) ages 22-25 years. Canvas shoes were modified by the addition of crepe sole material to represent two forms of rocker bottom shoes and a control shoe. Subjects stood on a dynamic force plate programmed to move backward at a velocity that produced an automatic postural response without stepping. Force plate data were collected for five trials per shoe type. Sway variables for center of pressure (COP) and center of mass (COM) included: mean sway amplitude, sway variance, time to peak, anterior and posterior peak velocities, functional stability margin, and peak duration time. Compared to control, both the experimental shoes had significantly larger COP and COM values for mean sway amplitude, sway variance and peak duration. The functional stability margins were significantly smaller for the experimental shoes while their anterior and posterior peak velocities were slower and time to peaks were significantly longer. In young healthy adults, shoes with rocker bottom soles had a destabilizing effect to perturbed stance, thereby increasing the potential for imbalance. These results raise concerns that footwear with rocker bottom sole modifications to accommodate an insensate foot may increase the risk of falls.
NASA Lewis Research Center/university graduate research program on engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1985-01-01
NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.
An Overview of Addiction Research Center Inventory Scales (ARCI): An Appendix and Manual of Scales.
ERIC Educational Resources Information Center
Haertzen, C.A.
The Addiction Research Center Inventory is a 550 item multipurpose test measuring the broad range of physical, emotive, cognitive, and subjective effects of drugs. This manual provides technical information concerning 38 most valid scales, a quantitative method for characterizing the similarity of a profile of scores for the subject, group, or…
VIEW NORTH EXTREME LEFTBUILDING 32; MACHINE SHOP (1890) SECOND LEFTBUILDING ...
VIEW NORTH- EXTREME LEFT-BUILDING 32; MACHINE SHOP (1890) SECOND LEFT-BUILDING 31; RIGGER SHOP (1890) CENTER- BUILDING 28; BLACKSMITH SHOP (1885) CENTER RIGHT-BUILDING 27; PATTERN SHOP (C.1853) RIGHT-BUILDING 40; WIRE WAREHOUSE (1915) - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ
2007-08-01
upcoming National Intelligence Estimate (NIE), the National Inteligence Council (NIC) has reached out to a broad group of U.S. government organizations and...USAF (Retired) Major Shannon Beebe U.S. ARMY WAR COLLEGE Center for Strategic Leadership 650 Wright Avenue Carlisle, PA 17103-5049 OFFICIAL BUSINESS
EUCLID IN RETROSPECT, 1967 CONFERENCE BULLETIN.
ERIC Educational Resources Information Center
Euclid English Demonstration Center, OH.
A PROJECT ENGLISH GRANT IN 1962 ESTABLISHED THE EUCLID ENGLISH DEMONSTRATION CENTER (EEDC) TO DEVELOP AND MAKE AVAILABLE ON A NATIONAL BASIS A MODEL ENGLISH CURRICULUM. THE SIX PAPERS OF THIS EEDC FINAL REPORT FOCUS ON THE WORK OF THE CENTER, BUT ALSO ASSESS AND COMMENT MORE BROADLY UPON MANY OF THE PROBLEMS OF ENGLISH TEACHING TODAY.…
NASA Lewis Research Center/University Graduate Research Program on Engine Structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1985-01-01
NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... Committee to the Director (ACD), Centers for Disease Control and Prevention--Ethics Subcommittee (ES) In... to the ACD, CDC, regarding a broad range of public health ethics questions and issues arising from... address public health ethics issues and coordination of these efforts with the CDC Office of State, Tribal...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-08
... Committee to the Director (ACD), Centers for Disease Control and Prevention (CDC)--Ethics Subcommittee (ES... provide counsel to the ACD, CDC, regarding a broad range of public health ethics questions and issues... in their efforts to address public health ethics challenges. The agenda is subject to change as...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
... Committee to the Director (ACD), Centers for Disease Control and Prevention (CDC)--Ethics Subcommittee (ES... will provide counsel to the ACD, CDC, regarding a broad range of public health ethics questions and...; efforts to support state, tribal, local and territorial health departments address ethical issues in the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-26
... Committee to the Director (ACD), Centers for Disease Control and Prevention (CDC)--Ethics Subcommittee (ES... counsel to the ACD, CDC, regarding a broad range of public health ethics questions and issues arising from... strategy for addressing its charge to provide a preliminary overview to the ACD on ethical issues related...
The Child Development Specialist in a Mental Health Center. Position Paper.
ERIC Educational Resources Information Center
Ranzoni, Patricia Smith
A child development team in a children's services unit of a mental health center should: (1) formulate a broad philosophy of treatment for young child clients; (2) evaluate treatment approaches to determine the extent to which they facilitate or conflict with that philosophy; (3) assess inservice training needs to ensure competency-based service…
Dissociative and double photoionization of CO2 from threshold to 90 A
NASA Technical Reports Server (NTRS)
Masuoka, T.; Samson, J. A. R.
1979-01-01
The molecular photoionization, dissociative photoionization and double photoionization cross sections for CO2 were measured from their onsets down to 90 A by using various combinations of mass spectrometers (a coincidence time-of-flight mass spectrometer and a magnetic mass spectrometer) and light sources (synchrotron radiation, and glow and spark discharge). It is concluded that the one broad peak and the three shoulders in the total adsorption cross section curve between 640 and 90 A are caused completely by dissociative ionization processes. Several peaks observed in the cross section curve for the total fragmentation CO(+)3, O(+) and C(+) are compared with those in the photoelectron spectrum reported for CO2.
NASA Astrophysics Data System (ADS)
Leslie, S.; Mann, P.
2015-12-01
The Colombian Caribbean margin provides an ideal setting for the formation of large mass transport deposits (MTDs): 1) the Caribbean Plate is slowly subducting at rates of 20 mm/yr with infrequent large thrust earthquakes and a complete lack of subduction events in the 400-year-long historical record; 2) the margin is a broad zone of active faults including a ~50 km-wide accretionary prism and strike-slip faults landward of the prism; 3) the active margin is draped by the Magdalena delta and submarine fan fed by the Magdalena River, the 26th largest in the world; and 4) the margin is over-steepened to slopes of up to 7° from the combination of tectonic activity and rapid rates of deltaic progradation. Using seismic data we have identified three late Miocene-Pliocene MTDs, the largest of which is between 4500 and 6000 km3, comparable in size to the well-studied Storegga slide of Norway. The tsunamigenic potential of future, analog MTD events are modeled using GeoWave tsunami modeling software. The largest and youngest of these MTDs, the Santa Marta slide, is used as an analog to infer the location and input parameters for the tsunami model. The event is modeled as a translational slide ~46 km long and ~37 km wide with the center of the slide located ~57 km W/NW from the mouth of the present day Magdalena River in water depths of 1500 m. The volume for the initial failure is conservatively estimated at ~680 km3 of material. The resulting tsunami wave from such an event has an initial maximum trough amplitude of -65.8 m and a peak amplitude of 19.2 m. The impact of such a tsunami would include: 1) Kingston, Jamaica (population 938K), tsunami height 7.5 m, peak arrival at 60 min.; 2) Santo Domingo, Dominican Republic (population 965K, height 6 m, peak arrival at 80 min.); and 3) Cartagena, Colombia (population 845K, height 21 m, peak arrival at 34 min.). A number of parameters to the model are varied to analyze sensitivity of modeling results to changes in slide depth, angle of failure, slide volume, and slide density.
TDM interrogation of intensity-modulated USFBGs network based on multichannel lasers.
Rohollahnejad, Jalal; Xia, Li; Cheng, Rui; Ran, Yanli; Rahubadde, Udaya; Zhou, Jiaao; Zhu, Lin
2017-01-23
We report a large-scale multi-channel fiber sensing network, where ultra-short FBGs (USFBGs) instead of conventional narrow-band ultra-weak FBGs are used as the sensors. In the time division multiplexing scheme of the network, each grating response is resolved as three adjacent discrete peaks. The central wavelengths of USFBGs are tracked with the differential detection, which is achieved by calculating the peak-to-peak ratio of two maximum peaks. Compared with previous large-scale hybrid multiplexing sensing networks (e.g., WDM/TDM) which typically have relatively low interrogation speed and very high complexity, the proposed system can achieve interrogation of all channel sensors through very fast and simple intensity measurements with a broad dynamic range. A proof-of-concept experiment with twenty USFBGs, at two wavelength channels, was performed and a fast static strain measurements were demonstrated, with a high average sensitivity of ~0.54dB/µƐ and wide dynamic range of over ~3000µƐ. The channel to channel switching time was 10ms and total network interrogation time was 50ms.
Deformation of the Eastern Franciscan Belt, northern California
Jayko, A.S.; Blake, M.C.
1989-01-01
The late Jurassic and Cretaceous Eastern Franciscan belt of the northern California Coast Range consists of two multiply deformed, blueschist-facies terranes; the Pickett Peak and Yolla Bolly terranes. Four deformations have been recognized in the Pickett Peak terrane, and three in the Yolla Bolly terrane. The earliest recognized penetrative fabric, D1, occurs only in the Pickett Peak terrane. The later penetrative fabrics, D2 and D3, occur in both the Yolla Bolly and Pickett Peak terranes. D1 and D2 apparently represent fabrics that formed during subduction and accretion of the terranes. Fabrics from both D1 and D2 are consistent with SW-NE movement directions with respect to their present geographic positions. D3 postdates blueschist-facies metamorphism of the terranes and may be related to emplacement of the terranes to higher structural levels. A broad regional warping, D4, is evident from the map pattern and folding of large metamorphosed thrust sheets. D4 folds may be related to deformation associated with oblique convergence along the continental margin in late Cretaceous and (or) early Tertiary time. ?? 1989.
Structure of an energetic narrow discrete arc
NASA Technical Reports Server (NTRS)
Mcfadden, J. P.; Carlson, C. W.; Boehm, M. H.
1990-01-01
Particle distributions, waves, dc electric fields, and magnetic fields were measured by two sounding rockets at altitudes of 950 and 430 km through an energetic (greater than 5 keV) narrow (about 10 km) stable discrete arc. Although the payloads' magnetic footprints were separated by only 50 km, differences in the arc's structure were observed including the spatial width, peak energy, and characteristic spectra. The energetic electron precipitation included both slowly varying isotropic fluxes that formed an inverted-V energy-time signature and rapidly varying field-aligned fluxes at or below the isotropic spectral peak. The isotropic precipitation had a flux discontinuity inside the arc indicating the arc was present on a boundary between two different magnetospheric plasmas. Dispersive and nondispersive bursts of field-aligned electrons were measured throughout the arc, appearing over broad energy ranges or as monoenergetic beams. Dispersive bursts gave variable source distances less than 8000 km. Plateauing of some of the most intense bursts suggests that waves stabilized these electrons. During the lower altitude arc crossing, the field-aligned component formed a separate inverted-V energy-time signature whose peak energy was half the isotropic peak energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manhas, M.; Kumar, Vinay, E-mail: vinaykumar@smvdu.ac.in; Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300
2016-05-06
In this paper, thermoluminescence (TL) properties of Dy{sup 3+} (1.5 mol %) doped CaMgB{sub 2}O{sub 5} nanophosphor after being exposed to ultraviolet (UV) radiations (λ=254nm) were investigated. In UV exposed samples, the thermoluminescence glow curve consists of a broad glow peak located at 380 K with a small shoulder at 507 K. A shift in glow peak temperature from 367 K to 380 K after the UV exposure for 80 min was observed, which clearly shows that glow peaks follow the second order kinetics. The TL intensity of the peaks increases with an increase in the exposure time of UV rays (10-180 min). The TL Anal programmore » was used to analyze the glow curve. The kinetic parameters such as activation energy (E), the frequency factor (s) and the order of kinetics (b) were calculated for CaMgB{sub 2}O{sub 5}: Dy{sup 3+} nanophosphors.« less
Jayakumar, C; Magdalane, C Maria; Kaviyarasu, K; Kulandainathan, M Anbu; Jeyaraj, Boniface; Maaza, M
2018-07-01
A simple and reliable voltammetric sensor for simultaneous determination of Catechol (CT) and Hydroquinone (HQ) was developed by electrodepositing the gold nanoparticles on the surface of the Glassy Carbon Electrode (GCE). The cyclic voltammograms in a mixed solution of CT and HQ have shown that the oxidation peaks become well resolved and were separated by 110 mV, although the bare GCE gave a single broad oxidation peak. Moreover, the oxidation peak currents of both CT and HQ were remarkably increased three times in comparison with the bare GCE. This makes gold nanoparticles deposited GCE a suitable candidate for the determination of these isomers. In the presence of 1 mM HQ isomer, the oxidation peak currents of differential pulse voltammograms are proportional to the concentration of CT in the range of 21 μM to 323 μM with limit of detection 3.0 μM (S/N = 3). The proposed sensor has some important advantages such as low cost, ease of preparation, good stability and high reproducibility.
NASA Astrophysics Data System (ADS)
Padilla, Diomaris
The Fourier transform infrared examination of the combustion products of a selection of forest materials has been undertaken in order to guide future detection of biomass burning using satellite remote sensing. Combustion of conifer Pinus strobus (white pine) and deciduous Prunus serotina (cherry), Acer rubrum (red maple), Friglans nigra (walnut), Fraxinus americana (ash), Betula papyrifera (birch), Querus alba (white oak) and Querus rubra (red oak) lumber, in a Meeker burner flame at temperatures of 400 to 900 degrees Fahrenheit produces a broad and relatively flat signal with a few distinct peaks throughout the wavelength spectra (400 to 4000 cm-1). The distinct bands located near wavelengths of 400-700, 1500-1700, 2200-2400 and 3300-3600 cm-1 vary in intensity with an average difference between the highest and lowest absorbing species of 47 percent. Spectral band differences of 10 percent are within the range of modern satellite spectrometers, and support the argument that band differences can be used to discriminate between various types of vegetation. A similar examination of soot and smoke derived from the leaves and branches of the conifer Pinus strobus and deciduous Querus alba (white oak), Querus rubra (red oak), Liquidambar styraciflua (sweetgum), Acer rubrum (maple) and Tilea americana (American basswood) at combustion temperatures of 400 to 900 degrees Fahrenheit produce a similar broad spectrum with a shift in peak location occurring in peaks below the 1700 cm-1 wavelength. The new peaks occur near wavelengths of 1438-1444, 875 and 713 cm-1. This noted shift in wavelength location may be indicative of a fingerprint region for green woods distinguishable from lumber through characteristic biomass suites. Temperature variations during burning show that the spectra of low temperature smoldered aerosols, occurring near 400 to 450 degrees Fahrenheit, may be distinguished from higher temperature soot aerosols that occur above 600 degrees Fahrenheit. A heightened peak intensity of 50 percent is observed throughout the spectra of the lower temperature generated soot and smoke, with respect to the higher temperature generated soot and smoke. These observations suggest the possibility of establishing biomass reduction markers using a ratio method.
