Sample records for broad phase space

  1. Space transfer concepts and analysis for exploration missions

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Covered here is the second phase of a broad scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 1, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from the Stafford Committee Synthesis Report.

  2. Space transfer concepts and analyses for exploration missions: Technical directive 10

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1992-01-01

    The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during the previous phases but specifically on launch vehicle size trades and MEV options.

  3. Microwave performance characterization of large space antennas

    NASA Technical Reports Server (NTRS)

    Bathker, D. A. (Editor)

    1977-01-01

    Performance capabilities of large microwave space antenna configurations with apertures generally from 100 wavelengths upwards are discussed. Types of antennas considered include: phased arrays, lenses, reflectors, and hybrid combinations of phased arrays with reflectors or lenses. The performance characteristics of these broad classes of antennas are examined and compared in terms of applications.

  4. Wavelets and the squeezed states of quantum optics

    NASA Technical Reports Server (NTRS)

    Defacio, B.

    1992-01-01

    Wavelets are new mathematical objects which act as 'designer trigonometric functions.' To obtain a wavelet, the original function space of finite energy signals is generalized to a phase-space, and the translation operator in the original space has a scale change in the new variable adjoined to the translation. Localization properties in the phase-space can be improved and unconditional bases are obtained for a broad class of function and distribution spaces. Operators in phase space are 'almost diagonal' instead of the traditional condition of being diagonal in the original function space. These wavelets are applied to the squeezed states of quantum optics. The scale change required for a quantum wavelet is shown to be a Yuen squeeze operator acting on an arbitrary density operator.

  5. Space Transfer Concepts and Analyses for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1993-01-01

    This report covers the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 2, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from Stafford Committee Synthesis Report. The major effort of the study was the development of the first Lunar Outpost (FLO) baseline which evolved from the Space Station Freedom Hab Module. Modifications for the First Lunar Outpost were made to meet mission requirements and technology advancements.

  6. Space transfer concepts and analyses for exploration missions

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1992-01-01

    The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed the technical issues relating to the First Lunar Outpost (FLO) habitation vehicle with emphasis in the structure, power, life support system, and radiation environment.

  7. Labeled carbon dioxide (C18O2): an indicator gas for phase II in expirograms.

    PubMed

    Schulz, Holger; Schulz, Anne; Eder, Gunter; Heyder, Joachim

    2004-11-01

    Carbon dioxide labeled with 18O (C18O2) was used as a tracer gas for single-breath measurements in six anesthetized, mechanically ventilated beagle dogs. C18O2 is taken up quasi-instantaneously in the gas-exchanging region of the lungs but much less so in the conducting airways. Its use allows a clear separation of phase II in an expirogram even from diseased individuals and excludes the influence of alveolar concentration differences. Phase II of a C18O2 expirogram mathematically corresponds to the cumulative distribution of bronchial pathways to be traversed completely in the course of exhalation. The derivative of this cumulative distribution with respect to respired volume was submitted to a power moment analysis to characterize volumetric mean (position), standard deviation (broadness), and skewness (asymmetry) of phase II. Position is an estimate of dead space volume, whereas broadness and skewness are measures of the range and asymmetry of functional airway pathway lengths. The effects of changing ventilatory patterns and of changes in airway size (via carbachol-induced bronchoconstriction) were studied. Increasing inspiratory or expiratory flow rates or tidal volume had only minor influence on position and shape of phase II. With the introduction of a postinspiratory breath hold, phase II was continually shifted toward the airway opening (maximum 45% at 16 s) and became steeper by up to 16%, whereas skewness showed a biphasic response with a moderate decrease at short breath holding and a significant increase at longer breath holds. Stepwise bronchoconstriction decreased position up to 45 +/- 2% and broadness of phase II up to 43 +/- 4%, whereas skewness was increased up to twofold at high-carbachol concentrations. Under all circumstances, position of phase II by power moment analysis and dead space volume by the Fowler technique agreed closely in our healthy dogs. Overall, power moment analysis provides a more comprehensive view on phase II of single-breath expirograms than conventional dead space volume determinations and may be useful for respiratory physiology studies as well as for the study of diseased lungs.

  8. Recent progress in the NASA-Goddard Space Flight Center atomic hydrogen standards program

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.

    1981-01-01

    At NASA Goddard Space Flight Center and through associated contractors, a broad spectrum of work is being carried out to develop improved hydrogen maser frequency standards for field use, improved experimental hydrogen maser frequency standards, and improved frequency and time distribution and measurement systems for hydrogen maser use. Recent progress in the following areas is reported: results on the Nr masers built by the Applied Physics Laboratory of Johns Hopkins University, the development of a low cost hydrogen maser at Goddard Space Flight Center, and work on a low noise phase comparison system and digitally phase locked crystal oscillator called the distribution and measurement system.

  9. Saturable nonlinear dielectric waveguide with applications to broad-area semiconductor lasers.

    PubMed

    Mehuys, D; Mittelstein, M; Salzman, J; Yariv, A

    1987-11-01

    Self-focusing in a passive dielectric waveguide with a saturable nonlinearity is studied. The eigensolutions constitute a good approximation to the lateral modes of broad-area semiconductor lasers under low-duty-cycle pulsed conditions. The laser modes are predicted to consist of adjacent filaments coupled in phase, leading to a single-lobed far field, and to be stable with increased current injection above saturation intensity. The ultimate filament spacing is inversely proportional to the threshold gain, and thus wider filaments are expected in low-threshold broad-area lasers.

  10. Space transfer concepts and analysis for exploration missions

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1992-01-01

    The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed the technical issues relating to the First Lunar Outpost (FLO) habitation vehicle with emphasis on the structure, power, life support system, and radiation environment for a baseline habitat with specific alternatives for the baseline.

  11. Optical reading of field-effect transistors by phase-space absorption quenching in a single InGaAs quantum well conducting channel

    NASA Astrophysics Data System (ADS)

    Chemla, D. S.; Bar-Joseph, I.; Klingshirn, C.; Miller, D. A. B.; Kuo, J. M.

    1987-03-01

    Absorption switching in a semiconductor quantum well by electrically varying the charge density in the quantum well conducting channel of a selectively doped heterostructure transistor is reported for the first time. The phase-space absorption quenching (PAQ) is observed at room temperature in an InGaAs/InAlAs grown on InP FET, and it shows large absorption coefficient changes with relatively broad spectral bandwidth. This PAQ is large enough to be used for direct optical determination of the logic state of the FET.

  12. Possible Existence of Two Amorphous Phases of D-Mannitol Related by a First-Order Transition

    NASA Astrophysics Data System (ADS)

    Zhu, Men; Wang, Jun-Qiang; Perepezko, John; Yu, Lian

    We report that the common polyalcohol D-mannitol may have two amorphous phases related by a first-order transition. Slightly above Tg (284 K), the supercooled liquid (SCL) of D-mannitol transforms to a low-energy, apparently amorphous phase (Phase X). The enthalpy of Phase X is roughly halfway between those of the known amorphous and crystalline phases. The amorphous nature of Phase X is suggested by its absence of birefringence, transparency, broad X-ray diffraction, and broad Raman and NIR spectra. Phase X has greater molecular spacing, higher molecular order, fewer intra- and more inter-molecular hydrogen bonds than the normal liquid. On fast heating, Phase X transforms back to SCL near 330 K. Upon temperature cycling, it shows a glass-transition-like change of heat capacity. The presence of D-sorbitol enables a first-order liquid-liquid transition (LLT) from SCL to Phase X. This is the first report of polyamorphism at 1 atm for a pharmaceutical relevant substance. As amorphous solids are explored for many applications, polyamorphism could offer a tool to engineer the properties of materials. (Ref: M. Zhu et al., J. Chem. Phys. 2015, 142, 244504)

  13. LST phase A design update study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An update is presented of the Phase A study of the Large Space Telescope (LST), based on changes in guidelines and new data developed subsequent to the Phase A study. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. A low cost design approach was followed. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and sharing of shuttle maintenance flights with other payloads (See N73-18449 through N73-18453)

  14. Development of a Ground Test and Analysis Protocol to Support NASA's NextSTEP Phase 2 Habitation Concepts

    NASA Technical Reports Server (NTRS)

    Beaton, Kara H.; Chappell, Steven P.; Bekdash, Omar S.; Gernhardt, Michael L.

    2018-01-01

    The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support extensive human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts have been tasked with developing the ground test protocol that will serve as the primary means by which these Phase 2 prototype habitats will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational products, tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the NextSTEP Phase 2 Habitation Concepts is to consistently evaluate the different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3.

  15. Nonlinear sigma models with compact hyperbolic target spaces

    NASA Astrophysics Data System (ADS)

    Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James

    2016-06-01

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.

  16. Nonlinear sigma models with compact hyperbolic target spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in themore » O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.« less

  17. Nonlinear sigma models with compact hyperbolic target spaces

    DOE PAGES

    Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; ...

    2016-06-23

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in themore » O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.« less

  18. Minimum accommodation for aerobrake assembly, phase 2

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Haynes, Davy A.; Tutterow, Robin D.; Watson, Judith J.; Russell, James W.

    1994-01-01

    A multi-element study was done to assess the practicality of a Space Station Freedom-based aerobrake system for the Space Exploration Initiative. The study was organized into six parts related to structure, aerodynamics, robotics and assembly, thermal protection system, inspection, and verification, all tied together by an integration study. The integration activity managed the broad issues related to meeting mission requirements. This report is a summary of the issues addressed by the integration team.

  19. High-efficiency Resonant rf Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, P. -N.; Barron-Palos, L.; Bowman, J. D.

    2008-01-01

    High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beammore » with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.« less

  20. CCSDS - SFCG Efficient Modulation Methods Study at NASA/JPL - Phase 4: Interference Susceptibility

    NASA Technical Reports Server (NTRS)

    Martin, W.; Yan, T. Y.; Gray, A.; Lee, D.

    1999-01-01

    Susceptibility to two types of interfering signals was requested by the SFCG: a pure carrier (single frequency tone)and wide-band RFI (characteristics unspecified). Selecting a broad-band interfering signal is diffuclt because it should represent the types of interference to be found in the space science service bands.

  1. Comparing Optical Oscillators across the Air to Milliradians in Phase and 10^{-17} in Frequency.

    PubMed

    Sinclair, Laura C; Bergeron, Hugo; Swann, William C; Baumann, Esther; Deschênes, Jean-Daniel; Newbury, Nathan R

    2018-02-02

    We demonstrate carrier-phase optical two-way time-frequency transfer (carrier-phase OTWTFT) through the two-way exchange of frequency comb pulses. Carrier-phase OTWTFT achieves frequency comparisons with a residual instability of 1.2×10^{-17} at 1 s across a turbulent 4-km free space link, surpassing previous OTWTFT by 10-20 times and enabling future high-precision optical clock networks. Furthermore, by exploiting the carrier phase, this approach is able to continuously track changes in the relative optical phase of distant optical oscillators to 9 mrad (7 as) at 1 s averaging, effectively extending optical phase coherence over a broad spatial network for applications such as correlated spectroscopy between distant atomic clocks.

  2. Large space telescope, phase A. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Phase A study of the Large Space Telescope (LST) is reported. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. The LST is an unmanned astronomical observatory facility, consisting of an optical telescope assembly (OTA), scientific instrument package (SIP), and a support systems module (SSM). The report consists of five volumes. The report describes the constraints and trade off analyses that were performed to arrive at a reference design for each system and for the overall LST configuration. A low cost design approach was followed in the Phase A study. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and the sharing of shuttle maintenance flights with other payloads.

  3. Impulsive Phase Transport. Chapter 3,

    DTIC Science & Technology

    1988-03-30

    workshop series held at NASA Goddard Space Flight Center Greenbelt, Maryland --- January 24-28. 1983 I AccOsSionr June 9-14. 1983 G--7i5 CRA&I and...resolved Intercosmos series ) were improving the quality of hard X-ray optical lines by the Sac Peak Vacuum Tower. Hard X- and measurements and extending the...usually obtained either from a series of broad band filter- gams at several widely spaced points in the spectrum (e.g., 1 Zirin and Neidig 1981) or from

  4. Deep Space Habitat Team: HEFT Phase 2 Effects

    NASA Technical Reports Server (NTRS)

    Toups, Larry D.; Smitherman, David; Shyface, Hilary; Simon, Matt; Bobkill, Marianne; Komar, D. R.; Guirgis, Peggy; Bagdigian, Bob; Spexarth, Gary

    2011-01-01

    HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond LEO, evaluating technical, programmatic, and budgetary issues to support decisions at the highest level of the agency in HSF planning. HEFT Phase I (April - September, 2010) and Phase II (September - December, 2010) examined a broad set of Human Exploration of Near Earth Objects (NEOs) Design Reference Missions (DRMs), evaluating such factors as elements, performance, technologies, schedule, and cost. At end of HEFT Phase 1, an architecture concept known as DRM 4a represented the best available option for a full capability NEO mission. Within DRM4a, the habitation system was provided by Deep Space Habitat (DSH), Multi-Mission Space Exploration Vehicle (MMSEV), and Crew Transfer Vehicle (CTV) pressurized elements. HEFT Phase 2 extended DRM4a, resulting in DRM4b. Scrubbed element-level functionality assumptions and mission Concepts of Operations. Habitation Team developed more detailed concepts of the DSH and the DSH/MMSEV/CTV Conops, including functionality and accommodations, mass & volume estimates, technology requirements, and DDT&E costs. DRM 5 represented an effort to reduce cost by scaling back on technologies and eliminating the need for the development of an MMSEV.

  5. Space transfer vehicle concepts and requirements study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    A description of the study in terms of background, objectives, and issues is provided. NASA is currently studying new initiatives of space exploration involving both piloted and unpiloted missions to destinations throughout the solar system. Many of these missions require substantial improvements in launch vehicle and upper stage capabilities. This study provides a focused examination of the Space Transfer Vehicles (STV) required to perform these missions using the emerging national launch vehicle definition, the Space Station Freedom (SSF) definition, and the latest mission scenario requirements. The study objectives are to define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner, determine the technology development (if any) required to perform these missions, and develop a decision database of various programmatic approaches for the development of the STV family of vehicles. Special emphasis was given to examining space basing (stationing reusable vehicles at a space station), examining the piloted lunar mission as a primary design mission, and restricting trade studies to the high-performance, near-term cryogenics (LO2/LH2) as vehicle propellant. The study progressed through three distinct 6-month phases. The first phase concentrated on supporting a NASA 3 month definition of exploration requirements (the '90-day study') and during this phase developed and optimized the space-based point-of-departure (POD) 2.5-stage lunar vehicle. The second phase developed a broad decision database of 95 different vehicle options and transportation architectures. The final phase chose the three most cost-effective architectures and developed point designs to carry to the end of the study. These reference vehicle designs are mutually exclusive and correspond to different national choices about launch vehicles and in-space reusability. There is, however, potential for evolution between concepts.

  6. Detecting temperature fluctuations at equilibrium.

    PubMed

    Dixit, Purushottam D

    2015-05-21

    The Gibbs and the Boltzmann definition of temperature agree only in the macroscopic limit. The ambiguity in identifying the equilibrium temperature of a finite-sized 'small' system exchanging energy with a bath is usually understood as a limitation of conventional statistical mechanics. We interpret this ambiguity as resulting from a stochastically fluctuating temperature coupled with the phase space variables giving rise to a broad temperature distribution. With this ansatz, we develop the equilibrium statistics and dynamics of small systems. Numerical evidence using an analytically tractable model shows that the effects of temperature fluctuations can be detected in the equilibrium and dynamical properties of the phase space of the small system. Our theory generalizes statistical mechanics to small systems relevant in biophysics and nanotechnology.

  7. Self-adaptive enhanced sampling in the energy and trajectory spaces: accelerated thermodynamics and kinetic calculations.

    PubMed

    Gao, Yi Qin

    2008-04-07

    Here, we introduce a simple self-adaptive computational method to enhance the sampling in energy, configuration, and trajectory spaces. The method makes use of two strategies. It first uses a non-Boltzmann distribution method to enhance the sampling in the phase space, in particular, in the configuration space. The application of this method leads to a broad energy distribution in a large energy range and a quickly converged sampling of molecular configurations. In the second stage of simulations, the configuration space of the system is divided into a number of small regions according to preselected collective coordinates. An enhanced sampling of reactive transition paths is then performed in a self-adaptive fashion to accelerate kinetics calculations.

  8. User assembly and servicing system for Space Station, an evolving architecture approach

    NASA Technical Reports Server (NTRS)

    Lavigna, Thomas A.; Cline, Helmut P.

    1988-01-01

    On-orbit assembly and servicing of a variety of scientific and applications hardware systems is expected to be one of the Space Station's primary functions. The hardware to be serviced will include the attached payloads resident on the Space Station, the free-flying satellites and co-orbiting platforms brought to the Space Station, and the polar orbiting platforms. The requirements for assembly and servicing such a broad spectrum of missions have led to the development of an Assembly and Servicing System Architecture that is composed of a complex array of support elements. This array is comprised of US elements, both Space Station and non-Space Station, and elements provided by Canada to the Space Station Program. For any given servicing or assembly mission, the necessary support elements will be employed in an integrated manner to satisfy the mission-specific needs. The structure of the User Assembly and Servicing System Architecture and the manner in which it will evolved throughout the duration of the phased Space Station Program are discussed. Particular emphasis will be placed upon the requirements to be accommodated in each phase, and the development of a logical progression of capabilities to meet these requirements.

  9. Defining climate change scenario characteristics with a phase space of cumulative primary energy and carbon intensity

    NASA Astrophysics Data System (ADS)

    Ritchie, Justin; Dowlatabadi, Hadi

    2018-02-01

    Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing. Scenarios of socio-technical development consistent with end-of-century forcing levels are commonly produced by integrated assessment models. However, outlooks for forcing from fossil energy combustion can also be presented and defined in terms of two essential components: total energy use this century and the carbon intensity of that energy. This formulation allows a phase space diagram to succinctly describe a broad range of possible outcomes for carbon emissions from the future energy system. In the following paper, we demonstrate this phase space method with the Representative Concentration Pathways (RCPs) as used in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The resulting RCP phase space is applied to map IPCC Working Group III (WGIII) reference case ‘no policy’ scenarios. Once these scenarios are described as coordinates in the phase space, data mining techniques can readily distill their core features. Accordingly, we conduct a k-means cluster analysis to distinguish the shared outlooks of these scenarios for oil, gas and coal resource use. As a whole, the AR5 database depicts a transition toward re-carbonization, where a world without climate policy inevitably leads to an energy supply with increasing carbon intensity. This orientation runs counter to the experienced ‘dynamics as usual’ of gradual decarbonization, suggesting climate change targets outlined in the Paris Accord are more readily achievable than projected to date.

  10. Multidimensional kinetic simulations using dissipative closures and other reduced Vlasov methods for differing particle magnetizations

    NASA Astrophysics Data System (ADS)

    Newman, David L.

    2006-10-01

    Kinetic plasma simulations in which the phase-space distribution functions are advanced directly via the coupled Vlasov and Poisson (or Maxwell) equations---better known simply as Vlasov simulations---provide a valuable low-noise complement to the more commonly employed Particle-in-Cell (PIC) simulations. However, in more than one spatial dimension Vlasov simulations become numerically demanding due to the high dimensionality of x--v phase-space. Methods that can reduce this computational demand are therefore highly desirable. Several such methods will be presented, which treat the phase-space dynamics along a dominant dimension (e.g., parallel to a beam or current) with the full Vlasov propagator, while employing a reduced description, such as moment equations, for the evolution perpendicular to the dominant dimension. A key difference between the moment-based (and other reduced) methods considered here and standard fluid methods is that the moments are now functions of a phase-space coordinate (e.g. moments of vy in z--vz--y phase space, where z is the dominant dimension), rather than functions of spatial coordinates alone. Of course, moment-based methods require closure. For effectively unmagnetized species, new dissipative closure methods inspired by those of Hammett and Perkins [PRL, 64, 3019 (1990)] have been developed, which exactly reproduce the linear electrostatic response for a broad class of distributions with power-law tails, as are commonly measured in space plasmas. The nonlinear response, which requires more care, will also be discussed. For weakly magnetized species (i.e., φs<φs) an alternative algorithm has been developed in which the distributions are assumed to gyrate about the magnetic field with a fixed nominal perpendicular ``thermal'' velocity, thereby reducing the required phase-space dimension by one. These reduced algorithms have been incorporated into 2-D codes used to study the evolution of nonlinear structures such as double layers and electron holes in Earth's auroral zone.

  11. Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration-Luminosity Phase Space

    NASA Astrophysics Data System (ADS)

    Villar, V. Ashley; Berger, Edo; Metzger, Brian D.; Guillochon, James

    2017-11-01

    The duration-luminosity phase space (DLPS) of optical transients is used, mostly heuristically, to compare various classes of transient events, to explore the origin of new transients, and to influence optical survey observing strategies. For example, several observational searches have been guided by intriguing voids and gaps in this phase space. However, we should ask, do we expect to find transients in these voids given our understanding of the various heating sources operating in astrophysical transients? In this work, we explore a broad range of theoretical models and empirical relations to generate optical light curves and to populate the DLPS. We explore transients powered by adiabatic expansion, radioactive decay, magnetar spin-down, and circumstellar interaction. For each heating source, we provide a concise summary of the basic physical processes, a physically motivated choice of model parameter ranges, an overall summary of the resulting light curves and their occupied range in the DLPS, and how the various model input parameters affect the light curves. We specifically explore the key voids discussed in the literature: the intermediate-luminosity gap between classical novae and supernovae, and short-duration transients (≲ 10 days). We find that few physical models lead to transients that occupy these voids. Moreover, we find that only relativistic expansion can produce fast and luminous transients, while for all other heating sources events with durations ≲ 10 days are dim ({M}{{R}}≳ -15 mag). Finally, we explore the detection potential of optical surveys (e.g., Large Synoptic Survey Telescope) in the DLPS and quantify the notion that short-duration and dim transients are exponentially more difficult to discover in untargeted surveys.

  12. Real-space mapping of Fano interference in plasmonic metamolecules.

    PubMed

    Alonso-Gonzalez, Pablo; Schnell, Martin; Sarriugarte, Paulo; Sobhani, Heidar; Wu, Chihhui; Arju, Nihal; Khanikaev, Alexander; Golmar, Federico; Albella, Pablo; Arzubiaga, Libe; Casanova, Felix; Hueso, Luis E; Nordlander, Peter; Shvets, Gennady; Hillenbrand, Rainer

    2011-09-14

    An unprecedented control of the spectral response of plasmonic nanoantennas has recently been achieved by designing structures that exhibit Fano resonances. This new insight is paving the way for a variety of applications, such as biochemical sensing and surface-enhanced Raman spectroscopy. Here we use scattering-type near-field optical microscopy to map the spatial field distribution of Fano modes in infrared plasmonic systems. We observe in real space the interference of narrow (dark) and broad (bright) plasmonic resonances, yielding intensity and phase toggling between different portions of the plasmonic metamolecules when either their geometric sizes or the illumination wavelength is varied.

  13. Remotely-interrogated high data rate free space laser communications link

    DOEpatents

    Ruggiero, Anthony J [Livermore, CA

    2007-05-29

    A system and method of remotely extracting information from a communications station by interrogation with a low power beam. Nonlinear phase conjugation of the low power beam results in a high power encoded return beam that automatically tracks the input beam and is corrected for atmospheric distortion. Intracavity nondegenerate four wave mixing is used in a broad area semiconductor laser in the communications station to produce the return beam.

  14. Nonglobal correlations in collider physics

    DOE PAGES

    Moult, Ian; Larkoski, Andrew J.

    2016-01-13

    Despite their importance for precision QCD calculations, correlations between in- and out-of-jet regions of phase space have never directly been observed. These so-called non-global effects are present generically whenever a collider physics measurement is not explicitly dependent on radiation throughout the entire phase space. In this paper, we introduce a novel procedure based on mutual information, which allows us to isolate these non-global correlations between measurements made in different regions of phase space. We study this procedure both analytically and in Monte Carlo simulations in the context of observables measured on hadronic final states produced in e+e- collisions, though itmore » is more widely applicable.The procedure exploits the sensitivity of soft radiation at large angles to non-global correlations, and we calculate these correlations through next-to-leading logarithmic accuracy. The bulk of these non-global correlations are found to be described in Monte Carlo simulation. They increase by the inclusion of non-perturbative effects, which we show can be incorporated in our calculation through the use of a model shape function. As a result, this procedure illuminates the source of non-global correlations and has connections more broadly to fundamental quantities in quantum field theory.« less

  15. NASA's In-Space Manufacturing Project: Materials and Manufacturing Process Development Update

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    The mission of NASA's In-Space Manufacturing (ISM) project is to identify, design, and implement on-demand, sustainable manufacturing solutions for fabrication, maintenance and repair during exploration missions. ISM has undertaken a phased strategy of incrementally increasing manufacturing capabilities to achieve this goal. The ISM project began with the development of the first 3D printer for the International Space Station. To date, the printer has completed two phases of flight operations. Results from phase I specimens indicated some differences in material properties between ground-processed and ISS-processed specimens, but results of follow-on analyses of these parts and a ground-based study with an equivalent printer strongly indicate that this variability is likely attributable to differences in manufacturing process settings between the ground and flight prints rather than microgravity effects on the fused deposition modeling (FDM) process. Analysis of phase II specimens from the 3D Printing in Zero G tech demo, which shed further light on the sources of material variability, will be presented. The ISM project has also developed a materials characterization plan for the Additive Manufacturing Facility, the follow-on commercial multimaterial 3D printing facility developed for ISS by Made in Space. This work will yield a suite of characteristic property values that can inform use of AMF by space system designers. Other project activities include development of an integrated 3D printer and recycler, known as the Refabricator, by Tethers Unlimited, which will be operational on ISS in 2018. The project also recently issued a broad area announcement for a multimaterial fabrication laboratory, which may include in-space manufacturing capabilities for metals, electronics, and polymeric materials, to be deployed on ISS in the 2022 timeframe.

  16. Time Exceedances for High Intensity Solar Proton Fluxes

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adam, James H., Jr.; Dietrich, William F.

    2011-01-01

    A model is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  17. Periods of High Intensity Solar Proton Flux

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.

    2012-01-01

    Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  18. The NASA program in Space Energy Conversion Research and Technology

    NASA Astrophysics Data System (ADS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  19. The NASA program in Space Energy Conversion Research and Technology

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  20. Quantum adiabatic machine learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen L.; Lidar, Daniel A.

    2013-05-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehgal, Ray M.; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu; Ford, David M., E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu

    We have developed a coarse-grained description of the phase behavior of the isolated 38-atom Lennard-Jones cluster (LJ{sub 38}). The model captures both the solid-solid polymorphic transitions at low temperatures and the complex cluster breakup and melting transitions at higher temperatures. For this coarse model development, we employ the manifold learning technique of diffusion mapping. The outcome of the diffusion mapping analysis over a broad temperature range indicates that two order parameters are sufficient to describe the cluster's phase behavior; we have chosen two such appropriate order parameters that are metrics of condensation and overall crystallinity. In this well-justified coarse-variable space,more » we calculate the cluster's free energy landscape (FEL) as a function of temperature, employing Monte Carlo umbrella sampling. These FELs are used to quantify the phase behavior and onsets of phase transitions of the LJ{sub 38} cluster.« less

  2. Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics

    NASA Astrophysics Data System (ADS)

    Jo, Wook; Daniels, John E.; Jones, Jacob L.; Tan, Xiaoli; Thomas, Pamela A.; Damjanovic, Dragan; Rödel, Jürgen

    2011-01-01

    The correlation between structure and electrical properties of lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.

  3. Lunar gravity affects leaf movement of Arabidopsis thaliana in the International Space Station.

    PubMed

    Fisahn, Joachim; Klingelé, Emile; Barlow, Peter

    2015-06-01

    Cyclic leaf ascent and descent occur in synchrony and phase congruence with the lunisolar tidal force under a broad range of conditions. Digitized records of the vertical leaf movements of Arabidopsis thaliana were collected under space flight conditions in the International Space Station (ISS). Oscillations of leaf movements with periods of 45 and 90 min were found under light-adapted conditions, whereas in darkness, the periods were 45, 90, and 135 min. To demonstrate the close relationship between these oscillations and cyclical variations of the lunisolar gravitational force, we estimated the oscillations of the in-orbit lunisolar tide as they apply to the ISS, with the aid of the Etide software application. In general, in-orbit lunisolar gravitational profiles exhibited a periodicity of 45 min. Alignment of these in-orbit oscillations with the oscillations of Arabidopsis leaf movement revealed high degrees of synchrony and a congruence of phase. These data corroborate previous results which suggested a correlative relationship and a possible causal link between leaf movement rhythms obtained on ground and the rhythmic variation of the lunisolar tidal force.

  4. Systematic optimization of laser cooling of dysprosium

    NASA Astrophysics Data System (ADS)

    Mühlbauer, Florian; Petersen, Niels; Baumgärtner, Carina; Maske, Lena; Windpassinger, Patrick

    2018-06-01

    We report on an apparatus for cooling and trapping of neutral dysprosium. We characterize and optimize the performance of our Zeeman slower and 2D molasses cooling of the atomic beam by means of Doppler spectroscopy on a 136 kHz broad transition at 626 nm. Furthermore, we demonstrate the characterization and optimization procedure for the loading phase of a magneto-optical trap (MOT) by increasing the effective laser linewidth by sideband modulation. After optimization of the MOT compression phase, we cool and trap up to 10^9 atoms within 3 seconds in the MOT at temperatures of 9 μK and phase space densities of 1.7 \\cdot 10^{-5}, which constitutes an ideal starting point for loading the atoms into an optical dipole trap and for subsequent forced evaporative cooling.

  5. The future of space imaging. Report of a community-based study of an advanced camera for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Brown, Robert A. (Editor)

    1993-01-01

    The scientific and technical basis for an Advanced Camera (AC) for the Hubble Space Telescope (HST) is discussed. In March 1992, the NASA Program Scientist for HST invited the Space Telescope Science Institute to conduct a community-based study of an AC, which would be installed on a scheduled HST servicing mission in 1999. The study had three phases: a broad community survey of views on candidate science program and required performance of the AC, an analysis of technical issues relating to its implementation, and a panel of experts to formulate conclusions and prioritize recommendations. From the assessment of the imaging tasks astronomers have proposed for or desired from HST, we believe the most valuable 1999 instrument would be a camera with both near ultraviolet/optical (NUVO) and far ultraviolet (FUV) sensitivity, and with both wide field and high resolution options.

  6. SLS Scale Model Acoustic Test Liftoff Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, Douglas; Giacomoni, Clothilde

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible design phase test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments.

  7. Solar X-ray Astronomy Sounding Rocket Program

    NASA Technical Reports Server (NTRS)

    Moses, J. Daniel

    1989-01-01

    Several broad objectives were pursued by the development and flight of the High Resolution Soft X-Ray Imaging Sounding Rocket Payload, followed by the analysis of the resulting data and by comparison with both ground based and space based observations from other investigators. The scientific objectives were: to study the thermal equilibrium of active region loop systems by analyzing the X-ray observations to determine electron temperatures, densities, and pressures; by recording the changes in the large scale coronal structures from the maximum and descending phases of Cycle 21 to the ascending phase of Cycle 22; and to extend the study of small scale coronal structures through the minimum of Cycle 21 with new emphasis on correlative observations.

  8. Broadly tunable, low timing jitter, high repetition rate optoelectronic comb generator

    PubMed Central

    Metcalf, A. J.; Quinlan, F.; Fortier, T. M.; Diddams, S. A.; Weiner, A. M.

    2016-01-01

    We investigate the low timing jitter properties of a tunable single-pass optoelectronic frequency comb generator. The scheme is flexible in that both the repetition rate and center frequency can be continuously tuned. When operated with 10 GHz comb spacing, the integrated residual pulse-to-pulse timing jitter is 11.35 fs (1 Hz to 10 MHz) with no feedback stabilization. The corresponding phase noise at 1 Hz offset from the photodetected 10 GHz carrier is −100 dBc/Hz. PMID:26865734

  9. Solid-phase synthesis and chemical space analysis of a 190-membered alkaloid/terpenoid-like library

    PubMed Central

    Moura-Letts, Gustavo; DiBlasi, Christine M.; Bauer, Renato A.; Tan, Derek S.

    2011-01-01

    Alkaloid and terpenoid natural products display an extensive array of chemical frameworks and biological activities. However such scaffolds remain underrepresented in current screening collections and are, thus, attractive targets for the synthesis of natural product-based libraries that access underexploited regions of chemical space. Recently, we reported a systematic approach to the stereoselective synthesis of multiple alkaloid/terpenoid-like scaffolds using transition metal-mediated cycloaddition and cyclization reactions of enyne and diyne substrates assembled on a tert-butylsulfinamide lynchpin. We report herein the synthesis of a 190-membered library of alkaloid/terpenoid-like molecules using this synthetic approach. Translation to solid-phase synthesis was facilitated by the use of a tert-butyldiarylsilyl (TBDAS) linker that closely mimics the tert-butyldiphenysilyl protecting group used in the original solution-phase route development work. Unexpected differences in stereoselectivity and regioselectivity were observed in some reactions when carried out on solid support. Further, the sulfinamide moiety could be hydrolyzed or oxidized efficiently without compromising the TBDAS linker to provide additional amine and sulfonamide functionalities. Principal component analysis of the structural and physicochemical properties of these molecules confirmed that they access regions of chemical space that overlap with bona fide natural products and are distinct from areas addressed by conventional synthetic drugs and drug-like molecules. The influences of scaffolds and substituents were also evaluated, with both found to have significant impacts on location in chemical space and three-dimensional shape. Broad biological evaluation of this library will provide valuable insights into the abilities of natural product-based libraries to access similarly underexploited regions of biological space. PMID:21451137

  10. Applications of telecommunication technology for optical instrumentation with an emphasis on space-time duality

    NASA Astrophysics Data System (ADS)

    van Howe, James William

    Telecommunication technology has often been applied to areas of science and engineering seemingly unrelated to communication systems. Innovations such as electronic amplifiers, the transistor, digital coding, optical fiber, and the laser, which all had roots in communication technology, have been implemented in devices from bar-code scanners to fiber endoscopes for medical procedures. In the same way, the central theme of the work in the following chapters has been to borrow both the concepts and technology of telecommunications systems to develop novel optical instrumentation for non-telecom pursuits. This work particularly leverages fiber-integrated electro-optic phase modulators to apply custom phase profiles to ultrafast pulses for control and manipulation. Such devices are typically used in telecom transmitters to encode phase data onto optical pulses (differential phase-shift keying), or for chirped data transmission. We, however, use electro-optic phase modulators to construct four novel optical devices: (1) a programmable ultrafast optical delay line with record scanning speed for applications in optical metrology, interferometry, or broad-band phase arrays, (2) a multiwavelength pulse generator for real-time optical sampling of electronic waveforms, (3) a simple femtosecond pulse generator for uses in biomedical imaging or ultrafast spectroscopy, and (4) a nonlinear phase compensator to increase the energy of fiber-amplified ultrashort pulse systems. In addition, we describe a fifth instrument which makes use of a higher-order mode fiber, similar in design to dispersion compensating fibers used for telecom. Through soliton self-frequency shift in the higher-order mode fiber, we can broadly-tune the center frequency of ultrashort pulses in energy regimes useful for biomedical imaging or ultrafast spectroscopy. The advantages gained through using telecom components in each of these systems are the simplicity and robustness of all-fiber configurations, high-speed operation, and electronic control of signals. Finally, we devote much attention to the paradigm of space-time duality and temporal imaging which allows the electro-optic phase modulators used in our instrumentation to be framed as temporal analogs of diffractive optical elements such as lenses and prisms. We show how the concepts of "time-lenses" and "time-prisms" give an intuitive understanding of our work as well as insight for the general development of optical instrumentation.

  11. Driven Phases of Quantum Matter

    NASA Astrophysics Data System (ADS)

    Khemani, Vedika; von Keyserlingk, Curt; Lazarides, Achilleas; Moessner, Roderich; Sondhi, Shivaji

    Clean and interacting periodically driven quantum systems are believed to exhibit a single, trivial ``infinite-temperature'' Floquet-ergodic phase. By contrast, I will show that their disordered Floquet many-body localized counterparts can exhibit distinct ordered phases with spontaneously broken symmetries delineated by sharp transitions. Some of these are analogs of equilibrium states, while others are genuinely new to the Floquet setting. I will show that a subset of these novel phases are absolutely stableto all weak local deformations of the underlying Floquet drives, and spontaneously break Hamiltonian dependent emergent symmetries. Strikingly, they simultaneously also break the underlying time-translation symmetry of the Floquet drive and the order parameter exhibits oscillations at multiples of the fundamental period. This ``time-crystallinity'' goes hand in hand with spatial symmetry breaking and, altogether, these phases exhibit a novel form of simultaneous long-range order in space and time. I will describe how this spatiotemporal order can be detected in experiments involving quenches from a broad class of initial states.

  12. LIDAR technology developments in support of ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland

    2017-11-01

    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  13. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity

    DOE PAGES

    Liu, Bo; Braiman, Yehuda

    2018-02-06

    In this paper, we introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ~25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. Finally, we found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.

  14. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Braiman, Yehuda

    2018-05-01

    We introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ∼25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. We found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.

  15. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bo; Braiman, Yehuda

    In this paper, we introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ~25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. Finally, we found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.

  16. An Overview of Space Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Scott, John H.

    2007-01-01

    Power is a critical commodity for all engineering efforts and is especially challenging in the aerospace field. This paper will provide a broad brush overview of some of the immediate and important challenges to NASA missions in the field of aerospace power, for generation, energy conversion, distribution, and storage. NASA s newest vehicles which are currently in the design phase will have power systems that will be developed from current technology, but will have the challenges of being light-weight, energy-efficient, and space-qualified. Future lunar and Mars "outposts" will need high power generation units for life support and energy-intensive exploration efforts. An overview of the progress in concepts for power systems and the status of the required technologies are discussed.

  17. Subscale Acoustic Testing: Comparison of ALAT and ASMAT

    NASA Technical Reports Server (NTRS)

    Houston, Janice D.; Counter, Douglas

    2014-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option. This paper compares the acoustic measurements of two different subscale tests: the 2% Ares Liftoff Acoustic Test conducted at Stennis Space Center and the 5% Ares I Scale Model Acoustic Test conducted at Marshall Space Flight Center.

  18. A microwave interferometer for small and tenuous plasma density measurements.

    PubMed

    Tudisco, O; Lucca Fabris, A; Falcetta, C; Accatino, L; De Angelis, R; Manente, M; Ferri, F; Florean, M; Neri, C; Mazzotta, C; Pavarin, D; Pollastrone, F; Rocchi, G; Selmo, A; Tasinato, L; Trezzolani, F; Tuccillo, A A

    2013-03-01

    The non-intrusive density measurement of the thin plasma produced by a mini-helicon space thruster (HPH.com project) is a challenge, due to the broad density range (between 10(16) m(-3) and 10(19) m(-3)) and the small size of the plasma source (2 cm of diameter). A microwave interferometer has been developed for this purpose. Due to the small size of plasma, the probing beam wavelength must be small (λ = 4 mm), thus a very high sensitivity interferometer is required in order to observe the lower density values. A low noise digital phase detector with a phase noise of 0.02° has been used, corresponding to a density of 0.5 × 10(16) m(-3).

  19. Quasi-Airy beams along tunable propagation trajectories and directions.

    PubMed

    Qian, Yixian; Zhang, Site

    2016-05-02

    We present a theoretical and experimental exhibit that accelerates quasi-Airy beams propagating along arbitrarily appointed parabolic trajectories and directions in free space. We also demonstrate that such quasi-Airy beams can be generated by a tunable phase pattern, where two disturbance factors are introduced. The topological structures of quasi-Airy beams are readily manipulated with tunable phase patterns. Quasi-Airy beams still possess the characteristics of non-diffraction, self-healing to some extent, although they are not the solutions for paraxial wave equation. The experiments show the results are consistent with theoretical predictions. It is believed that the property of propagation along arbitrarily desired parabolic trajectories will provide a broad application in trapping atom and living cell manipulation.

  20. Observation of an Opposition Surge on Triton

    NASA Astrophysics Data System (ADS)

    Herbert, B. D.; Buratti, B. J.; Schmidt, B.; Bauer, J. M.; Hicks, M. D.

    2004-11-01

    Ground-based observations of Neptune's moon Triton taken during the summers of 2000, 2003, and 2004 show a rotational light curve with a large amplitude. This is in stark contrast to data from the 1989 Voyager II flyby, which implies significant changes have occurred on Triton's surface since that time. The light curve has two notable regions, one that is significantly brighter than was observed in 1989 and one that is significantly darker. Data were also taken at a broad range of solar phase angles, allowing for a comprehensive study of the effects of phase on Triton's brightness. Analysis of the phase curve yields a solar phase coefficient close to zero for phases greater than 0.08 degrees, a number in close agreement with past studies that focused on higher phase angles. We also report a previously unrecognized opposition surge. Preliminary analysis suggests that the surge has different characteristics in the dark and bright regions currently visible on Triton, implying a non-homogenous regolith. Funding for this project was provided in part by the New York Space Grant Consortium and the NASA Undergraduate Student Research Program.

  1. Aircraft operability methods applied to space launch vehicles

    NASA Astrophysics Data System (ADS)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sypek, John T.; Yu, Hang; Dusoe, Keith J.

    Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less

  3. Generation of Langmuir wave supercontinuum by phase-preserving equilibration of plasmons with irreversible wave-particle interaction

    NASA Astrophysics Data System (ADS)

    Eiichirou, Kawamori

    2018-04-01

    We report the observation of supercontinuum of Langmuir plasma waves, that exhibits broad power spectrum having significant spatio-temporal coherence grown from a monochromatic seed-wave, in one-dimensional particle-in-cell simulations. The Langmuir wave supercontinuum (LWSC) is formed when the seed wave excites side-band fields efficiently by the modulational instabilities. Its identification is achieved by the use of the tricoherence analysis, which detects four wave mixings (FWMs) of plasmons (plasma wave quanta), and evaluation of the first order coherence, which is a measure of temporal coherence, of the wave electric fields. The irreversible evolution to the coherent LWSC from the seed wave is realized by the wave-particle interactions causing stochastic electron motions in the phase space and the coherence of LWSC is maintained by the phase-preserving FWMs of plasmons. The LWSC corresponds to a quasi Bernstein-Greene-Kruskal mode.

  4. Temperature controlled evolution of monoclinic to super-tetragonal phase of epitaxial BiFeO3 thin films on La0.67Sr0.33MnO3 buffered SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Singh, Anar; Kaifeng, Dong; Chen, Jing-Sheng

    2018-03-01

    Epitaxial BiFeO3 thin films of 130nm were deposited by pulsed laser deposition (PLD) technique on La0.67Sr0.33MnO3 buffered SrTiO3 (001) substrate at various temperatures under different ambient oxygen pressures. Reciprocal space mapping reveals that, with decreasing temperature and oxygen pressure, the broadly reported monoclinic phase (MA) of BiFeO3 thin film initially transforms to a tetragonal phase (T1) with c/a =1.05 (1) in a narrow girth of deposition condition and then to a super-tetragonal phase (T2) with giant c/a = 1.24 (1), as confirmed by reciprocal space mapping using high resolution x-ray diffraction. The surface morphology of the films reveals the island growth of the BiFeO3 films deposited at low temperatures. We propose that the transformation from monoclinic to the super-tetragonal phase is essentially due to the manifestation of excess local strain as a result of the island growth. This study offers a recipe to grow the super-tetragonal phase of BiFeO3, with giant c/a =1.24 (1) which exhibits exceptionally large ferroelectric polarization, on ferromagnetic layer La0.67Sr0.33MnO3. This phase of BiFeO3 can be utilized for the ferroelectric control of magnetism at the interface of BiFeO3 and La0.67Sr0.33MnO3.

  5. F.I.D.O. Focused Integration for Debris Observation

    NASA Astrophysics Data System (ADS)

    Ploschnitznig, J.

    2013-09-01

    The fact that satellites play a growing role in our day-to-day live, contributes to the overall assessment that these assets must be protected. As more and more objects enter space and begin to clutter this apparently endless vacuum, we begin to realize that these objects and associated debris become a potential and recurring threat. The space surveillance community routinely attempts to catalog debris through broad area search collection profiles, hoping to detect and track smaller and smaller objects. There are technical limitations to each collection system, we propose there may be new ways to increase the detection capability, effectively "Teaching an old dog (FIDO), new tricks." Far too often, we are justly criticized for never "stepping out of the box". The philosophy of "if it's not broke, don't fix it" works great if you assume that we are not broke. The assumption that in order to "Find" new space junk we need to increase our surveillance windows and try to cover as much space as possible may be appropriate for Missile Defense, but inappropriate for finding small space debris. Currently, our Phased Array Early Warning Systems support this yearly search program to try to acquire and track space small debris. A phased array can electronically scan the horizons very quickly, but the radar does have limitations. There is a closed-loop resource management equation that must be satisfied. By increasing search volume, we effectively reduce our instantaneous sensitivity which will directly impact our ability to find smaller and smaller space debris. Our proposal will be to focus on increasing sensitivity by reducing the search volume to statistically high probability of detection volumes in space. There are two phases to this proposal, a theoretical and empirical. Theoretical: The first phase will be to investigate the current space catalog and use existing ephemeris data on all satellites in the Space Surveillance Catalog to identify volumes of space with a high likelihood of encountering transiting satellite. Also during this phase, candidate radar systems will be characterized to determine sensitivity levels necessary to detect certain sized objects. Data integration plays a critical role in lowering the noise floor of the collection area in order to detect smaller and smaller objects. Reducing the search volume to these high probability of intercept areas will allow the use of data integration to increase the likelihood of detection of small Radar Cross Section objects. Empirical: The next phase is to employ this technique using a legacy collection system. The collection community may choose any collection system. The goal will be to demonstrate how focusing on a very specific area and employing data integration will increase the likelihood of detection of smaller objects. This will result in the creation of an Inter Range Vector (IRV), which can be handed-off to downrange collection systems for additional tracking. The goal of FIDO will be demonstrate how these legacy systems can be better employed to help find smaller and smaller debris.

  6. Study of periodic motions of a satellite with a magnetic damper

    NASA Technical Reports Server (NTRS)

    Sadov, Y. A.; Teterin, A. D.

