Sample records for broad substrate tolerance

  1. Structural basis of the broad substrate tolerance of the antibody 7B9-catalyzed hydrolysis of p-nitrobenzyl esters.

    PubMed

    Miyamoto, Naoki; Yoshimura, Miho; Okubo, Yuji; Suzuki-Nagata, Kayo; Tsumuraya, Takeshi; Ito, Nobutoshi; Fujii, Ikuo

    2018-05-01

    Catalytic antibody 7B9, which was elicited against p-nitrobenzyl phosphonate transition-state analogue (TSA) 1, hydrolyzes a wide range of p-nitrobenzyl monoesters and thus shows broad substrate tolerance. To reveal the molecular basis of this substrate tolerance, the 7B9 Fab fragment complexed with p-nitrobenzyl ethylphosphonate 2 was crystallized and the three-dimensional structure was determined. The crystal structure showed that the strongly antigenic p-nitrobenzyl moiety occupied a relatively shallow antigen-combining site and therefore the alkyl moiety was located outside the pocket. These results support the observed broad substrate tolerance of 7B9 and help rationalize how 7B9 can catalyze various p-nitrobenzyl ester derivatives. The crystal structure also showed that three amino acid residues (Asn H33 , Ser H95 , and Arg L96 ) were placed in key positions to form hydrogen bonds with the phosphonate oxygens of the transitions-state analogue. In addition, the role of these amino acid residues was examined by site-directed mutagenesis to alanine: all mutants (Asn H33 Ala, Ser H95 Ala, and Arg L96 Ala) showed no detectable catalytic activity. Coupling the findings from our structural studies with these mutagenesis results clarified the structural basis of the observed broad substrate tolerance of antibody 7B9-catalyzed hydrolyses. Our findings provide new strategies for the generation of catalytic antibodies that accept a broad range of substrates, aiding their practical application in synthetic organic chemistry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A Haloalkane Dehalogenase from a Marine Microbial Consortium Possessing Exceptionally Broad Substrate Specificity.

    PubMed

    Buryska, Tomas; Babkova, Petra; Vavra, Ondrej; Damborsky, Jiri; Prokop, Zbynek

    2018-01-15

    The haloalkane dehalogenase enzyme DmmA was identified by marine metagenomic screening. Determination of its crystal structure revealed an unusually large active site compared to those of previously characterized haloalkane dehalogenases. Here we present a biochemical characterization of this interesting enzyme with emphasis on its structure-function relationships. DmmA exhibited an exceptionally broad substrate specificity and degraded several halogenated environmental pollutants that are resistant to other members of this enzyme family. In addition to having this unique substrate specificity, the enzyme was highly tolerant to organic cosolvents such as dimethyl sulfoxide, methanol, and acetone. Its broad substrate specificity, high overexpression yield (200 mg of protein per liter of cultivation medium; 50% of total protein), good tolerance to organic cosolvents, and a broad pH range make DmmA an attractive biocatalyst for various biotechnological applications. IMPORTANCE We present a thorough biochemical characterization of the haloalkane dehalogenase DmmA from a marine metagenome. This enzyme with an unusually large active site shows remarkably broad substrate specificity, high overexpression, significant tolerance to organic cosolvents, and activity under a broad range of pH conditions. DmmA is an attractive catalyst for sustainable biotechnology applications, e.g., biocatalysis, biosensing, and biodegradation of halogenated pollutants. We also report its ability to convert multiple halogenated compounds to corresponding polyalcohols. Copyright © 2018 American Society for Microbiology.

  3. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes

    PubMed Central

    Caspeta, Luis; Castillo, Tania; Nielsen, Jens

    2015-01-01

    Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose. PMID:26618154

  4. Alkyl Aryl Ether Bond Formation with PhenoFluor**

    PubMed Central

    Shen, Xiao; Neumann, Constanze N.; Kleinlein, Claudia; Claudia, Nathaniel W.; Ritter, Tobias

    2015-01-01

    An alkyl aryl ether bond formation reaction between phenols and primary and secondary alcohols with PhenoFluor has been developed. The reaction features a broad substrate scope and tolerates many functional groups, and substrates that are challenging for more conventional ether bond forming processes may be coupled. A preliminary mechanistic study indicates reactivity distinct from conventional ether bond formation. PMID:25800679

  5. Substrate Specificity of Human Protein Arginine Methyltransferase 7 (PRMT7)

    PubMed Central

    Feng, You; Hadjikyriacou, Andrea; Clarke, Steven G.

    2014-01-01

    Protein arginine methyltransferase 7 (PRMT7) methylates arginine residues on various protein substrates and is involved in DNA transcription, RNA splicing, DNA repair, cell differentiation, and metastasis. The substrate sequences it recognizes in vivo and the enzymatic mechanism behind it, however, remain to be explored. Here we characterize methylation catalyzed by a bacterially expressed GST-tagged human PRMT7 fusion protein with a broad range of peptide and protein substrates. After confirming its type III activity generating only ω-NG-monomethylarginine and its distinct substrate specificity for RXR motifs surrounded by basic residues, we performed site-directed mutagenesis studies on this enzyme, revealing that two acidic residues within the double E loop, Asp-147 and Glu-149, modulate the substrate preference. Furthermore, altering a single acidic residue, Glu-478, on the C-terminal domain to glutamine nearly abolished the activity of the enzyme. Additionally, we demonstrate that PRMT7 has unusual temperature dependence and salt tolerance. These results provide a biochemical foundation to understanding the broad biological functions of PRMT7 in health and disease. PMID:25294873

  6. Substrate specificity of human protein arginine methyltransferase 7 (PRMT7): the importance of acidic residues in the double E loop.

    PubMed

    Feng, You; Hadjikyriacou, Andrea; Clarke, Steven G

    2014-11-21

    Protein arginine methyltransferase 7 (PRMT7) methylates arginine residues on various protein substrates and is involved in DNA transcription, RNA splicing, DNA repair, cell differentiation, and metastasis. The substrate sequences it recognizes in vivo and the enzymatic mechanism behind it, however, remain to be explored. Here we characterize methylation catalyzed by a bacterially expressed GST-tagged human PRMT7 fusion protein with a broad range of peptide and protein substrates. After confirming its type III activity generating only ω-N(G)-monomethylarginine and its distinct substrate specificity for RXR motifs surrounded by basic residues, we performed site-directed mutagenesis studies on this enzyme, revealing that two acidic residues within the double E loop, Asp-147 and Glu-149, modulate the substrate preference. Furthermore, altering a single acidic residue, Glu-478, on the C-terminal domain to glutamine nearly abolished the activity of the enzyme. Additionally, we demonstrate that PRMT7 has unusual temperature dependence and salt tolerance. These results provide a biochemical foundation to understanding the broad biological functions of PRMT7 in health and disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Pd-catalyzed intramolecular oxidative C-H amination: synthesis of carbazoles.

    PubMed

    Youn, So Won; Bihn, Joon Hyung; Kim, Byung Seok

    2011-07-15

    A Pd-catalyzed oxidative C-H amination of N-Ts-2-arylanilines under ambient temperature using Oxone as an inexpensive, safe, and easy-to-handle oxidant has been developed. This process represents a green and practical method for the facile construction of carbazoles with a broad substrate scope and wide functional group tolerance. © 2011 American Chemical Society

  8. Photoinduced Miyaura Borylation by a Rare Earth Photoreductant: the Hexachlorocerate(III) Anion.

    PubMed

    Qiao, Yusen; Yang, Qiaomu; Schelter, Eric

    2018-05-12

    The first photoinduced sp2 carbon-heteroatom bond forming reaction by a rare earth photoreductant, a Miyaura borylation, has been achieved. This simple, scalable, and novel borylation method that makes use of the hexachlorocerate(III) anion, [CeIIICl6]3-, has a broad substrate scope and functional group tolerance and can be conducted at room temperature. Combined with Suzuki-Miyaura cross-coupling, the methodology is applicable to the synthesis of various biaryl products, including through the use of aryl chloride substrates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. (3+3)-Annulation of Donor-Acceptor Cyclopropanes with Diaziridines.

    PubMed

    Trushkov, Igor V; Chagarovskiy, Alexey O; Vasin, Vladimir S; Kuznetsov, Vladimir V; Ivanova, Olga A; Rybakov, Victor B; Shumsky, Alexey N; Makhova, Nina N

    2018-06-23

    The first example of (3+3)-annulation of two different three-membered rings is reported herein. Donor-acceptor cyclopropanes in reaction with diaziridines were found to afford perhydropyridazine derivatives in high yields and diastereoselectivity under mild Lewis acid catalysis. The disclosed reaction is applicable for the broad substrate scope and exhibits an excellent functional group tolerance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Copper-catalyzed aerobic decarboxylative sulfonylation of cinnamic acids with sodium sulfinates: stereospecific synthesis of (E)-alkenyl sulfones.

    PubMed

    Jiang, Qing; Xu, Bin; Jia, Jing; Zhao, An; Zhao, Yu-Rou; Li, Ying-Ying; He, Na-Na; Guo, Can-Cheng

    2014-08-15

    A copper-catalyzed aerobic decarboxylative sulfonylation of alkenyl carboxylic acids with sodium sulfinates is developed. This study offers a new and expedient strategy for stereoselective synthesis of (E)-alkenyl sulfones that are widely present in biologically active natural products and therapeutic agents. Moreover, the transformation is proposed to proceed via a radical process and exhibits a broad substrate scope and good functional group tolerance.

  11. A Coupling of Benzamides and Donor/Acceptor Diazo–Compounds to form γ-Lactams via Rh(III)–Catalyzed C–H Activation

    PubMed Central

    Hyster, Todd K.; Ruhl, Kyle E.; Rovis, Tomislav

    2013-01-01

    The coupling of O-pivaloyl benzhydroxamic acids with donor/acceptor diazo compounds provides iso-indolones in high yield. The reaction tolerates a broad range of benzhydroxamic acids and diazo compounds including substituted 2,2,2-trifluorodiazo ethanes. Mechanistic experiments suggest that C–H activation is turnover limiting and irreversible, while insertion of the diazo compound favors electron deficient substrates. PMID:23548055

  12. Selective reduction of carboxylic acids to aldehydes with hydrosilane via photoredox catalysis.

    PubMed

    Zhang, Muliang; Li, Nan; Tao, Xingyu; Ruzi, Rehanguli; Yu, Shouyun; Zhu, Chengjian

    2017-09-12

    The direct reduction of carboxylic acids to aldehydes with hydrosilane was achieved through visible light photoredox catalysis. The combination of both single electron transfer and hydrogen atom transfer steps offers a novel and convenient approach to selective reduction of carboxylic acids to aldehydes. The method also features mild conditions, high yields, broad substrate scope, and good functional group tolerance, such as alkyne, ester, ketone, amide and amine groups.

  13. Engineered jadomycin analogues with altered sugar moieties revealing JadS as a substrate flexible O-glycosyltransferase.

    PubMed

    Li, Liyuan; Pan, Guohui; Zhu, Xifen; Fan, Keqiang; Gao, Wubin; Ai, Guomin; Ren, Jinwei; Shi, Mingxin; Olano, Carlos; Salas, José A; Yang, Keqian

    2017-07-01

    Glycosyltransferases (GTs)-mediated glycodiversification studies have drawn significant attention recently, with the goal of generating bioactive compounds with improved pharmacological properties by diversifying the appended sugars. The key to achieving glycodiversification is to identify natural and/or engineered flexible GTs capable of acting upon a broad range of substrates. Here, we report the use of a combinatorial biosynthetic approach to probe the substrate flexibility of JadS, the GT in jadomycin biosynthesis, towards different non-native NDP-sugar substrates, enabling us to identify six jadomycin B analogues with different sugar moieties. Further structural engineering by precursor-directed biosynthesis allowed us to obtain 11 new jadomycin analogues. Our results for the first time show that JadS is a flexible O-GT that can utilize both L- and D- sugars as donor substrates, and tolerate structural changes at the C2, C4 and C6 positions of the sugar moiety. JadS may be further exploited to generate novel glycosylated jadomycin molecules in future glycodiversification studies.

  14. GO-Cu7S4 catalyzed ortho-aminomethylation of phenol derivatives with N,N-dimethylbenzylamines: site-selective oxidative CDC.

    PubMed

    Gupta, Sonu; Chandna, Nisha; Dubey, Pooja; Singh, Ajai K; Jain, Nidhi

    2018-06-21

    Copper chalcogenide nanoparticles (Cu7S4) supported on graphene oxide (GO) have been synthesized for the first time from Cu2S, and used as highly efficient heterogeneous catalysts for oxidative ortho-selective C-H aminomethylation of phenols with N,N-dimethylbenzylamines. The NPs (30-80 nm) have been characterized by HRTEM, SEM-EDX, PXRD, FTIR, Raman, ICP-AES and XPS analyses. The NP catalyzed sp2-sp3 cross dehydrogenative coupling (CDC) features a broad substrate scope, excellent functional group tolerance, high yields, use of an inexpensive and reusable copper catalyst, mild conditions, and no need for pre-functionalization of substrates.

  15. Scope and mechanism in palladium-catalyzed isomerizations of highly substituted allylic, homoallylic, and alkenyl alcohols.

    PubMed

    Larionov, Evgeny; Lin, Luqing; Guénée, Laure; Mazet, Clément

    2014-12-03

    Herein we report the palladium-catalyzed isomerization of highly substituted allylic alcohols and alkenyl alcohols by means of a single catalytic system. The operationally simple reaction protocol is applicable to a broad range of substrates and displays a wide functional group tolerance, and the products are usually isolated in high chemical yield. Experimental and computational mechanistic investigations provide complementary and converging evidence for a chain-walking process consisting of repeated migratory insertion/β-H elimination sequences. Interestingly, the catalyst does not dissociate from the substrate in the isomerization of allylic alcohols, whereas it disengages during the isomerization of alkenyl alcohols when additional substituents are present on the alkyl chain.

  16. A dehydrogenative cross-coupling reaction between aromatic aldehydes or ketones and dialkyl H-phosphonates for formyl or acylphenylphosphonates.

    PubMed

    Huang, Xing-Fen; Wu, Qing-Lai; He, Jian-Shi; Huang, Zhi-Zhen

    2015-04-21

    A novel DCC reaction between aromatic aldehydes or ketones and H-phosphonates has been developed for the synthesis of p-formyl or p-acylphenylphosphonates. The synthetic method has excellent para regioselectivities, good yields, and broad substrate scopes and is more benign to the environment. The DCC reaction also tolerates many functional groups, and results in a series of new p-formyl and p-acylphenylphosphonates, which should be important building blocks for the synthesis of versatile arylphosphonate derivatives.

  17. Assaying Oxidative Coupling Activity of CYP450 Enzymes.

    PubMed

    Agarwal, Vinayak

    2018-01-01

    Cytochrome P450 (CYP450) enzymes are ubiquitous catalysts in natural product biosynthetic schemes where they catalyze numerous different transformations using radical intermediates. In this protocol, we describe procedures to assay the activity of a marine bacterial CYP450 enzyme Bmp7 which catalyzes the oxidative radical coupling of polyhalogenated aromatic substrates. The broad substrate tolerance of Bmp7, together with rearrangements of the aryl radical intermediates leads to a large number of products to be generated by the enzymatic action of Bmp7. The complexity of the product pool generated by Bmp7 thus presents an analytical challenge for structural elucidation. To address this challenge, we describe mass spectrometry-based procedures to provide structural insights into aryl crosslinked products generated by Bmp7, which can complement subsequent spectroscopic experiments. Using the procedures described here, for the first time, we show that Bmp7 can efficiently accept polychlorinated aryl substrates, in addition to the physiological polybrominated substrates for the biosynthesis of polyhalogenated marine natural products. © 2018 Elsevier Inc. All rights reserved.

  18. Substrate promiscuity of a rosmarinic acid synthase from lavender (Lavandula angustifolia L.).

    PubMed

    Landmann, Christian; Hücherig, Stefanie; Fink, Barbara; Hoffmann, Thomas; Dittlein, Daniela; Coiner, Heather A; Schwab, Wilfried

    2011-08-01

    One of the most common types of modification of secondary metabolites is the acylation of oxygen- and nitrogen-containing substrates to produce esters and amides, respectively. Among the known acyltransferases, the members of the plant BAHD family are capable of acylating a wide variety of substrates. Two full-length acyltransferase cDNAs (LaAT1 and 2) were isolated from lavender flowers (Lavandula angustifolia L.) by reverse transcriptase-PCR using degenerate primers based on BAHD sequences. Recombinant LaAT1 exhibited a broad substrate tolerance accepting (hydroxy)cinnamoyl-CoAs as acyl donors and not only tyramine, tryptamine, phenylethylamine and anthranilic acid but also shikimic acid and 4-hydroxyphenyllactic acid as acceptors. Thus, LaLT1 forms esters and amides like its phylogenetic neighbors. In planta LaAT1 might be involved in the biosynthesis of rosmarinic acid, the ester of caffeic acid and 3,4-dihydroxyphenyllactic acid, a major constituent of lavender flowers. LaAT2 is one of three members of clade VI with unknown function.

  19. Multiple Pesticides Detoxification Function of Maize (Zea mays) GST34.

    PubMed

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Zhao, Weisong; Wang, Chengju

    2017-03-08

    ZmGST34 is a maize Tau class GST gene and was found to be differently expressed between two maize cultivars differing in tolerance to herbicide metolachlor. To explore the possible role of ZmGST34 in maize development, the expression pattern and substrate specificity of ZmGST34 were characterized by quantitative RT-PCR and heterologous expression system, respectively. The results indicated that the expression level of ZmGST34 was increased ∼2-5-fold per day during the second-leaf stage of maize seedling. Chloroacetanilide herbicides or phytohormone treatments had no influence on the expression level of ZmGST34, suggesting that ZmGST34 is a constitutively expressed gene in maize seedling. Heterologous expression in Escherichia coli and in Arabidopsis thaliana proved that ZmGST34 can metabolize most chloroacetanilide herbicides and increase tolerance to these herbicides in transgenic Arabidopsis thaliana. The constitutive expression pattern and broad substrate activity of ZmGST34 suggested that this gene may play an important role in maize development in addition to the detoxification of pesticides.

  20. Mild and selective base-free C–H arylation of heteroarenes: experiment and computation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02595a Click here for additional data file.

    PubMed Central

    Gemoets, Hannes P. L.; Kalvet, Indrek; Nyuchev, Alexander V.; Erdmann, Nico; Hessel, Volker

    2017-01-01

    A mild and selective C–H arylation strategy for indoles, benzofurans and benzothiophenes is described. The arylation method engages aryldiazonium salts as arylating reagents in equimolar amounts. The protocol is operationally simple, base free, moisture tolerant and air tolerant. It utilizes low palladium loadings (0.5 to 2.0 mol% Pd), short reaction times, green solvents (EtOAc/2-MeTHF or MeOH) and is carried out at room temperature, providing a broad substrate scope (47 examples) and excellent selectivity (C-2 arylation for indoles and benzofurans, C-3 arylation for benzothiophenes). Mechanistic experiments and DFT calculations support a Heck–Matsuda type coupling mechanism. PMID:28451243

  1. Access to Diosgenyl Glycoconjugates via Gold(I)-Catalyzed Etherification of Diosgen-3-yl ortho-Hexynylbenzoate.

    PubMed

    Zhang, Li; Li, Linfeng; Bai, Shujin; Zhou, Xin; Wang, Peng; Li, Ming

    2016-12-02

    An efficient protocol for the synthesis of diverse diosgen-3-yl glycoconjugates, a class of novel synthetic analogs of natural saponins of biological significance, has been developed. The method relies on gold(I)-catalyzed etherification of diosgen-3-yl ortho-hexynylbenzoate with stoichiometric sugar alcohols to afford the corresponding glycoconjugates in 38%-99% yields. The reaction involves the preferential attack of hydroxyl groups to the C3 position of homoallylic carbocation intermediate and displays a broad substrate scope and a good functional group tolerance.

  2. Rhodium/Silver-Cocatalyzed Transannulation of N-Sulfonyl-1,2,3-triazoles with Vinyl Azides: Divergent Synthesis of Pyrroles and 2 H-Pyrazines.

    PubMed

    Zhang, Lin; Sun, Ge; Bi, Xihe

    2016-11-07

    The first cyclization reaction between vinyl azides and N-sulfonyl-1,2,3-triazoles is reported. A Rh/Ag binary metal catalyst system proved to be necessary for the successful cyclization. By varying the structure of vinyl azides, such reaction allows the divergent synthesis of pyrroles and 2H-pyrazines. The cyclization reactions feature a broad substrate scope, good functional group tolerance, high reaction efficiency, and good to high product yields. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A simple, multidimensional approach to high-throughput discovery of catalytic reactions.

    PubMed

    Robbins, Daniel W; Hartwig, John F

    2011-09-09

    Transition metal complexes catalyze many important reactions that are employed in medicine, materials science, and energy production. Although high-throughput methods for the discovery of catalysts that would mirror related approaches for the discovery of medicinally active compounds have been the focus of much attention, these methods have not been sufficiently general or accessible to typical synthetic laboratories to be adopted widely. We report a method to evaluate a broad range of catalysts for potential coupling reactions with the use of simple laboratory equipment. Specifically, we screen an array of catalysts and ligands with a diverse mixture of substrates and then use mass spectrometry to identify reaction products that, by design, exceed the mass of any single substrate. With this method, we discovered a copper-catalyzed alkyne hydroamination and two nickel-catalyzed hydroarylation reactions, each of which displays excellent functional-group tolerance.

  4. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products.