High yield Cu-Co CPP GMR multilayer sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spallas, J.; Mao, M.; Law, B.
1997-01-15
We have fabricated and tested GMR magnetic flux sensors that operate in the CPP mode. This work is a continuation of the ultra-high density magnetic sensor research introduced at INTERMAG 96. We have made two significant modifications to the process sequence. First, contact to the sensor is made through a metal conduit deposited in situ with the multilayers. This deposition replaces electroplating. This configuration ensures a good electrical interface between the top of multilayer stack and the top contact, and a continuous, conductive current path to the sensor. The consequences of this modification are an increase in yield of operationalmore » devices to {ge}90% per wafer and a significant reduction of the device resistance to {le}560 milliohms and of the uniformity of the device resistance to {le}3%. Second, the as-deposited multilayer structure has been changed from [Cu 30 {angstrom}/Co 20 {angstrom}]{sub 18} (third peak) to [Cu 20.5 {angstrom}/Co 12 {angstrom}]{sub 30} (second peak) to increase the CPP and CIP responses. The sheet film second peak CIP GMR response is 18% and the sensitivity is 0.08 %/Oe. The sheet film third peak CIP GMR response is 8% and the sensitivity is 0. 05 %/Oe. The second peak CPP GMR response averaged over twenty devices on a four inch silicon substrate is 28% {+-} 6%. The response decreases radially from the substrate center. The average response at the center of the substrate is 33% {+-} 4%. The average second peak CPP sensitivity is 0.09 %/Oe {+-} 0.02 %/Oe. The best second peak CPP response from a single device is 39%. The sensitivity of that device is 0.13 %/Oe. The third peak CPP GMR response is approximately 14 %. The third peak CPP response sensitivity is 0.07 %/Oe. 6 refs., 3 figs.« less
Givel, M S; Glantz, S A
2000-01-01
In 1979 and 1980 in Dade County, Florida, a small grassroots advocacy group, Group Against Smoking Pollution (GASP), attempted to enact a clean indoor air ordinance through the initiative process. The tobacco industry's successful efforts to defeat the initiatives were expensive high-tech media-centered campaigns. Even though GASP's electoral resources were extremely limited for both initiatives, GASP utilized similar media-centered tactics. This approach attempted to defeat the tobacco industry in its own venue, in spite of the tobacco industry's vastly greater resources. Nevertheless, the industry defeated these ordinances by narrow margins because of broad voter support for the initiatives before the industry started its campaigns. Health advocates will never have the resources to match the tobacco industry in expensive high-tech media-centered initiative campaigns. Rather, their power lies in the general popularity of tobacco control legislation and their ability to mobilize broad grassroots efforts combined with an adequately funded media campaign.
NASA Astrophysics Data System (ADS)
Yan, Lin; Quimby, R.; Ofek, E.; Gal-Yam, A.; Mazzali, P.; Perley, D.; Vreeswijk, P. M.; Leloudas, G.; De Cia, A.; Masci, F.; Cenko, S. B.; Cao, Y.; Kulkarni, S. R.; Nugent, P. E.; Rebbapragada, Umaa D.; Woźniak, P. R.; Yaron, O.
2015-12-01
iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z = 0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises in 83-148 days to reach a peak bolometric luminosity of ˜1.3 × 1044 erg s-1, then decays slowly at 0.015 mag day-1. The measured ejecta velocity is ˜ 13,000 km s-1. The inferred explosion characteristics, such as the ejecta mass (70-220 M⊙), and the total radiative and kinetic energy (Erad ˜ 1051 erg, Ekin ˜ 2 × 1053 erg), are typical of slow-evolving H-poor SLSN events. However, the late-time spectrum taken at +251 days (rest, post-peak) reveals a Balmer Hα emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ˜4500 km s-1 and a ˜300 km s-1 blueward shift relative to the narrow component. We interpret this broad Hα emission with a luminosity of ˜2 × 1041 erg s-1 as resulting from the interaction between the supernova ejecta and a discrete H-rich shell, located at a distance of ˜4 × 1016 cm from the explosion site. This interaction causes the rest-frame r-band LC to brighten at late times. The fact that the late-time spectra are not completely absorbed by the shock-ionized H-shell implies that its Thomson scattering optical depth is likely ≤1, thus setting upper limits on the shell mass ≤30 M⊙. Of the existing models, a Pulsational Pair Instability supernova model can naturally explain the observed 30 M⊙ H-shell, ejected from a progenitor star with an initial mass of (95-150) M⊙ about 40 years ago. We estimate that at least ˜15% of all SLSNe-I may have late-time Balmer emission lines.
NASA Astrophysics Data System (ADS)
Boonsook, K.; Kaewwiset, W.; Limsuwan, P.; Naemchanthara, K.
2017-09-01
The purpose of this study was to evaluate the radionuclide concentrations of London blue topaz after fast neutron irradiation. The London blue topaz was obtained from Sri Lanka which classified into dark and light colors in the shape of an oval and rectangle with small, medium and large size. The optical property and radionuclide concentrations of London blue topaz have been examine by UV-Visible spectroscopy and HPGe gamma ray spectrometry, respectively. The UV-absorption spectra of topaz was taken in the range of 300 to 800 nm at room temperature. The results showed that the absorption peak of topaz was observed with only broad peaks in the range of 550 to 700 nm and 630 nm that correlated to the O - center in hydroxyl sites which substitutes for fluorine in topaz structure. The radioactivity of dark and light colors in the shape of an oval and rectangle London blue topaz was in the range of 1.437 ± 0.014 to 21.551 ± 0.037 nCi/g (oval dark), 2.958 ± 0.031 to 6.748 ± 0.054 nCi/g (oval light) and 2.350 ± 0.014 to 43.952 ± 0.088 nCi/g (rectangle dark), 1.442 ± 0.023 to 6.748 ± 0.054 nCi/g (rectangle light), respectively. The decay rates of 46Sc, 182Ta and 54Mn isotopes created by irradiation showed that the decay time of the radioactive element depended on the size of the topaz so increased with decreasing the size of topaz. Moreover, the size of topaz also affect the absorption coefficient. This study is applied to predict time of residue dose of topaz for enhancement colorless topaz by neutron radiation treatment.
Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals
NASA Astrophysics Data System (ADS)
Kaviyarasu, K.; Murmu, P. P.; Kennedy, J.; Thema, F. T.; Letsholathebe, Douglas; Kotsedi, L.; Maaza, M.
2017-10-01
Gadolinium implanted cerium oxide (Gd-CeO2) nanocomposites is an important candidate which have unique hexagonal structure and high K- dielectric constant. Gd-CeO2 nanoparticles were synthesized using hydrothermal method. X-ray diffraction (XRD) results showed that the peaks are consistent with pure phase cubic structure the XRD pattern also confirmed crystallinity and phase purity of the sample. Nanocrystals sizes were found to be up to 25 nm as revealed by XRD and SEM. It is suggested that Gd gives an affirmative effect on the ion influence behavior of Gd-CeO2. XRD patterns showed formation of new phases and SEM micrographs revealed hexagonal structure. Photoluminescence measurement (PL) reveals the systematic shift of the emission band towards lower wavelength thereby ascertaining the quantum confinement effect (QCE). The PL spectrum has wider broad peak ranging from 390 nm to 770 nm and a sharp one centered on at 451.30 nm which is in tune with Gd ions. In the Raman spectra showed intense band observed between 460 cm-1 and 470 cm-1 which is attributed to oxygen ions into CeO2. Room temperature ferromagnetism was observed in un-doped and Gd implanted and annealed CeO2 nanocrystals. In the recent studies, ceria based materials have been considered as one of the most promising electrolytes for reduced temperature SOFC (solid oxide fuel cell) system due to their high ionic conductivities allowing its use in stainless steel supported fuel cells. CeO2 having an optical bandgap 3.3 eV and n-type carrier density which make it a promising candidate for various technological application such as buffer layer on silicon on insulator devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCall, Kyle M.; Stoumpos, Constantinos C.; Kostina, Svetlana S.
The optical and electronic properties of Bridgman grown single crystals of the wide-bandgap semiconducting defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) have been investigated. Intense Raman scattering was observed at room temperature for each compound, indicating high polarizability and strong electron–phonon coupling. Both low-temperature and room-temperature photoluminescence (PL) were measured for each compound. Cs3Sb2I9 and Rb3Sb2I9 have broad PL emission bands between 1.75 and 2.05 eV with peaks at 1.96 and 1.92 eV, respectively. The Cs3Bi2I9 PL spectra showed broad emission consisting of several overlapping bands in the 1.65–2.2 eV range. Evidence of strong electron–phononmore » coupling comparable to that of the alkali halides was observed in phonon broadening of the PL emission. Effective phonon energies obtained from temperature-dependent PL measurements were in agreement with the Raman peak energies. A model is proposed whereby electron–phonon interactions in Cs3Sb2I9, Rb3Sb2I9, and Cs3Bi2I9 induce small polarons, resulting in trapping of excitons by the lattice. The recombination of these self-trapped excitons is responsible for the broad PL emission. Rb3Bi2I9, Rb3Sb2I9, and Cs3Bi2I9 exhibit high resistivity and photoconductivity response under laser photoexcitation, indicating that these compounds possess potential as semiconductor hard radiation detector materials.« less
17. Photocopy of photograph (original slide in possession of the ...
17. Photocopy of photograph (original slide in possession of the Preservation Society of Charleston, Charleston, South Carolina; Collection of Dr. and Mrs. E. L. Powers, Charleston, South Carolina) Photographer and date unknown SOUTH FRONT (CENTER OF PHOTOGRAPH), LOOKING NORTH; 92 BROAD STREET VISIBLE AT LEFT EDGE OF PHOTOGRAPH, OLD JEWISH ORPHANAGE (HABS NO. SC-13-15) VISIBLE AT RIGHT EDGE OF PHOTOGRAPH - 90 Broad Street (Commercial Building), Charleston, Charleston County, SC
NASA Astrophysics Data System (ADS)
Marzouk, M. A.; Abo-Naf, S. M.; Zayed, H. A.; Hassan, N. S.
2017-03-01
Heavy metal oxide (PbO and Bi2O3) glasses doped with transition metal (TM) ions (TiO2, V2O5, Cr2O3, and MnO2) and having low content of common glass formers (B2O3, SiO2, or P2O5) were prepared by the conventional melt annealing method. Ultraviolet, visible absorption, and photoluminescence properties of these glasses were measured, and the data were employed to investigate the prepared glassy samples. The optical absorption spectra of TiO2 and V2O5 exhibited three bands centered at about 240, 305, and 380 nm, followed by a broad asymmetrical near-visible band centered at 425-432 nm, while Cr2O3 and MnO2 exhibited an extended visible peak at 517-548 nm. Results showed that the luminescence intensity changed with different transition metal oxides. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (ΔE) were calculated. The calculated values of the optical energy gap were found to be dependent on the glass composition. The changing values of optical band gap and band tail can be related to the structural changes that are taking place in the glass samples. The variations of the luminescence intensity, values of optical band gap, band tail, and refractive index gave an indication of the potential use of the prepared glasses to design novel optical functional materials with higher optical performance.
Statistical characterization of the large-scale structure of the subauroral polarization stream
NASA Astrophysics Data System (ADS)
Kunduri, B. S. R.; Baker, J. B. H.; Ruohoniemi, J. M.; Thomas, E. G.; Shepherd, S. G.; Sterne, K. T.
2017-06-01
The subauroral polarization streams (SAPS) are latitudinally narrow regions of westward directed flows observed equatorward of the evening sector auroral oval. Previous studies have shown that SAPS generally occur during geomagnetically disturbed conditions and exhibit a strong dependence on geomagnetic activity. In this paper, we present the first comprehensive statistical study of SAPS using measurements from the U.S. midlatitude Super Dual Auroral Radar Network (SuperDARN) radars. The study period spans January 2011 to December 2014, and the results show that SuperDARN radars observe SAPS over a broad range of activity levels spanning storm time and nonstorm conditions. During relatively quiet conditions (-10 nT
Quantification of carbamylated albumin in serum based on capillary electrophoresis.
Delanghe, Sigurd; Moerman, Alena; Pletinck, Anneleen; Schepers, Eva; Glorieux, Griet; Van Biesen, Wim; Delanghe, Joris R; Speeckaert, Marijn M
2017-09-01
Protein carbamylation, a nonenzymatic posttranslational modification promoted during uremia, is linked to a poor prognosis. In the present study, carbamylation of serum albumin was assayed using the symmetry factor on a capillary electrophoresis instrument (Helena V8). The symmetry factor has been defined as the distance from the center line of the peak to the back slope, divided by the distance from the center line of the peak to the front slope, with all measurements made at 10% of the maximum peak height. Serum albumin, creatinine, and urea concentrations were assayed using routine methods, whereas uremic toxins were determined using HPLC. In vitro carbamylation induced a marked albumin peak asymmetry. Reference values for the albumin symmetry factor were 0.69-0.92. In kidney patients, albumin peak asymmetry corresponded to the chronic kidney disease stage (p < 0.0001). The symmetry factor correlated well with serum urea (r = -0.5595, p < 0.0001) and creatinine (r = -0.5986, p < 0.0001) concentrations. Several protein-bound uremic toxins showed a significant negative correlation with the symmetry factor. Morphology of the albumin fraction was not affected by presence of glycated albumin and protein-bound antibiotics. In conclusion, the presented method provides a simple, practical way for monitoring protein carbamylation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distinguishing magnetic blocking and surface spin-glass freezing in nickel ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Nadeem, K.; Krenn, H.; Traussing, T.; Letofsky-Papst, I.