    1979-01-01

    The motion of a satellite with a magnetic damper in the plane of a circular polar orbit is studied. The asymptotics of periodic solutions are constructed for a satellite close to axisymmetric and the radius of convergence is evaluated for the power series obtained. In a broad range of values of parameters, a periodic solution is obtained by numerical integration of equations of motion of the satellite. The asymptotics of a bifurcated curve obtained (the curve on which origin of a pair of periodic solutions occurs) in the space of the parameters agrees well with the results of numerical computation with all physical values of these parameters. A breakdown is made of the space of the initial data of phase variables in the field of effect of different types of periodic motion.

  7. Automatic high-throughput screening of colloidal crystals using machine learning

    NASA Astrophysics Data System (ADS)

    Spellings, Matthew; Glotzer, Sharon C.

    Recent improvements in hardware and software have united to pose an interesting problem for computational scientists studying self-assembly of particles into crystal structures: while studies covering large swathes of parameter space can be dispatched at once using modern supercomputers and parallel architectures, identifying the different regions of a phase diagram is often a serial task completed by hand. While analytic methods exist to distinguish some simple structures, they can be difficult to apply, and automatic identification of more complex structures is still lacking. In this talk we describe one method to create numerical ``fingerprints'' of local order and use them to analyze a study of complex ordered structures. We can use these methods as first steps toward automatic exploration of parameter space and, more broadly, the strategic design of new materials.

  8. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates.

    PubMed

    Wu, Zhan; Zhang, Long; Sun, Wei; Xu, Xiao-Tian; Wang, Bao-Zong; Ji, Si-Cong; Deng, Youjin; Chen, Shuai; Liu, Xiong-Jun; Pan, Jian-Wei

    2016-10-07

    Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids. Copyright © 2016, American Association for the Advancement of Science.

  9. Transport of gases between the environment and alveoli – theoretical foundations

    PubMed Central

    Butler, James P.; Tsuda, Akira

    2015-01-01

    The transport of oxygen and carbon dioxide in the gas phase from the ambient environment to and from the alveolar gas/blood interface is accomplished through the tracheobronchial tree, and involves mechanisms of bulk or convective transport and diffusive net transport. The geometry of the airway tree and the fluid dynamics of these two transport processes combine in such a way that promotes a classical fractionation of ventilation into dead space and alveolar ventilation respectively. This simple picture continues to capture much of the essence of gas phase transport. On the other hand, a more detailed look at the interaction of convection and diffusion leads to significant new issues, many of which remain open questions. These are associated with parallel and serial inhomogeneities especially within the distal acinar units, velocity profiles in distal airways and terminal spaces subject to moving boundary conditions, and the serial transport of respiratory gases within the complex acinar architecture. This chapter focuses specifically on the theoretical foundations of gas transport, addressing two broad areas. The first deals with the reasons why the classical picture of alveolar and dead space ventilation is so successful; the second examines the underlying assumptions within current approximations to convective and diffusive transport, and how they interact to effect net gas exchange. PMID:23733643

  10. Nuclear technology and the space exploration missions

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W.; Sovie, Ronald J.

    1990-01-01

    The strategy for a major exploration initiative leading to permanent human presence beyond earth orbit is still being developed; however enough is known to begin defining the role of nuclear technologies. Three broad areas are discussed: low power (less than 10 kWe) rover/vehicle power systems; integrated, evolutionary base power systems (25 to 100 kW) and nuclear energy for electric propulsion (2 to 100 MWe); and direct thermal propulsion (1000s MW). A phased, evolutionary approach is described for both the moon and Mars, and the benefits of nuclear technologies relative to solar and their integration are described.

  11. Results from the PHOBOS experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Phobos Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; GarcíA, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; HolyńSki, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L. H.; Wosiek, B.; WoźNiak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.

    2004-04-01

    PHOBOS is one of the four experiments at the Relativistic Heavy Ion Collider measuringp + p, d + Au, andAu + Au collisions over a broad range of energies. PHOBOS is a silicon-pad based detector with a 4π multiplicity detector and a high resolution mid-rapidity spectrometer, along with other detectors (time-of-flight walls, proton and zero degree calorimeters). PHOBOS is able to measure particles at low transverse momentum, spectra, flow, particle ratios, and multiplicity over a large region of phase space. A comparison of results forAu + Au andd + Au collisions at√SNN = 220GeV will be discussed.

  12. 33-Foot-Diameter Space Station Leading to Space Base

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  13. Space Station

    NASA Image and Video Library

    1969-01-01

    This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  14. Polar Experiment Network for Geospace Upper-atmosphere Investigations (PENGUIn): A Vision for Global Polar Studies and Education

    NASA Astrophysics Data System (ADS)

    Weatherwax, A. T.; Lanzerotti, L. J.; Rosenberg, T. J.; Detrick, D. L.; Clauer, C. R.; Ridley, A.; Mende, S. B.; Frey, H. U.; Ostgaard, N.; Sterling, R. W.; Inan, U. S.; Engebretson, M. J.; Petit, N.; Labelle, J.; Lynch, K.; Lessard, M.; Maclennan, C. G.; Doolittle, J. H.; Fukunishi, H.

    2003-12-01

    The several decades since the advent of space flight have witnessed the ever growing importance and relevance of the Earth's space environment for understanding the functioning of Earth within the solar system and for understanding the effects of the Sun's influence on technological systems deployed on Earth and in space. Achieving a comprehensive understanding of Earth's geospace environment requires knowledge of the ionosphere and magnetosphere in both polar regions. Outlined in this talk is a broad, multi-national plan to investigate in depth, from Antarctica and nominally conjugate regions in the Arctic, the electrodynamic system that comprises the space environment of Planet Earth. Specifics include (a) the phased development of a new and comprehensive upper atmosphere geophysical measurement program based upon distributed instruments operating in an extreme polar environments; (b) real time data collection via satellites; (c) a methodology to build synergistic data sets from a global distribution of southern and northern hemisphere instrument arrays; and (d) an integration with all levels of education including high school, undergraduate, graduate, and post-doctoral.

  15. Hydrodynamics of the Polyakov line in SU(N c) Yang-Mills

    DOE PAGES

    Liu, Yizhuang; Warchoł, Piotr; Zahed, Ismail

    2015-12-08

    We discuss a hydrodynamical description of the eigenvalues of the Polyakov line at large but finite N c for Yang-Mills theory in even and odd space-time dimensions. The hydro-static solutions for the eigenvalue densities are shown to interpolate between a uniform distribution in the confined phase and a localized distribution in the de-confined phase. The resulting critical temperatures are in overall agreement with those measured on the lattice over a broad range of N c, and are consistent with the string model results at N c = ∞. The stochastic relaxation of the eigenvalues of the Polyakov line out ofmore » equilibrium is captured by a hydrodynamical instanton. An estimate of the probability of formation of a Z(N c)bubble using a piece-wise sound wave is suggested.« less

  16. Geostationary earth climate sensor: Scientific utility and feasibility, phase A

    NASA Technical Reports Server (NTRS)

    Campbell, G. Garrett; Vonderharr, T. H.; Evert, T.; Kidder, Stanley Q.; Purdom, James F. W.

    1991-01-01

    The possibility of accurate broad band radiation budget measurements from a GEO platform will provide a unique opportunity for viewing radiation processes in the atmosphere-ocean system. The CSU/TRW team has prepared a Phase 1 instrument design study demonstrating that measurements of radiation budget are practical from geosynchronous orbit with proven technology. This instrument concept is the Geostationary Earth Climate Sensor (GECS). A range of resolutions down to 20 km at the top of the atmosphere are possible, depending upon the scientific goals of the experiment. These tradeoffs of resolution and measurement repeat cycles are examined for scientific utility. The design of a flexible instrument is shown to be possible to meet the two goals: long-term, systematic monitoring of the diurnal cycles of radiation budget; and high time and space resolution studies of regional radiation features.

  17. Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy.

    PubMed

    Wang, Shuai; Fan, Xinyu; Xu, Bingxin; He, Zuyuan

    2017-10-01

    An electro-optic frequency comb enables frequency-agile comb-based spectroscopy without using sophisticated phase-locking electronics. Nevertheless, dense electro-optic frequency combs over broad spans have yet to be developed. In this Letter, we propose a straightforward and efficient method for electro-optic frequency comb generation with a small line spacing and a large span. This method is based on two-stage modulation: generating an 18 GHz line-spacing comb at the first stage and a 250 MHz line-spacing comb at the second stage. After generating an electro-optic frequency comb covering 1500 lines, we set up an easily established mutually coherent hybrid dual-comb interferometer, which combines the generated electro-optic frequency comb and a free-running mode-locked laser. As a proof of concept, this hybrid dual-comb interferometer is used to measure the absorption and dispersion profiles of the molecular transition of H 13 CN with a spectral resolution of 250 MHz.

  18. [Effects of wind speed on drying processes of fuelbeds composed of Mongolian oak broad-leaves.

    PubMed

    Zhang, Li Bin; Sun, Ping; Jin, Sen

    2016-11-18

    Water desorption processes of fuel beds with Mongolian oak broad-leaves were observed under conditions with various wind speeds but nearly constant air temperature and humidity. The effects of wind speed on drying coefficients of fuel beds with various moisture contents were analyzed. Three phases of drying process, namely high initial moisture content (>75%) of phase 1, transition state of phase 2, and equilibrium phase III could be identified. During phase 1, water loss rate under higher wind speed was higher than that under lower wind speed. Water loss rate under higher wind speed was lower than that under lower wind speed during phase 2. During phase 3, water loss rates under different wind speeds were similar. The wind effects decreased with the decrease of fuel moisture. The drying coefficient of the Mongolian oak broad-leaves fuel beds was affected by wind speed and fuel bed compactness, and the interaction between these two factors. The coefficient increased with wind speed roughly in a monotonic cubic polynomial form.

  19. Enhanced TiO2 Photocatalytic Processing of Organic Wastes for Green Space Exploration

    NASA Technical Reports Server (NTRS)

    Udom, I.; Goswami, D. Y.; Ram, M. K.; Stefanakos, E. K.; Heep, A. F.; Kulis, M. J.; McNatt, J. S.; Jaworske, D. A.; Jones, C. A.

    2013-01-01

    The effect of transition metal co-catalysts on the photocatalytic properties of TiO2 was investigated. Ruthenium (Ru), palladium, platinum, copper, silver, and gold, were loaded onto TiO2 powders (anatase and mixed-phase P25) and screened for the decomposition of rhodamine B (RhB) under broad-band irradiation. The morphology and estimated chemical composition of photocatalysts were determined by scanning electron microscopy and energy dispersive spectroscopy, respectively. Brunhauer, Emmett and Teller (BET) analysis measured mass-specific surface area(s). X-ray diffraction analysis was performed to confirm the identity of titania phase(s) present. The BET surface area of anatase TiO2/Ru 1% (9.2 sq m/gm) was one of the highest measured of all photocatalysts prepared in our laboratory. Photolyses conducted under air-saturated and nitrogen-saturated conditions revealed photodegradation efficiencies of 85 and 2 percent, respectively, after 60 min compared to 58 percent with no catalyst. The cause of low photocatalytic activity under an inert atmosphere is discussed. TiO2/Ru 1% showed a superior photocatalytic activity relative to P25-TiO2 under broad-band irradiation. A potential deployment of photocatalytic technologies on a mission could be a reactor with modest enhancement in solar intensity brought about by a trough-style reactor, with reactants and catalyst flowing along the axis of the trough and therefore being illuminated for a controlled duration based on the flow rate.

  20. Detection of low-metallicity warm plasma in a galaxy overdensity environment at z ˜ 0.2

    NASA Astrophysics Data System (ADS)

    Narayanan, Anand; Savage, Blair D.; Mishra, Preetish K.; Wakker, Bart P.; Khaire, Vikram; Wadadekar, Yogesh

    2018-04-01

    We present results from the analysis of a multiphase O VI-broad Ly α (BLA) absorber at z = 0.19236 in the HubbleSpaceTelescope/Cosmic Origins Spectrograph spectrum of PG 1121 + 422. The low and intermediate ionization metal lines in this absorber have a single narrow component, whereas the Ly α has a possible broad component with b({H {I}}) ˜ 71 km s-1. Ionization models favour the low and intermediate ions coming from a T ˜ 8500 K, moderately dense (n H ˜ 10 - 3 cm-3) photoionized gas with near solar metallicities. The weak O VI requires a separate gas phase that is collisionally ionized. The O VI coupled with BLA suggests T ˜ 3.2 × 105 K, with significantly lower metal abundance and ˜1.8 orders of magnitude higher total hydrogen column density compared to the photoionized phase. Sloan Digitial Sky Survey (SDSS) shows 12 luminous (>L*) galaxies in the ρ ≤ 5 Mpc, |Δv| ≤ 800 km s-1 region surrounding the absorber, with the absorber outside the virial bounds of the nearest galaxy. The warm phase of this absorber is consistent with being transition temperature plasma either at the interface regions between the hot intragroup gas and cooler photoionized clouds within the group, or associated with high velocity gas in the halo of a ≲L* galaxy. The absorber highlights the advantage of O VI-BLA absorbers as ionization model independent probes of warm baryon reserves.

  1. Physics of Colloids in Space-2 (PCS-2)

    NASA Technical Reports Server (NTRS)

    Sankaran, Subramanian; Gasser, Urs; Manley, Suliana; Valentine, Megan; Prasad, Vikram; Rudhardt, Daniel; Bailey, Arthur; Dinsmore, Anthony; Segre, Phil; Doherty, Michael P.

    2001-01-01

    The Physics of Colloids-2 (PCS-2) experiment is aimed at investigating the basic physical properties of several types of colloidal suspensions. The three broad classes of colloidal systems of interest are binary colloids, colloid-polymer mixtures, and fractal gels. The objective is to understand their phase behavior as well as the kinetics of the phase transitions in the absence of gravity. The nucleation, growth, and morphology characteristics of the crystals and gels that form would be studied using confocal microscopy. These will be observed directly with excellent time resolution, and therefore extensive information about the different phases and their growth mechanisms will be gained. With the laser tweezers, it will be possible to measure the strength of these structures and to modify them in a controlled way, and the spectrophotometer will provide the possibility to probe their optical properties. We believe that this experiment will provide the basis for future 'colloid engineering' in which complicated structures with novel properties (e.g., photonic crystals) will be grown by controlled self-assembly.

  2. Phase Rotation of Muon Beams for Producing Intense Low-Energy Muon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D.; Bao, Y.; Hansen, G.

    2016-01-01

    Low-energy muon beams are useful for rare decay searches, which provide access to new physics that cannot be addressed at high-energy colliders. However, muons are produced within a broad energy spread unmatched to the low-energy required. In this paper we outline a phase rotation method to significantly increase the intensity of low-energy muons. The muons are produced from a short pulsed proton driver, and develop a time-momentum correlation in a drift space following production. A series of rf cavities is used to bunch the muons and phase-energy rotate the bunches to a momentum of around 100 MeV/c. Then another groupmore » of rf cavities is used to decelerate the muon bunches to low-energy. This obtains ~0.1 muon per 8 GeV proton, which is significantly higher than currently planned Mu2e experiments, and would enable a next generation of rare decay searches, and other intense muon beam applications.« less

  3. Superelasticity and cryogenic linear shape memory effects of CaFe 2As 2

    DOE PAGES

    Sypek, John T.; Yu, Hang; Dusoe, Keith J.; ...

    2017-10-20

    Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less

  4. Cochlear microphonic broad tuning curves

    NASA Astrophysics Data System (ADS)

    Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani

    2015-12-01

    It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the cochlear microphonic tuning curves.

  5. Constraining the Absolute Orientation of eta Carinae's Binary Orbit: A 3-D Dynamical Model for the Broad [Fe III] Emission

    NASA Technical Reports Server (NTRS)

    Madura, T. I.; Gull, T. R.; Owocki, S. P.; Groh, J. H.; Okazaki, A. T.; Russell, C. M. P.

    2011-01-01

    We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA(theta) that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38deg, and the temporal variations in emission seen at negative slit PAs, the binary needs to have an i approx. = 130deg to 145deg, Theta approx. = -15deg to +30deg, and an orbital axis projected on the sky at a P A approx. = 302deg to 327deg east of north. This represents a system with an orbital axis that is closely aligned with the inferred polar axis of the Homunculus nebula, in 3-D. The companion star, Eta(sub B), thus orbits clockwise on the sky and is on the observer's side of the system at apastron. This orientation has important implications for theories for the formation of the Homunculus and helps lay the groundwork for orbital modeling to determine the stellar masses.

  6. Broadband biphoton generation and statistics of quantum light in the UV-visible range in an AlGaN microring resonator.

    PubMed

    De Leonardis, Francesco; Soref, Richard A; Soltani, Mohammad; Passaro, Vittorio M N

    2017-09-12

    We present a physical investigation on the generation of correlated photon pairs that are broadly spaced in the ultraviolet (UV) and visible spectrum on a AlGaN/AlN integrated photonic platform which is optically transparent at these wavelengths. Using spontaneous four wave mixing (SFWM) in an AlGaN microring resonator, we show design techniques to satisfy the phase matching condition between the optical pump, the signal, and idler photon pairs, a condition which is essential and is a key hurdle when operating at short wavelength due to the strong normal dispersion of the material. Such UV-visible photon pairs are quite beneficial for interaction with qubit ions that are mostly in this wavelength range, and will enable heralding the photon-ion interaction. As a target application example, we present the systematic AlGaN microresonator design for generating signal and idler photon pairs using a blue wavelength pump, while the signal appears at the transition of ytterbium ion ( 171 Yb + , 369.5 nm) and the idler appears in the far blue or green range. The photon pairs have minimal crosstalk to the pump power due to their broad spacing in spectral wavelength, thereby relaxing the design of on-chip integrated filters for separating pump, signal and idler.

  7. Events of wound healing/regeneration in the canine supraalveolar periodontal defect model.

    PubMed

    Dickinson, Douglas P; Coleman, Brandon G; Batrice, Nathan; Lee, Jaebum; Koli, Komal; Pennington, Cathy; Susin, Cristiano; Wikesjö, Ulf M E

    2013-05-01

    The objective of this research was to elucidate early events in periodontal wound healing/regeneration using histological and immunohistochemical techniques. Routine critical-size, supraalveolar, periodontal defects including a space-providing titanium mesh device were created in 12 dogs. Six animals received additional autologous blood into the defect prior to wound closure. One animal from each group was killed for analysis at 2, 5, 9, 14 days, and at 4 and 8 weeks. Both groups behaved similarly. Periodontal wound healing/regeneration progressed through three temporal phases. Early phase (2-5 days): heterogeneous clot consolidation and cell activation in the periodontal ligament (PDL) and trabecular bone was associated with PDL regeneration and formation of a pre-osteoblast population. Intermediate phase (9-14 days): cell proliferation (shown by PCNA immunostaining)/migration led to osteoid/bone, PDL and cementum formation. Late phase (4-8 weeks): primarily characterized by tissue remodelling/maturation. Fibrous connective tissue from the gingival mucosa entered the wound early, competing with regeneration. By day 14, the wound space was largely filled with regenerative and reparative tissues. Activation of cellular regenerative events in periodontal wound healing/regeneration is rapid; the general framework for tissue formation is broadly outlined within 14 days. Most bone formation apparently originates from endosteally derived pre-osteoblasts; the PDL possibly acting as a supplementary source, with a primary function likely being regulatory/homeostatic. Blood accumulation at the surgical site warrants exploration; supplementation may be beneficial. © 2012 John Wiley & Sons A/S.

  8. Molecular Analyzer for Complex Refractory Organic-Rich Surfaces (MACROS)

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie A.; Cook, Jamie E.; Balvin, Manuel; Brinckerhoff, William B.; Li, Xiang; Grubisic, Andrej; Cornish, Timothy; Ferrance, Jerome; Southard, Adrian

    2017-01-01

    The Molecular Analyzer for Complex Refractory Organic-rich Surfaces, MACROS, is a novel instrument package being developed at NASA Goddard Space Flight Center. MACROS enables the in situ characterization of a sample's composition by coupling two powerful techniques into one compact instrument package: (1) laser desorption/ionization time-of-flight mass spectrometry (LDMS) for broad detection of inorganic mineral composition and non-volatile organics, and (2) liquid-phase extraction methods to gently isolate the soluble organic and inorganic fraction of a planetary powder for enrichment and detailed analysis by liquid chromatographic separation coupled to LDMS. The LDMS is capable of positive and negative ion detection, precision mass selection, and fragment analysis. Two modes are included for LDMS: single laser LDMS as the broad survey mode and two step laser mass spectrometry (L2MS). The liquid-phase extraction will be done in a newly designed extraction module (EM) prototype, providing selectivity in the analysis of a complex sample. For the sample collection, a diamond drill front end will be used to collect rock/icy powder. With all these components and capabilities together, MACROS offers a versatile analytical instrument for a mission targeting an icy moon, carbonaceous asteroid, or comet, to fully characterize the surface composition and advance our understanding of the chemical inventory present on that body.

  9. In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.

    2012-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.

  10. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  11. Space Base Concept

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This is an illustration of the Space Base concept. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial-gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  12. Space Station

    NASA Image and Video Library

    1970-01-01

    This is an illustration of the Space Base concept. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial-gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  13. Ground-based Characterization of Hayabusa2 Mission Target Asteroid 162173 Ryugu

    NASA Astrophysics Data System (ADS)

    Le Corre, Lucille; Reddy, Vishnu; Sanchez, Juan A.; Takir, Driss; Cloutis, Edward; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri

    2017-10-01

    In preparation for the arrival of the Japanese Space Agency’s (JAXA) Hayabusa2 sample return mission to near-Earth asteroid (NEA) (162173) Ryugu, we took the opportunity to characterize the target with a ground-based telescope. We observed Ryugu using the SpeX instrument in Prism mode on NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on July, 12 2016 when the asteroid was 18.87 visual magnitude, at a phase angle of 13.3°. The NIR spectra were used to constrain Ryugu’s surface composition, meteorite analogs and spectral affinity to other asteroids. We also modeled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Masateru et al. (2014). Our spectrum of Ryugu has a broad absorption band at 1 µm, a slope change at 1.6 µm, and a second broad absorption band near 2.2 µm, but no well-defined absorption features over the 0.8-2.5 µm range. The two broad absorption features, if confirmed, are consistent with CO and CV chondrites. The shape of Ryugu’s spectrum matches very well those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regolith have similar composition. We also compared the spectrum of Ryugu with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as the source of Ryugu by Campins et al. (2013). We found that the spectrum of Clarissa shows significant differences with our NIR spectrum of Ryugu. Our analysis shows Ryugu’s spectrum best matches two CM2 carbonaceous chondrites, Mighei and ALH83100. We expect the surface regolith of Ryugu to be altered by a range of factors including temperature, contamination by exogenic material, and space weathering, posing challenges to link spacecraft and ground-based data, and sample site selection.

  14. Results from the PHOBOS experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Tonjes, Marguerite Belt; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; G´A, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; H´Ski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L. H.; Wosiek, B.; W´Niak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.; Phobos Collaboration

    2004-04-01

    PHOBOS is one of the four experiments at the Relativistic Heavy Ion Collider measuring p + p, d + Au, and Au + Au collisions over a broad range of energies. PHOBOS is a silicon-pad based detector with a 4π multiplicity detector and a high resolution mid-rapidity spectrometer, along with other detectors (time-of-flight walls, proton and zero degree calorimeters). PHOBOS is able to measure particles at low transverse momentum, spectra, flow, particle ratios, and multiplicity over a large region of phase space. A comparison of results for Au + Au and d + Au collisions at √S NN = 220GeV will be discussed.

  15. Transfer function analysis of the autonomic response to respiratory activity during random interval breathing

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Berger, R. D.; Saul, J. P.; Stevenson, K.; Cohen, R. J.

    1987-01-01

    We report a new method for the noninvasive characterization of the frequency response of the autonomic nervous system (ANS) in mediating fluctuations in heart rate (HR). The approach entails computation of the transfer function magnitude and phase between instantaneous lung volume and HR. Broad band fluctuations in lung volume were initiated when subjects breathed on cue to a sequence of beeps spaced randomly in time. We studied 10 subjects in both supine and standing positions. The transfer function, averaged among all the subjects, showed systematic differences between the two postures, reflecting the differing frequency responses of the sympathetic and parasympathetic divisions of the ANS.

  16. The Rapidity Density Distributions and Longitudinal Expansion Dynamics of Identified Pions from the STAR Beam Energy Scan

    NASA Astrophysics Data System (ADS)

    Flores, Christopher E.

    2016-12-01

    The Beam Energy Scan (BES) at the Relativistic Heavy-Ion Collider was proposed to characterize the properties of the medium produced in heavy-ion interactions over a broad range of baryon chemical potential. The aptitude of the STAR detector for mid-rapidity measurements has previously been leveraged to measure identified particle yields and spectra to extract bulk properties for the BES energies for | y | ≤ 0.1. However, to extract information on expansion dynamics and full phase space particle production, it is necessary to study identified particle rapidity density distributions. We present the first rapidity density distributions of identified pions from Au+Au collisions at √{sNN} = 7.7 , 11.5, and 19.6 GeV from the BES program as measured by the STAR detector. We use these distributions to obtain the full phase space yields of the pions to provide additional information of the system's chemistry. Further, we report the width of the rapidity density distributions compared to the width expected from Landau hydrodynamics. Finally, we interpret the results as a function of collision energy and discuss them in the context of previous energy scans done at the AGS and SPS.

  17. Conformal Membrane Reflectors for Deployable Optics

    NASA Technical Reports Server (NTRS)

    Hood, Patrick J.; Keys, Andrew S. (Technical Monitor)

    2002-01-01

    This presentation reports the Phase I results on NASA's Gossamer Spacecraft Exploratory Research and Technology Program. Cornerstone Research Group, Inc., the University of Rochester, and International Photonics Consultants collaborated to investigate the feasibility of free-standing, liquid-crystal-polymer (LCP) reflectors for integration into space-based optical systems. The goal of the program was to achieve large-diameter, broadband. reflective membranes that are resistant to the effects of space, specifically cryogenic environments and gamma-ray irradiation. Additionally, we assessed the applicability of utilizing the technology as tight sails, since, by their very nature, these films offer high-reflectivity at specified wavelengths. Previous research programs have demonstrated all-polymer, narrow-band Specular reflectors and diffuse membrane reflectors. The feasibility of fabricating an all-polymer broadband specular reflector and a narrow-band specular membrane reflector was assessed in the Phase I Gossamer program. In addition, preliminary gamma irradiation studies were conducted to determine the stability of the polymer reflectors to radiation. Materials and process technology were developed to fabricate coupon-scale reflectors of both broad- and narrow-band specular reflectors in Phase 1. This presentation will report the results of these studies, including, the performance of a narrow-band specular membrane. Gamma irradiation exposures indicate limited impact on the optical performance although additional exposure studies are warranted. Plans to scale up the membrane fabrication process will be presented.

  18. ESA's space science programme

    NASA Astrophysics Data System (ADS)

    Volonte, S.

    2018-04-01

    The Space Science Programme of ESA encompasses three broad areas of investigation, namely solar system science (the Sun, the planets and space plasmas), fundamental physics and space astronomy and astrophysics.

  19. Space processing applications payload equipment study. Volume 2E: Commercial equipment utility

    NASA Technical Reports Server (NTRS)

    Smith, A. G. (Editor)

    1974-01-01

    Examination of commercial equipment technologies revealed that the functional performance requirements of space processing equipment could generally be met by state-of-the-art design practices. Thus, an apparatus could be evolved from a standard item or derived by custom design using present technologies. About 15 percent of the equipment needed has no analogous commercial base of derivation and requires special development. This equipment is involved primarily with contactless heating and position control. The derivation of payloads using commercial equipment sources provides a broad and potentially cost-effective base upon which to draw. The derivation of payload equipment from commercial technologies poses other issues beyond that of the identifiable functional performance, but preliminary results on testing of selected equipment testing appear quite favorable. During this phase of the SPA study, several aspects of commercial equipment utility were assessed and considered. These included safety, packaging and structural, power conditioning (electrical/electronic), thermal and materials of construction.

  20. Universal Test Facility

    NASA Technical Reports Server (NTRS)

    Laughery, Mike

    1994-01-01

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  1. Automated thin-film analyses of hydrated interplanetary dust particles in the analytical electron microscope

    NASA Technical Reports Server (NTRS)

    Germani, M. S.; Bradley, J. P.; Brownlee, D. E.

    1990-01-01

    A 200 keV electron microscope was used to obtain elemental analyses from over 4000 points on thin sections of eight 'layer silicate' class interplanetary dust particles (IDPs). Major and minor element abundances from a volume approaching that of a cylinder 50 nm in diameter were observed. Mineral phases and their relative abundances in the thin sections were identified and petrographic characteristics were determined. Three of the particles contained smectite (1.0-1.2 nm basal spacing) and two contained serpentine (0.7 nm basal spacing). The point count analyses and Mg-Si-Fe ternary diagrams show that one of the serpentine-containing IDPs is similar to CI and CM chondritic meteorites. The IDPs exhibit evidence of aqueous processing, but they have typically experienced only short range, submicrometer scale alteration. The IDPs may provide a broad sampling of the asteroid belt.

  2. Universal Test Facility

    NASA Astrophysics Data System (ADS)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  3. Flows with fractional quantum circulation in Bose-Einstein condensates induced by nontopological phase defects

    NASA Astrophysics Data System (ADS)

    Kanai, Toshiaki; Guo, Wei; Tsubota, Makoto

    2018-01-01

    It is a common view that rotational motion in a superfluid can exist only in the presence of topological defects, i.e., quantized vortices. However, in our numerical studies on the merging of two concentric Bose-Einstein condensates with axial symmetry in two-dimensional space, we observe the emergence of a spiral dark soliton when one condensate has a nonzero initial angular momentum. This spiral dark soliton enables the transfer of angular momentum between the condensates and allows the merged condensate to rotate even in the absence of quantized vortices. Our examination of the flow field around the soliton strikingly reveals that its sharp endpoint can induce flow like a vortex point but with a fraction of a quantized circulation. This interesting nontopological "phase defect" may generate broad interest since rotational motion is essential in many quantum transport processes.

  4. First Spectroscopic Identification of Massive Young Stellar Objects in the Galactic Center

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C.; Schultheis, Mathias; Stolovy, Susan R.; Cotera, Angela S.; Robitaille, Thomas P.; Smith, Howard A.

    2009-01-01

    We report the detection of several molecular gas-phase and ice absorption features in three photometrically-selected young stellar object (YSO) candidates in the central 280 pc of the Milky Way. Our spectra, obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, reveal gas-phase absorption from CO2 (15.0 microns), C2H2 (13.7 microns) and HCN (14.0 microns). We attribute this absorption to warm, dense gas in massive YSOs. We also detect strong and broad 15 microns CO2 ice absorption features, with a remarkable double-peaked structure. The prominent long-wavelength peak is due to CH3OH-rich ice grains, and is similar to those found in other known massive YSOs. Our IRS observa.tions demonstra.te the youth of these objects, and provide the first spectroscopic identification of massive YSOs in the Galactic Center.

  5. Liftoff and Time Equivalent Duration Data Evaluation of Exploration Flight Test 1 Orion Multi-Purpose Crew Vehicle

    NASA Technical Reports Server (NTRS)

    Houston, Janice

    2016-01-01

    The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. There arises the question about time equivalent (Teq) duration of the liftoff phase and similarity to other launch vehicles. Vibroacoustic engineers require the fatigue-weighted time duration values for qualification testing inputs. In order to determine the Teq for the Space Launch System, NASA's newest launch vehicle, the external microphone data from the Exploration Flight Test 1 (EFT-1) flight of the Orion Multi-Purpose Crew Vehicle (MPCV) was evaluated. During that evaluation, a trend was observed in the data and the origin of that trend is discussed in this paper. Finally, the Teq values for the EFT-1 Orion MPCV are presented.

  6. Effects of varying inter-limb spacing to limb length ratio in metachronal swimming

    NASA Astrophysics Data System (ADS)

    Lai, Hong Kuan; Merkel, Rachael; Santhanakrishnan, Arvind

    2016-11-01

    Crustaceans such as shrimp, krill and crayfish swim by rhythmic paddling of four to five pairs of closely spaced limbs. Each pair is phase-shifted in time relative to the neighboring pair, resulting in a metachronal wave that travels in the direction of animal motion. The broad goal of this study is to investigate how the mechanical design of the swimming limbs affect scalability of metachronal swimming in terms of limb-based Reynolds number (Re). A scaled robotic model of metachronal paddling was developed, consisting of four pairs of hinged acrylic plates actuated using stepper motors that were immersed in a rectangular tank containing water-glycerin fluid medium. 2D PIV measurements show that the propulsive jets transition from being primarily horizontal (thrust-producing direction) at Re of order 10 to angled vertically at Re of order 100. The ratio of inter-limb spacing to limb length among metachronal swimming organisms ranges between 0.2 to 0.65. 2D PIV will be used to examine the jets generated between adjacent limbs for varying inter-limb spacing to limb length ratios. The effect of increasing this ratio to beyond the biologically observed range will be discussed.

  7. Phase behavior of charged colloids on spherical surfaces

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm; Guerra, Rodrigo; Chaikin, Paul

    For a broad class of 2D materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young. According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of defects, even at T = 0 . In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this presentation, we describe experiments and simulations we have performed on repulsive particles which are bound to the surface of a sphere. We observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries (``scars''), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated ``lakes'' of fluid or glassy particles, situated at the icosahedron vertices.

  8. KSC-02pd0434

    NASA Image and Video Library

    2002-03-29

    KENNEDY SPACE CENTER, FLA. - Water droplets fall from the broad bill of a Roseate Spoonbill after lifting its head from the water. The site is near Kennedy Space Center. Spoonbills obtain food by sweeping their broad bills from side to side. They inhabit mangroves, ranging from the coasts of southern Florida and Texas (sometimes Louisiana), the West Indies, Mexico and Central and South America.

  9. Ikeda-like chaos on a dynamically filtered supercontinuum light source

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.; Jacquot, Maxime; Dudley, John M.; Larger, Laurent

    2016-08-01

    We demonstrate temporal chaos in a color-selection mechanism from the visible spectrum of a supercontinuum light source. The color-selection mechanism is governed by an acousto-optoelectronic nonlinear delayed-feedback scheme modeled by an Ikeda-like equation. Initially motivated by the design of a broad audience live demonstrator in the framework of the International Year of Light 2015, the setup also provides a different experimental tool to investigate the dynamical complexity of delayed-feedback dynamics. Deterministic hyperchaos is analyzed here from the experimental time series. A projection method identifies the delay parameter, for which the chaotic strange attractor originally evolving in an infinite-dimensional phase space can be revealed in a two-dimensional subspace.

  10. The second-order theory of electromagnetic hot ion beam instabilities. [in interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Tokar, R. L.

    1985-01-01

    The present investigation is concerned with the application of a second-order theory for electromagnetic instabilities in a collisionless plasma to two modes which resonate with hot ion beams. The application of the theory is strictly limited to the linear growth phase. However, the application of the theory may be extended to obtain a description of the beam at postsaturation if the wave-beam resonance is sufficiently broad in velocity space. Under the considered limitations, it is shown that, as in the cold beam case, the fluctuating fields do not gain appreciable momentum and that the primary exchange of momentum is between the beam and main component.

  11. Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor.

    PubMed

    Nickel, Daniel V; Ruggiero, Michael T; Korter, Timothy M; Mittleman, Daniel M

    2015-03-14

    The temperature-dependent terahertz spectra of the partially-disordered and ordered phases of camphor (C10H16O) are measured using terahertz time-domain spectroscopy. In its partially-disordered phases, a low-intensity, extremely broad resonance is found and is characterized using both a phenomenological approach and an approach based on ab initio solid-state DFT simulations. These two descriptions are consistent and stem from the same molecular origin for the broad resonance: the disorder-localized rotational correlations of the camphor molecules. In its completely ordered phase(s), multiple lattice phonon modes are measured and are found to be consistent with those predicted using solid-state DFT simulations.

  12. Essays in Space Science

    NASA Technical Reports Server (NTRS)

    Ramaty, Reuven (Editor); Cline, Thomas L. (Editor); Ormes, Jonathan F. (Editor)

    1987-01-01

    The papers presented cover a broad segment of space research and are an acknowledgement of the personal involvement of Frank McDonald in many of these efforts. The totality of the papers were chosen so as to sample the scientific areas influenced by him in a significant manner. Three broad areas are covered: particles and fields of the solar system; cosmic ray astrophysics; and gamma ray, X-ray, and infrared astronomics.

  13. Effects of Space Flight, Clinorotation, and Centrifugation on the Growth and Metabolism of Escherichia Coli

    NASA Technical Reports Server (NTRS)

    Brown, Robert B.

    1999-01-01

    Previous experiments have shown that space flight stimulates bacterial growth and metabolism. An explanation for these results is proposed, which may eventually lead to improved terrestrial pharmaceutical production efficiency. It is hypothesized that inertial acceleration affects bacterial growth and metabolism by altering the transport phenomena in the cells external fluid environment. It is believed that this occurs indirectly through changes in the sedimentation rate acting on the bacteria and buoyancy-driven convection acting on their excreted by-products. Experiments over a broad range of accelerations consistently supported this theory. Experiments at I g indicated that higher concentrations of excreted by products surrounding bacterial cells result in a shorter lag phase. Nineteen additional experiments simulated 0 g and 0.5 g using a clinostat, and achieved 50 g, 180 g, and 400 g using a centrifuge. These experiments showed that final cell density is inversely related to the level of acceleration. The experiments also consistently showed that acceleration affects the length of the lag phase in a non-monotonic, yet predictable, manner. Additional data indicated that E. coli metabolize glucose less efficiently at hypergravity, and more efficiently at hypogravity. A space-flight experiment was also performed. Samples on orbit had a statistically significant higher final cell density and more efficient metabolism than did ground controls. These results. which were similar to simulations of 0 g using a clinostat, support the theory that gravity only affects bacterial growth and metabolism indirectly, through changes in the bacteria's fluid environment.

  14. Consequences of hot gas in the broad line region of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Mushotzky, R.

    1985-01-01

    Models for hot gas in the broad line region of active galactic nuclei are discussed. The results of the two phase equilibrium models for confinement of broad line clouds by Compton heated gas are used to show that high luminosity quasars are expected to show Fe XXVI L alpha line absorption which will be observed with spectrometers such as those planned for the future X-ray spectroscopy experiments. Two phase equilibrium models also predict that the gas in the broad line clouds and the confining medium may be Compton thick. It is shown that the combined effects of Comptonization and photoabsorption can suppress both the broad emission lines and X-rays in the Einstein and HEAO-1 energy bands. The observed properties of such Compton thick active galaxies are expected to be similar to those of Seyfert 2 nuclei. The implications for polarization and variability are also discussed.

  15. Static quadrupolar susceptibility for a Blume-Emery-Griffiths model based on the mean-field approximation

    NASA Astrophysics Data System (ADS)

    Pawlak, A.; Gülpınar, G.; Erdem, R.; Ağartıoğlu, M.

    2015-12-01

    The expressions for the dipolar and quadrupolar susceptibilities are obtained within the mean-field approximation in the Blume-Emery-Griffiths model. Temperature as well as crystal field dependences of the susceptibilities are investigated for two different phase diagram topologies which take place for K/J=3 and K/J=5.0.Their behavior near the second and first order transition points as well as multi-critical points such as tricritical, triple and critical endpoint is presented. It is found that in addition to the jumps connected with the phase transitions there are broad peaks in the quadrupolar susceptibility. It is indicated that these broad peaks lie on a prolongation of the first-order line from a triple point to a critical point ending the line of first-order transitions between two distinct paramagnetic phases. It is argued that the broad peaks are a reminiscence of very strong quadrupolar fluctuations at the critical point. The results reveal the fact that near ferromagnetic-paramagnetic phase transitions the quadrupolar susceptibility generally shows a jump whereas near the phase transition between two distinct paramagnetic phases it is an edge-like.

  16. Anatomy of mole external genitalia: Setting the record straight

    PubMed Central

    Sinclair, Adriane Watkins; Glickman, Stephen; Baskin, Lawrence; Cunha, Gerald R.

    2016-01-01

    Anatomy of male and female external genitalia of adult mice (Mus musculus) and broad-footed moles (Scapanus latimanus) was re-examined to provide more meaningful anatomical terminology. In the past the perineal appendage of male broad-footed moles has been called the penis, while the female perineal appendage has been given several terms (e.g. clitoris, penile clitoris, peniform clitoris and others). Histological examination demonstrates that perineal appendages of male and female broad-footed moles are the prepuce, which in both sexes are covered externally with a hair-bearing epidermis and lacks erectile bodies. The inner preputial epithelium is non-hair-bearing and defines the preputial space in both sexes. The penis of broad-footed moles lies deep within the preputial space, is an “internal organ” in the resting state and contains the penile urethra, os penis, and erectile bodies. The clitoris of broad-footed moles is defined by a U-shaped clitoral epithelial lamina. Residing within clitoral stroma encompassed by the clitoral epithelial lamina is the corpus cavernosum, blood-filled spaces and the urethra. External genitalia of male and female mice are anatomically similar to that of broad-footed moles with the exception that in female mice the clitoris contains a small os clitoridis and lacks defined erectile bodies, while male mice have an os penis and a prominent distal cartilaginous structure within the male urogenital mating protuberance (MUMP). Clitori of female broad-footed moles lack an os clitoridis but contain defined erectile bodies, while male moles have an os penis similar to the mouse but lack the distal cartilaginous structure. PMID:26694958

  17. Hot Science with a "Warm" Telescope: Observations of Extrasolar Planets During the Spitzer Warm Mission

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl J.; Carey, S.; Helou, G.; Hurt, R.; Rebull, L.; Soifer, T.; Squires, G. K.; Storrie-Lombardi, L.

    2007-12-01

    The Spitzer Space Telescope will exhaust its cryogen supply sometime around March of 2009. However, the observatory is expected to remain operational until early 2014 with undiminished 3.6 and 4.5 micron imaging capabilities over two 5'x5’ fields-of-view. During this "warm” mission, Spitzer will operate with extremely high efficiency and provide up to 35,000 hours of science observing time. This will enable unprecedented opportunities to address key scientific questions requiring large allocations of observing time, while maintaining opportunities for broad community use with more "traditional” time allocations. Spitzer will remain a particularly valuable resource for studies of extrasolar planets, with applications including: 1) transit timing observations and precise radius measurements of Earth-sized planets transiting nearby M-dwarfs, 2) measuring thermal emission and distinguishing between broad band emission and absorption in the atmospheres of transiting hot Jupiters, 3) measuring orbital phase variations of thermal emission for both transiting and non-transiting, close-in planets, and 4) sensitive imaging searches for young planets at large angular separations from their parent stars.

  18. Nonlinear Electron Acoustic Waves in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Dillard, C. S.; Vasko, I.; Mozer, F.; Agapitov, O. V.

    2017-12-01

    The Van Allen Probes observe intense broad-band electrostatic wave activity in the inner magnetosphere. The high-resolution electric field measurements show that these broad-band wave activity is made of large-amplitude electrostatic solitary waves propagating generally along the background magnetic field with velocities of a few thousands km/s. There are generally two types of the observed solitary waves. The solitary waves with the bipolar parallel electric field are interpreted as electron phase space holes, while the nature of solitary waves with asymmetric parallel electric field has remained puzzling. In the present work we show that asymmetric solitary waves propagate with velocities (1000-5000 km/s) and have spatial scales (100 m-1 km) similar to those for electron-acoustic waves existing due to two temperature electron population. Through the numerical fluid simulation we show that the spikes are produced from the initially harmonic electron-acoustic perturbation due to the nonlinear steepening. Through the analysis of the modified KdV equation we show that the steepening is arrested at some moment by the collisionless Landau dissipation and results in formation of the observed asymmetric spikes (shocklets).

  19. Testing the concept of a modulation filter bank: the audibility of component modulation and detection of phase change in three-component modulators.

    PubMed

    Sek, Aleksander; Moore, Brian C J

    2003-05-01

    Two experiments were performed to test the concept that the auditory system contains a "modulation filter bank" (MFB). Experiment 1 examined the ability to "hear out" the modulation frequency of the central component of a three-component modulator applied to a 4-kHz sinusoidal carrier. On each trial, three modulated stimuli were presented. The modulator of the first stimulus contained three components. Within a run the frequencies of the outer two components were fixed and the frequency of the central ("target") component was drawn randomly from one of five values. The modulators of second and third stimuli contained one component. One had a frequency equal to that of the target and the other had a frequency randomly selected from one of the other possible values. Subjects indicated whether the target corresponded to the second or third stimulus. Scores were around 80% correct when the components in the three-component modulator were widely spaced and when the frequencies of the target and comparison differed sufficiently. Experiment 2 examined the ability to hear a change in the relative phase of the components in a three-component modulator with harmonically spaced components, using a 31FC task. The frequency of the central component, f(c), was either 50 or 100 Hz. Scores were 80%-90% correct when the component spacing was < or = 0.5 f(c), but decreased markedly for greater spacings. Performance was only slightly impaired by randomizing the overall modulation depth from one stimulus to the next. The results of both experiments are broadly consistent with what would be expected from a MFB with a Q value of 1 or slightly less.

  20. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  1. The eigenvalue problem in phase space.

    PubMed

    Cohen, Leon

    2018-06-30

    We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Scanning Synchronization of Colliding Bunches for MEIC Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derbenev, Yaroslav S.; Popov, V. P.; Chernousov, Yu D.

    2015-09-01

    Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP).more » A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.« less

  3. Analysis of a space emergency ammonia dump using the FLOW-NET two-phase flow program

    NASA Technical Reports Server (NTRS)

    Navickas, J.; Rivard, W. C.

    1992-01-01

    Venting of cryogenic and non-cryogenic fluids to a vacuum or a very low pressure will take place in many space-based systems that are currently being designed. This may cause liquid freezing either internally within the flow circuit or on external spacecraft surfaces. Typical ammonia flow circuits were investigated to determine the effect of the geometric configuration and initial temperature, pressure, and void fraction on the freezing characteristics of the system. The analysis was conducted also to investigate the ranges of applicability of the FLOW-NET program. It was shown that a typical system can be vented to very low liquid fractions before freezing occurs. However, very small restrictions in the flow circuit can hasten the inception of freezing. The FLOW-NET program provided solutions over broad ranges of system conditions, such as venting of an ammonia tank, initially completely filled with liquid, through a series of contracting and expanding line cross sections to near-vacuum conditions.

  4. Collisional tests and an extension of the TEMPEST continuum gyrokinetic code

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G.; Nevins, W. M.; Rognlien, T.; Xiong, Z.; Xu, X. Q.