    PubMed

    Ghislieri, Diego; Green, Anthony P; Pontini, Marta; Willies, Simon C; Rowles, Ian; Frank, Annika; Grogan, Gideon; Turner, Nicholas J

    2013-07-24

    The development of cost-effective and sustainable catalytic methods for the production of enantiomerically pure chiral amines is a key challenge facing the pharmaceutical and fine chemical industries. This challenge is highlighted by the estimate that 40-45% of drug candidates contain a chiral amine, fueling a demand for broadly applicable synthetic methods that deliver target structures in high yield and enantiomeric excess. Herein we describe the development and application of a "toolbox" of monoamine oxidase variants from Aspergillus niger (MAO-N) which display remarkable substrate scope and tolerance for sterically demanding motifs, including a new variant, which exhibits high activity and enantioselectivity toward substrates containing the aminodiphenylmethane (benzhydrylamine) template. By combining rational structure-guided engineering with high-throughput screening, it has been possible to expand the substrate scope of MAO-N to accommodate amine substrates containing bulky aryl substituents. These engineered MAO-N biocatalysts have been applied in deracemization reactions for the efficient asymmetric synthesis of the generic active pharmaceutical ingredients Solifenacin and Levocetirizine as well as the natural products (R)-coniine, (R)-eleagnine, and (R)-leptaflorine. We also report a novel MAO-N mediated asymmetric oxidative Pictet-Spengler approach to the synthesis of (R)-harmicine.

  5. Rhodium(III)-Catalyzed Activation of C(sp3)-H Bonds and Subsequent Intermolecular Amidation at Room Temperature.

    PubMed

    Huang, Xiaolei; Wang, Yan; Lan, Jingbo; You, Jingsong

    2015-08-03

    Disclosed herein is a Rh(III)-catalyzed chelation-assisted activation of unreactive C(sp3)-H bonds, thus enabling an intermolecular amidation to provide a practical and step-economic route to 2-(pyridin-2-yl)ethanamine derivatives. Substrates with other N-donor groups are also compatible with the amidation. This protocol proceeds at room temperature, has a relatively broad functional-group tolerance and high selectivity, and demonstrates the potential of rhodium(III) in the promotive functionalization of unreactive C(sp3)-H bonds. A rhodacycle having a SbF6(-) counterion was identified as a plausible intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase.

    PubMed

    Obexer, Richard; Godina, Alexei; Garrabou, Xavier; Mittl, Peer R E; Baker, David; Griffiths, Andrew D; Hilvert, Donald

    2017-01-01

    Designing catalysts that achieve the rates and selectivities of natural enzymes is a long-standing goal in protein chemistry. Here, we show that an ultrahigh-throughput droplet-based microfluidic screening platform can be used to improve a previously optimized artificial aldolase by an additional factor of 30 to give a >10 9 rate enhancement that rivals the efficiency of class I aldolases. The resulting enzyme catalyses a reversible aldol reaction with high stereoselectivity and tolerates a broad range of substrates. Biochemical and structural studies show that catalysis depends on a Lys-Tyr-Asn-Tyr tetrad that emerged adjacent to a computationally designed hydrophobic pocket during directed evolution. This constellation of residues is poised to activate the substrate by Schiff base formation, promote mechanistically important proton transfers and stabilize multiple transition states along a complex reaction coordinate. The emergence of such a sophisticated catalytic centre shows that there is nothing magical about the catalytic activities or mechanisms of naturally occurring enzymes, or the evolutionary process that gave rise to them.

  7. Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants.

    PubMed

    Chekan, Jonathan R; Estrada, Paola; Covello, Patrick S; Nair, Satish K

    2017-06-20

    Enzymes that can catalyze the macrocyclization of linear peptide substrates have long been sought for the production of libraries of structurally diverse scaffolds via combinatorial gene assembly as well as to afford rapid in vivo screening methods. Orbitides are plant ribosomally synthesized and posttranslationally modified peptides (RiPPs) of various sizes and topologies, several of which are shown to be biologically active. The diversity in size and sequence of orbitides suggests that the corresponding macrocyclases may be ideal catalysts for production of cyclic peptides. Here we present the biochemical characterization and crystal structures of the plant enzyme PCY1 involved in orbitide macrocyclization. These studies demonstrate how the PCY1 S9A protease fold has been adapted for transamidation, rather than hydrolysis, of acyl-enzyme intermediates to yield cyclic products. Notably, PCY1 uses an unusual strategy in which the cleaved C-terminal follower peptide from the substrate stabilizes the enzyme in a productive conformation to facilitate macrocyclization of the N-terminal fragment. The broad substrate tolerance of PCY1 can be exploited as a biotechnological tool to generate structurally diverse arrays of macrocycles, including those with nonproteinogenic elements.

  8. The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus.

    PubMed

    Sheth, Seema N; Angert, Amy L

    2014-10-01

    The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within-population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  9. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    PubMed

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.

  10. Adaptation to metals in widespread and endemic plants.

    PubMed Central

    Shaw, A J

    1994-01-01

    Bryophytes, including the mosses, liverworts, and hornworts, occur in a variety of habitats with high concentrations of metals and have other characteristics that are advantageous for studies of metal tolerance. Mosses may evolve genetically specialized, metal-tolerant races less frequently than flowering plants. Some species of mosses appear to have inherently high levels of metal tolerance even in individuals that have not been subjected to natural selection in contaminated environments. Scopelophila cataractae, one of the so-called copper mosses, not only tolerates extremely high concentrations of metals in its substrates, but requires these substrates for optimum growth. This species should be included in mechanistic studies of tolerance at the cellular and molecular levels. PMID:7713025

  11. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.

    PubMed

    Lavoie, Mathieu; Abou Elela, Sherif

    2008-08-19

    Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.

  12. Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a switchgrass-adapted microbial community.

    PubMed

    Gladden, John M; Park, Joshua I; Bergmann, Jessica; Reyes-Ortiz, Vimalier; D'haeseleer, Patrik; Quirino, Betania F; Sale, Kenneth L; Simmons, Blake A; Singer, Steven W

    2014-01-29

    The development of advanced biofuels from lignocellulosic biomass will require the use of both efficient pretreatment methods and new biomass-deconstructing enzyme cocktails to generate sugars from lignocellulosic substrates. Certain ionic liquids (ILs) have emerged as a promising class of compounds for biomass pretreatment and have been demonstrated to reduce the recalcitrance of biomass for enzymatic hydrolysis. However, current commercial cellulase cocktails are strongly inhibited by most of the ILs that are effective biomass pretreatment solvents. Fortunately, recent research has shown that IL-tolerant cocktails can be formulated and are functional on lignocellulosic biomass. This study sought to expand the list of known IL-tolerant cellulases to further enable IL-tolerant cocktail development by developing a combined in vitro/in vivo screening pipeline for metagenome-derived genes. Thirty-seven predicted cellulases derived from a thermophilic switchgrass-adapted microbial community were screened in this study. Eighteen of the twenty-one enzymes that expressed well in E. coli were active in the presence of the IL 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) concentrations of at least 10% (v/v), with several retaining activity in the presence of 40% (v/v), which is currently the highest reported tolerance to [C2mim][OAc] for any cellulase. In addition, the optimum temperatures of the enzymes ranged from 45 to 95°C and the pH optimum ranged from 5.5 to 7.5, indicating these enzymes can be used to construct cellulase cocktails that function under a broad range of temperature, pH and IL concentrations. This study characterized in detail twenty-one cellulose-degrading enzymes derived from a thermophilic microbial community and found that 70% of them were [C2mim][OAc]-tolerant. A comparison of optimum temperature and [C2mim][OAc]-tolerance demonstrates that a positive correlation exists between these properties for those enzymes with a optimum temperature >70°C, further strengthening the link between thermotolerance and IL-tolerance for lignocelluolytic glycoside hydrolases.

  13. Suzuki–Miyaura Cross-Coupling of Aryl Carbamates and Sulfamates: Experimental and Computational Studies

    PubMed Central

    Quasdorf, Kyle W.; Antoft-Finch, Aurora; Liu, Peng; Silberstein, Amanda L.; Komaromi, Anna; Blackburn, Tom; Ramgren, Stephen D.; Houk, K. N.; Snieckus, Victor; Garg, Neil K.

    2011-01-01

    The first Suzuki–Miyaura cross-coupling reactions of the synthetically versatile O-aryl carbamate and O-sulfamate groups is described. The transformations utilize the inexpensive, bench-stable catalyst NiCl2(PCy3)2 to furnish biaryls in good to excellent yields. A broad scope for this methodology has been demonstrated. Substrates with electron-donating and electron-withdrawing groups (EDGs, EWGs) are tolerated, in addition to those that possess ortho substitutents. Furthermore, heteroaryl substrates may be employed as coupling partners. A computational study providing the full catalytic cycles for these cross-coupling reactions is described. The oxidative additions with carbamates and sulfamates occur via a five-centered transition state, resulting in the exclusive cleavage of the Ar–O bond. Water is found to stabilize the Ni–carbamate catalyst resting state, and thus provides rationalization of the relative decreased rate of coupling of carbamates. Several synthetic applications are presented to showcase the utility of the methodology in the synthesis of polysubstituted aromatic compounds of natural product and bioactive molecule interest. PMID:21456551

  14. Improved deoxyribozymes for synthesis of covalently branched DNA and RNA.

    PubMed

    Lee, Christine S; Mui, Timothy P; Silverman, Scott K

    2011-01-01

    A covalently branched nucleic acid can be synthesized by joining the 2'-hydroxyl of the branch-site ribonucleotide of a DNA or RNA strand to the activated 5'-phosphorus of a separate DNA or RNA strand. We have previously used deoxyribozymes to synthesize several types of branched nucleic acids for experiments in biotechnology and biochemistry. Here, we report in vitro selection experiments to identify improved deoxyribozymes for synthesis of branched DNA and RNA. Each of the new deoxyribozymes requires Mn²(+) as a cofactor, rather than Mg²(+) as used by our previous branch-forming deoxyribozymes, and each has an initially random region of 40 rather than 22 or fewer combined nucleotides. The deoxyribozymes all function by forming a three-helix-junction (3HJ) complex with their two oligonucleotide substrates. For synthesis of branched DNA, the best new deoxyribozyme, 8LV13, has k(obs) on the order of 0.1 min⁻¹, which is about two orders of magnitude faster than our previously identified 15HA9 deoxyribozyme. 8LV13 also functions at closer-to-neutral pH than does 15HA9 (pH 7.5 versus 9.0) and has useful tolerance for many DNA substrate sequences. For synthesis of branched RNA, two new deoxyribozymes, 8LX1 and 8LX6, were identified with broad sequence tolerances and substantial activity at pH 7.5, versus pH 9.0 for many of our previous deoxyribozymes that form branched RNA. These experiments provide new, and in key aspects improved, practical catalysts for preparation of synthetic branched DNA and RNA.

  15. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod

    PubMed Central

    Wallace, Gemma T.; Kim, Tiffany L.; Neufeld, Christopher J.

    2014-01-01

    Latitudinal trends in cold tolerance have been observed in many terrestrial ectotherms, but few studies have investigated interpopulational variation in the cold physiology of marine invertebrates. Here, the intertidal copepod Tigriopus californicus was used as a model system to study how local adaptation influences the cold tolerance of a broadly distributed marine crustacean. Among five populations spanning 18° in latitude, the following three metrics were used to compare cold tolerance: the temperature of chill-coma onset, the chill-coma recovery time and post-freezing recovery. In comparison to copepods from warmer southern latitudes, animals from northern populations exhibited lower chill-coma onset temperatures, shorter chill-coma recovery times and faster post-freezing recovery rates. Importantly, all three metrics showed a consistent latitudinal trend, suggesting that any single metric could be used equivalently in future studies investigating latitudinal variation in cold tolerance. Our results agree with previous studies showing that populations within a single species can display strong local adaptation to spatially varying climatic conditions. Thus, accounting for local adaptation in bioclimate models will be useful for understanding how broadly distributed species like T. californicus will respond to anthropogenic climate change. PMID:27293662

  16. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod.

    PubMed

    Wallace, Gemma T; Kim, Tiffany L; Neufeld, Christopher J

    2014-01-01

    Latitudinal trends in cold tolerance have been observed in many terrestrial ectotherms, but few studies have investigated interpopulational variation in the cold physiology of marine invertebrates. Here, the intertidal copepod Tigriopus californicus was used as a model system to study how local adaptation influences the cold tolerance of a broadly distributed marine crustacean. Among five populations spanning 18° in latitude, the following three metrics were used to compare cold tolerance: the temperature of chill-coma onset, the chill-coma recovery time and post-freezing recovery. In comparison to copepods from warmer southern latitudes, animals from northern populations exhibited lower chill-coma onset temperatures, shorter chill-coma recovery times and faster post-freezing recovery rates. Importantly, all three metrics showed a consistent latitudinal trend, suggesting that any single metric could be used equivalently in future studies investigating latitudinal variation in cold tolerance. Our results agree with previous studies showing that populations within a single species can display strong local adaptation to spatially varying climatic conditions. Thus, accounting for local adaptation in bioclimate models will be useful for understanding how broadly distributed species like T. californicus will respond to anthropogenic climate change.

  17. Spraying Brassinolide improves Sigma Broad tolerance in foxtail millet (Setaria italica L.) through modulation of antioxidant activity and photosynthetic capacity.

    PubMed

    Yuan, Xiang-Yang; Zhang, Li-Guang; Huang, Lei; Yang, Hui-Jie; Zhong, Yan-Ting; Ning, Na; Wen, Yin-Yuan; Dong, Shu-Qi; Song, Xi-E; Wang, Hong-Fu; Guo, Ping-Yi

    2017-09-11

    To explore the role of Brassinolide (BR) in improving the tolerance of Sigma Broad in foxtail millet (Setaria italica L.), effects of 0.1 mg/L of BR foliar application 24 h before 3.37 g/ha of Sigma Broad treatment at five-leaf stage of foxtail millet on growth parameters, antioxidant enzymes, malondialdehyde (MDA), chlorophyll, net photosynthetic rate (P N ), chlorophyll fluorescence and P 700 parameters were studied 7 and 15 d after herbicide treatment, respectively. Results showed that Sigma Broad significantly decreased plant height, activities of superoxide dismutase (SOD), chlorophyll content, P N , PS II effective quantum yield (Y (II)), PS II electron transport rate (ETR (II)), photochemical quantum yield of PSI(Y (I)) and PS I electron transport rate ETR (I), but significantly increased MDA. Compared to herbicide treatment, BR dramatically increased plant height, activities of SOD, Y (II), ETR (II), Y (I) and ETR (I). This study showed BR pretreatment could improve the tolerance of Sigma Broad in foxtail millet through improving the activity of antioxidant enzymes, keeping electron transport smooth, and enhancing actual photochemical efficiency of PS II and PSI.

  18. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    NASA Astrophysics Data System (ADS)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F.

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerence of GaAs and that Ti can protected GaAs from erosion by NH3. By depositing Ti on GaAs(111)A surface, a millor-like GaN layer could be grown at 1000 °C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future.

  19. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers

    DOE PAGES

    Vogel, Nicolas; Belisle, Rebecca A.; Hatton, Benjamin; ...

    2013-07-31

    A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show howmore » this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.« less

  20. Secondary multidrug efflux pump mutants alter Escherichia coli biofilm growth in the presence of cationic antimicrobial compounds.

    PubMed

    Bay, Denice C; Stremick, Carol A; Slipski, Carmine J; Turner, Raymond J

    2017-04-01

    Escherichia coli possesses many secondary active multidrug resistance transporters (MDTs) that confer overlapping substrate resistance to a broad range of antimicrobials via proton and/or sodium motive force. It is uncertain whether redundant MDTs uniquely alter cell survival when cultures grow planktonically or as biofilms. In this study, the planktonic and biofilm growth and antimicrobial resistance of 13 E. coli K-12 single MDT gene deletion strains in minimal and rich media were determined. Antimicrobial tolerance to tetracycline, tobramycin and benzalkonium were also compared for each ΔMDT strain. Four E. coli MDT families were represented in this study: resistance nodulation and cell division members acrA, acrB, acrD, acrE, acrF and tolC; multidrug and toxin extruder mdtK; major facilitator superfamily emrA and emrB; and small multidrug resistance members emrE, sugE, mdtI and mdtJ. Deletions of multipartite efflux system genes acrB, acrE and tolC resulted in significant reductions in both planktonic and biofilm growth phenotypes and enhanced antimicrobial susceptibilities. The loss of remaining MDT genes produced similar or enhanced (acrD, acrE, emrA, emrB, mdtK, emrE and mdtJ) biofilm growth and antimicrobial resistance. ΔMDT strains with enhanced antimicrobial tolerance also enhanced biofilm biomass. These findings suggest that many redundant MDTs regulate biofilm formation and drug tolerance. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. A Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase from Rahnella aquatilis with Significantly Reduced Glyphosate Sensitivity

    PubMed Central

    Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Chen, Chen; Jin, Xiao-Fen; Yao, Quan-Hong

    2012-01-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroAR.aquatilis, was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroAE.coli), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroAR.aquatilis were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroAE.coli. To probe the sites contributing to increased tolerance to glyphosate, mutant R.aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R.aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious. PMID:22870190

  2. Novel chiral tool, (R)-2-octanol dehydrogenase, from Pichia finlandica: purification, gene cloning, and application for optically active α-haloalcohols.

    PubMed

    Yamamoto, Hiroaki; Kudoh, Masatake

    2013-09-01

    A novel enantioselective alcohol dehydrogenase, (R)-2-octanol dehydrogenase (PfODH), was discovered among methylotrophic microorganisms. The enzyme was purified from Pichia finlandica and characterized. The molecular mass of the enzyme was estimated to be 83,000 and 30,000 by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The enzyme was an NAD(+)-dependent secondary alcohol dehydrogenase and showed a strict enantioselectivity, very broad substrate specificity, and high tolerance to SH reagents. A gene-encoding PfODH was cloned and sequenced. The gene consisted of 765 nucleotides, coding polypeptides of 254 amino acids. The gene was singly expressed and coexpressed together with a formate dehydrogenase as an NADH regenerator in an Escherichia coli. Ethyl (S)-4-chloro-3-hydroxybutanoate and (S)-2-chloro-1-phenylethanol were synthesized using a whole-cell biocatalyst in more than 99 % optical purity.

  3. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation.

    PubMed

    Das, Natasha; Bhattacharya, Surajit; Maiti, Mrinal K

    2016-08-01

    One of the most grievous heavy metal pollutants in the environment is cadmium (Cd), which is not only responsible for the crop yield loss owing to its phytotoxicity, but also for the human health hazards as the toxic elements usually accumulate in the consumable parts of crop plants. In the present study, we aimed to isolate and functionally characterize the OsMTP1 gene from indica rice (Oryza sativa L. cv. IR64) to study its potential application for efficient phytoremediation of Cd. The 1257 bp coding DNA sequence (CDS) of OsMTP1 encodes a ∼46 kDa protein belonging to the cation diffusion facilitator (CDF) or metal tolerance/transport protein (MTP) family. The OsMTP1 transcript in rice plant was found to respond during external Cd stress. Heterologous expression of OsMTP1 in tobacco resulted in the reduction of Cd stress-induced phytotoxic effects, including growth inhibition, lipid peroxidation, and cell death. Compared to untransformed control, the transgenic tobacco plants showed enhanced vacuolar thiol content, indicating vacuolar localization of the sequestered Cd. The transgenic tobacco plants exhibited significantly higher biomass growth (2.2-2.8-folds) and hyperaccumulation of Cd (1.96-2.22-folds) compared to untransformed control under Cd exposure. The transgenic plants also showed moderate tolerance and accumulation of arsenic (As) upon exogenous As stress, signifying broad substrate specificity of OsMTP1. Together, findings of our research suggest that the transgenic tobacco plants overexpressing OsMTP1 with its hyperaccumulating activity and increased growth rate could be useful for future phytoremediation applications to clean up the Cd-contaminated soil. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Populus euphratica APYRASE2 Enhances Cold Tolerance by Modulating Vesicular Trafficking and Extracellular ATP in Arabidopsis Plants.

    PubMed

    Deng, Shurong; Sun, Jian; Zhao, Rui; Ding, Mingquan; Zhang, Yinan; Sun, Yuanling; Wang, Wei; Tan, Yeqing; Liu, Dandan; Ma, Xujun; Hou, Peichen; Wang, Meijuan; Lu, Cunfu; Shen, Xin; Chen, Shaoliang

    2015-09-01

    Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg(2+) as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. 7 CFR 29.2436 - Wrappers (A Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., firm, rich in oil, elastic, strong, bright finish, deep color intensity, broad, 95 percent uniform, and..., deep color intensity, broad, 95 percent uniform, and 5 percent injury tolerance. A2D Fine Dark-brown...

  6. 7 CFR 29.2436 - Wrappers (A Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., firm, rich in oil, elastic, strong, bright finish, deep color intensity, broad, 95 percent uniform, and..., deep color intensity, broad, 95 percent uniform, and 5 percent injury tolerance. A2D Fine Dark-brown...

  7. 7 CFR 29.2436 - Wrappers (A Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., firm, rich in oil, elastic, strong, bright finish, deep color intensity, broad, 95 percent uniform, and..., deep color intensity, broad, 95 percent uniform, and 5 percent injury tolerance. A2D Fine Dark-brown...

  8. 7 CFR 29.2436 - Wrappers (A Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., firm, rich in oil, elastic, strong, bright finish, deep color intensity, broad, 95 percent uniform, and..., deep color intensity, broad, 95 percent uniform, and 5 percent injury tolerance. A2D Fine Dark-brown...

  9. 7 CFR 29.2436 - Wrappers (A Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., firm, rich in oil, elastic, strong, bright finish, deep color intensity, broad, 95 percent uniform, and..., deep color intensity, broad, 95 percent uniform, and 5 percent injury tolerance. A2D Fine Dark-brown...

  10. The biochemical characterization of three imine-reducing enzymes from Streptosporangium roseum DSM43021, Streptomyces turgidiscabies and Paenibacillus elgii.

    PubMed

    Scheller, Philipp N; Nestl, Bettina M

    2016-12-01

    Recently imine reductases (IREDs) have emerged as promising biocatalysts for the synthesis of a wide variety of chiral amines. To promote their application, many novel enzymes were reported, but only a few of them were biochemically characterized. To expand the available knowledge about IREDs, we report the characterization of two recently identified (R)-selective IREDs from Streptosporangium roseum DSM43021 and Streptomyces turgidiscabies and one (S)-selective IRED from Paenibacillus elgii. The biochemical properties including pH profiles, temperature stabilities, and activities of the enzymes in the presence of organic solvents were investigated. All three enzymes showed relatively broad pH spectra with maximum activities in the neutral range. While the (R)-selective IREDs displayed only limited thermostabilities, the (S)-selective enzyme was found to be the most thermostable IRED known to date. The activity of this IRED proved also to be most tolerant towards the investigated co-solvents DMSO and methanol. We further studied activities and selectivities towards a panel of cyclic imine model substrates to compare these enzymes with other IREDs. In biotransformations, IREDs showed high conversions and the amine products were obtained with up to 99 % ee. By recording the kinetic constants for these compounds, substrate preferences of the IREDs were investigated and it was shown that the (S)-IRED favors the transformation of bulky imines contrary to the (R)-selective IREDs. Finally, novel exocyclic imine substrates were tested and also high activities and selectivities detected.