2011-01-01
Nickel ferrite nanoparticles dispersed in SiO2 matrix have been synthesized by sol-gel method. Structural analysis has been performed by using x-ray diffraction and transmission electron microscopy. Magnetic properties have been investigated by using superconducting quantum interference device magnetometry. In addition to the average blocking temperature peak at TB=120 K measured by a zero field cooled temperature scan of the dc susceptibility, an additional hump near 15 K is observed. Temperature dependent out-of-phase ac susceptibility shows the same features: one broad peak at high temperature and a second narrow peak at low temperature. The high temperature peak corresponds to magnetic blocking of individual nanoparticles, while the low temperature peak is attributed to surface spin-glass freezing which becomes dominant for decreasing particle diameter. To prove the dynamics of the spin (dis)order in both regimes of freezing and blocking, the frequency dependent ac susceptibility is investigated under a biasing dc field. The frequency shift in the "frozen" low-temperature ac susceptibility peak is fitted to a dynamic scaling law with a critical exponent zv=7.5, which indicates a spin-glass phase. Exchange bias is turned on at low temperature which signifies the existence of a strong core-shell interaction. Aging and memory effects are further unique fingerprints of a spin-glass freezing on the surface of isolated magnetic nanoparticles.
Observation of Spin-Polarons in a strongly interacting Fermi liquid
NASA Astrophysics Data System (ADS)
Zwierlein, Martin
2009-03-01
We have observed spin-polarons in a highly imbalanced mixture of fermionic atoms using tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom ``dressed'' with a spin up cloud constitutes the spin-polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The narrow width signals a long lifetime of the spin-polaron, much longer than the collision rate with spin up atoms, as it must be for a proper quasi-particle. The peak position allows to directly measure the polaron energy. The broad pedestal at high energies reveals physics at short distances and is thus ``molecule-like'': It is exactly matched by the spin up spectra. The comparison with the area under the polaron peak allows to directly obtain the quasi-particle weight Z. We observe a smooth transition from polarons to molecules. At a critical interaction strength of 1/kFa = 0.7, the polaron peak vanishes and spin up and spin down spectra exactly match, signalling the formation of molecules. This is the same critical interaction strength found earlier to separate a normal Fermi mixture from a superfluid molecular Bose-Einstein condensate. The spin-polarons determine the low-temperature phase diagram of imbalanced Fermi mixtures. In principle, polarons can interact with each other and should, at low enough temperatures, form a superfluid of p-wave pairs. We will present a first indication for interactions between polarons.
Cosmic Ray Proton Anisotropies Measured at Voyager 1 in the Local Interstellar Medium
NASA Astrophysics Data System (ADS)
Decker, R. B.; Krimigis, S. M.; Hill, M. E.; Roelof, E. C.
2016-12-01
Voyager 1 entered the local interstellar medium in August of 2012 at helioradius 121.6 AU and heliolatitude N35°, and is now about 15 AU (≈12% the sun-heliopause distance at Voyager 1) upstream of the heliopause nose. Intensities of low-energy ions and electrons and of anomalous cosmic rays, all of which were routinely measured in the heliosheath, remain at background levels through July 2016. Galactic cosmic ray protons >211 MeV continue to show departures from isotropy, with broad (0.3-0.8 year) episodes of steady intensity depletions of ions gyrating nearly perpendicular to the magnetic field. Percentage intensity decreases during these depletions, relative to intensities of cosmic rays propagating along the field, peak at -7% on 2013.35, -3% on 2014.50, and -10% on 2016.00. In the last case, the peak anisotropy was preceded by an intensity decline lasting at least 9 months. The 2016.00 peak (-10%) anisotropy of was followed by a recovery back toward isotropy. But this recovery was interrupted in mid-April 2016, when the anisotropy had reached -2%, at which time the anisotropy began to again increase and continued to do so through at least July 2016, when the anisotropy reached -3%. We note that during its 4-year propagation through the local interstellar medium, Voyager 1 has encountered mainly anisotropic cosmic ray distributions. The longest period of isotropy occurred during a 4-month period in the latter half of 2014. Gurnett et al. [Ap. J., 809, 2015; Fall 2016 AGU (this meeting)] suggested that the broad periods when cosmic ray intensities evolve away from isotropy are precursor signatures produced by weak magnetic disturbances driven by solar activity. These disturbances propagate through the interstellar medium where they produce the bursts of electron plasma oscillations and peak cosmic ray anisotropies that are measured at Voyager 1 just before the disturbances cross the spacecraft.
THE UNUSUAL TEMPORAL AND SPECTRAL EVOLUTION OF THE TYPE IIn SUPERNOVA 2011ht
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roming, P. W. A.; Bayless, A. J.; Pritchard, T. A.
2012-06-01
We present very early UV to optical photometric and spectroscopic observations of the peculiar Type IIn supernova (SN) 2011ht in UGC 5460. The UV observations of the rise to peak are only the second ever recorded for a Type IIn SN and are by far the most complete. The SN, first classified as an SN impostor, slowly rose to a peak of M{sub V} {approx} -17 in {approx}55 days. In contrast to the {approx}2 mag increase in the v-band light curve from the first observation until peak, the UV flux increased by >7 mag. The optical spectra are dominated bymore » strong, Balmer emission with narrow peaks (FWHM {approx} 600 km s{sup -1}), very broad asymmetric wings (FWHM {approx} 4200 km s{sup -1}), and blueshifted absorption ({approx}300 km s{sup -1}) superposed on a strong blue continuum. The UV spectra are dominated by Fe II, Mg II, Si II, and Si III absorption lines broadened by {approx}1500 km s{sup -1}. Merged X-ray observations reveal a L{sub 0.2-10} = (1.0 {+-} 0.2) Multiplication-Sign 10{sup 39} erg s{sup -1}. Some properties of SN 2011ht are similar to SN impostors, while others are comparable to Type IIn SNe. Early spectra showed features typical of luminous blue variables at maximum and during giant eruptions. However, the broad emission profiles coupled with the strong UV flux have not been observed in previous SN impostors. The absolute magnitude and energetics ({approx}2.5 Multiplication-Sign 10{sup 49} erg in the first 112 days) are reminiscent of normal Type IIn SN, but the spectra are of a dense wind. We suggest that the mechanism for creating this unusual profile could be a shock interacting with a shell of material that was ejected a year before the discovery of the SN.« less
Brunschweiger, Andreas
2014-08-15
The third Annual Symposium of the RIKEN-Max Planck Joint Research Center for Systems Chemical Biology was held at Ringberg castle, May 21-24, 2014. At this meeting 45 scientists from Japan and Germany presented the latest results from their research spanning a broad range of topics in chemical biology and glycobiology.
The next frontier: stem cells and the Center for the Advancement of Science in Space.
Ratliff, Duane
2013-12-01
The Center for the Advancement of Science in Space (CASIS) manages the International Space Station U.S. National Laboratory, supporting space-based research that seeks to improve life on Earth. The National Laboratory is now open for use by the broad scientific community--and CASIS is the gateway to this powerful in-orbit research platform.
ERIC Educational Resources Information Center
National Archives and Records Service (GSA), Washington, DC. National Audiovisual Center.
The films and filmstrips listed in this catalog are Federal records, since they document the functions and operations of Federal agencies. This is the first edition of the sales catalog for the National Audiovisual Center. It contains films categorized under 18 broad headings: agriculture, automotive, aviation, business, education and culture,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darafsheh, A; Kassaee, A; Finlay, J
Purpose: The nature of the background visible light observed during fiber optic dosimetry of proton beams, whether it is due to Cherenkov radiation or not, has been debated in the literature recently. In this work, experimentally and by means of Monte Carlo simulations, we shed light on this problem and investigated the nature of the background visible light observed in fiber optics irradiated with proton beams. Methods: A bare silica fiber optics was embedded in tissue-mimicking phantoms and irradiated with clinical proton beams with energies of 100–225 MeV at Roberts Proton Therapy Center. Luminescence spectroscopy was performed by a CCD-coupledmore » spectrograph to analyze in detail the emission spectrum of the fiber tip across the visible range of 400–700 nm. Monte Carlo simulation was performed by using FLUKA Monte Carlo code to simulate Cherenkov light and ionizing radiation dose deposition in the fiber. Results: The experimental spectra of the irradiated silica fiber shows two distinct peaks at 450 and 650 nm, whose spectral shape is different from that of Cherenkov radiation. We believe that the nature of these peaks are connected to the point defects of silica including oxygen-deficiency center (ODC) and non-bridging oxygen hole center (NBOHC). Monte Carlo simulations confirmed the experimental observations that Cherenkov radiation cannot be solely responsible for such a signal. Conclusion: We showed that Cherenkov radiation is not the dominant visible signal observed in bare fiber optics irradiated with proton beams. We observed two distinct peaks at 450 and 650 nm whose nature is connected with the point defects of silica fiber including oxygen-deficiency center and non-bridging oxygen hole center.« less
Solar Radio Bursts, Proton Events and Geomagnetic Activity
1984-08-01
high speed type II, the second maximum is broad and peaks on the seventh day, and the Ap value remains high even on the tenth day. VI . Type II Burst...PROTON EVENTS w 20 (SPE) 0 SPE WITH TYPE Il a20- 20 z10- 0 15SPE WITH MICROWAVE BURST 10- 00 197071 72 7374 7576 77 7879 0Fig. 14 YEAR 30 1 1 SOLAR
Michael D. Ulyshen; J.L. Hanula
2009-01-01
Several recent studies have shown that many litter-dwelling arthropod and other invertebrate taxa (e.g., Isopoda, Chilopoda, Diplopoda, Araneae, Pseudo scorpionida, Coleoptera, and Gastropoda) are more numerous near dead wood than away from it in the broad-leaved forests of Europe (Jabin et al. 2004; Topp et al. 2006a, 2006b; Kappes et...
Michael D. Ulyshen; James L. Hanula
2009-01-01
litter-dwelling arthropod and other invertebrate taxa (e.g., Isopoda, Chilopoda, Diplopoda, Araneae, Pseudoscorpionida, Coleoptera, and Gastropoda) are more numerous near dead wood than away from it in the broad-leaved forests of Europe(Jabin et al. 2004; Topp et al. 2006a, 2006b; Kappes et al. 2006; Kappes 2006; Jabin et al. 2007) and...
Chang, Hsi-Tien
1987-09-28
A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.
NASA Astrophysics Data System (ADS)
Lerbret, A.; Affouard, F.; Bordat, P.; Hédoux, A.; Guinet, Y.; Descamps, M.
2009-12-01
The low-frequency (ω <400 cm-1) vibrational properties of lysozyme in aqueous solutions of three well-known protecting sugars, namely, trehalose, maltose, and sucrose, have been investigated by means of complementary Raman scattering experiments and molecular dynamics simulations. The comparison of the Raman susceptibility χ″(ω) of lysozyme/water and lysozyme/sugar/water solutions at a concentration of 40 wt % with the χ″ of dry lysozyme suggests that the protein dynamics mostly appears in the broad peak around 60-80 cm-1 that reflects the vibrations experienced by atoms within the cage formed by their neighbors, whereas the broad shoulder around 170 cm-1 mainly stems from the intermolecular O-H⋯O stretching vibrations of water. The addition of sugars essentially induces a significant high frequency shift and intensity reduction of this band that reveal a slowing down of water dynamics and a distortion of the tetrahedral hydrogen bond network of water, respectively. Furthermore, the lysozyme vibrational densities of states (VDOS) have been determined from simulations of lysozyme in 37-60 wt % disaccharide aqueous solutions. They exhibit an additional broad peak around 290 cm-1, in line with the VDOS of globular proteins obtained in neutron scattering experiments. The influence of sugars on the computed VDOS mostly appears on the first peak as a slight high-frequency shift and intensity reduction in the low-frequency range (ω <50 cm-1), which increase with the sugar concentration and with the exposition of protein residues to the solvent. These results suggest that sugars stiffen the environment experienced by lysozyme atoms, thereby counteracting the softening of protein vibrational modes upon denaturation, observed at high temperature in the Raman susceptibility of the lysozyme/water solution and in the computed VDOS of unfolded lysozyme in water. Finally, the Raman susceptibility of sugar/water solutions and the calculated VDOS of water in the different lysozyme solutions confirm that sugars induce a significant strengthening of the hydrogen bond network of water that may stabilize proteins at high temperatures.
Parietaria pollination duration: myth or fact?
Ariano, R; Cecchi, L; Voltolini, S; Quercia, O; Scopano, E; Ciprandi, G
2017-01-01
Background. Even though the Parietaria pollen season may be rather long, it is commonly thought that Parietaria pollen is a perennial allergen present along the whole year. Objective. This study aimed at investigating the duration of Parietaria pollen season during a 10-year period in Italy, analysing also the annual pollen quantity and the differences among geographical areas. Methods. Pollen count was assessed daily for 10 years. Globally, ten Italian centers measured Parietaria pollen count. Start date, peak date, end date, duration (days), peak value, and seasonal pollen index were evaluated in each center. Results. Ten-year Parietaria pollen count demonstrates that the pollen season usually lasted for 6-7 months in Italy. There are important differences among centres, mainly attributable to geoclimatic factors. Conclusion. This study demonstrates that Parietaria pollen season lasts about 6-7 months with two peaks (mainly in spring and lower in autumn) in Italy with important geographical variations. This information may have clinical relevance in managing patients allergic to Parietaria.
Gamma Ray Pulsars: Multiwavelength Observations
NASA Technical Reports Server (NTRS)
Thompson, David J.
2004-01-01
High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.
K-shell photoabsorption coefficients of O2, CO2, CO, and N2O
NASA Technical Reports Server (NTRS)
Barrus, D. M.; Blake, R. L.; Burek, A. J.; Chambers, K. C.; Pregenzer, A. L.
1979-01-01
The total photoabsorption coefficient has been measured from 500 to 600 eV around the K edge of oxygen in gases O2, CO2, CO, and N2O by means of a gold continuum source and crystal spectrometer with better than 1-eV resolution. The cross sections are dominated by discrete molecular-orbital transitions below the K-edge energy. A few Rydberg transitions were barely detectable. Broad shape resonances appear at or above the K edge. Additional broad, weak features above the K edge possibly arise from shake up. Quantitative results are given that have about 10% accuracy except on the very strong peaks. All the measured features are discussed in relation to other related measurements and theory.
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry
2009-01-01
The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.
NASA Technical Reports Server (NTRS)
Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)
2002-01-01
This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.
How active was solar cycle 22?
NASA Technical Reports Server (NTRS)
Hoegy, W. R.; Pesnell, W. D.; Woods, T. N.; Rottman, G. J.