    2006-04-01

    An important requirement of a kinetic code for edge plasmas is the ability to accurately treat the effect of colllisions over a broad range of collisionalities. To test the interaction of collisions and parallel streaming, TEMPEST has been compared with published analytic and numerical (Monte Carlo, bounce-averaged Fokker-Planck) results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential and mirror ratio, and the required velocity space resolution is modest. We also describe progress toward extension of (4-dimensional) TEMPEST into a ``kinetic edge transport code'' (a kinetic counterpart of UEDGE). The extension includes averaging of the gyrokinetic equations over fast timescales and approximating the averaged quadratic terms by diffusion terms which respect the boundaries of inaccessable regions in phase space. F. Najmabadi, R.W. Conn and R.H. Cohen, Nucl. Fusion 24, 75 (1984); T.D. Rognlien and T.A. Cutler, Nucl. Fusion 20, 1003 (1980).

  5. Broad-band absorbers for reduction of parasitic light: two alternative solutions

    NASA Astrophysics Data System (ADS)

    Giovannini, Hughes; Lemarquis, F.; Akhouayri, H.; Cathelinaud, Michel; Torchio, Philippe; Amra, C.; Cousin, Bernard; Laubier, D.; Otrio, Georges

    2018-04-01

    This paper, "Broad-band absorbers for reduction of parasitic light: two alternative solutions," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  6. Grain Surface Models and Data for Astrochemistry

    NASA Astrophysics Data System (ADS)

    Cuppen, H. M.; Walsh, C.; Lamberts, T.; Semenov, D.; Garrod, R. T.; Penteado, E. M.; Ioppolo, S.

    2017-10-01

    The cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of {˜}25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions.

  7. Space transfer concepts and analysis for exploration missions

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A broad scoped and systematic study was made of space transfer concepts for human Lunar and Mars missions. Relevant space transportation studies were initiated to lead to further detailed activities in the following study period.

  8. Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching

    DOEpatents

    Hohimer, John P.

    1994-01-01

    A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure.

  9. Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching

    DOEpatents

    Hohimer, J.P.

    1994-06-07

    A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure. 6 figs.

  10. Photoluminescence Study of Gallium Nitride Thin Films Obtained by Infrared Close Space Vapor Transport.

    PubMed

    Santana, Guillermo; de Melo, Osvaldo; Aguilar-Hernández, Jorge; Mendoza-Pérez, Rogelio; Monroy, B Marel; Escamilla-Esquivel, Adolfo; López-López, Máximo; de Moure, Francisco; Hernández, Luis A; Contreras-Puente, Gerardo

    2013-03-15

    Photoluminescence (PL) studies in GaN thin films grown by infrared close space vapor transport (CSVT-IR) in vacuum are presented in this work. The growth of GaN thin films was done on a variety of substrates like silicon, sapphire and fused silica. Room temperature PL spectra of all the GaN films show near band-edge emission (NBE) and a broad blue and green luminescence (BL, GL), which can be seen with the naked eye in a bright room. The sample grown by infrared CSVT on the silicon substrate shows several emission peaks from 2.4 to 3.22 eV with a pronounced red shift with respect to the band gap energy. The sample grown on sapphire shows strong and broad ultraviolet emission peaks (UVL) centered at 3.19 eV and it exhibits a red shift of NBE. The PL spectrum of GaN films deposited on fused silica exhibited a unique and strong blue-green emission peak centered at 2.38 eV. The presence of yellow and green luminescence in all samples is related to native defects in the structure such as dislocations in GaN and/or the presence of amorphous phases. We analyze the material quality that can be obtained by CSVT-IR in vacuum, which is a high yield technique with simple equipment set-up, in terms of the PL results obtained in each case.

  11. Photoluminescence Study of Gallium Nitride Thin Films Obtained by Infrared Close Space Vapor Transport

    PubMed Central

    Santana, Guillermo; de Melo, Osvaldo; Aguilar-Hernández, Jorge; Mendoza-Pérez, Rogelio; Monroy, B. Marel; Escamilla-Esquivel, Adolfo; López-López, Máximo; de Moure, Francisco; Hernández, Luis A.; Contreras-Puente, Gerardo

    2013-01-01

    Photoluminescence (PL) studies in GaN thin films grown by infrared close space vapor transport (CSVT-IR) in vacuum are presented in this work. The growth of GaN thin films was done on a variety of substrates like silicon, sapphire and fused silica. Room temperature PL spectra of all the GaN films show near band-edge emission (NBE) and a broad blue and green luminescence (BL, GL), which can be seen with the naked eye in a bright room. The sample grown by infrared CSVT on the silicon substrate shows several emission peaks from 2.4 to 3.22 eV with a pronounced red shift with respect to the band gap energy. The sample grown on sapphire shows strong and broad ultraviolet emission peaks (UVL) centered at 3.19 eV and it exhibits a red shift of NBE. The PL spectrum of GaN films deposited on fused silica exhibited a unique and strong blue-green emission peak centered at 2.38 eV. The presence of yellow and green luminescence in all samples is related to native defects in the structure such as dislocations in GaN and/or the presence of amorphous phases. We analyze the material quality that can be obtained by CSVT-IR in vacuum, which is a high yield technique with simple equipment set-up, in terms of the PL results obtained in each case. PMID:28809356

  12. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    NASA Technical Reports Server (NTRS)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  13. Space methods in oceanology

    NASA Technical Reports Server (NTRS)

    Bolshakov, A. A.

    1985-01-01

    The study of Earth from space with specialized satellites, and from manned orbiting stations, has become important in the space programs. The broad complex of methods used for probing Earth from space are different methods of the study of ocean, dynamics. The different methods of ocean observation are described.

  14. Classification and recognition of dynamical models: the role of phase, independent components, kernels and optimal transport.

    PubMed

    Bissacco, Alessandro; Chiuso, Alessandro; Soatto, Stefano

    2007-11-01

    We address the problem of performing decision tasks, and in particular classification and recognition, in the space of dynamical models in order to compare time series of data. Motivated by the application of recognition of human motion in image sequences, we consider a class of models that include linear dynamics, both stable and marginally stable (periodic), both minimum and non-minimum phase, driven by non-Gaussian processes. This requires extending existing learning and system identification algorithms to handle periodic modes and nonminimum phase behavior, while taking into account higher-order statistics of the data. Once a model is identified, we define a kernel-based cord distance between models that includes their dynamics, their initial conditions as well as input distribution. This is made possible by a novel kernel defined between two arbitrary (non-Gaussian) distributions, which is computed by efficiently solving an optimal transport problem. We validate our choice of models, inference algorithm, and distance on the tasks of human motion synthesis (sample paths of the learned models), and recognition (nearest-neighbor classification in the computed distance). However, our work can be applied more broadly where one needs to compare historical data while taking into account periodic trends, non-minimum phase behavior, and non-Gaussian input distributions.

  15. Structural, magnetic, and magnetocaloric properties of bilayer manganite La1.38Sr1.62Mn2O7

    NASA Astrophysics Data System (ADS)

    Yang, Yu-E.; Xie, Yunfei; Xu, Lisha; Hu, Dazhi; Ma, Chunlan; Ling, Langsheng; Tong, Wei; Pi, Li; Zhang, Yuheng; Fan, Jiyu

    2018-04-01

    In this study, we investigated the structural, magnetic phase transition, and magnetocaloric properties of bilayer perovskite manganite La1.38Sr1.62Mn2O7 based on X-ray diffraction, electron paramagnetic resonance, and temperature-/magnetic field-dependent magnetization measurements. The structural characterization results showed the prepared sample had a tetragonal structure with the space group I4/mmm. The Curie temperature was determined as 114 K in the magnetization studies and a second-order paramagnetic-ferromagnetic transition was confirmed by the Arrott plot, which showed that the slopes were positive for all the curves. According to the variation in the electron paramagnetic resonance spectrum, we detected obvious electronic phase separation across a broad temperature range from 220 to 80 K in this magnetic material, thereby indicating that the paramagnetic and ferromagnetic phases coexist above as well as below the Curie temperature. Based on a plot of the isothermal magnetization versus the magnetic applied field, we deduced the maximum magnetic entropy change, which only reached 1.89 J/kg.K under an applied magnetic field of 7.0 T. These theoretical investigations indicated that in addition to the magnetoelastic couplings and electron interaction, electronic phase separation and anisotropic exchange interactions also affect the magnetic entropy changes in this bilayer manganite.

  16. Phase diagram of an extended Agassi model

    NASA Astrophysics Data System (ADS)

    García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.

    2018-05-01

    Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.

  17. Anharmonic quantum mechanical systems do not feature phase space trajectories

    NASA Astrophysics Data System (ADS)

    Oliva, Maxime; Kakofengitis, Dimitris; Steuernagel, Ole

    2018-07-01

    Phase space dynamics in classical mechanics is described by transport along trajectories. Anharmonic quantum mechanical systems do not allow for a trajectory-based description of their phase space dynamics. This invalidates some approaches to quantum phase space studies. We first demonstrate the absence of trajectories in general terms. We then give an explicit proof for all quantum phase space distributions with negative values: we show that the generation of coherences in anharmonic quantum mechanical systems is responsible for the occurrence of singularities in their phase space velocity fields, and vice versa. This explains numerical problems repeatedly reported in the literature, and provides deeper insight into the nature of quantum phase space dynamics.

  18. Power and energy of exploding wires

    DOE PAGES

    Valancius, Cole J.; Garasi, Christopher J.; O?Malley, Patrick D.

    2017-01-01

    Exploding wires are used in many high-energy applications, such as initiating explosives. Previous work analyzing gold wire burst in detonator applications has shown burst current and action metrics to be inconsistent with burst phenomenon across multiple firing-sets. Energy density better captures the correlation between different wire geometries, different electrical inputs, and explosive initiation. This idea has been expanded upon, to analyze the burst properties in power-energy space. Further inconsistencies in the understanding of wire burst and its relation to peak voltage have been found. An argument will be made for redefining the definition of burst. The result is a moremore » broad understanding of rapid metal phase transition and the initiation of explosives in EBW applications.« less

  19. Statistical mechanics of competitive resource allocation using agent-based models

    NASA Astrophysics Data System (ADS)

    Chakraborti, Anirban; Challet, Damien; Chatterjee, Arnab; Marsili, Matteo; Zhang, Yi-Cheng; Chakrabarti, Bikas K.

    2015-01-01

    Demand outstrips available resources in most situations, which gives rise to competition, interaction and learning. In this article, we review a broad spectrum of multi-agent models of competition (El Farol Bar problem, Minority Game, Kolkata Paise Restaurant problem, Stable marriage problem, Parking space problem and others) and the methods used to understand them analytically. We emphasize the power of concepts and tools from statistical mechanics to understand and explain fully collective phenomena such as phase transitions and long memory, and the mapping between agent heterogeneity and physical disorder. As these methods can be applied to any large-scale model of competitive resource allocation made up of heterogeneous adaptive agent with non-linear interaction, they provide a prospective unifying paradigm for many scientific disciplines.

  20. Power and energy of exploding wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valancius, Cole J.; Garasi, Christopher J.; O?Malley, Patrick D.

    Exploding wires are used in many high-energy applications, such as initiating explosives. Previous work analyzing gold wire burst in detonator applications has shown burst current and action metrics to be inconsistent with burst phenomenon across multiple firing-sets. Energy density better captures the correlation between different wire geometries, different electrical inputs, and explosive initiation. This idea has been expanded upon, to analyze the burst properties in power-energy space. Further inconsistencies in the understanding of wire burst and its relation to peak voltage have been found. An argument will be made for redefining the definition of burst. The result is a moremore » broad understanding of rapid metal phase transition and the initiation of explosives in EBW applications.« less

  1. Magnetic properties of rare-earth sulfide YbAgS2

    NASA Astrophysics Data System (ADS)

    Iizuka, Ryosuke; Numakura, Ryosuke; Michimura, Shinji; Katano, Susumu; Kosaka, Masashi

    2018-05-01

    We have succeeded in synthesizing single-phase polycrystalline samples of YbAgS2 belonging to the tetragonal system with space group I41 md . YbAgS2 shows an antiferromagnetic transition at TN = 6.6 K . The effective magnetic moment is in good agreement with the theoretical value for Yb3+ free ion. A broad anomaly is observed just above TN in the temperature dependence of magnetic susceptibility. The entropy released at TN is only about half of Rln2 expected for a Kramers doublet ground state. We consider that these phenomena are due to the existence of short-range magnetic correlations rather than the partial screening of the Yb moments by conduction electrons via the Kondo effect.

  2. Urban Space as the Commons - New Modes for Urban Space Management

    NASA Astrophysics Data System (ADS)

    Ondrejicka, Vladimir; Finka, Maros; Husar, Milan; Jamecny, Lubomir

    2017-12-01

    The significant growing of urban population, globalization of social-ecological systems, fuzzification of spatial structures, the diversity of actors in spatial development, their power and interest in using the resources including space, especially in high-density urban areas. Spatial development is connected with a high concentration of economic activities and population in urban systems. In many cases very rapid processes of urbanization and suburbanization approach natural spatial/territorial limits, such as carrying capacity of land, transport and infrastructural systems, absorption capacities of recipients and others [1]. Growing shortage of space and problems in their accessibility (physical, functional, etc.) leads to growing tension and conflicts among the actors/users of urban spaces and represent the initial phase of space deprivations processes. There is a parallel with “tragedy of commons” as defined by Hardin [2] and was reinterpreted by many other academics and researchers. Urban space can be clearly interpreted as the commons or commons good for their community of users and relevant actors, so innovative governance modes overlapping defined “tragedy of commons” representing a possible approach for a new concept of urban public spaces management. This paper presents a possible new approach to the management of urban spaces reflecting the current challenges in spatial development based on the theory of commons and innovative governance modes. The new approach is built on innovations in institutional regimes, the algorithm of decision-making and economic expression and interpretation of quality of the space. The theory of the commons as the base source for this approach has been broadly proved in practice and Elinor Ostrom as the author of this theory [3-5] was awarded by Nobel Prize in 2009.

  3. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029--Ejected or Intervening?

    NASA Technical Reports Server (NTRS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; hide

    1996-01-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  4. Network science landers for Mars

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.; Marsal, O.; Lognonne, P.; Leppelmeier, G. W.; Spohn, T.; Glassmeier, K.-H.; Angrilli, F.; Banerdt, W. B.; Barriot, J. P.; Bertaux, J.-L.; Berthelier, J. J.; Calcutt, S.; Cerisier, J. C.; Crisp, D.; Dehant, V.; Giardini, D.; Jaumann, R.; Langevin, Y.; Menvielle, M.; Musmann, G.; Pommereau, J. P.; di Pippo, S.; Guerrier, D.; Kumpulainen, K.; Larsen, S.; Mocquet, A.; Polkko, J.; Runavot, J.; Schumacher, W.; Siili, T.; Simola, J.; Tillman, J. E.

    1999-01-01

    The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first planetary mission focusing on investigations of the interior of the planet and the large-scale circulation of the atmosphere. A broad consortium of national space agencies and research laboratories will implement the mission. It is managed by CNES (the French Space Agency), with other major players being FMI (the Finnish Meteorological Institute), DLR (the German Space Agency), and other research institutes. According to current plans, the NetLander Mission will be launched in 2005 by means of an Ariane V launch, together with the Mars Sample Return mission. The landers will be separated from the spacecraft and targeted to their locations on the Martian surface several days prior to the spacecraft's arrival at Mars. The landing system employs parachutes and airbags. During the baseline mission of one Martian year, the network payloads will conduct simultaneous seismological, atmospheric, magnetic, ionospheric, geodetic measurements and ground penetrating radar mapping supported by panoramic images. The payloads also include entry phase measurements of the atmospheric vertical structure. The scientific data could be combined with simultaneous observations of the atmosphere and surface of Mars by the Mars Express Orbiter that is expected to be functional during the NetLander Mission's operational phase. Communication between the landers and the Earth would take place via a data relay onboard the Mars Express Orbiter.

  5. Invited Article: Mask-modulated lensless imaging with multi-angle illuminations

    NASA Astrophysics Data System (ADS)

    Zhang, Zibang; Zhou, You; Jiang, Shaowei; Guo, Kaikai; Hoshino, Kazunori; Zhong, Jingang; Suo, Jinli; Dai, Qionghai; Zheng, Guoan

    2018-06-01

    The use of multiple diverse measurements can make lensless phase retrieval more robust. Conventional diversity functions include aperture diversity, wavelength diversity, translational diversity, and defocus diversity. Here we discuss a lensless imaging scheme that employs multiple spherical-wave illuminations from a light-emitting diode array as diversity functions. In this scheme, we place a binary mask between the sample and the detector for imposing support constraints for the phase retrieval process. This support constraint enforces the light field to be zero at certain locations and is similar to the aperture constraint in Fourier ptychographic microscopy. We use a self-calibration algorithm to correct the misalignment of the binary mask. The efficacy of the proposed scheme is first demonstrated by simulations where we evaluate the reconstruction quality using mean square error and structural similarity index. The scheme is then experimentally tested by recovering images of a resolution target and biological samples. The proposed scheme may provide new insights for developing compact and large field-of-view lensless imaging platforms. The use of the binary mask can also be combined with other diversity functions for better constraining the phase retrieval solution space. We provide the open-source implementation code for the broad research community.

  6. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  7. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMSis achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  8. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound

    PubMed Central

    Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2011-01-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound. PMID:22088026

  9. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound.

    PubMed

    Kreider, Wayne; Crum, Lawrence A; Bailey, Michael R; Sapozhnikov, Oleg A

    2011-11-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound.

  10. B1-B2 phase transition mechanism and pathway of PbS under pressure

    NASA Astrophysics Data System (ADS)

    Adeleke, Adebayo A.; Yao, Yansun

    2018-03-01

    Experimental studies at finite Pressure-Temperature (P-T) conditions and a theoretical study at 0 K of the phase transition in lead sulphide (PbS) have been inconclusive. Many studies that have been done to understand structural transformation in PbS can broadly be classified into two main ideological streams—one with Pnma and another with Cmcm orthorhombic intermediate phase. To foster better understanding of this phenomenon, we present the result of the first-principles study of phase transition in PbS at finite temperature. We employed the particle swarm-intelligence optimization algorithm for the 0 K structure search and first-principles metadynamics simulations to study the phase transition pathway of PbS from the ambient pressure, 0 K Fm-3m structure to the high-pressure Pm-3m phase under experimentally achievable P-T conditions. Significantly, our calculation shows that both streams are achievable under specific P-T conditions. We further uncover new tetragonal and monoclinic structures of PbS with space group P21/c and I41/amd, respectively. We propose the P21/c and I41/amd as a precursor phase to the Pnma and Cmcm phases, respectively. We investigated the stability of the new structures and found them to be dynamically stable at their stability pressure range. Electronic structure calculations reveal that both P21/c and I41/amd phases are semiconducting with direct and indirect bandgap energies of 0.69(5) eV and 0.97(3) eV, respectively. In general, both P21/c and I41/amd phases were found to be energetically competitive with their respective orthorhombic successors.

  11. Electron holography—basics and applications

    NASA Astrophysics Data System (ADS)

    Lichte, Hannes; Lehmann, Michael

    2008-01-01

    Despite the huge progress achieved recently by means of the corrector for aberrations, allowing now a true atomic resolution of 0.1 nm, hence making it an unrivalled tool for nanoscience, transmission electron microscopy (TEM) suffers from a severe drawback: in a conventional electron micrograph only a poor phase contrast can be achieved, i.e. phase structures are virtually invisible. Therefore, conventional TEM is nearly blind for electric and magnetic fields, which are pure phase objects. Since such fields provoked by the atomic structure, e.g. of semiconductors and ferroelectrics, largely determine the solid state properties, hence the importance for high technology applications, substantial object information is missing. Electron holography in TEM offers the solution: by superposition with a coherent reference wave, a hologram is recorded, from which the image wave can be completely reconstructed by amplitude and phase. Now the object is displayed quantitatively in two separate images: one representing the amplitude, the other the phase. From the phase image, electric and magnetic fields can be determined quantitatively in the range from micrometre down to atomic dimensions by all wave optical methods that one can think of, both in real space and in Fourier space. Electron holography is pure wave optics. Therefore, we discuss the basics of coherence and interference, the implementation into a TEM, the path of rays for recording holograms as well as the limits in lateral and signal resolution. We outline the methods of reconstructing the wave by numerical image processing and procedures for extracting the object properties of interest. Furthermore, we present a broad spectrum of applications both at mesoscopic and atomic dimensions. This paper gives an overview of the state of the art pointing at the needs for further development. It is also meant as encouragement for those who refrain from holography, thinking that it can only be performed by specialists in highly specialized laboratories. In fact, a modern TEM built for atomic resolution and equipped with a field emitter or a Schottky emitter, well aligned by a skilled operator, can deliver good holograms. Running commercially available image processing software and mathematics programs on a laptop-computer is sufficient for reconstruction of the amplitude and phase images and extracting desirable object information.

  12. Nuclear systems in space? Does/will the public accept them?

    NASA Technical Reports Server (NTRS)

    Finger, Harold B.

    1993-01-01

    Public attitudes toward the use of nuclear energy on earth and in space are discussed. Survey data are presented which show that the public believes nuclear energy should play an important role in our energy supply. However, based on broad attitude research, there should be no expectation that the public will accept or support the use of nuclear energy unless it meets special needs and offers special and significant benefits. It is proposed that a public information program be adopted that results in getting recognition and support for the space program broadly and for the missions that benefit substantially from or require nuclear energy for their accomplishment.

  13. Phase-space networks of geometrically frustrated systems.

    PubMed

    Han, Yilong

    2009-11-01

    We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.

  14. Motion detector and analyzer

    DOEpatents

    Unruh, W.P.

    1987-03-23

    Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.

  15. Gas-phase broadband spectroscopy using active sources: progress, status, and applications

    PubMed Central

    Cossel, Kevin C.; Waxman, Eleanor M.; Finneran, Ian A.; Blake, Geoffrey A.; Ye, Jun; Newbury, Nathan R.

    2017-01-01

    Broadband spectroscopy is an invaluable tool for measuring multiple gas-phase species simultaneously. In this work we review basic techniques, implementations, and current applications for broadband spectroscopy. We discuss components of broad-band spectroscopy including light sources, absorption cells, and detection methods and then discuss specific combinations of these components in commonly-used techniques. We finish this review by discussing potential future advances in techniques and applications of broad-band spectroscopy. PMID:28630530

  16. Power and Efficiency Optimized in Traveling-Wave Tubes Over a Broad Frequency Bandwidth

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2001-01-01

    A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT's are critical components in deep space probes, communication satellites, and high-power radar systems. Power conversion efficiency is of paramount importance for TWT's employed in deep space probes and communication satellites. A previous effort was very successful in increasing efficiency and power at a single frequency (ref. 1). Such an algorithm is sufficient for narrow bandwidth designs, but for optimal designs in applications that require high radiofrequency power over a wide bandwidth, such as high-density communications or high-resolution radar, the variation of the circuit response with respect to frequency must be considered. This work at the NASA Glenn Research Center is the first to develop techniques for optimizing TWT efficiency and output power over a broad frequency bandwidth (ref. 2). The techniques are based on simulated annealing, which has the advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 3). Two new broadband simulated annealing algorithms were developed that optimize (1) minimum saturated power efficiency over a frequency bandwidth and (2) simultaneous bandwidth and minimum power efficiency over the frequency band with constant input power. The algorithms were incorporated into the NASA coupled-cavity TWT computer model (ref. 4) and used to design optimal phase velocity tapers using the 59- to 64-GHz Hughes 961HA coupled-cavity TWT as a baseline model. In comparison to the baseline design, the computational results of the first broad-band design algorithm show an improvement of 73.9 percent in minimum saturated efficiency (see the top graph). The second broadband design algorithm (see the bottom graph) improves minimum radiofrequency efficiency with constant input power drive by a factor of 2.7 at the high band edge (64 GHz) and increases simultaneous bandwidth by 500 MHz.

  17. Environmental Education in a Rural 11-16 Comprehensive School.

    ERIC Educational Resources Information Center

    Beckett, John

    1995-01-01

    Describes a four-phase strategy for integrating environmental education into the broad curriculum and community of a high school. Phase 1, Testing the Water, includes organizing displays and planting trees. Phase 2, Consolidating the Initiatives, involves curriculum development and conservation activism. Phase 3, Partial Integration and…

  18. Integrated Photonic Comb Generation: Applications in Coherent Communication and Sensing

    NASA Astrophysics Data System (ADS)

    Parker, John S.

    Integrated photonics combines many optical components including lasers, modulators, waveguides, and detectors in close proximity via homogeneous (monolithic) or heterogeneous (using multiple materials) integration. This improves stability for interferometers and lasers, reduces the occurrence of unwanted reflections, and it avoids coupling losses between different components as they are on the same chip. Thus, less power is needed to compensate for these added losses, and less heat needs to be removed due to these power savings. In addition, integration allows the many components that comprise a system to be fabricated together, thereby reducing the cost per system and allowing rapid scaling in production throughput. Integrated optical combs have many applications including: metrology, THz frequency generation, arbitrary waveform generation, optical clocks, photonic analog-to-digital converters, sensing (imaging), spectroscopy, and data communication. A comb is a set of optical sources evenly spaced in frequency. Several methods of comb generation including mode-locking and optical parametric oscillation produce phase-matched optical outputs with a fixed phase relationship between the frequency lines. When the absolute frequency of a single comb line is stabilized along with the frequency spacing between comb lines, absolute phase and frequency precision can be achieved over the entire comb bandwidth. This functionality provides tremendous benefits to many applications such as coherent communication and optical sensing. The goals for this work were achieving a broad comb bandwidth and noise reduction, i.e., frequency and phase stability. Integrated mode-locked lasers on the InGaAsP/InP material platform were chosen, as they could be monolithically integrated with the wide range of highly functional and versatile photonic integrated circuits (PICs) previously demonstrated on this platform at UCSB. Gain flattening filters were implemented to increase the comb bandwidths to 2.5 THz. Active mode-locking with an RF source was used to precisely set the frequency spacing between comb lines with better than 10 Hz accuracy. An integrated optical phase-locked loop (OPLL) for the comb was designed, built, and tested. The OPLL fixed a single comb line to a stable single linewidth laser, demonstrating a ˜430 Hz FWHM optical linewidth on the locked comb line and 20º RMS phase deviation between the comb and optical reference. The free-running linewidth is 50--100 MHz, demonstrating over 50 dB improvement in optical linewidth via locking. An integrated tunable laser (SG-DBR) with an OPLL was phase-locked to a comb source with a fixed offset frequency, thus showing the potential for using a comb with SG-DBRs as a compact frequency synthesizer.

  19. Commercial Use of Space: a New Economic Strength for America

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Space commerce is composed of diverse activities which fall into four broad areas: satellite communications, earth and ocean observations, materials research and processing, and space transportation and industrial services. Space has become an industrial laboratory for materials research and processing. NASA's role in the commercial use of space is discussed through its commercial development program.

  20. Illustration of microphysical processes in Amazonian deep convective clouds in the gamma phase space: introduction and potential applications

    NASA Astrophysics Data System (ADS)

    Cecchini, Micael A.; Machado, Luiz A. T.; Wendisch, Manfred; Costa, Anja; Krämer, Martina; Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel I.; Artaxo, Paulo; Borrmann, Stephan; Fütterer, Daniel; Klimach, Thomas; Mahnke, Christoph; Martin, Scot T.; Minikin, Andreas; Molleker, Sergej; Pardo, Lianet H.; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Weinzierl, Bernadett

    2017-12-01

    The behavior of tropical clouds remains a major open scientific question, resulting in poor representation by models. One challenge is to realistically reproduce cloud droplet size distributions (DSDs) and their evolution over time and space. Many applications, not limited to models, use the gamma function to represent DSDs. However, even though the statistical characteristics of the gamma parameters have been widely studied, there is almost no study dedicated to understanding the phase space of this function and the associated physics. This phase space can be defined by the three parameters that define the DSD intercept, shape, and curvature. Gamma phase space may provide a common framework for parameterizations and intercomparisons. Here, we introduce the phase space approach and its characteristics, focusing on warm-phase microphysical cloud properties and the transition to the mixed-phase layer. We show that trajectories in this phase space can represent DSD evolution and can be related to growth processes. Condensational and collisional growth may be interpreted as pseudo-forces that induce displacements in opposite directions within the phase space. The actually observed movements in the phase space are a result of the combination of such pseudo-forces. Additionally, aerosol effects can be evaluated given their significant impact on DSDs. The DSDs associated with liquid droplets that favor cloud glaciation can be delimited in the phase space, which can help models to adequately predict the transition to the mixed phase. We also consider possible ways to constrain the DSD in two-moment bulk microphysics schemes, in which the relative dispersion parameter of the DSD can play a significant role. Overall, the gamma phase space approach can be an invaluable tool for studying cloud microphysical evolution and can be readily applied in many scenarios that rely on gamma DSDs.

  1. A Census of Broad-line Active Galactic Nuclei in Nearby Galaxies: Coeval Star Formation and Rapid Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Hsu, Alexander D.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-01

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  2. Challenges in Characterizing and Controlling Complex Cellular Systems

    NASA Astrophysics Data System (ADS)

    Wikswo, John

    2011-03-01

    Multicellular dynamic biological processes such as developmental differentiation, wound repair, disease, aging, and even homeostasis can be represented by trajectories through a phase space whose extent reflects the genetic, post-translational, and metabolic complexity of the process - easily extending to tens of thousands of dimensions. Intra- and inter-cellular sensing and regulatory systems and their nested, redundant, and non-linear feed-forward and feed-back controls create high-dimensioned attractors in this phase space. Metabolism provides free energy to drive non-equilibrium processes and dynamically reconfigure attractors. Studies of single molecules and cells provide only minimalist projections onto a small number of axes. It may be difficult to infer larger-scale emergent behavior from linearized experiments that perform only small amplitude perturbations on a limited number of the dimensions. Complete characterization may succeed for bounded component problems, such as an individual cell cycle or signaling cascade, but larger systems problems will require a coarse-grained approach. Hence a new experimental and analytical framework is needed. Possibly one could utilize high-amplitude, multi-variable driving of the system to infer coarse-grained, effective models, which in turn can be tested by their ability to control systems behavior. Navigation at will between attractors in a high-dimensioned dynamical system will provide not only detailed knowledge of the shape of attractor basins, but also measures of underlying stochastic events such as noise in gene expression or receptor binding and how both affect system stability and robustness. Needed for this are wide-bandwidth methods to sense and actuate large numbers of intracellular and extracellular variables and automatically and rapidly infer dynamic control models. The success of this approach may be determined by how broadly the sensors and actuators can span the full dimensionality of the phase space. Supported by the Defense Threat Reduction Agency HDTRA-09-1-0013, NIH National Institute on Drug Abuse RC2DA028981, the National Academies Keck Futures Initiative, and the Vanderbilt Institute for Integrative Biosystems Research and Education.

  3. Phase Space Exchange in Thick Wedge Absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.

  4. Phase-space topography characterization of nonlinear ultrasound waveforms.

    PubMed

    Dehghan-Niri, Ehsan; Al-Beer, Helem

    2018-03-01

    Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Law in Outer Space.

    ERIC Educational Resources Information Center

    Schmidt, William G.

    1997-01-01

    Provides an overview of the current practice and fascinating future of legal issues involved in outer space exploration and colonization. Current space law, by necessity, addresses broad principles rather than specific incidents. Nonetheless, it covers a variety of issues including commercial development, rescue agreements, object registration,…

  6. Gymnastics in Phase Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alexander Wu; /SLAC

    2012-03-01

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this listmore » are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.« less

  7. Joint Space Doctrine: Catapulting into the Future

    DTIC Science & Technology

    1994-01-01

    Information dominance will provide the stimulus for the military space program in the near term. Maximizing the capabilities of the information weapon, however, requires formulating joint space doctrine that has broad support and applicability. This doctrine will provide a significant advantage for the United States over those nations which employ space assets in a piecemeal

  8. Mutual Influences: U.S.S.R. - U.S. Interactions During the Space Race

    NASA Technical Reports Server (NTRS)

    Siddiqi, Asif

    2005-01-01

    This paper presents a broad historical view of the space race and its relationship between the Soviet Union and the United States in the early years of the space race. The author also adds some thoughts on the writing of history and how we evaluate space history.

  9. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    PubMed

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  10. Leadership lessons from curricular change at the University of California, San Francisco, School of Medicine.

    PubMed

    Loeser, Helen; O'Sullivan, Patricia; Irby, David M

    2007-04-01

    After successive Liaison Committee on Medical Education accreditation reports that criticized the University of California, San Francisco, School of Medicine for lack of instructional innovation and curriculum oversight, the dean issued a mandate for curriculum reform in 1997. Could a medical school that prided itself on innovation in research and health care do the same in education? The authors describe their five-phase curriculum change process and correlate this to an eight-step leadership model. The first phase of curricular change is to establish a compelling need for change; it requires leaders to create a sense of urgency and build a guiding coalition to achieve action. The second phase of curriculum reform is to envision a bold new curriculum; leaders must develop such a vision and communicate it broadly. The third phase is to design curriculum and obtain the necessary approvals; this requires leaders to empower broad-based action and generate short-term wins. In the fourth phase, specific courses are developed for the new curriculum, and leaders continue to empower broad-based action, generate short-term wins, consolidate gains, and produce more change. During the fifth phase of implementation and evaluation, leaders need to further consolidate gains, produce more change, and anchor new approaches in the institution. Arising from this experience and the correlation of curricular change phases with leadership steps, the authors identify 27 specific leadership strategies they employed in their curricular reform process.

  11. Photoionization Modelling of the Giant Broad-Line Region in NGC 3998.

    NASA Astrophysics Data System (ADS)

    Devereux, Nicholas

    2018-01-01

    Prior high angular resolution spectroscopic observations of the low-ionization nuclear emission-line region in NGC 3998 obtained with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope revealed a rich UV-visible spectrum consisting of broad permitted and broad forbidden emission lines. The photoionization code XSTAR is employed together with reddening-insensitive emission line diagnostics to constrain a dynamical model for the broad-line region (BLR) in NGC 3998. The BLR is modelled as a large H+ region ~ 7 pc in radius consisting of dust-free, low density ~ 104 cm-3, low metallicity ~ 0.01 Z/Z⊙ gas. Modelling the shape of the broad Hα emission line significantly discriminates between two independent measures of the black hole mass, favouring the estimate of de Francesco (2006). Interpreting the broad Hα emission line in terms of a steady-state spherically symmetric inflow leads to a mass inflow rate of 1.4 x 10-2 M⊙/yr, well within the present uncertainty of calculations that attempt to explain the observed X-ray emission in terms of an advection-dominated accretion flow (ADAF). Collectively, the model provides an explanation for the shape of the Hα emission line, the relative intensities and luminosities for the H Balmer, [OIII], and potentially several of the broad UV emission lines, as well as refining the initial conditions needed for future modelling of the ADAF.

  12. Applications of Tethers in Space, Volume 1

    NASA Technical Reports Server (NTRS)

    Cron, A. C. (Compiler)

    1985-01-01

    The tethered satellite system is described including tether fundamentals. Applications of very long tethers in space to a broad spectrum of future space missions are explored. Topics covered include: science, transportation, constellations, artificial gravity, technology and test, and electrodynamic interactions. Recommendations to NASA are included.

  13. The James Webb Space Telescope: Mission Overview and Status

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.

    2009-01-01

    The James Webb Space Telescope (JWST) is the infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq. m aperture (6 m telescope yielding diffraction limited angular resolution at a wavelength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi object and integral-field spectroscopy over the 0.6 < 0 < 5.0 micron spectrum. An actively cooled mid-infrared instrument provides broad-band imagery, coronagraphy, and integral-field spectroscopy over the 5.0 < 0 < 29 micron spectrum. The JWST is being developed by NASA, in partnership with the European and Canadian Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete, and construction is underway in all areas of the program. The JWST is on schedule to reach launch readiness during 2014.

  14. The James Webb Space Telescope: Mission Overview and Status

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.

    2011-01-01

    The James Webb Space Telescope (JWST) is the Infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq m aperture (6 m class) telescope yielding diffraction limited angular resolution at a wave1ength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi-object and integral-field spectroscopy over the 0.6

  15. Large Deployable Reflector (LDR) system concept and technology definition study. Volume 2: Technology assessment and technology development plan

    NASA Technical Reports Server (NTRS)

    Agnew, Donald L.; Jones, Peter A.

    1989-01-01

    A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated.

  16. Elliptic and higher order flow measured in a large phase space in √sNN = 2.76 TeV lead-lead collisions

    NASA Astrophysics Data System (ADS)

    Mohapatra, Soumya; Atlas Collaboration

    2012-09-01

    The measurements of flow harmonics ν2-ν6 using the event plane method and two particle correlations in broad pT, η and centrality ranges using the ATLAS detector at the LHC are presented. ATLAS recorded 9μb-1 lead-lead data in the 2010 heavy ion run. The full azimuthal acceptance of the ATLAS detector in ±2.5 units of pseudorapidity for charged hadrons and the large amount of data allows for a detailed study of the flow harmonics. It is shown that the ridge as well as the so called "mach-cone" seen in two particle correlations are entirely accounted for by the collective flow. Some scaling relations between the νn are also discussed.

  17. Pressure dependence of the electrical properties of GaBi solidified in low gravity

    NASA Technical Reports Server (NTRS)

    Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Curreri, P. A.; Chu, C. W.

    1987-01-01

    Immiscible GaBi alloys were solidified during free fall in the NASA Marshall Space Flight Center drop tower, which provides about 4.5 seconds of low gravity. The electrical resistivity and magnetic susceptibility were measured as a function of pressure (up to 18 kbar) and temperature (300 K to 4.2 K) of drop tower (DT) and ground control (GC) samples prepared under identical conditions, except for gravity. At ambient pressure the electrical resistance of the DT sample exhibits a broad maximum at 100 K, while that of GC sample decreases rapidly as temperature decreases. Both DT and GC samples become superconducting at 7.7 K. However, a minor second superconducting phase with a transition temperature at 8.3 K is observed only in the DT samples.

  18. Luminous Blue Compact Galaxies: Probes of galaxy assembly

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy Louann

    The life cycles of galaxies over cosmic time is yet to be fully understood. How did galaxies evolve from their formative stages to the structures we observe today? This dissertation details the identification and analysis of a sample of Luminous Blue Compact Galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue colors, high surface brightness, and high star formation rates. These systems appear to be very similar in their global properties to the early evolutionary phases of most galaxies, however their locality permits detailed investigation over a broad range of the electromagnetic spectrum in contrast to the smaller angular sizes and extreme faintness of distant galaxies. We use a combination of optical, ultraviolet, and infrared data to investigate a sample of LBCGs utilizing space and ground-based data.

  19. Business Context of Space Tourism

    NASA Astrophysics Data System (ADS)

    Schmitt, Harrison H.

    2003-01-01

    Broadly speaking, two types of potential commercial activity in space can be defined. First, there are those activities that represent an expansion and improvement on services with broad existing commercial foundations such as telecommunications. The second type of potential commercial activity in space is one that may offer a type of service with few or any existing commercial foundations such as space-based remote sensing. Space tourism clearly belongs in the first category of potential commercial activity in space. Roles in cooperation with the private sector that might be considered for NASA include 1) acceleration of the ``Professional-in Space'' initiative, 2) research and technology developments related to a) a ``Tourist Destination Module'' for the Space Station, b) an ``Extra Passengers Module'' for the payload bay of the Space Shuttle, and c) a ``Passenger-rated Expendable Launch Vehicle,'' 3) definition of criteria for qualifying candidate space tourists, and 4) initiatives to protect space tourism from unreasonable tort litigation. As baseline information for establishing fees, the cost of a possible tourist flight should be fully and objectively delineated. If it is correct that the marginal cost of each Space Shuttle flight to Earth-orbit is about $100 million and the effective Shuttle payload is about 50,000 pounds, then the marginal cost would be roughly $2,000 per pound.

  20. Development of a Ground Test and Analysis Protocol for NASA's NextSTEP Phase 2 Habitation Concepts

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Beaton, Kara H.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F. J.

    2018-01-01

    The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low-Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts (SMEs) have been tasked with developing the ground-test protocol that will serve as the primary means by which these Phase 2 prototypes will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the Phase 2 Habitation Concepts is to consistently evaluate different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3. This paper describes the process by which the ground test protocol was developed and the objectives, methods, and metrics by which the NextSTEP Phase 2 Habitation Concepts will be rigorously and systematically evaluated. The protocol has been developed using both a top-down and bottom-up approach. Top-down development began with the Human Exploration and Operations Mission Directorate (HEOMD) exploration objectives and ISS Exploration Capability Study Team (IECST) candidate flight objectives. Strategic questions and associated rationales, derived from these candidate architectural objectives, provide the framework by which the ground-test protocol will address the DSG stack elements and configurations, systems and subsystems, and habitation, science, and EVA functions. From these strategic questions, high-level functional requirements for the DSG were drafted and associated ground-test objectives and analysis protocols were established. Bottom-up development incorporated objectives from NASA SMEs in autonomy, avionics and software, communication, environmental control and life support systems, exercise, extravehicular activity, exploration medical operations, guidance navigation and control, human factors and behavioral performance, human factors and habitability, logistics, Mission Control Center operations, power, radiation, robotics, safety and mission assurance, science, simulation, structures, thermal, trash management, and vehicle health. Top-down and bottom-up objectives were integrated to form overall functional requirements - ground-test objectives and analysis mapping. From this mapping, ground-test objectives were organized into those that will be evaluated through inspection, demonstration, analysis, subsystem standalone testing, and human-in-the-loop (HITL) testing. For the HITL tests, mission-like timelines, procedures, and flight rules have been developed to directly meet ground test objectives and evaluate specific functional requirements. Data collected from these assessments will be analyzed to determine the acceptability of habitation element configurations and the combinations of capabilities that will result in the best habitation platform to be recommended by the test team for Phase 3.

  1. A general formalism for phase space calculations

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.

    1988-01-01

    General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.

  2. Prospects and applications near ferroelectric quantum phase transitions: a key issues review.

    PubMed

    Chandra, P; Lonzarich, G G; Rowley, S E; Scott, J F

    2017-11-01

    The emergence of complex and fascinating states of quantum matter in the neighborhood of zero temperature phase transitions suggests that such quantum phenomena should be studied in a variety of settings. Advanced technologies of the future may be fabricated from materials where the cooperative behavior of charge, spin and current can be manipulated at cryogenic temperatures. The progagating lattice dynamics of displacive ferroelectrics make them appealing for the study of quantum critical phenomena that is characterized by both space- and time-dependent quantities. In this key issues article we aim to provide a self-contained overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum critical point can be tuned experimentally to reside at, above or below its upper critical dimension; this feature allows for detailed interplay between experiment and theory using both scaling and self-consistent field models. Empirically the sensitivity of the ferroelectric T c 's to external and to chemical pressure gives practical access to a broad range of temperature behavior over several hundreds of Kelvin. Additional degrees of freedom like charge and spin can be added and characterized systematically. Satellite memories, electrocaloric cooling and low-loss phased-array radar are among possible applications of low-temperature ferroelectrics. We end with open questions for future research that include textured polarization states and unusual forms of superconductivity that remain to be understood theoretically.

  3. Prospects and applications near ferroelectric quantum phase transitions: a key issues review

    NASA Astrophysics Data System (ADS)

    Chandra, P.; Lonzarich, G. G.; Rowley, S. E.; Scott, J. F.

    2017-11-01

    The emergence of complex and fascinating states of quantum matter in the neighborhood of zero temperature phase transitions suggests that such quantum phenomena should be studied in a variety of settings. Advanced technologies of the future may be fabricated from materials where the cooperative behavior of charge, spin and current can be manipulated at cryogenic temperatures. The progagating lattice dynamics of displacive ferroelectrics make them appealing for the study of quantum critical phenomena that is characterized by both space- and time-dependent quantities. In this key issues article we aim to provide a self-contained overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum critical point can be tuned experimentally to reside at, above or below its upper critical dimension; this feature allows for detailed interplay between experiment and theory using both scaling and self-consistent field models. Empirically the sensitivity of the ferroelectric T c’s to external and to chemical pressure gives practical access to a broad range of temperature behavior over several hundreds of Kelvin. Additional degrees of freedom like charge and spin can be added and characterized systematically. Satellite memories, electrocaloric cooling and low-loss phased-array radar are among possible applications of low-temperature ferroelectrics. We end with open questions for future research that include textured polarization states and unusual forms of superconductivity that remain to be understood theoretically.

  4. Nonequilibrium life-cycles in Ocean Heat Content

    NASA Astrophysics Data System (ADS)

    Weiss, Jeffrey B.; Fox-Kemper, Baylor; Mandal, Dibyendu; Zia, Royce K. P.

    2014-03-01

    Natural climate variability can be considered as fluctuations in a nonequilibrium steady state. A fundamental property of nonequilibrium steady states is the phase space current which provides a preferred direction for fluctuations, and is manifested as preferred life-cycles for climate fluctuations. We propose a new quantity, the phase space angular momentum, to quantify the phase space rotation. In analogy with traditional angular momentum, which quantifies the rotation of mass in physical space, the phase space angular momentum quantifies the rotation of probability in phase space. It has the additional advantage that it is straightforward to calculate from a time series. We investigate the phase space angular momentum for fluctuations in ocean heat content in both observations and ocean general circulation models. We gratefully acknowledge financial support from the National Science Foundation (USA) under grant OCE 1245944.

  5. Quantum mechanics on phase space: The hydrogen atom and its Wigner functions

    NASA Astrophysics Data System (ADS)

    Campos, P.; Martins, M. G. R.; Fernandes, M. C. B.; Vianna, J. D. M.

    2018-03-01

    Symplectic quantum mechanics (SQM) considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ, to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article the Coulomb potential in three dimensions (3D) is resolved completely by using the phase space Schrödinger equation. The Kustaanheimo-Stiefel(KS) transformation is applied and the Coulomb and harmonic oscillator potentials are connected. In this context we determine the energy levels, the amplitude of probability in phase space and correspondent Wigner quasi-distribution functions of the 3D-hydrogen atom described by Schrödinger equation in phase space.

  6. Space station MSFC-DPD-235/DR no. MA-05 phase C/D program development plan. Volume 2: Phase C/D, programmatic requirements

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design plan requirements define the design implementation and control requirements for Phase C/D of the Modular Space Station Project and specifically address the Initial Space Station phase of the Space Station Program (modular). It is based primarily on the specific objective of translating the requirements of the Space Station Program, Project, Interface, and Support Requirements and preliminary contract end x item specifications into detail design of the operational systems which comprise the initial space station. This document is designed to guide aerospace contractors in the planning and bidding for Phase C/D.