  11. Functional diversity of family 3 β-glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1

    PubMed Central

    Xia, Wei; Bai, Yingguo; Cui, Ying; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Zhang, Wei; Luo, Huiying; Zhan, Xiuan; Yao, Bin

    2016-01-01

    The fungus Humicola insolens is one of the most powerful decomposers of crystalline cellulose. However, studies on the β-glucosidases from this fungus remain insufficient, especially on glycosyl hydrolase family 3 enzymes. In the present study, we analyzed the functional diversity of three distant family 3 β-glucosidases from Humicola insolens strain Y1, which belonged to different evolutionary clades, by heterogeneous expression in Pichia pastoris strain GS115. The recombinant enzymes shared similar enzymatic properties including thermophilic and neutral optima (50–60 °C and pH 5.5–6.0) and high glucose tolerance, but differed in substrate specificities and kinetics. HiBgl3B was solely active towards aryl β-glucosides while HiBgl3A and HiBgl3C showed broad substrate specificities including both disaccharides and aryl β-glucosides. Of the three enzymes, HiBgl3C exhibited the highest specific activity (158.8 U/mg on pNPG and 56.4 U/mg on cellobiose) and catalytic efficiency and had the capacity to promote cellulose degradation. Substitutions of three key residues Ile48, Ile278 and Thr484 of HiBgl3B to the corresponding residues of HiBgl3A conferred the enzyme activity towards sophorose, and vice versa. This study reveals the functional diversity of GH3 β-glucosidases as well as the key residues in recognizing +1 subsite of different substrates. PMID:27271847

  12. Functional diversity of family 3 β-glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1.

    PubMed

    Xia, Wei; Bai, Yingguo; Cui, Ying; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Zhang, Wei; Luo, Huiying; Zhan, Xiuan; Yao, Bin

    2016-06-08

    The fungus Humicola insolens is one of the most powerful decomposers of crystalline cellulose. However, studies on the β-glucosidases from this fungus remain insufficient, especially on glycosyl hydrolase family 3 enzymes. In the present study, we analyzed the functional diversity of three distant family 3 β-glucosidases from Humicola insolens strain Y1, which belonged to different evolutionary clades, by heterogeneous expression in Pichia pastoris strain GS115. The recombinant enzymes shared similar enzymatic properties including thermophilic and neutral optima (50-60 °C and pH 5.5-6.0) and high glucose tolerance, but differed in substrate specificities and kinetics. HiBgl3B was solely active towards aryl β-glucosides while HiBgl3A and HiBgl3C showed broad substrate specificities including both disaccharides and aryl β-glucosides. Of the three enzymes, HiBgl3C exhibited the highest specific activity (158.8 U/mg on pNPG and 56.4 U/mg on cellobiose) and catalytic efficiency and had the capacity to promote cellulose degradation. Substitutions of three key residues Ile48, Ile278 and Thr484 of HiBgl3B to the corresponding residues of HiBgl3A conferred the enzyme activity towards sophorose, and vice versa. This study reveals the functional diversity of GH3 β-glucosidases as well as the key residues in recognizing +1 subsite of different substrates.

  13. Laccase versus Laccase-Like Multi-Copper Oxidase: A Comparative Study of Similar Enzymes with Diverse Substrate Spectra

    PubMed Central

    Reiss, Renate; Ihssen, Julian; Richter, Michael; Eichhorn, Eric; Schilling, Boris; Thöny-Meyer, Linda

    2013-01-01

    Laccases (EC 1.10.3.2) are multi-copper oxidases that catalyse the one-electron oxidation of a broad range of compounds including substituted phenols, arylamines and aromatic thiols to the corresponding radicals. Owing to their broad substrate range, copper-containing laccases are versatile biocatalysts, capable of oxidizing numerous natural and non-natural industry-relevant compounds, with water as the sole by-product. In the present study, 10 of the 11 multi-copper oxidases, hitherto considered to be laccases, from fungi, plant and bacterial origin were compared. A substrate screen of 91 natural and non-natural compounds was recorded and revealed a fairly broad but distinctive substrate spectrum amongst the enzymes. Even though the enzymes share conserved active site residues we found that the substrate ranges of the individual enzymes varied considerably. The EC classification is based on the type of chemical reaction performed and the actual name of the enzyme often refers to the physiological substrate. However, for the enzymes studied in this work such classification is not feasible, even more so as their prime substrates or natural functions are mainly unknown. The classification of multi-copper oxidases assigned as laccases remains a challenge. For the sake of simplicity we propose to introduce the term “laccase-like multi-copper oxidase” (LMCO) in addition to the term laccase that we use exclusively for the enzyme originally identified from the sap of the lacquer tree Rhus vernicifera. PMID:23755261

  14. Charged/Polar-Residue Scanning of the Hydrophobic Face of Transmembrane Domain 9 of the Yeast Glutathione Transporter, Hgt1p, Reveals a Conformationally Critical Region for Substrate Transport

    PubMed Central

    Thakur, Anil; Bachhawat, Anand K.

    2015-01-01

    Unraveling the mechanistic workings of membrane transporters has remained a challenging task. We describe a novel strategy that involves subjecting the residues of the hydrophobic face of a transmembrane helix to a charged/polar scanning mutagenesis. TMD9 of the yeast glutathione transporter, Hgt1p, has been identified as being important in substrate binding, and two residues, F523 and Q526, are expected to line the substrate translocation channel while the other face is hydrophobic. The hydrophobic face of TMD9 helix consists of residues A509, V513, L517, L520, I524, and I528, and these were mutated to lysine, glutamine, and glutamic acid. Among the 16 charged mutants created, six were nonfunctional, revealing a surprising tolerance of charged residues in the hydrophobic part of TM helices. Furthermore, the only position that did not tolerate any charged residue was I524, proximal to the substrate binding residues. However, P525, also proximal to the substrate binding residues, did tolerate charged/polar residues, suggesting that mere proximity to the substrate binding residues was not the only factor. The I524K/E/Q mutants expressed well and localized correctly despite lacking any glutathione uptake capability. Isolation of suppressors for all nonfunctional mutants yielded second-site suppressors only for I524K and I524Q, and suppressors for these mutations appeared at G202K/I and G202K/Q, respectively. G202 is in the hydrophilic loop between TMD3 and TMD4. The results suggest that I524 in the hydrophobic face interacts with this region and is also in a conformationally critical region for substrate translocation. PMID:25784163

  15. Advanced information processing system - Status report. [for fault tolerant and damage tolerant data processing for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Brock, L. D.; Lala, J.

    1986-01-01

    The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles. The AIPS architecture also has attributes to enhance system effectiveness such as graceful degradation, growth and change tolerance, integrability, etc. Two key building blocks being developed by the AIPS program are a fault and damage tolerant processor and communication network. A proof-of-concept system is now being built and will be tested to demonstrate the validity and performance of the AIPS concepts.

  16. Evidence for a freezing tolerance-growth rate trade-off in the live oaks (Quercus series Virentes) across the tropical-temperate divide.

    PubMed

    Koehler, Kari; Center, Alyson; Cavender-Bares, Jeannine

    2012-02-01

    • It has long been hypothesized that species are limited to the north by minimum temperature and to the south by competition, resulting in a trade-off between freezing tolerance and growth rate. We investigated the extent to which the climatic origins of populations from four live oak species (Quercus series Virentes) were associated with freezing tolerance and growth rate, and whether species fitted a model of locally adapted populations, each with narrow climatic tolerances, or of broadly adapted populations with wide climatic tolerances. • Acorns from populations of four species across a tropical-temperate gradient were grown under common tropical and temperate conditions. Growth rate, seed mass, and leaf and stem freezing traits were compared with source minimum temperatures. • Maximum growth rates under tropical conditions were negatively correlated with freezing tolerance under temperate conditions. The minimum source temperature predicted the freezing tolerance of populations under temperate conditions. The tropical species Q. oleoides was differentiated from the three temperate species, and variation among species was greater than among populations. • The trade-off between freezing tolerance and growth rate supports the range limit hypothesis. Limited variation within species indicates that the distributions of species may be driven more strongly by broad climatic factors than by highly local conditions. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  17. Exercise in muscle glycogen storage diseases.

    PubMed

    Preisler, Nicolai; Haller, Ronald G; Vissing, John

    2015-05-01

    Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.

  18. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    PubMed

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate.

    PubMed

    Mahanta, Nilkamal; Gupta, Anshu; Khare, S K

    2008-04-01

    Deoiled Jatropha seed cake was assessed for its suitability as substrate for enzyme production by solid-state fermentation (SSF). Solvent tolerant Pseudomonas aeruginosa PseA strain previously reported by us was used for fermentation. The seed cake supported good bacterial growth and enzyme production (protease, 1818 U/g of substrate and lipase, 625 U/g of substrate) as evident by its chemical composition. Maximum protease and lipase production was observed at 50% substrate moisture, a growth period of 72 and 120 h, and a substrate pH of 6.0 and 7.0, respectively. Enrichment with maltose as carbon source increased protease and lipase production by 6.3- and 1.6-fold, respectively. Nitrogen supplementation with peptone for protease and NaNO(3) for lipase production also enhanced the enzyme yield reaching 11,376 U protease activity and 1084 U lipase activity per gram of Jatropha seed cake. These results demonstrated viable approach for utilization of this huge biomass by solid-state fermentation for the production of industrial enzymes. This offers significant benefit due to low cost and abundant availability of cake during biodiesel production.

  20. 17 CFR 41.14 - Transition period for indexes that cease being narrow-based security indexes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... day tolerance provision. An index that is a narrow-based security index that becomes a broad-based... than forty-five days. An index that is a narrow-based security index that becomes a broad-based...

  1. Broadly tunable terahertz difference-frequency generation in quantum cascade lasers on silicon

    NASA Astrophysics Data System (ADS)

    Jung, Seungyong; Kim, Jae Hyun; Jiang, Yifan; Vijayraghavan, Karun; Belkin, Mikhail A.

    2018-01-01

    We report broadly tunable terahertz (THz) sources based on intracavity Cherenkov difference-frequency generation in quantum cascade lasers transfer-printed on high-resistivity silicon substrates. Spectral tuning from 1.3 to 4.3 THz was obtained from a 2-mm long laser chip using a modified Littrow external cavity setup. The THz power output and the midinfrared-to-THz conversion efficiency of the devices transferred on silicon are dramatically enhanced, compared with the devices on a native semi-insulating InP substrate. Enhancement is particularly significant at higher THz frequencies, where the tail of the Reststrahlen band results in a strong absorption of THz light in the InP substrate.

  2. Biomineralization of Uranium by PhoY Phosphatase Activity Aids Cell Survival in Caulobacter crescentus

    PubMed Central

    Yung, Mimi C.

    2014-01-01

    Caulobacter crescentus is known to tolerate high levels of uranium [U(VI)], but its detoxification mechanism is poorly understood. Here we show that C. crescentus is able to facilitate U(VI) biomineralization through the formation of U-Pi precipitates via its native alkaline phosphatase activity. The U-Pi precipitates, deposited on the cell surface in the form of meta-autunite structures, have a lower U/Pi ratio than do chemically produced precipitates. The enzyme that is responsible for the phosphatase activity and thus the biomineralization process is identified as PhoY, a periplasmic alkaline phosphatase with broad substrate specificity. Furthermore, PhoY is shown to confer a survival advantage on C. crescentus toward U(VI) under both growth and nongrowth conditions. Results obtained in this study thus highlight U(VI) biomineralization as a resistance mechanism in microbes, which not only improves our understanding of bacterium-mineral interactions but also aids in defining potential ecological niches for metal-resistant bacteria. PMID:24878600

  3. Remote C-H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling.

    PubMed

    Xu, Jun; Shen, Chao; Zhu, Xiaolei; Zhang, Pengfei; Ajitha, Manjaly J; Huang, Kuo-Wei; An, Zhongfu; Liu, Xiaogang

    2016-03-18

    Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C-H bonds at the C5 position of 8-aminoquinoline through copper-catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single-electron-transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C-S cross-coupling. Importantly, our copper-catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C-O, C-Br, C-N, C-C, and C-I. These findings provide a fundamental insight into the activation of remote C-H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biomineralization of Uranium by PhoY Phosphatase Activity Aids Cell Survival in Caulobacter crescentus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yung, M C; Jiao, Y

    2014-07-22

    Caulobacter crescentus is known to tolerate high levels of uranium [U(VI)], but its detoxification mechanism is poorly understood. Here we show that C. crescentus is able to facilitate U(VI) biomineralization through the formation of U-P i precipitates via its native alkaline phosphatase activity. The U-P i precipitates, deposited on the cell surface in the form of meta-autunite structures, have a lower U/P i ratio than do chemically produced precipitates. The enzyme that is responsible for the phosphatase activity and thus the biomineralization process is identified as PhoY, a periplasmic alkaline phosphatase with broad substrate specificity. Furthermore, PhoY is shown tomore » confer a survival advantage on C. crescentus toward U(VI) under both growth and nongrowth conditions. Results obtained in this study thus highlight U(VI) biomineralization as a resistance mechanism in microbes, which not only improves our understanding of bacterium-mineral interactions but also aids in defining potential ecological niches for metal-resistant bacteria.« less

  5. A Measure of the Broad Substrate Specificity of Enzymes Based on ‘Duplicate’ Catalytic Residues

    PubMed Central

    Chakraborty, Sandeep; Ásgeirsson, Bjarni; Rao, Basuthkar J.

    2012-01-01

    The ability of an enzyme to select and act upon a specific class of compounds with unerring precision and efficiency is an essential feature of life. Simultaneously, these enzymes often catalyze the reaction of a range of similar substrates of the same class, and also have promiscuous activities on unrelated substrates. Previously, we have established a methodology to quantify promiscuous activities in a wide range of proteins. In the current work, we quantitatively characterize the active site for the ability to catalyze distinct, yet related, substrates (BRASS). A protein with known structure and active site residues provides the framework for computing ‘duplicate’ residues, each of which results in slightly modified replicas of the active site scaffold. Such spatial congruence is supplemented by Finite difference Poisson Boltzmann analysis which filters out electrostatically unfavorable configurations. The congruent configurations are used to compute an index (BrassIndex), which reflects the broad substrate profile of the active site. We identify an acetylhydrolase and a methyltransferase as having the lowest and highest BrassIndex, respectively, from a set of non-homologous proteins extracted from the Catalytic Site Atlas. The acetylhydrolase, a regulatory enzyme, is known to be highly specific for platelet-activating factor. In the methyltransferase (PDB: 1QAM), various combinations of glycine (Gly38/40/42), asparagine (Asn101/11) and glutamic acid (Glu59/36) residues having similar spatial and electrostatic profiles with the specified scaffold (Gly38, Asn101 and Glu59) exemplifies the broad substrate profile such an active site may provide. ‘Duplicate’ residues identified by relaxing the spatial and/or electrostatic constraints can be the target of directed evolution methodologies, like saturation mutagenesis, for modulating the substrate specificity of proteins. PMID:23166637

  6. InP (Indium Phosphide): Into the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  7. The limitations of seedling growth and drought tolerance to novel soil substrates in arid systems: Implications for restoration success

    NASA Astrophysics Data System (ADS)

    Bateman, Amber; Lewandrowski, Wolfgang; Stevens, Jason; Muñoz-Rojas, Miriam

    2016-04-01

    Introduction With the limited knowledge available regarding the impact of drought on seedling growth, an understanding of seedling tolerance to arid conditions is crucial for restoration success (James et al., 2013; Muñoz-Rojas et al., 2014). However, restoration in semi-arid areas faces the challenge of re-establishing plant communities on altered soil substrates (Muñoz-Rojas et al., 2015). These substrates are a result of anthropogenic disturbances such as mining which have altered the plant-soil-water dynamics of the ecosystem (Machado et al., 2013). The aim of this study was to assess the impact of mining on the plant-soil-water dynamics of an arid ecosystem of Western Australia (Pilbara region, North Western Australia) and the implications these altered relationships have on seedling growth and their responses to drought. Methods Drought responses of native plant species were assessed through a series of glasshouse experiments. Firstly, 21 species dominant to the Pilbara region were subjected to drought in a topsoil growth media to assess variation in responses (leaf water potential at the time of stomatal closure) across species and identify traits associated with drought tolerance. Secondly, four species ranging in their drought tolerance identified previously, were grown to two leaf stages (second and fourth leaf stage) in three mining substrates (topsoil, a topsoil and waste mix and waste) to assess seedling drought responses to various potential restoration substrates and how that varied with plant development stage. Results and discussion Four morphological traits were found to be significantly associated with drought indicators (leaf mass ratio, stem area, stem length, stem weight), however, these were weak correlations. Waste substrate and its addition to topsoil reduced plant total biomass but did not alter species responses to drought. However, the soil physical properties of the waste reduced water retention and water availability for plant uptake resulting in seedling mortality at less negative soil water potential. Finally, no significant differences in drought tolerance were observed between the two leaf stages across the four species tested. Analysis of plant desiccation curves found the advanced leaf stage to be less tolerant of drought as shown by a decrease in soil water potential at the time of stomatal closure. Species possess a range of morphological traits, some of which are associated with drought tolerance. However, these traits on their own may not be main drivers for drought resilience and other factors play a role, for example soil nutrient availability. Materials tested in this study that may be available to create novel restoration substrates hinder plant growth but not necessarily plant responses to drought. These findings go a long way to defining some of the limitations of seedling growth and the degree of drought tolerance which will assist in the management of post-mining restoration. References James, J.J., Sheley, R.L., Erickson,T., Rollins, K.S., Taylor, M.H., Dixon, K.W. (2013) A systems approach to restoring degraded drylands. Journal of Applied Ecology 50:730-739. Machado, N. A. M., Leite, M. G. P., Figueiredo, M. A., Kozovits, A. R. (2013) Growing Ereman-thus erythropappus in crushed laterite: A promising alternative to topsoil for baux¬ite-mine revegetation. Journal of Environmental Management 129: 149-156. Muñoz-Rojas, M., Erickson, T., Merritt, D., Dixon, K. (2014) Optimising post-mining soil conditions to maximise restoration success in a biodiverse semiarid environment. Geophysical Research. Abstracts Vol. 16, EGU2014-2069-1, EGU General Assembly. Muñoz-Rojas, M., Erickson, T., Merritt, D., Dixon, K. (2015) Applying soil science for restoration of post mining degraded landscapes in semi-arid Australia: challenges and opportunities. Geophysical Research. Abstracts Vol. 17, EGU2015-3967-1, EGU General Assembly.

  8. Expanding Water/Base Tolerant Frustrated Lewis Pair Chemistry to Alkylamines Enables Broad Scope Reductive Aminations

    PubMed Central

    Fasano, Valerio

    2017-01-01

    Abstract Lower Lewis acidity boranes demonstrate greater tolerance to combinations of water/strong Brønsted bases than B(C6F5)3, this enables Si−H bond activation by a frustrated Lewis pair (FLP) mechanism to proceed in the presence of H2O/alkylamines. Specifically, BPh3 has improved water tolerance in the presence of alkylamines as the Brønsted acidic adduct H2O–BPh3 does not undergo irreversible deprotonation with aliphatic amines in contrast to H2O–B(C6F5)3. Therefore BPh3 is a catalyst for the reductive amination of aldehydes and ketones with alkylamines using silanes as reductants. A range of amines inaccessible using B(C6F5)3 as catalyst, were accessible by reductive amination catalysed by BPh3 via an operationally simple methodology requiring no purification of BPh3 or reagents/solvent. BPh3 has a complementary reductive amination scope to B(C6F5)3 with the former not an effective catalyst for the reductive amination of arylamines, while the latter is not an effective catalyst for the reductive amination of alkylamines. This disparity is due to the different pK a values of the water–borane adducts and the greater susceptibility of BPh3 species towards protodeboronation. An understanding of the deactivation processes occurring using B(C6F5)3 and BPh3 as reductive amination catalysts led to the identification of a third triarylborane, B(3,5‐Cl2C6H3)3, that has a broader substrate scope being able to catalyse the reductive amination of both aryl and alkyl amines with carbonyls. PMID:27977048

  9. Conditions of Living: Queer Youth Suicide, Homonormative Tolerance, and Relative Misery

    ERIC Educational Resources Information Center

    Cover, Rob

    2013-01-01

    Despite the increasing social tolerance accorded nonheterosexual persons in many Western countries, queer youth suicide rates remain high. This opens the need to question not only how broad social conditions continue to make lives unlivable for many queer youth but whether queer community formations and representations that emerge within a…

  10. Defining Mental Illness: The Relationship between College Students' Beliefs about the Definition of Mental Illness and Tolerance.

    ERIC Educational Resources Information Center

    Granello, Darcy Haag; Granello, Paul F.