1993-01-01
Solar EUV observations from the Langmuir probe on Pioneer Venus Orbiter suggest that at EUV wavelengths solar cycle 22 was more active than solar cycle 21. The Langmuir probe, acting as a photodiode, measured the integrated solar EUV flux over a 13 1/2 year period from January 1979 to June 1992, the longest continuous solar EUV measurement. The Ipe EUV flux correlated very well with the SME measurement of L-alpha during the lifetime of SME and with the UARS SOLSTICE L-alpha from October 1991 to June 1992 when the Ipe measurement ceased. Starting with the peak of solar cycle 21, there was good general agreement of Ipe EUV with the 10.7 cm, Ca K, and He 10830 solar indices, until the onset of solar cycle 22. From 1989 to the start of 1992, the 10.7 cm flux exhibited a broad maximum consisting of two peaks of nearly equal magnitude, whereas Ipe EUV exhibited a strong increase during this time period making the second peak significantly higher than the first. The only solar index that exhibits the same increase in solar activity as Ipe EUV and L-alpha during the cycle 22 peak is the total magnetic flux. The case for high activity during this peak is also supported by the presence of very high solar flare intensity.
X-ray scattering signatures of β-thalassemia
NASA Astrophysics Data System (ADS)
Desouky, Omar S.; Elshemey, Wael M.; Selim, Nabila S.
2009-08-01
X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm -1, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; β-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of β-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm -1, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.
Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Echániz, T.; Pérez-Sáez, R. B., E-mail: raul.perez@ehu.es; Tello, M. J.
When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ε{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ε{sub peak} increases with the emission angle but its position, λ{sub peak}, is constant. Copper directional emissivity measurements as well asmore » emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p = 1.« less
Dynamic balance control in elders: gait initiation assessment as a screening tool
NASA Technical Reports Server (NTRS)
Chang, H.; Krebs, D. E.; Wall, C. C. (Principal Investigator)
1999-01-01
OBJECTIVE: To determine whether measurements of center of gravity-center of pressure separation (CG-CP moment arm) during gait initiation can differentiate healthy from disabled subjects with sufficient specificity and sensitivity to be useful as a screening test for dynamic balance in elderly patients. SUBJECTS: Three groups of elderly subjects (age, 74.97+/-6.56 yrs): healthy elders (HE, n = 21), disabled elders (DE, n = 20), and elders with vestibular hypofunction (VH, n = 18). DESIGN: Cross-sectional, intact-groups research design. Peak CG-CP moment arm measures how far the subject will tolerate the whole-body CG to deviate from the ground reaction force's CP; it represents dynamic balance control. Screening test cutoff points at 16 to 18 cm peak CG-CP moment arm predicted group membership. RESULTS: The magnitude of peak CG-CP moment arm was significantly greater in HE than in DE and VH subjects (p<.01) and was not different between the DE and VH groups. The peak CG-CP moment arm occurred at the end of single stance phase in all groups. As a screening test, the peak moment arm has greater than 50% sensitivity and specificity to discriminate the HE group from the DE and VH groups with peak CG-CP moment arm cutoff points between 16 and 18 cm. CONCLUSIONS: Examining dynamic balance through the use of the CG-CP moment arm during single stance in gait initiation discriminates between nondisabled and disabled older persons and warrants further investigation as a potential tool to identify people with balance dysfunction.
Baron, D.; Negrini, R.M.; Golob, E.M.; Miller, D.; Sarna-Wojcicki, A.; Fleck, R.J.; Hacker, B.; Erendi, A.
2008-01-01
The Kern River ash (KRA) bed is a prominent tephra layer separating the K and G sands in the upper part of the Kern River Formation, a major petroleum-bearing formation in the southern San Joaquin Valley (SSJV) of California. The minimum age of the Kern River Formation was based on the tentative major-element correlation with the Bishop Tuff, a 0.759??0.002 Ma volcanic tephra layer erupted from the Long Valley Caldera. We report a 6.12??0.05 Ma 40Ar/39Ar date for the KRA, updated major-element correlations, trace-element correlations of the KRA and geochemically similar tephra, and a 6.0??0.2 Ma 40Ar/39Ar age for a tephra layer from the Volcano Hills/Silver Peak eruptive center in Nevada. Both major and trace-element correlations show that despite the similarity to the Bishop Tuff, the KRA correlates most closely with tephra from the Volcano Hills/Silver Peak eruptive center. This geochemical correlation is supported by the radiometric dates which are consistent with a correlation of the KRA to the Volcano Hills/Silver Peak center but not to the Bishop Tuff. The 6.12??0.05 Ma age for the KRA and the 6.0??0.2 Ma age for the tephra layer from the Volcano Hills/Silver Peak eruptive center suggest that the upper age of the Kern River Formation is over 5 Ma older than previously thought. Re-interpreted stratigraphy of the SSJV based on the new, significantly older age for the Kern River Formation opens up new opportunities for petroleum exploration in the SSJV and places better constraints on the tectonostratigraphic development of the SSJV. ?? 2007 Elsevier Ltd and INQUA.
NASA Astrophysics Data System (ADS)
Abdelghany, A. M.; ElBatal, H. A.; EzzElDin, F. M.
2017-11-01
Optical, FTIR, ESR investigations of prepared undoped barium metaphosphate glass and other samples with the same basic composition containing varying V2O5 contents (0.5, 1, 2, 3%) were carried out before and after gamma irradiation. The undoped glass shows a strong UV optical absorption which is correlated with unavoidable contaminated trace iron impurities. The V2O5-doped samples reveal two additional strong broad visible bands centered at 450 and 680 nm. Such extra peculiar and strong two broad visible bands are related to both tetravalent and trivalent vanadium ions in measurable percent due to the reducing behavior of barium phosphate host glass. Gamma irradiation on the undoped glass results in the generation of collective induced UV and visible bands which are originating from positive hole and electron centers. Glasses containing V2O5 reveal upon gamma irradiation induced defects in the UV as the undoped sample together with distinct splitting within the first broad visible band while the second broad band remains unchanged. This behavior is related to limited photoionization upon the addition of V2O5 indicating specific shielding effect of the vanadium ions towards gamma irradiation. It was noticed that irradiation causes no distinct variations in the FTIR spectra due to the presence of 50% of heavy metal oxide (BaO) and some shielding effect of vanadium ions.
Bellum, John Curtis; Winstone, Trevor; Lamaignere, Laurent; ...
2016-08-25
We designed an optical coating based on TiO 2/SiO 2 layer pairs for broad bandwidth high reflection (BBHR) at 45-deg angle of incidence (AOI), P polarization of femtosecond (fs) laser pulses of 900-nm center wavelength, and produced the coatings in Sandia’s large optics coater by reactive, ion-assisted e-beam evaporation. This paper reports on laser-induced damage threshold (LIDT) tests of these coatings. The broad HR bands of BBHR coatings pose challenges to LIDT tests. An ideal test would be in a vacuum environment appropriate to a high energy, fs-pulse, petawatt-class laser, with pulses identical to its fs pulses. Short of thismore » would be tests over portions of the HR band using nanosecond or sub-picosecond pulses produced by tunable lasers. Such tests could, e.g., sample 10-nm-wide wavelength intervals with center wavelengths tunable over the broad HR band. Alternatively, the coating’s HR band could be adjusted by means of wavelength shifts due to changing the AOI of the LIDT tests or due to the coating absorbing moisture under ambient conditions. In conclusion, we had LIDT tests performed on the BBHR coatings at selected AOIs to gain insight into their laser damage properties and analyze how the results of the different LIDT tests compare.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellum, John Curtis; Winstone, Trevor; Lamaignere, Laurent
We designed an optical coating based on TiO 2/SiO 2 layer pairs for broad bandwidth high reflection (BBHR) at 45-deg angle of incidence (AOI), P polarization of femtosecond (fs) laser pulses of 900-nm center wavelength, and produced the coatings in Sandia’s large optics coater by reactive, ion-assisted e-beam evaporation. This paper reports on laser-induced damage threshold (LIDT) tests of these coatings. The broad HR bands of BBHR coatings pose challenges to LIDT tests. An ideal test would be in a vacuum environment appropriate to a high energy, fs-pulse, petawatt-class laser, with pulses identical to its fs pulses. Short of thismore » would be tests over portions of the HR band using nanosecond or sub-picosecond pulses produced by tunable lasers. Such tests could, e.g., sample 10-nm-wide wavelength intervals with center wavelengths tunable over the broad HR band. Alternatively, the coating’s HR band could be adjusted by means of wavelength shifts due to changing the AOI of the LIDT tests or due to the coating absorbing moisture under ambient conditions. In conclusion, we had LIDT tests performed on the BBHR coatings at selected AOIs to gain insight into their laser damage properties and analyze how the results of the different LIDT tests compare.« less
Hurricane Mitch: Peak Discharge for Selected River Reachesin Honduras
Smith, Mark E.; Phillips, Jeffrey V.; Spahr, Norman E.
2002-01-01
Hurricane Mitch began as a tropical depression in the Caribbean Sea on 22 October 1998. By 26 October, Mitch had strengthened to a Category 5 storm as defined by the Saffir-Simpson Hurricane Scale (National Climate Data Center, 1999a), and on 27 October was threatening the northern coast of Honduras (fig. 1). After making landfall 2 days later (29 October), the storm drifted south and west across Honduras, wreaking destruction throughout the country before reaching the Guatemalan border on 31 October. According to the National Climate Data Center of the National Oceanic and Atmospheric Administration (National Climate Data Center, 1999b), Hurricane Mitch ranks among the five strongest storms on record in the Atlantic Basin in terms of its sustained winds, barometric pressure, and duration. Hurricane Mitch also was one of the worst Atlantic storms in terms of loss of life and property. The regionwide death toll was estimated to be more than 9,000; thousands of people were reported missing. Economic losses in the region were more than $7.5 billion (U.S. Agency for International Development, 1999). Honduras suffered the most widespread devastation during the storm. More than 5,000 deaths, and economic losses of more than $4 billion, were reported by the Government of Honduras. Honduran officials estimated that Hurricane Mitch destroyed 50 years of economic development. In addition to the human and economic losses, intense flooding and landslides scarred the Honduran landscape - hydrologic and geomorphologic processes throughout the country likely will be affected for many years. As part of the U.S. Government's response to the disaster, the U.S. Geological Survey (USGS) conducted post-flood measurements of peak discharge at 16 river sites throughout Honduras (fig. 2). Such measurements, termed 'indirect' measurements, are used to determine peak flows when direct measurements (using current meters or dye studies, for example) cannot be made. Indirect measurements of peak discharge are based on post-flood surveys of the river channel (observed high-water marks, cross sections, and hydraulic properties) and model computation of peak discharge. Determination of the flood peaks associated with Hurricane Mitch will help scientists understand the magnitude of this devastating hurricane. Peak-discharge information also is critical for the proper design of hydraulic structures (such as bridges and levees), delineation of theoretical flood boundaries, and development of stage-discharge relations at streamflow-monitoring sites.
The Nature of Active Galactic Nuclei with Velocity Offset Emission Lines
NASA Astrophysics Data System (ADS)
Müller-Sánchez, F.; Comerford, J.; Stern, D.; Harrison, F. A.
2016-10-01
We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ˜0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offset of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Paα emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Paα emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1-0.″4 (0.1-0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Erhart-Hledik, Jennifer C; Asay, Jessica L; Clancy, Caitlin; Chu, Constance R; Andriacchi, Thomas P
2017-10-01
This study aimed to determine if active feedback gait retraining to produce a medial weight transfer at the foot significantly reduces the knee adduction moment in subjects with medial compartment knee osteoarthritis. Secondarily, changes in peak knee flexion moment, frontal plane knee and ankle kinematics, and center of pressure were investigated. Ten individuals with medial compartment knee osteoarthritis (9 males; age: 65.3 ± 9.8 years; BMI: 27.8 ± 3.0 kg/m 2 ) were tested at self-selected normal and fast speeds in two conditions: Intervention, with an active feedback device attached to the shoe of their more affected leg, and control, with the device de-activated. Kinematics and kinetics were assessed using a motion capture system and force plate. The first peak, second peak, and impulse of the knee adduction moment were significantly reduced by 6.0%, 13.9%, and 9.2%, respectively, at normal speed, with reductions of 10.7% and 8.6% in first peak and impulse at fast speed, respectively, with the active feedback system, with no significant effect on the peak knee flexion moment. Significant reductions in peak varus knee angle and medialized center of pressure in the first half of stance were observed, with reductions in peak varus knee angle associated with reductions in the knee adduction moment. This study demonstrated that active feedback to produce a medial weight-bearing shift at the foot reduces the peaks and impulse of the knee adduction moment in patients with medial compartment knee osteoarthritis. Future research should determine the long-term effect of the active feedback intervention on joint loading, pain, and function. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2251-2259, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Residential load management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhr, C.W.
1986-03-01
The MAX load management system marketed by the UHR Corporation is described. The system completely replaces conventional heating, cooling, and hot water equipment. It is designed to reduce significantly the home's peak demand during the electric utility's system-wide peak load periods while at the same time maintain the homeowner's comfort. The integration of microprocessor, thermal storage, and heat pump technologies allows for broad flexibility in terms of tailoring the system to a specific electric utility's needs. Twelve pilot systems installed in Northern Virginia outside of Washington, DC have been operational since early 1985. The test results to date have confirmedmore » both the system's load management capability and its comfort improvement characteristics. The fundamental characteristics and hardware for the system are described. 9 figures.« less
Raman spectra of bilayer graphene covered with Poly(methyl methacrylate) thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia Minggang; Center on Experimental Physics, School of Science, Xi'an Jiaotong University, 710049; Su Zhidan
The Raman spectra of bilayer graphene covered with poly(methyl methacrylate) (PMMA) were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMAmore » in the strain engineering of graphene nanodevices.« less
Hammar, L; Hjertén, S
1980-04-01
Histidine decarboxylase from a murine mastocytoma has been submitted to different separation methods. In these experiments the activity peaks were often very broad. This heterogeneity of the enzyme is traced back to the formation of aggregates, differing in apparent molecular weight by a multiple of about 55,000, as a result of oxidation. Under non-oxidative conditions the histidine decarboxylase activity is confined to one peak in both molecular sieve chromatography, hydrophic interaction chromatography, chromatography on hydroxy apatite, pore gradient electrophoresis and electrofocusing. The molecular weight of the enzyme is estimated to be 110,000 by pore gradient electrophoresis (alkylated enzyme). The isoelectric point is pH 4.9--5.0, determined by electrofocusing under reducing conditions.