  7. The stationary non-equilibrium plasma of cosmic-ray electrons and positrons

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2016-06-01

    The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.

  8. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  9. Observation and modeling of energetic particles at synchronous orbit on July 29, 1977

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Higbie, P. R.; Fritz, T. A.; Wilken, B.; Stuedemann, W.; Kaye, S. M.; Kivelson, M. G.; Moore, T. E.; Masley, A. J.; Smith, P. H.

    1982-01-01

    In the 12 hours immediately after a worldwide storm sudden commencement at 0027 UT on July 29, there was a series of at least four magnetospheric substorms, the last and largest of which exhibited an expansion phase onset at approximately 1200 UT. Data from six spacecraft in three general local time groupings (0300, 0700, and 1300 LT) are examined, and vector magnetic field data and energetic electron and ion data from approximately 15 keV to more than 2MeV are employed. Four primary types of studies are carried out: (1) timing and morphology of energetic particle injections; (2) variation of particle phase space densities, using local magnetic field and particle flux data; (3) measurement of boundary motions, using high-energy ion gradient anisotropies; and (4) adiabatic modeling, which included injection, large-scale convection, corotation, and gradient drifts. For the 1200 UT substorms, it is concluded that there was a substantial flux dropout in a broad sector near local midnight because of a large-scale boundary motion, followed by a recovery to a predropout configuration.

  10. Construction of 1,3,4-Oxadiazole and 1,3,4-Thiadiazole Library with a High Level of Skeletal Diversity Based on Branching Diversity-Oriented Synthesis on Solid-Phase Supports.

    PubMed

    Ha, Ji-Eun; Yang, Seung-Ju; Gong, Young-Dae

    2018-02-12

    An efficient solid-phase synthetic route for the construction of 1,3,4-oxadiazole and 1,3,4-thiadiazole libraries based on branching diversity-oriented synthesis (DOS) has been developed in this study. The core skeleton resins, 1,3,4-oxadiazole and 1,3,4-thiadiazole, were obtained through desulfurative and dehydrative cyclizations of thiosemicarbazide resin, respectively. Various functional groups have been introduced to the core skeleton resins, such as aryl, amine, amide, urea, thiourea, and an amino acid. Most of the libraries were purified by simple trituration without extraction or column chromatography after cleavage of the products from the solid-supported resin. As a result, we obtained high yields of pure 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives (total numbers = 128). Finally, we confirmed the drug-like properties of our library by calculation of physicochemical properties, displays of the skeletal diversities of the library in 3D-space, and occupation of a broad range of areas by their functional groups.

  11. Fundamentals and techniques of nonimaging optics research at the University of Chicago

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J.

    1986-11-01

    Nonimaging Optics differs from conventional approaches in its relaxation of unnecessary constraints on energy transport imposed by the traditional methods for optimizing image formation and its use of more broadly based analytical techniques such as phase space representations of energy flow, radiative transfer analysis, thermodynamic arguments, etc. Based on these means, techniques for designing optical elements which approach and in some cases attain the maximum concentration permitted by the Second Law of Thermodynamics were developed. The most widely known of these devices are the family of Compound Parabolic Concentrators (CPC's) and their variants and the so called Flow-Line concentrator derived from the geometric vector flux formalism developed under this program. Applications of these and other such ideal or near-ideal devices permits increases of typically a factor of four (though in some cases as much as an order of magnitude) in the concentration above that possible with conventional means. In the most recent phase, our efforts can be classed into two main areas; (a) ''classical'' geometrical nonimaging optics; and (b) logical extensions of nonimaging concepts to the physical optics domain.

  12. Foundation-industry relationships--a new business model joint-venture philanthropy in therapy development.

    PubMed

    Bartek, Ronald J

    2014-01-01

    The business model for medical therapy development has changed drastically. Large companies that once conducted their own Research and Development (R&D) and funded all the preclinical studies, all phases of clinical development and marketing of the products are increasingly turning to others for more and more of the earlier work in hopes of being able to in-license a de-risked program well downstream, take it through the final phases of clinical development and into the marketplace. This new paradigm has required patient-advocacy foundations, especially in the rare-disease space, to become far more effective in building relationships with all the players along the therapy-development pathway -- academic scientists, government agencies, other foundations with overlapping interests, biotechs, small biopharmaceutical entities and even the larger industry companies. From the perspective of the patient-advocacy community, these increasingly essential public-private partnerships have taken on the nature of what could be called joint-venture philanthropy and involve a broad spectrum of collaborations and financial relationships between foundations and industry partners that are not without concerns about potential conflicts of interest.

  13. Influence of White and Gray Matter Connections on Endogenous Human Cortical Oscillations

    PubMed Central

    Hawasli, Ammar H.; Kim, DoHyun; Ledbetter, Noah M.; Dahiya, Sonika; Barbour, Dennis L.; Leuthardt, Eric C.

    2016-01-01

    Brain oscillations reflect changes in electrical potentials summated across neuronal populations. Low- and high-frequency rhythms have different modulation patterns. Slower rhythms are spatially broad, while faster rhythms are more local. From this observation, we hypothesized that low- and high-frequency oscillations reflect white- and gray-matter communications, respectively, and synchronization between low-frequency phase with high-frequency amplitude represents a mechanism enabling distributed brain-networks to coordinate local processing. Testing this common understanding, we selectively disrupted white or gray matter connections to human cortex while recording surface field potentials. Counter to our original hypotheses, we found that cortex consists of independent oscillatory-units (IOUs) that maintain their own complex endogenous rhythm structure. IOUs are differentially modulated by white and gray matter connections. White-matter connections maintain topographical anatomic heterogeneity (i.e., separable processing in cortical space) and gray-matter connections segregate cortical synchronization patterns (i.e., separable temporal processing through phase-power coupling). Modulation of distinct oscillatory modules enables the functional diversity necessary for complex processing in the human brain. PMID:27445767

  14. Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces

    NASA Astrophysics Data System (ADS)

    Ma, Hui Feng; Liu, Yan Qing; Luan, Kang; Cui, Tie Jun

    2016-12-01

    We propose a method to convert linearly polarized incident electromagnetic waves fed by a single source into multi-beam reflections with independent control of polarizations based on anisotropic metasurface at microwave frequencies. The metasurface is composed of Jerusalem Cross structures and grounded plane spaced by a dielectric substrate. By designing the reflection-phase distributions of the anisotropic metasurface along the x and y directions, the x- and y-polarized incident waves can be manipulated independently to realize multi-beam reflections. When the x- and y-polarized reflected beams are designed to the same direction with equal amplitude, the polarization state of the beam will be only controlled by the phase difference between the x- and y-polarized reflected waves. Three examples are presented to show the multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces and excellent performance. Particularly, we designed, fabricated, and measured an anisotropic metasurface for two reflected beams with one linearly polarized and the other circularly polarized. The measurement results have good agreement with the simulations in a broad bandwidth.

  15. Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces

    PubMed Central

    Ma, Hui Feng; Liu, Yan Qing; Luan, Kang; Cui, Tie Jun

    2016-01-01

    We propose a method to convert linearly polarized incident electromagnetic waves fed by a single source into multi-beam reflections with independent control of polarizations based on anisotropic metasurface at microwave frequencies. The metasurface is composed of Jerusalem Cross structures and grounded plane spaced by a dielectric substrate. By designing the reflection-phase distributions of the anisotropic metasurface along the x and y directions, the x- and y-polarized incident waves can be manipulated independently to realize multi-beam reflections. When the x- and y-polarized reflected beams are designed to the same direction with equal amplitude, the polarization state of the beam will be only controlled by the phase difference between the x- and y-polarized reflected waves. Three examples are presented to show the multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces and excellent performance. Particularly, we designed, fabricated, and measured an anisotropic metasurface for two reflected beams with one linearly polarized and the other circularly polarized. The measurement results have good agreement with the simulations in a broad bandwidth. PMID:28000734

  16. 48 CFR 1852.228-78 - Cross-waiver of liability for NASA expendable launch vehicle launches.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... space exploration, use, and investment. The purpose of this clause is to extend this cross-waiver... Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND... shall be broadly construed to achieve the objective of encouraging participation in space activities. (b...

  17. Ionospheric Scintillation Explorer (ISX)

    NASA Astrophysics Data System (ADS)

    Iuliano, J.; Bahcivan, H.

    2015-12-01

    NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and potentially, mitigation of phase distortions.

  18. Aerodynamics of Reentry Vehicle Clipper at Descent Phase

    NASA Astrophysics Data System (ADS)

    Semenov, Yu. P.; Reshetin, A. G.; Dyadkin, A. A.; Petrov, N. K.; Simakova, T. V.; Tokarev, V. A.

    2005-02-01

    From Gagarin spacecraft to reusable orbiter Buran, RSC Energia has traveled a long way in the search for the most optimal and, which is no less important, the most reliable spacecraft for manned space flight. During the forty years of space exploration, in cooperation with a broad base of subcontractors, a number of problems have been solved which assure a safe long stay in space. Vostok and Voskhod spacecraft were replaced with Soyuz supporting a crew of three. During missions to a space station, it provides crew rescue capability in case of a space station emergency at all times (the spacecraft life is 200 days).The latest modification of Soyuz spacecraft -Soyuz TMA -in contrast to its predecessors, allows to become a space flight participant to a person of virtually any anthropometric parameters with a mass of 50 to 95 kg capable of withstanding up to 6 g load during descent. At present, Soyuz TMA spacecraft are the state-of-the-art, reliable and only means of the ISS crew delivery, in-flight support and return. Introduced on the basis of many years of experience in operation of manned spacecraft were not only the principles of deep redundancy of on-board systems and equipment, but, to assure the main task of the spacecraft -the crew return to Earth -the principles of functional redundancy. That is, vital operations can be performed by different systems based on different physical principles. The emergency escape system that was developed is the only one in the world that provides crew rescue in case of LV failure at any phase in its flight. Several generations of space stations that have been developed have broadened, virtually beyond all limits, capabilities of man in space. The docking system developed at RSC Energia allowed not only to dock spacecraft in space, but also to construct in orbit various complex space systems. These include large space stations, and may include in the future the in-orbit construction of systems for the exploration of the Moon and Mars.. Logistics spacecraft Progress have been flying regularly since 1978. The tasks of these unmanned spacecraft include supplying the space station with all the necessities for long-duration missions, such as propellant for the space station propulsion system, crew life support consumables, scientific equipment for conducting experiments. Various modifications of the spacecraft have expanded the space station capabilities. 1988 saw the first, and, much to our regret, the last flight of the reusable orbiter Buran.. Buran could deliver to orbit up to 30 tons of cargo, return 20 tons to Earth and have a crew of up to 10. However, due to our country's economic situation the project was suspended.

  19. Thickness dependence of the poling and current-voltage characteristics of paint films made up of lead zirconate titanate ceramic powder and epoxy resin

    NASA Astrophysics Data System (ADS)

    Egusa, Shigenori; Iwasawa, Naozumi

    1995-11-01

    A specially prepared paint made up of lead zirconate titanate (PZT) ceramic powder and epoxy resin was coated on an aluminum plate and was cured at room temperature, thus forming the paint film of 25-300 μm thickness with a PZT volume fraction of 53%. The paint film was then poled at room temperature, and the poling behavior was determined by measuring the piezoelectric activity as a function of poling field. The poling behavior shows that the piezoelectric activity obtained at a given poling field increases with an increase in the film thickness from 25 to 300 μm. The current-voltage characteristic of the paint film, on the other hand, shows that the increase in the film thickness leads not only to an increase in the magnitude of the current density at a given electric field but also to an increase in the critical electric field at which the transition from the ohmic to space-charge-limited conduction takes place. This fact indicates that the amount of the space charge of electrons injected into the paint film decreases as the film thickness increases. Furthermore, comparison of the current-voltage characteristic of the paint film with that of a pure epoxy film reveals that the space charge is accumulated largely at the interface between the PZT and epoxy phases in the paint film. On the basis of this finding, a model is developed for the poling behavior of the paint film by taking into account a possible effect of the space-charge accumulation and a broad distribution of the electric field in the PZT phase. This model is shown to give an excellent fit to the experimental data of the piezoelectric activity obtained here as a function of poling field and film thickness.

  20. Advanced Optical Technologies in NASA's Space Communication Program: Status, Challenges, and Future Plans

    NASA Technical Reports Server (NTRS)

    Pouch, John

    2004-01-01

    A goal of the NASA Space Communications Project is to enable broad coverage for high-data-rate delivery to the users by means of ground, air, and space-based assets. The NASA Enterprise need will be reviewed. A number of optical space communications technologies being developed by NASA will be described, and the prospective applications will be discussed.

  1. The next frontier: stem cells and the Center for the Advancement of Science in Space.

    PubMed

    Ratliff, Duane

    2013-12-01

    The Center for the Advancement of Science in Space (CASIS) manages the International Space Station U.S. National Laboratory, supporting space-based research that seeks to improve life on Earth. The National Laboratory is now open for use by the broad scientific community--and CASIS is the gateway to this powerful in-orbit research platform.

  2. Photoionization modelling of the giant broad-line region in NGC 3998

    NASA Astrophysics Data System (ADS)

    Devereux, Nick

    2018-01-01

    Prior high angular resolution spectroscopic observations of the Low-ionization nuclear emission-line region (Liner) in NGC 3998 obtained with the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST) revealed a rich UV-visible spectrum consisting of broad permitted and broad forbidden emission lines. The photoionization code XSTAR is employed together with reddening-insensitive emission line diagnostics to constrain a dynamical model for the broad-line region (BLR) in NGC 3998. The BLR is modelled as a large H+ region ∼ 7 pc in radius consisting of dust-free, low-density ∼ 104 cm-3, low-metallicity ∼ 0.01 Z/Z⊙ gas. Modelling the shape of the broad H α emission line significantly discriminates between two independent measures of the black hole (BH) mass, favouring the estimate of de Francesco, Capetti & Marconi (2006). Interpreting the broad H α emission line in terms of a steady-state spherically symmetric inflow leads to a mass inflow rate of 1.4 × 10-2 M⊙ yr-1, well within the present uncertainty of calculations that attempt to explain the observed X-ray emission in terms of an advection-dominated accretion flow (ADAF). Collectively, the model provides an explanation for the shape of the H α emission line, the relative intensities and luminosities for the H Balmer, [O III], and potentially several of the broad UV emission lines, as well as refining the initial conditions needed for future modelling of the ADAF.

  3. TU-AB-BRC-07: Efficiency of An IAEA Phase-Space Source for a Low Energy X-Ray Tube Using Egs++

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, PGF; Renaud, MA; Seuntjens, J

    Purpose: To extend the capability of the EGSnrc C++ class library (egs++) to write and read IAEA phase-space files as a particle source, and to assess the relative efficiency gain in dose calculation using an IAEA phase-space source for modelling a miniature low energy x-ray source. Methods: We created a new ausgab object to score particles exiting a user-defined geometry and write them to an IAEA phase-space file. A new particle source was created to read from IAEA phase-space data. With these tools, a phase-space file was generated for particles exiting a miniature 50 kVp x-ray tube (The INTRABEAM System,more » Carl Zeiss). The phase-space source was validated by comparing calculated PDDs with a full electron source simulation of the INTRABEAM. The dose calculation efficiency gain of the phase-space source was determined relative to the full simulation. The efficiency gain as a function of i) depth in water, and ii) job parallelization was investigated. Results: The phase-space and electron source PDDs were found to agree to 0.5% RMS, comparable to statistical uncertainties. The use of a phase-space source for the INTRABEAM led to a relative efficiency gain of greater than 20 over the full electron source simulation, with an increase of up to a factor of 196. The efficiency gain was found to decrease with depth in water, due to the influence of scattering. Job parallelization (across 2 to 256 cores) was not found to have any detrimental effect on efficiency gain. Conclusion: A set of tools has been developed for writing and reading IAEA phase-space files, which can be used with any egs++ user code. For simulation of a low energy x-ray tube, the use of a phase-space source was found to increase the relative dose calculation efficiency by factor of up to 196. The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant No. 432290).« less

  4. Evidence for Sequential and Increasing Activation of Replication Origins along Replication Timing Gradients in the Human Genome

    PubMed Central

    Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Chen, Chun-Long; Arneodo, Alain; Goldar, Arach; d'Aubenton-Carafa, Yves; Thermes, Claude; Audit, Benjamin; Hyrien, Olivier

    2011-01-01

    Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics. PMID:22219720

  5. Transport, diffusion, and energy studies in the Arnold-Beltrami-Childress map

    NASA Astrophysics Data System (ADS)

    Das, Swetamber; Gupte, Neelima

    2017-09-01

    We study the transport and diffusion properties of passive inertial particles described by a six-dimensional dissipative bailout embedding map. The base map chosen for the study is the three-dimensional incompressible Arnold-Beltrami-Childress (ABC) map chosen as a representation of volume preserving flows. There are two distinct cases: the two-action and the one-action cases, depending on whether two or one of the parameters (A ,B ,C ) exceed 1. The embedded map dynamics is governed by two parameters (α ,γ ), which quantify the mass density ratio and dissipation, respectively. There are important differences between the aerosol (α <1 ) and the bubble (α >1 ) regimes. We have studied the diffusive behavior of the system and constructed the phase diagram in the parameter space by computing the diffusion exponents η . Three classes have been broadly classified—subdiffusive transport (η <1 ), normal diffusion (η ≈1 ), and superdiffusion (η >1 ) with η ≈2 referred to as the ballistic regime. Correlating the diffusive phase diagram with the phase diagram for dynamical regimes seen earlier, we find that the hyperchaotic bubble regime is largely correlated with normal and superdiffusive behavior. In contrast, in the aerosol regime, ballistic superdiffusion is seen in regions that largely show periodic dynamical behaviors, whereas subdiffusive behavior is seen in both periodic and chaotic regimes. The probability distributions of the diffusion exponents show power-law scaling for both aerosol and bubbles in the superdiffusive regimes. We further study the Poincáre recurrence times statistics of the system. Here, we find that recurrence time distributions show power law regimes due to the existence of partial barriers to transport in the phase space. Moreover, the plot of average particle kinetic energies versus the mass density ratio for the two-action case exhibits a devil's staircase-like structure for higher dissipation values. We explain these results and discuss their implications for realistic systems.

  6. Relative economic values of open space provided by National Forest and military lands to surrounding communities in Colorado

    Treesearch

    Charlotte Ham; John B. Loomis; Patricia A. Champ

    2015-01-01

    Open space lands are provided by a variety of entities from private individuals to the federal government and these entities make management decisions based on a very broad range of priorities. The net benefits of additional open space depend on the number, quality, and composition of existing open space in the vicinity. In areas where open space is abundant and there...

  7. Entropy and the driving force for the filling of carbon nanotubes with water.

    PubMed

    Pascal, Tod A; Goddard, William A; Jung, Yousung

    2011-07-19

    The spontaneous filling of hydrophobic carbon nanotubes (CNTs) by water observed both experimentally and from simulations is counterintuitive because confinement is generally expected to decrease both entropy and bonding, and remains largely unexplained. Here we report the entropy, enthalpy, and free energy extracted from molecular dynamics simulations of water confined in CNTs from 0.8 to 2.7-nm diameters. We find for all sizes that water inside the CNTs is more stable than in the bulk, but the nature of the favorable confinement of water changes dramatically with CNT diameter. Thus we find (i) an entropy (both rotational and translational) stabilized, vapor-like phase of water for small CNTs (0.8-1.0 nm), (ii) an enthalpy stabilized, ice-like phase for medium-sized CNTs (1.1-1.2 nm), and (iii) a bulk-like liquid phase for tubes larger than 1.4 nm, stabilized by the increased translational entropy as the waters sample a larger configurational space. Simulations with structureless coarse-grained water models further reveal that the observed free energies and sequence of transitions arise from the tetrahedral structure of liquid water. These results offer a broad theoretical basis for understanding water transport through CNTs and other nanostructures important in nanofluidics, nanofiltrations, and desalination.

  8. Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid

    PubMed Central

    Mansart, Barbara; Cottet, Mathieu J. G.; Penfold, Thomas J.; Dugdale, Stephen B.; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio

    2012-01-01

    The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material’s crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time. PMID:22451898

  9. Entropy and the driving force for the filling of carbon nanotubes with water

    PubMed Central

    Pascal, Tod A.; Goddard, William A.; Jung, Yousung

    2011-01-01

    The spontaneous filling of hydrophobic carbon nanotubes (CNTs) by water observed both experimentally and from simulations is counterintuitive because confinement is generally expected to decrease both entropy and bonding, and remains largely unexplained. Here we report the entropy, enthalpy, and free energy extracted from molecular dynamics simulations of water confined in CNTs from 0.8 to 2.7-nm diameters. We find for all sizes that water inside the CNTs is more stable than in the bulk, but the nature of the favorable confinement of water changes dramatically with CNT diameter. Thus we find (i) an entropy (both rotational and translational) stabilized, vapor-like phase of water for small CNTs (0.8–1.0 nm), (ii) an enthalpy stabilized, ice-like phase for medium-sized CNTs (1.1–1.2 nm), and (iii) a bulk-like liquid phase for tubes larger than 1.4 nm, stabilized by the increased translational entropy as the waters sample a larger configurational space. Simulations with structureless coarse-grained water models further reveal that the observed free energies and sequence of transitions arise from the tetrahedral structure of liquid water. These results offer a broad theoretical basis for understanding water transport through CNTs and other nanostructures important in nanofluidics, nanofiltrations, and desalination. PMID:21709268

  10. Capturing Bioavailable Organic Contaminants for Phase II Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In Phase I of whole sediment TIEs, causes of toxicity to freshwater and marine organisms are characterized into broad toxicant classes including ammonia, metals and organic chemicals. In the whole sediment Phase I TIEs performed so far, organic chemicals have been shown to be t...

  11. Broad [C II] Line Wings as Tracer of Molecular and Multi-phase Outflows in Infrared Bright Galaxies

    NASA Astrophysics Data System (ADS)

    Janssen, A. W.; Christopher, N.; Sturm, E.; Veilleux, S.; Contursi, A.; González-Alfonso, E.; Fischer, J.; Davies, R.; Verma, A.; Graciá-Carpio, J.; Genzel, R.; Lutz, D.; Sternberg, A.; Tacconi, L.; Burtscher, L.; Poglitsch, A.

    2016-05-01

    We report a tentative correlation between the outflow characteristics derived from OH absorption at 119 μm and [C II] emission at 158 μm in a sample of 22 local and bright ultraluminous infrared galaxies (ULIRGs). For this sample, we investigate whether [C II] broad wings are a good tracer of molecular outflows, and how the two tracers are connected. Fourteen objects in our sample have a broad wing component as traced by [C II], and all of these also show OH119 absorption indicative of an outflow (in one case an inflow). The other eight cases, where no broad [C II] component was found, are predominantly objects with no OH outflow or a low-velocity (≤100 km s-1) OH outflow. The FWHM of the broad [C II] component shows a trend with the OH119 blueshifted velocity, although with significant scatter. Moreover, and despite large uncertainties, the outflow masses derived from OH and broad [C II] show a 1:1 relation. The main conclusion is therefore that broad [C II] wings can be used to trace molecular outflows. This may be particularly relevant at high redshift, where the usual tracers of molecular gas (like low-J CO lines) become hard to observe. Additionally, observations of blueshifted Na I D λλ 5890, 5896 absorption are available for 10 of our sources. Outflow velocities of Na I D show a trend with OH velocity and broad [C II] FWHM. These observations suggest that the atomic and molecular gas phases of the outflow are connected.

  12. The JWST Science Instrument Payload: Mission Context and Status

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.

    2014-01-01

    The James Webb Space Telescope (JWST) is the scientific successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq m aperture (6 m class) telescope that will achieve diffraction limited angular resolution at a wavelength of 2 microns. The science instrument payload includes four passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronography, as well as multi-object and integral-field spectroscopy over the 0.6 < lambda < 5.0 microns spectrum. An actively cooled mid-infrared instrument provides broad-band imagery, coronography, and integral-field spectroscopy over the 5.0 < lambda < 29 microns spectrum. The JWST is being developed by NASA, in partnership with the European and Canadian Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete. Construction, integration and verification testing is underway in all areas of the program. The JWST is on schedule for launch during 2018.

  13. Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin

    2014-08-01

    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.

  14. Phase behavior of charged hydrophobic colloids on flat and spherical surfaces

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.

    For a broad class of two-dimensional (2D) materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of topological defects, even at T=0. In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this thesis, we develop and characterize an experimental system of charged colloidal particles that bind electrostatically to the interface between an oil and an aqueous phase. Depending on how we prepare the sample, this fluid interface may be flat, spherical, or have a more complicated geometry. Focusing on the cases where the interface is flat or spherical, we measure the interactions between the particles, and probe various aspects of their phase behavior. On flat interfaces, this phase behavior is well-described by KTHNY theory. In spherical geometries, however, we observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that, in the spherical system, ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries ("scars"), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated "lakes" of fluid or glassy particles, situated at the icosahedron vertices. These lakes are embedded in a rigid, connected "continent" of locally crystalline particles.

  15. Certain aspects of the vestibular problem in space medicine

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Vestibulovegetative disorders on manned space flights are discussed. A study relating to the vestibular stimuli in respiration, diaphoresis cardiac rhythm and a broad complex of hemodynamic indices was conducted. Certain tests for astronaut candidates are discussed.

  16. New Millennium Program: Servicing Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, F.

    1999-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints.

  17. Space migrations: Anthropology and the humanization of space

    NASA Technical Reports Server (NTRS)

    Finney, Ben R.

    1992-01-01

    Because of its broad evolutionary perspective and its focus on both technology and culture, anthropology offers a unique view of why we are going into space and what leaving Earth will mean for humanity. In addition, anthropology could help in the humanization of space through (1) overcoming socioculture barriers to working and living in space, (2) designing societies appropriate for permanent space settlement, (3) promoting understanding among differentiated branches of humankind scattered through space, (4) deciphering the cultural systems of any extraterrestrial civilizations contacted.

  18. Cognitive Communications Protocols for SATCOM

    DTIC Science & Technology

    2017-10-20

    both inadvertent Radio Frequency Interference (RFI) and deliberate jammers. Cognitive satellite and space communications strategies based on the... communications protocols for satellite and space communications with possible broad applications in defense, homeland-security as well as consumer...proposed WACR as the basis for future space communication systems that will offer significant benefits to national war‐fighting and peacekeeping

  19. Informal Learning Spaces and Their Impact on Learning in Higher Education: Framing New Narratives of Participation

    ERIC Educational Resources Information Center

    Deed, Craig; Alterator, Scott

    2017-01-01

    Evaluating informal learning spaces in higher education institutions needs to respond to the complex conceptual orientation underpinning their intention and design. This article outlines a model of participatory analysis that accounts for the conceptual complexity, lived experience and broad intentions of informal learning space. Further, the…

  20. Identification of a subtropical cyclone in the proximity of the Canary Islands and its analysis by numerical modeling

    NASA Astrophysics Data System (ADS)

    Quitián-Hernández, L.; Martín, M. L.; González-Alemán, J. J.; Santos-Muñoz, D.; Valero, F.

    2016-09-01

    Subtropical cyclones (STC) are low-pressure systems that share tropical and extratropical characteristics. Because of the great economic and social damage, the study of these systems has recently grown. This paper analyzes the cyclone formed in October 2014 near the Canary Islands and diagnoses such a cyclone in order to identify its correspondence to an STC category, examining its dynamical and thermal evolution. Diverse fields have been obtained from three different numerical models, and several diagnostic tools and cyclone phase space diagrams have been used. An extratropical cyclone, in its early stage, experimented a process of cut-off and isolation from the midlatitude flow. The incursion of a trough in conjunction with a low-level baroclinic zone favored the formation of the STC northwestern of the Canary Islands. Streamers of high potential vorticity linked to the cyclone favored strong winds and precipitation in the study domain. Cyclone phase space diagrams are used to complement the synoptic analysis and the satellite images of the cyclone to categorize such system. The diagrams reveal the transition from extratropical cyclone to STC remaining for several days with a subtropical structure with a quite broad action radius. The study of the mesoscale environment parameters showed an enhanced conditional instability through a deep troposphere layer. It is shown that moderate to strong vertical wind shear together with relatively warm sea surface temperature determine conditions enabling the development of long-lived convective structures.

  1. Description of Adsorption in Liquid Chromatography under Nonideal Conditions.

    PubMed

    Ortner, Franziska; Ruppli, Chantal; Mazzotti, Marco

    2018-05-15

    A thermodynamically consistent description of binary adsorption in reversed-phase chromatography is presented, accounting for thermodynamic nonidealities in the liquid and adsorbed phases. The investigated system involves the adsorbent Zorbax 300SB-C18, as well as phenetole and 4- tert-butylphenol as solutes and methanol and water as inert components forming the eluent. The description is based on adsorption isotherms, which are a function of the liquid-phase activities, to account for nonidealities in the liquid phase. Liquid-phase activities are calculated with a UNIQUAC model established in this work, based on experimental phase equilibrium data. The binary interaction in the adsorbed phase is described by the adsorbed solution theory, assuming an ideal (ideal adsorbed solution theory) or real (real adsorbed solution theory) adsorbed phase. Implementation of the established adsorption model in a chromatographic code achieves a quantitative description of experimental elution profiles, with feed compositions exploiting the entire miscible region, and involving a broad range of different eluent compositions (methanol/water). The quantitative agreement of the model and experimental data serves as a confirmation of the underlying physical (thermodynamic) concepts and of their applicability to a broad range of operating conditions.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkelin, S.V.; Sinyukov, Yu.M.

    A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate thatmore » multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions.« less

  3. Extraterrestrial intelligence: an observational approach.

    PubMed

    Murray, B; Gulkis, S; Edelson, R E

    1978-02-03

    The microwave region of the electromagnetic spectrum, a plausible regime for signals from extraterrestrial intelligences, is largely unexplored. With new technology, particularly in data processing and low-noise reception, surveys can be conducted over broad regions of frequency and space with existing antennas at flux densities plausible for interstellar signals. An all-sky, broad-band survey lasting perhaps 5 years can be structured so that even negative results would establish significant boundaries on the regime in which such signals may be found. The technology and techniques developed and much of the data acquired would be applicable to radio astronomy and deep-space communications.

  4. Disentangling the Cosmic Web with Lagrangian Submanifold

    NASA Astrophysics Data System (ADS)

    Shandarin, Sergei F.; Medvedev, Mikhail V.

    2016-10-01

    The Cosmic Web is a complicated highly-entangled geometrical object. Remarkably it has formed from practically Gaussian initial conditions, which may be regarded as the simplest departure from exactly uniform universe in purely deterministic mapping. The full complexity of the web is revealed neither in configuration no velocity spaces considered separately. It can be fully appreciated only in six-dimensional (6D) phase space. However, studies of the phase space is complicated by the fact that every projection of it on a three-dimensional (3D) space is multivalued and contained caustics. In addition phase space is not a metric space that complicates studies of geometry. We suggest to use Lagrangian submanifold i.e., x = x(q), where both x and q are 3D vectors instead of the phase space for studies the complexity of cosmic web in cosmological N-body dark matter simulations. Being fully equivalent in dynamical sense to the phase space it has an advantage of being a single valued and also metric space.

  5. Reconstructing a plasmonic metasurface for a broadband high-efficiency optical vortex in the visible frequency.

    PubMed

    Lu, Bing-Rui; Deng, Jianan; Li, Qi; Zhang, Sichao; Zhou, Jing; Zhou, Lei; Chen, Yifang

    2018-06-14

    Metasurfaces consisting of a two-dimensional metallic nano-antenna array are capable of transferring a Gaussian beam into an optical vortex with a helical phase front and a phase singularity by manipulating the polarization/phase status of light. This miniaturizes a laboratory scaled optical system into a wafer scale component, opening up a new area for broad applications in optics. However, the low conversion efficiency to generate a vortex beam from circularly polarized light hinders further development. This paper reports our recent success in improving the efficiency over a broad waveband at the visible frequency compared with the existing work. The choice of material, the geometry and the spatial organization of meta-atoms, and the fabrication fidelity are theoretically investigated by the Jones matrix method. The theoretical conversion efficiency over 40% in the visible wavelength range is worked out by systematic calculation using the finite difference time domain (FDTD) method. The fabricated metasurface based on the parameters by theoretical optimization demonstrates a high quality vortex in optical frequencies with a significantly enhanced efficiency of over 20% in a broad waveband.

  6. View of attic space above the former Gothic Hall Banquet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of attic space above the former Gothic Hall Banquet Room. The monitors originally conveyed light from roof skylights (no longer extant) into the room below. - Masonic Temple, 1 North Broad Street, Philadelphia, Philadelphia County, PA

  7. Radiation -- A Cosmic Hazard to Human Habitation in Space

    NASA Technical Reports Server (NTRS)

    Lewis, Ruthan; Pellish, Jonathan

    2017-01-01

    Radiation exposure is one of the greatest environmental threats to the performance and success of human and robotic space missions. Radiation permeates all space and aeronautical systems, challenges optimal and reliable performance, and tests survival and survivability. We will discuss the broad scope of research, technological, and operational considerations to forecast and mitigate the effects of the radiation environment for deep space and planetary exploration.

  8. Telerobotic control of a mobile coordinated robotic server

    NASA Technical Reports Server (NTRS)

    Lee, Gordon

    1991-01-01

    Results from the Master's Degree Thesis of Mr. Robert Stanley, a graduate student supervised by the principal investigator on this project is reported. The goal of this effort is to develop advanced control methods for flexible space manipulator systems. As such, a fuzzy logic controller has been developed in which model structure as well as parameter constraints are not required for compensation. A general rule base is formulated using quantized linguistic terms; it is then augmented to a traditional integral control. The resulting hybrid fuzzy controller stabilizes the structure over a broad range of uncertainties, including unknown initial conditions. An off-line tuning approach using phase portraits gives further insight into the algorithm. The approach was applied to a three-degree-of-freedom manipulator system - the prototype of the coordinated flexible manipulator system currently being designed and built at North Carolina State University.

  9. Flexible network wireless transceiver and flexible network telemetry transceiver

    DOEpatents

    Brown, Kenneth D.

    2008-08-05

    A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.

  10. Infusing Training into the Documentation and Culture of Ares I Upper Stage Design and Manufacturing

    NASA Technical Reports Server (NTRS)

    Scott, David W.

    2009-01-01

    In roughly two years time, Marshall Space Flight Center's (MSFC) Mission Operations Laboratory (MOL) has incubated a personnel training and certification program for about 1000 learners and multiple phases of the Ares I Upper Stage (US) project. Previous MOL-developed training programs focused on about 100 learners with a focus on operations, and had enough full-time training staff to develop courseware and provide training administration. This paper discusses 1) how creation of a broad, structured training program unfolded as feedback from more narrowly defined tasks, 2) how training philosophy, development methods, and administration are being simplified and tailored so that many Upper Stage organizations can grow their own training yet maintain consistency, accountability, and traceability across the project, and 3) possibilities for interfacing with the production contractor's training system and staff.

  11. Design and development of the spinning mode synthesizer

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Reethof, G.

    1973-01-01

    Design and development of a flexible source of spinning modes which is capable of generating independent spinning waves of controlled complexity and spin speed without the introduction of broad band elements is reported. These features were accomplished through the use of eight commercial loudspeakers located in an equally spaced circular array with diameter of 11 inches and properly phased so that the system could generate a spinning wave. The constructed apparatus was tested in an anechoic environment and found capable of generating a plane, one and two lobed spinning wave of high quality with a sound pressure level of 120 db and at frequencies ranging from 1500 to 2500 Hz at a distance of 4 ft in the far field. The wave speeds investigated varied from 8000 to 18000 rad/sec which represent supersonic peripheral speeds.

  12. The Abcd Formula of Phase Definition in Optical Interferometry: Combined Effect of Air Dispersion and Broad Passband

    NASA Astrophysics Data System (ADS)

    Mathar, Richard J.

    Long-baseline interferometry detects fringes created by superposition of two beams of light collected by two telescopes pointing into a common direction. The external path difference is commonly compensated by adding a variable optical path length (delay) through air for one beam such that the optical path difference between the beams remains close to zero near the detector. The ABCD formula assigns a (wrapped) phase to the signals A to D of an interference pattern shifted by multiples of 90 degrees in phase. We study the interplay between a broad spectral passband of the optics and the dispersion of the air in the compensating delay, which leads to small deviations between the ABCD phase and the reduced, monochromatic group-delay representation of the wave packets. This adds dispersion to the effects that have been discussed for evacuated interferometers before (Milman 2005).

  13. Phase space methods in HMD systems

    NASA Astrophysics Data System (ADS)

    Babington, James

    2017-06-01

    We consider using phase space techniques and methods in analysing optical ray propagation in head mounted display systems. Two examples are considered that illustrate the concepts and methods. Firstly, a shark tooth freeform geometry, and secondly, a waveguide geometry that replicates a pupil in one dimension. Classical optics and imaging in particular provide a natural stage to employ phase space techniques, albeit as a constrained system. We consider how phase space provides a global picture of the physical ray trace data. As such, this gives a complete optical world history of all of the rays propagating through the system. Using this data one can look at, for example, how aberrations arise on a surface by surface basis. These can be extracted numerically from phase space diagrams in the example of a freeform imaging prism. For the waveguide geometry, phase space diagrams provide a way of illustrating how replicated pupils behave and what these imply for design considerations such as tolerances.

  14. Climates

    Treesearch

    John R. Jones; Norbert V. DeByle

    1985-01-01

    The broad range of aspen in North America is evidence of its equally broad tolerance of wide variations in climate (Fowells 1965). Given open space for establishment and not too severe competition from other plants, aspen can survive from timberline on the tundra's edge to very warm temperate climates, and from the wet maritime climates of the coasts to very...

  15. A Research Framework for Reducing Preventable Patient Harm

    PubMed Central

    Weinstein, Robert; Cardo, Denise M.; Goeschel, Christine A.; Berenholtz, Sean M.; Saint, Sanjay; Jernigan, John A.

    2011-01-01

    Programs to reduce central line–associated bloodstream infections (CLABSIs) have improved the safety of hospitalized patients. Efforts are underway to disseminate these successes broadly to reduce other types of hospital-acquired infectious and noninfectious preventable harms. Unfortunately, the ability to broadly measure and prevent other types of preventable harms, especially infectious harms, needs enhancement. Moreover, an overarching research framework for creating and integrating evidence will help expedite the development of national prevention programs. This article outlines a 5-phase translational (T) framework to develop robust research programs that reduce preventable harm, as follows: phase T0, discover opportunities and approaches to prevent adverse health care events; phase T1, use T0 discoveries to develop and test interventions on a small scale; phase T2, broaden and strengthen the evidence base for promising interventions to develop evidence-based guidelines; phase T3, translate guidelines into clinical practice; and phase T4, implement and evaluate T3 work on a national and international scale. Policy makers should use this framework to fill in the knowledge gaps, coordinate efforts among federal agencies, and prioritize research funding. PMID:21258104

  16. National Space Council Users' Advisory Group

    NASA Image and Video Library

    2018-06-19

    James Uthmeier, of the Department of Commerce, speaks about deregulation and space traffic management initiatives at the first meeting of the National Space Council Users' Advisory Group, Tuesday, June 19, 2018 at NASA Headquarters in Washington. The Users' Advisory Group will advise and inform the National Space Council on a broad range of aerospace topics, including the impacts of U.S. and international laws and regulations, national security space priorities, scientific and human space exploration priorities, and ways to bolster support. Photo Credit: (NASA/Joel Kowsky)

  17. Husimi function and phase-space analysis of bilayer quantum Hall systems at ν = 2/λ

    NASA Astrophysics Data System (ADS)

    Calixto, M.; Peón-Nieto, C.

    2018-05-01

    We propose localization measures in phase space of the ground state of bilayer quantum Hall systems at fractional filling factors , to characterize the three quantum phases (shortly denoted by spin, canted and ppin) for arbitrary -isospin λ. We use a coherent state (Bargmann) representation of quantum states, as holomorphic functions in the 8-dimensional Grassmannian phase-space (a higher-dimensional generalization of the Haldane’s 2-dimensional sphere ). We quantify the localization (inverse volume) of the ground state wave function in phase-space throughout the phase diagram (i.e. as a function of Zeeman, tunneling, layer distance, etc, control parameters) with the Husimi function second moment, a kind of inverse participation ratio that behaves as an order parameter. Then we visualize the different ground state structure in phase space of the three quantum phases, the canted phase displaying a much higher delocalization (a Schrödinger cat structure) than the spin and ppin phases, where the ground state is highly coherent. We find a good agreement between analytic (variational) and numeric diagonalization results.

  18. Opportunities and questions for the fundamental biological sciences in space

    NASA Technical Reports Server (NTRS)

    Sharp, Joseph C.; Vernikos, Joan

    1993-01-01

    With the advent of sophisticated space facilities we discuss the overall nature of some biological questions that can be addressed. We point out the need for broad participation by the biological community, the necessary facilities, and some unique requirements.

  19. On the importance of an accurate representation of the initial state of the system in classical dynamics simulations

    NASA Astrophysics Data System (ADS)

    García-Vela, A.

    2000-05-01

    A definition of a quantum-type phase-space distribution is proposed in order to represent the initial state of the system in a classical dynamics simulation. The central idea is to define an initial quantum phase-space state of the system as the direct product of the coordinate and momentum representations of the quantum initial state. The phase-space distribution is then obtained as the square modulus of this phase-space state. The resulting phase-space distribution closely resembles the quantum nature of the system initial state. The initial conditions are sampled with the distribution, using a grid technique in phase space. With this type of sampling the distribution of initial conditions reproduces more faithfully the shape of the original phase-space distribution. The method is applied to generate initial conditions describing the three-dimensional state of the Ar-HCl cluster prepared by ultraviolet excitation. The photodissociation dynamics is simulated by classical trajectories, and the results are compared with those of a wave packet calculation. The classical and quantum descriptions are found in good agreement for those dynamical events less subject to quantum effects. The classical result fails to reproduce the quantum mechanical one for the more strongly quantum features of the dynamics. The properties and applicability of the phase-space distribution and the sampling technique proposed are discussed.

  20. Space station systems analysis study. Part 3: Documentation. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The space stations systems analysis study is summarized. A cost efffective system concept capable of meeting a broad spectrum of mission requirements was developed. Candidate objectives were reviewed and implementation requirements were defined. Program options for both low earth and geosynchronous orbits were examined. Space construction concepts were analyzed and defined in detail.

  1. Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space.

    PubMed

    Pinchaipat, Rattachai; Campo, Matteo; Turci, Francesco; Hallett, James E; Speck, Thomas; Royall, C Patrick

    2017-07-14

    Among the key insights into the glass transition has been the identification of a nonequilibrium phase transition in trajectory space which reveals phase coexistence between the normal supercooled liquid (active phase) and a glassy state (inactive phase). Here, we present evidence that such a transition occurs in experiments. In colloidal hard spheres, we find a non-Gaussian distribution of trajectories leaning towards those rich in locally favored structures (LFSs), associated with the emergence of slow dynamics. This we interpret as evidence for a nonequilibrium transition to an inactive LFS-rich phase. Reweighting trajectories reveals a first-order phase transition in trajectory space between a normal liquid and a LFS-rich phase. We also find evidence for a purely dynamical transition in trajectory space.

  2. Motor/Generator and Inverter Characterization for Flywheel System Applications

    NASA Technical Reports Server (NTRS)

    Tamarcus, Jeffries L.

    2004-01-01

    The Advanced Electrical Systems Development Branch at NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheels systems for satellite energy storage and attitude applications. These flywheels will serve as replacement for chemical nickel hydrogen, nickel cadmium batteries and gyroscopic wheels. The advantages of using flywheel systems for energy storage on satellites are high energy density, high power density, long life, deep depth of discharge, and broad operating temperature ranges. A flywheel system for space applications consist of a number of flywheel modules, the motor/generator and magnetic bearing, and an electronics package. The motor/generator electronics package includes a pulse-width modulated inverter that drives the flywheel permanent magnet motor/generator located at one end of the shaft. This summer, I worked under the direct supervision of my mentor, Walter Santiago, and the goal for this summer was to characterize motor generator and inverter attributes in order to increase their viability as a more efficient energy storage source for space applications. To achieve this goal, magnetic field measurements around the motor/generator permanent magnet and the impedance of the motor/generator three phase windings were characterized, and a recreation of the inverter pulse width modulated control system was constructed. The Flywheel modules for space use are designed to maximize energy density and minimize loss, and attaining these values will aid in locating and reducing losses within the flywheel system as a whole, making flywheel technology more attractive for use as energy storage in future space applications.

  3. Experimental Constraints of the Exotic Shearing of Space-Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Jonathan William

    2016-08-01

    The Holometer program is a search for rst experimental evidence that space-time has quantum structure. The detector consists of a pair of co-located 40-m power-recycled interferometers whose outputs are read out synchronously at 50 MHz, achieving sensitivity to spatiallycorrelated uctuations in dierential position on time scales shorter than the light-crossing time of the instruments. Unlike gravitational wave interferometers, which time-resolve transient geometrical disturbances in the spatial background, the Holometer is searching for a universal, stationary quantization noise of the background itself. This dissertation presents the nal results of the Holometer Phase I search, an experiment congured for sensitivity to exoticmore » coherent shearing uctuations of space-time. Measurements of high-frequency cross-spectra of the interferometer signals obtain sensitivity to spatially-correlated eects far exceeding any previous measurement, in a broad frequency band extending to 7.6 MHz, twice the inverse light-crossing time of the apparatus. This measurement is the statistical aggregation of 2.1 petabytes of 2-byte dierential position measurements obtained over a month-long exposure time. At 3 signicance, it places an upper limit on the coherence scale of spatial shear two orders of magnitude below the Planck length. The result demonstrates the viability of this novel spatially-correlated interferometric detection technique to reach unprecedented sensitivity to coherent deviations of space-time from classicality, opening the door for direct experimental tests of theories of relational quantum gravity.« less

  4. Quantifying the similarity of seismic polarizations

    NASA Astrophysics Data System (ADS)

    Jones, Joshua P.; Eaton, David W.; Caffagni, Enrico

    2016-02-01

    Assessing the similarities of seismic attributes can help identify tremor, low signal-to-noise (S/N) signals and converted or reflected phases, in addition to diagnosing site noise and sensor misalignment in arrays. Polarization analysis is a widely accepted method for studying the orientation and directional characteristics of seismic phases via computed attributes, but similarity is ordinarily discussed using qualitative comparisons with reference values or known seismic sources. Here we introduce a technique for quantitative polarization similarity that uses weighted histograms computed in short, overlapping time windows, drawing on methods adapted from the image processing and computer vision literature. Our method accounts for ambiguity in azimuth and incidence angle and variations in S/N ratio. Measuring polarization similarity allows easy identification of site noise and sensor misalignment and can help identify coherent noise and emergent or low S/N phase arrivals. Dissimilar azimuths during phase arrivals indicate misaligned horizontal components, dissimilar incidence angles during phase arrivals indicate misaligned vertical components and dissimilar linear polarization may indicate a secondary noise source. Using records of the Mw = 8.3 Sea of Okhotsk earthquake, from Canadian National Seismic Network broad-band sensors in British Columbia and Yukon Territory, Canada, and a vertical borehole array at Hoadley gas field, central Alberta, Canada, we demonstrate that our method is robust to station spacing. Discrete wavelet analysis extends polarization similarity to the time-frequency domain in a straightforward way. Time-frequency polarization similarities of borehole data suggest that a coherent noise source may have persisted above 8 Hz several months after peak resource extraction from a `flowback' type hydraulic fracture.