    2000-01-01

    Investigates the relationship between college undergraduate students' (N=102) beliefs about the definition of mental illness and their tolerance toward individuals with mental illnesses. Results show that students with broad and inclusive definitions of mental illness had more benevolent, less authoritarian, and less socially restrictive attitudes…

  11. Scripting "Safe" Schools: Mapping Urban Education and Zero Tolerance during the Long War

    ERIC Educational Resources Information Center

    Nguyen, Nicole

    2013-01-01

    Taking a cue from U.S. military operations, surveillance cameras, police officers, metal detectors, hall sweeps, expulsion, zero tolerance policing, and biometrics contour young people's everyday life in public schools. Given this influx in policing and surveillance in schools, recent critical scholarship broadly attends to the increase in and…

  12. Arylsulfotransferase from Clostridium innocuum-A new enzyme catalyst for sulfation of phenol-containing compounds.

    PubMed

    Mozhaev, Vadim V; Khmelnitsky, Yuri L; Sanchez-Riera, Fernando; Maurina-Brunker, Julie; Rosson, Reinhardt A; Grund, Alan D

    2002-06-05

    Arylsulfotransferase (AST, EC 2.8.2.22), an enzyme capable of sulfating a wide range of phenol-containing compounds was purified from a Clostridium innocuum isolate (strain 554). The enzyme has a molecular weight of 320 kDa and is composed of four subunits. Unlike many mammalian and plant arylsulfotransferases, AST from Clostridium utilizes arylsulfates, including p-nitrophenyl sulfate, as sulfate donors, and is not reactive with 3-phosphoadenosine-5'-phosphosulfate (PAPS). The enzyme possesses broad substrate specificity and is active with a variety of phenols, quinones and flavonoids, but does not utilize primary and secondary alcohols and sugars as substrates. Arylsulfotransferase tolerates the presence of 10 vol% of polar cosolvents (dimethyl formamide, acetonitrile, methanol), but loses significant activity at higher solvent concentrations of 30-40 vol%. The enzyme retains high arylsulfotransferase activity in biphasic systems composed of water and nonpolar solvents, such as cyclohexane, toluene and chloroform, while in biphasic systems with more polar solvents (ethyl acetate, 2-pentanone, methyl tert-butyl ether, and butyl acetate) the enzyme activity is completely lost. High yields of AST-catalyzed sulfation were achieved in reactions with several phenols and tyrosine-containing peptides. Overall, AST studied in this work is a promising biocatalyst in organic synthesis to afford efficient sulfation of phenolic compounds under mild reaction conditions. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 567-575, 2002.

  13. Mapping the Substrate Binding Site of Phenylacetone Monooxygenase from Thermobifida fusca by Mutational Analysis▿†

    PubMed Central

    Dudek, Hanna M.; de Gonzalo, Gonzalo; Torres Pazmiño, Daniel E.; Stępniak, Piotr; Wyrwicz, Lucjan S.; Rychlewski, Leszek; Fraaije, Marco W.

    2011-01-01

    Baeyer-Villiger monooxygenases catalyze oxidations that are of interest for biocatalytic applications. Among these enzymes, phenylacetone monooxygenase (PAMO) from Thermobifida fusca is the only protein showing remarkable stability. While related enzymes often present a broad substrate scope, PAMO accepts only a limited number of substrates. Due to the absence of a substrate in the elucidated crystal structure of PAMO, the substrate binding site of this protein has not yet been defined. In this study, a structural model of cyclopentanone monooxygenase, which acts on a broad range of compounds, has been prepared and compared with the structure of PAMO. This revealed 15 amino acid positions in the active site of PAMO that may account for its relatively narrow substrate specificity. We designed and analyzed 30 single and multiple mutants in order to verify the role of these positions. Extensive substrate screening revealed several mutants that displayed increased activity and altered regio- or enantioselectivity in Baeyer-Villiger reactions and sulfoxidations. Further substrate profiling resulted in the identification of mutants with improved catalytic properties toward synthetically attractive compounds. Moreover, the thermostability of the mutants was not compromised in comparison to that of the wild-type enzyme. Our data demonstrate that the positions identified within the active site of PAMO, namely, V54, I67, Q152, and A435, contribute to the substrate specificity of this enzyme. These findings will aid in more dedicated and effective redesign of PAMO and related monooxygenases toward an expanded substrate scope. PMID:21724896

  14. Engineering Complex Microbial Phenotypes with Continuous Genetic Integration and Plasmid Based Multi-Gene Library

    DTIC Science & Technology

    2010-01-01

    genes from strains that have desirable traits. Here, we aim to enlarge the E. coli genome using Lactobacillus plantarum genes to build cells tolerant to...EtOH and BT. L. plantarum is an organism with established high tolerance to alcohols and solvents more broadly. Objective 2: Build a stress...heterologous (here: L. plantarum ; abbreviated as L. pl) DNA into the E. coli chromosome while selecting for insertions that enhance ethanol tolerance (which

  15. Understanding the Broad Substrate Repertoire of Nitroreductase Based on Its Kinetic Mechanism*

    PubMed Central

    Pitsawong, Warintra; Hoben, John P.; Miller, Anne-Frances

    2014-01-01

    The oxygen-insensitive nitroreductase from Enterobacter cloacae (NR) catalyzes two-electron reduction of nitroaromatics to the corresponding nitroso compounds and, subsequently, to hydroxylamine products. NR has an unusually broad substrate repertoire, which may be related to protein dynamics (flexibility) and/or a simple non-selective kinetic mechanism. To investigate the possible role of mechanism in the broad substrate repertoire of NR, the kinetics of oxidation of NR by para-nitrobenzoic acid (p-NBA) were investigated using stopped-flow techniques at 4 °C. The results revealed a hyperbolic dependence on the p-NBA concentration with a limiting rate of 1.90 ± 0.09 s−1, indicating one-step binding before the flavin oxidation step. There is no evidence for a distinct binding step in which specificity might be enforced. The reduction of p-NBA is rate-limiting in steady-state turnover (1.7 ± 0.3 s−1). The pre-steady-state reduction kinetics of NR by NADH indicate that NADH reduces the enzyme with a rate constant of 700 ± 20 s−1 and a dissociation constant of 0.51 ± 0.04 mm. Thus, we demonstrate simple transient kinetics in both the reductive and oxidative half-reactions that help to explain the broad substrate repertoire of NR. Finally, we tested the ability of NR to reduce para-hydroxylaminobenzoic acid, demonstrating that the corresponding amine does not accumulate to significant levels even under anaerobic conditions. Thus E. cloacae NR is not a good candidate for enzymatic production of aromatic amines. PMID:24706760

  16. Climates

    Treesearch

    John R. Jones; Norbert V. DeByle

    1985-01-01

    The broad range of aspen in North America is evidence of its equally broad tolerance of wide variations in climate (Fowells 1965). Given open space for establishment and not too severe competition from other plants, aspen can survive from timberline on the tundra's edge to very warm temperate climates, and from the wet maritime climates of the coasts to very...

  17. 75 FR 42324 - Pyraclostrobin; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... uses as follows: Commodity PCT Almond 35% Apple 10% Apricot 10% Barley 1% Bell pepper 10% Black bean seed 5% Blackberry 20% Blueberry 20% Broad bean (succulent) 2.5% Broad bean seed 5% Broccoli 5% Cabbage...% Grape 25% Grapefruit 25% Great northern bean seed 5% Green onion 15% Head lettuce 5% Leaf lettuce 5...

  18. Characterization of an aryl-alcohol oxidase from the plant saprophytic basidiomycete Coprinopsis cinerea with broad substrate specificity against aromatic alcohols.

    PubMed

    Tamaru, Yoshiaki; Umezawa, Kiwamu; Yoshida, Makoto

    2018-07-01

    The aim of the study was to obtain information about the enzymatic properties of aryl-alcohol oxidase from the plant saprophytic basidiomycete Coprinopsis cinerea (rCcAAO), which is classified into the auxiliary activities family 3 subfamily 2 (AA3_2). The gene encoding AAO from the plant saprophytic basidiomycete Coprinopsis cinerea (CcAAO) was cloned, and the recombinant CcAAO (rCcAAO) was heterologously expressed in the methylotrophic yeast Pichia pastoris. The purified rCcAAO showed significant activity not only against trans,trans-2,4-hexadien-1-ol but also against a broad range of aromatic alcohols including aromatic compounds that were reported to be poor substrates for known AAOs. Moreover, site-directed mutagenesis analysis demonstrated that mutants with substitutions from leucine to phenylalanine and tryptophan at position 416 exhibited decreases of activity for aromatic alcohols but still maintained the activity for trans,trans-2,4-hexadien-1-ol. Leucine 416 in CcAAO contributes to the broad substrate specificity against various aromatic alcohols, which is useful for the production of hydrogen peroxide using this enzyme.

  19. Limited potential for adaptation to climate change in a broadly distributed marine crustacean.

    PubMed

    Kelly, Morgan W; Sanford, Eric; Grosberg, Richard K

    2012-01-22

    The extent to which acclimation and genetic adaptation might buffer natural populations against climate change is largely unknown. Most models predicting biological responses to environmental change assume that species' climatic envelopes are homogeneous both in space and time. Although recent discussions have questioned this assumption, few empirical studies have characterized intraspecific patterns of genetic variation in traits directly related to environmental tolerance limits. We test the extent of such variation in the broadly distributed tidepool copepod Tigriopus californicus using laboratory rearing and selection experiments to quantify thermal tolerance and scope for adaptation in eight populations spanning more than 17° of latitude. Tigriopus californicus exhibit striking local adaptation to temperature, with less than 1 per cent of the total quantitative variance for thermal tolerance partitioned within populations. Moreover, heat-tolerant phenotypes observed in low-latitude populations cannot be achieved in high-latitude populations, either through acclimation or 10 generations of strong selection. Finally, in four populations there was no increase in thermal tolerance between generations 5 and 10 of selection, suggesting that standing variation had already been depleted. Thus, plasticity and adaptation appear to have limited capacity to buffer these isolated populations against further increases in temperature. Our results suggest that models assuming a uniform climatic envelope may greatly underestimate extinction risk in species with strong local adaptation.

  20. A Clostridium Group IV Species Dominates and Suppresses a Mixed Culture Fermentation by Tolerance to Medium Chain Fatty Acids Products

    PubMed Central

    Andersen, Stephen J.; De Groof, Vicky; Khor, Way Cern; Roume, Hugo; Props, Ruben; Coma, Marta; Rabaey, Korneel

    2017-01-01

    A microbial community is engaged in a complex economy of cooperation and competition for carbon and energy. In engineered systems such as anaerobic digestion and fermentation, these relationships are exploited for conversion of a broad range of substrates into products, such as biogas, ethanol, and carboxylic acids. Medium chain fatty acids (MCFAs), for example, hexanoic acid, are valuable, energy dense microbial fermentation products, however, MCFA tend to exhibit microbial toxicity to a broad range of microorganisms at low concentrations. Here, we operated continuous mixed population MCFA fermentations on biorefinery thin stillage to investigate the community response associated with the production and toxicity of MCFA. In this study, an uncultured species from the Clostridium group IV (related to Clostridium sp. BS-1) became enriched in two independent reactors that produced hexanoic acid (up to 8.1 g L−1), octanoic acid (up to 3.2 g L−1), and trace concentrations of decanoic acid. Decanoic acid is reported here for the first time as a possible product of a Clostridium group IV species. Other significant species in the community, Lactobacillus spp. and Acetobacterium sp., generate intermediates in MCFA production, and their collapse in relative abundance resulted in an overall production decrease. A strong correlation was present between the community composition and both the hexanoic acid concentration (p = 0.026) and total volatile fatty acid concentration (p = 0.003). MCFA suppressed species related to Clostridium sp. CPB-6 and Lactobacillus spp. to a greater extent than others. The proportion of the species related to Clostridium sp. BS-1 over Clostridium sp. CPB-6 had a strong correlation with the concentration of octanoic acid (p = 0.003). The dominance of this species and the increase in MCFA resulted in an overall toxic effect on the mixed community, most significantly on the Lactobacillus spp., which resulted in a decrease in total hexanoic acid concentration to 32 ± 2% below the steady-state average. As opposed to the current view of MCFA toxicity broadly leading to production collapse, this study demonstrates that varied tolerance to MCFA within the community can lead to the dominance of some species and the suppression of others, which can result in a decreased productivity of the fermentation. PMID:28265558

  1. Biochemical, endocrine, and hematological factors in human oxygen tolerance extension: Predictive studies 6

    NASA Technical Reports Server (NTRS)

    Lambertsen, C. J.; Clark, J. M.

    1992-01-01

    The Predictive Studies VI (Biochemical, endocrine, and hematological factors in human oxygen tolerance extension) Program consisted of two related areas of research activity, integrated in design and performance, that were each based on an ongoing analysis of human organ oxygen tolerance data obtained for the continuous oxygen exposures of the prior Predictive Studies V Program. The two research areas effectively blended broad investigation of systematically varied intermittent exposure patterns in animals with very selective evaluation of specific exposure patterns in man.

  2. Satellite Laser Ranging Photon-Budget Calculations for a Single Satellite Cornercube Retroreflector: Attitude Control Tolerance

    DTIC Science & Technology

    2015-11-01

    beam splitter , and an arrangement of polarising prisms and waveplates to measure the diffraction pattern resulting from uni- form laser beams in...cornercube retroreflectors identified in the current satellite design are found to allow for a significant variation in the reflected beam width. The...Surface quality 60-40 Housing tolerance OD:† +0/− 0.5 mm H: ±0.25 mm Beam -angle tolerance 3 arcsec Substrate N-BK7 Coating Internal silver Figure 2: Design

  3. Some Lactobacillus l-Lactate Dehydrogenases Exhibit Comparable Catalytic Activities for Pyruvate and Oxaloacetate

    PubMed Central

    Arai, Kazuhito; Kamata, Takeo; Uchikoba, Hiroyuki; Fushinobu, Shinya; Matsuzawa, Hiroshi; Taguchi, Hayao

    2001-01-01

    The nonallosteric and allosteric l-lactate dehydrogenases of Lactobacillus pentosus and L. casei, respectively, exhibited broad substrate specificities, giving virtually the same maximal reaction velocity and substrate Km values for pyruvate and oxaloacetate. Replacement of Pro101 with Asn reduced the activity of the L. pentosus enzyme toward these alternative substrates to a greater extent than the activity toward pyruvate. PMID:11114942

  4. Oxidase catalysis via aerobically generated hypervalent iodine intermediates

    NASA Astrophysics Data System (ADS)

    Maity, Asim; Hyun, Sung-Min; Powers, David C.

    2018-02-01

    The development of sustainable oxidation chemistry demands strategies to harness O2 as a terminal oxidant. Oxidase catalysis, in which O2 serves as a chemical oxidant without necessitating incorporation of oxygen into reaction products, would allow diverse substrate functionalization chemistry to be coupled to O2 reduction. Direct O2 utilization suffers from intrinsic challenges imposed by the triplet ground state of O2 and the disparate electron inventories of four-electron O2 reduction and two-electron substrate oxidation. Here, we generate hypervalent iodine reagents—a broadly useful class of selective two-electron oxidants—from O2. This is achieved by intercepting reactive intermediates of aldehyde autoxidation to aerobically generate hypervalent iodine reagents for a broad array of substrate oxidation reactions. The use of aryl iodides as mediators of aerobic oxidation underpins an oxidase catalysis platform that couples substrate oxidation directly to O2 reduction. We anticipate that aerobically generated hypervalent iodine reagents will expand the scope of aerobic oxidation chemistry in chemical synthesis.

  5. Potential for the evolution of heavy metal tolerance in Bryum argenteum, a moss. II. Generalized tolerances among diverse populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, A.J.; Albright, D.L.

    Tolerance of copper, zinc, lead, and nickel were measured in two individuals from each of seven populations of Bryum argenteum. The populations represented a range of habitats including industrial sites subject to atmospheric metal deposition, metal-contaminated mine tailings, serpentine barrens, and urban areas. Nevertheless, there was no evidence of adaptive differentiation in tolerance to any of the metals. Populations did differ significantly in general growth vigor across all experimental treatments. These observations contrast with results from studies of angiosperms, in which the evolution of heavy-metal tolerance almost always involves ecotypic differentiation among populations, but fit an emerging picture of B.more » argenteum as a plastic, broadly tolerant species with surprisingly little genetic differentiation among populations.« less

  6. Seed germination of roundleaf buffaloberry (Shepherdia rotundifolia) and silver buffaloberry (Shepherdia argentea) in three substrates

    Treesearch

    Taun Beddes; Heidi A. Kratsch

    2009-01-01

    Many western native plant species occur in areas characterized by well-drained soils low in organic matter. Some drought-tolerant native plant species exhibit poor seed germination. It was hypothesized that traditional growing substrates high in organic matter may impede their germination; therefore, stratified seeds of roundleaf buffaloherry (Shepherdia rotundifolia)...

  7. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.

    PubMed

    Jones, Robert T; Bakker, Saskia E; Stone, Deborah; Shuttleworth, Sally N; Boundy, Sam; McCart, Caroline; Daborn, Phillip J; ffrench-Constant, Richard H; van den Elsen, Jean M H

    2010-10-01

    Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.

  8. Gene cloning and enzymatic characterization of an alkali-tolerant endo-1,4-β-mannanase from Rhizomucor miehei.

    PubMed

    Katrolia, Priti; Yan, Qiaojuan; Zhang, Pan; Zhou, Peng; Yang, Shaoqing; Jiang, Zhengqiang

    2013-01-16

    An endo-1,4-β-mannanase gene (RmMan5A) was cloned from the thermophilic fungus Rhizomucor miehei for the first time and expressed in Escherichia coli . The gene had an open reading frame of 1330 bp encoding 378 amino acids and contained four introns. It displayed the highest amino acid sequence identity (42%) with the endo-1,4-β-mannanases from glycoside hydrolase family 5. The purified enzyme was a monomer of 43 kDa. RmMan5A displayed maximum activity at 55 °C and an optimal pH of 7.0. It was thermostable up to 55 °C and alkali-tolerant, displaying excellent stability over a broad pH range of 4.0-10.0, when incubated for 30 min without substrate. The enzyme displayed the highest specificity for locust bean gum (K(m) = 3.78 mg mL⁻¹), followed by guar gum (K(m) = 7.75 mg mL⁻¹) and konjac powder (K(m) = 22.7 mg mL⁻¹). RmMan5A hydrolyzed locust bean gum and konjac powder yielding mannobiose, mannotriose, and a mixture of various mannose-linked oligosaccharides. It was confirmed to be a true endo-acting β-1,4-mannanase, which showed requirement of four mannose residues for hydrolysis, and was also capable of catalyzing transglycosylation reactions. These properties make RmMan5A highly useful in the food/feed, paper and pulp, and detergent industries.

  9. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment

    NASA Astrophysics Data System (ADS)

    Santamaría, Luis

    2002-06-01

    Non-marine aquatic vascular plants generally show broad distributional ranges. Climatic factors seem to have limited effects on their distributions, besides the determination of major disjunctions (tropical-temperate-subarctic). Dispersal should have been frequent enough to assure the quick colonisation of extensive areas following glacial retreat, but dispersal limitation is still apparent in areas separated by geographic barriers. Aquatic vascular plants also show limited taxonomic differentiation and low within-species genetic variation. Variation within populations is particularly low, but variation among populations seems to be relatively high, mainly due to the persistence of long-lived clones. Ecotypic differentiation is often related to factors that constrain clonal reproduction (salinity and ephemeral inundation). Inland aquatic habitats are heterogeneous environments, but this heterogeneity largely occurs at relatively small scales (within waterbodies and among neighbouring ones). They also represent a stressful environment for plants, characterised by low carbon availability, shaded conditions, sediment anoxia, mechanical damage by currents and waves, significant restrictions to sexual reproduction, and sometimes also osmotic stress and limited nutrient supply. I propose that the generality of broad distributions and low differentiation among the inland aquatic flora is best explained by a combination of: (1) selection for stress-tolerant taxa with broad tolerance ranges. (2) The selective advantages provided by clonal growth and multiplication, which increases plant tolerance to stress, genet survivorship and population viability. (3) Long-distance dispersal of sexual propagules and high local dispersal of asexual clones. (4) The generality of broad plastic responses, promoted by the combination of clonal growth, high local dispersal, small-scale spatial heterogeneity and temporal variability.

  10. Influence of Molecular Shape on Molecular Orientation and Stability of Vapor-Deposited Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Walters, Diane M.; Johnson, Noah D.; Ediger, M. D.

    Physical vapor deposition is commonly used to prepare active layers in organic electronics. Recently, it has been shown that molecular orientation and packing can be tuned by changing the substrate temperature during deposition, while still producing macroscopically homogeneous films. These amorphous materials can be highly anisotropic when prepared with low substrate temperatures, and they can exhibit exceptional kinetic stability; films retain their favorable packing when heated to high temperatures. Here, we study the influence of molecular shape on molecular orientation and stability. We investigate disc-shaped molecules, such as TCTA and m-MTDATA, nearly spherical molecules, such as Alq3, and linear molecules covering a broad range of aspect ratios, such as p-TTP and BSB-Cz. Disc-shaped molecules have preferential horizontal orientation when deposited at low substrate temperatures, and their orientation can be tuned by changing the substrate temperature. Alq3 forms stable, amorphous films that are optically isotropic when vapor deposited over a broad range of substrate temperatures. This work may guide the choice of material and deposition conditions for vapor-deposited films used in organic electronics and allow for more efficient devices to be fabricated.

  11. Apoplastic sugars and cell-wall invertase are involved in formation of the tolerance of cold-resistant potato plants to hypothermia.

    PubMed

    Deryabin, A N; Burakhanova, E A; Trunova, T I

    2015-01-01

    We studied the involvement of apoplastic sugars (glucose, fructose, and sucrose) and the cell-wall invertase (CWI) in the formation of the tolerance of cold-resistant potato plants (Solanum tuberosum L., cv Désirée) to hypothermia. The activity of CW1 and the content in the cell and the apoplast substrate (sucrose) and the reaction products of this enzyme (glucose and fructose) have a significant influence on the formation of the tolerance of cold-resistant potato plants to hypothermia.

  12. The Staphylococcus aureus leucine aminopeptidase LAP is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine

    PubMed Central

    Carroll, Ronan K.; Veillard, Florian; Gagne, Danielle T.; Lindenmuth, Jarrod M.; Poreba, Marcin; Drag, Marcin; Potempa, Jan; Shaw, Lindsey N.