NASA Technical Reports Server (NTRS)
Vallejo, J.J.; Hejduk, M.D.; Stamey, J. D.
2015-01-01
Satellite conjunction risk typically evaluated through the probability of collision (Pc). Considers both conjunction geometry and uncertainties in both state estimates. Conjunction events initially discovered through Joint Space Operations Center (JSpOC) screenings, usually seven days before Time of Closest Approach (TCA). However, JSpOC continues to track objects and issue conjunction updates. Changes in state estimate and reduced propagation time cause Pc to change as event develops. These changes a combination of potentially predictable development and unpredictable changes in state estimate covariance. Operationally useful datum: the peak Pc. If it can reasonably be inferred that the peak Pc value has passed, then risk assessment can be conducted against this peak value. If this value is below remediation level, then event intensity can be relaxed. Can the peak Pc location be reasonably predicted?
The Dusty Dynamics Within a Regional Mars Dust Storm
NASA Astrophysics Data System (ADS)
Rafkin, Scot C. R.; Pla-Garcia, Jorge; Leung, Cecilia
2017-10-01
There have never been in situ observations at or near the active lifting center of a regional dust storm on Mars. In the absence of in situ data, it is common to employ numerical models to provide guidance on the physical processes and conditions operating in an unobserved location or weather system. Consequently, the Mars Regional Atmospheric Modeling System (MRAMS) is employed to study the structure and dynamics of a simulated large regional storm using a fully interactive dust cycle. The simulations provide the first ever glimpse of the conditions that might occur inside one of these storms.The simulated storm shows extremely complex structure with narrow lifting centers and a variety of deep dust transport circulations. The active lifting centers are broadly into a mesoscale system in much the same way that thunderstorms on Earth can organize into mesoscale convective structures. In many of the active dusty plumes, the mixing ratio of dust peaks near the surface and drops off with height. Once lifted, the largest dust tends to sediment out while the smaller dust continues to be advected upward by the plume. This size-sorting process combined with entrainment of less dusty air tends to drive the mixing ratio profile to a maximum near the surface. In dusty plumes near the surface, the air temperature is as much as 20K colder than nearby areas. This is due to solar absorption higher in the dust column limiting direct heating deeper into the atmosphere. Overall, within the plume, there is an inversion, and although the top of the plume is warmer than below, it is near neutral buoyancy compared to the less dusty air on either side. Apparently, adiabatic cooling nearly offsets the expected positive heating perturbation at the top of the dusty plume. A very strong low level just forms in the vicinity of the storm, accompanied by system-wide negative pressure deficits and circulation patterns strongly suggestive of the wind-enhanced interaction of radiation and dust (WEIRD) feedback mechanism.
The Function of Neuroendocrine Cells in Prostate Cancer
2015-06-20
Comprehensive Cancer Center and 4Broad Center for Regenerative Medicine and Stem Cell Biology, David Geffen School of Medicine at UCLA, 10833 Le Conte... Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine , Los Angeles, California. 2Department of Urology, The First...progress in prostate cancer. Soochou University Annual Translational Medicine Meeting, Suzhou, China, November 2013 21. Prostate Cancer Stem Cells
NASA Technical Reports Server (NTRS)
1998-01-01
A Space Act Agreement between Kennedy Space Center and Surtreat Southeast, Inc., resulted in a new treatment that keeps buildings from corroding away over time. Structural corrosion is a multi-billion dollar problem in the United States. The agreement merged Kennedy Space Center's research into electrical treatments of structural corrosion with chemical processes developed by Surtreat. Combining NASA and Surtreat technologies has resulted in a unique process with broad corrosion-control applications.
OWL: A code for the two-center shell model with spherical Woods-Saxon potentials
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis
2018-03-01
A Fortran-90 code for solving the two-center nuclear shell model problem is presented. The model is based on two spherical Woods-Saxon potentials and the potential separable expansion method. It describes the single-particle motion in low-energy nuclear collisions, and is useful for characterizing a broad range of phenomena from fusion to nuclear molecular structures.
2017-01-04
An Anhinga perches on a branch in an area of underbrush at NASA's Kennedy Space Center in Florida. The Anhinga is also known as a Water-Turkey for its swimming habits and broad tail. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.
Broad Low-Intensity Wings in the Emission-Line Profiles of Four Wolf-Rayet Galaxies
NASA Astrophysics Data System (ADS)
Méndez, David I.; Esteban, César
1997-10-01
High-resolution spectroscopic observations have been obtained for the Wolf-Rayet galaxies He 2-10, II Zw 40, POX 4, and Tol 35. Several subregions have been selected in each slit position in order to investigate possible spatial variations in the line profiles, radial velocities, and ionization conditions of the gas. The most remarkable feature of the spectra is the presence of asymmetric broad low-intensity wings in the profiles of the brightest emission lines. These spectral features are detected farther out from the star-forming knots, showing linear dimensions between 300 pc and 4.1 kpc. The maximum expansion velocity measured for this gas is between 120 and 340 km s-1 and appears to be quite constant along the slit for all the objects. Additional general properties of the spectra are (1) the quoted emission-line ratios are similar in the narrow and broad components, (2) no systematic differences of the behavior of the broad and narrow components have been found along the major and minor axis of the galaxies, and (3) the spatial distribution of the ionized gas is peaked centrally. Different mechanisms capable of producing the observed broad spectral features are discussed: cloud-cloud collisions in virialized gas, ``academic'' superbubbles, champagne flows, and superbubble blowout. It is concluded that superbubble blowout expanding over a cloudy medium can explain the observational properties in a reasonable manner.
Ultra-broad gain quantum cascade lasers tunable from 6.5 to 10.4 μm.
Xie, Feng; Caneau, C; Leblanc, H; Ho, M-T; Zah, C
2015-09-01
We present a quantum cascade laser structure with an ultra-broad gain profile that covers the wavelength range from 6.5 to 10.4 μm. In a grating-tuned external cavity, we demonstrated continuous tuning from 1027 cm(-1) to 1492 cm(-1) with this broad gain laser chip. We also fabricated distributed feedback quantum cascade laser arrays with this active region design and varied grating periods. We demonstrated single wavelength lasing from 962 (10.4) to 1542 cm(-1) (6.5 μm). The frequency coverage (580 cm(-1)) is about 46% of center frequency.
Lewis Research Center: Commercialization Success Stories
NASA Technical Reports Server (NTRS)
Heyward, Ann O.
1996-01-01
The NASA Lewis Research Center, located in Cleveland, Ohio, has a portfolio of research and technology capabilities and facilities that afford opportunities for productive partnerships with industry in a broad range of industry sectors. In response to the President's agenda in the area of technology for economic growth (Clinton/Gore 1993), the National Performance Review (1993), NASA's Agenda for Change (1994), and the needs of its customers, NASA Lewis Research Center has sought and achieved significant successes in technology transfer and commercialization. This paper discusses a sampling of Lewis Research Center's successes in this area, and lessons learned that Lewis Research Center is applying in pursuit of continuous improvement and excellence in technology transfer and commercialization.
Identification of endogenous flurophores in the layered retina
NASA Astrophysics Data System (ADS)
Xu, Gaixia; Chen, Danni; Sun, Yiwen; Qu, Junle; Lin, Ziyang; Ding, Zhihua; Niu, Hanben
2007-05-01
In this paper, we measured and analyzed the characteristic of endogenous fluorophores in porcine layered retina by using advanced fluorescence spectroscopy and microscopy imaging technology. It was found that there were obvious contrasts corresponding to the different layers of retina, which may be important for fundus disease diagnosis. The retinal pigment epithelium cells exhibited strong autofluorescence with as emission peak of 600+/-10nm when excited with 860-nm light. The emission peak of photoreceptors was at 652+/-5nm, and the emission peak of retinal vessels layer was weak and at 640~700nm, when excited with 488-nm light. Autofluorescence images of three layers of retina were obtained using the same setup. We concluded that the main endogenous fluorophore in PRE was lipofuscin and that in retinal vessels was porphyrin. What's more, the FMHW (full width at half. maximum) of retinal fluorescence spectrum was broad, which suggested that there wasn't only one endogenous fluorophores of tissues excited.
Fast luminous blue transients from newborn black holes
NASA Astrophysics Data System (ADS)
Kashiyama, Kazumi; Quataert, Eliot
2015-08-01
Newborn black holes in collapsing massive stars can be accompanied by a fallback disc. The accretion rate is typically super-Eddington and strong disc outflows are expected. Such outflows could be directly observed in some failed explosions of compact (blue supergiants or Wolf-Rayet stars) progenitors, and may be more common than long-duration gamma-ray bursts. Using an analytical model, we show that the fallback disc outflows produce blue UV-optical transients with a peak bolometric luminosity of ˜ 1042-43 erg s- 1 (peak R-band absolute AB magnitudes of -16 to -18) and an emission duration of ˜ a few to ˜10 d. The spectra are likely dominated intermediate mass elements, but will lack much radioactive nuclei and iron-group elements. The above properties are broadly consistent with some of the rapid blue transients detected by Panoramic Survey Telescope & Rapid Response System and Palomar Transient Factory. This scenario can be distinguished from alternative models using radio observations within a few years after the optical peak.
Chernov, V; Paz-Moreno, F; Piters, T M; Barboza-Flores, M
2006-01-01
The paper presents the first results of an investigation on optical absorption (OA), thermally and infrared stimulated luminescence (TL and IRSL) of the Pinacate plagioclase (labradorite). The OA spectra reveal two bands with maxima at 1.0 and 3.2 eV connected with absorption of the Fe3+ and Fe2+ and IR absorption at wavelengths longer than 2700 nm. The ultraviolet absorption varies exponentially with the photon energy following the 'vitreous' empirical Urbach rule indicating exponential distribution of localised states in the forbidden band. The natural TL is peaked at 700 K. Laboratory beta irradiation creates a very broad TL peak with maximum at 430 K. The change of the 430 K TL peak shape under the thermal cleaning procedure and dark storage after irradiation reveals a monotonous increasing of the activation energy that can be explained by the exponential distribution of traps. The IRSL response is weak and exhibits a typical decay behaviour.
Raman-scattered O VI λ1032 and He II λ1025 and Bipolar Outflow in the Symbiotic Star V455 Sco
NASA Astrophysics Data System (ADS)
Heo, Jeong-Eun; Angeloni, Rodolfo; Di Mille, Francesco; Palma, Tali; Chang, Seok-Jun; Hong, Chae-Lin; Lee, Hee-Won
2016-07-01
Raman-scattering by atomic hydrogen is a unique spectroscopic process that may probe the mass transfer and mass loss phenomena in symbiotic stars(SSs). In the optical high- resolution spectra of the S-type SS V455 Sco, we note the presence of two Raman-scattered features, one at around 6825 Å with a triple-peak profile formed from Raman-scattering of O VI λ1032 and the other Raman-scattered He II λ1025 at around 6545 Å. Adopting an accretion flow model with additional contribution from a collimated bipolar outflow, we propose that the blue and central peaks are contributed from the accretion flow and the bipolar flow is responsible for the remaining red peak. With the absence of [N II] λ6548, the Raman-scattered He II λ1025 at around 6545 Å is immersed in the broad Ha wings that appear to be formed by Raman-scattering of far-UV continuum near Lyman series.
3D near-surface soil response from H/V ambient-noise ratios
Wollery, E.W.; Street, R.
2002-01-01
The applicability of the horizontal-to-vertical (H/V) ambient-noise spectral ratio for characterizing earthquake site effects caused by nearsurface topography and velocity structures was evaluated at sites underlain by thick (i.e. >100 m) sediment deposits near the southern-end of the New Madrid seismic zone in the central United States. Three-component ambient-noise and velocity models derived from seismic (shearwave) refraction/reflection surveys showed that a relatively horizontal, sharp shear-wave velocity interface in the soil column resulted in an H/V spectral ratio with a single well-defined peak. Observations at sites with more than one sharp shear-wave velocity contrast and horizontally arranged soil layers resulted in at least two well-defined H/V spectral ratio peaks. Furthermore, at sites where there were sharp shear-wave velocity contrasts in nonhorizontal, near-surface soil layers, the H/V spectra exhibited a broad-bandwidth, relatively low amplitude signal instead of a single well-defined peak. ?? 2002 Elsevier Science Ltd. All rights reserved.
140 W peak power laser system tunable in the LWIR.
Gutty, François; Grisard, Arnaud; Larat, Christian; Papillon, Dominique; Schwarz, Muriel; Gerard, Bruno; Ostendorf, Ralf; Rattunde, Marcel; Wagner, Joachim; Lallier, Eric
2017-08-07
We present a high peak power rapidly tunable laser system in the long-wave infrared comprising an external-cavity quantum cascade laser (EC-QCL) broadly tunable from 8 to 10 µm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs) of fixed grating period. The nonlinear crystal is pumped by a pulsed fiber laser system to achieve efficient amplification in the OPA. Quasi phase-matching remains satisfied when the EC-QCL wavelength is swept from 8 to 10 µm with a crystal of fixed grating period through tuning the pump laser source around 2 µm. The OPA demonstrates parametric amplification from 8 µm to 10 µm and achieves output peak powers up to 140 W with spectral linewidths below 3.5 cm -1 . The beam profile quality (M 2 ) remains below 3.4 in both horizontal and vertical directions. Compared to the EC-QCL, the linewidth broadening is attributed to a coupling with the OPA.
Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, P.; Rustagi, K. C.; Vasa, P.
2015-05-15
Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electronmore » microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.« less
Extending semi-numeric reionization models to the first stars and galaxies
NASA Astrophysics Data System (ADS)
Koh, Daegene; Wise, John H.
2018-03-01
Semi-numeric methods have made it possible to efficiently model the epoch of reionization (EoR). While most implementations involve a reduction to a simple three-parameter model, we introduce a new mass-dependent ionizing efficiency parameter that folds in physical parameters that are constrained by the latest numerical simulations. This new parametrization enables the effective modelling of a broad range of host halo masses containing ionizing sources, extending from the smallest Population III host haloes with M ˜ 106 M⊙, which are often ignored, to the rarest cosmic peaks with M ˜ 1012 M⊙ during EoR. We compare the resulting ionizing histories with a typical three-parameter model and also compare with the latest constraints from the Planck mission. Our model results in an optical depth due to Thomson scattering, τe = 0.057, that is consistent with Planck. The largest difference in our model is shown in the resulting bubble size distributions that peak at lower characteristic sizes and are broadened. We also consider the uncertainties of the various physical parameters, and comparing the resulting ionizing histories broadly disfavours a small contribution from galaxies. The smallest haloes cease a meaningful contribution to the ionizing photon budget after z = 10, implying that they play a role in determining the start of EoR and little else.