  5. A swinging seesaw as a novel model mechanism for time-dependent hormesis under dose-dependent stimulatory and inhibitory effects: A case study on the toxicity of antibacterial chemicals to Aliivibrio fischeri.

    PubMed

    Sun, Haoyu; Calabrese, Edward J; Zheng, Min; Wang, Dali; Pan, Yongzheng; Lin, Zhifen; Liu, Ying

    2018-08-01

    Hormesis occurs frequently in broadly ranging biological areas (e.g. plant biology, microbiology, biogerontology), toxicology, pharmacology and medicine. While numerous mechanisms (e.g. receptor and pathway mediated pathway responses) account for stimulatory and inhibitory features of hormetic dose responses, the vast majority emphasizes the inclusion of many doses but only one timepoint or use of a single optimized dose that is assessed over a broad range of timepoints. In this paper, a toxicity study was designed using a large number of properly spaced doses with responses determined over a large number of timepoints, which could help us reveal the underlying mechanism of hormesis. We present the results of a dose-time-response study on hormesis using five antibacterial chemicals on the bioluminescence of Aliivibrio fischeri, measuring expression of protein mRNA based on quorum sensing, simulating bioluminescent reaction and analyzing toxic actions of test chemicals. The findings show dose-time-dependent responses conforming to the hormetic dose-response model, while revealing unique response dynamics between agent induced stimulatory and inhibitory effects within bacterial growth phase dynamics. These dynamic dose-time features reveal a type of biological seesaw model that integrates stimulatory and inhibitory responses within unique growth phase, dose and time features, which has faultlessly explained the time-dependent hormetic phenomenon induced by five antibacterial chemicals (characterized by low-dose stimulation and high-dose inhibition). This study offers advances in understanding cellular dynamics, the biological integration of diverse and opposing responses and their role in evolutionary adaptive strategies to chemicals, which can provide new insight into the mechanistic investigation of hormesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Shades of green: Measuring the ecology of urban green space in the context of human health and well-being

    Treesearch

    Anna Jorgensen; Paul H. Gobster

    2010-01-01

    In this paper we review and analyze the recent research literature on urban green space and human health and well-being, with an emphasis on studies that attempt to measure biodiversity and other green space concepts relevant to urban ecological restoration. We first conduct a broad scale assessment of the literature to identify typologies of urban green space and...

  7. Structural and optical characterization of Eu3+ doped beta-Ga2O3 nanoparticles using a liquid-phase precursor method.

    PubMed

    Kim, Moung-O; Kang, Bongkyun; Yoon, Daeho

    2013-08-01

    Eu3+ doped beta-Ga2O3 and non-doped beta-Ga2O3 nanoparticles were synthesized at 800 degrees C using a liquid-phase precursor (LPP) method, with different annealing times and Eu3+ ion concentrations. Eu3+ doped beta-Ga2O3 nanoparticles showed broad XRD peaks, revealing a second phase compared with the non-doped beta-Ga2O3 nanoparticles. The cathode luminescence (CL) spectra of beta-Ga2O3 and Eu3+ doped beta-Ga2O3 nanoparticles showed a broad band emission (300-500 nm) of imperfection and two component emissions. The luminescence quenching properties of Eu3+ dopant ion concentration appeared gradually beyond 5 mol% in our investigation.

  8. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores.

    PubMed

    Eriksson, Ove

    2016-02-01

    The origins of interactions between angiosperms and fruit-eating seed dispersers have attracted much attention following a seminal paper on this topic by Tiffney (1984). This review synthesizes evidence pertaining to key events during the evolution of angiosperm-frugivore interactions and suggests some implications of this evidence for interpretations of angiosperm-frugivore coevolution. The most important conclusions are: (i) the diversification of angiosperm seed size and fleshy fruits commenced around 80 million years ago (Mya). The diversity of seed sizes, fruit sizes and fruit types peaked in the Eocene around 55 to 50 Mya. During this first phase of the interaction, angiosperms and animals evolving frugivory expanded into niche space not previously utilized by these groups, as frugivores and previously not existing fruit traits appeared. From the Eocene until the present, angiosperm-frugivore interactions have occurred within a broad frame of existing niche space, as defined by fruit traits and frugivory, motivating a separation of the angiosperm-frugivore interactions into two phases, before and after the peak in the early Eocene. (ii) The extinct multituberculates were probably the most important frugivores during the early radiation phase of angiosperm seeds and fleshy fruits. Primates and rodents are likely to have been important in the latter part of this first phase. (iii) Flying frugivores, birds and bats, evolved during the second phase, mainly during the Oligocene and Miocene, thus exploiting an existing diversity of fleshy fruits. (iv) A drastic climate shift around the Eocene-Oligocene boundary (around 34 Mya) resulted in more semi-open woodland vegetation, creating patchily occurring food resources for frugivores. This promoted evolution of a 'flying frugivore niche' exploited by birds and bats. In particular, passerines became a dominant frugivore group worldwide. (v) Fleshy fruits evolved at numerous occasions in many angiosperm families, and many of the originations of fleshy fruits occurred well after the peak in the early Eocene. (vi) During periods associated with environmental change altering coevolutionary networks and opening of niche space, reciprocal coevolution may result in strong directional selection formative for both fruit and frugivore evolution. Further evidence is needed to test this hypothesis. Based on the abundance of plant lineages with various forms of fleshy fruits, and the diversity of frugivores, it is suggested that periods of rapid coevolution in angiosperms and frugivores occurred numerous times during the 80 million years of angiosperm-frugivore evolution. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  9. Small Business Innovation Research. Program solicitation. Closing date: July 21, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The National Aeronautics and Space Administration (NASA) invites small businesses to submit Phase 1 proposals in response to its Small Business Innovation Research (SBIR) Program Solicitation 92-1. Firms with research or research and development capabilities (R/R&D) in science or engineering in any of the areas listed are encouraged to participate. This, the tenth annual SBIR solicitation by NASA, describes the program, identifies eligibility requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in NASA's SBIR program. It also identifies, in Section 8.0, the technical topics and subtopics in which SBIR Phase 1 proposals are solicited in 1992. These topics and subtopics cover a broad range of current NASA interests but do not necessarily include all areas in which NASA plans or currently conducts research. The NASA SBIR program seeks innovative approaches that respond to the needs, technical requirements, and new opportunities described in the subtopics. The focus is on innovation through the use of emerging technologies, novel applications of existing technologies, exploitation of scientific breakthroughs, or new capabilities or major improvements to existing technologies. NASA plans to select about 320 high-quality research or research and development proposals for Phase 1 contract awards on the basis of this Solicitation. Phase 1 contracts are normally six months in duration and funded up to $50,000, including profit. Selections will be based on the competitive merits of the offers and on NASA needs and priorities.

  10. Observation of the de Vries behavior in SmA* phase of a liquid crystal using polarised Raman scattering and infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kocot, A.; Vij, J. K.; Perova, T. S.; Merkel, K.; Swaminathan, V.; Sreenilayam, S. P.; Yadav, N.; Panov, V. P.; Stevenson, P. J.; Panov, A.; Rodriguez-Lojo, D.

    2017-09-01

    Two approaches exist in the literature for describing the orientational distribution function (ODF) of the molecular directors in SmA* phase of liquid crystals, though several models are recently proposed in the literature for explaining the de Vries behaviour. These ODFs correspond to either the conventional unimodal arrangements of molecular directors arising from the mean field theory that leads to the broad or sugar-loaf like distribution or to the "diffuse-cone-shaped" type distribution proposed by de Vries. The hypothesis by de Vries provides for a realistic explanation as to how at a molecular level, a first-order SmA* to SmC* transition can occur where the uniform molecular director azimuthal distributions condense to values lying within a narrow range of angles; finally these condense to a single value while at the same time ensuring a little or no concomitant shrinkage in the layer spacing. The azimuthal distribution of the in-layer directors is probed using IR and polarized Raman spectroscopic techniques. The latter allows us to obtain the ODF and the various order parameters for the uniaxial and the biaxial phases. Based on the results of these measurements, we conclude that the "cone-shaped" (or volcano-shaped) de Vries type of distribution can most preferably describe SmA* where "a first-order phase transition from SmA* to SmC*" and a low layer shrinkage can both be easily explained.

  11. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    PubMed

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  12. Phase-locked laser array having a non-uniform spacing between lasing regions

    NASA Technical Reports Server (NTRS)

    Ackley, Donald E. (Inventor)

    1986-01-01

    A phase-locked semiconductor array wherein the lasing regions of the array are spaced an effective distance apart such that the modes of oscillation of the different lasing regions are phase-locked to one another. The center-to-center spacing between the lasing regions is non-uniform. This variation in spacing perturbs the preferred 180.degree. phase difference between adjacent lasing regions thereby providing an increased yield of arrays exhibiting a single-lobed, far-field radiation pattern.

  13. An effective method to accurately calculate the phase space factors for β - β - decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neacsu, Andrei; Horoi, Mihai

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. Here, we present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  14. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  15. Energy content of stormtime ring current from phase space mapping simulations

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.

    1993-01-01

    We perform a phase space mapping study to estimate the enhancement in energy content that results from stormtime particle transport in the equatorial magnetosphere. Our pre-storm phase space distribution is based on a steady-state transport model. Using results from guiding-center simulations of ion transport during model storms having main phases of 3 hr, 6 hr, and 12 hr, we map phase space distributions of ring current protons from the pre-storm distribution in accordance with Liouville's theorem. We find that transport can account for the entire ten to twenty-fold increase in magnetospheric particle energy content typical of a major storm if a realistic stormtime enhancement of the phase space density f is imposed at the nightside tail plasma sheet (represented by an enhancement of f at the neutral line in our model).

  16. Space System Survivability

    NASA Astrophysics Data System (ADS)

    Kuller, W. G.; Hanifen, D. W.

    1982-07-01

    Exoatmospheric detonations of nuclear weapons produce a broad spectrum of effects which can prevent operational space missions from being successfully accomplished. The spacecraft may be exposed to the prompt radiation from the detonations which can cause upset or burnout of critical mission components through Transient Radiation Effects on Electronics (TREE) or System Generated Electromagnetic Pulse (SGEMP). Continual exposure to the trapped radiation environment may cause component failure due to total dose or Electron Caused EMP (ECEMP). Satellite links to ground and airborne terminals are subject to serious degradation due to signal absorption and scintillation. The ground data stations and lines of communications are subject to failure from the broad range effects of high-altitude EMP.

  17. Investigating the Fraction of Radio-Loud Quasars with High Velocity Broad Emission LInes

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anirban; Gilbert, Miranda; Brotherton, Michael S.

    2018-06-01

    Quasars show a bimodal distribution in their radio emission, with some having powerful radio-emitting jets (radio-loud), and most having weak or no jets (radio-quiet). Surveys have shown around 10% of of quasars have detectable radio emissions. These quasars are called radio-loud. Several multiwavelength studies have shown that radio-loud quasars have different properties than radio-quiet quasars. This fraction of radio-loud quasars to radio-quiet quasars has been assumed to be constant across all parameter space. In this study, we breakdown the parameter space with respect to the increasing velocity dispersion of broad emission lines. Our sample has been drawn from 2011 Shen et al. catalog of more than 100,000 quasars. In this study, we demonstrate that this fraction varies with respect to the increasing velocity dispersion (FWHM) of broad emission lines. We compare three different emission lines: H-Beta, MgII, and CIV. We observe with increasing FWHM of these three emission lines, fraction of radio-loud quasars within the subset increases. This poster presents our initial results into investigating whether the fraction of RL quasars remains 10% in different parameter space.

  18. Space-Based Telemetry and Range Safety Project Ku-Band and Ka-Band Phased Array Antenna

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  19. Ku- and Ka-Band Phased Array Antenna for the Space-Based Telemetry and Range Safety Project

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  20. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    NASA Technical Reports Server (NTRS)

    Rash, James L.

    2010-01-01

    NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems.

  1. Constraining sub-parsec binary supermassive black holes in quasars with multi-epoch spectroscopy. II. The population with kinematically offset broad Balmer emission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin; Shen, Yue; Bian, Fuyan

    2014-07-10

    A small fraction of quasars have long been known to show bulk velocity offsets (of a few hundred to thousands of km s{sup –1}) in the broad Balmer lines with respect to the systemic redshift of the host galaxy. Models to explain these offsets usually invoke broad-line region gas kinematics/asymmetry around single black holes (BHs), orbital motion of massive (∼sub-parsec (sub-pc)) binary black holes (BBHs), or recoil BHs, but single-epoch spectra are unable to distinguish between these scenarios. The line-of-sight (LOS) radial velocity (RV) shifts from long-term spectroscopic monitoring can be used to test the BBH hypothesis. We have selectedmore » a sample of 399 quasars with kinematically offset broad Hβ lines from the Sloan Digital Sky Survey (SDSS) Seventh Data Release quasar catalog, and have conducted second-epoch optical spectroscopy for 50 of them. Combined with the existing SDSS spectra, the new observations enable us to constrain the LOS RV shifts of broad Hβ lines with a rest-frame baseline of a few years to nearly a decade. While previous work focused on objects with extreme velocity offset (>10{sup 3} km s{sup –1}), we explore the parameter space with smaller (a few hundred km s{sup –1}) yet significant offsets (99.7% confidence). Using cross-correlation analysis, we detect significant (99% confidence) radial accelerations in the broad Hβ lines in 24 of the 50 objects, of ∼10-200 km s{sup –1} yr{sup –1} with a median measurement uncertainty of ∼10 km s{sup –1} yr{sup –1}, implying a high fraction of variability of the broad-line velocity on multi-year timescales. We suggest that 9 of the 24 detections are sub-pc BBH candidates, which show consistent velocity shifts independently measured from a second broad line (either Hα or Mg II) without significant changes in the broad-line profiles. Combining the results on the general quasar population studied in Paper I, we find a tentative anti-correlation between the velocity offset in the first-epoch spectrum and the average acceleration between two epochs, which could be explained by orbital phase modulation when the time separation between two epochs is a non-negligible fraction of the orbital period of the motion causing the line displacement. We discuss the implications of our results for the identification of sub-pc BBH candidates in offset-line quasars and for the constraints on their frequency and orbital parameters.« less

  2. Phase behavior of mixtures of DPPC and POPG.

    PubMed

    Wiedmann, T; Salmon, A; Wong, V

    1993-04-07

    The phase relation of dipalmitoylphosphatidylcholine (DPPC) and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) has been determined by measurement of the endothermic transitions of mixtures of DPPC and POPG in 100 mM NaCl, 50 mM PIPES (pH 7.0). With the use of differential scanning calorimetry, the gel-liquid crystalline phase transitions of pure POPG and DPPC were estimated to be 274 K and 315.8 K, respectively. With mixtures, there was considerable broadening of the endotherms, but there was no evidence of immiscibility. At high and low mole fractions of DPPC, the observed transition regions are not different from that calculated assuming ideal behavior. However in the central region of the phase diagram, there were deviations from both the ideal liquidus and solidus curves. The chemical shift anisotropy of the 13C-labelled carbonyl carbon of pure DPPC was determined as a function of temperature. At 298 K, a broad peak characteristic of axially symmetric motional averaging of the shielding tensor was observed. At a temperature of 300 K, a narrow peak at 173 ppm was superimposed upon the broad peak. The magnitude of the narrow resonance increased with temperature over the range of 300 to 315 K with the spectrum obtained at the latter point almost completely devoid of any broad features. Spectra obtained with a 9:1 mole ratio of DPPC/POPG was very similar to that obtained with pure DPPC. However, with increasing amounts of POPG, both the temperature at which the narrow resonance appeared and the temperature at which only a narrow resonance was observed were reduced. Over the range of 0 to 50 mol % POPG, there was no major change in the width or shape of the spectra which contained only a broad or narrow resonance. Also for mol % of POPG of 20% and less, there was agreement between the temperature at which only the narrow component was observed and the completion of the main phase transition based on the DSC scans. However, at the two higher mol % of 33 and 50%, the temperature at which only the narrow component was observed was lower than the temperature established for the completion of the main phase transition.

  3. Strategies Which Foster Broad Use and Deployment of Earth and Space Science Informal and Formal Education Resources

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.; Gabrys, Robert; Ireton, M. Frank; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Education projects supported by federal agencies and carried out by a wide range of organizations foster learning about Earth and Space systems science in a wide array of venues. Across these agencies a range of strategies are employed to ensure that effective materials are created for these diverse venues. And that these materials are deployed broadly so that a large spectrum of the American Public, both adults and children alike, can learn and become excited by the Earth and space system science. This session will highlight some of those strategies and will cover representative examples to illustrate the effectiveness of the strategies. Invited speakers from selected formal and informal educational efforts will anchor this session. Speakers with representative examples are encouraged to submit abstracts for the session to showcase the strategies which they use.

  4. JPRS Report, Nuclear Developments

    DTIC Science & Technology

    1989-06-28

    the Industrial Devel- opment Corporation, the Department of Posts and Tele- communications , the weather bureau, the Department of Trade and...Industry, the SABC [South African Broad- casting Corporation] and the academic space research community had been appointed to keep up with space- related...wanted to launch its own space programme for communication , commercial, industrial and military purposes. JPRS-TND-89-013 28 June 1989 CHINA

  5. Government and Industry Issues for Expanding Commercial Markets into Space

    NASA Technical Reports Server (NTRS)

    Smitherman, David V., Jr.

    2003-01-01

    In 2002, the Foresight and Governance Project at the Woodrow Wilson Center in Washington, D.C, organized a "Global Foresight Workshop" in partnership with NASA and in cooperation with other Federal Agencies to provide integrated consideration of broad challenges for the 2lst century. Many long-range goals for the nation were discussed and selected, among them were space related goals of interest to NASA. During much of the Agency's history, NASA advanced studies have focused consistently on the challenges of science-driven space exploration and operations. However, workshop findings indicate little interest in these goals unless they can also solve national and global issues. Many technologies and space development studies indicate great potential to enable new, important commercial markets in space that could address the many global challenges facing America in this century. But communication of these ideas are lacking. In conclusion, it appears that the commercial development of space could have broad implications on many impending problems, including energy resources, environmental impact, and climate changes. The challenge will be to develop a consistent coordinated effort among the many industries and Agencies that should be involved in opening this new frontier for these new commercial markets.

  6. Remote sensing at the NASA Kennedy Space Center: a perspective from the ground up

    NASA Astrophysics Data System (ADS)

    Huddleston, Lisa H.; Roeder, William P.; Morabito, David D.; D'Addario, Larry R.; Morgan, Jennifer G.; Barbré, Robert E.; Decker, Ryan K.; Geldzahler, Barry; Seibert, Mark A.; Miller, Michael J.

    2014-10-01

    This paper provides an overview of ground based operational remote sensing activities that enable a broad range of missions at the Eastern Range (ER), which includes the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) and U.S. Air Force Cape Canaveral Air Force Station (CCAFS). Many types of sensors are in use by KSC and across the ER. We examine remote sensors for winds, lightning and electric fields, precipitation and storm hazards. These sensors provide data that are used in real-time to evaluate launch commit criteria during space launches, major ground processing operations in preparation for space launches, issuing weather warnings/watches/advisories to protect over 25,000 people and facilities worth over $20 billion, and routine weather forecasts. The data from these sensors are archived to focus NASA launch vehicle design studies, to develop forecast techniques, and for incident investigation. The wind sensors include the 50-MHz and 915-MHz Doppler Radar Wind Profilers (DRWP) and the Doppler capability of the weather surveillance radars. The atmospheric electricity sensors include lightning aloft detectors, cloud-to-ground lightning detectors, and surface electric field mills. The precipitation and storm hazards sensors include weather surveillance radars. Next, we discuss a new type of remote sensor that may lead to better tracking of near-Earth asteroids versus current capabilities. The Ka Band Objects Observation and Monitoring (KaBOOM) is a phased array of three 12 meter (m) antennas being built as a technology demonstration for a future radar system that could be used to track deep-space objects such as asteroids. Transmissions in the Ka band allow for wider bandwidth than at lower frequencies, but the signals are also far more susceptible to de-correlation from turbulence in the troposphere, as well as attenuation due to water vapor, which is plentiful in the Central Florida atmosphere. If successful, KaBOOM will have served as the pathfinder for a larger and more capable instrument that will enable tracking 15 m asteroids up to 72 million kilometers (km) away, about half the distance to the Sun and five times further than we can track today. Finally, we explore the use of Site Test Interferometers (STI) as atmospheric sensors. The STI antennas continually observe signals emitted by geostationary satellites and produce measurements of the phase difference between the received signals. STIs are usually located near existing or candidate antenna array sites to statistically characterize atmospheric phase delay fluctuation effects for the site. An STI measures the fluctuations in the difference of atmospheric delay from an extraterrestrial source to two or more points on the Earth. There is a three-element STI located at the KaBOOM site at KSC.

  7. Challenges for future space power systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Forecasts of space power needs are presented. The needs fall into three broad categories: survival, self-sufficiency, and industrialization. The cost of delivering payloads to orbital locations and from Low Earth Orbit (LEO) to Mars are determined. Future launch cost reductions are predicted. From these projections the performances necessary for future solar and nuclear space power options are identified. The availability of plentiful cost effective electric power and of low cost access to space are identified as crucial factors in the future extension of human presence in space.

  8. National Space Council Users' Advisory Group

    NASA Image and Video Library

    2018-06-19

    Users' Advisory Group member Faith Ozmen, CEO of the Sierra Nevada Corporation is seen durring the first meeting of the National Space Council Users' Advisory Group, Tuesday, June 19, 2018 at NASA Headquarters in Washington. The Users' Advisory Group will advise and inform the National Space Council on a broad range of aerospace topics, including the impacts of U.S. and international laws and regulations, national security space priorities, scientific and human space exploration priorities, and ways to bolster support. Photo Credit: (NASA/Joel Kowsky)

  9. Synthetic biology in space: considering the broad societal and ethical implications

    NASA Astrophysics Data System (ADS)

    Race, Margaret S.; Moses, Jacob; McKay, Christopher; Venkateswaran, Kasthuri J.

    2012-02-01

    Although the field of synthetic biology is still in its infancy, there are expectations for great advances in the coming decades, both on Earth and potentially in space. Promising applications for long duration space missions include a variety of biologically engineered products and biologically aided processes and technologies, which will undoubtedly be scrutinized for risks and benefits in the broad context of ethical, legal and social realms. By comparing and contrasting features of Earth-based and space-applied synthetic biology, it is possible to identify the likely similarities and differences, and to identify possible challenges ahead for space applications that will require additional research, both in the short and long terms. Using an analytical framework associated with synthetic biology and new technologies on Earth, this paper analyses the kinds of issues and concerns ahead, and identifies those areas where space applications may require additional examination. In general, while Earth- and space-based synthetic biology share many commonalities, space applications have additional challenges such as those raised by space microbiology and environmental factors, legal complications, planetary protection, lack of decision-making infrastructure(s), long duration human missions, terraforming and the possible discovery of extraterrestrial (ET) life. For synthetic biology, the way forward offers many exciting opportunities, but is not without legitimate concerns - for life, environments and society, both on Earth and beyond.

  10. Research Technology

    NASA Image and Video Library

    2002-08-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.

  11. Phase space quantum mechanics - Direct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of themore » formalism are demonstrated throughout the text.« less

  12. Classical-Quantum Correspondence by Means of Probability Densities

    NASA Technical Reports Server (NTRS)

    Vegas, Gabino Torres; Morales-Guzman, J. D.

    1996-01-01

    Within the frame of the recently introduced phase space representation of non relativistic quantum mechanics, we propose a Lagrangian from which the phase space Schrodinger equation can be derived. From that Lagrangian, the associated conservation equations, according to Noether's theorem, are obtained. This shows that one can analyze quantum systems completely in phase space as it is done in coordinate space, without additional complications.

  13. Nuclear Power in Space.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Research has shown that nuclear radioisotope power generators can supply compact, reliable, and efficient sources of energy for a broad range of space missions. These missions range from televising views of planetary surfaces to communicating scientific data to Earth. This publication presents many applications of the advancing technology and…

  14. Space Phase III - The commercial era dawns

    NASA Technical Reports Server (NTRS)

    Allnutt, R. F.

    1983-01-01

    After the 'Phase I' of space activities, the period bounded by Sputnik and Apollo, 'Phase II', has been entered, a phase in which concerns over the use and the protection of space assets which support national security predominate. However, it is only when the commercial motive becomes prominent that human activity in new regions truly prospers and enters periods of exponential growth. It is believed that there are increasing signs that such a period, called 'Space Phase III', may be coming soon. A description is presented of developments and results upon which this conclusion is based. Since 1980, there have been three developments of great importance for the future of space activities. Six highly successful flights have demonstrated that the Space Shuttle concept works. A series of Soviet missions are related to the emergence of a capability to construct and service modular space stations. Successful tests of the European Ariane 1 indicate an end to U.S. monopoly with respect to the provision of launch services to the Western World.

  15. Phase-space reaction network on a multisaddle energy landscape: HCN isomerization.

    PubMed

    Li, Chun-Biu; Matsunaga, Yasuhiro; Toda, Mikito; Komatsuzaki, Tamiki

    2005-11-08

    By using the HCN/CNH isomerization reaction as an illustrative vehicle of chemical reactions on multisaddle energy landscapes, we give explicit visualizations of molecular motions associated with a straight-through reaction tube in the phase space inside which all reactive trajectories pass from one basin to another, with eliminating recrossing trajectories in the configuration space. This visualization provides us with a chemical intuition of how chemical species "walk along" the reaction-rate slope in the multidimensional phase space compared with the intrinsic reaction path in the configuration space. The distinct nonergodic features in the two different HCN and CNH wells can be easily demonstrated by a section of Poincare surface of section in those potential minima, which predicts in a priori the pattern of trajectories residing in the potential well. We elucidate the global phase-space structure which gives rise to the non-Markovian dynamics or the dynamical correlation of sequential multisaddle chemical reactions. The phase-space structure relevant to the controllability of the product state in chemical reactions is also discussed.

  16. Expanding the term "Design Space" in high performance liquid chromatography (I).

    PubMed

    Monks, K E; Rieger, H-J; Molnár, I

    2011-12-15

    The current article presents a novel approach to applying Quality by Design (QbD) principles to the development of high pressure reversed phase liquid chromatography (HPLC) methods. Four common critical parameters in HPLC--gradient time, temperature, pH of the aqueous eluent, and stationary phase--are evaluated within the Quality by Design framework by the means of computer modeling software and a column database, to a satisfactory degree. This work proposes the establishment of two mutually complimentary Design Spaces to fully depict a chromatographic method; one Column Design Space (CDS) and one Eluent Design Space (EDS) to describe the influence of the stationary phase and of the mobile phase on the separation selectivity, respectively. The merge of both Design Spaces into one is founded on the continuous nature of the mobile phase influence on retention and the great variety of the stationary phases available. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. An approach for automated fault diagnosis based on a fuzzy decision tree and boundary analysis of a reconstructed phase space.

    PubMed

    Aydin, Ilhan; Karakose, Mehmet; Akin, Erhan

    2014-03-01

    Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset. © 2013 ISA Published by ISA All rights reserved.

  18. Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.

    2011-03-01

    The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods includingmore » multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.« less

  19. NASA Research Announcement Phase 1 Report and Phase 2 Proposal for the Development of a Power Assisted Space Suit Glove Assembly

    NASA Technical Reports Server (NTRS)

    Cadogan, Dave; Lingo, Bob

    1996-01-01

    In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.

  20. Efficient characterization of phase space mapping in axially symmetric optical systems

    NASA Astrophysics Data System (ADS)

    Barbero, Sergio; Portilla, Javier

    2018-01-01

    Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.

  1. Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries

    NASA Astrophysics Data System (ADS)

    Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel

    2017-12-01

    Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincaré-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ -Minkowski spaces and (iii) κ -Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed.

  2. Multi-color, rotationally resolved photometry of asteroid 21 Lutetia from OSIRIS/Rosetta observations

    NASA Astrophysics Data System (ADS)

    Lamy, P. L.; Faury, G.; Jorda, L.; Kaasalainen, M.; Hviid, S. F.

    2010-10-01

    Context. Asteroid 21 Lutetia is the second target of the Rosetta space mission. Extensive pre-encounter, space-, and ground-based observations are being performed to prepare for the flyby in July 2010. Aims: The aim of this article is to accurately characterize the photometric properties of this asteroid over a broad spectral range from the ultraviolet to the near-infrared and to search for evidence of surface inhomogeneities. Methods: The asteroid was imaged on 2 and 3 January 2007 with the Narrow Angle Camera (NAC) of the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) during the cruise phase of the Rosetta spacecraft. The geometric conditions were such that the aspect angle was 44^circ (i.e., mid-northern latitudes) and the phase angle 22.4^circ. Lutetia was continuously monitored over 14.3 h, thus exceeding one rotational period and a half, with twelve filters whose spectral coverage extended from 271 to 986 nm. An accurate photometric calibration was obtained from the observations of a solar analog star, 16 Cyg B. Results: High-quality light curves in the U, B, V, R and I photometric bands were obtained. Once they were merged with previous light curves from over some 45 years, the sidereal period is accurately determined: Prot = 8.168271 ± 0.000002 h. Color variations with rotational phase are marginally detected with the ultraviolet filter centered at 368 nm but are absent in the other visible and near-infrared filters. The albedo is directly determined from the observed maximum cross-section obtained from an elaborated shape model that results from a combination of adaptive-optics imaging and light curve inversion. Using current solutions for the phase function, we find geometric albedos pV = 0.130 ± 0.014 when using the linear phase function and pV(H-G) = 0.180 ± 0.018 when using the (H-G) phase function, which incorporates the opposition effect. The spectral variation of the reflectance indicates a steady decrease with decreasing wavelength rather than a sharp fall-off. Photometric tables (Tables 4 to 8) are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/521/A19

  3. Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Riello, Aldo

    2018-01-01

    I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.

  4. Longitudinal phase space tomography using a booster cavity at PITZ

    NASA Astrophysics Data System (ADS)

    Malyutin, D.; Gross, M.; Isaev, I.; Khojoyan, M.; Kourkafas, G.; Krasilnikov, M.; Marchetti, B.; Otevrel, M.; Stephan, F.; Vashchenko, G.

    2017-11-01

    The knowledge of the longitudinal phase space (LPS) of electron beams is of great importance for optimizing the performance of high brightness photo injectors. To get the longitudinal phase space of an electron bunch in a linear accelerator a tomographic technique can be used. The method is based on measurements of the bunch momentum spectra while varying the bunch energy chirp. The energy chirp can be varied by one of the RF accelerating structures in the accelerator and the resulting momentum distribution can be measured with a dipole spectrometer further downstream. As a result, the longitudinal phase space can be reconstructed. Application of the tomographic technique for reconstruction of the longitudinal phase space is introduced in detail in this paper. Measurement results from the PITZ facility are shown and analyzed.

  5. A Phase-Space Approach to Collisionless Stellar Systems Using a Particle Method

    NASA Astrophysics Data System (ADS)

    Hozumi, Shunsuke

    1997-10-01

    A particle method for reproducing the phase space of collisionless stellar systems is described. The key idea originates in Liouville's theorem, which states that the distribution function (DF) at time t can be derived from tracing necessary orbits back to t = 0. To make this procedure feasible, a self-consistent field (SCF) method for solving Poisson's equation is adopted to compute the orbits of arbitrary stars. As an example, for the violent relaxation of a uniform density sphere, the phase-space evolution generated by the current method is compared to that obtained with a phase-space method for integrating the collisionless Boltzmann equation, on the assumption of spherical symmetry. Excellent agreement is found between the two methods if an optimal basis set for the SCF technique is chosen. Since this reproduction method requires only the functional form of initial DFs and does not require any assumptions to be made about the symmetry of the system, success in reproducing the phase-space evolution implies that there would be no need of directly solving the collisionless Boltzmann equation in order to access phase space even for systems without any special symmetries. The effects of basis sets used in SCF simulations on the reproduced phase space are also discussed.

  6. A New Approach to Monte Carlo Simulations in Statistical Physics

    NASA Astrophysics Data System (ADS)

    Landau, David P.

    2002-08-01

    Monte Carlo simulations [1] have become a powerful tool for the study of diverse problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, most often in the canonical ensemble, and over the past several decades enormous improvements have been made in performance. Nonetheless, difficulties arise near phase transitions-due to critical slowing down near 2nd order transitions and to metastability near 1st order transitions, and these complications limit the applicability of the method. We shall describe a new Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is known, all thermodynamic properties can be calculated. This approach can be extended to multi-dimensional parameter spaces and should be effective for systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc. Generalizations should produce a broadly applicable optimization tool. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).

  7. An application of miniscale experiments on Earth to refine microgravity analysis of adiabatic multiphase flow in space

    NASA Technical Reports Server (NTRS)

    Rothe, Paul H.; Martin, Christine; Downing, Julie

    1994-01-01

    Adiabatic two-phase flow is of interest to the design of multiphase fluid and thermal management systems for spacecraft. This paper presents original data and unifies existing data for capillary tubes as a step toward assessing existing multiphase flow analysis and engineering software. Comparisons of theory with these data once again confirm the broad accuracy of the theory. Due to the simplicity and low cost of the capillary tube experiments, which were performed on earth, we were able to closely examine for the first time a flow situation that had not previously been examined appreciably by aircraft tests. This is the situation of a slug flow at high quality, near transition to annular flow. Our comparison of software calculations with these data revealed overprediction of pipeline pressure drop by up to a factor of three. In turn, this finding motivated a reexamination of the existing theory, and then development of a new analytical and is in far better agreement with the data. This sequence of discovery illustrates the role of inexpensive miniscale modeling on earth to anticipate microgravity behavior in space and to complete and help define needs for aircraft tests.

  8. Wavelet analysis of stellar differential rotation. III. The Sun in white light

    NASA Astrophysics Data System (ADS)

    Hempelmann, A.

    2003-02-01

    Future space projects like KEPLER will deliver a vast quantity of high precision light curves of stars. This paper describes a test concerning the observability of rotation and even differential rotation of slowly rotating stars from such data. Two published light curves of solar total irradiance measures are investigated: the Nimbus-7 Earth Radiation Budget (ERB) observations between 1978 and 1993 and the Active Cavity Radiometer Irradiance Monitor I (ACRIM I) measurements between 1980 and 1989. Light curve analysis show that oscillations on time-scales comparable to solar rotation but of a complex pattern are visible. Neither Fourier analysis nor time-frequency Wavelet analysis yield the true rotation period during the more active phases of the solar cycle. The true rotation period dominates only for a short time during solar minimum. In the light of this study even space-born broad band photometry may turn out an inappropriate instrument to study stellar butterfly diagrams of stars rotating as slow as the Sun. However, it was shown in Papers I and II of this series that chromospheric tracers like Lyman alpha , Mg II h+k and CaII H+K are appropriate instruments to perform this task.

  9. What’s in a drop? Correlating observations and outcomes to guide macromolecular crystallization experiments

    PubMed Central

    Luft, Joseph R.; Wolfley, Jennifer R.; Snell, Edward H.

    2011-01-01

    Observations of crystallization experiments are classified as specific outcomes and integrated through a phase diagram to visualize solubility and thereby direct subsequent experiments. Specific examples are taken from our high-throughput crystallization laboratory which provided a broad scope of data from 20 million crystallization experiments on 12,500 different biological macromolecules. The methods and rationale are broadly and generally applicable in any crystallization laboratory. Through a combination of incomplete factorial sampling of crystallization cocktails, standard outcome classifications, visualization of outcomes as they relate chemically and application of a simple phase diagram approach we demonstrate how to logically design subsequent crystallization experiments. PMID:21643490

  10. V-shaped resonators for addition of broad-area laser diode arrays

    DOEpatents

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  11. Earth Orientation and Its Excitations by Atmosphere, Oceans, and Geomagnetic Jerks

    NASA Astrophysics Data System (ADS)

    Vondrák, J.; Ron, C.

    2015-12-01

    In addition to torques exerted by the Moon, Sun, and planets, changes of the Earth orientation parameters (EOP) are known to be caused also by excitations by the atmosphere and oceans. Recently appeared studies, hinting that geomagnetic jerks (GMJ, rapid changes of geomagnetic field) might be associated with sudden changes of phase and amplitude of EOP (Holme and de Viron 2005, 2013, Gibert and Le Mouël 2008, Malkin 2013). We (Ron et al. 2015) used additional excitations applied at the epochs of GMJ to derive its influence on motion of the spin axis of the Earth in space (precession-nutation). We demonstrated that this effect, if combined with the influence of the atmosphere and oceans, improves substantially the agreement with celestial pole offsets observed by Very Long-Baseline Interferometry. Here we concentrate our efforts to study possible influence of GMJ on temporal changes of all five Earth orientation parameters defining the complete Earth orientation in space. Numerical integration of Brzeziński's broad-band Liouville equations (Brzeziński 1994) with atmospheric and oceanic excitations, combined with expected GMJ effects, is used to derive EOP and compare them with their observed values. We demonstrate that the agreement between all five Earth orientation parameters integrated by this method and those observed by space geodesy is improved substantially if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans.

  12. Thouless energy and multifractality across the many-body localization transition

    NASA Astrophysics Data System (ADS)

    Serbyn, Maksym; Papić, Z.; Abanin, Dmitry A.

    2017-09-01

    Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across this transition in two different models of disordered spin chains. We show that the behavior of matrix elements can be used to characterize the breakdown of thermalization and to extract the many-body Thouless energy. We find that upon increasing the disorder strength the system enters a critical region around the many-body localization transition. The properties of the system in this region are: (i) the Thouless energy becomes smaller than the level spacing, (ii) the matrix elements show critical dependence on the energy difference, and (iii) the matrix elements, viewed as amplitudes of a fictitious wave function, exhibit strong multifractality. This critical region decreases with the system size, which we interpret as evidence for a diverging correlation length at the many-body localization transition. Our findings show that the correlation length becomes larger than the accessible system sizes in a broad range of disorder strength values and shed light on the critical behavior near the many-body localization transition.

  13. Dynamic switching enables efficient bacterial colonization in flow.

    PubMed

    Kannan, Anerudh; Yang, Zhenbin; Kim, Minyoung Kevin; Stone, Howard A; Siryaporn, Albert

    2018-05-22

    Bacteria colonize environments that contain networks of moving fluids, including digestive pathways, blood vasculature in animals, and the xylem and phloem networks in plants. In these flow networks, bacteria form distinct biofilm structures that have an important role in pathogenesis. The physical mechanisms that determine the spatial organization of bacteria in flow are not understood. Here, we show that the bacterium P. aeruginosa colonizes flow networks using a cyclical process that consists of surface attachment, upstream movement, detachment, movement with the bulk flow, and surface reattachment. This process, which we have termed dynamic switching, distributes bacterial subpopulations upstream and downstream in flow through two phases: movement on surfaces and cellular movement via the bulk. The model equations that describe dynamic switching are identical to those that describe dynamic instability, a process that enables microtubules in eukaryotic cells to search space efficiently to capture chromosomes. Our results show that dynamic switching enables bacteria to explore flow networks efficiently, which maximizes dispersal and colonization and establishes the organizational structure of biofilms. A number of eukaryotic and mammalian cells also exhibit movement in two phases in flow, which suggests that dynamic switching is a modality that enables efficient dispersal for a broad range of cell types.

  14. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status.

    PubMed

    Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep

    2016-10-26

    Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs.

  15. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status

    PubMed Central

    Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep

    2016-01-01

    Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs. PMID:27792168

  16. Cryosphere: a kingdom of anomalies and diversity

    NASA Astrophysics Data System (ADS)

    Melnikov, Vladimir; Gennadinik, Viktor; Kulmala, Markku; Lappalainen, Hanna K.; Petäjä, Tuukka; Zilitinkevich, Sergej

    2018-05-01

    The cryosphere of the Earth overlaps with the atmosphere, hydrosphere and lithosphere over vast areas with temperatures below 0 °C and pronounced H2O phase changes. In spite of its strong variability in space and time, the cryosphere plays the role of a global thermostat, keeping the thermal regime on the Earth within rather narrow limits, affording continuation of the conditions needed for the maintenance of life. Objects and processes related to cryosphere are very diverse, due to the following basic reasons: the anomalous thermodynamic and electromagnetic properties of H2O, the intermediate intensity of hydrogen bonds and the wide spread of cryogenic systems all over the Earth. However, these features attract insufficient attention from research communities. Cryology is usually understood as a descriptive discipline within physical geography, limited to glaciology and permafrost research. We emphasise its broad interdisciplinary landscape involving physical, chemical and biological phenomena related to the H2O phase transitions and various forms of ice. This paper aims to draw the attention of readers to the crucial importance of cryogenic anomalies, which make the Earth atmosphere and the entire Earth system very special, if not unique, objects in the universe.

  17. On the synthesis, structural, optical and magnetic properties of nano-size Zn-MgO

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Dwivedi, Sonam

    2015-09-01

    Chemical co-precipitation method is employed to synthesize ZnO, MgO and Zn0.5Mg0.5O nanoparticles. X-ray diffraction (XRD) pattern infers that the sample of ZnO is in single-phase wurtzite structure (hexagonal phase, P63mc), MgO crystallizes in cubic Fd3m space group and Zn0.5Mg0.5O represents mixed nature of ZnO and MgO lattices. MgO nanocrystals band around 1078 cm-1 is ascribed to the TO-LO surface phonon modes in MgO lattice. In case of Zn0.5Mg0.5O lattice illustrating two bands at 436 and 1087 cm-1. FTIR spectra clearly show the broad band within 450-600 cm-1 is associated with the special vibration of magnesium oxide. FT-IR spectrum of Zn0.5Mg0.5O represents the combined bands of both ZnO-MgO oxides. Further the optical study obtained value of MgO (4.08 eV) is much lower than the corresponding bulk value (7.08 eV). All samples show diamagnetic nature at room temperature.

  18. Evolution of Government and Industrial Partnerships to Open the Space Frontier

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2008-01-01

    If the logical extension of the current exploration program is to develop self-sustaining settlements on the Moon and Mars over the next few centuries, then there is a path that takes civilization from its current one planet existence to a multi-world future. By considering the far term goal of space settlements as a desired endpoint and using the current state as a starting point, the policy drivers and potential pathways to the goal of sustainable space settlements can be explored. This paper describes a three-phased evolution of government and industrial partnerships from current day relationships to a time when there are sustainable settlements in space. Phase I details the current state government-led exploration while Phase III describes a desired endpoint of self-sufficient settlements in space. Phase II is an important transition phase, which acts as a bridge between now and the future. This paper discusses the critical evolution that must take place in two key areas to ensure a thriving future in space; space transportation and the right to use space property and resources. This paper focuses on the enabling role of government necessary to achieve United States (U.S.) goals for space exploration and open the frontier.

  19. Broadband acoustic focusing by Airy-like beams based on acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Chen, Di-Chao; Zhu, Xing-Feng; Wei, Qi; Wu, Da-Jian; Liu, Xiao-Jun

    2018-01-01

    An acoustic metasurface (AM) composed of space-coiling subunits is proposed to generate acoustic Airy-like beams (ALBs) by manipulating the transmitted acoustic phase. The self-accelerating, self-healing, and non-diffracting features of ALBs are demonstrated using finite element simulations. We further employ two symmetrical AMs to realize two symmetrical ALBs, resulting in highly efficient acoustic focusing. At the working frequency, the focal intensity can reach roughly 20 times that of the incident wave. It is found that the highly efficient acoustic focusing can circumvent obstacles in the propagating path and can be maintained in a broad frequency bandwidth. In addition, simply changing the separation between the two AMs can modulate the focal length of the proposed AM lens. ALBs generated by AMs and the corresponding AM lens may benefit applications in medical ultrasound imaging, biomedical therapy, and particle trapping and manipulation.

  20. Ka-band MMIC subarray technology program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottenger, Warren

    1995-01-01

    The broad objective of this program was to demonstrate a proof of concept insertion of Monolithic Microwave Integrated Circuit (MMIC) device technology into an innovative (tile architecture) active phased array antenna application supporting advanced EHF communication systems. Ka-band MMIC arrays have long been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in close proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments.

  1. Growing a Training System and Culture for the Ares I Upper Stage Project

    NASA Technical Reports Server (NTRS)

    Scott, David W.

    2009-01-01

    In roughly two years time, Marshall Space Flight Center s (MSFC) Mission Operations Laboratory (MOL) has incubated a personnel training and certification program for about 1000 learners and multiple phases of the Ares I Upper Stage (US) project. Previous MOL-developed training programs focused on about 100 learners with a focus on operations, and had enough full-time training staff to develop courseware and provide training administration. This paper discusses 1) the basics of MOL's training philosophy, 2) how creation of a broad, structured training program unfolded as feedback from more narrowly defined tasks, 3) how training philosophy, development methods, and administration are being simplified and tailored so that many Upper Stage organizations can "grow their own" training yet maintain consistency, accountability, and traceability across the project, 4) interfacing with the production contractor's training system and staff, and 5) reaping training value from existing materials and events.

  2. Approximating high-dimensional dynamics by barycentric coordinates with linear programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, Yoshito, E-mail: yoshito@sat.t.u-tokyo.ac.jp; Aihara, Kazuyuki; Suzuki, Hideyuki

    The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics ofmore » the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.« less

  3. A broadband terahertz ultrathin multi-focus lens

    PubMed Central

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-01-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application PMID:27346430

  4. Approximating high-dimensional dynamics by barycentric coordinates with linear programming.

    PubMed

    Hirata, Yoshito; Shiro, Masanori; Takahashi, Nozomu; Aihara, Kazuyuki; Suzuki, Hideyuki; Mas, Paloma

    2015-01-01

    The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.