    2013-01-01

    Staphylococcus aureus is a potent pathogen of humans exhibiting a broad disease range, in part, due to an extensive repertoire of secreted virulence factors, including proteases. Recently, we identified the first example of an intracellular protease (leucine aminopeptidase - LAP) that is required for virulence in S. aureus. Disruption of pepZ, the gene encoding LAP, had no affect on the growth rate of bacteria, however, in systemic and localized infection models the pepZ mutant was significantly attenuated in virulence. Recently, a contradictory report has been published, suggesting that LAP is an extracellular enzyme and it is required for growth in S. aureus. Here, we investigate these results and confirm our previous findings that LAP is localized to the bacterial cytosol and is not required for growth. In addition we conduct a biochemical investigation of purified recombinant LAP identifying optimal conditions for enzymatic activity and substrate preference for hydrolysis. Our results show that LAP has a broad substrate range, including activity against the dipeptide cysteine-glycine and that leucine is not the primary target of LAP. PMID:23241672

  13. Purification and properties of the glutathione S-transferases from the anoxia-tolerant turtle, Trachemys scripta elegans.

    PubMed

    Willmore, William G; Storey, Kenneth B

    2005-07-01

    Glutathione S-transferases (GSTs) play critical roles in detoxification, response to oxidative stress, regeneration of S-thiolated proteins, and catalysis of reactions in nondetoxification metabolic pathways. Liver GSTs were purified from the anoxia-tolerant turtle, Trachemys scripta elegans. Purification separated a homodimeric (subunit relative molecular mass =34 kDa) and a heterodimeric (subunit relative molecular mass = 32.6 and 36.8 kDa) form of GST. The enzymes were purified 23-69-fold and 156-174-fold for homodimeric and heterodimeric GSTs, respectively. Kinetic data gathered using a variety of substrates and inhibitors suggested that both homodimeric and heterodimeric GSTs were of the alpha class although they showed significant differences in substrate affinities and responses to inhibitors. For example, homodimeric GST showed activity with known alpha class substrates, cumene hydroperoxide and p-nitrobenzylchloride, whereas heterodimeric GST showed no activity with cumene hydroperoxide. The specific activity of liver GSTs with chlorodinitrobenzene (CDNB) as the substrate was reduced by 2.6- and 8.7-fold for homodimeric and heterodimeric GSTs isolated from liver of anoxic turtles as compared with aerobic controls, suggesting an anoxia-responsive stable modification of the protein that may alter its function during natural anaerobiosis.

  14. X-ray structures of the Pseudomonas cichorii D-tagatose 3-epimerase mutant form C66S recognizing deoxy sugars as substrates.

    PubMed

    Yoshida, Hiromi; Yoshihara, Akihide; Ishii, Tomohiko; Izumori, Ken; Kamitori, Shigehiro

    2016-12-01

    Pseudomonas cichorii D-tagatose 3-epimerase (PcDTE), which has a broad substrate specificity, efficiently catalyzes the epimerization of not only D-tagatose to D-sorbose but also D-fructose to D-psicose (D-allulose) and also recognizes the deoxy sugars as substrates. In an attempt to elucidate the substrate recognition and catalytic reaction mechanisms of PcDTE for deoxy sugars, the X-ray structures of the PcDTE mutant form with the replacement of Cys66 by Ser (PcDTE_C66S) in complexes with deoxy sugars were determined. These X-ray structures showed that substrate recognition by the enzyme at the 1-, 2-, and 3-positions is responsible for enzymatic activity and that substrate-enzyme interactions at the 4-, 5-, and 6-positions are not essential for the catalytic reaction of the enzyme leading to the broad substrate specificity of PcDTE. They also showed that the epimerization site of 1-deoxy 3-keto D-galactitol is shifted from C3 to C4 and that 1-deoxy sugars may bind to the catalytic site in the inhibitor-binding mode. The hydrophobic groove that acts as an accessible surface for substrate binding is formed through the dimerization of PcDTE. In PcDTE_C66S/deoxy sugar complex structures, bound ligand molecules in both the linear and ring forms were detected in the hydrophobic groove, while bound ligand molecules in the catalytic site were in the linear form. This result suggests that the sugar-ring opening of a substrate may occur in the hydrophobic groove and also that the narrow channel of the passageway to the catalytic site allows a substrate in the linear form to pass through.

  15. Phase-Engineered Type-II Multimetal-Selenide Heterostructures toward Low-Power Consumption, Flexible, Transparent, and Wide-Spectrum Photoresponse Photodetectors.

    PubMed

    Chen, Yu-Ze; Wang, Sheng-Wen; Su, Teng-Yu; Lee, Shao-Hsin; Chen, Chia-Wei; Yang, Chen-Hua; Wang, Kuangye; Kuo, Hao-Chung; Chueh, Yu-Lun

    2018-05-01

    Phase-engineered type-II metal-selenide heterostructures are demonstrated by directly selenizing indium-tin oxide to form multimetal selenides in a single step. The utilization of a plasma system to assist the selenization facilitates a low-temperature process, which results in large-area films with high uniformity. Compared to single-metal-selenide-based photodetectors, the multimetal-selenide photodetectors exhibit obviously improved performance, which can be attributed to the Schottky contact at the interface for tuning the carrier transport, as well as the type-II heterostructure that is beneficial for the separation of the electron-hole pairs. The multimetal-selenide photodetectors exhibit a response to light over a broad spectrum from UV to visible light with a high responsivity of 0.8 A W -1 and an on/off current ratio of up to 10 2 . Interestingly, all-transparent photodetectors are successfully produced in this work. Moreover, the possibility of fabricating devices on flexible substrates is also demonstrated with sustainable performance, high strain tolerance, and high durability during bending tests. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli.

    PubMed

    Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo

    2014-07-01

    Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65.

    PubMed

    Chooklin, Chanika Saenge; Maneerat, Suppasil; Saimmai, Atipan

    2014-05-01

    In this study, biosurfactant-producing bacteria was evaluated for biosurfactant production by using banana peel as a sole carbon source. From the 71 strains screened, Halobacteriaceae archaeon AS65 produced the highest biosurfactant activity. The highest biosurfactant production (5.30 g/l) was obtained when the cells were grown on a minimal salt medium containing 35 % (w/v) banana peel and 1 g/l commercial monosodium glutamate at 30 °C and 200 rpm after 54 h of cultivation. The biosurfactant obtained by extraction with ethyl acetate showed high surface tension reduction (25.5 mN/m), a small critical micelle concentration value (10 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity, and a high level of salt tolerance. The biosurfactant obtained was confirmed as a lipopeptide by using a biochemical test FT-IR, NMR, and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and had the ability to emulsify oil, enhance PAHs solubility, and oil bioremediation.

  18. Purification and biochemical characterization of feruloyl esterases from Aspergillus terreus MTCC 11096.

    PubMed

    Kumar, C Ganesh; Kamle, Avijeet; Kamal, Ahmed

    2013-01-01

    Aspergillus terreus MTCC 11096 isolated from the soils of agricultural fields cultivating sweet sorghum was previously identified to produce feruloyl esterases (FAEs). The enzymes responsible for feruloyl esterase activity were purified to homogeneity and named as AtFAE-1, AtFAE-2, and AtFAE-3. The enzymes were monomeric having molecular masses of 74, 23 and 36 kDa, respectively. Active protein bands were identified by a developed pH-dependent zymogram on native PAGE. The three enzymes exhibited variation in pH tolerance ranging between pH 5-8 and thermostability of up to 55°C. Inhibition studies revealed that the serine residue was essential for feruloyl esterase activity; moreover aspartyl and glutamyl residues are not totally involved at the active site. Metal ions such as Ca(2+), K(+), and Mg(2+) stabilized the enzyme activity for all three FAEs. Kinetic data indicated that all three enzymes showed catalytic efficiencies (k(cat) /K(m)) against different synthesized alkyl and aryl esters indicating their broad substrate specificity. The peptide mass fingerprinting by MALDI/TOF-MS analysis and enzyme affinity toward methoxy and hydroxy substituents on the benzene ring revealed that the AtFAE-1 belonged to type A while AtFAE-2 and AtFAE-3 were type C FAE. The FAEs could release 65 to 90% of ferulic acid from agrowaste substrates in the presence of xylanase. © 2013 American Institute of Chemical Engineers.

  19. The intracellular proton gradient enables anaerobic ammonia oxidizing (anammox) bacteria to tolerate NO2 - inhibition.

    PubMed

    Carvajal-Arroyo, José M; Puyol, Daniel; Li, Guangbin; Sierra-Álvarez, Reyes; Field, Jim A

    2014-12-20

    Anammox bacteria are inhibited by nitrite, which is one of their substrates. By utilizing 2,4 dinitrophenol and carbonyl cyanide m-chlorophenyl hydrazone, two uncouplers of respiration, we demonstrate that nitrite tolerance of anammox cells is strongly dependent on their ability to maintain a proton gradient, which may be the driving force for active nitrite transport system.

  20. Development of glycosynthases with broad glycan specificity for the efficient glyco-remodeling of antibodies.

    PubMed

    Shivatare, Sachin S; Huang, Lin-Ya; Zeng, Yi-Fang; Liao, Jung-Yu; You, Tsai-Hong; Wang, Shi-Yun; Cheng, Ting; Chiu, Chih-Wei; Chao, Ping; Chen, Li-Tzu; Tsai, Tsung-I; Huang, Chiu-Chen; Wu, Chung-Yi; Lin, Nan-Horng; Wong, Chi-Huey

    2018-06-12

    The first systematic investigation of the effect of high mannose, hybrid, and bi- and tri-antennary complex type glycans on the effector functions of antibodies was achieved by the discovery of novel Endo-S2 mutants generated by site-directed mutagenesis as glycosynthases with broad substrate specificity.

  1. Short-term high-fat diet alters substrate utilization during exercise but not glucose tolerance in highly trained athletes.

    PubMed

    Staudacher, H M; Carey, A L; Cummings, N K; Hawley, J A; Burke, L M

    2001-09-01

    We determined the effect of a high-fat diet and carbohydrate (CHO) restoration on substrate oxidation and glucose tolerance in 7 competitive ultra-endurance athletes (peak oxygen uptake [VO(2peak)] 68 +/- 1 ml x kg(-1) x min(-1); mean +/- SEM). For 6 days, subjects consumed a random order of a high-fat (69% fat; FAT-adapt) or a high-CHO (70% CHO; HCHO) diet, each followed by 1 day of a high-CHO diet. Treatments were separated by an 18-day wash out. Substrate oxidation was determined during submaximal cycling (20 min at 65% VO(2peak)) prior to and following the 6 day dietary interventions. Fat oxidation at baseline was not different between treatments (17.4 +/- 2.1 vs. 16.1 +/- 1.3 g x 20 min(-1) for FAT-adapt and HCHO, respectively) but increased 34% after 6 days of FAT-adapt (to 23.3 +/- 0.9 g x 20 min(-1), p < .05) and decreased 30% after HCHO (to 11.3 +/- 1.4 g x 20 min(-1), p < .05). Glucose tolerance, determined by the area under the plasma [glucose] versus time curve during an oral glucose tolerance (OGTT) test, was similar at baseline (545 +/- 21 vs. 520 +/- 28 mmol x L(-1) x 90 min(-1)), after 5-d of dietary intervention (563 +/- 26 vs. 520 +/-18 mmol x L(-1) x 90 min(-1)) and after 1 d of high-CHO (491 +/- 28 vs. 489 +/- 22 mmol x L(-1) x 90 min(-1) for FAT- adapt and HCHO, respectively). An index of whole-body insulin sensitivity ( S(I), 10000/divided by fasting [glucose] x fasting [insulin] x mean [glucose] during OGTT x mean [insulin] during OGTT) was similar at baseline (15 +/- 2 vs. 17 +/- 5 arbitrary units), after 5-d of dietary intervention (15 +/- 2 vs. 15 +/- 2) and after 24 h of CHO loading (17 +/- 3 vs. 18 +/- 2 for FAT- adapt and HCHO, respectively). We conclude that despite marked changes in the pattern of substrate oxidation during submaximal exercise, short-term adaptation to a high-fat diet does not alter whole-body glucose tolerance or an index of insulin sensitivity in highly-trained individuals.

  2. Solid oxide fuel cell process and apparatus

    DOEpatents

    Cooper, Matthew Ellis [Morgantown, WV; Bayless, David J [Athens, OH; Trembly, Jason P [Durham, NC

    2011-11-15

    Conveying gas containing sulfur through a sulfur tolerant planar solid oxide fuel cell (PSOFC) stack for sulfur scrubbing, followed by conveying the gas through a non-sulfur tolerant PSOFC stack. The sulfur tolerant PSOFC stack utilizes anode materials, such as LSV, that selectively convert H.sub.2S present in the fuel stream to other non-poisoning sulfur compounds. The remaining balance of gases remaining in the completely or near H.sub.2S-free exhaust fuel stream is then used as the fuel for the conventional PSOFC stack that is downstream of the sulfur-tolerant PSOFC. A broad range of fuels such as gasified coal, natural gas and reformed hydrocarbons are used to produce electricity.

  3. Synthesis of polycyclic spiroindolines by highly diastereoselective interrupted Ugi cascade reactions of 3-(2-isocyanoethyl)indoles.

    PubMed

    Saya, Jordy M; Oppelaar, Barry; Cioc, Răzvan C; van der Heijden, Gydo; Vande Velde, Christophe M L; Orru, Romano V A; Ruijter, Eelco

    2016-10-13

    We report a highly diastereoselective interrupted Ugi reaction to construct a broad range of structurally congested and stereochemically complex spiroindolines from tryptamine-derived isocyanides. The reaction is facilitated by using fluorinated alcohols (TFE or HFIP) as solvents and tolerates a broad range of amines, aldehydes and 2-isocyanoethylindoles to give polycyclic products in moderate to excellent yields.

  4. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOEpatents

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  5. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOEpatents

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  6. Advanced Information Processing System - Fault detection and error handling

    NASA Technical Reports Server (NTRS)

    Lala, J. H.

    1985-01-01

    The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles, including tactical and transport aircraft, and manned and autonomous spacecraft. A proof-of-concept (POC) system is now in the detailed design and fabrication phase. This paper gives an overview of a preliminary fault detection and error handling philosophy in AIPS.

  7. Succession sequence of lactic acid bacteria driven by environmental factors and substrates throughout the brewing process of Shanxi aged vinegar.

    PubMed

    Zheng, Yu; Mou, Jun; Niu, Jiwei; Yang, Shuai; Chen, Lin; Xia, Menglei; Wang, Min

    2018-03-01

    Lactic acid bacteria (LAB) are essential microbiota for the fermentation and flavor formation of Shanxi aged vinegar, a famous Chinese traditional cereal vinegar that is manufactured using open solid-state fermentation (SSF) technology. However, the dynamics of LAB in this SSF process and the underlying mechanism remain poorly understood. Here, the diversity of LAB and the potential driving factors of the entire process were analyzed by combining culture-independent and culture-dependent methods. Canonical correlation analysis indicated that ethanol, acetic acid, and temperature that result from the metabolism of microorganisms serve as potential driving factors for LAB succession. LAB strains were periodically isolated, and the characteristics of 57 isolates on environmental factor tolerance and substrate utilization were analyzed to understand the succession sequence. The environmental tolerance of LAB from different stages was in accordance with their fermentation conditions. Remarkable correlations were identified between LAB growth and environmental factors with 0.866 of ethanol (70 g/L), 0.756 of acetic acid (10 g/L), and 0.803 of temperature (47 °C). More gentle or harsh environments (less or more than 60 or 80 g/L of ethanol, 5 or 20 g/L of acetic acid, and 30 or 55 °C temperature) did not affect the LAB succession. The utilization capability evaluation of the 57 isolates for 95 compounds proved that strains from different fermentation stages exhibited different predilections on substrates to contribute to the fermentation at different stages. Results demonstrated that LAB succession in the SSF process was driven by the capabilities of environmental tolerance and substrate utilization.

  8. Biosynthesis of 2-deoxysugars using whole-cell catalyst expressing 2-deoxy-D-ribose 5-phosphate aldolase.

    PubMed

    Li, Jitao; Yang, Jiangang; Men, Yan; Zeng, Yan; Zhu, Yueming; Dong, Caixia; Sun, Yuanxia; Ma, Yanhe

    2015-10-01

    2-Deoxy-D-ribose 5-phosphate aldolase (DERA) accepts a wide variety of aldehydes and is used in de novo synthesis of 2-deoxysugars, which have important applications in drug manufacturing. However, DERA has low preference for non-phosphorylated substrates. In this study, DERA from Klebsiella pneumoniae (KDERA) was mutated to increase its enzyme activity and substrate tolerance towards non-phosphorylated polyhydroxy aldehyde. Mutant KDERA(K12) (S238D/F200I/ΔY259) showed a 3.15-fold improvement in enzyme activity and a 1.54-fold increase in substrate tolerance towards D-glyceraldehyde compared with the wild type. Furthermore, a whole-cell transformation strategy using resting cells of the BL21(pKDERA12) strain, containing the expressed plasmid pKDERA12, resulted in increase in 2-deoxy-D-ribose yield from 0.41 mol/mol D-glyceraldehyde to 0.81 mol/mol D-glyceraldehyde and higher substrate tolerance from 0.5 to 3 M compared to in vitro assays. With further optimization of the transformation process, the BL21(pKDERA12) strain produced 2.14 M (287.06 g/L) 2-deoxy-D-robose (DR), with a yield of 0.71 mol/mol D-glyceraldehyde and average productivity of 0.13 mol/L·h (17.94 g/L·h). These results demonstrate the potential for large-scale production of 2-deoxy-D-ribose using the BL21(pKDERA12) strain. Furthermore, the BL21(pKDERA12) strain also exhibited the ability to efficiently produce 2-deoxy-D-altrose from D-erythrose, as well as 2-deoxy-L-xylose and 2-deoxy-L-ribose from L-glyceraldehyde.

  9. Effect of tooth substrate and porcelain thickness on porcelain veneer failure loads in vitro.

    PubMed

    Ge, Chunling; Green, Chad C; Sederstrom, Dalene A; McLaren, Edward A; Chalfant, James A; White, Shane N

    2017-12-19

    Bonded porcelain veneers are widely used esthetic restorations. High success and survival rates have been reported, but failures do occur. Fractures are the commonest failure mode. Minimally invasive or thin veneers have gained popularity. Increased enamel and porcelain thickness improve the strength of veneers bonded to enamel, but less is known about dentin or mixed substrates. The purpose of this in vitro study was to measure the influences of tooth substrate type (all-enamel, all-dentin, or half-dentin-half-enamel) and veneer thickness on the loads needed to cause initial and catastrophic porcelain veneer failure. Model discoid porcelain veneer specimens of varying thicknesses were bonded to the flattened facial surfaces of incisors with different enamel and dentin tooth substrates, artificially aged, and loaded to failure with a small sphere. Initial and catastrophic fracture events were identified and analyzed statistically and fractographically. Fracture events included initial Hertzian cracks, intermediate radial cracks, and catastrophic gross failure. All specimens retained some porcelain after catastrophic failure. Cement failure occurred at the cement-porcelain interface not at the cement-tooth interface. Porcelain veneers bonded to enamel were substantially stronger and more damage-tolerant than those bonded to dentin or mixed substrates. Increased porcelain thickness substantially raised the loads to catastrophic failure on enamel substrates but only moderately raised the loads to catastrophic failure on dentin or mixed substrates. The veneers bonded to half-dentin-half-enamel behaved remarkably like those bonded wholly to dentin. Porcelain veneers bonded to enamel were substantially stronger and more damage-tolerant than those bonded to dentin or half-enamel-half dentin. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Photoluminescence enhancement of silicon quantum dot monolayer by plasmonic substrate fabricated by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Yanagawa, Hiroto; Inoue, Asuka; Sugimoto, Hiroshi; Shioi, Masahiko; Fujii, Minoru

    2017-12-01

    Near-field coupling between a silicon quantum dot (Si-QD) monolayer and a plasmonic substrate fabricated by nano-imprint lithography and having broad multiple resonances in the near-infrared (NIR) window of biological substances was studied by precisely controlling the QDs-substrate distance. A strong enhancement of the NIR photoluminescence (PL) of Si-QDs was observed. Detailed analyses of the PL and PL excitation spectra, the PL decay dynamics, and the reflectance spectra revealed that both the excitation cross-sections and the emission rates are enhanced by the surface plasmon resonances, thanks to the broad multiple resonances of the plasmonic substrate, and that the relative contribution of the two enhancement processes depends strongly on the excitation wavelength. Under excitation by short wavelength photons (405 nm), where enhancement of the excitation cross-section is not expected, the maximum enhancement was obtained when the QDs-substrate distance was around 30 nm. On the other hand, under long wavelength excitation (641 nm), where strong excitation cross-section enhancement is expected, the largest enhancement was obtained when the distance was minimum (around 1 nm). The achievement of efficient excitation of NIR luminescence of Si-QDs by long wavelength photons paves the way for the development of Si-QD-based fluorescence bio-sensing devices with a high bound-to-free ratio.

  11. Distinguishing the central drive to tremor in Parkinson's disease and essential tremor.

    PubMed

    Brittain, John-Stuart; Cagnan, Hayriye; Mehta, Arpan R; Saifee, Tabish A; Edwards, Mark J; Brown, Peter

    2015-01-14

    Parkinson's disease (PD) and essential tremor (ET) are the two most common movement disorders. Both have been associated with similar patterns of network activation leading to the suggestion that they may result from similar network dysfunction, specifically involving the cerebellum. Here, we demonstrate that parkinsonian tremors and ETs result from distinct patterns of interactions between neural oscillators. These patterns are reflected in the tremors' derived frequency tolerance, a novel measure readily attainable from bedside accelerometry. Frequency tolerance characterizes the temporal evolution of tremor by quantifying the range of frequencies over which the tremor may be considered stable. We found that patients with PD (N = 24) and ET (N = 21) were separable based on their frequency tolerance, with PD associated with a broad range of stable frequencies whereas ET displayed characteristics consistent with a more finely tuned oscillatory drive. Furthermore, tremor was selectively entrained by transcranial alternating current stimulation applied over cerebellum. Narrow frequency tolerances predicted stronger entrainment of tremor by stimulation, providing good evidence that the cerebellum plays an important role in pacing those tremors. The different patterns of frequency tolerance could be captured with a simple model based on a broadly coupled set of neural oscillators for PD, but a more finely tuned set of oscillators in ET. Together, these results reveal a potential organizational principle of the human motor system, whose disruption in PD and ET dictates how patients respond to empirical, and potentially therapeutic, interventions that interact with their underlying pathophysiology. Copyright © 2015 Brittain et al.