Complex Forms of Soil Organic Phosphorus-A Major Component of Soil Phosphorus.
McLaren, Timothy I; Smernik, Ronald J; McLaughlin, Mike J; McBeath, Therese M; Kirby, Jason K; Simpson, Richard J; Guppy, Christopher N; Doolette, Ashlea L; Richardson, Alan E
2015-11-17
Phosphorus (P) is an essential element for life, an innate constituent of soil organic matter, and a major anthropogenic input to terrestrial ecosystems. The supply of P to living organisms is strongly dependent on the dynamics of soil organic P. However, fluxes of P through soil organic matter remain unclear because only a minority (typically <30%) of soil organic P has been identified as recognizable biomolecules of low molecular weight (e.g., inositol hexakisphosphates). Here, we use (31)P nuclear magnetic resonance spectroscopy to determine the speciation of organic P in soil extracts fractionated into two molecular weight ranges. Speciation of organic P in the high molecular weight fraction (>10 kDa) was markedly different to that of the low molecular weight fraction (<10 kDa). The former was dominated by a broad peak, which is consistent with P bound by phosphomonoester linkages of supra-/macro-molecular structures, whereas the latter contained all of the sharp peaks that were present in unfractionated extracts, along with some broad signal. Overall, phosphomonoesters in supra-/macro-molecular structures were found to account for the majority (61% to 73%) of soil organic P across the five diverse soils. These soil phosphomonoesters will need to be integrated within current models of the inorganic-organic P cycle of soil-plant terrestrial ecosystems.
DOT National Transportation Integrated Search
2005-08-01
As the most effective strategy for improving safety is to prevent accidents from occurring at all, the Volpe Center applies a broad range of research techniques and capabilities to determine causes and consequences of accidents and to identify, asses...
French Alps, Mont Blanc, French/Italian Border
1992-04-02
In this southeast looking view, Mont Blanc, on the French/Italian border, (48.0N, 4.5E) the highest mountain peak in all of Europe, is just below and right of center (below the end of the prominent valley of the Aosta River, in the center of the photo. The rivers flow out of the Alps into Italy toward Turin. Chamonix, the famous resort town and center of Alpine mountain climbing, lies in the valley just below Mont Blanc.
Far-UV properties of the nuclear region of M31
NASA Technical Reports Server (NTRS)
King, Ivan R.; Stanford, S. Adam; Crane, Philippe
1995-01-01
Comparison of the Hubble Space Telescope (HST) far-UV and visible images of the nucleus of M31 deepens the mystery of the two brightness peaks recently discovered by Lauer et al. At 175 mm the brightest point is the optically fainter peak (P2) that is close to the dynamical center. The very center of P2 has a UV upturn that is much greater than that of the bulge light, while the UV upturn of the optically brighter but off-center P1 is very similar to that of its surroundings. The excess FUV radiation form P2 is closely confined to its center and has a total flux density of 3 micro-joules, a level that is less likely to come from stellar radiation than from a high-frequency extension of the radio source at the center of M31. A surrounding region of 1.8 pc radius has a somewhat smaller Uv upturn than the rest of the bulge, but there is some lingering possibility that this depression might be an artifact of our correction of the spherical aberration. Our improvement decomposition of the V image removes the need to postulate a dust lane near the center. We confirm that P1 is very compact, and we derive a luminosity for it similar to that found by Lauer et al. The implications of all of this are briefly discussed.
A molecular gas-rich GRB host galaxy at the peak of cosmic star formation
NASA Astrophysics Data System (ADS)
Arabsalmani, M.; Le Floc'h, E.; Dannerbauer, H.; Feruglio, C.; Daddi, E.; Ciesla, L.; Charmandaris, V.; Japelj, J.; Vergani, S. D.; Duc, P.-A.; Basa, S.; Bournaud, F.; Elbaz, D.
2018-05-01
We report the detection of the CO(3-2) emission line from the host galaxy of gamma-ray burst (GRB) 080207 at z = 2.086. This is the first detection of molecular gas in emission from a GRB host galaxy beyond redshift 1. We find this galaxy to be rich in molecular gas with a mass of 1.1 × 10^{11} M_{{\\odot }} assuming αCO = 4.36 M_{{\\odot }} (K km s^{-1} pc^2)^{-1}. The molecular gas mass fraction of the galaxy is ˜0.5, typical of star-forming galaxies (SFGs) with similar stellar masses and redshifts. With an SFR_{FIR} of 260 M_{{\\odot }} yr^{-1}, we measure a molecular gas depletion time-scale of 0.43 Gyr, near the peak of the depletion time-scale distribution of SFGs at similar redshifts. Our findings are therefore in contradiction with the proposed molecular gas deficiency in GRB host galaxies. We argue that the reported molecular gas deficiency for GRB hosts could be the artefact of improper comparisons or neglecting the effect of the typical low metallicities of GRB hosts on the CO-to-molecular-gas conversion factor. We also compare the kinematics of the CO(3-2) emission line to that of the H α emission line from the host galaxy. We find the H α emission to have contributions from two separate components, a narrow and a broad one. The narrow component matches the CO emission well in velocity space. The broad component, with a full width at half-maximum of ˜1100 km s^{-1}, is separated by +390 km s^{-1} in velocity space from the narrow component. We speculate this broad component to be associated with a powerful outflow in the host galaxy or in an interacting system.
Sharpening of the 6.8 nm peak in an Nd:YAG laser produced Gd plasma by using a pre-formed plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yong; Song, Xiaolin; Xie, Zhuo
For effective use of a laser-produced-plasma (LPP) light source, an LPP is desired to emit a narrow spectral peak because the reflection spectrum of multilayer mirrors for guiding emission from the source is very narrow. While a Gd plasma has been studied extensively as an extreme ultraviolet (EUV) light source at around 6.8 nm, where La/B{sub 4}C multilayer is reported to have a high reflectivity with a bandwidth of about 0.6 %, all previous works using an Nd:YAG laser reported very broad spectra. This paper reports the first narrowing of the 6.8 nm peak in the case of using anmore » Nd:YAG laser to generate a Gd plasma by using a pre-pulse. The best peak narrowing is observed when a pre-formed plasma is heated by a 1064 nm main laser pulse with a duration of 10 ns at the irradiation density of 4x 10{sup 11} W/cm{sup 2} at a delay time of 50 ns after the pre-pulse irradiation. The observed spectral width of about 0.3 nm is about one fifth of the value for no pre-formed plasma. The peak wavelength of the 6.8 nm band shifted to a longer wavelength side and the peak was broadened both for lower and higher laser irradiation density. It is discussed that this robustness of the peak position of the 6.8 nm Gd peak against temperature change is suitable to achieve a narrow bandwidth from an LPP generated on solid. The observed spectra are compared with those previously reported in various conditions.« less
Optimized detection of shear peaks in weak lensing maps
NASA Astrophysics Data System (ADS)
Marian, Laura; Smith, Robert E.; Hilbert, Stefan; Schneider, Peter
2012-06-01
We present a new method to extract cosmological constraints from weak lensing (WL) peak counts, which we denote as ‘the hierarchical algorithm’. The idea of this method is to combine information from WL maps sequentially smoothed with a series of filters of different size, from the largest down to the smallest, thus increasing the cosmological sensitivity of the resulting peak function. We compare the cosmological constraints resulting from the peak abundance measured in this way and the abundance obtained by using a filter of fixed size, which is the standard practice in WL peak studies. For this purpose, we employ a large set of WL maps generated by ray tracing through N-body simulations, and the Fisher matrix formalism. We find that if low signal-to-noise ratio (?) peaks are included in the analysis (?), the hierarchical method yields constraints significantly better than the single-sized filtering. For a large future survey such as Euclid or Large Synoptic Survey Telescope, combined with information from a cosmic microwave background experiment like Planck, the results for the hierarchical (single-sized) method are Δns= 0.0039 (0.004), ΔΩm= 0.002 (0.0045), Δσ8= 0.003 (0.006) and Δw= 0.019 (0.0525). This forecast is conservative, as we assume no knowledge of the redshifts of the lenses, and consider a single broad bin for the redshifts of the sources. If only peaks with ? are considered, then there is little difference between the results of the two methods. We also examine the statistical properties of the hierarchical peak function: Its covariance matrix has off-diagonal terms for bins with ? and aperture mass of M < 3 × 1014 h-1 M⊙, the higher bins being largely uncorrelated and therefore well described by a Poisson distribution.
Omari, Taher I; Dejaeger, Eddy; Tack, Jan; Van Beckevoort, Dirk; Rommel, Nathalie
2013-06-01
Automated impedance manometry (AIM) analysis measures swallow variables defining bolus timing, pressure, contractile vigour, and bolus presence, which are combined to derive a swallow risk index (SRI) correlating with aspiration. In a heterogeneous cohort of dysphagia patients, we assessed the impact of bolus volume and viscosity on AIM variables. We studied 40 patients (average age = 46 years). Swallowing of boluses was recorded with manometry, impedance, and videofluoroscopy. AIMplot software was used to derive functional variables: peak pressure (PeakP), pressure at nadir impedance (PNadImp), time from nadir impedance to peak pressure (TNadImp-PeakP), the interval of impedance drop in the distal pharynx (flow interval, FI), upper oesophageal sphincter (UES) relaxation interval (UES RI), nadir UES pressure (Nad UESP), UES intrabolus pressure (UES IBP), and UES resistance. The SRI was derived using the formula SRI = (FI * PNadImp)/(PeakP * (TNadImp-PeakP + 1)) * 100. A total of 173 liquid, 44 semisolid, and 33 solid boluses were analysed. The SRI was elevated in relation to aspiration. PeakP increased with volume. SRI was not significantly altered by bolus volume. PNadImp, UES IBP, and UES resistance increased with viscosity. SRI was lower with increased viscosity. In patients with dysphagia, the SRI is elevated in relation to aspiration, reduced by bolus viscosity, and not affected by bolus volume. These data provide evidence that pharyngeal AIM analysis may have clinical utility for assessing deglutitive aspiration risk to liquid boluses.
Interior view, looking up toward project west at the heavy ...
Interior view, looking up toward project west at the heavy timber joists and center beam supporting the wood water tank. Note the iron compression bands around the perimeter of the tank. Note also the iron (steel?) water fill pipe for the tank, bent to fit between the joists and the tank wall. - East Broad Top Railroad & Company, Water Tank at Coles Station, East Broad Top Railroad & Company (at Milepost 24.3), 0.5 miles east of Coles Valley Road, Saltillo, Huntingdon County, PA
Hong, Zhengshan; Zenkoh, Junko; Le, Biao; Gerelchuluun, Ariungerel; Suzuki, Kenshi; Moritake, Takashi; Washio, Masakazu; Urakawa, Junji; Tsuboi, Koji
2015-01-01
We generated low-flux X-ray micro-planar beams (MPBs) using a laboratory-scale industrial X-ray generator (60 kV/20 mA) with custom-made collimators with three different peak/pitch widths (50/200 μm, 100/400 μm, 50/400 μm). To evaluate normal skin reactions, the thighs of C3H/HeN mice were exposed to 100 and 200 Gy MPBs in comparison with broad beams (20, 30, 40, 50, 60 Gy). Antitumor effects of MPBs were evaluated in C3H/HeN mice with subcutaneous tumors (SCCVII). After the tumors were irradiated with 100 and 200 Gy MPBs and 20 and 30 Gy broad beams, the tumor sizes were measured and survival analyses were performed. In addition, the tumors were excised and immunohistochemically examined to detect γ-H2AX, ki67 and CD34. It was shown that antitumor effects of 200 Gy MPBs at 50/200 μm and 100/400 μm were significantly greater than those of 20 Gy broad beams, and were comparable with 30 Gy broad beams. γ-H2AX-positive cells demonstrated clear stripe-patterns after MPB irradiation; the pattern gradually faded and intermixed over 24 h. The chronological changes in ki67 positivity did not differ between MPBs and broad beams, whereas the CD34-positive area decreased significantly more in MPBs than in broad beams. In addition, it was shown that skin injury after MPB irradiation was significantly milder when compared with broad-beam irradiation at equivalent doses for achieving the same tumor control effect. Bystander effect and tumor vessel injury may be the mechanism contributing to the efficacy of MPBs. PMID:26141370
Zemková, Erika; Jeleň, Michal; Kováčiková, Zuzana; Miklovič, Peter; Svoboda, Zdeněk; Janura, Miroslav
2017-01-01
The authors investigate the ways in which varied postural responses to translating platform perturbations are associated with the variables of strength and power. Twenty-four physically active and 27 sedentary young adults were exposed to a set of postural perturbations at varied velocities (10 and 20 cm/s) and the respective accelerations (6.4 and 6.9 m/s 2 ), constant distance (6 cm), and 4 directions of platform motion (forward, backward, left-lateral, and right-lateral). They also performed maximum voluntary isometric contraction (MVC) and chair rising/chair jumping tests. The analysis of variance revealed significant interaction effect for peak center of pressure displacement, direction by velocity: F 3,129 = 24.43, p = .002; and direction by acceleration: F 3,129 = 34.18, p = .001. There were no significant correlations between peak center of pressure displacements and peak force and peak rate of force development measured during MVC in either standing (r = .27-57) or sitting positions (r = .12-51) and peak power during chair jumping (r = .47-.59) in all participants. As such, only a small proportion of variance was explained (9-39%, 3-23%, and 23-41%, respectively). In conclusion, interaction effects indicate that the composition of stimuli strongly influences compensatory responses and this effect is more pronounced in sedentary than in physically active young adults. Nevertheless, the dynamic balance is not associated with muscle strength and power in either group.