  5. Evolution of double white dwarf binaries undergoing direct-impact accretion: Implications for gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.

  6. A Comparison of Transportation Systems for Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Thomas, Brent; Vaughan, Diane; Drake, Bret; Griffin, Brand; Woodcock, Gordon

    2004-01-01

    There are many ways to send humans to Mars. Credible technical reports can be traced to the 1950's. More recently, NASA has funded major studies that depict a broad variety of trajectories, technologies, stay times, and costs. Much of this data is still valid with direct application to today's exploration planning. This paper presents results comparing these studies with particular emphasis on the in-space transportation aspects of the mission. Specifically, comparisons are made on propulsion systems used for getting the crew and mission equipment from Earth orbit to Mars orbit, descending and ascending from the surface, and returning to Earth orbit. Areas of comparison for each of these phases include crew size, mission mass, propellant mass, delta v, specific impulse, transit time, surface stay time, aero-braking, and others. Data is analyzed to demonstrate either strong trends toward particular technologies or diverging solutions.

  7. Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output

    NASA Astrophysics Data System (ADS)

    Lu, Q. Y.; Manna, S.; Slivken, S.; Wu, D. H.; Razeghi, M.

    2017-04-01

    Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device's dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise.

  8. Are Biophilic-Designed Site Office Buildings Linked to Health Benefits and High Performing Occupants?

    PubMed Central

    Gray, Tonia; Birrell, Carol

    2014-01-01

    This paper discusses the first phase of a longitudinal study underway in Australia to ascertain the broad health benefits of specific types of biophilic design for workers in a building site office. A bespoke site design was formulated to include open plan workspace, natural lighting, ventilation, significant plants, prospect and views, recycled materials and use of non-synthetic materials. Initial data in the first three months was gathered from a series of demographic questions and from interviews and observations of site workers. Preliminary data indicates a strong positive effect from incorporating aspects of biophilic design to boost productivity, ameliorate stress, enhance well-being, foster a collaborative work environment and promote workplace satisfaction, thus contributing towards a high performance workspace. The longitudinal study spanning over two years will track human-plant interactions in a biophilic influenced space, whilst also assessing the concomitant cognitive, social, psychological and physical health benefits for workers. PMID:25431874

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazareth, A.S.; Sood, D.K.; Zmood, R.B.

    A focusing grid broad beam Kaufman source, using argon ions on a target of nominal composition Nd{sub 2}Fe{sub 14}B has been employed to sputter deposit magnetic thin films of thicknesses ranging from 800 {angstrom} to 1300 {angstrom} on silicon-(111) substrates at room temperature. These films were characterized for their composition depth profile by Rutherford Backscattering Spectroscopy, while x-ray diffraction was used to study the crystallographic structure. Due to a close match between (111) Si with (220) Nd{sub 2}Fe{sub 14}B lattice spacings, preferred crystallographic texturing was expected, and experimental results showed a greatly enhanced (220) texture. The degradation in magnetic propertiesmore » was attributed to the presence of oxygen in the films as indicated by concentration depth profiles. It is premised that another significant role of oxygen may be to relieve the misfit strain across the interface by its incorporation within the Nd{sub 2}Fe{sub 14}B phase.« less

  10. Study of the invariant structure function of the reaction. pi. /sup -/p. --> gamma. /sup +/xxx at 5 GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaglobeli, N.S.; Budagov, Y.A.; Valkar, S.

    1977-07-01

    The invariant differential cross section f (x,p/sub perpendicular/) of the reaction ..pi../sup -/p..--> gamma../sup +/xxx at 5 GeV/c was measured in a broad range of x and p/sub perpendicular/. An approximating formula is found for f (x,p/sub perpendicular/). It is shown that the function f (x,p/sub perpendicular/) is not factorizable in the variables x and p/sub perpendicular/. In some regions of phase space scale-invariant (scaling) behavior of the differential cross section is observed. Analysis of the asymmetry of the longitudinal momentum spectrum of the photons indicates that the production mechanisms of neutral and charged pions are similar in the centralmore » region. The results of the analysis are in qualitative agreement with the predictions of the quark model of hadrons.« less

  11. Probing strong electroweak symmetry breaking dynamics through quantum interferometry at the LHC

    DOE PAGES

    Murayama, Hitoshi; Rentala, Vikram; Shu, Jing

    2015-12-07

    Here, we present a new probe of strongly coupled electroweak symmetry breaking at the 14 TeV LHC by measuring a phase shift in the event distribution of the decay azimuthal angles in massive gauge boson scattering. One generically expects a large phase shift in the longitudinal gauge boson scattering amplitude due to the presence of broad resonances. This phase shift is observable as an interference effect between the strongly interacting longitudinal modes and the transverse modes of the gauge bosons. We find that even very broad resonances of masses up to 900 GeV can be probed at 3σ significance withmore » a 3000 fb -1 run of the LHC by using this technique. We also present the estimated reach for a future 50 TeV proton-proton collider.« less

  12. Quantum Optics in Phase Space

    NASA Astrophysics Data System (ADS)

    Schleich, Wolfgang P.

    2001-04-01

    Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.

  13. Specific heat of the chiral-soliton-lattice phase in Yb(Ni0.94Cu0.06)3Al9

    NASA Astrophysics Data System (ADS)

    Ninomiya, Hiroki; Sato, Takaaki; Inoue, Katsuya; Ohara, Shigeo

    2018-05-01

    We have studied the monoaxial-chiral helimagnet YbNi3Al9 and its-substituted analogue Yb(Ni0.94Cu0.06)3Al9. These compounds belong to a chiral space group R32. In Yb(Ni0.94Cu0.06)3Al9 with the magnetic ordering temperature TM = 6.4 K , only when the magnetic field is applied perpendicular to the helical axis, the chiral soliton lattice is observed below Hc = 10 kOe . YbNi3Al9 with TM = 3.4 K exhibits a metamagnetic transition at Hc = 1 kOe in 2 K. To study the formation of chiral helimagnetic state and chiral soliton lattice, we have measured the specific heat in magnetic fields applied parallel and perpendicular to the helical axis. In zero field, with decreasing temperature, specific heat shows λ-type phase transition from paramagnetic state to chiral helimagnetic one. At the temperature where the chiral soliton lattice emerges, we have found that the specific heat shows a sharp peak. In addition, at around the crossover between paramagnetic state and forced-ferromagnetic one, a broad maximum has been observed. We have determined the magnetic phase diagrams of YbNi3Al9 and Yb(Ni0.94Cu0.06)3Al9.

  14. Modulation characteristics of a high-power semiconductor Master Oscillator Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald Mitchell, Jr.

    1992-01-01

    A semiconductor master oscillator-power amplifier was demonstrated using an anti-reflection (AR) coated broad area laser as the amplifier. Under CW operation, diffraction-limited single-longitudinal-mode powers up to 340 mW were demonstrated. The characteristics of the far-field pattern were measured and compared to a two-dimensional reflective Fabry-Perot amplifier model of the device. The MOPA configuration was modulated by the master oscillator. Prior to injection into the amplifier, the amplitude and frequency modulation properties of the master oscillator were characterized. The frequency response of the MOPA configuration was characterized for an AM/FM modulated injection beam, and was found to be a function of the frequency detuning between the master oscillator and the resonant amplifier. A shift in the phase was also observed as a function of frequency detuning; this phase shift is attributed to the optical phase shift imparted to a wave reflected from a Fabry-Perot cavity. Square-wave optical pulses were generated at 10 MHz and 250 MHz with diffraction-limited peak powers of 200 mW and 250 mW. The peak power for a given modulation frequency is found to be limited by the injected power and the FM modulation at that frequency. The modulation results make the MOPA attractive for use as a transmitter source in applications such as free-space communications and ranging/altimetry.

  15. Pulsed laser-based optical frequency comb generator for high capacity wavelength division multiplexed passive optical network supporting 1.2 Tbps

    NASA Astrophysics Data System (ADS)

    Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun

    2016-09-01

    An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.

  16. Study of combustion experiments in space

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.; Huggett, C.; Kaufman, F.; Markstein, G. H.; Palmer, H. B.; Yang, C. H.

    1974-01-01

    The physical bases and scientific merits were examined of combustion experimentation in a space environment. For a very broad range of fundamental combustion problems, extensive and systematic experimentation at reduced gravitational levels (0 g 1) are viewed as essential to the development of needed observations and related theoretical understanding.

  17. NASA LANGLEY RESEARCH CENTER AND THE TIDEWATER INTERAGENCY POLLUTION PREVENTION PROGRAM

    EPA Science Inventory

    National Aeronautics and Space Administration (NASA)'s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. aRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implement...

  18. A Study of Attitudes Toward Child Abuse and Child Rearing Among Mexican American Migrants in Texas.

    ERIC Educational Resources Information Center

    Texas Migrant Council, Inc., Laredo.

    Divided into two phases, the study investigated the attitudes toward child abuse and neglect and child rearing practices held by Mexican American migrant farmworkers. The first phase involved a brief literature review and an assessment of the problem. During this phase also, the study's broad general goals were divided into 6 categories which led…

  19. Extension and Public Service in the University of Illinois. Phase II Report.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana.

    Phase II of the report on the problem outlined in Phase I deals with specific recommendations for expanding and improving the extension and public service functions of the University of Illinois. To be effective, the university needs a master plan in which the four essential ingredients must be (1) broad, strong and explicit policy commitments by…

  20. A novel approach for characterizing broad-band radio spectral energy distributions

    NASA Astrophysics Data System (ADS)

    Harvey, V. M.; Franzen, T.; Morgan, J.; Seymour, N.

    2018-05-01

    We present a new broad-band radio frequency catalogue across 0.12 GHz ≤ ν ≤ 20 GHz created by combining data from the Murchison Widefield Array Commissioning Survey, the Australia Telescope 20 GHz survey, and the literature. Our catalogue consists of 1285 sources limited by S20 GHz > 40 mJy at 5σ, and contains flux density measurements (or estimates) and uncertainties at 0.074, 0.080, 0.119, 0.150, 0.180, 0.408, 0.843, 1.4, 4.8, 8.6, and 20 GHz. We fit a second-order polynomial in log-log space to the spectral energy distributions of all these sources in order to characterize their broad-band emission. For the 994 sources that are well described by a linear or quadratic model we present a new diagnostic plot arranging sources by the linear and curvature terms. We demonstrate the advantages of such a plot over the traditional radio colour-colour diagram. We also present astrophysical descriptions of the sources found in each segment of this new parameter space and discuss the utility of these plots in the upcoming era of large area, deep, broad-band radio surveys.

  1. OBSERVATIONS ON RHENIUM-TUNGSTEN ALLOYS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirner, K.

    1959-12-01

    Re-W alloys were arc melted between tungsten electrodes, checked metallographically and their hardness was determined. Two intermetallic phases were found, one of which---a stgroa phase--having a broad homogeneity range (approximately from 40 to 60%) and a high hardness (1800 VPN/sub 300/). (auth)

  2. Effective increase in beam emittance by phase-space expansion using asymmetric Bragg diffraction.

    PubMed

    Chu, Chia-Hung; Tang, Mau-Tsu; Chang, Shih-Lin

    2015-08-24

    We propose an innovative method to extend the utilization of the phase space downstream of a synchrotron light source for X-ray transmission microscopy. Based on the dynamical theory of X-ray diffraction, asymmetrically cut perfect crystals are applied to reshape the position-angle-wavelength space of the light source, by which the usable phase space of the source can be magnified by over one hundred times, thereby "phase-space-matching" the source with the objective lens of the microscope. The method's validity is confirmed using SHADOW code simulations, and aberration through an optical lens such as a Fresnel zone plate is examined via matrix optics for nano-resolution X-ray images.

  3. Entropy Production in Field Theories without Time-Reversal Symmetry: Quantifying the Non-Equilibrium Character of Active Matter

    NASA Astrophysics Data System (ADS)

    Nardini, Cesare; Fodor, Étienne; Tjhung, Elsen; van Wijland, Frédéric; Tailleur, Julien; Cates, Michael E.

    2017-04-01

    Active-matter systems operate far from equilibrium because of the continuous energy injection at the scale of constituent particles. At larger scales, described by coarse-grained models, the global entropy production rate S quantifies the probability ratio of forward and reversed dynamics and hence the importance of irreversibility at such scales: It vanishes whenever the coarse-grained dynamics of the active system reduces to that of an effective equilibrium model. We evaluate S for a class of scalar stochastic field theories describing the coarse-grained density of self-propelled particles without alignment interactions, capturing such key phenomena as motility-induced phase separation. We show how the entropy production can be decomposed locally (in real space) or spectrally (in Fourier space), allowing detailed examination of the spatial structure and correlations that underly departures from equilibrium. For phase-separated systems, the local entropy production is concentrated mainly on interfaces, with a bulk contribution that tends to zero in the weak-noise limit. In homogeneous states, we find a generalized Harada-Sasa relation that directly expresses the entropy production in terms of the wave-vector-dependent deviation from the fluctuation-dissipation relation between response functions and correlators. We discuss extensions to the case where the particle density is coupled to a momentum-conserving solvent and to situations where the particle current, rather than the density, should be chosen as the dynamical field. We expect the new conceptual tools developed here to be broadly useful in the context of active matter, allowing one to distinguish when and where activity plays an essential role in the dynamics.

  4. The opponent channel population code of sound location is an efficient representation of natural binaural sounds.

    PubMed

    Młynarski, Wiktor

    2015-05-01

    In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a "panoramic" code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding.

  5. Characterization and application of a broad bandwidth oscillator for the HELEN laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew, J.E.; Stevenson, R.M.; Bett, T.H.

    1995-12-31

    Preliminary investigations of a potential broad band oscillator for the HELEN laser facility and its proposed upgrade are described. The reasons for the need of broad bandwidth and the choice of commercial technology to achieve it are discussed. The characterization of the device and the diagnostics used for the investigations are described. Small signal amplification of the bandwidth by a glass amplifier was also performed along with investigations of the effect of various bandwidths on the far field beam quality when using random phase plates.

  6. Adequacy of different experimental designs for eucalyptus spacing trials in Portuguese environmental conditions

    Treesearch

    Paula Soares; Margarida Tome

    2000-01-01

    In Portugal, several eucalyptus spacing trials cover a relatively broad range of experimental designs: trials with a non-randomized block design with plots of different size and number of trees per plot; trials based on a non-systematic design in which spacings were randomized resulting in a factorial arrangement with plots of different size and shape and equal number...

  7. Concrete Solution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A Space Act Agreement between Kennedy Space Center and Surtreat Southeast, Inc., resulted in a new treatment that keeps buildings from corroding away over time. Structural corrosion is a multi-billion dollar problem in the United States. The agreement merged Kennedy Space Center's research into electrical treatments of structural corrosion with chemical processes developed by Surtreat. Combining NASA and Surtreat technologies has resulted in a unique process with broad corrosion-control applications.

  8. Approximations and Solution Estimates in Optimization

    DTIC Science & Technology

    2016-04-06

    comprehensive descriptions of epi-convergence and its connections to variational analysis broadly. Our motivation for going beyond normed linear spaces , which...proper, every closed ball in this metric space is compact and the existence of solutions of such optimal fitting problems is more easily established...lsc-fcns(X), dl(fν , f) → 0 implies that fν epi-converges to f. We recall that a metric space is proper if every closed ball in that space is compact

  9. Initial-value semiclassical propagators for the Wigner phase space representation: Formulation based on the interpretation of the Moyal equation as a Schrödinger equation.

    PubMed

    Koda, Shin-ichi

    2015-12-28

    We formulate various semiclassical propagators for the Wigner phase space representation from a unified point of view. As is shown in several studies, the Moyal equation, which is an equation of motion for the Wigner distribution function, can be regarded as the Schrödinger equation of an extended Hamiltonian system where its "position" and "momentum" correspond to the middle point of two points of the original phase space and the difference between them, respectively. Then we show that various phase-space semiclassical propagators can be formulated just by applying existing semiclassical propagators to the extended system. As a result, a phase space version of the Van Vleck propagator, the initial-value Van Vleck propagator, the Herman-Kluk propagator, and the thawed Gaussian approximation are obtained. In addition, we numerically compare the initial-value phase-space Van Vleck propagator, the phase-space Herman-Kluk propagator, and the classical mechanical propagation as approximation methods for the time propagation of the Wigner distribution function in terms of both accuracy and convergence speed. As a result, we find that the convergence speed of the Van Vleck propagator is far slower than others as is the case of the Hilbert space, and the Herman-Kluk propagator keeps its accuracy for a long period compared with the classical mechanical propagation while the convergence speed of the latter is faster than the former.

  10. Hubble Space Telescope Observations of M32: The Color-Magnitude Diagram

    NASA Technical Reports Server (NTRS)

    Grillmair, C. J.; Lauer, T. R.; Worthey, G.; Faber, S. M.; Freedman, W. L.; Madore, B. F.; Ajhar, E. A.; Baum, W. A.; Holtzman, J. A.; Lynds, C. R.; hide

    1996-01-01

    We present a V--I color-magnitude diagram for a region 1'--2' the center of M32 based on Hubble Space Telescope WFPC2 images. The broad color-luminosity distribution of red giants shows that the stellar population comprises stars with a wide range in metallicity.

  11. Evaluation and prediction of long-term environmental effects on nonmetallic materials

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Changes in functional properties of a broad spectrum of nonmetallic materials as a function of environment and exposure time were evaluated. Models for predicting long-term material performance are discussed. A literature search on specific materials in the space and simulated space environment was carried out and evaluated.

  12. High Leverage Technologies for In-Space Assembly of Complex Structures

    NASA Technical Reports Server (NTRS)

    Hamill, Doris; Bowman, Lynn M.; Belvin, W. Keith; Gilman, David A.

    2016-01-01

    In-space assembly (ISA), the ability to build structures in space, has the potential to enable or support a wide range of advanced mission capabilities. Many different individual assembly technologies would be needed in different combinations to serve many mission concepts. The many-to-many relationship between mission needs and technologies makes it difficult to determine exactly which specific technologies should receive priority for development and demonstration. Furthermore, because enabling technologies are still immature, no realistic, near-term design reference mission has been described that would form the basis for flowing down requirements for such development and demonstration. This broad applicability without a single, well-articulated mission makes it difficult to advance the technology all the way to flight readiness. This paper reports on a study that prioritized individual technologies across a broad field of possible missions to determine priority for future technology investment.

  13. Ares V Overview and Status

    NASA Technical Reports Server (NTRS)

    Creech, Steve; Sumrall, Phil; Cockrell, Charles E., Jr.; Burris, Mike

    2009-01-01

    As part of NASA s Constellation Program to resume exploration beyond low Earth orbit (LEO), the Ares V heavy-lift cargo launch vehicle as currently conceived will be able to send more crew and cargo to more places on the Moon than the Apollo Program Saturn V. (Figure 1) It also has unprecedented cargo mass and volume capabilities that will be a national asset for science, commerce, and national defense applications. Compared to current systems, it will offer approximately five times the mass and volume to most orbits and locations. The Columbia space shuttle accident, the resulting investigation, the Vision for Space Exploration, and the Exploration Systems Architecture Study (ESAS) broadly shaped the Constellation architecture. Out of those events and initiatives emerged an architecture intended to replace the space shuttle, complete the International Space Station (ISS), resume a much more ambitious plan to explore the moon as a stepping stone to other destinations in the solar system. The Ares I was NASA s main priority because of the goal to retire the Shuttle. Ares V remains in a concept development phase, evolving through hundreds of configurations. The current reference design was approved during the Lunar Capabilities Concept Review/Ares V Mission Concept Review (LCCR/MCR) in June 2008. This reference concept serves as a starting point for a renewed set of design trades and detailed analysis into its interaction with the other components of the Constellation architecture and existing launch infrastructure. In 2009, the Ares V team was heavily involved in supporting the Review of U.S. Human Space Flight Plans Committee. Several alternative designs for Ares V have been supplied to the committee. This paper will discuss the origins of the Ares V design, the evolution to the current reference configuration, and the options provided to the review committee.

  14. Active noise control: a review of the field.

    PubMed

    Gordon, R T; Vining, W D

    1992-11-01

    Active noise control (ANC) is the application of the principle of the superposition of waves to noise attenuation problems. Much progress has been made toward applying ANC to narrow-band, low-frequency noise in confined spaces. During this same period, the application of ANC to broad-band noise or noise in three-dimensional spaces has seen little progress because of the recent quantification of serious physical limitations, most importantly, noncausality, stability, spatial mismatch, and the infinite gain controller requirement. ANC employs superposition to induce destructive interference to affect the attenuation of noise. ANC was believed to utilize the mechanism of phase cancellation to achieve the desired attenuation. However, current literature points to other mechanisms that may be operating in ANC. Categories of ANC are one-dimensional field and duct noise, enclosed spaces and interior noise, noise in three-dimensional spaces, and personal hearing protection. Development of active noise control stems from potential advantages in cost, size, and effectiveness. There are two approaches to ANC. In the first, the original sound is processed and injected back into the sound field in antiphase. The second approach is to synthesize a cancelling waveform. ANC of turbulent flow in pipes and ducts is the largest area in the field. Much work into the actual mechanism involved and the causal versus noncausal aspects of system controllers has been done. Fan and propeller noise can be divided into two categories: noise generated directly as the blade passing tones and noise generated as a result of blade tip turbulence inducing vibration in structures. Three-dimensional spaces present a noise environment where physical limitations are magnified and the infinite gain controller requirement is confronted. Personal hearing protection has been shown to be best suited to the control of periodic, low-frequency noise.

  15. The impact of Phase 1 of the Silver Line on the Northern Virginia transportation system.

    DOT National Transportation Integrated Search

    2017-05-01

    The purpose of this study was to assess the impact of Phase 1 of the Washington Metropolitan Area Transit Authoritys Silver Line on the broad regional transportation system, and specifically on the road network operated by the Virginia Department ...

  16. Evolving Role of Passive Samplers in Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In Phase I of whole sediment TIEs, causes of toxicity to freshwater and marine organisms are characterized into broad toxicant classes including ammonia, metals and organic chemicals. In Phase II of the TIE, the specific toxicants causing observed toxicity are identified. For a...

  17. Space Fence PDR Concept Development Phase

    NASA Astrophysics Data System (ADS)

    Haines, L.; Phu, P.

    2011-09-01

    The Space Fence, a major Air Force acquisition program, will become the dominant low-earth orbit uncued sensor in the space surveillance network (SSN). Its primary objective is to provide a 24/7 un-cued capability to find, fix, and track small objects in low earth orbit to include emerging and evolving threats, as well as the rapidly growing population of orbital debris. Composed of up to two geographically dispersed large-scale S-band phased array radars, this new system-of-systems concept will provide comprehensive Space Situational Awareness through net-centric operations and integrated decision support. Additionally, this program will facilitate cost saving force structure changes in the SSN, specifically including the decommissioning of very-high frequency VHF Air Force Space Surveillance System (AFSSS). The Space Fence Program Office entered a Preliminary Design Review (PDR) concept development phase in January 2011 to achieve the delivery of the Initial Operational Capability (IOC) expected in FY17. Two contractors were awarded to perform preliminary system design, conduct radar performance analyses and evaluations, and develop a functional PDR radar system prototype. The key objectives for the Phase A PDR effort are to reduce Space Fence total program technical, cost, schedule, and performance risk. The overall program objective is to achieve a preliminary design that demonstrates sufficient technical and manufacturing maturity and that represents a low risk, affordable approach to meet the Space Fence Technical Requirements Document (TRD) requirements for the final development and production phase to begin in 3QFY12. This paper provides an overview of the revised Space Fence program acquisition strategy for the Phase-A PDR phase to IOC, the overall program milestones and major technical efforts. In addition, the key system trade studies and modeling/simulation efforts undertaken during the System Design Requirement (SDR) phase to address and mitigate technical challenges of the Space Fence System will also be discussed. Examples include radar system optimization studies, modeling and simulation for system performance assessment, investigation of innovative Astrodynamics algorithms for initial orbit determination and observation correlation.

  18. Explicit methods in extended phase space for inseparable Hamiltonian problems

    NASA Astrophysics Data System (ADS)

    Pihajoki, Pauli

    2015-03-01

    We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.

  19. Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min

    1990-12-01

    Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.

  20. Developing and Applying Synthesis Models of Emerging Space Systems

    DTIC Science & Technology

    2016-03-01

    enables the exploration of small satellite physical trade -offs early in the conceptual design phase of the DOD space acquisition process. Early...provide trade space insights that can assist DOD space acquisition professionals in making better decisions in the conceptual design phase. More informed

  1. Space station needs, attributes, and architectural options study. Volume 1: Missions and requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Science and applications, NOAA environmental observation, commercial resource observations, commercial space processing, commercial communications, national security, technology development, and GEO servicing are addressed. Approach to time phasing of mission requirements, system sizing summary, time-phased user mission payload support, space station facility requirements, and integrated time-phased system requirements are also addressed.

  2. Asymptotically stable phase synchronization revealed by autoregressive circle maps

    NASA Astrophysics Data System (ADS)

    Drepper, F. R.

    2000-11-01

    A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.

  3. Review of two-phase flow liquid metal MHD and turbine energy conversion concepts for space applications

    NASA Technical Reports Server (NTRS)

    Fabris, Gracio

    1992-01-01

    Two-phase energy conversion systems could be liquid metal magnetohydrodynamic (LMMHD) with no moving parts or two-phase turbines. Both of them are inherently simple and reliable devices which can operate in a wide range of temperatures. Their thermal efficiency is significantly higher than for conventional cycles due to reheat of vapor by liquid phase during the energy converting expansion. Often they can be more easily coupled to heat sources. These features make two-phase systems particularly promising for space application. Insufficient research has been done in the past. So far achieved LMMHD generator and two-phase turbine efficiencies are in the 40 to 45 percent range. However if certain fluid dynamic and design problems are resolved these efficiencies could be brought into the range of 70 percent. This would make two-phase systems extremely competitive as compared to present or other proposed conversion system for space. Accordingly, well directed research effort on potential space applications of two-phase conversion systems would be a wise investment.

  4. Critical spaces for quasilinear parabolic evolution equations and applications

    NASA Astrophysics Data System (ADS)

    Prüss, Jan; Simonett, Gieri; Wilke, Mathias

    2018-02-01

    We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.

  5. A new day: Challenger and space flight thereafter

    NASA Technical Reports Server (NTRS)

    Vonputtkamer, Jesco

    1986-01-01

    On January 28, 1986, at an altitude of 14 kilometers, the Space Shuttle Challenger was torn apart by an explosion of the external tank. The effects of the accident are undoubtedly far-reaching; they have broad repercussions that affect NASA's international partner organizations. The effects of the postponed shuttle flights on European space programs are discussed. A review of the German participation in the American space program is presented. The need to continue the future projects such as the space station is examined in light of its importance as a springboard for further exploration.

  6. Self-aggregation in scaled principal component space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Chris H.Q.; He, Xiaofeng; Zha, Hongyuan

    2001-10-05

    Automatic grouping of voluminous data into meaningful structures is a challenging task frequently encountered in broad areas of science, engineering and information processing. These data clustering tasks are frequently performed in Euclidean space or a subspace chosen from principal component analysis (PCA). Here we describe a space obtained by a nonlinear scaling of PCA in which data objects self-aggregate automatically into clusters. Projection into this space gives sharp distinctions among clusters. Gene expression profiles of cancer tissue subtypes, Web hyperlink structure and Internet newsgroups are analyzed to illustrate interesting properties of the space.

  7. Solar power satellite system definition study, phase 2.

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.

  8. Around Marshall

    NASA Image and Video Library

    2004-07-28

    The grand opening of NASA’s new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  9. NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  10. Artist's Concept of NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.

  11. Real-space Berry phases: Skyrmion soccer (invited)

    NASA Astrophysics Data System (ADS)

    Everschor-Sitte, Karin; Sitte, Matthias

    2014-05-01

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  12. Real-space Berry phases: Skyrmion soccer (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everschor-Sitte, Karin, E-mail: karin@physics.utexas.edu; Sitte, Matthias

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  13. Hamiltonian flow over saddles for exploring molecular phase space structures

    NASA Astrophysics Data System (ADS)

    Farantos, Stavros C.

    2018-03-01

    Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.

  14. Large Format Narrow-Band, Multi-Band, and Broad-Band LWIR QWIP Focal Planes for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.

    2004-01-01

    A 640x512 pixel, long-wavelength cutoff, narrow-band (delta(lambda)/approx. 10%) quantum well infrared photodetector (QWIP) focal plane array (FPA), a four-band QWIP FPA in the 4-16 m spectral region, and a broad-band (delta(lambda)/approx. 42%) QWIP FPA having 15.4 m cutoff have been demonstrated.

  15. An extensive phase space for the potential martian biosphere.

    PubMed

    Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D

    2011-12-01

    We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.

  16. Mutually unbiased coarse-grained measurements of two or more phase-space variables

    NASA Astrophysics Data System (ADS)

    Paul, E. C.; Walborn, S. P.; Tasca, D. S.; Rudnicki, Łukasz

    2018-05-01

    Mutual unbiasedness of the eigenstates of phase-space operators—such as position and momentum, or their standard coarse-grained versions—exists only in the limiting case of infinite squeezing. In Phys. Rev. Lett. 120, 040403 (2018), 10.1103/PhysRevLett.120.040403, it was shown that mutual unbiasedness can be recovered for periodic coarse graining of these two operators. Here we investigate mutual unbiasedness of coarse-grained measurements for more than two phase-space variables. We show that mutual unbiasedness can be recovered between periodic coarse graining of any two nonparallel phase-space operators. We illustrate these results through optics experiments, using the fractional Fourier transform to prepare and measure mutually unbiased phase-space variables. The differences between two and three mutually unbiased measurements is discussed. Our results contribute to bridging the gap between continuous and discrete quantum mechanics, and they could be useful in quantum-information protocols.

  17. Phase space manipulation in high-brightness electron beams

    NASA Astrophysics Data System (ADS)

    Rihaoui, Marwan M.

    Electron beams have a wide range of applications, including discovery science, medicine, and industry. Electron beams can also be used to power next-generation, high-gradient electron accelerators. The performances of some of these applications could be greatly enhanced by precisely tailoring the phase space distribution of the electron beam. The goal of this dissertation is to explore some of these phase space manipulations. We especially focus on transformations capable of tailoring the beam current distribution. Specifically, we investigate a beamline exchanging phase space coordinates between the horizontal and longitudinal degrees of freedom. The key components necessary for this beamline were constructed and tested. The preliminary beamline was used as a singleshot phase space diagnostics and to produce a train of picoseconds electron bunches. We also investigate the use of multiple electron beams to control the transverse focusing. Our numerical and analytical studies are supplemented with experiments performed at the Argonne Wakefield Accelerator.

  18. Emerging Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2006-01-01

    The Emerging Propulsion Technologies (EPT) investment area is the newest area within the In-Space Propulsion Technology (ISPT) Project and strives to bridge technologies in the lower Technology Readiness Level (TRL) range (2 to 3) to the mid TRL range (4 to 6). A prioritization process, the Integrated In-Space Transportation Planning (IISTP), was developed and applied in FY01 to establish initial program priorities. The EPT investment area emerged for technologies that scored well in the IISTP but had a low technical maturity level. One particular technology, the Momentum-eXchange Electrodynamic-Reboost (MXER) tether, scored extraordinarily high and had broad applicability in the IISTP. However, its technical maturity was too low for ranking alongside technologies like the ion engine or aerocapture. Thus MXER tethers assumed top priority at EPT startup in FY03 with an aggressive schedule and adequate budget. It was originally envisioned that future technologies would enter the ISP portfolio through EPT, and EPT developed an EPT/ISP Entrance Process for future candidate ISP technologies. EPT has funded the following secondary, candidate ISP technologies at a low level: ultra-lightweight solar sails, general space/near-earth tether development, electrodynamic tether development, advanced electric propulsion, and in-space mechanism development. However, the scope of the ISPT program has focused over time to more closely match SMD needs and technology advancement successes. As a result, the funding for MXER and other EPT technologies is not currently available. Consequently, the MXER tether tasks and other EPT tasks were expected to phased out by November 2006. Presentation slides are presented which provide activity overviews for the aerocapture technology and emerging propulsion technology projects.

  19. Uncovering the nonadiabatic response of geosynchronous electrons to geomagnetic disturbance

    USGS Publications Warehouse

    Gannon, Jennifer; Elkington, Scot R.; Onsager, Terrance G.

    2012-01-01

    We describe an energy spectrum method for scaling electron integral flux, which is measured at a constant energy, to phase space density at a constant value of the first adiabatic invariant which removes much of the variation due to reversible adiabatic effects. Applying this method to nearly a solar cycle (1995 - 2006) of geosynchronous electron integral flux (E>2.0MeV) from the GOES satellites, we see that much of the diurnal variation in electron phase space density at constant energy can be removed by the transformation to phase space density at constant μ (4000 MeV/G). This allows us a clearer picture of underlying non-adiabatic electron population changes due to geomagnetic activity. Using scaled phase space density, we calculate the percentage of geomagnetic storms resulting in an increase, decrease or no change in geosynchronous electrons as 38%, 7%, and 55%, respectively. We also show examples of changes in the electron population that may be different than the unscaled fluxes alone suggest. These examples include sudden electron enhancements during storms which appear during the peak of negative Dst for μ-scaled phase space density, contrary to the slow increase seen during the recovery phase for unscaled phase space density for the same event.

  20. The deep space 1 encounter with comet 19P/Borrelly

    USGS Publications Warehouse

    Boice, D.C.; Soderblom, L.A.; Britt, D.T.; Brown, R.H.; Sandel, B.R.; Yelle, R.V.; Buratti, B.J.; Hicks, M.D.; Nelson, R.M.; Rayman, M.D.; Oberst, J.; Thomas, N.

    2002-01-01

    NASA's Deep Space 1 (DS1) spacecraft successfully encountered comet 19P/Borrelly near perihelion and the Miniature Integrated Camera and Spectrometer (MICAS) imaging system onboard DS1 returned the first high-resolution images of a Jupiter-family comet nucleus and surrounding environment. The images span solar phase angles from 88?? to 52??, providing stereoscopic coverage of the dust coma and nucleus. Numerous surface features are revealed on the 8-km long nucleus in the highest resolution images (47-58 m/pixel). A smooth, broad basin containing brighter regions and mesa-like structures is present in the central part of the nucleus that seems to be the source of jet-like dust features seen in the coma. High ridges seen along the jagged terminator lead to rugged terrain on both ends of the nucleus containing dark patches and smaller series of parallel grooves. No evidence of impact craters with diameters larger than about 200-m are present, indicating a young and active surface. The nucleus is very dark with albedo variations from 0.007 to 0.035. Short-wavelength, infrared spectra from 1.3 to 2.6 ??m revealed a hot, dry surface consistent with less than about 10% actively sublimating. Two types of dust features are seen: Broad fans and highly collimated "jets" in the sunward hemisphere that can be traced to the surface. The source region of the main jet feature, which resolved into at least three smaller "jets" near the surface, is consistent with an area around the rotation pole that is constantly illuminated by the sun during the encounter. Within a few nuclear radii, entrained dust is rapidly accelerated and fragmented and geometrical effects caused from extended source regions are present, as evidenced in radial intensity profiles centered on the jet features that show an increase in source strength with increasing cometocentric distance. Asymmetries in the dust from dayside to nightside are pronounced and may show evidence of lateral flow transporting dust to structures observed in the nightside coma. A summary of the initial results of the Deep Space 1 Mission is provided, highlighting the new knowledge that has been gained thus far.

  1. Balancing on the Pivot: How Chinas Rise and Offshore Balancing Affect Japans and Indias Roles as Balancers in the Twenty-First Century

    DTIC Science & Technology

    2016-03-01

    and Space Studies Thomas D. McCarthy, Colonel, Commandant and Dean AIR UNIVERSITY SCHOOL OF ADVANCED AIR AND SPACE STUDIES Balancing on the Pivot How...Space Studies (SAASS), Maxwell AFB, Alabama. This series of papers commemorates the distinguished career of Col Dennis “Denny” Drew, USAF, retired. In...the understanding of air- and space-power theory and application. These studies are published by the Air University Press and broadly distributed

  2. Plans for the development of cryogenic engines for space exploration

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Shaw, Loretta M.; Aukerman, Carl A.

    1991-01-01

    The NASA Lewis Research Center (LeRC) is conducting a broad range of basic research and focused technology development activities in both aeronautical and space propulsion. By virtue of the successful conduct of these programs, LeRC is strongly qualified to lead Advanced Development and subsequent development programs on cryogenic space propulsion systems on support of the Space Exploration Initiative. A review is provided of technology status, including recent progress in the ongoing activities, and a top level description of the proposed program.

  3. KSC-06pd2134

    NASA Image and Video Library

    2006-09-09

    KENNEDY SPACE CENTER, FLA. - Inside the Launch Control Center, KSC officials turn from their computers to watch through the broad windows the launch of Space Shuttle Atlantis on mission STS-115. Second from left is NASA Test Director Pete Nickolenko. Mission STS-115 is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. sts-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  4. STS-109 MS Newman and Massimino in airlock after EVA

    NASA Image and Video Library

    2002-03-05

    STS109-326-031 (5 March 2002) --- The broad smiles of astronauts Michael J. Massimino (left) and James H. Newman reflect the success of their just-completed lengthy space walk designed to finish the replacement of the solar arrays on the Hubble Space Telescope (HST). A day earlier, two other astronauts replaced one of sets of solar panels. The two are in the process of doffing their extravehicular mobility unit (EMU) space suits on the mid deck of the Space Shuttle Columbia.

  5. Applications of Tethers in Space

    NASA Technical Reports Server (NTRS)

    Cron, A. C.

    1985-01-01

    The proceedings of the first workshop on applications of tethers in space are summarized. The workshop gathered personalities from industry, academic institutions and government to discuss the relatively new area of applied technology of very long tethers in space to a broad spectrum of future space missions. A large number of tethered concepts and configurations was presented covering electrodynamic interaction tethers, tethered transportation through angular momentum exchange, tethered constellations, low gravity utilization, applicable technology, and tethered test facilities. Specific recommendations were made to NASA in each area.

  6. Doctrine Development Process in the Kenya Army: Bridging the Gap

    DTIC Science & Technology

    2014-06-13

    concepts, and principles . It must broadly follow three doctrine development phases: the collection/information gathering phase; the formulation and...a capable lead organization. The organization must eliminate terminological and utility confusion among doctrine, concepts, and principles . It must...15 The relationship Between Military Doctrine, Concept and Principle

  7. AUTOMATED SOLID PHASE EXTRACTION GC/MS FOR ANALYSIS OF SEMIVOLATILES IN WATER AND SEDIMENTS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line sampl...

  8. The JWST Science Instrument Payload: Mission Context and Status

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.

    2015-01-01

    The James Webb Space Telescope (JWST) is the scientific successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq m aperture (6 m class) telescope that will achieve diffraction limited angular resolution at a wavelength of 2 micrometers. The science instrument payload includes four passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronography, as well as multi-object and integral-field spectroscopy over the 0.6 is less than lambda is less than 5.0 micrometers spectrum. An actively cooled mid-infrared instrument provides broad-band imagery, coronography, and integral-field spectroscopy over the 5.0 is less than lambda is less than 29 micrometers spectrum. The JWST is being developed by NASA, in partnership with the European and Canadian Space Agencies, as a general user facility with science observations proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete. The science instrument payload is in the final stage of testing ahead of delivery for integration with the telescope during early 2016. The JWST is on schedule for launch during 2018.

  9. Potential pressurized payloads: Fluid and thermal experiments

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1992-01-01

    Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.

  10. Space Station Freedom Workshop Opportunities for Commercial Users and Providers: Issues and Recommendations

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The responses to issues and questions raised at the Space Station Freedom Workshops are compiled. The findings are presented under broad divisions of general, materials processing in space, commercial earth and ocean observations, life sciences, infrastructure services, and infrastructure policy. The responses represent the best answers available at this time and future modifications may be expected. Contact names, telephone numbers, and organizations are included.

  11. Multinational Experiment 7. Protecting Access to Space: Presentation to Senior Leaders

    DTIC Science & Technology

    2013-07-08

    Multinational Experiment 7: Outcome 3: Space Access Briefing to SLS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...operations Consequence management Ship status during search & rescue Tele-medicine Broadband internet TV signal distribution Satellite radio Rural...military-usage • Significant economic & societal consequences Access to space at risk • Current approach unsustainable • Broad range of threats

  12. Research and Technology 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report highlights the challenging work accomplished during fiscal year 1997 by Ames research scientists and engineers. The work is divided into accomplishments that support the goals of NASA s four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Science, Human Exploration and Development of Space (HEDS), and Earth Science. NASA Ames Research Center s research effort in the Space, Earth, and HEDS Enterprises is focused i n large part to support Ames lead role for Astrobiology, which broadly defined is the scientific study of the origin, distribution, and future of life in the universe. This NASA initiative in Astrobiology is a broad science effort embracing basic research, technology development, and flight missions. Ames contributions to the Space Science Enterprise are focused in the areas of exobiology, planetary systems, astrophysics, and space technology. Ames supports the Earth Science Enterprise by conducting research and by developing technology with the objective of expanding our knowledge of the Earth s atmosphere and ecosystems. Finallv, Ames supports the HEDS Enterprise by conducting research, managing spaceflight projects, and developing technologies. A key objective is to understand the phenomena surrounding the effects of gravity on living things. Ames has also heen designated the Agency s Center of Evcellence for Information Technnlogv. The three cornerstones of Information Technology research at Ames are automated reasoning, human-centered computing, and high performance computing and networking.

  13. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    NASA Astrophysics Data System (ADS)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-04-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  14. Broad Area Cooler Concepts for Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Christie, R. J.; Tomsik, T. M.; Elchert, J. P.; Guzik, M. C.

    2011-01-01

    Numerous studies and ground tests have shown that broad area cooling (also known as distributed cooling) can reduce or eliminate cryogenic propellant boil-off and enable long duration storage in space. Various combinations of cryocoolers, circulators, heat exchangers and other hardware could be used to build the system. In this study, several configurations of broad area cooling systems were compared by weighing hardware combinations, input power requirements, component availability, and Technical Readiness Level (TRL). The preferred system has a high TRL and can be scaled up to provide cooling capacities on the order of 150W at 90K

  15. Memory and Space: Towards an Understanding of the Cognitive Map.

    PubMed

    Schiller, Daniela; Eichenbaum, Howard; Buffalo, Elizabeth A; Davachi, Lila; Foster, David J; Leutgeb, Stefan; Ranganath, Charan

    2015-10-14

    More than 50 years of research have led to the general agreement that the hippocampus contributes to memory, but there has been a major schism among theories of hippocampal function over this time. Some researchers argue that the hippocampus plays a broad role in episodic and declarative memory, whereas others argue for a specific role in the creation of spatial cognitive maps and navigation. Although both views have merit, neither provides a complete account of hippocampal function. Guided by recent reviews that attempt to bridge between these views, here we suggest that reconciliation can be accomplished by exploring hippocampal function from the perspective of Tolman's (1948) original conception of a cognitive map as organizing experience and guiding behavior across all domains of cognition. We emphasize recent studies in animals and humans showing that hippocampal networks support a broad range of domains of cognitive maps, that these networks organize specific experiences within the contextually relevant map, and that network activity patterns reflect behavior guided through cognitive maps. These results are consistent with a framework that bridges theories of hippocampal function by conceptualizing the hippocampus as organizing incoming information within the context of a multidimensional cognitive map of spatial, temporal, and associational context. Research of hippocampal function is dominated by two major views. The spatial view argues that the hippocampus tracks routes through space, whereas the memory view suggests a broad role in declarative memory. Both views rely on considerable evidence, but neither provides a complete account of hippocampal function. Here we review evidence that, in addition to spatial context, the hippocampus encodes a wide variety of information about temporal and situational context, about the systematic organization of events in abstract space, and about routes through maps of cognition and space. We argue that these findings cross the boundaries of the memory and spatial views and offer new insights into hippocampal function as a system supporting a broad range of cognitive maps. Copyright © 2015 the authors 0270-6474/15/3513904-08$15.00/0.

  16. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE PAGES

    McClure, James E.; Berrill, Mark A.; Gray, William G.; ...

    2016-09-02

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  17. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, James E.; Berrill, Mark A.; Gray, William G.

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  18. The role of tethers on space station

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. (Editor)

    1985-01-01

    The results of research and development that addressed the usefulness of tether applications in space, particularly for space station are described. A well organized and structured effort of considerable magnitude involving NASA, industry and academia have defined the engineering and technological requirements of space tethers and their broad range of economic and operational benefits. The work directed by seven NASA Field Centers is consolidated and structured to cover the general and specific roles of tethers in space as they apply to NASA's planned space station. This is followed by a description of tether systems and operations. A summary of NASA's plans for tether applications in space for years to come is given.

  19. BFV-BRST analysis of the classical and quantum q-deformations of the sl(2) algebra

    NASA Astrophysics Data System (ADS)

    Dayi, O. F.

    1994-01-01

    BFV--BRST charge for q-deformed algebras is not unique. Different constructions of it in the classical as well as in the quantum phase space for the $q$-deformed algebra sl_q(2) are discussed. Moreover, deformation of the phase space without deforming the generators of sl(2) is considered. $\\hbar$-q-deformation of the phase space is shown to yield the Witten's second deformation. To study the BFV--BRST cohomology problem when both the quantum phase space and the group are deformed, a two parameter deformation of sl(2) is proposed, and its BFV-BRST charge is given.

  20. Sensitivity of Space Shuttle Weight and Cost to Structure Subsystem Weights

    NASA Technical Reports Server (NTRS)

    Wedge, T. E.; Williamson, R. P.

    1973-01-01

    Quantitative relationships between changes in space shuttle weights and costs with changes in weight of various portions of space shuttle structural subsystems are investigated. These sensitivity relationships, as they apply at each of three points in the development program (preliminary design phase, detail design phase, and test/operational phase) have been established for five typical space shuttle designs, each of which was responsive to the missions in the NASA Shuttle RFP, and one design was that selected by NASA.