  12. Distinguishing the Central Drive to Tremor in Parkinson's Disease and Essential Tremor

    PubMed Central

    Brittain, John-Stuart; Cagnan, Hayriye; Mehta, Arpan R.; Saifee, Tabish A.; Edwards, Mark J.

    2015-01-01

    Parkinson's disease (PD) and essential tremor (ET) are the two most common movement disorders. Both have been associated with similar patterns of network activation leading to the suggestion that they may result from similar network dysfunction, specifically involving the cerebellum. Here, we demonstrate that parkinsonian tremors and ETs result from distinct patterns of interactions between neural oscillators. These patterns are reflected in the tremors' derived frequency tolerance, a novel measure readily attainable from bedside accelerometry. Frequency tolerance characterizes the temporal evolution of tremor by quantifying the range of frequencies over which the tremor may be considered stable. We found that patients with PD (N = 24) and ET (N = 21) were separable based on their frequency tolerance, with PD associated with a broad range of stable frequencies whereas ET displayed characteristics consistent with a more finely tuned oscillatory drive. Furthermore, tremor was selectively entrained by transcranial alternating current stimulation applied over cerebellum. Narrow frequency tolerances predicted stronger entrainment of tremor by stimulation, providing good evidence that the cerebellum plays an important role in pacing those tremors. The different patterns of frequency tolerance could be captured with a simple model based on a broadly coupled set of neural oscillators for PD, but a more finely tuned set of oscillators in ET. Together, these results reveal a potential organizational principle of the human motor system, whose disruption in PD and ET dictates how patients respond to empirical, and potentially therapeutic, interventions that interact with their underlying pathophysiology. PMID:25589772

  13. Response of single junction GaAs/GaAs and GaAs/Ge solar cells to multiple doses of 1 MeV electrons

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Szedon, J. R.; Bartko, J.; Chung, M. A.

    1989-01-01

    A comparison of the radiation tolerance of MOCVD-grown GaAs cells and GaAs/Ge cells was undertaken using 1 MeV electrons. The GaAs/Ge cells are somewhat more tolerant of 1 MeV electron irradiation and more responsive to annealing than are the GaAs/GaAs cells examined in this study. However, both types of cells suffer a greater degradation in efficiency than has been observed in other recent studies. The reason for this is not certain, but it may be associated with an emitter thickness which appears to be greater than desired. The deep level transient spectroscopy (DLTS) spectra following irradiation are not significantly different for the GaAs/Ge and the GaAs/GaAs cells, with each having just two peaks. The annealing behavior of these peaks is also similar in the two samples examined. It appears that no penalty in radiation tolerance, and perhaps some benefit, is associated with fabricating MOCVD GaAs cells on Ge substrates rather than GaAs substrates.

  14. Mechanistic Basis for High Stereoselectivity and Broad Substrate Scope in the (salen)Co(III)-Catalyzed Hydrolytic Kinetic Resolution

    PubMed Central

    Ford, David D.; Nielsen, Lars P. C.; Zuend, Stephan J.; Jacobsen, Eric N.

    2013-01-01

    In the (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides, the rate- and stereoselectivity-determining epoxide ring-opening step occurs by a cooperative bimetallic mechanism with one Co(III) complex acting as a Lewis acid and another serving to deliver the hydroxide nucleophile. In this paper, we analyze the basis for the extraordinarily high stereoselectivity and broad substrate scope observed in the HKR. We demonstrate that the stereochemistry of each of the two (salen)Co(III) complexes in the rate-determining transition structure is important for productive catalysis: a measurable rate of hydrolysis occurs only if the absolute stereochemistry of each of these (salen)Co(III) complexes is the same. Experimental and computational studies provide strong evidence that stereochemical communication in the HKR is mediated by the stepped conformation of the salen ligand, and not the shape of the chiral diamine backbone of the ligand. A detailed computational analysis reveals that the epoxide binds the Lewis acidic Co(III) complex in a well-defined geometry imposed by stereoelectronic, rather than steric effects. This insight serves as the basis of a complete stereochemical and transition structure model that sheds light on the reasons for the broad substrate generality of the HKR. PMID:24041239

  15. Mechanistic basis for high stereoselectivity and broad substrate scope in the (salen)Co(III)-catalyzed hydrolytic kinetic resolution.

    PubMed

    Ford, David D; Nielsen, Lars P C; Zuend, Stephan J; Musgrave, Charles B; Jacobsen, Eric N

    2013-10-16

    In the (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides, the rate- and stereoselectivity-determining epoxide ring-opening step occurs by a cooperative bimetallic mechanism with one Co(III) complex acting as a Lewis acid and another serving to deliver the hydroxide nucleophile. In this paper, we analyze the basis for the extraordinarily high stereoselectivity and broad substrate scope observed in the HKR. We demonstrate that the stereochemistry of each of the two (salen)Co(III) complexes in the rate-determining transition structure is important for productive catalysis: a measurable rate of hydrolysis occurs only if the absolute stereochemistry of each of these (salen)Co(III) complexes is the same. Experimental and computational studies provide strong evidence that stereochemical communication in the HKR is mediated by the stepped conformation of the salen ligand, and not the shape of the chiral diamine backbone of the ligand. A detailed computational analysis reveals that the epoxide binds the Lewis acidic Co(III) complex in a well-defined geometry imposed by stereoelectronic rather than steric effects. This insight serves as the basis of a complete stereochemical and transition structure model that sheds light on the reasons for the broad substrate generality of the HKR.

  16. Towards substrate engineering of graphene-silicon Schottky diode photodetectors.

    PubMed

    Selvi, Hakan; Unsuree, Nawapong; Whittaker, Eric; Halsall, Matthew P; Hill, Ernie W; Thomas, Andrew; Parkinson, Patrick; Echtermeyer, Tim J

    2018-02-15

    Graphene-silicon Schottky diode photodetectors possess beneficial properties such as high responsivities and detectivities, broad spectral wavelength operation and high operating speeds. Various routes and architectures have been employed in the past to fabricate devices. Devices are commonly based on the removal of the silicon-oxide layer on the surface of silicon by wet-etching before deposition of graphene on top of silicon to form the graphene-silicon Schottky junction. In this work, we systematically investigate the influence of the interfacial oxide layer, the fabrication technique employed and the silicon substrate on the light detection capabilities of graphene-silicon Schottky diode photodetectors. The properties of devices are investigated over a broad wavelength range from near-UV to short-/mid-infrared radiation, radiation intensities covering over five orders of magnitude as well as the suitability of devices for high speed operation. Results show that the interfacial layer, depending on the required application, is in fact beneficial to enhance the photodetection properties of such devices. Further, we demonstrate the influence of the silicon substrate on the spectral response and operating speed. Fabricated devices operate over a broad spectral wavelength range from the near-UV to the short-/mid-infrared (thermal) wavelength regime, exhibit high photovoltage responses approaching 10 6 V W -1 and short rise- and fall-times of tens of nanoseconds.

  17. Light Management in Transparent Conducting Oxides by Direct Fabrication of Periodic Surface Arrays

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Sachse, C.; Lasagni, A. F.

    Line- and hexagonal-like periodic textures were fabricated on aluminium zinc oxide (AZO) using direct laser interference patterning method. It was found that hexagonally patterned surfaces show a higher performance in both transparency and diffraction properties compared to line-like textured and non-patterned substrates. Furthermore, the electrical resistance of the processed AZO coated substrates remained below the tolerance values for transparent conducting electrodes.

  18. Recording and reading temperature tolerance in holographic data storage, in relation to the anisotropic thermal expansion of a photopolymer medium.

    PubMed

    Tanaka, Tomiji

    2009-08-03

    In holographic data storage, it is difficult to retrieve data if the temperature difference between recording and reading exceeds 2 K. To widen this tolerance, a compensation method--adjusting the wavelengths and incident directions of the recording and reading beams--has been proposed. In this paper, for the first time, a method for calculating the recording and reading temperature tolerance using this compensation is introduced. To widen the narrow tolerance, typically +/- 10 K, it is effective to increase the coefficient of thermal expansion (CTE) of the substrate or decrease the CTE of the photopolymer. Although reducing the Numerical aperture of the objective lens is also effective, it degrades the recording density.

  19. Palladium-catalyzed Br/D exchange of arenes: Selective deuterium incorporation with versatile functional group tolerance and high efficiency

    DOE PAGES

    Zhang, Honghai -Hai; Bonnesen, Peter V.; Hong, Kunlun

    2015-07-13

    There is a facile method for introducing one or more deuterium atoms onto an aromatic nucleus via Br/D exchange with high functional group tolerance and high incorporation efficiency is disclosed. Deuterium-labeled aryl chlorides and aryl borates which could be used as substrates in cross-coupling reactions to construct more complicated deuterium-labeled compounds can also be synthesized by this method.

  20. Self-assembled antireflection coatings for light trapping based on SiGe random metasurfaces

    NASA Astrophysics Data System (ADS)

    Bouabdellaoui, Mohammed; Checcucci, Simona; Wood, Thomas; Naffouti, Meher; Sena, Robert Paria; Liu, Kailang; Ruiz, Carmen M.; Duche, David; le Rouzo, Judikael; Escoubas, Ludovic; Berginc, Gerard; Bonod, Nicolas; Zazoui, Mimoun; Favre, Luc; Metayer, Leo; Ronda, Antoine; Berbezier, Isabelle; Grosso, David; Gurioli, Massimo; Abbarchi, Marco

    2018-03-01

    We demonstrate a simple self-assembly method based on solid state dewetting of ultrathin silicon films and germanium deposition for the fabrication of efficient antireflection coatings on silicon for light trapping. We fabricate SiGe islands with a high surface density, randomly positioned and broadly varied in size. This allows one to reduce the reflectance to low values in a broad spectral range (from 500 nm to 2500 nm) and a broad angle (up to 55°) and to trap within the wafer a large portion of the impinging light (˜40 % ) also below the band gap, where the Si substrate is nonabsorbing. Theoretical simulations agree with the experimental results, showing that the efficient light coupling into the substrate is mediated by Mie resonances formed within the SiGe islands. This lithography-free method can be implemented on arbitrarily thick or thin SiO2 layers and its duration only depends on the sample thickness and on the annealing temperature.

  1. Catalytic mechanism of phenylacetone monooxygenases for non-native linear substrates.

    PubMed

    Carvalho, Alexandra T P; Dourado, Daniel F A R; Skvortsov, Timofey; de Abreu, Miguel; Ferguson, Lyndsey J; Quinn, Derek J; Moody, Thomas S; Huang, Meilan

    2017-10-11

    Phenylacetone monooxygenase (PAMO) is the most stable and thermo-tolerant member of the Baeyer-Villiger monooxygenase family, and therefore it is an ideal candidate for the synthesis of industrially relevant compounds. However, its limited substrate scope has largely limited its industrial applications. In the present work, we provide, for the first time, the catalytic mechanism of PAMO for the native substrate phenylacetone as well as for a linear non-native substrate 2-octanone, using molecular dynamics simulations, quantum mechanics and quantum mechanics/molecular mechanics calculations. We provide a theoretical basis for the preference of the enzyme for the native aromatic substrate over non-native linear substrates. Our study provides fundamental atomic-level insights that can be employed in the rational engineering of PAMO for wide applications in industrial biocatalysis, in particular, in the biotransformation of long-chain aliphatic oils into potential biodiesels.

  2. Broad Band Antireflection Coating on Zinc Sulphide Window for Shortwave infrared cum Night Vision System

    NASA Astrophysics Data System (ADS)

    Upadhyaya, A. S.; Bandyopadhyay, P. K.

    2012-11-01

    In state of art technology, integrated devices are widely used or their potential advantages. Common system reduces weight as well as total space covered by its various parts. In the state of art surveillance system integrated SWIR and night vision system used for more accurate identification of object. In this system a common optical window is used, which passes the radiation of both the regions, further both the spectral regions are separated in two channels. ZnS is a good choice for a common window, as it transmit both the region of interest, night vision (650 - 850 nm) as well as SWIR (0.9 - 1.7 μm). In this work a broad band anti reflection coating is developed on ZnS window to enhance the transmission. This seven layer coating is designed using flip flop design method. After getting the final design, some minor refinement is done, using simplex method. SiO2 and TiO2 coating material combination is used for this work. The coating is fabricated by physical vapour deposition process and the materials were evaporated by electron beam gun. Average transmission of both side coated substrate from 660 to 1700 nm is 95%. This coating also acts as contrast enhancement filter for night vision devices, as it reflect the region of 590 - 660 nm. Several trials have been conducted to check the coating repeatability, and it is observed that transmission variation in different trials is not very much and it is under the tolerance limit. The coating also passes environmental test for stability.

  3. Complete Genome Sequence of the Rhizobacterium Pseudomonas trivialis Strain IHBB745 with Multiple Plant Growth-Promoting Activities and Tolerance to Desiccation and Alkalinity

    PubMed Central

    Swarnkar, Mohit Kumar; Vyas, Pratibha; Rahi, Praveen; Thakur, Rishu; Thakur, Namika; Singh, Anil Kumar

    2015-01-01

    The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response. PMID:26337878

  4. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    PubMed Central

    Mikkelsen, Kristian H.; Frost, Morten; Bahl, Martin I.; Licht, Tine R.; Jensen, Ulrich S.; Rosenberg, Jacob; Pedersen, Oluf; Hansen, Torben; Rehfeld, Jens F.; Holst, Jens J.; Vilsbøll, Tina; Knop, Filip K.

    2015-01-01

    Objective The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Methods Meal tests with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Results Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release. Conclusion As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males. Trial Registration clinicaltrials.gov NCT01633762 PMID:26562532

  5. Multi-substrate flavonol O-glucosyltransferases from strawberry (Fragaria×ananassa) achene and receptacle

    PubMed Central

    Griesser, Markus; Vitzthum, Florian; Fink, Barbara; Bellido, Mari Luz; Raasch, Constanze; Munoz-Blanco, Juan; Schwab, Wilfried

    2008-01-01

    In an effort to characterize fruit ripening-related genes functionally, two glucosyltransferases, FaGT6 and FaGT7, were cloned from a strawberry (Fragaria×ananassa) cDNA library and the full-length open reading frames were amplified by rapid amplification of cDNA ends. FaGT6 and FaGT7 were expressed heterologously as fusion proteins in Escherichia coli and target protein was purified using affinity chromatography. Both recombinant enzymes exhibited a broad substrate tolerance in vitro, accepting numerous flavonoids, hydroxycoumarins, and naphthols. FaGT6 formed 3-O-glucosides and minor amounts of 7-O-, 4′-O-, and 3′-O-monoglucosides and one diglucoside from flavonols such as quercetin. FaGT7 converted quercetin to the 3-O-glucoside and 4′-O-glucoside and minor levels of the 7- and 3′-isomers but formed no diglucoside. Gene expression studies showed that both genes are strongly expressed in achenes of small-sized green fruits, while the expression levels were generally lower in the receptacle. Significant levels of quercetin 3-O-, 7-O-, and 4′-O-glucosides, kaempferol 3-O- and 7-O-glucosides, as well as isorhamnetin 7-O-glucoside, were identified in achenes and the receptacle. In the receptacle, the expression of both genes is negatively controlled by auxin which correlates with the ripening-related gene expression in this tissue. Salicylic acid, a known signal molecule in plant defence, induces the expression of both genes. Thus, it appears that FaGT6 and FaGT7 are involved in the glucosylation of flavonols and may also participate in xenobiotic metabolism. The latter function is supported by the proven ability of strawberries to glucosylate selected unnatural substrates injected in ripe fruits. This report presents the first biochemical characterization of enzymes mainly expressed in strawberry achenes and provides the foundation of flavonoid metabolism in the seeds. PMID:18487633

  6. Master of all trades: thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas.

    PubMed

    Tepolt, Carolyn K; Somero, George N

    2014-04-01

    As global warming accelerates, there is increasing concern about how ecosystems may change as a result of species loss and replacement. Here, we examined the thermal physiology of the European green crab (Carcinus maenas Linnaeus 1758), a globally invasive species, along three parallel thermal gradients in its native and invasive ranges. At each site, we assessed cardiac physiology to determine heat and cold tolerance and acclimatory plasticity. We found that, overall, the species is highly tolerant of both heat and cold, and that it survives higher temperatures than co-occurring native marine crustaceans. Further, we found that both heat and cold tolerance are plastic in response to short-term acclimation (18-31 days at either 5 or 25°C). Comparing patterns within ranges, we found latitudinal gradients in thermal tolerance in the native European range and in the invasive range in eastern North America. This pattern is strongest in the native range, and likely evolved there. Because of a complicated invasion history, the latitudinal pattern in the eastern North American invasive range may be due either to rapid adaptation post-invasion or to adaptive differences between the ancestral populations that founded the invasion. Overall, the broad thermal tolerance ranges of green crabs, which may facilitate invasion of novel habitats, derive from high inherent eurythermality and acclimatory plasticity and potentially adaptive differentiation among populations. The highly flexible physiology that results from these capacities may represent the hallmark of a successful invasive species, and may provide a model for success in a changing world.

  7. Enhanced tolerance to stretch-induced performance degradation of stretchable MnO2-based supercapacitors.

    PubMed

    Huang, Yan; Huang, Yang; Meng, Wenjun; Zhu, Minshen; Xue, Hongtao; Lee, Chun-Sing; Zhi, Chunyi

    2015-02-04

    The performance of many stretchable electronics, such as energy storage devices and strain sensors, is highly limited by the structural breakdown arising from the stretch imposed. In this article, we focus on a detailed study on materials matching between functional materials and their conductive substrate, as well as enhancement of the tolerance to stretch-induced performance degradation of stretchable supercapacitors, which are essential for the design of a stretchable device. It is revealed that, being widely utilized as the electrode material of the stretchable supercapacitor, metal oxides such as MnO2 nanosheets have serious strain-induced performance degradation due to their rigid structure. In comparison, with conducting polymers like a polypyrrole (PPy) film as the electrochemically active material, the performance of stretchable supercapacitors can be well preserved under strain. Therefore, a smart design is to combine PPy with MnO2 nanosheets to achieve enhanced tolerance to strain-induced performance degradation of MnO2-based supercapacitors, which is realized by fabricating an electrode of PPy-penetrated MnO2 nanosheets. The composite electrodes exhibit a remarkable enhanced tolerance to strain-induced performance degradation with well-preserved performance over 93% under strain. The detailed morphology and electrochemical impedance variations are investigated for the mechanism analyses. Our work presents a systematic investigation on the selection and matching of electrode materials for stretchable supercapacitors to achieve high performance and great tolerance to strain, which may guide the selection of functional materials and their substrate materials for the next-generation of stretchable electronics.

  8. Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction.

    PubMed

    Wang, Hualei; Sun, Huihui; Wei, Dongzhi

    2013-02-18

    A nitrilase-mediated pathway has significant advantages in the production of optically pure (R)-(-)-mandelic acid. However, unwanted byproduct, low enantioselectivity, and specific activity reduce its value in practical applications. An ideal nitrilase that can efficiently hydrolyze mandelonitrile to optically pure (R)-(-)-mandelic acid without the unwanted byproduct is needed. A novel nitrilase (BCJ2315) was discovered from Burkholderia cenocepacia J2315 through phylogeny-based enzymatic substrate specificity prediction (PESSP). This nitrilase is a mandelonitrile hydrolase that could efficiently hydrolyze mandelonitrile to (R)-(-)-mandelic acid, with a high enantiomeric excess of 98.4%. No byproduct was observed in this hydrolysis process. BCJ2315 showed the highest identity of 71% compared with other nitrilases in the amino acid sequence. BCJ2315 possessed the highest activity toward mandelonitrile and took mandelonitrile as the optimal substrate based on the analysis of substrate specificity. The kinetic parameters Vmax, Km, Kcat, and Kcat/Km toward mandelonitrile were 45.4 μmol/min/mg, 0.14 mM, 15.4 s(-1), and 1.1×10(5) M(-1)s(-1), respectively. The recombinant Escherichia coli M15/BCJ2315 had a strong substrate tolerance and could completely hydrolyze mandelonitrile (100 mM) with fewer amounts of wet cells (10 mg/ml) within 1 h. PESSP is an efficient method for discovering an ideal mandelonitrile hydrolase. BCJ2315 has high affinity and catalytic efficiency toward mandelonitrile. This nitrilase has great advantages in the production of optically pure (R)-(-)-mandelic acid because of its high activity and enantioselectivity, strong substrate tolerance, and having no unwanted byproduct. Thus, BCJ2315 has great potential in the practical production of optically pure (R)-(-)-mandelic acid in the industry.

  9. CD22 and Siglec-G in B cell function and tolerance

    PubMed Central

    Poe, Jonathan C.; Tedder, Thomas F.

    2012-01-01

    The immune system has evolved into two main arms, the primitive innate arm that is the first line of defense but relatively short-lived and broad acting, and the advanced adaptive arm that generates immunologic “memory” allowing rapid, specific recall responses. T cell-independent type-2 (TI-2) antigens (Ags) invoke innate immune responses. However, due to its “at the ready” nature, how the innate arm of the immune system maintains tolerance to potentially abundant host TI-2 Ags remains elusive. Therefore, it is important to define the mechanisms that establish innate immune tolerance. This review highlights recent insights into B cell tolerance to theoretical self TI-2 Ags, and examines how the B cell-restricted Siglecs, CD22 and Siglec-G, might contribute to this process. PMID:22677186

  10. Structural basis for the substrate specificity of PepA from Streptococcus pneumoniae, a dodecameric tetrahedral protease.