Enhanced phosphorescence in N contained Ba 2SiO 4:Eu 2+ for X-ray and cathode ray tubes
NASA Astrophysics Data System (ADS)
Wang, Meiyuan; Zhang, Xia; Hao, Zhendong; Ren, Xinguang; Luo, Yongshi; Wang, Xiaojun; Zhang, Jiahua
2010-07-01
A bluish-green color long-lasting phosphorescent phosphor of N contained Ba 2SiO 4:Eu 2+ for X-ray and cathode ray tubes are prepared with the chemical component formula Ba 2SiO 4:0.01Eu 2+ - xSi 3N 4 - 2BaCO 3 ( x = 0.1 to 1.0) by the conventional high-temperature solid-state method. The phosphorescence and fluorescence properties as a function of Si 3N 4 content and temperature are investigated. The emission spectra show a single broad band peaking at 505 nm, which are ascribed to the 4f 65d 1 → 4f 7 transition of Eu 2+. Thermoluminescence (TL) glow-curves show that Ba 2SiO 4:0.01Eu 2+ without N holds a high-temperature peak at 417 K. With increasing the content of Si 3N 4, the phosphorescence grows super-linearly and some new TL peaks appear at low temperatures of about 400, 355, 365, and 335 K. These peaks are ascribed to the formation of new traps related to N substitution for O.
Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor
NASA Astrophysics Data System (ADS)
Som, S.; Choubey, A.; Sharma, S. K.
2012-09-01
This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.
Goldindec: A Novel Algorithm for Raman Spectrum Baseline Correction
Liu, Juntao; Sun, Jianyang; Huang, Xiuzhen; Li, Guojun; Liu, Binqiang
2016-01-01
Raman spectra have been widely used in biology, physics, and chemistry and have become an essential tool for the studies of macromolecules. Nevertheless, the raw Raman signal is often obscured by a broad background curve (or baseline) due to the intrinsic fluorescence of the organic molecules, which leads to unpredictable negative effects in quantitative analysis of Raman spectra. Therefore, it is essential to correct this baseline before analyzing raw Raman spectra. Polynomial fitting has proven to be the most convenient and simplest method and has high accuracy. In polynomial fitting, the cost function used and its parameters are crucial. This article proposes a novel iterative algorithm named Goldindec, freely available for noncommercial use as noted in text, with a new cost function that not only conquers the influence of great peaks but also solves the problem of low correction accuracy when there is a high peak number. Goldindec automatically generates parameters from the raw data rather than by empirical choice, as in previous methods. Comparisons with other algorithms on the benchmark data show that Goldindec has a higher accuracy and computational efficiency, and is hardly affected by great peaks, peak number, and wavenumber. PMID:26037638
Peak Politics: Resource Scarcity and Libertarian Political Culture in the United States
NASA Astrophysics Data System (ADS)
Schneider-Mayerson, Matthew
My dissertation uses the "peak oil" movement as a lens to analyze the convergence of apocalyptic environmental thinking and libertarian political culture in the recent United States. The "peak oil" movement was a twenty-first century American social movement of Americans who came to believe that oil depletion and other environmental problems would lead to the imminent collapse of global industrial society. Dedicated adherents developed a rich subculture, primarily online, and prepared themselves for the "post-carbon" future by conserving energy, changing occupations, and even purchasing land. Drawing on surveys of over 1,500 participants, ethnographic research, discourse analysis of peak oil websites and literary analysis of subcultural fiction, my research reveals a group of mostly white, male, liberal Americans struggling with the perceived threat of economic, environmental and geopolitical decline while the country undergoes a broad shift in political culture: the continued rise of libertarian ideals, accelerated by the influence of Internet technology. I view this apocalyptic subculture in the context of petroleum dependence, eco-apocalyptic discourses, the environmental discourse of "limits to growth," white masculinity, climate change, and the influence of conservative individualism on American political culture.
Nakato, Ryuichiro; Itoh, Tahehiko; Shirahige, Katsuhiko
2013-07-01
Chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) can identify genomic regions that bind proteins involved in various chromosomal functions. Although the development of next-generation sequencers offers the technology needed to identify these protein-binding sites, the analysis can be computationally challenging because sequencing data sometimes consist of >100 million reads/sample. Herein, we describe a cost-effective and time-efficient protocol that is generally applicable to ChIP-seq analysis; this protocol uses a novel peak-calling program termed DROMPA to identify peaks and an additional program, parse2wig, to preprocess read-map files. This two-step procedure drastically reduces computational time and memory requirements compared with other programs. DROMPA enables the identification of protein localization sites in repetitive sequences and efficiently identifies both broad and sharp protein localization peaks. Specifically, DROMPA outputs a protein-binding profile map in pdf or png format, which can be easily manipulated by users who have a limited background in bioinformatics. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.
Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS
Liu, Jia; May, Morgan; Petri, Andrea; ...
2015-03-04
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ω m, σ 8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build anmore » emulator that interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ω m, σ 8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ω m, σ 8) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ 8(Ω m/0.27)0.63 = 0.85 +0.03 -0.03.« less
Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia; May, Morgan; Petri, Andrea
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ω m, σ 8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build anmore » emulator that interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ω m, σ 8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ω m, σ 8) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ 8(Ω m/0.27)0.63 = 0.85 +0.03 -0.03.« less
Characterization of dipole defects in MgAl2O4 spinel
NASA Astrophysics Data System (ADS)
Carvalhaes, R. P. M.; da Rocha, M. S. F.; de Souza, S. S.; Blak, A. R.
2005-01-01
Dipole defects in gamma-irradiated and thermal treated MgAl2O4 samples have been studied through thermally stimulated depolarisation currents(TSDC) technique and computer modelling methods. The presence of TSDC bands varies from sample to sample and some crystals do not present any band. The origin of these bands has been investigated in several different samples. In the spectra of spinels showing TSDC peaks, three bands at 130K, 160K and 320K are observed. The peaks at 130K and 160K have been attributed to dipole defects. After 1200kGy of gamma irradiation the broad band at 320K dislocates to 290K and increases ten times. Pulsed thermal treatments between 350K and 470K produce a progressive reduction of the peak area and a shift in the peak position back to 320K. A detailed analysis of the curve indicates the possibility of a superposition of peaks. Gamma irradiation restores the 320K TSDC peak. Taking into account optical absorption(OA) and electron paramagnetic resonance(EPR) results, the thermal reduction of the 320K TSDC band was attributed to V-type centres as a result of hole trapping at tetrahedral and octahedral cation vacancies. Computer modelling methods, based on lattice energy and defect minimisation, were applied to identify dipole defects that occur in these crystals. The calculations were made in normal and inverse spinel structures, doped with Cr, Co, Mn and Fe in order to justify the presence of dipole bands.
Peaked signals from dark matter velocity structures in direct detection experiments
NASA Astrophysics Data System (ADS)
Lang, Rafael F.; Weiner, Neal
2010-06-01
In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies ER. The peaks of such signals are typically fairly broad, with ΔER/Epeak ~ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape.
Zhuo, Peng-ji; Zhao, Wei-hong
2009-05-01
Fluorescence excitation-emission spectroscopy (EEMS) was employed to analyze the 3-dimensional fluorescence of dissolved organic matter in the East China Sea after diatom red tide dispersion. The relationships between fluorescence peak intensity, and salinity and chlorophyll-a were discussed. The centers of protein-like fluorescence peaks dispersed at Exmax/Exmax = 270-280/290-315 nm (Peak B), 220-230/290-305 nm (Peak D), 230-240/335-350 nm (Peak S) and 280/320 nm (Peak T). Two humic-like peaks appeared at 255-270/435-480 nm (Peak A)and 330-350/420-480 nm (Peak C). High tyrosine-like intensity was observed in diatom red tide dispersion area, and tryptophan-like fluorescence was also found which was lower. High FIB/FIS showed that diatom red tide produced much tyrosine-like matter during dispersion. Peaks S, A and C had positive correlation with one another, and their distributions were similar, which decreased with distance increasing away from the shore. Good negative correlations between peaks S, A and C and salinity suggested that Jiangsu-Zhejiang coastal water was the same source of them. Correlations between fluorescence peak intensity and chlorophyll-a were not remarkable enough to clear the relationship between fluorescence and living algal matter. It was supposed that the living algal matter contributed little to the fluorescence intensity of algal dispersion seawater.
Selected topics in robotics for space exploration
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C. (Editor); Kaufman, Howard (Editor)
1993-01-01
Papers and abstracts included represent both formal presentations and experimental demonstrations at the Workshop on Selected Topics in Robotics for Space Exploration which took place at NASA Langley Research Center, 17-18 March 1993. The workshop was cosponsored by the Guidance, Navigation, and Control Technical Committee of the NASA Langley Research Center and the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) at RPI, Troy, NY. Participation was from industry, government, and other universities with close ties to either Langley Research Center or to CIRSSE. The presentations were very broad in scope with attention given to space assembly, space exploration, flexible structure control, and telerobotics.
Biological aerosol effects on clouds and precipitation
NASA Astrophysics Data System (ADS)
Hallar, A. Gannet; Huffman, J. Alex; Fridlind, Ann
2012-12-01
Bioaerosol Effects on Clouds Workshop;Steamboat Springs, Colorado, 5-6August 2012 Bioaerosols such as bacteria have been proposed as significant contributors to cloud ice nucleation, but too little is known about the properties and impacts of bioaerosol and other ice nuclei to make reliable conclusions about their wide-scale impact on clouds and precipitation. During late summer an international group of 40 participants met at a Steamboat Springs ski resort to share perspectives on bioaerosol sources, activity, and influence on clouds. Participants who were invited collectively spanned a broad range of expertise, including atmospheric chemistry, microbiology, micrometeorology, and cloud physics, as well as a broad range of research approaches, including laboratory measurement, field measurement, and modeling. Tours of Storm Peak Laboratory (http://www.stormpeak.dri.edu) were offered before and after the workshop.
Kim, Moung-O; Kang, Bongkyun; Yoon, Daeho
2013-08-01
Eu3+ doped beta-Ga2O3 and non-doped beta-Ga2O3 nanoparticles were synthesized at 800 degrees C using a liquid-phase precursor (LPP) method, with different annealing times and Eu3+ ion concentrations. Eu3+ doped beta-Ga2O3 nanoparticles showed broad XRD peaks, revealing a second phase compared with the non-doped beta-Ga2O3 nanoparticles. The cathode luminescence (CL) spectra of beta-Ga2O3 and Eu3+ doped beta-Ga2O3 nanoparticles showed a broad band emission (300-500 nm) of imperfection and two component emissions. The luminescence quenching properties of Eu3+ dopant ion concentration appeared gradually beyond 5 mol% in our investigation.
Horn, Kevin M.
2013-07-09
A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.
Broad-spectrum neodymium-doped laser glasses for high-energy chirped-pulse amplification.
Hays, Greg R; Gaul, Erhard W; Martinez, Mikael D; Ditmire, Todd
2007-07-20
We have investigated two novel laser glasses in an effort to generate high-energy, broad-spectrum pulses from a chirped-pulse amplification Nd:glass laser. Both glasses have significantly broader spectra (>38 nm FWHM) than currently available Nd:phosphate and Nd:silicate glasses. We present calculations for small signal pulse amplification to simulate spectral gain narrowing. The technique of spectral shaping using mixed-glass architecture with an optical parametric chirped-pulse amplification front end is evaluated. Our modeling shows that amplified pulses with energies exceeding 10 kJ with sufficient bandwidth to achieve 120 fs pulsewidths are achievable with the use of the new laser glasses. With further development of current technologies, a laser system could be scaled to generate one exawatt in peak power.
33 CFR 5.47 - Auxiliary ensign.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the Auxiliary ensign is medium blue (Coast Guard blue) with a broad diagonal white slash upon which a matching blue Coast Guard Auxiliary emblem is centered. The white slash shall be at a 70 degree angle...
33 CFR 5.47 - Auxiliary ensign.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the Auxiliary ensign is medium blue (Coast Guard blue) with a broad diagonal white slash upon which a matching blue Coast Guard Auxiliary emblem is centered. The white slash shall be at a 70 degree angle...
33 CFR 5.47 - Auxiliary ensign.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the Auxiliary ensign is medium blue (Coast Guard blue) with a broad diagonal white slash upon which a matching blue Coast Guard Auxiliary emblem is centered. The white slash shall be at a 70 degree angle...
33 CFR 5.47 - Auxiliary ensign.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the Auxiliary ensign is medium blue (Coast Guard blue) with a broad diagonal white slash upon which a matching blue Coast Guard Auxiliary emblem is centered. The white slash shall be at a 70 degree angle...
33 CFR 5.47 - Auxiliary ensign.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the Auxiliary ensign is medium blue (Coast Guard blue) with a broad diagonal white slash upon which a matching blue Coast Guard Auxiliary emblem is centered. The white slash shall be at a 70 degree angle...
ERIC Educational Resources Information Center
National Archives and Records Service (GSA), Washington, DC. National Audiovisual Center.
The first edition of the National Audiovisual Center sales catalog (LI 003875) is updated by this supplement. Changes in price and order number as well as deletions from the 1969 edition, are noted in this 1971 version. Purchase and rental information for the sound films and silent filmstrips is provided. The broad subject categories are:…
2014-03-01
research requests across the department exposes DOD to the risk of potential overlap of studies and analysis research. View GAO-14-216. For more...National Defense University GPRA Government Performance and Results Act CCO Center for Complex Operations CSR Center for Strategic...their future leadership positions. To provide broad educational experiences, students can conduct research at the JPME research institutions as part
Acoustic leak-detection system for railroad transportation security
NASA Astrophysics Data System (ADS)
Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.
2007-04-01
Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.
Duman, Fatih; Ocsoy, Ismail; Kup, Fatma Ozturk
2016-03-01
In this study, we report the synthesis of copper oxide nanoparticles (CuO NPs) using a medicinal plant (Matricaria chamomilla) flower extract as both reducing and capping agent and investigate their antioxidant activity and interaction with plasmid DNA (pBR322).The CuO NPs were characterized using Uv-Vis spectroscopy, FT-IR (Fourier transform infrared spectroscopy), DLS (dynamic light scattering), XRD (X-ray diffraction), EDX (energy-dispersive X-ray) spectroscopy and SEM (scanning electron microscopy). The CuO NPs exhibited nearly mono-distributed and spherical shapes with diameters of 140 nm size. UV-Vis absorption spectrum of CuO NPs gave a broad peak around 285 and 320 nm. The existence of functional groups on the surface of CuO NPs was characterized with FT-IR analysis. XRD pattern showed that the NPs are in the form of a face-centered cubic crystal. Zeta potential value was measured as -20 mV due to the presence of negatively charged functional groups in plant extract. Additionally, we demonstrated concentration-dependent antioxidant activity of CuO NPs and their interaction with plasmid DNA. We assumed that the CuO NPs both cleave and break DNA double helix structure. Copyright © 2015 Elsevier B.V. All rights reserved.