  1. Space Station - An integrated approach to operational logistics support

    NASA Technical Reports Server (NTRS)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  2. Space Product Development: NASA Partnering With Industry For Out of This World Results

    NASA Technical Reports Server (NTRS)

    Nall, Mark E.; Casas, Joe; Powers, Blake; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    True space commercialization can only be achieved through having the broadest possible industrial participation. Commercial paradigms focused simply on commercial launch operations are not viable since there are limited payload launch opportunities in terms of satellites and similar vehicles, and there are not yet sufficient markets to support large-scale operations and innovation. What is required to expand commercial operations to the point of viability is a broad base of industry that understands the opportunities of commercial space and microgravity operations, and is eager to take advantage of it. Interesting non-aerospace companies in commercial space and microgravity research or operations is a major challenge, since these companies must be educated about the opportunities, introduced into the process in an effective and comfortable manner, and encouraged to continue and expand their work in this area. The NASA Space Product Development Program does this through fifteen Commercial Space Centers located across the United States, each focusing on a different area of interest to industry rather than of interest to NASA. These Centers serve as a consortium of industry, academia, and government, bringing the synergistic effects of membership to the benefit of all. This paper will discuss the guiding philosophies of this program, its organization, the successes obtained by industry in a variety of fields, and the success NASA is experiencing in building the broad base of industry needed to achieve true space commercialization.

  3. Balancing novelty with confined chemical space in modern drug discovery.

    PubMed

    Medina-Franco, José L; Martinez-Mayorga, Karina; Meurice, Nathalie

    2014-02-01

    The concept of chemical space has broad applications in drug discovery. In response to the needs of drug discovery campaigns, different approaches are followed to efficiently populate, mine and select relevant chemical spaces that overlap with biologically relevant chemical spaces. This paper reviews major trends in current drug discovery and their impact on the mining and population of chemical space. We also survey different approaches to develop screening libraries with confined chemical spaces balancing physicochemical properties. In this context, the confinement is guided by criteria that can be divided in two broad categories: i) library design focused on a relevant therapeutic target or disease and ii) library design focused on the chemistry or a desired molecular function. The design and development of chemical libraries should be associated with the specific purpose of the library and the project goals. The high complexity of drug discovery and the inherent imperfection of individual experimental and computational technologies prompt the integration of complementary library design and screening approaches to expedite the identification of new and better drugs. Library design approaches including diversity-oriented synthesis, biological-oriented synthesis or combinatorial library design, to name a few, and the design of focused libraries driven by target/disease, chemical structure or molecular function are more efficient if they are guided by multi-parameter optimization. In this context, consideration of pharmaceutically relevant properties is essential for balancing novelty with chemical space in drug discovery.

  4. Surface Wave Propagation on a Laterally Heterogeneous Earth

    NASA Astrophysics Data System (ADS)

    Tromp, Jeroen

    1992-01-01

    Love and Rayleigh waves propagating on the surface of the Earth exhibit path, phase and amplitude anomalies as a result of the lateral heterogeneity of the mantle. In the JWKB approximation, these anomalies can be determined by tracing surface wave trajectories, and calculating phase and amplitude anomalies along them. A time- or frequency -domain JWKB analysis yields local eigenfunctions, local dispersion relations, and conservation laws for the surface wave energy. The local dispersion relations determine the surface wave trajectories, and the energy equations determine the surface wave amplitudes. On an anisotrophic Earth model the local dispersion relation and the local vertical eigenfunctions depend explicitly on the direction of the local wavevector. Apart from the usual dynamical phase, which is the integral of the local wavevector along a raypath, there is an additional variation is phase. This additional phase, which is an analogue of the Berry phase in adiabatic quantum mechanics, vanishes in a waveguide with a local vertical two-fold symmetry axis or a local horizontal mirror plane. JWKB theory breaks down in the vicinity of caustics, where neighboring rays merge and the surface wave amplitude diverges. Based upon a potential representation of the surface wave field, a uniformly valid Maslov theory can be obtained. Surface wave trajectories are determined by a system of four ordinary differential equations which define a three-dimensional manifold in four-dimensional phase space (theta,phi,k_theta,k _phi), where theta is colatitude, phi is longitude, and k_theta and k _phi are the covariant components of the wavevector. There are no caustics in phase space; it is only when the rays in phase space are projected onto configuration space (theta,phi), the mixed spaces (k_theta,phi ) and (theta,k_phi), or onto momentum space (k_theta,k _phi), that caustics occur. The essential strategy is to employ a mixed or momentum space representation of the wavefield in the vicinity of a configuration space caustic.

  5. Space transportation systems, launch systems, and propulsion for the Space Exploration Initiative: Results from Project Outreach

    NASA Technical Reports Server (NTRS)

    Garber, T.; Hiland, J.; Orletsky, D.; Augenstein, B.; Miller, M.

    1991-01-01

    A number of transportation and propulsion options for Mars exploration missions are analyzed. As part of Project Outreach, RAND received and evaluated 350 submissions in the launch vehicle, space transportation, and propulsion areas. After screening submissions, aggregating those that proposed identical or nearly identical concepts, and eliminating from further consideration those that violated known physical princples, we had reduced the total number of viable submissions to 213. In order to avoid comparing such disparate things as launch vehicles and electric propulsion systems, six broad technical areas were selected to categorize the submissions: space transportation systems; earth-to-orbit (ETO) launch systems; chemical propulsion; nuclear propulsion; low-thrust propulsion; and other. To provide an appropriate background for analyzing the submissions, an extensive survey was made of the various technologies relevant to the six broad areas listed above. We discuss these technologies with the intent of providing the reader with an indication of the current state of the art, as well as the advances that might be expected within the next 10 to 20 years.

  6. Review of Plasmonic Nanocomposite Metamaterial Absorber

    PubMed Central

    Hedayati, Mehdi Keshavarz; Faupel, Franz; Elbahri, Mady

    2014-01-01

    Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface _lasmon). These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on) perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented. PMID:28788511

  7. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    NASA Technical Reports Server (NTRS)

    VanDerWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; hide

    2011-01-01

    We identify an abundant population of extreme emission line galaxies at redshift z=1.6 - 1.8 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared, broad-band fluxes. Supported by spectroscopic confirmation of strong [OIII] emission lines - with equivalent widths approximately 1000A - in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are dwarf galaxies with approximately 10(exp 8) solar mass in stellar mass, undergoing an enormous star-burst phase with M*/M* of only approximately 10 Myr. The star formation activity and the co-moving number density (3.7 x 10(exp -4) Mpc(exp -3)) imply that strong, short-lived bursts play a significant, perhaps even dominant role in the formation and evolution of dwarf galaxies at z greater than 1. The observed star formation activity can produce in less than 5 Gyr the same amount of stellar mass density as is presently contained in dwarf galaxies. Therefore, our observations provide a strong indication that the stellar populations of present-day dwarf galaxies formed mainly in strong, short-lived bursts, mostly at z greater than 1.

  8. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    NASA Technical Reports Server (NTRS)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; hide

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  9. Teachable, high-content analytics for live-cell, phase contrast movies.

    PubMed

    Alworth, Samuel V; Watanabe, Hirotada; Lee, James S J

    2010-09-01

    CL-Quant is a new solution platform for broad, high-content, live-cell image analysis. Powered by novel machine learning technologies and teach-by-example interfaces, CL-Quant provides a platform for the rapid development and application of scalable, high-performance, and fully automated analytics for a broad range of live-cell microscopy imaging applications, including label-free phase contrast imaging. The authors used CL-Quant to teach off-the-shelf universal analytics, called standard recipes, for cell proliferation, wound healing, cell counting, and cell motility assays using phase contrast movies collected on the BioStation CT and BioStation IM platforms. Similar to application modules, standard recipes are intended to work robustly across a wide range of imaging conditions without requiring customization by the end user. The authors validated the performance of the standard recipes by comparing their performance with truth created manually, or by custom analytics optimized for each individual movie (and therefore yielding the best possible result for the image), and validated by independent review. The validation data show that the standard recipes' performance is comparable with the validated truth with low variation. The data validate that the CL-Quant standard recipes can provide robust results without customization for live-cell assays in broad cell types and laboratory settings.

  10. Enhanced photoluminescence property and broad color emission of ZnGa2O4 phosphor due to the synergistic role of Eu3+ and carbon dots

    NASA Astrophysics Data System (ADS)

    Huo, Qiuyue; Tu, Weixia; Guo, Lin

    2017-10-01

    ZnGa2O4 phosphors co-composited with nanoscale carbon dots (CDs) and Eu3+ were presented for the tunable color emission. Novel single phase CDs or/and Eu3+ composited ZnGa2O4 phosphors were synthesized by microwave hydrothermal method and their optical properties were investigated. The ZnGa2O4 phosphors composited with CDs exhibited an intense broad blue light emission at 421 nm and a more enhanced photoluminescence intensity than those without CDs. The Eu3+ composited ZnGa2O4 phosphors gave an ideal red color emission. The CDs/Eu3+ co-composited ZnGa2O4 phosphors exhibited a wide emission band peak at 450 nm and narrow emission peak at 618 nm. Furthermore, the tunable color emissions of CDs/Eu3+ co-composited ZnGa2O4 phosphors from blue to the white light region, and then to red were obtained with the increasing Eu3+ concentration, which can be a promising single phased phosphor candidate in light emitting diodes. Broadly tunable emission single phased phosphor is tuned firstly through the synergistic role of the non-metal element and the rare earth metal ions.

  11. Grain size dependent phase stabilities and presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 piezoceramics

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ashutosh; Singh, Akhilesh Kumar

    2015-04-01

    Results of the room temperature structural studies on (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.

  12. The U.S. Space Grant College and Fellowship Program

    NASA Technical Reports Server (NTRS)

    Dasch, E. Julius; Schwartz, Elaine T.; Keffer, Lynne

    1990-01-01

    The U.S. NASA Space Grant College and Fellowship Program, congressionally mandated in 1987, consists of two phases. Phase I consisted of the designation of 21 university consortia as 'Space Grant Colleges/Consortia' which received support from NASA to conduct programs to achieve, maintain, and advance a balanced program of research capability, curriculum, and public service. Program descriptions for phase II are given. This phase is designed to broaden participation in the Space Grant Program by targeting states that currently are not as involved in NASA programs as are the states for which phase I was constructed. Under phase II, states will compete in either the Programs Grants or the Capability Enhancement Grants category. Only one proposal per state will be accepted with the state determining in which category it will compete. The amount of total award, $150,000, is the same in both categories and includes funds for university-administered fellowship programs.

  13. Lattice dynamics and broad-band dielectric properties of multiferroic Pb(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackeviciute, R.; Greicius, S.; Grigalaitis, R.

    2015-02-28

    Complex dielectric properties of Pb(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} ceramics were investigated in a broad frequency range from 100 Hz up to 90 THz. A broad dielectric anomaly was observed near the temperature of the ferroelectric phase transition (T{sub C1} = 376 K). Below 1 MHz, the anomaly is strongly influenced by conductivity of the sample, but higher frequency data taken up to 81 MHz reveal a broad and frequency independent peak at T{sub C1} typical for a diffuse ferroelectric phase transition. Surprisingly, dielectric permittivity measured at 37 GHz exhibits a peak shifted by 25 K above T{sub C1}, which indicates polar nanoregions with dynamics in microwave frequencymore » region. A dielectric relaxation, which appears in THz region below 700 K, slows down towards T{sub C1} and again hardens below T{sub C2} = 356 K. This central mode drives both phase transitions, so they belong to order–disorder type, although the polar phonons exhibit anomalies near both phase transitions. In the paraelectric phase, infrared reflectivity spectra correspond to local Fm3{sup ¯}m structure due to short-range chemical ordering of Fe and Nb cations on the B perovskite sites. Moreover, each polar phonon is split due to two different cations on the B sites. Recently, Manley et al. [Nat. Commun. 5, 3683 (2014)] proposed a new mechanism of creation of polar nanoregions in relaxor ferroelectrics. They argued, based on their inelastic neutron scattering studies of PMN–PT, that the TO1 phonon is split and interaction of both components gives rise to so called Anderson phonon localization, which can produce regions of trapped standing waves and these waves induce polar nanoregions in relaxors. We cannot exclude or confirm this mechanism, but we show that the splitting of polar phonons is a common feature for all complex perovskites with relaxor ferroelectric behavior and it can be also observed in canonical ferroelectric BaTiO{sub 3}, where the soft mode is split in paraelectric phase due to a strong lattice anharmonicity.« less

  14. Space station experiment definition: Long-term cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Jetley, R. L.; Scarlotti, R. D.

    1987-01-01

    The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.

  15. Disequilibrium condensation environments in space - A frontier in thermodynamics

    NASA Technical Reports Server (NTRS)

    De, B. R.

    1979-01-01

    The thermal-disequilibrium aspect of the problem of dust-particle formation from a gas phase in an open space environment is discussed in an effort to draw attention to the space condensation environment as an interesting arena for application and extension of the ideas and formalisms of nonequilibrium thermodynamics. It is shown that quasi-steady states with a disequilibrium between the gas-phase kinetic temperature and the condensed-phase internal temperature appear to be the norm of condensation environments in space. Consideration of the case of condensation onto a bulk condensed phase indicates that these quasi-steady states may constitute Prigogine dissipative structures. It is suggested that a proper study of the process of condensation in a space environment should include any effects arising from thermal disequilibrium.

  16. National Dam Safety Program. St. Joe State Park Dam (MO 30277), Mississippi - Kaskaskia - St. Louis Basin, St. Francois County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1980-02-01

    discharge coefficient of C = 3.4 was used. 0 Orifice flow condition when the reservoir water surface sub- merges the inlet opening. * Broad crested weir flow...2.7 was used. The intake tower will operate as a weir , as a weir and an orifice, or as an orifice and a broad crested weir depending upon the...spillway C prior to overtopping the railroad embankment into the original dam pond. Flow over this low point was calculated as flow over a broad crested weir

  17. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 1. Cloud tracking and phase space description: CENTER OF GRAVITY VERSUS WATER MASS 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan

    We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3D cloud tracking algorithm and results are presented in the phase- space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projectedmore » on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.« less

  18. Transverse phase space diagnostics for ionization injection in laser plasma acceleration using permanent magnetic quadrupoles

    NASA Astrophysics Data System (ADS)

    Li, F.; Nie, Z.; Wu, Y. P.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Mori, W. B.

    2018-04-01

    We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Numerical simulations that are in qualitative agreement with the experimental results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.

  19. Transverse phase space diagnostics for ionization injection in laser plasma acceleration using permanent magnetic quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, F.; Nie, Z.; Wu, Y. P.

    We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less

  20. Solid-solid phase change thermal storage application to space-suit battery pack

    NASA Astrophysics Data System (ADS)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  1. Transverse phase space diagnostics for ionization injection in laser plasma acceleration using permanent magnetic quadrupoles

    DOE PAGES

    Li, F.; Nie, Z.; Wu, Y. P.; ...

    2018-02-22

    We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less

  2. Coherently Coupled ZnO and VO2 Interface studied by Photoluminescence and electrical transport across a phase transition

    NASA Astrophysics Data System (ADS)

    Srivastava, Amar; Saha, S.; Annadi, A.; Zhao, Y. L.; Gopinadhan, K.; Wang, X.; Naomi, N.; Liu, Z. Q.; Dhar, S.; Herng, T. S.; Nina, Bao; Ariando, -; Ding, Jun; Venkatesan, T.

    2012-02-01

    In this work we report a study of a coherently coupled interface consisting of a ZnO layer grown on top of an oriented VO2 layer on sapphire by photoluminescence and electrical transport measurements across the VO2 metal insulator phase transition (MIT). The photoluminescence of the ZnO layer showed a broad hysteresis induced by the phase transition of VO2 while the width of the electrical hysteresis was narrow and unaffected by the over layer. The enhanced width of the PL hysteresis was due to the formation of defects during the MIT as evidenced by a broad hysteresis in the opposite direction to that of the band edge PL in the defect luminescense. Unlike VO2 the defects in ZnO did not fully recover across the phase transition. From the defect luminescence data, oxygen interstitials were found to be the predominant defects in ZnO mediated by the strain from the VO2 phase transition. Such coherently coupled interfaces could be of use in characterizing the stability of a variety of interfaces and also for novel device application.

  3. Explaining Gibbsean phase space to second year students

    NASA Astrophysics Data System (ADS)

    Vesely, Franz J.

    2005-03-01

    A new approach to teaching introductory statistical physics is presented. We recommend making extensive use of the fact that even systems with a very few degrees of freedom may display chaotic behaviour. This permits a didactic 'bottom-up' approach, starting out with toy systems whose phase space may be depicted on a screen or blackboard, then proceeding to ever higher dimensions in Gibbsean phase space.

  4. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    PubMed

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  5. DiscoverySpace: an interactive data analysis application

    PubMed Central

    Robertson, Neil; Oveisi-Fordorei, Mehrdad; Zuyderduyn, Scott D; Varhol, Richard J; Fjell, Christopher; Marra, Marco; Jones, Steven; Siddiqui, Asim

    2007-01-01

    DiscoverySpace is a graphical application for bioinformatics data analysis. Users can seamlessly traverse references between biological databases and draw together annotations in an intuitive tabular interface. Datasets can be compared using a suite of novel tools to aid in the identification of significant patterns. DiscoverySpace is of broad utility and its particular strength is in the analysis of serial analysis of gene expression (SAGE) data. The application is freely available online. PMID:17210078

  6. Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2014-08-01

    We study the triple points and phase diagrams in the extended phase space of the charged Gauss-Bonnet black holes in d-dimensional anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. Employing the equation of state T=T(v,P), we demonstrate that the information of the phase transition and behavior of the Gibbs free energy are potential encoded in the T-v (T-rh) line with fixed pressure P. We get the phase diagrams for the charged Gauss-Bonnet black holes with different values of the charge Q and dimension d. The result shows that the small/large black hole phase transitions appear for any d, which is reminiscent of the liquid/gas transition of a Van der Waals type. Moreover, the interesting thermodynamic phenomena, i.e., the triple points and the small/intermediate/large black hole phase transitions are observed for d=6 and Q ∈(0.1705,0.1946).

  7. Effects of different space allowances on growth performance, blood profile and pork quality in a grow-to-finish production system.

    PubMed

    Jang, J C; Jin, X H; Hong, J S; Kim, Y Y

    2017-12-01

    This experiment was conducted to evaluate the optimal space allowance on growth performance, blood profile and pork quality of growing-finishing pigs. A total of ninety crossbred pigs [(Yorkshire×Landrace)×Duroc, 30.25±1.13 kg] were allocated into three treatments (0.96: four pigs/pen, 0.96 m2/pig; 0.80: five pigs/pen, 0.80 m2/pig; 0.69: six pigs/pen, 0.69 m2/pig) in a randomized complete block design. Pigs were housed in balanced sex and had free access to feed in all phases for 14 weeks (growing phase I, growing phase II, finishing phase I, and finishing phase II). There was no statistical difference in growing phase, but a linear decrease was observed on average daily gain (ADG, p<0.01), average daily feed intake (ADFI, p<0.01), and body weight (BW, p<0.01) with decreasing space allowance in late finishing phase. On the other hand, a quadratic effect was observed on gain to feed ratio in early finishing phase (p<0.03). Consequently, overall ADG, ADFI, and final BW linearly declined in response to decreased space allowance (p<0.01). The pH of pork had no significant difference in 1 hour after slaughter, whereas there was a linear decrease in 24 h after slaughter with decreasing space allowance. Floor area allowance did not affect pork colors, but shear force linearly increased as floor space decreased (p<0.01). There was a linear increase in serum cortisol concentration on 14 week (p<0.05) with decreased space allocation. Serum IgG was linearly ameliorated as space allowance increased on 10 week (p<0.05) and 14 week (p<0.01). Data from current study indicated that stress derived from reduced space allowance deteriorates the immune system as well as growth performance of pigs, resulting in poor pork quality. Recommended adequate space allowance in a grow-to-finish production system is more than 0.80 m2/pig for maximizing growth performance and production efficiency.

  8. Multispacecraft Observations and 3D Structure of Electromagnetic Electron Phase-Space Holes

    NASA Astrophysics Data System (ADS)

    Holmes, J.; Ahmadi, N.; Ergun, R.; Wilder, F. D.; Newman, D. L.; Le Contel, O.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    Electron phase-space holes are nonlinear plasma structures characterized by a unipolar trapping potential with a radial electric field. They commonly form from beam instabilities and other turbulent processes in many plasma environments. Due to their strong fields and long lifetimes, it has been hypothesized that phase-space holes can carry energy over long distances, contribute to large-scale currents, and accelerate individual particles to high energies. With electromagnetic field measurements at high cadence and precision on more than two spacecraft, we can compare the real 3D structure of electron phase-space holes to the models suggested by Andersson et al. (2009) and Treumann and Baumjohann (2012). In this case study, we consider a train of correlated electron phase-space holes observed by all four MMS spacecraft on the dusk flank within the magnetosphere. A number of the holes appear to pass directly through the 7 km tetrahedron formation. We use this data to compute the holes' phase velocity vector relative to the background magnetic field, and quantify their internal currents and associated magnetic moments. For these weak magnetic signatures, we find that the contribution from internal E×B0 currents is comparable to the v×E effect. This study will be interesting to compare with MMS observations in the magnetotail, which are expected to capture large, semi-relativistic phase-space holes with a strong magnetic component.

  9. General post-Minkowskian expansion and application of the phase function

    NASA Astrophysics Data System (ADS)

    Qin, Cheng-Gang; Shao, Cheng-Gang

    2017-07-01

    The phase function is a useful tool to study all observations of space missions, since it can give all the information about light propagation in a gravitational field. For the extreme accuracy of the modern space missions, a precise relativistic modeling of observations is required. So, we develop a recursive procedure enabling us to expand the phase function into a perturbative series of ascending powers of the Newtonian gravitational constant. Any n th-order perturbation of the phase function can be determined by the integral along the straight line connecting two point events. To illustrate the result, we carry out the calculation of the phase function outside a static, spherically symmetric body up to the order of G2. Then, we develop a precise relativistic model that is able to calculate the phase function and the derivatives of the phase function in the gravitational field of rotating and uniformly moving bodies. This model allows the computing of the Doppler, radio science, and astrometric observables of the space missions in the Solar System. With the development of space technology, the relativistic corrections due to the motion of a planet's spin must be considered in the high-precision space missions in the near future. As an example, we give the estimates of the relativistic corrections on the observables about the space missions TianQin and BEACON.

  10. A High-power Electric Propulsion Test Platform in Space

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for diagnostic instruments, data handling and thermal control. The platform will be designed to accommodate the side-by-side testing of multiple types of electric thrusters. It is intended to be a permanent facility in which different thrusters can be tested over time. ISS crews can provide maintenance for the platform and change out thruster test units as needed. The primary objective of this platform is to provide a test facility for electric propulsion devices of interest for future exploration missions. These thrusters are expected to operate in the range of hundreds of kilowatts and above. However, a platform with this capability could also accommodate testing of thrusters that require much lower power levels. Testing at the higher power levels would be accomplished by using power fiom storage devices on the platform, which would be gradually recharged by the ISS power generation system. This paper will summarize the results of the preliminary phase of the study with an explanation of the user requirements and the initial conceptual design. The concept for test operations will also be described. The NASA project team is defining the requirements but they will also reflect the inputs of the broader electric propulsion community including those at universities, commercial enterprises and other government laboratories. As a facility on the International Space Station, the design requirements are also intended to encompass the needs of international users. Testing of electric propulsion systems on the space station will help advance the development of systems needed for exploration and could also serve the needs of other customers. Propulsion systems being developed for commercial and military applications could be tested and certification testing of mature thrusters could be accomplished in the space environment.

  11. Generic tripartite Bell nonlocality sudden death under local phase noise

    NASA Astrophysics Data System (ADS)

    Ann, Kevin; Jaeger, Gregg

    2008-11-01

    We definitively show, using an explicit and broadly applicable model, that local phase noise that is capable of eliminating state coherence only in the infinite-time limit is capable of eliminating nonlocality in finite time in three two-level systems prepared in the Bell-nonlocal tripartite states of the generic entanglement class.

  12. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.

  13. System technology analysis of aeroassisted orbital transfer vehicles: Moderate lift/drag (0.75-1.5). Volume 3: Cost estimates and work breakdown structure/dictionary, phase 1 and 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. A narrative summary of the cost estimates and work breakdown structure/dictionary for both study phases is presented. Costs were estimated using the Grumman Space Programs Algorithm for Cost Estimating (SPACE) computer program and results are given for four AOTV configurations. The work breakdown structure follows the standard of the joint government/industry Space Systems Cost Analysis Group (SSCAG). A table is provided which shows cost estimates for each work breakdown structure element.

  14. Optical frequency locked loop for long-term stabilization of broad-line DFB laser frequency difference

    NASA Astrophysics Data System (ADS)

    Lipka, Michał; Parniak, Michał; Wasilewski, Wojciech

    2017-09-01

    We present an experimental realization of the optical frequency locked loop applied to long-term frequency difference stabilization of broad-line DFB lasers along with a new independent method to characterize relative phase fluctuations of two lasers. The presented design is based on a fast photodiode matched with an integrated phase-frequency detector chip. The locking setup is digitally tunable in real time, insensitive to environmental perturbations and compatible with commercially available laser current control modules. We present a simple model and a quick method to optimize the loop for a given hardware relying exclusively on simple measurements in time domain. Step response of the system as well as phase characteristics closely agree with the theoretical model. Finally, frequency stabilization for offsets within 4-15 GHz working range achieving <0.1 Hz long-term stability of the beat note frequency for 500 s averaging time period is demonstrated. For these measurements we employ an I/Q mixer that allows us to precisely and independently measure the full phase trace of the beat note signal.

  15. Fluvial biogeomorphology in the Anthropocene: Managing rivers and managing landscapes.

    NASA Astrophysics Data System (ADS)

    Viles, Heather

    2015-04-01

    Biogeomorphology considers the many, and often complex, interactions between ecological and geomorphological processes. The concept of the Anthropocene deserves greater attention by scientists working on biogeomorphology, as will be demonstrated in this talk though a focus on fluvial environments. Rivers and river systems have been the subject of long-term human interference and management across the world, often in the form of direct manipulation of biogeomorphic interactions. Up to the present three broadly-defined phases of the Anthropocene can be identified - the Palaeoanthropocene, the Industrial Revolution and the Great Acceleration. Each of these broad phases of the Anthropocene has different implications for fluvial biogeomorphology and river management. The nature and dynamics of tufa-depositing systems provide good examples of the differing Anthropocene situations and will be focused on in this talk. We may now be entering a fourth phase of the Anthropocene called 'Earth system stewardship'. In terms of better understanding and managing the biogeomorphic interactions within rivers in such a phase, an improved conceptualisation of the Anthropocene and the complex web of interactions between human, ecological and geomorphological processes is needed.

  16. 3D imaging of translucent media with a plenoptic sensor based on phase space optics

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanzhe; Shu, Bohong; Du, Shaojun

    2015-05-01

    Traditional stereo imaging technology is not working for dynamical translucent media, because there are no obvious characteristic patterns on it and it's not allowed using multi-cameras in most cases, while phase space optics can solve the problem, extracting depth information directly from "space-spatial frequency" distribution of the target obtained by plenoptic sensor with single lens. This paper discussed the presentation of depth information in phase space data, and calculating algorithms with different transparency. A 3D imaging example of waterfall was given at last.

  17. Cycle-Averaged Phase-Space States for the Harmonic and the Morse Oscillators, and the Corresponding Uncertainty Relations

    ERIC Educational Resources Information Center

    Nicolaides, Cleanthes A.; Constantoudis, Vasilios

    2009-01-01

    In Planck's model of the harmonic oscillator (HO) a century ago, both the energy and the phase space were quantized according to epsilon[subscript n] = nhv, n = 0, 1, 2..., and [double integral]dp[subscript x] dx = h. By referring to just these two relations, we show how the adoption of "cycle-averaged phase-space states" (CAPSSs) leads to the…

  18. Optical sectioning for optical scanning holography using phase-space filtering with Wigner distribution functions.

    PubMed

    Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung

    2008-07-01

    We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.

  19. Analysis of remote operating systems for space-based servicing operations, volume 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.

  20. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects application.

  1. Independent-Cluster Parametrizations of Wave Functions in Model Field Theories III. The Coupled-Cluster Phase Spaces and Their Geometrical Structure

    NASA Astrophysics Data System (ADS)

    Arponen, J. S.; Bishop, R. F.

    1993-11-01

    In this third paper of a series we study the structure of the phase spaces of the independent-cluster methods. These phase spaces are classical symplectic manifolds which provide faithful descriptions of the quantum mechanical pure states of an arbitrary system. They are "superspaces" in the sense that the full physical many-body or field-theoretic system is described by a point of the space, in contrast to "ordinary" spaces for which the state of the physical system is described rather by the whole space itself. We focus attention on the normal and extended coupled-cluster methods (NCCM and ECCM). Both methods provide parametrizations of the Hilbert space which take into account in increasing degrees of completeness the connectivity properties of the associated perturbative diagram structure. This corresponds to an increasing incorporation of locality into the description of the quantum system. As a result the degree of nonlinearity increases in the dynamical equations that govern the temporal evolution and determine the equilibrium state. Because of the nonlinearity, the structure of the manifold becomes geometrically complicated. We analyse the neighbourhood of the ground state of the one-mode anharmonic bosonic field theory and derive the nonlinear expansion beyond the linear response regime. The expansion is given in terms of normal-mode amplitudes, which provide the best local coordinate system close to the ground state. We generalize the treatment to other nonequilibrium states by considering the similarly defined normal coordinates around the corresponding phase space point. It is pointed out that the coupled-cluster method (CCM) maps display such features as (an)holonomy, or geometric phase. For example, a physical state may be represented by a number of different points on the CCM manifold. For this reason the whole phase spaces in the NCCM or ECCM cannot be covered by a single chart. To account for this non-Euclidean nature we introduce a suitable pseudo-Riemannian metric structure which is compatible with an important subset of all canonical transformations. It is then shown that the phase space of the configuration-interaction method is flat, namely the complex Euclidean space; that the NCCM manifold has zero curvature even though its Reimann tensor does not vanish; and that the ECCM manifold is intrinsically curved. It is pointed out that with the present metrization many of the dimensions of the ECCM phase space are effectively compactified and that the overall topological structure of the space is related to the distribution of the zeros of the Bargmann wave function.

  2. Solvent vapour monitoring in work space by solid phase micro extraction.

    PubMed

    Li, K; Santilli, A; Goldthorp, M; Whiticar, S; Lambert, P; Fingas, M

    2001-05-07

    Solid phase micro extraction (SPME) is a fast, solvent-less alternative to conventional charcoal tube sampling/carbon disulfide extraction for volatile organic compounds (VOC). In this work, SPME was compared to the active sampling technique in a typical lab atmosphere. Two different types of fibre coatings were evaluated for solvent vapour at ambient concentration. A general purpose 100 microm film polydimethylsiloxane (PDMS) fibre was found to be unsuitable for VOC work, despite the thick coating. The mixed-phase carboxen/PDMS fibre was found to be suitable. Sensitivity of the SPME was far greater than charcoal sorbent tube method. Calibration studies using typical solvent such as dichloromethane (DCM), benzene (B) and toluene (T) showed an optimal exposure time of 5 min, with a repeatability of less than 20% for a broad spectrum of organic vapour. Minimum detectable amount for DCM is in the range of 0.01 microg/l (0.003 ppmv). Variation among different fibres was generally within 30% at a vapour concentration of 1 microg DCM/l, which was more than adequate for field monitoring purpose. Adsorption characteristics and calibration procedures were studied. An actual application of SPME was carried out to measure background level of solvent vapour at a bench where DCM was used extensively. Agreement between the SPME and the charcoal sampling method was generally within a factor of two. No DCM concentration was found to be above the regulatory limit of 50 ppmv.

  3. Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime.

    PubMed

    Quraishi, Qudsia; Griebel, Martin; Kleine-Ostmann, Thomas; Bratschitsch, Rudolf

    2005-12-01

    Broadly tunable phase-stable single-frequency terahertz radiation is generated with an optical heterodyne photomixer. The photomixer is excited by two near-infrared CW diode lasers that are phase locked to the stabilized optical frequency comb of a femtosecond titanium:sapphire laser. The terahertz radiation emitted by the photomixer is downconverted into RF frequencies with a waveguide harmonic mixer and measurement-limited linewidths at the Hertz level are demonstrated.

  4. Laser Materials Processing for NASA's Aerospace Structural Materials

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Hunyady, Thomas A.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, and surface treatment. Due to the multifunctional nature of a single tool and the variety of materials that can be processed, these attributes are attractive in order to support long-term missions in space. However, current laser technology also has drawbacks for space-based applications. Specifically, size, power efficiency, lack of robustness, and problems processing highly reflective materials are all concerns. With the advent of recent breakthroughs in solidstate laser (e.g., diode-pumped lasers) and fiber optic technologies, the potential to perform multiple processing techniques in space has increased significantly. A review of the historical development of lasers from their infancy to the present will be used to show how these issues may be addressed. The review will also indicate where further development is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. Both short- and long-term space missions will benefit from the development of a universal laser-based tool with low power consumption, improved process flexibility, compactness (e.g., miniaturization), robustness, and automation for maximum utility with a minimum of human interaction. The potential advantages of using lasers with suitable wavelength and beam properties for future space missions to the moon, Mars and beyond will be discussed. The laser processing experiments in the present report were performed using a diode pumped, pulsed/continuous wave Nd:YAG laser (50 W max average laser power), with a 1064 nm wavelength. The processed materials included Ti-6AI-4V, Al-2219 and Al-2090. For Phase I of this project, the laser process conditions were varied and optimized to see the effects on melt-quenching, cladding/alloying (using the pre-placed powder technique), and cutting. Key parameters such laser power, pulse repetition frequency, process speed, and shield gas flow and the observed process characteristics such as plasma formation during laser/material interaction, have been reported for all experimental runs. Preliminary materials characterization of select samples was carried out using various microscopy, diffraction, spectroscopy and microhardness test methods, and reported. Select nitridation results of Ti-6AI-4V using nitrogen assist gas indicated the successful formation of hard titanium nitrides with much higher hardness (2180 kg/sq mm). A cost-effective and simple powder delivery system has been successfully fabricated for the further experimentation in Phase H.

  5. Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications

    NASA Astrophysics Data System (ADS)

    Chekroun, Mickaël D.; Glatt-Holtz, Nathan E.

    2012-12-01

    In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space X which is acted on by any continuous semigroup { S( t)} t ≥ 0. Suppose that { S( t)} t ≥ 0 possesses a global attractor {{A}}. We show that, for any generalized Banach limit LIM T → ∞ and any probability distribution of initial conditions {{m}_0}, that there exists an invariant probability measure {{m}}, whose support is contained in {{A}}, such that intX \\varphi(x) d{m}(x) = \\underset{t rightarrow infty}LIM1/T int_0^T int_X \\varphi(S(t) x) d{m}_0(x) dt, for all observables φ living in a suitable function space of continuous mappings on X. This work is based on the framework of Foias et al. (Encyclopedia of mathematics and its applications, vol 83. Cambridge University Press, Cambridge, 2001); it generalizes and simplifies the proofs of more recent works (Wang in Disc Cont Dyn Syst 23(1-2):521-540, 2009; Lukaszewicz et al. in J Dyn Diff Eq 23(2):225-250, 2011). In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when { S( t)} t ≥ 0 does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and thus restricts the phase space X to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail. We first consider the Navier-Stokes equations with memory in the diffusion terms. This is the so called Jeffery's model which describes certain classes of viscoelastic fluids. We then consider a family of neutral delay differential equations, that is equations with delays in the time derivative terms. These systems may arise in the study of wave propagation problems coming from certain first order hyperbolic partial differential equations; for example for the study of line transmission problems. For the second example the phase space is {X= C([-tau,0],{R}^n)}, for some delay τ > 0, so that X is not reflexive in this case.

  6. SMART-1/CLEMENTINE Study of Humorum and Procellarum Basins

    NASA Astrophysics Data System (ADS)

    Carey, William; Foing, Bernard H.; Koschny, Detlef; Pio Rossi, Angelo; Josset, Jean-Luc

    A study undertaken by ESA to define a European Reference Architecture for Space Exploration is due to be completed in September 2008. The development of this architecture over the past twelve months has identified a number of key capabilities, among them a lunar lander system, which could form the basis for Europe's contribution to the future exploration of space in collaboration with International Partners. The focus of this paper will be on the lunar lander system, and will present the results of an analysis of possible payloads that could be accommodated by the lander. As the industrial study is at the Phase 0 or Pre-Phase A level, the design of such a lander system is at a very early stage in its development, but an estimation of the payload capacity allows a general assessment of the types of possible payloads that could be carried, currently this capacity is estimated at 1.1 tonnes of gross payload mass to the lunar surface (assuming an Ariane 5 ECA launch). An important characteristic of the lunar lander is that it provides a versatile and flexible system for utilisation in a broad range of lunar missions which include: - Independent lunar exploration missions for science, technology demonstration and research. - Delivery of logistics and cargo to support human surface sortie missions. - Delivery of logistics to a lunar base/outpost. - Deployment of individual infrastructure elements in support of a lunar base/outpost. Based on the above different types of missions, a number of configurations of "reference payload" sets are in the process of being defined that cover specific exploration objectives related primarily to capability demonstration, exploration enabling research and enabled science. Aspects covered include: ISRU, robotics, mobility, human preparation, life science and geology. This paper will present the current status of definition of the Reference Payload sets.

  7. The Opponent Channel Population Code of Sound Location Is an Efficient Representation of Natural Binaural Sounds

    PubMed Central

    Młynarski, Wiktor

    2015-01-01

    In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a “panoramic” code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding. PMID:25996373

  8. Galaxy Kinematics and Mass Calibration in Massive SZE Selected Galaxy Clusters to z=1.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capasso, R.; et al.

    The galaxy phase-space distribution in galaxy clusters provides insights into the formation and evolution of cluster galaxies, and it can also be used to measure cluster mass profiles. We present a dynamical study based onmore » $$\\sim$$3000 passive, non-emission line cluster galaxies drawn from 110 galaxy clusters. The galaxy clusters were selected using the Sunyaev-Zel'dovich effect (SZE) in the 2500 deg$^2$ SPT-SZ survey and cover the redshift range $0.2 < z < 1.3$. We model the clusters using the Jeans equation, while adopting NFW mass profiles and a broad range of velocity dispersion anisotropy profiles. The data prefer velocity dispersion anisotropy profiles that are approximately isotropic near the center and increasingly radial toward the cluster virial radius, and this is true for all redshifts and masses we study. The pseudo-phase-space density profile of the passive galaxies is consistent with expectations for dark matter particles and subhalos from cosmological $N$-body simulations. The dynamical mass constraints are in good agreement with external mass estimates of the SPT cluster sample from either weak lensing, velocity dispersions, or X-ray $$Y_X$$ measurements. However, the dynamical masses are lower (at the 2.2$$\\sigma$$ level) when compared to the mass calibration favored when fitting the SPT cluster data to a LCDM model with external cosmological priors, including CMB anisotropy data from Planck. The tension grows with redshift, where in the highest redshift bin the ratio of dynamical to SPT+Planck masses is $$\\eta=0.63^{+0.13}_{-0.08}\\pm0.05$$ (statistical and systematic), corresponding to 2.6$$\\sigma$$ tension.« less

  9. High-Resolution Graphene Films for Electrochemical Sensing via Inkjet Maskless Lithography.

    PubMed

    Hondred, John A; Stromberg, Loreen R; Mosher, Curtis L; Claussen, Jonathan C

    2017-10-24

    Solution-phase printing of nanomaterial-based graphene inks are rapidly gaining interest for fabrication of flexible electronics. However, scalable manufacturing techniques for high-resolution printed graphene circuits are still lacking. Here, we report a patterning technique [i.e., inkjet maskless lithography (IML)] to form high-resolution, flexible, graphene films (line widths down to 20 μm) that significantly exceed the current inkjet printing resolution of graphene (line widths ∼60 μm). IML uses an inkjet printed polymer lacquer as a sacrificial pattern, viscous spin-coated graphene, and a subsequent graphene lift-off to pattern films without the need for prefabricated stencils, templates, or cleanroom technology (e.g., photolithography). Laser annealing is employed to increase conductivity on thermally sensitive, flexible substrates [polyethylene terephthalate (PET)]. Laser annealing and subsequent platinum nanoparticle deposition substantially increases the electroactive nature of graphene as illustrated by electrochemical hydrogen peroxide (H 2 O 2 ) sensing [rapid response (5 s), broad linear sensing range (0.1-550 μm), high sensitivity (0.21 μM/μA), and low detection limit (0.21 μM)]. Moreover, high-resolution, complex graphene circuits [i.e., interdigitated electrodes (IDE) with varying finger width and spacing] were created with IML and characterized via potassium chloride (KCl) electrochemical impedance spectroscopy (EIS). Results indicated that sensitivity directly correlates to electrode feature size as the IDE with the smallest finger width and spacing (50 and 50 μm) displayed the largest response to changes in KCl concentration (∼21 kΩ). These results indicate that the developed IML patterning technique is well-suited for rapid, solution-phase graphene film prototyping on flexible substrates for numerous applications including electrochemical sensing.

  10. Grassmann phase space theory and the Jaynes–Cummings model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, B.J., E-mail: bdalton@swin.edu.au; Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Victoria 3122; Garraway, B.M.

    2013-07-15

    The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherentmore » state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes–Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker–Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker–Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions–that are also equivalent to the canonical Grassmann distribution function–to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum–atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes–Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum–atom optics. -- Highlights: •Novel phase space theory of the Jaynes–Cummings model using Grassmann variables. •Fokker–Planck equations solved analytically. •Results agree with the standard quantum optics treatment. •Grassmann phase space theory applicable to fermion many-body problems.« less

  11. Orbit Determination During Spacecraft Emergencies with Sparse Tracking Data - THEMIS and TDRS-3 Lessons Learned

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick J.; Ward, Douglas T.; Blizzard, Michael R.; Mendelsohn, Chad R.

    2008-01-01

    This paper provides an overview of the lessons learned from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center s (GSFC) Flight Dynamics Facility s (FDF) support of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft emergency in February 2007, and the Tracking and Data Relay Satellite-3 (TDRS-3) spacecraft emergency in March 2006. A successful and timely recovery from both of these spacecraft emergencies depended on accurate knowledge of the orbit. Unfortunately, the combination of each spacecraft emergency with very little tracking data contributed to difficulties in estimating and predicting the orbit and delayed recovery efforts in both cases. In both the THEMIS and TDRS-3 spacecraft emergencies, numerous factors contributed to problems with obtaining nominal tracking data measurements. This paper details the various causative factors and challenges. This paper further enumerates lessons learned from FDF s recovery efforts involving the THEMIS and TDRS-3 spacecraft emergencies and scant tracking data, as well as recommendations for improvements and corrective actions. In addition, this paper describes the broad range of resources and complex navigation methods employed within the FDF for supporting critical navigation activities during all mission phases, including launch, early orbit, and on-orbit operations.

  12. Structure and adsorption properties of a porous cooper hexacyanoferrate polymorph

    NASA Astrophysics Data System (ADS)

    Roque-Malherbe, R.; Carballo, E.; Polanco, R.; Lugo, F.; Lozano, C.

    2015-11-01

    The key questions addressed here were: the structure elucidation and the investigation of the adsorption space and framework expansion effect of a Cu(II) hexacyanoferrate (III) polymorph (labeled Cu-PBA-I). The structural analysis was performed with a broad set of characterization methods. Additionally, a low and high pressure carbon dioxide adsorption investigation was performed, assuming, to comprehend the adsorption experiments, that the adsorbent plus the adsorbed phase were a solid solution. We concluded: that the Cu-PBA-I presented the following composition, K1/4 Cu (II)[ Fe (III)(CN)6 ] 3 / 4⋄1/4 nH2 O , exhibited an antiferromagnetic behavior and displayed a thermally stable I 4 bar m 2 space group lattice in the degassed state. Moreover, the low pressure adsorption study allowed the calculation of the micropore volume, W=0.09 cm3/g and the isosteric heat of adsorption, qiso=19 kJ/mol; further, the high pressure adsorption data revealed an extremely high adsorption capacity owing to a framework expansion effect. Finally, the DRIFTS spectrum of adsorbed CO2 displayed peaks corresponding to carbon dioxide physically adsorbed and interacting with electron accepting Lewis acid sites. Hence, was produced an excellent adsorbent which combine porosity and anti-ferromagnetism, antagonist properties rarely found together.

  13. Exploring Life Support Architectures for Evolution of Deep Space Human Exploration

    NASA Technical Reports Server (NTRS)

    Anderson, Molly S.; Stambaugh, Imelda C.

    2015-01-01

    Life support system architectures for long duration space missions are often explored analytically in the human spaceflight community to find optimum solutions for mass, performance, and reliability. But in reality, many other constraints can guide the design when the life support system is examined within the context of an overall vehicle, as well as specific programmatic goals and needs. Between the end of the Constellation program and the development of the "Evolvable Mars Campaign", NASA explored a broad range of mission possibilities. Most of these missions will never be implemented but the lessons learned during these concept development phases may color and guide future analytical studies and eventual life support system architectures. This paper discusses several iterations of design studies from the life support system perspective to examine which requirements and assumptions, programmatic needs, or interfaces drive design. When doing early concept studies, many assumptions have to be made about technology and operations. Data can be pulled from a variety of sources depending on the study needs, including parametric models, historical data, new technologies, and even predictive analysis. In the end, assumptions must be made in the face of uncertainty. Some of these may introduce more risk as to whether the solution for the conceptual design study will still work when designs mature and data becomes available.

  14. Time-Accurate, Unstructured-Mesh Navier-Stokes Computations with the Space-Time CESE Method

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2006-01-01

    Application of the newly emerged space-time conservation element solution element (CESE) method to compressible Navier-Stokes equations is studied. In contrast to Euler equations solvers, several issues such as boundary conditions, numerical dissipation, and grid stiffness warrant systematic investigations and validations. Non-reflecting boundary conditions applied at the truncated boundary are also investigated from the stand point of acoustic wave propagation. Validations of the numerical solutions are performed by comparing with exact solutions for steady-state as well as time-accurate viscous flow problems. The test cases cover a broad speed regime for problems ranging from acoustic wave propagation to 3D hypersonic configurations. Model problems pertinent to hypersonic configurations demonstrate the effectiveness of the CESE method in treating flows with shocks, unsteady waves, and separations. Good agreement with exact solutions suggests that the space-time CESE method provides a viable alternative for time-accurate Navier-Stokes calculations of a broad range of problems.