    PubMed

    Kim, Doyoun; San, Boi Hoa; Moh, Sang Hyun; Park, Hyejin; Kim, Dong Young; Lee, Sangho; Kim, Kyeong Kyu

    2010-01-01

    Regulated cytosolic proteolysis is one of the key cellular processes ensuring proper functioning of a cell. M42 family proteases show a broad spectrum of substrate specificities, but the structural basis for such diversity of the substrate specificities is lagging behind biochemical data. Here we report the crystal structure of PepA from Streptococcus pneumoniae, a glutamyl aminopeptidase belonging to M42 family (SpPepA). We found that Arg-257 in the substrate binding pocket is strategically positioned so that Arg-257 can make electrostatic interactions with the acidic residue of a substrate at its N-terminus. Structural comparison of the substrate binding pocket of the M42 family proteases, along with the structure-based multiple sequence alignment, argues that the appropriate electrostatic interactions contribute to the selective substrate specificity of SpPepA. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Functional and Structural Characterization of Purine Nucleoside Phosphorylase from Kluyveromyces lactis and Its Potential Applications in Reducing Purine Content in Food

    PubMed Central

    Mahor, Durga; Priyanka, Anu; Prasad, Gandham S; Thakur, Krishan Gopal

    2016-01-01

    Consumption of foods and beverages with high purine content increases the risk of hyperuricemia, which causes gout and can lead to cardiovascular, renal, and other metabolic disorders. As patients often find dietary restrictions challenging, enzymatically lowering purine content in popular foods and beverages offers a safe and attractive strategy to control hyperuricemia. Here, we report structurally and functionally characterized purine nucleoside phosphorylase (PNP) from Kluyveromyces lactis (KlacPNP), a key enzyme involved in the purine degradation pathway. We report a 1.97 Å resolution crystal structure of homotrimeric KlacPNP with an intrinsically bound hypoxanthine in the active site. KlacPNP belongs to the nucleoside phosphorylase-I (NP-I) family, and it specifically utilizes 6-oxopurine substrates in the following order: inosine > guanosine > xanthosine, but is inactive towards adenosine. To engineer enzymes with broad substrate specificity, we created two point variants, KlacPNPN256D and KlacPNPN256E, by replacing the catalytically active Asn256 with Asp and Glu, respectively, based on structural and comparative sequence analysis. KlacPNPN256D not only displayed broad substrate specificity by utilizing both 6-oxopurines and 6-aminopurines in the order adenosine > inosine > xanthosine > guanosine, but also displayed reversal of substrate specificity. In contrast, KlacPNPN256E was highly specific to inosine and could not utilize other tested substrates. Beer consumption is associated with increased risk of developing gout, owing to its high purine content. Here, we demonstrate that KlacPNP and KlacPNPN256D could be used to catalyze a key reaction involved in lowering beer purine content. Biochemical properties of these enzymes such as activity across a wide pH range, optimum activity at about 25°C, and stability for months at about 8°C, make them suitable candidates for food and beverage industries. Since KlacPNPN256D has broad substrate specificity, a combination of engineered KlacPNP and other enzymes involved in purine degradation could effectively lower the purine content in foods and beverages. PMID:27768715

  12. Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu.

    PubMed

    Wakelin, Steven; Gerard, Emily; Black, Amanda; Hamonts, Kelly; Condron, Leo; Yuan, Tong; van Nostrand, Joy; Zhou, Jizhong; O'Callaghan, Maureen

    2014-07-01

    Pollution induced community tolerance (PICT) to Cu(2+), and co-tolerance to nanoparticulate Cu, ionic silver (Ag(+)), and vancomycin were measured in field soils treated with Cu(2+) 15 years previously. EC50 values were determined using substrate induced respiration and correlations made against soil physicochemical properties, microbial community structure, physiological status (qCO2; metabolic quotient), and abundances of genes associated with metal and antibiotic resistance. Previous level of exposure to copper was directly (P < 0.05) associated with tolerance to addition of new Cu(2+), and also of nanoparticle Cu. However, Cu-exposed communities had no co-tolerance to Ag(+) and had increased susceptibly to vancomycin. Increased tolerance to both Cu correlated (P < 0.05) with increased metabolic quotient, potentially indicating that the community directed more energy towards cellular maintenance rather than biomass production. Neither bacterial or fungal community composition nor changes in the abundance of genes involved with metal resistance were related to PICT or co-tolerance mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Numerical analysis of high-power broad-area laser diode with improved heat sinking structure using epitaxial liftoff technique

    NASA Astrophysics Data System (ADS)

    Kim, Younghyun; Sung, Yunsu; Yang, Jung-Tack; Choi, Woo-Young

    2018-02-01

    The characteristics of high-power broad-area laser diodes with the improved heat sinking structure are numerically analyzed by a technology computer-aided design based self-consistent electro-thermal-optical simulation. The high-power laser diodes consist of a separate confinement heterostructure of a compressively strained InGaAsP quantum well and GaInP optical cavity layers, and a 100-μm-wide rib and a 2000-μm long cavity. In order to overcome the performance deteriorations of high-power laser diodes caused by self-heating such as thermal rollover and thermal blooming, we propose the high-power broad-area laser diode with improved heat-sinking structure, which another effective heat-sinking path toward the substrate side is added by removing a bulk substrate. It is possible to obtain by removing a 400-μm-thick GaAs substrate with an AlAs sacrificial layer utilizing well-known epitaxial liftoff techniques. In this study, we present the performance improvement of the high-power laser diode with the heat-sinking structure by suppressing thermal effects. It is found that the lateral far-field angle as well as quantum well temperature is expected to be improved by the proposed heat-sinking structure which is required for high beam quality and optical output power, respectively.

  14. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeledmore » DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.« less

  15. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.

    PubMed

    Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli

    2017-12-15

    Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.

  16. Laccase engineering: from rational design to directed evolution.

    PubMed

    Mate, Diana M; Alcalde, Miguel

    2015-01-01

    Laccases are multicopper oxidoreductases considered by many in the biotechonology field as the ultimate "green catalysts". This is mainly due to their broad substrate specificity and relative autonomy (they use molecular oxygen from air as an electron acceptor and they only produce water as by-product), making them suitable for a wide array of applications: biofuel production, bioremediation, organic synthesis, pulp biobleaching, textiles, the beverage and food industries, biosensor and biofuel cell development. Since the beginning of the 21st century, specific features of bacterial and fungal laccases have been exhaustively adapted in order to reach the industrial demands for high catalytic activity and stability in conjunction with reduced production cost. Among the goals established for laccase engineering, heterologous functional expression, improved activity and thermostability, tolerance to non-natural media (organic solvents, ionic liquids, physiological fluids) and resistance to different types of inhibitors are all challenges that have been met, while obtaining a more comprehensive understanding of laccase structure-function relationships. In this review we examine the most significant advances in this exciting research area in which rational, semi-rational and directed evolution approaches have been employed to ultimately convert laccases into high value-added biocatalysts. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Final acceptance testing of the LSST monolithic primary/tertiary mirror

    NASA Astrophysics Data System (ADS)

    Tuell, Michael T.; Burge, James H.; Cuerden, Brian; Gressler, William; Martin, Hubert M.; West, Steven C.; Zhao, Chunyu

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) is a three-mirror wide-field survey telescope with the primary and tertiary mirrors on one monolithic substrate1. This substrate is made of Ohara E6 borosilicate glass in a honeycomb sandwich, spin cast at the Steward Observatory Mirror Lab at The University of Arizona2. Each surface is aspheric, with the specification in terms of conic constant error, maximum active bending forces and finally a structure function specification on the residual errors3. There are high-order deformation terms, but with no tolerance, any error is considered as a surface error and is included in the structure function. The radii of curvature are very different, requiring two independent test stations, each with instantaneous phase-shifting interferometers with null correctors. The primary null corrector is a standard two-element Offner null lens. The tertiary null corrector is a phase-etched computer-generated hologram (CGH). This paper details the two optical systems and their tolerances, showing that the uncertainty in measuring the figure is a small fraction of the structure function specification. Additional metrology includes the radii of curvature, optical axis locations, and relative surface tilts. The methods for measuring these will also be described along with their tolerances.

  18. Co/NHPI-mediated aerobic oxygenation of benzylic C–H bonds in pharmaceutically relevant molecules

    DOE PAGES

    Hruszkewycz, Damian P.; Miles, Kelsey C.; Thiel, Oliver R.; ...

    2016-10-07

    A simple cobalt(II)/N-hydroxyphthalimide catalyst system has been identified for selective conversion of benzylic methylene groups in pharmaceutically relevant (hetero)arenes to the corresponding (hetero)aryl ketones. The radical reaction pathway tolerates electronically diverse benzylic C–H bonds, contrasting recent oxygenation reactions that are initiated by deprotonation of a benzylic C–H bond. The reactions proceed under practical reaction conditions (1 M substrate in BuOAc or EtOAc solvent, 12 h, 90–100 °C), and they tolerate common heterocycles, such as pyridines and imidazoles. A cobalt-free, electrochemical, NHPI-catalyzed oxygenation method overcomes challenges encountered with chelating substrates that inhibit the chemical reaction. The utility of the aerobic oxidationmore » method is showcased in the multigram synthesis of a key intermediate towards a drug candidate (AMG 579) under process-relevant reaction conditions.« less

  19. Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution

    DOE PAGES

    Mohamed, Elsayed T.; Wang, Shizeng; Lennen, Rebecca M.; ...

    2017-11-16

    There is a need to replace petroleum-derived with sustainable feedstocks for chemical production. Certain biomass feedstocks can meet this need as abundant, diverse, and renewable resources. Specific ionic liquids (ILs) can play a role in this process as promising candidates for chemical pretreatment and deconstruction of plant-based biomass feedstocks as they efficiently release carbohydrates which can be fermented. However, the most efficient pretreatment ILs are highly toxic to biological systems, such as microbial fermentations, and hinder subsequent bioprocessing of fermentative sugars obtained from IL-treated biomass. To generate strains capable of tolerating residual ILs present in treated feedstocks, a tolerance adaptivemore » laboratory evolution (TALE) approach was developed and utilized to improve growth of two different Escherichia coli strains, DH1 and K-12 MG1655, in the presence of two different ionic liquids, 1-ethyl-3-methylimidazolium acetate ([C 2C 1Im][OAc] ) and 1-butyl-3-methylimidazolium chloride ([C 4C 1Im]Cl). For multiple parallel replicate populations of E. coli, cells were repeatedly passed to select for improved fitness over the course of approximately 40 days. Clonal isolates were screened and the best performing isolates were subjected to whole genome sequencing. The most prevalent mutations in tolerant clones occurred in transport processes related to the functions of mdtJI, a multidrug efflux pump, and yhdP, an uncharacterized transporter. Additional mutations were enriched in processes such as transcriptional regulation and nucleotide biosynthesis. Finally, the best-performing strains were compared to previously characterized tolerant strains and showed superior performance in tolerance of different IL and media combinations (i.e., cross tolerance) with robust growth at 8.5% (w/v) and detectable growth up to 11.9% (w/v) [C 2C 1Im][OAc]. The generated strains thus represent the best performing platform strains available for bioproduction utilizing IL-treated renewable substrates, and the TALE method was highly successful in overcoming the general issue of substrate toxicity and has great promise for use in tolerance engineering.« less

  20. Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Elsayed T.; Wang, Shizeng; Lennen, Rebecca M.

    There is a need to replace petroleum-derived with sustainable feedstocks for chemical production. Certain biomass feedstocks can meet this need as abundant, diverse, and renewable resources. Specific ionic liquids (ILs) can play a role in this process as promising candidates for chemical pretreatment and deconstruction of plant-based biomass feedstocks as they efficiently release carbohydrates which can be fermented. However, the most efficient pretreatment ILs are highly toxic to biological systems, such as microbial fermentations, and hinder subsequent bioprocessing of fermentative sugars obtained from IL-treated biomass. To generate strains capable of tolerating residual ILs present in treated feedstocks, a tolerance adaptivemore » laboratory evolution (TALE) approach was developed and utilized to improve growth of two different Escherichia coli strains, DH1 and K-12 MG1655, in the presence of two different ionic liquids, 1-ethyl-3-methylimidazolium acetate ([C 2C 1Im][OAc] ) and 1-butyl-3-methylimidazolium chloride ([C 4C 1Im]Cl). For multiple parallel replicate populations of E. coli, cells were repeatedly passed to select for improved fitness over the course of approximately 40 days. Clonal isolates were screened and the best performing isolates were subjected to whole genome sequencing. The most prevalent mutations in tolerant clones occurred in transport processes related to the functions of mdtJI, a multidrug efflux pump, and yhdP, an uncharacterized transporter. Additional mutations were enriched in processes such as transcriptional regulation and nucleotide biosynthesis. Finally, the best-performing strains were compared to previously characterized tolerant strains and showed superior performance in tolerance of different IL and media combinations (i.e., cross tolerance) with robust growth at 8.5% (w/v) and detectable growth up to 11.9% (w/v) [C 2C 1Im][OAc]. The generated strains thus represent the best performing platform strains available for bioproduction utilizing IL-treated renewable substrates, and the TALE method was highly successful in overcoming the general issue of substrate toxicity and has great promise for use in tolerance engineering.« less

  1. Complete Genome Sequence of the Rhizobacterium Pseudomonas trivialis Strain IHBB745 with Multiple Plant Growth-Promoting Activities and Tolerance to Desiccation and Alkalinity.

    PubMed

    Gulati, Arvind; Swarnkar, Mohit Kumar; Vyas, Pratibha; Rahi, Praveen; Thakur, Rishu; Thakur, Namika; Singh, Anil Kumar

    2015-09-03

    The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response. Copyright © 2015 Gulati et al.

  2. Topography printing to locally control wettability.

    PubMed

    Zheng, Zijian; Azzaroni, Omar; Zhou, Feng; Huck, Wilhelm T S

    2006-06-21

    This paper reports a new patterning method, which utilizes NaOH to facilitate the irreversible binding between the PDMS stamp and substrates and subsequent cohesive mechanical failure to transfer the PDMS patterns. Our method shows high substrate tolerance and can be used to "print" various PDMS geometries on a wide range of surfaces, including Si100, glass, gold, polymers, and patterned SU8 photoresist. Using this technique, we are able to locally change the wettability of substrate surfaces by printing well-defined PDMS architectures on the patterned SU8 photoresist. It is possible to generate differential wetting and dewetting properties in microchannels and in the PDMS printed area, respectively.

  3. Flexible fluoropolymer filled protective coatings

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Mirtich, Michael J.; Sovey, James S.; Nahra, Henry; Rutledge, Sharon K.

    1991-01-01

    Metal oxide films such as SiO2 are known to provide an effective barrier to the transport of moisture as well as gaseous species through polymeric films. Such thin film coatings have a tendency to crack upon flexure of the polymeric substrate. Sputter co-deposition of SiO2 with 4 to 15 percent fluoropolymers was demonstrated to produce thin films with glass-like barrier properties that have significant increases in strain to failure over pure glass films which improves their tolerance to flexure on polymeric substrates. Deposition techniques capable of producing these films on polymeric substrates are suitable for durable food packaging and oxidation/corrosion protection applications.

  4. Stretchable hydrogen sensors employing palladium nanosheets transferred onto an elastomeric substrate

    NASA Astrophysics Data System (ADS)

    Namgung, Gitae; Ta, Qui Thanh Hoai; Noh, Jin-Seo

    2018-07-01

    Stretchable hydrogen sensors were fabricated from Pd nanosheets that were transferred onto a PDMS substrate. To prepare the Pd nanosheets, a Pd thin film on PDMS was first biaxially stretched and then PDMS substrate was etched off. The size of Pd nanosheets decreased as the applied strain increased and the film thickness decreased. A transfer technique was utilized to implement the stretchable hydrogen sensors. The stretchable sensors exhibited negative response behaviors upon the exposure to hydrogen gas. Interestingly, the sensors worked even under large strains up to 30%, demonstrating a potential as a high-strain-tolerable hydrogen sensor for the first time.

  5. Occupational stress and suicidality among firefighters: Examining the buffering role of distress tolerance.

    PubMed

    Stanley, Ian H; Boffa, Joseph W; Smith, Lia J; Tran, Jana K; Schmidt, N Brad; Joiner, Thomas E; Vujanovic, Anka A

    2018-05-24

    Past research indicates that firefighters are at increased risk for suicide. Firefighter-specific occupational stress may contribute to elevated suicidality. Among a large sample of firefighters, this study examined if occupational stress is associated with multiple indicators of suicide risk, and whether distress tolerance, the perceived and/or actual ability to endure negative emotional or physical states, attenuates these associations. A total of 831 firefighters participated (mean [SD] age = 38.37y[8.53y]; 94.5% male; 75.2% White). The Sources of Occupational Stress-14 (SOOS-14), Distress Tolerance Scale (DTS), and Suicidal Behaviors Questionnaire-Revised (SBQ-R) were utilized to examine firefighter-specific occupational stress, distress tolerance, and suicidality, respectively. Consistent with predictions, occupational stress interacted with distress tolerance, such that the effects of occupational stress on suicide risk, broadly, as well as lifetime suicide threats and current suicidal intent, specifically, were attenuated at high levels of distress tolerance. Distress tolerance may buffer the effects of occupational stress on suicidality among firefighters. Pending replication, findings suggest that distress tolerance may be a viable target for suicide prevention initiatives within the fire service. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Efficient broad color luminescence from InGaN/GaN single quantum-well nanocolumn crystals on Si (111) substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhang, Xuehua; Wang, Yongjin; Hu, Fangren

    2017-10-01

    Nanocolumn InGaN/GaN single quantum well crystals were deposited on Si (111) substrate with nitrified Ga dots as buffer layer. Transmission electron microscopy image shows the crystals' diameter of 100-130 nm and length of about 900 nm. Nanoscale spatial phase separation of cubic and hexagonal GaN was observed by selective area electron diffraction on the quantum well layer. Raman spectrum of the quantum well crystals proved that the crystals were fully relaxed. Room temperature photoluminescence from 450 to 750 nm and full width at half maximum of about 420 meV indicate broad color luminescence covering blue, green, yellow and red emission, which is helpful for the fabrication of tunable optoelectronic devices and colorful light emitting diodes.

  7. Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo.

    PubMed

    Heim, Amy; Lundholm, Jeremy

    2013-01-01

    Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm) exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs.  In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.

  8. Povidone iodine in wound healing: A review of current concepts and practices.

    PubMed

    Bigliardi, Paul Lorenz; Alsagoff, Syed Abdul Latiff; El-Kafrawi, Hossam Yehia; Pyon, Jai-Kyong; Wa, Chad Tse Cheuk; Villa, Martin Anthony

    2017-08-01

    Of the many antimicrobial agents available, iodophore-based formulations such as povidone iodine have remained popular after decades of use for antisepsis and wound healing applications due to their favorable efficacy and tolerability. Povidone iodine's broad spectrum of activity, ability to penetrate biofilms, lack of associated resistance, anti-inflammatory properties, low cytotoxicity and good tolerability have been cited as important factors, and no negative effect on wound healing has been observed in clinical practice. Over the past few decades, numerous reports on the use of povidone iodine have been published, however, many of these studies are of differing design, endpoints, and quality. More recent data clearly supports its use in wound healing. Based on data collected through PubMed using specified search criteria based on above topics and clinical experience of the authors, this article will review preclinical and clinical safety and efficacy data on the use of povidone iodine in wound healing and its implications for the control of infection and inflammation, together with the authors' advice for the successful treatment of acute and chronic wounds. Povidone iodine has many characteristics that position it extraordinarily well for wound healing, including its broad antimicrobial spectrum, lack of resistance, efficacy against biofilms, good tolerability and its effect on excessive inflammation. Due to its rapid, potent, broad-spectrum antimicrobial properties, and favorable risk/benefit profile, povidone iodine is expected to remain a highly effective treatment for acute and chronic wounds in the foreseeable future. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Composite perfluorohydrocarbon membranes, their preparation and use

    DOEpatents

    Ding, Yong; Bikson, Benjamin

    2017-04-04

    Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly (aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly (aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.

  10. Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer.

    PubMed

    Tanabe, Katsuaki; Guimard, Denis; Bordel, Damien; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2010-05-10

    An electrically pumped InAs/GaAs quantum dot laser on a Si substrate has been demonstrated. The double-hetero laser structure was grown on a GaAs substrate by metal-organic chemical vapor deposition and layer-transferred onto a Si substrate by GaAs/Si wafer bonding mediated by a 380-nm-thick Au-Ge-Ni alloy layer. This broad-area Fabry-Perot laser exhibits InAs quantum dot ground state lasing at 1.31 microm at room temperature with a threshold current density of 600 A/cm(2). (c) 2010 Optical Society of America.

  11. Osmotic and hydraulic adjustment of mangrove saplings to extreme salinity.

    PubMed

    Méndez-Alonzo, Rodrigo; López-Portillo, Jorge; Moctezuma, Coral; Bartlett, Megan K; Sack, Lawren

    2016-12-01

    Salinity tolerance in plant species varies widely due to adaptation and acclimation processes at the cellular and whole-plant scales. In mangroves, extreme substrate salinity induces hydraulic failure and ion excess toxicity and reduces growth and survival, thus suggesting a potentially critical role for physiological acclimation to salinity. We tested the hypothesis that osmotic adjustment, a key type of plasticity that mitigates salinity shock, would take place in coordination with declines in whole-plant hydraulic conductance in a common garden experiment using saplings of three mangrove species with different salinity tolerances (Avicennia germinans L., Rhizophora mangle L. and Laguncularia racemosa (L.) C.F. Gaertn., ordered from higher to lower salinity tolerance). For each mangrove species, four salinity treatments (1, 10, 30 and 50 practical salinity units) were established and the time trajectories were determined for leaf osmotic potential (Ψ s ), stomatal conductance (g s ), whole-plant hydraulic conductance (K plant ) and predawn disequilibrium between xylem and substrate water potentials (Ψ pdd ). We expected that, for all three species, salinity increments would result in coordinated declines in Ψ s , g s and K plant , and that the Ψ pdd would increase with substrate salinity and time of exposure. In concordance with our predictions, reductions in substrate water potential promoted a coordinated decline in Ψ s , g s and K plant , whereas the Ψ pdd increased substantially during the first 4 days but dissipated after 7 days, indicating a time lag for equilibration after a change in substratum salinity. Our results show that mangroves confront and partially ameliorate acute salinity stress via simultaneous reductions in Ψ s , g s and K plant , thus developing synergistic physiological responses at the cell and whole-plant scales. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. A General, Efficient and Functional-Group-Tolerant Catalyst System for the Palladium-Catalyzed Thioetherification of Aryl Bromides and Iodides

    PubMed Central

    Fernández-Rodríguez, Manuel A.; Hartwig, John F.