Masedunskas, Andrius; Chen, Yun; Stussman, Rebecca; Weigert, Roberto; Mather, Ian H.
2017-01-01
The lipid droplet (LD) fraction of milk has attracted special attention because it supplies preformed lipids for neonatal development, and the assembled LDs are secreted by a unique apocrine mechanism. Because many aspects of this key process remain uncharacterized, we developed a facile method for the intravital imaging of mammary cells in transgenic mice that express fluorescently tagged marker proteins. Using these techniques, we describe the first kinetic analysis of LD growth and secretion at peak lactation in real time. LD transit from basal to apical regions was slow (0–2 μm/min) and frequently intermittent. Droplets grew by the fusion of preexisting droplets, with no restriction on the size of fusogenic partners. Most droplet expansion took several hours and occurred in apical nucleation centers, either close to or in association with the apical surface. Droplets even continued to expand as they were emerging from the cell. Contrary to expectations, LDs attached to the apical plasma membrane but still associated with the cytoplasm were released after oxytocin-mediated contraction of the myoepithelium. Thus milk LD secretion is an intermittently regulated process. This novel procedure will have broad application for investigating trafficking events within the mammary epithelium in real time. PMID:28179456
Large eddy simulation of tip-leakage flow in an axial flow fan
NASA Astrophysics Data System (ADS)
Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol; Kwon, Oh-Kyoung
2016-11-01
An axial flow fan with a shroud generates a complicated tip-leakage flow by the interaction of the axial flow with the fan blades and shroud near the blade tips. In this study, large eddy simulation is performed for tip-leakage flow in a forward-swept axial flow fan inside an outdoor unit of an air-conditioner, operating at the design condition of the Reynolds number of 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame is adopted. The present simulation clearly reveals the generation and evolution of tip-leakage vortex near the blade tip by the leakage flow. At the inception of the leakage vortex near the leading edge of the suction-side of the blade tip, the leakage vortex is composed of unsteady multiple vortices containing high-frequency fluctuations. As the leakage vortex develops downstream along a slant line toward the following blade, large and meandering movements of the leakage vortex are observed. Thus low-frequency broad peaks of velocity and pressure occur near the pressure surface. Supported by the KISTI Supercomputing Center (KSC-2016-C3-0027).
Timing in a Variable Interval Procedure: Evidence for a Memory Singularity
Matell, Matthew S.; Kim, Jung S.; Hartshorne, Loryn
2013-01-01
Rats were trained in either a 30s peak-interval procedure, or a 15–45s variable interval peak procedure with a uniform distribution (Exp 1) or a ramping probability distribution (Exp 2). Rats in all groups showed peak shaped response functions centered around 30s, with the uniform group having an earlier and broader peak response function and rats in the ramping group having a later peak function as compared to the single duration group. The changes in these mean functions, as well as the statistics from single trial analyses, can be better captured by a model of timing in which memory is represented by a single, average, delay to reinforcement compared to one in which all durations are stored as a distribution, such as the complete memory model of Scalar Expectancy Theory or a simple associative model. PMID:24012783
Increasing the Life of a Xenon-Ion Spacecraft Thruster
NASA Technical Reports Server (NTRS)
Goebel, Dan; Polk, James; Sengupta, Anita; Wirz, Richard
2007-01-01
A short document summarizes the redesign of a xenon-ion spacecraft thruster to increase its operational lifetime beyond a limit heretofore imposed by nonuniform ion-impact erosion of an accelerator electrode grid. A peak in the ion current density on the centerline of the thruster causes increased erosion in the center of the grid. The ion-current density in the NSTAR thruster that was the subject of this investigation was characterized by peak-to-average ratio of 2:1 and a peak-to-edge ratio of greater than 10:1. The redesign was directed toward distributing the same beam current more evenly over the entire grid andinvolved several modifications of the magnetic- field topography in the thruster to obtain more nearly uniform ionization. The net result of the redesign was to reduce the peak ion current density by nearly a factor of two, thereby halving the peak erosion rate and doubling the life of the thruster.
Preliminary geologic map of the Sleeping Butte volcanic centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.M.; Perry, F.V.
1991-07-01
The Sleeping Butte volcanic centers comprise two, spatially separate, small-volume (<0.1 km{sup 3}) basaltic centers. The centers were formed by mildly explosive Strombolian eruptions. The Little Black Peak cone consists of a main scoria cone, two small satellitic scoria mounds, and associated lobate lava flows that vented from sites at the base of the scoria cone. The Hidden Cone center consists of a main scoria cone that developed on the north-facing slope of Sleeping Butte. The center formed during two episodes. The first included the formation of the main scoria cone, and venting of aa lava flows from radial dikesmore » at the northeast base of the cone. The second included eruption of scoria-fall deposits from the summit crater. The ages of the Little Black Peak and the Hidden Cone are estimated to be between 200 to 400 ka based on the whole-rock K-Ar age determinations with large analytical undertainty. This age assignment is consistent with qualitative observations of the degree of soil development and geomorphic degradation of volcanic landforms. The younger episode of the Hidden Cone is inferred to be significantly younger and probably of Late Pleistocene or Holocene age. This is based on the absence of cone slope rilling, the absence of cone-slope apron deposits, and erosional unconformity between the two episodes, the poor horizon- development of soils, and the presence of fall deposits on modern alluvial surfaces. Paleomagnetic data show that the centers record similar but not identical directions of remanent magnetization. Paleomagnetic data have not been obtained for the youngest deposits of the Hidden Cone center. Further geochronology, soils, geomorphic, and petrology studies are planned of the Sleeping Butte volcanic centers 20 refs., 3 figs.« less
Saturation analysis of ChIP-seq data for reproducible identification of binding peaks
Hansen, Peter; Hecht, Jochen; Ibrahim, Daniel M.; Krannich, Alexander; Truss, Matthias; Robinson, Peter N.
2015-01-01
Chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq) is a powerful technology to identify the genome-wide locations of transcription factors and other DNA binding proteins. Computational ChIP-seq peak calling infers the location of protein–DNA interactions based on various measures of enrichment of sequence reads. In this work, we introduce an algorithm, Q, that uses an assessment of the quadratic enrichment of reads to center candidate peaks followed by statistical analysis of saturation of candidate peaks by 5′ ends of reads. We show that our method not only is substantially faster than several competing methods but also demonstrates statistically significant advantages with respect to reproducibility of results and in its ability to identify peaks with reproducible binding site motifs. We show that Q has superior performance in the delineation of double RNAPII and H3K4me3 peaks surrounding transcription start sites related to a better ability to resolve individual peaks. The method is implemented in C+l+ and is freely available under an open source license. PMID:26163319
Greater than the sum of their parts: the benefits of Youth Violence Prevention Centers.
Azrael, Deborah; Hemenway, David
2011-09-01
Academic Centers for Excellence on Youth Violence Prevention (ACE), which support a broad range of activities over and above RO1-type research projects, can add significantly to a community's capacity to respond to youth violence. We use the example of the Harvard Youth Violence Prevention Center to describe the types of research-practice collaborations these centers can promote, as well as the ways in which these collaborations can foster adoption of program planning, development, implementation and evaluation practices consistent with evidence-based approaches to youth violence prevention. Throughout, we describe the ways in which the existence of a center led, under the ACE format, to research, policy and practice opportunities that would not have existed in the absence of a center.
Reliability Analysis and Standardization of Spacecraft Command Generation Processes
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Grenander, Sven; Evensen, Ken
2011-01-01
center dot In order to reduce commanding errors that are caused by humans, we create an approach and corresponding artifacts for standardizing the command generation process and conducting risk management during the design and assurance of such processes. center dot The literature review conducted during the standardization process revealed that very few atomic level human activities are associated with even a broad set of missions. center dot Applicable human reliability metrics for performing these atomic level tasks are available. center dot The process for building a "Periodic Table" of Command and Control Functions as well as Probabilistic Risk Assessment (PRA) models is demonstrated. center dot The PRA models are executed using data from human reliability data banks. center dot The Periodic Table is related to the PRA models via Fault Links.
Guide star lasers for adaptive optics
NASA Astrophysics Data System (ADS)
Roberts, William Thomas, Jr.
Exploitation of the imaging capabilities of the new generation of ground-based astronomical telescopes relies heavily on Adaptive Optics (AO). Current AO system designs call for sodium guide star lasers capable of producing at least eight Watts of power tuned to the peak of the sodium D2 line, with a high duty cycle to avoid saturation, and with 0.5-1.0 GHz spectral broadening. This work comprises development and testing of six candidate laser systems and materials which may afford a path to achieving these goals. An end-pumped CW dye laser producing 4.0 Watts of tuned output power was developed and used to obtain the first accurate measurement of sodium layer scattering efficiency. Methods of optimizing the laser output through improving pump overlap efficiency and reducing the number of intracavity scattering surfaces are covered. The 1181 nm fluorescence peak of Mn5+ ion in Ba5 (PO4)3Cl could be tuned and doubled to reach 589 nm. While efforts to grow this crystal were under way, the Mn5+ ion in natural apatite (Ca5(PO4)3F) was studied as a potential laser material. Fluorescence saturation measurements and transmission saturation are presented, as well as efforts to obtain CW lasing in natural apatite. A Q-switched laser color-center laser in LiF : F-2 was developed and successfully tuned and doubled to the sodium D 2 line. Broad-band lasing of 80 mW and tuned narrow-band lasing of 35 mW at 1178 nm were obtained with 275 mW of input pump power at 1064 nm. The measured thermal properties of this material indicate its potential for scaling to much higher power. A Q-switched intracavity Raman laser was developed in which CaWO 4 was used to shift a Nd:YAG laser, the frequency-doubled output of which was centered at 589.3 nm. To obtain light at 589.0 nm, a compositionally tuned pump laser of Nd : Y3Ga1.1Al3.9O 12 was produced which generated the desired shift, but was inhomogeneous broadened, limiting the tunable power of the material. Finally, temperature tuning of a Nd:YAG laser was demonstrated in which the laser emitted up to 8.6 Watts at a temperature of -21.5 C, bringing the wavelength into a regime favorable for efficient Raman shifting by CaWO4.
NASA Astrophysics Data System (ADS)
Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H.; Sandanbata, O.; Watada, S.; Satake, K.
2016-12-01
An array of ocean bottom pressure gauges was deployed off east of Aogashima island of the Izu-Bonin arc from May 2014 to May 2015. The array consists of 10 ocean bottom pressure gauges using ParoScientific quartz resonators which can measure absolute water pressure at 7000m depth with nano-resolution. The array configures equilateral triangles with minimum and maximum lengths of 10 and 30km. This array recorded seismic and tsunami waves from the CLVD-type earthquake (M5.7) of May 02, 2015, that occurred near Torishima Island 100 km distant from the array. Comparison with records of ordinary thrust earthquakes with similar magnitudes at similar distances indicates that this event generated anomalously large tsunamis relative to seismic waves. We made an array analysis for the phase speed, propagating azimuth and travel time of tsunami wave in a frequency range 1-10 mHz, where the dispersion effect is significant. The results show excellent agreements with the frequency-dependent ray-tracing calculations. The tsunami trace apparently starts with positive onset (pressure increase) and reaches a maximum amplitude of about 200Pa (≈2cm in tsunami height). A closer inspection, however, shows a preceding negative small pulse (Fig. 1), suggesting that the seafloor deformation at the tsunami source consists of a central large uplift and a peripheral small depression. This mode of deformation is qualitatively consistent with a finite CLVD source uniformly shortened laterally and uniformly stretched vertically without volume change. The detection of weak initial motions is indebted to the array deployment of sensitive pressure gauges far away from coastal regions. The bandpass-filtered waveform is drastically different between the lower and higher frequency ranges. The waveform is single-peaked in the lower frequency range (<5 mHz) but is ringing in the higher frequency range (>5 mHz), corresponding to the tsunami spectrum that consists of the broad primary peak around 3.5 mHz and the sharp double peaks at around 6.5 and 9 mHz. We interpret the broad primary peak as due to the tsunami source associated with seafloor deformation and the sharp double peaks as due to wave resonance (seiche) inside the Smith Caldera.
Trap characterization by photo-transferred thermoluminescence in MgO nanoparticles
NASA Astrophysics Data System (ADS)
Isik, M.; Gasanly, N. M.
2018-05-01
Shallow trapping centers in MgO nanoparticles were characterized using photo-transferred thermoluminescence (TL) measurements. Experiments were carried out in low temperature range of 10-280 K with constant heating rate. Shallow traps were filled with charge carriers firstly by irradiating the sample at room temperature using S90/Y90 source and then illuminating at 10 K using blue LED. TL glow curve exhibited one peak around 150 K. Curve fitting analyses showed that this peak is composed of two individual peaks with maximum temperatures of 149.0 and 155.3 K. The activation energies of corresponding trapping centers were revealed as 0.70 and 0.91 eV. The dominant mechanism for TL process was found as second order kinetics which represent that fast retrapping is effective transitions taking place within the band gap. Structural characterization of MgO nanoparticles were investigated using x-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. Analyses of experimental observations indicated that MgO nanoparticles show good crystallinity with particle size in nanometer scale.
2017-01-09
Shadows cast across Mimas' defining feature, Herschel Crater, provide an indication of the size of the crater's towering walls and central peak. Named after the icy moon's discoverer, astronomer William Herschel, the crater stretches 86 miles (139 kilometers) wide -- almost one-third of the diameter of Mimas (246 miles or 396 kilometers) itself. Large impact craters often have peaks in their center -- see Tethys' large crater Odysseus in PIA08400. Herschel's peak stands nearly as tall as Mount Everest on Earth. This view looks toward the anti-Saturn hemisphere of Mimas. North on Mimas is up and rotated 21 degrees to the left. The image was taken with the Cassini spacecraft narrow-angle camera on Oct. 22, 2016 using a combination of spectral filters which preferentially admits wavelengths of ultraviolet light centered at 338 nanometers. The view was acquired at a distance of approximately 115,000 miles (185,000 kilometers) from Mimas and at a Sun-Mimas-spacecraft, or phase, angle of 20 degrees. Image scale is 3,300 feet (1 kilometer) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20515