  15. Human Exploration Framework Team: Strategy and Status

    NASA Technical Reports Server (NTRS)

    Muirhead, Brian K.; Sherwood, Brent; Olson, John

    2011-01-01

    Human Exploration Framework Team (HEFT) was formulated to create a decision framework for human space exploration that drives out the knowledge, capabilities and infrastructure NASA needs to send people to explore multiple destinations in the Solar System in an efficient, sustainable way. The specific goal is to generate an initial architecture that can evolve into a long term, enterprise-wide architecture that is the basis for a robust human space flight enterprise. This paper will discuss the initial HEFT activity which focused on starting up the cross-agency team, getting it functioning, developing a comprehensive development and analysis process and conducting multiple iterations of the process. The outcome of this process will be discussed including initial analysis of capabilities and missions for at least two decades, keeping Mars as the ultimate destination. Details are provided on strategies that span a broad technical and programmatic trade space, are analyzed against design reference missions and evaluated against a broad set of figures of merit including affordability, operational complexity, and technical and programmatic risk.

  16. Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Juday, Richard D.

    1991-01-01

    A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.

  17. A Comparison of Ionospheric Model Performance for International Space Station Orbits

    DTIC Science & Technology

    2013-03-01

    Huang, C. Y., F. A . Marcos, P. A . Roddy, M . R. Hairston, W. R. Coley, C. Roth, S . Bruinsma, and D. E. Hunton (2009), Broad plasma decreases in the... A COMPARISON OF IONOSPHERIC MODEL PERFORMANCE FOR INTERNATIONAL SPACE STATION ORBITS THESIS David J. Broadwater, Captain, USAF AFIT-ENP-13- M -04...not subject to copyright protection in the United States. AFIT-ENP-13- M -04 A COMPARISON OF IONOSPHERIC MODEL PERFORMANCE FOR INTERNATIONAL SPACE

  18. Transverse Phase Space Reconstruction and Emittance Measurement of Intense Electron Beams using a Tomography Technique

    NASA Astrophysics Data System (ADS)

    Stratakis, D.; Kishek, R. A.; Li, H.; Bernal, S.; Walter, M.; Tobin, J.; Quinn, B.; Reiser, M.; O'Shea, P. G.

    2006-11-01

    Tomography is the technique of reconstructing an image from its projections. It is widely used in the medical community to observe the interior of the human body by processing multiple x-ray images taken at different angles, A few pioneering researchers have adapted tomography to reconstruct detailed phase space maps of charged particle beams. Some questions arise regarding the limitations of tomography technique for space charge dominated beams. For instance is the linear space charge force a valid approximation? Does tomography equally reproduce phase space for complex, experimentally observed, initial particle distributions? Does tomography make any assumptions about the initial distribution? This study explores the use of accurate modeling with the particle-in-cell code WARP to address these questions, using a wide range of different initial distributions in the code. The study also includes a number of experimental results on tomographic phase space mapping performed on the University of Maryland Electron Ring (UMER).

  19. Challenges, developments and perspectives in intermittent ...

    EPA Pesticide Factsheets

    Although more than half the world's river networks comprise channels that periodically cease to flow and dry [intermittent rivers (IRs)], river ecology was largely developed from and for perennial systems. Ecological knowledge of IRs is rapidly increasing, so there is a need to synthesise this knowledge and deepen ecological understanding.In this Special Issue, we bring together 13 papers spanning observational case studies, field and laboratory experiments and reviews to guide research and management in this productive field of freshwater science. We summarise new developments in IR ecology, identify research gaps and needs, and address how the study of IRs as highly dynamic ecosystems informs ecological understanding more broadly.This series of articles reveals that contemporary IR ecology is a multifaceted and maturing field of research at the interface between aquatic and terrestrial ecology. This research contributes to fresh water and general ecology by testing concepts across a range of topics, including disturbance ecology, metacommunity ecology and coupled aquatic-terrestrial ecosystems.Drying affects flow continuity through time and flow connectivity across longitudinal, lateral and vertical dimensions of space, which aligns well with the recent emphasis of mainstream ecology on meta-system perspectives. Although most articles here focus on the wet phase, there is growing interest in dry phases, and in the terrestrial vegetation and invertebrate assemb

  20. Recent Status of SIM Lite Astrometric Observatory Mission: Flight Engineering Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Dekens, Frank; Nemati, Bijan; An, Xin; Carson, Johnathan

    2010-01-01

    The SIM Lite Astrometric Observatory is a mission concept for a space-borne instrument to perform micro-arc-second narrow-angle astrometry to search 60 to 100 nearby stars for Earth-like planets, and to perform global astrometry for a broad astrophysics program. The instrument consists of two Michelson stellar interferometers and a telescope. The first interferometer chops between the target star and a set of reference stars. The second interferometer monitors the attitude of the instrument in the direction of the target star. The telescope monitors the attitude of the instrument in the other two directions. The main enabling technology development for the mission was completed during phases A & B. The project is currently implementing the developed technology onto flight-ready engineering models. These key engineering tasks will significantly reduce the implementation risks during the flight phases C & D of the mission. The main optical interferometer components, including the astrometric beam combiner, the fine steering optical mechanism, the path-length-control and modulation optical mechanisms, focal-plane camera electronics and cooling heat pipe, are currently under development. Main assemblies are built to meet flight requirements and will be subjected to flight qualification level environmental testing (random vibration and thermal cycling) and performance testing. This paper summarizes recent progress in engineering risk reduction activities.

  1. Solubility and Speciation in the Water-Carbon Dioxide System

    NASA Astrophysics Data System (ADS)

    Abramson, E.; Bollengier, O.; Brown, J. M.

    2016-12-01

    The fluid-fluid miscibility surface of the water-carbon dioxide system contains broad regions (in pressure-composition space) exhibiting gradual variations in the temperature of miscibility; this is as expected. However, there is additionally a line of pressure, extending from roughly 2 GPa and 20 mole% CO2 to 6 GPa and 40 mole%, above which the temperature necessary to complete miscibility falls precipitously. This line, which closely approximates a hard limit, is hypothesized to demark a shift in speciation of dissolved CO2. In the same region of pressure the equilibrium limits of a new solid phase, composed of both water and CO2, have been determined. This new phase, the IR and Raman spectra of which led Wang et al.* to ascribe it to carbonic acid, has an observed associated aqueous form which must, in addition to the well-known bicarbonate and carbonate ions, affect the miscibilities of the system. Since zones of rapid subduction are expected to experience the regions of temperatures and pressures at which these equilibria are observed to shift, the chemical nature of these fluids is expected to undergo significant changes during the subduction process. * Wang H., Zeuschner J., Eremets M., Troyan I. and Willams J. (2016) Sci. Rep. 6, 19902-1-8

  2. 20--500 watt AMTEC auxiliary electric power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.

    1996-12-31

    Numerous design studies have been completed on Alkali Metal Thermal to Electric Converter (AMTEC) power systems for space applications demonstrating their substantial increase in performance. Recently design studies have been initiated to couple AMTEC power conversion with fossil fueled combustion systems. This paper describes the results of a Phase 1 SBIR effort to design an innovative, efficient, reliable, long life AMTEC Auxiliary Electric Power System (AEPS) for remote site applications (20--500 watts). The concept uses high voltage AMTEC cells, each containing 7 to 9 small electrolyte tubes, integrated with a combustor and recuperator. These multi-tube AMTEC cells are low cost,more » reliable, long life static converters. AMTEC technology is ideal for auxiliary electric power supplies that must operate reliably over a broad range of temperatures, fuel sources, power levels, and operational specifications. The simplicity, efficiency (20% systems) and modularity of this technology allow it to fill applications as varied as light-weight backpacks, remote site power supplies, and military base power. Phase 1 demonstrated the feasibility of a 20% system design, and showed that the development needs to focus on identifying long life AMTEC cell components, determining the AMTEC cell and system reliability, and demonstrating that a 20 watt AMTEC system is 3--5 times more efficient than existing systems for the same application.« less

  3. Spin-phonon coupling and high-pressure phase transitions of RMnO 3 (R=Ca and Pr): An inelastic neutron scattering and first-principles study

    DOE PAGES

    Mishra, S. K.; Gupta, M. K.; Mittal, R.; ...

    2016-06-22

    Here, we report inelastic neutron scattering measurements over 7–1251 K in CaMnO 3 covering various phase transitions, and over 6–150 K in PrMnO 3 covering the magnetic transition. The excitations around 20 meV in CaMnO 3 and at 17 meV in PrMnO 3 at low temperatures are found to be associated with magnetic origin. We observe coherent magnetic neutron scattering in localized regions in reciprocal space and show it to arise from long-range correlated magnetic spin-waves below the magnetic transition temperature (TN) and short-range stochastic spin-spin fluctuations above T N. In spite of the similarity of the structure of themore » two compounds, the neutron inelastic spectrum of PrMnO 3 exhibits broad features at 150 K unlike well-defined peaks in the spectrum of CaMnO 3. This might result from the difference in the nature of interactions in the two compounds (magnetic and Jahn-Teller distortion). Ab initio phonon calculations have been used to interpret the observed phonon spectra. The ab initio calculations at high pressures show that the variations of Mn-O distances are isotropic for CaMnO 3 and highly anisotropic for PrMnO 3. The calculation in PrMnO 3 shows the suppression of Jahn-Teller distortion and simultaneous insulator-to-metal transition. It appears that this transition may not be associated with the occurrence of the tetragonal phase above 20 GPa as reported in the literature, since the tetragonal phase is found to be dynamically unstable, although it is found to be energetically favored over the orthorhombic phase above 20 GPa. CaMnO 3 does not show any phase transition up to 60 GPa.« less

  4. Quantum phase space with a basis of Wannier functions

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Wu, Fan; Wu, Biao

    2018-02-01

    A quantum phase space with Wannier basis is constructed: (i) classical phase space is divided into Planck cells; (ii) a complete set of Wannier functions are constructed with the combination of Kohn’s method and Löwdin method such that each Wannier function is localized at a Planck cell. With these Wannier functions one can map a wave function unitarily onto phase space. Various examples are used to illustrate our method and compare it to Wigner function. The advantage of our method is that it can smooth out the oscillations in wave functions without losing any information and is potentially a better tool in studying quantum-classical correspondence. In addition, we point out that our method can be used for time-frequency analysis of signals.

  5. Multivariable Hermite polynomials and phase-space dynamics

    NASA Technical Reports Server (NTRS)

    Dattoli, G.; Torre, Amalia; Lorenzutta, S.; Maino, G.; Chiccoli, C.

    1994-01-01

    The phase-space approach to classical and quantum systems demands for advanced analytical tools. Such an approach characterizes the evolution of a physical system through a set of variables, reducing to the canonically conjugate variables in the classical limit. It often happens that phase-space distributions can be written in terms of quadratic forms involving the above quoted variables. A significant analytical tool to treat these problems may come from the generalized many-variables Hermite polynomials, defined on quadratic forms in R(exp n). They form an orthonormal system in many dimensions and seem the natural tool to treat the harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties of these polynomials and present some applications to physical problems.

  6. The OAST space power program

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    The NASA Office of Aeronautics and Space Technology (OAST) space power program was established to provide the technology base to meet power system requirements for future space missions, including the Space Station, earth orbiting spacecraft, lunar and planetary bases, and solar system exploration. The program spans photovoltaic energy conversion, chemical energy conversion, thermal energy conversion, power management, thermal management, and focused initiatives on high-capacity power, surface power, and space nuclear power. The OAST space power program covers a broad range of important technologies that will enable or enhance future U.S. space missions. The program is well under way and is providing the kind of experimental and analytical information needed for spacecraft designers to make intelligent decisions about future power system options.

  7. Gauging Spatial Symmetries and the Classification of Topological Crystalline Phases

    NASA Astrophysics Data System (ADS)

    Thorngren, Ryan; Else, Dominic V.

    2018-01-01

    We put the theory of interacting topological crystalline phases on a systematic footing. These are topological phases protected by space-group symmetries. Our central tool is an elucidation of what it means to "gauge" such symmetries. We introduce the notion of a crystalline topological liquid and argue that most (and perhaps all) phases of interest are likely to satisfy this criterion. We prove a crystalline equivalence principle, which states that in Euclidean space, crystalline topological liquids with symmetry group G are in one-to-one correspondence with topological phases protected by the same symmetry G , but acting internally, where if an element of G is orientation reversing, it is realized as an antiunitary symmetry in the internal symmetry group. As an example, we explicitly compute, using group cohomology, a partial classification of bosonic symmetry-protected topological phases protected by crystalline symmetries in (3 +1 ) dimensions for 227 of the 230 space groups. For the 65 space groups not containing orientation-reversing elements (Sohncke groups), there are no cobordism invariants that may contribute phases beyond group cohomology, so we conjecture that our classification is complete.

  8. Phase operator problem and macroscopic extension of quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozawa, M.

    1997-06-01

    To find the Hermitian phase operator of a single-mode electromagnetic field in quantum mechanics, the Schr{umlt o}dinger representation is extended to a larger Hilbert space augmented by states with infinite excitation by nonstandard analysis. The Hermitian phase operator is shown to exist on the extended Hilbert space. This operator is naturally considered as the controversial limit of the approximate phase operators on finite dimensional spaces proposed by Pegg and Barnett. The spectral measure of this operator is a Naimark extension of the optimal probability operator-valued measure for the phase parameter found by Helstrom. Eventually, the two promising approaches to themore » statistics of the phase in quantum mechanics are synthesized by means of the Hermitian phase operator in the macroscopic extension of the Schr{umlt o}dinger representation. {copyright} 1997 Academic Press, Inc.« less

  9. Early Program Development

    NASA Image and Video Library

    1969-01-01

    This 1969 artist's concept illustrates the use of three major elements of NASA's Integrated program, as proposed by President Nixon's Space Task Group. In Phases I and II, a Space Tug with a manipulator-equipped crew module removes a cargo module from an early Space Shuttle Orbiter and docks with it. In Phases III and IV, the Space Tug with attached cargo module flys toward a Nuclear Shuttle. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.

  10. Broad beam transmission properties of some common shielding materials for use in diagnostic radiology.

    PubMed

    Rossi, R P; Ritenour, R; Christodoulou, E

    1991-11-01

    Broad beam geometry was used to measure the x-ray transmission properties of gypsum wallboard, steel, plate glass, and concrete for x-ray tube potentials of 50-125 kVp using an x-ray generator having a three-phase, twelve-pulse waveform and total initial beam filtration sufficient to provide half-value layers representative of those found in common practice and required by regulatory agencies. Measurement results are presented graphically and as numerical fits to a mathematical model of broad beam transmission to permit their use in the design of protective barriers for medical diagnostic x-ray facilities.

  11. Space Launch System Update

    NASA Technical Reports Server (NTRS)

    Cobb, Sharon

    2017-01-01

    NASA has a phased approach to ensure our nation's leadership in space exploration, beginning in Earth orbit, developing our skills in lunar space, and extending those skills and technologies to a human mission to Mars. We're currently in Phase 0, using the ISS to better understand living and working in space. You may have heard about our "twin study" with astronauts Scott and Mike Kelly that's giving us valuable information on the effects of microgravity environments on the human body during long stays in LEO. During Phase 1 in the 2020s, SLS will be used to lift the pieces of a "deep space gateway" outpost to lunar orbit. Developing and operating the gateway will get us to Mars in a step-by-step fashion, with lessons learned in each phase of the process informing the next steps. First step of moving humans farther into the solar system is completing and flying SLS and Orion.

  12. Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.

    PubMed

    Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir

    2017-04-14

    We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.

  13. Modeling Biotransformation Using In Vitro Data on Parent-Metabolite Pairs within the ToxCast Phase I Chemical Set

    EPA Science Inventory

    A major focus in toxicology research is the development of new in vitro methods to predict in vivo chemical toxicity. Within the EPA ToxCast program, a broad range of in vitro biochemical and cellular assays have been deployed to profile the biological activity of 320 Phase I che...

  14. Density management and riparian buffer study in Western Oregon: Phase 1 results, launch of phase 2 [brochure

    Treesearch

    Rhonda Mazza

    2009-01-01

    Can we expedite the development of late-successional forest conditions by applying thinning treatments to young forest stands? What effect will these thinning treatments have on headwater ecosystems? These broad questions lie at the foundation of the Density Management and Riparian Buffer Study (DMS) of western Oregon.

  15. Water-quality data-collection activities in Colorado and Ohio; Phase II, Evaluation of 1984 field and laboratory quality-assurance practices

    USGS Publications Warehouse

    Childress, Carolyn J. Oblinger; Chaney, Thomas H.; Myers, Donna; Norris, J. Michael; Hren, Janet

    1987-01-01

    Serious questions have been raised by Congress about the usefulness of water-quality data for addressing issues of regional and national scope and, especially, for characterizing the current quality of the Nation's streams and ground water. In response, the U.S. Geological Survey has undertaken a pilot study in Colorado and Ohio to (1) determine the characteristics of current (1984) water-quality data-collection activities of Federal, regional, State, and local agencies, and academic institutions; and (2) determine how well the data from these activities, collected for various purposes and using different procedures, can be used to improve our ability to answer major broad-scope questions, such as:A. What are (or were) natural or near-natural water-quality conditions?B. What are existing water-quality conditions?C. How has water quality changed, and how do the changes relate to human activities?Colorado and Ohio were chosen for the pilot study largely because they represent regions with different types of waterquality concerns and programs. The study has been divided into three phases, the objectives of which are: Phase I--Inventory water-quality data-collection programs, including costs, and identify those programs that met a set of broad criteria for producing data that are potentially appropriate for water-quality assessments of regional and national scope. Phase II--Evaluate the quality assurance of field and laboratory procedures used in producing the data from programs that met the broad criteria of Phase I. Phase III--Compile the qualifying data and evaluate the adequacy of this data base for addressing selected water-quality questions of regional and national scope.Water-quality data are collected by a large number of organizations for diverse purposes ranging from meeting statutory requirements to research on water chemistry. Combining these individual data bases is an appealing and potentially cost-effective way to attempt to develop a data base adequate for regional or national water-quality assessments. However, to combine data from diverse sources, field and laboratory procedures used to produce the data need to be equivalent and need to meet specific qualityassurance standards. It is these factors that are the focus of Phase II, which is described in this report. In the first phase of this study, an inventory was made of all public organizations and academic institutions that undertook water-quality data-collection activities in Colorado and Ohio in 1984. Water-quality programs identified in Phase I were tested against a set of broad screening criteria. A total of 44 waterquality programs in Colorado and 29 programs in Ohio passed the Phase-I screen and were examined in Phase II. These programs accounted for an estimated 165,000 analyses in Colorado and 76,300 analyses in Ohio for 20 selected constituents and properties. Although qualifying programs included both surface- and ground-water sampling, they emphasized surface waters and produced few groundwater analyses (3,660 for Colorado and 470 for Ohio). For Phase II, information about field and laboratory qualityassurance practices was provided by each organization and its supporting laboratories through questionnaires. This information was evaluated against a set of specific criteria for field and laboratory practices. The criteria were developed from guidelines published by public agencies and professional organizations such as the American Public Health Association, the U.Sc, Environmental Protection Agency, and the U.S. Geological Survey. Each of the eight criteria that comprise the Phase-II screen fall into one of two major categories--field practices or laboratory practices.

  16. Geometric phase of mixed states for three-level open systems

    NASA Astrophysics Data System (ADS)

    Jiang, Yanyan; Ji, Y. H.; Xu, Hualan; Hu, Li-Yun; Wang, Z. S.; Chen, Z. Q.; Guo, L. P.

    2010-12-01

    Geometric phase of mixed state for three-level open system is defined by establishing in connecting density matrix with nonunit vector ray in a three-dimensional complex Hilbert space. Because the geometric phase depends only on the smooth curve on this space, it is formulated entirely in terms of geometric structures. Under the limiting of pure state, our approach is in agreement with the Berry phase, Pantcharatnam phase, and Aharonov and Anandan phase. We find that, furthermore, the Berry phase of mixed state correlated to population inversions of three-level open system.

  17. Qubits in phase space: Wigner-function approach to quantum-error correction and the mean-king problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paz, Juan Pablo; Roncaglia, Augusto Jose; Theoretical Division, LANL, MSB213, Los Alamos, New Mexico 87545

    2005-07-15

    We analyze and further develop a method to represent the quantum state of a system of n qubits in a phase-space grid of NxN points (where N=2{sup n}). The method, which was recently proposed by Wootters and co-workers (Gibbons et al., Phys. Rev. A 70, 062101 (2004).), is based on the use of the elements of the finite field GF(2{sup n}) to label the phase-space axes. We present a self-contained overview of the method, we give insights into some of its features, and we apply it to investigate problems which are of interest for quantum-information theory: We analyze the phase-spacemore » representation of stabilizer states and quantum error-correction codes and present a phase-space solution to the so-called mean king problem.« less

  18. Scientific management of Space Telescope

    NASA Technical Reports Server (NTRS)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  19. Space station program phase B definition: Nuclear reactor-powered space station cost and schedules

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Tabulated data are presented on the costs, schedules, and technical characteristics for the space station phases C and D program. The work breakdown structure, schedule data, program ground rules, program costs, cost-estimating rationale, funding schedules, and supporting data are included.

  20. Momentum space topology of QCD

    NASA Astrophysics Data System (ADS)

    Zubkov, M. A.

    2018-06-01

    We discuss the possibility to consider quark matter as the topological material. We consider hadronic phase (HP), the quark-gluon plasma phase (QGP), and the hypothetical color-flavor locking (CFL) phase. In those phases we identify the relevant topological invariants in momentum space. The formalism is developed, which relates those invariants and massless fermions that reside on vortices and at the interphases. This formalism is illustrated by the example of vortices in the CFL phase.

  1. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics.

    PubMed

    Longman, Andrew; Fedosejevs, Robert

    2017-07-24

    An analytical model for the conversion efficiency from a TEM 00 mode to an arbitrary Laguerre-Gaussian (LG) mode with null radial index spiral phase optics is presented. We extend this model to include the effects of stepped spiral phase optics, spiral phase optics of non-integer topological charge, and the reduction in conversion efficiency due to broad laser bandwidth. We find that through optimization, an optimal beam waist ratio of the input and output modes exists and is dependent upon the output azimuthal mode number.

  2. Controlling quantum interference in phase space with amplitude.

    PubMed

    Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2017-05-23

    We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n = 2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space and indicates the capability of controlling quantum interference using amplitude. This remarkably contrasts with the oscillations of interference effects being usually controlled by relative phase in classical optics.

  3. A phase space approach to imaging from limited data

    NASA Astrophysics Data System (ADS)

    Testorf, Markus E.

    2015-09-01

    The optical instrument function is used as the basis to develop optical system theory for imaging applications. The detection of optical signals is conveniently described as the overlap integral of the Wigner distribution functions of instrument and optical signal. Based on this framework various optical imaging systems, including plenoptic cameras, phase-retrieval algorithms, and Shack-Hartman sensors are shown to acquire information about a domain in phase-space, with finite extension and finite resolution. It is demonstrated how phase space optics can be used both to analyze imaging systems, as well as for designing methods for image reconstruction.

  4. Space Propulsion Synergy Group ETO technology assessments

    NASA Astrophysics Data System (ADS)

    Bray, James

    The Space Propulsion Synergy Group (SPSG), which was chartered to support long-range strategic planning, has, using a broad industry/government team, evaluated and achieved consensus on the vehicles, propulsion systems, and propulsion technologies that have the best long-term potential for achieving desired system attributes. The breakthrough that enabled broad consensus was developing criteria that are measurable a priori. The SPSG invented a dual prioritization approach that balances long-term strategic thrusts with current programmatic constraints. This enables individual program managers to make decisions based on both individual project needs and long-term strategic needs. Results indicate that an SSTO using an integrated modular engine has the best long-term potential for a 20 Klb class vehicle, and that health monitoring and control technologies are among the highest dual priority liquid rocket technologies.

  5. Study of Scattered Light from Known Debris Disks

    NASA Technical Reports Server (NTRS)

    Rodriguez, Joseph E.; Weinberger, Alycia J.; Roberge, Aki

    2011-01-01

    Using the Spitzer Space Telescope, a group of edge on debris disks, surrounding main-sequence shell stars have been discovered in the infrared. These disks are of high interest because they not only have dust, but an observed amount of circumstellar gas. HD158352 was an ideal target to try and image the disk because it was one of the closest stars in this group. Using the Hubble Space Telescope's Space Telescope Imaging Spectrograph (STIS), we attempted to take a direct image of the light scattered from the known disk in a broad optical bandpass. Studying these particular type of disks in high detail will allow us to learn more about gas-dust interactions. In particular, this will allow us to learn how the circumstellar gas evolves during the planet-forming phase. Even though it was predicted that the disk should have a magnitude of 20.5 at 3", no disk was seen in any of the optical images. This suggests that the parameters used to predict the brightness of the disk are not what we first anticipated and adjustments to the model must be performed. We also present the blue visible light spectrum of the scattered light from the debris disk surrounding Beta Pictoris. We are analyzing archival observations taken by Heap, using Hubble Space Telescope's STIS instrument. A long slit with a bar was used to occult Beta Pictoris as well as the PSF star. This was done because it is necessary to subtract a PSF observed the same way at the target to detect the disk. It appears that we have detected light from the disk but the work was in progress at the time of the abstract deadline.

  6. Dynamics of spacing adjustment and recovery mechanisms of ABAC-type growth pattern in ternary eutectic systems

    NASA Astrophysics Data System (ADS)

    Mohagheghi, Samira; Şerefoğlu, Melis

    2017-07-01

    In directionally solidified 2D samples at ternary eutectic compositions, the stable three-phase pattern is established to be lamellar structure with ABAC stacking, where A, B, and C are crystalline phases. Beyond the stability limits of the ABAC pattern, the system uses various spacing adjustment mechanisms to revert to the stable regime. In this study, the dynamics of spacing adjustment and recovery mechanisms of isotropic ABAC patterns were investigated using three-phase In-Bi-Sn alloy. Unidirectional solidification experiments were performed on 23.0 and 62.7 μm-thick samples, where solidification front was monitored in real-time from both sides of the sample using a particular microscopy system. At these thicknesses, the pattern was found to be 2D during steady-state growth, i.e. both top and bottom microstructures were the same. However, during spacing adjustment and recovery mechanisms, 3D features were observed. Dynamics of two major instabilities, lamellae branching and elimination, were quantified. After these instabilities, two key ABAC pattern recovery mechanisms, namely, phase invasion and phase exchange processes, were identified and analyzed. After elimination, ABAC pattern is recovered by either continuous eliminations of all phases or by phase exchange. After branching, the recovery mechanisms are established to be phase invasion and phase exchange.

  7. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  8. Simulations of phase space distributions of storm time proton ring current

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Lyons, Larry R.; Schulz, Michael

    1994-01-01

    We use results of guiding-center simulations of ion transport to map phase space densities of the stormtime proton ring current. We model a storm as a sequence of substorm-associated enhancements in the convection electric field. Our pre-storm phase space distribution is an analytical solution to a steady-state transport model in which quiet-time radial diffusion balances charge exchange. This pre-storm phase space spectra at L approximately 2 to 4 reproduce many of the features found in observed quiet-time spectra. Using results from simulations of ion transport during model storms having main phases of 3, 6, and 12 hr, we map phase space distributions from the pre-storm distribution in accordance with Liouville's theorem. We find stormtime enhancements in the phase space densities at energies E approximately 30-160 keV for L approximately 2.5 to 4. These enhancements agree well with the observed stormtime ring current. For storms with shorter main phases (approximately 3 hr), the enhancements are caused mainly by the trapping of ions injected from open night side trajectories, and diffusive transport of higher-energy (greater than or approximately 160 keV) ions contributes little to the stormtime ring current. However, the stormtime ring current is augmented also by the diffusive transport of higher-energy ions (E greater than or approximately 160 keV) durinng stroms having longer main phases (greater than or approximately 6 hr). In order to account for the increase in Dst associated with the formation of the stormtime ring current, we estimate the enhancement in particle-energy content that results from stormtime ion transport in the equatorial magnetosphere. We find that transport alone cannot account for the entire increase in absolute value of Dst typical of a major storm. However, we can account for the entire increase in absolute value of Dst by realistically increasing the stormtime outer boundary value of the phase space density relative to the quiet-time value. We compute the magnetic field produced by the ring current itself and find that radial profiles of the magnetic field depression resemble those obtained from observational data.

  9. Coherent beam combiner for a high power laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  10. Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.

    1990-01-01

    During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.

  11. Peaks in Phase Space Density: A Survey of the Van Allen Probes Era

    NASA Astrophysics Data System (ADS)

    Boyd, A. J.; Turner, D. L.; Reeves, G. D.; Spence, H. E.

    2017-12-01

    One of the challenges of radiation belt studies is the differentiation between acceleration mechanisms, particularly local acceleration and radial diffusion. This is often done through careful examination of phase space density profiles in terms of adiabatic coordinates. In particular, local acceleration processes produce growing peaks in phase space density. Many previous studies have shown clear observations of these features for individual events. However, it remains unclear how often and where these growing peaks are observed over a long time period. With the availability of several years of high quality observations from multiple spacecraft, we now have an opportunity to quantify phase space density profiles not only for multiple events, but also across a wide range of energies. In this study, we examine phase space density from more than four years of data from the Van Allen Probes and THEMIS to determine the statistical properties of the observed peaks in phase space density. First, we determine how often growing peaks are observed. Second, we examine where the peaks are located in terms of the adiabatic invariants mu, K and L* and how these locations relate to geomagnetic indices, solar wind conditions and the plasmapause location. Third, we explore how these peaks evolve in time. Together, these results will reveal the relative importance of different acceleration processes and how these affect the various electron populations within the radiation belt.

  12. Evaluating Trauma Sonography for Operational Use in the Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Andrew W.; Jones, Jeffrey A.; Sargsyan, Ashot; Hamilton, Douglas; Melton, Shannon; Beck, George; Nicolaou, Savvas; Campbell, Mark; Dulchavsky, Scott

    2007-01-01

    Sonography is the only medical imaging modality aboard the ISS, and is likely to remain the leading imaging modality in future human space flight programs. While trauma sonography (TS) has been well recognized for terrestrial trauma settings, the technique had to be evaluated for suitability in space flight prior to adopting it as an operational capability. The authors found the following four-phased evaluative approach applicable to this task: 1) identifying standard or novel terrestrial techniques for potential use in space medicine; 2) developing and testing these techniques with suggested modifications on the ground (1g) either in clinical settings or in animal models, as appropriate; 3) evaluating and refining the techniques in parabolic flight (0g); and 4) validating and implementing for clinical use in space. In Phase I of the TS project, expert opinion and literature review suggested TS to be a potential screening tool for trauma in space. In Phase II, animal models were developed and tested in ground studies, and clinical studies were carried out in collaborating trauma centers. In Phase III, animal models were flight-tested in the NASA KC-135 Reduced Gravity Laboratory. Preliminary results of the first three phases demonstrated potential clinical utility of TS in microgravity. Phase IV studies have begun to address crew training issues, on-board imaging protocols, and data transfer procedures necessary to offer the modified TS technique for space use.

  13. White-light diffraction phase microscopy at doubled space-bandwidth product.

    PubMed

    Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel

    2016-12-12

    White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.

  14. Radiation-Hardened Electronics for the Space Environment

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.

  15. NPS TINYSCOPE Program Management

    DTIC Science & Technology

    2010-09-01

    SMDC - Space and Missile Defense Command SOW - Statement of Work STEM - Science, Technology, Engineering and Mathematics STP - Space Test Program...the project. A statement of work ( SOW ) is typically used to document broad responsibilities, deliverables, and the work activities required in a...given project. The SOW acts as a guideline Summary of TINYSCOPE and Argus Requirements Requirement Threshold Objective Mission IOC Sep 2011 ASAP

  16. Using Centrality of Concept Maps as a Measure of Problem Space States in Computer-Supported Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Clariana, Roy B.; Engelmann, Tanja; Yu, Wu

    2013-01-01

    Problem solving likely involves at least two broad stages, problem space representation and then problem solution (Newell and Simon, Human problem solving, 1972). The metric centrality that Freeman ("Social Networks" 1:215-239, 1978) implemented in social network analysis is offered here as a potential measure of both. This development research…

  17. Starsat: A space astronomy facility

    NASA Technical Reports Server (NTRS)

    Hamilton, E. C.; Mundie, C. E.; Korsch, D.; Love, R. A.; Fuller, F. S.; Parker, J. R.; Fritz, C. G.; White, R. E.; Giudici, R. J.

    1976-01-01

    Preliminary design and analyses of a versatile telescope for Spacelab missions are presented. The system is an all-reflective Korsch three-mirror telescope with excellent performance characteristics over a wide field and a broad spectral range, making it particularly suited for ultraviolet observations. The system concept is evolved around the utilization of existing hardware and designs which were developed for other astronomy space projects.

  18. Grassmann phase space theory and the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Garraway, B. M.; Jeffers, J.; Barnett, S. M.

    2013-07-01

    The Jaynes-Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes-Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker-Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker-Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes-Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker-Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker-Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions-that are also equivalent to the canonical Grassmann distribution function-to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum-atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes-Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum-atom optics.

  19. Transportation systems analyses. Volume 2: Technical/programmatics

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The principal objective of this study is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform man delivery and return, cargo transfer, cargo delivery, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationships between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. This report documents the three principal transportation systems analyses (TSA) efforts during the period 7 November 92 - 6 May 93. The analyses are as follows: Mixed-Fleet (STS/ELV) strategies for SSF resupply; Transportation Systems Data Book - overview; and Operations Cost Model - overview/introduction.

  20. A pilot study of river flow prediction in urban area based on phase space reconstruction

    NASA Astrophysics Data System (ADS)

    Adenan, Nur Hamiza; Hamid, Nor Zila Abd; Mohamed, Zulkifley; Noorani, Mohd Salmi Md

    2017-08-01

    River flow prediction is significantly related to urban hydrology impact which can provide information to solve any problems such as flood in urban area. The daily river flow of Klang River, Malaysia was chosen to be forecasted in this pilot study which based on phase space reconstruction. The reconstruction of phase space involves a single variable of river flow data to m-dimensional phase space in which the dimension (m) is based on the optimal values of Cao method. The results from the reconstruction of phase space have been used in the forecasting process using local linear approximation method. From our investigation, river flow at Klang River is chaotic based on the analysis from Cao method. The overall results provide good value of correlation coefficient. The value of correlation coefficient is acceptable since the area of the case study is influence by a lot of factors. Therefore, this pilot study may be proposed to forecast daily river flow data with the purpose of providing information about the flow of the river system in urban area.

  1. Grain size dependent phase stabilities and presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Ashutosh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in

    2015-04-14

    Results of the room temperature structural studies on (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases inmore » the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.« less

  2. Flow pattern changes influenced by variation of viscosities of a heterogeneous gas-liquid mixture flow in a vertical channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keska, Jerry K.; Hincapie, Juan; Jones, Richard

    In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena intomore » multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)« less

  3. Wireless Communications in Space

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In 1992, NASA and the U.S. Department of Defense jointly commissioned the research and development of a technology solution to address the challenges and requirements of communicating with their spacecraft. The project yielded an international consortium composed of representatives from the space science community, industry, and academia. This group of experts developed a broad suite of protocols specifically designed for space-based communications, known today as Space Communications Protocol Standards (SCPS). Having been internationally standardized by the Consultative Committee on Space Data Systems and the International Standards Organization, SCPS is distributed as open source technology by NASA s Jet Propulsion Laboratory (JPL). The protocols are used for every national space mission that takes place today.

  4. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    NASA Astrophysics Data System (ADS)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  5. Genetics Home Reference: Baraitser-Winter syndrome

    MedlinePlus

    ... eyes ( hypertelorism ), large eyelid openings, droopy eyelids ( ptosis ), high-arched eyebrows , a broad nasal bridge and tip of the nose , a long space between the nose and upper lip ( philtrum ), full ...

  6. Selected topics in robotics for space exploration

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C. (Editor); Kaufman, Howard (Editor)

    1993-01-01

    Papers and abstracts included represent both formal presentations and experimental demonstrations at the Workshop on Selected Topics in Robotics for Space Exploration which took place at NASA Langley Research Center, 17-18 March 1993. The workshop was cosponsored by the Guidance, Navigation, and Control Technical Committee of the NASA Langley Research Center and the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) at RPI, Troy, NY. Participation was from industry, government, and other universities with close ties to either Langley Research Center or to CIRSSE. The presentations were very broad in scope with attention given to space assembly, space exploration, flexible structure control, and telerobotics.

  7. 2001 Research Reports NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This document is a collection of technical reports on research conducted by the participants in the 2001 NASA/ASEE Summer Faculty Fellowship Program at the Kennedy Space Center (KSC). Research areas are broad. Some of the topics addressed include: project management, space shuttle safety risks induced by human factor errors, body wearable computers as a feasible delivery system for 'work authorization documents', gas leak detection using remote sensing technologies, a history of the Kennedy Space Center, and design concepts for collabsible cyrogenic storage vessels.

  8. The Information Is In the Maps: Representations & Algorithms for Mapping among Geometric Data

    DTIC Science & Technology

    2015-09-30

    space of all maps is a huge space and an important part of the project has addressed the problem of finding compact representations and encodings...understanding the relationships among its parts, or its connections to other data sets that may share the same or similar structure. Towards this end, we have...for the much smaller spaces of interesting maps within a specific application. The machinery developed here has proven of use across a broad spectrum

  9. Transceiver for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Fitzmaurice, M.; Bruno, R.

    1990-01-01

    This paper describes the design of the Laser Communication Transceiver (LCT) system which was planned to be flight tested as an attached payload on Space Station Freedom. The objective in building and flight-testing the LCT is to perform a broad class of tests addressing the critical aspects of space-based optical communications systems, providing a base of experience for applying laser communications technology toward future communications needs. The LCT's functional and performance requirements and capabilities with respect to acquisition, spatial tracking and pointing, communications, and attitude determination are discussed.

  10. Transceiver for Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Fitzmaurice, M.; Bruno, R.

    1990-07-01

    This paper describes the design of the Laser Communication Transceiver (LCT) system which was planned to be flight tested as an attached payload on Space Station Freedom. The objective in building and flight-testing the LCT is to perform a broad class of tests addressing the critical aspects of space-based optical communications systems, providing a base of experience for applying laser communications technology toward future communications needs. The LCT's functional and performance requirements and capabilities with respect to acquisition, spatial tracking and pointing, communications, and attitude determination are discussed.

  11. From phase space to integrable representations and level-rank duality

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Arghya; Dutta, Parikshit; Dutta, Suvankar

    2018-05-01

    We explicitly find representations for different large N phases of Chern-Simons matter theory on S 2 × S 1. These representations are characterised by Young diagrams. We show that no-gap and lower-gap phase of Chern-Simons-matter theory correspond to integrable representations of SU( N) k affine Lie algebra, where as upper-cap phase corresponds to integrable representations of SU( k - N) k affine Lie algebra. We use phase space description of [1] to obtain these representations and argue how putting a cap on eigenvalue distribution forces corresponding representations to be integrable. We also prove that the Young diagrams corresponding to lower-gap and upper-cap representations are related to each other by transposition under level-rank duality. Finally we draw phase space droplets for these phases and show how information about eigenvalue and Young diagram descriptions can be captured in topologies of these droplets in a unified way.

  12. The Transiting Exoplanet Community Early Release Science Program for JWST

    NASA Astrophysics Data System (ADS)

    Batalha, Natalie Marie; Bean, Jacob; Stevenson, Kevin; Sing, David; Crossfield, Ian; Knutson, Heather; Line, Michael; Kreidberg, Laura; Desert, Jean-Michel; Wakeford, Hannah R.; Crouzet, Nicolas; Moses, Julianne; Benneke, Björn; Kempton, Eliza; Berta-Thompson, Zach; Lopez-Morales, Mercedes; Parmentier, Vivien; Gibson, Neale; Schlawin, Everett; Fraine, Jonathan; Kendrew, Sarah; Transiting Exoplanet ERS Team

    2018-01-01

    A community working group was formed in October 2016 to consider early release science with the James Webb Space Telescope that broadly benefits the transiting exoplanet community. Over 100 exoplanet scientists worked collaboratively to identify targets that are observable at the initiation of science operations, yield high SNR with a single event, have substantial scientific merit, and have known spectroscopic features identified by prior observations. The working group developed a program that yields representative datasets for primary transit, secondary eclipse, and phase curve observations using the most promising instrument modes for high-precision spectroscopic timeseries (NIRISS-SOSS, NIRCam, NIRSPec, and MIRI-LRS). The centerpiece of the program is an open data challenge that promotes community engagement and leads to a deeper understanding of the JWST instruments as early as possible in the mission. The program is managed under the premise of open science in order to maximize the value of the early release science observations for the transiting exoplanet community.

  13. Coordinated Chemical and Isotopic Imaging of Bells (CM2) Meteorite Matrix

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Messenger, S.; Naklamura-Messenger, K.; Thomas-Keprta, K. L.

    2014-01-01

    Meteoritic organic matter is a complex conglomeration of species formed in distinct environments and processes in circumstellar space, the interstellar medium, the Solar Nebula and asteroids. Consequently meteorites constitute a unique record of primordial organic chemical evolution. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is little information as to how these species are spatially distributed and their relationship to the host mineral matrix. The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (< 350K) aqueous alteration that may have led to aqueous geochromatographic separation of organics and synthesis of new organics coupled to aqueous mineral alteration. Here we present the results of the first coordinated in situ isotopic and chemical mapping study of the Bells meteorite using a newly developed two-step laser mass spectrometer (mu-L(sup 2)MS) capable of measuring a broad range of organic compounds.

  14. Three-Dimensional Superhydrophobic Nanowire Networks for Enhancing Condensation Heat Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ronggui; Wen, Rongfu; Xu, Shanshan

    Spontaneous droplet jumping on nanostructured surfaces can potentially enhance condensation heat transfer by accelerating droplet removal. However, uncontrolled nucleation in the micro-defects of nanostructured superhydrophobic surfaces could lead to the formation of large pinned droplets, which greatly degrades the performance. Here, we experimentally demonstrate for the first time stable and efficient jumping droplet condensation on a superhydrophobic surface with three-dimensional (3D) copper nanowire networks. Due to the formation of interconnections among nanowires, the micro-defects are eliminated while the spacing between nanowires is reduced, which results in the formation of highly mobile droplets. By preventing flooding on 3D nanowire networks, wemore » experimentally demonstrate a 100% higher heat flux compared with that on the state-of-the-art hydrophobic surface over a wide range of subcooling (up to 28 K). The remarkable water repellency of 3D nanowire networks can be applied to a broad range of water-harvesting and phase-change heat transfer applications.« less

  15. Aerosol-Assisted Chemical Vapor Deposited Thin Films for Space Photovoltaics

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; McNatt, Jeremiah; Dickman, John E.; Jin, Michael H.-C.; Banger, Kulbinder K.; Kelly, Christopher V.; AquinoGonzalez, Angel R.; Rockett, Angus A.

    2006-01-01

    Copper indium disulfide thin films were deposited via aerosol-assisted chemical vapor deposition using single source precursors. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties in order to optimize device-quality material. Growth at atmospheric pressure in a horizontal hot-wall reactor at 395 C yielded best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier, smoother, denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands (1.45, 1.43, 1.37, and 1.32 eV) and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was 1.03 percent.

  16. Adaptive real-time dual-comb spectroscopy.

    PubMed

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2014-02-27

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  17. Adaptive real-time dual-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-02-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  18. Direct optical detection of Weyl fermion chirality in a topological semimetal

    NASA Astrophysics Data System (ADS)

    Ma, Qiong; Xu, Su-Yang; Chan, Ching-Kit; Zhang, Cheng-Long; Chang, Guoqing; Lin, Yuxuan; Xie, Weiwei; Palacios, Tomás; Lin, Hsin; Jia, Shuang; Lee, Patrick A.; Jarillo-Herrero, Pablo; Gedik, Nuh

    2017-09-01

    A Weyl semimetal is a novel topological phase of matter, in which Weyl fermions arise as pseudo-magnetic monopoles in its momentum space. The chirality of the Weyl fermions, given by the sign of the monopole charge, is central to the Weyl physics, since it directly serves as the sign of the topological number and gives rise to exotic properties such as Fermi arcs and the chiral anomaly. Here, we directly detect the chirality of the Weyl fermions by measuring the photocurrent in response to circularly polarized mid-infrared light. The resulting photocurrent is determined by both the chirality of Weyl fermions and that of the photons. Our results pave the way for realizing a wide range of theoretical proposals for studying and controlling the Weyl fermions and their associated quantum anomalies by optical and electrical means. More broadly, the two chiralities, analogous to the two valleys in two-dimensional materials, lead to a new degree of freedom in a three-dimensional crystal with potential novel pathways to store and carry information.

  19. The Science and Applications Tethered Platform (SATP) project

    NASA Technical Reports Server (NTRS)

    Merlina, P.

    1986-01-01

    The capabilities of tether systems in orbit are going to be demonstrated by the first planned flights of the Tethered Satellite System (TSS). These test flights will investigate the properties of tether systems as low altitude atmospheric research facilities and as electric power generators. Studies are being conducted with the purpose of testing a variety of concepts and approaches. A comparative analysis of results will allow the choosing of the most promising ideas for further development. The broad range of applications presently under study include applications in electrodynamics, transportation, microgravity in addition to basic research. The SATP project definition study is now about midway through its first phase. The analyses conducted have led to an appraisal of users interest in the project and to a deeper understanding of the problems associated with large, long-lived tether systems in space. In addition, two specialized platform designs, devoted to microgravity and precise pointing applications, are being studied because of their potential usefulness and the promise of technical feasibility.

  20. The ARIEL mission reference sample

    NASA Astrophysics Data System (ADS)

    Zingales, Tiziano; Tinetti, Giovanna; Pillitteri, Ignazio; Leconte, Jérémy; Micela, Giuseppina; Sarkar, Subhajit

    2018-02-01

    The ARIEL (Atmospheric Remote-sensing Exoplanet Large-survey) mission concept is one of the three M4 mission candidates selected by the European Space Agency (ESA) for a Phase A study, competing for a launch in 2026. ARIEL has been designed to study the physical and chemical properties of a large and diverse sample of exoplanets and, through those, understand how planets form and evolve in our galaxy. Here we describe the assumptions made to estimate an optimal sample of exoplanets - including already known exoplanets and expected ones yet to be discovered - observable by ARIEL and define a realistic mission scenario. To achieve the mission objectives, the sample should include gaseous and rocky planets with a range of temperatures around stars of different spectral type and metallicity. The current ARIEL design enables the observation of ˜1000 planets, covering a broad range of planetary and stellar parameters, during its four year mission lifetime. This nominal list of planets is expected to evolve over the years depending on the new exoplanet discoveries.

Top