    2010-01-01

    The cross-coupling reaction of aryl bromides and iodides with aliphatic and aromatic thiols catalyzed by palladium complexes of the bisphosphine ligand CyPF-tBu (1) is reported. Reactions occur in excellent yields, broad scope, high tolerance of functional groups and with turnover numbers that exceed those of previous catalysts by two or three orders of magnitude. These couplings of bromo- and iodoarenes are more efficient than the corresponding reactions of chloroarenes and could be conducted with less catalyst loading and/or milder reaction conditions. Consequently, limitations regarding scope and functional group tolerance previously reported in the coupling of aryl chlorides are now overcome. PMID:19154131

  13. Identification of butanol tolerant genes in Lactobacillus mucosae

    USDA-ARS?s Scientific Manuscript database

    Butanol, though in low concentrations, is produced biologically through fermentation of lignocellulosic biomass-derived substrates by Gram-positive Clostridium species. However, naturally available butanol fermenting microbes are sensitive to stress caused by increased production of butanol and the...

  14. Tolerance - One Transplant for Life

    PubMed Central

    Kawai, Tatsuo; Leventhal, Joseph; Madsen, Joren C.; Strober, Samuel; Turka, Laurence A.; Wood, Kathryn J.

    2014-01-01

    A recent TTS workshop was convened to address the question: “What do we need to have in place to make tolerance induction protocols a “standard of care” for organ transplant recipients over the next decade?” In a productive two day meeting there was wide-ranging discussion on a broad series of topics resulting in five consensus recommendations: (1) Establish a registry of results for patients enrolled in tolerance trials; (2) Establish standardized protocols for sample collection and storage; (3) Establish standardized biomarkers and assays; (4) Include children aged 12 and older in protocols that have been validated in adults; (5) a task force to engage third party payers in discussions of how to fund tolerance trials. Future planned workshops will focus on progress in implementing these recommendations and identifying other steps that the community needs to take. PMID:24926829

  15. Immunological tolerance as a barrier to protective HIV humoral immunity.

    PubMed

    Schroeder, Kristin Ms; Agazio, Amanda; Torres, Raul M

    2017-08-01

    HIV-1 infection typically eludes antibody control by our immune system and is not yet prevented by a vaccine. While many viral features contribute to this immune evasion, broadly neutralizing antibodies (bnAbs) against HIV-1 are often autoreactive and it has been suggested that immunological tolerance may restrict a neutralizing antibody response. Indeed, recent Ig knockin mouse studies have shown that bnAb-expressing B cells are largely censored by central tolerance in the bone marrow. However, the contribution of peripheral tolerance in limiting the HIV antibody response by anergic and potentially protective B cells is poorly understood. Studies using mouse models to elucidate how anergic B cells are regulated and can be recruited into HIV-specific neutralizing antibody responses may provide insight into the development of a protective HIV-1 vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Stress tolerance in plants via habitat-adapted symbiosis

    USGS Publications Warehouse

    Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.-O.; Redman, R.S.

    2008-01-01

    We demonstrate that native grass species from coastal and geothermal habitats require symbiotic fungal endophytes for salt and heat tolerance, respectively. Symbiotically conferred stress tolerance is a habitat-specific phenomenon with geothermal endophytes conferring heat but not salt tolerance, and coastal endophytes conferring salt but not heat tolerance. The same fungal species isolated from plants in habitats devoid of salt or heat stress did not confer these stress tolerances. Moreover, fungal endophytes from agricultural crops conferred disease resistance and not salt or heat tolerance. We define habitat-specific, symbiotically-conferred stress tolerance as habitat-adapted symbiosis and hypothesize that it is responsible for the establishment of plants in high-stress habitats. The agricultural, coastal and geothermal plant endophytes also colonized tomato (a model eudicot) and conferred disease, salt and heat tolerance, respectively. In addition, the coastal plant endophyte colonized rice (a model monocot) and conferred salt tolerance. These endophytes have a broad host range encompassing both monocots and eudicots. Interestingly, the endophytes also conferred drought tolerance to plants regardless of the habitat of origin. Abiotic stress tolerance correlated either with a decrease in water consumption or reactive oxygen sensitivity/generation but not to increased osmolyte production. The ability of fungal endophytes to confer stress tolerance to plants may provide a novel strategy for mitigating the impacts of global climate change on agricultural and native plant communities.The ISME Journal (2008) 2, 404-416; doi:10.1038/ismej.2007.106; published online 7 February 2008. ?? 2008 International Society for Microbial Ecology All rights reserved.

  17. Vacuum die attach for integrated circuits

    DOEpatents

    Schmitt, E.H.; Tuckerman, D.B.

    1991-09-10

    A thin film eutectic bond for attaching an integrated circuit die to a circuit substrate is formed by coating at least one bonding surface on the die and substrate with an alloying metal, assembling the die and substrate under compression loading, and heating the assembly to an alloying temperature in a vacuum. A very thin bond, 10 microns or less, which is substantially void free, is produced. These bonds have high reliability, good heat and electrical conduction, and high temperature tolerance. The bonds are formed in a vacuum chamber, using a positioning and loading fixture to compression load the die, and an IR lamp or other heat source. For bonding a silicon die to a silicon substrate, a gold silicon alloy bond is used. Multiple dies can be bonded simultaneously. No scrubbing is required. 1 figure.

  18. Vacuum die attach for integrated circuits

    DOEpatents

    Schmitt, Edward H.; Tuckerman, David B.

    1991-01-01

    A thin film eutectic bond for attaching an integrated circuit die to a circuit substrate is formed by coating at least one bonding surface on the die and substrate with an alloying metal, assembling the die and substrate under compression loading, and heating the assembly to an alloying temperature in a vacuum. A very thin bond, 10 microns or less, which is substantially void free, is produced. These bonds have high reliability, good heat and electrical conduction, and high temperature tolerance. The bonds are formed in a vacuum chamber, using a positioning and loading fixture to compression load the die, and an IR lamp or other heat source. For bonding a silicon die to a silicon substrate, a gold silicon alloy bond is used. Multiple dies can be bonded simultaneously. No scrubbing is required.

  19. Amine oxidation by d-arginine dehydrogenase in Pseudomonas aeruginosa.

    PubMed

    Ouedraogo, Daniel; Ball, Jacob; Iyer, Archana; Reis, Renata A G; Vodovoz, Maria; Gadda, Giovanni

    2017-10-15

    d-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) is a flavin-dependent oxidoreductase, which is part of a novel two-enzyme racemization system that functions to convert d-arginine to l-arginine. PaDADH contains a noncovalently linked FAD that shows the highest activity with d-arginine. The enzyme exhibits broad substrate specificity towards d-amino acids, particularly with cationic and hydrophobic d-amino acids. Biochemical studies have established the structure and the mechanistic properties of the enzyme. The enzyme is a true dehydrogenase because it displays no reactivity towards molecular oxygen. As established through solvent and multiple kinetic isotope studies, PaDADH catalyzes an asynchronous CH and NH bond cleavage via a hydride transfer mechanism. Steady-state kinetic studies with d-arginine and d-histidine are consistent with the enzyme following a ping-pong bi-bi mechanism. As shown by a combination of crystallography, kinetic and computational data, the shape and flexibility of loop L1 in the active site of PaDADH are important for substrate capture and broad substrate specificity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks.

    PubMed

    Li, Z P; Xu, Z M; Qu, X P; Wang, S B; Peng, J; Mei, L H

    2017-03-03

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  1. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Xu, Z. M.; Qu, X. P.; Wang, S. B.; Peng, J.; Mei, L. H.

    2017-03-01

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  2. Large-Scale, Lineage-Specific Expansion of a Bric-a-Brac/Tramtrack/Broad Complex Ubiquitin-Ligase Gene Family in Rice[W

    PubMed Central

    Gingerich, Derek J.; Hanada, Kousuke; Shiu, Shin-Han; Vierstra, Richard D.

    2007-01-01

    Selective ubiquitination of proteins is directed by diverse families of ubiquitin-protein ligases (or E3s) in plants. One important type uses Cullin-3 as a scaffold to assemble multisubunit E3 complexes containing one of a multitude of bric-a-brac/tramtrack/broad complex (BTB) proteins that function as substrate recognition factors. We previously described the 80-member BTB gene superfamily in Arabidopsis thaliana. Here, we describe the complete BTB superfamily in rice (Oryza sativa spp japonica cv Nipponbare) that contains 149 BTB domain–encoding genes and 43 putative pseudogenes. Amino acid sequence comparisons of the rice and Arabidopsis superfamilies revealed a near equal repertoire of putative substrate recognition module types. However, phylogenetic comparisons detected numerous gene duplication and/or loss events since the rice and Arabidopsis BTB lineages split, suggesting possible functional specialization within individual BTB families. In particular, a major expansion and diversification of a subset of BTB proteins containing Meprin and TRAF homology (MATH) substrate recognition sites was evident in rice and other monocots that likely occurred following the monocot/dicot split. The MATH domain of a subset appears to have evolved significantly faster than those in a smaller core subset that predates flowering plants, suggesting that the substrate recognition module in many monocot MATH-BTB E3s are diversifying to ubiquitinate a set of substrates that are themselves rapidly changing. Intriguing possibilities include pathogen proteins attempting to avoid inactivation by the monocot host. PMID:17720868

  3. Direct transfer of graphene onto flexible substrates.

    PubMed

    Martins, Luiz G P; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S; Kong, Jing; Araujo, Paulo T

    2013-10-29

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate's hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene.

  4. Spatial difference in genetic variation for fenitrothion tolerance between local populations of Daphnia galeata in Lake Kasumigaura, Japan.

    PubMed

    Mano, Hiroyuki; Tanaka, Yoshinari

    2017-12-01

    This study examines the spatial difference in genetic variation for tolerance to a pesticide, fenitrothion, in Daphnia galeata at field sites in Lake Kasumigaura, Japan. We estimated genetic values of isofemale lines established from dormant eggs of D. galeata collected from field sampling sites with the toxicant threshold model applied using acute toxicity. We compared genetic values and variances and broad-sense heritability across different sites in the lake. Results showed that the mean tolerance values to fenitrothion did not differ spatially. The variance in genetic value and heritability of fenitrothion tolerance significantly differed between sampling sites, revealing that long-term ecological risk of fenitrothion may differ between local populations in the lake. These results have implications for aquatic toxicology research, suggesting that differences in genetic variation of tolerance to a chemical among local populations must be considered for understanding the long-term ecological risks of the chemical over a large geographic area.

  5. Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast.

    PubMed Central

    Jia, Z P; McCullough, N; Martel, R; Hemmingsen, S; Young, P G

    1992-01-01

    We have identified a new locus, sodium 2 (sod2) based on selection for increased LiCl tolerance in fission yeast, Schizosaccharomyces pombe. Tolerant strains have enhanced pH-dependent Na+ export capacity and sodium transport experiments suggest that the gene encodes an Na+/H+ antiport. The predicted sod2 gene product can be placed in the broad class of transporters which possess 12 hydrophobic transmembrane domains. The protein shows some sequence similarity to the human and bacterial Na+/H+ antiporters. Overexpression of sod2 increased Na+ export capacity and conferred sodium tolerance. Osmotolerance was not affected and sod2 cells were unaffected for growth in K+. In a sod2 disruption strain cells were incapable of exporting sodium. They were hypersensitive to Na+ or Li+ and could not grow under conditions that approximate pH7. The sod2 gene amplification could be selected stepwise and the degree of such amplification correlated with the level of Na+ or Li+ tolerance. Images PMID:1314171

  6. Evolution of tolerance by magpies to brood parasitism by great spotted cuckoos.

    PubMed

    Soler, J J; Martín-Gálvez, D; Martínez, J G; Soler, M; Canestrari, D; Abad-Gómez, J M; Møller, A P

    2011-07-07

    Hosts may use two different strategies to ameliorate negative effects of a given parasite burden: resistance or tolerance. Although both resistance and tolerance of parasitism should evolve as a consequence of selection pressures owing to parasitism, the study of evolutionary patterns of tolerance has traditionally been neglected by animal biologists. Here, we explore geographical covariation between tolerance of magpies (Pica pica) and brood parasitism by the great spotted cuckoo (Clamator glandarius) in nine different sympatric populations. We estimated tolerance as the slope of the regression of number of magpie fledglings (i.e. host fitness) on number of cuckoo eggs laid in non-depredated nests (which broadly equals parasite burden). We also estimated prevalence of parasitism and level of host resistance (i.e. rejection rates of mimetic model eggs) in these nine populations. In accordance with the hypothetical role of tolerance in the coevolutionary process between magpies and cuckoos we found geographical variation in tolerance estimates that positively covaried with prevalence of parasitism. Levels of resistance and tolerance were not associated, possibly suggesting the lack of a trade-off between the two kinds of defences against great spotted cuckoo parasitism for magpies. We discuss the results in the framework of a mosaic of coevolutionary interactions along the geographical distribution of magpies and great spotted cuckoos for which we found evidence that tolerance plays a major role.

  7. A Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase Shows High Glyphosate Tolerance in Escherichia coli and Tobacco Plants

    PubMed Central

    Zhang, Shengxue; Yang, Xuewen; Chen, Rongrong; Zhang, Yuwen; Lu, Wei; Liu, Yan; Wang, Jianhua; Lin, Min; Wang, Guoying

    2012-01-01

    A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops. PMID:22715408

  8. Lanthanum tricyanide-catalyzed acyl silane-ketone benzoin additions.

    PubMed

    Tarr, James C; Johnson, Jeffrey S

    2009-09-03

    Lanthanum tricyanide efficiently catalyzes a benzoin-type coupling between acyl silanes and ketones. Yields range from moderate to excellent over a broad substrate scope encompassing aryl, alkyl, electron-rich, and sterically hindered ketones.

  9. Characterization of a new oligoalginate lyase from marine bacterium Vibrio sp.

    PubMed

    Yu, Zuochen; Zhu, Benwei; Wang, Wenxia; Tan, Haidong; Yin, Heng

    2018-06-01

    A new oligoalginate lyase encoding gene, designed oal17A, was cloned from marine bacterium Vibrio sp. W13, and then expressed in Escherichia coli. The recombinant Oal17A was purified by NTA-Ni resin with maximal activity at 30°C and pH7.0. Oal17A exhibited broad substrate specificity, and preferred to degrade alginate than polyM or polyG into monosaccharide acid. The specific activity of Oal17A toward alginate, polyM and polyG was 21.14U/mg, 12.31U/mg and 7.43U/mg, respectively. With features of high-level expression and broad substrate specificity, Oal17A would be a potential tool for alginate monomer production process of alginate utilizing for biofuels and bioethanol production. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Synthesis and characterization of InN nanocrystals on glass substrate by plasma assisted reactive evaporation

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Alizadeh, M.; Shuhaimi, A.; Sundaram, S.; Hakim, K. M.; Goh, B. T.; Rahman, S. A.

    2017-07-01

    InN nanocrystals were grown on glass substrate by plasma assisted reactive evaporation technique and the quality was compared with InN on Si (111) substrate. Single phase InN was confirmed by X-ray diffraction and micro Raman analysis on both the substrates. Agglomerated and Hexagonal faceting nanocrystals observed by field emission scanning electron microscopy. Energy dispersive X-ray analysis shows InN nanocrystals are nearly stochiometric. Photoluminescence reveals a broad emission near bandedge at 2 .04 eV and defect band at 1.07 eV. The Hall measurement on both the substrates reveals high electron carrier concentration. These encouraging results obtained suggested that high quality single crystalline InN can be obtained on glass substrate further optimizing the growth parameters. This novel growth of InN nanocrystals on glass substrate is an important step towards the development of monolithic, high efficiency low-cost InGaN-based renewable energy sources.

  11. Novel SiO2-deposited CaF2 substrate for vibrational sum-frequency generation (SFG) measurements of chemisorbed monolayers in an aqueous environment.

    PubMed

    Padermshoke, Adchara; Konishi, Shouta; Ara, Masato; Tada, Hirokazu; Ishibashi, Taka-Aki

    2012-06-01

    A novel SiO(2)-deposited CaF(2) (SiO(2)/CaF(2)) substrate for measuring vibrational sum-frequency generation (SFG) spectra of silane-based chemisorbed monolayers in aqueous media has been developed. The substrate is suitable for silanization and transparent over a broad range of the infrared (IR) probe. The present work demonstrates the practical application of the SiO(2)/CaF(2) substrate and, to our knowledge, the first SFG spectrum at the solid/water interface of a silanized monolayer observed over the IR fingerprint region (1780-1400 cm(-1)) using a back-side probing geometry. This new substrate can be very useful for SFG studies of various chemisorbed organic molecules, particularly biological compounds, in aqueous environments.

  12. [Substrate specifity in Amoeba proteus].

    PubMed

    Sopina, V A

    2006-01-01

    Three different phosphatases ("slow", "middle" and "fast") were found in Amoeba proteus (strain B) after PAGE and a subsequent gel staining in 1-naphthyl phosphate containing incubation mixture (pH 9.0). Substrate specificity of these phosphatases was determined in supernatants of homogenates using inhibitors of phosphatase activity. All phosphatases showed a broad substrate specificity. Of 10 tested compounds, p-nitrophenyl phosphate was a preferable substrate for all 3 phosphatases. All phosphatases were able to hydrolyse bis-p-nitrophenyl phosphate and, hence, displayed phosphodiesterase activity. All phosphatases hydrolysed O-phospho-L-tyrosine to a greater or lesser degree. Only little differences in substrate specificity of phosphatases were noticed: 1) "fast" and "middle" phosphatases hydrolysed naphthyl phosphates and O-phospho-L-tyrosine less efficiently than did "slow" phosphatase; 2) "fast" and "middle" phosphatases hydrolysed 2- naphthyl phosphate to a lesser degree than 1-naphthyl phosphate 3) "fast" and "middle" phosphatases hydrolysed O-phospho-L-serine and O-phospho-L-threonine with lower intensity as compared with "slow" phosphatase; 4) as distinct from "middle" and "slow" phosphatases, the "fast" phosphatase hydrolysed glucose-6-phosphate very poorly. The revealed broad substrate specificity of "slow" phosphatase together with data of inhibitory analysis and results of experiments with reactivation of this phosphatase by Zn2+-ions after its inactivation by EDTA strongly suggest that only the "slow" phosphatase is a true alkaline phosphatase (EC 3.1.3.1). The alkaline phosphatase of A. proteus is secreted into culture medium where its activity is low. The enzyme displays both phosphomono- and phosphodiesterase activities, in addition to supposed protein phosphatase activity. It still remains unknown, to which particular phosphatase class the amoeban "middle" and "fast" phosphatases (pH 9.0) may be assigned.

  13. Structural determinants of tobacco vein mottling virus protease substrate specificity

    PubMed Central

    Sun, Ping; Austin, Brian P; Tözsér, József; Waugh, David S

    2010-01-01

    Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-Å resolution. As observed in several crystal structures of TEV protease, the C-terminus (∼20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by ∼10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1′ position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters kcat and Km for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease. PMID:20862670

  14. Structural determinants of tobacco vein mottling virus protease substrate specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ping; Austin, Brian P.; Tozer, Jozsef

    2010-10-28

    Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMVmore » protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-{angstrom} resolution. As observed in several crystal structures of TEV protease, the C-terminus ({approx}20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by {approx}10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1{prime} position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters k{sub cat} and K{sub m} for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.« less

  15. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.

    PubMed

    Gunderson, Alex R; Stillman, Jonathon H

    2015-06-07

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the 'Bogert effect'. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming

    PubMed Central

    Gunderson, Alex R.; Stillman, Jonathon H.

    2015-01-01

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures. PMID:25994676

  17. CD22 and Siglec-G in B cell function and tolerance.

    PubMed

    Poe, Jonathan C; Tedder, Thomas F

    2012-08-01

    The immune system has evolved into two main arms: the primitive innate arm that is the first line of defense but relatively short-lived and broad acting; and the advanced adaptive arm that generates immunological memory, allowing rapid, specific recall responses. T cell-independent type-2 (TI-2) antigens (Ags) invoke innate immune responses. However, due to its 'at the ready' nature, how the innate arm of the immune system maintains tolerance to potentially abundant host TI-2 Ags remains elusive. Therefore, it is important to define the mechanisms that establish innate immune tolerance. This review highlights recent insights into B cell tolerance to theoretical self TI-2 Ags, and examines how the B cell-restricted sialic acid binding Ig-like lectins (Siglecs), CD22 and Siglec-G, might contribute to this process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4).

    PubMed

    Cheung, Leanna; Flemming, Claudia L; Watt, Fujiko; Masada, Nanako; Yu, Denise M T; Huynh, Tony; Conseil, Gwenaëlle; Tivnan, Amanda; Polinsky, Alexander; Gudkov, Andrei V; Munoz, Marcia A; Vishvanath, Anasuya; Cooper, Dermot M F; Henderson, Michelle J; Cole, Susan P C; Fletcher, Jamie I; Haber, Michelle; Norris, Murray D

    2014-09-01

    Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Glucosylation of 4-Hydroxy-2,5-Dimethyl-3(2H)-Furanone, the Key Strawberry Flavor Compound in Strawberry Fruit1

    PubMed Central

    Hong, Xiaotong; Zhao, Shuai; Liu, Jingyi; Schulenburg, Katja; Huang, Fong-Chin; Franz-Oberdorf, Katrin

    2016-01-01

    Strawberries emit hundreds of different volatiles, but only a dozen, including the key compound HDMF [4-hydroxy-2,5-dimethyl-3(2H)-furanone] contribute to the flavor of the fruit. However, during ripening, a considerable amount of HDMF is metabolized to the flavorless HDMF β-d-glucoside. Here, we functionally characterize nine ripening-related UGTs (UDP-glucosyltransferases) in Fragaria that function in the glucosylation of volatile metabolites by comprehensive biochemical analyses. Some UGTs showed a rather broad substrate tolerance and glucosylated a range of aroma compounds in vitro, whereas others had a more limited substrate spectrum. The allelic UGT71K3a and b proteins and to a lesser extent UGT73B24, UGT71W2, and UGT73B23 catalyzed the glucosylation of HDMF and its structural homolog 2(or 5)-ethyl-4-hydroxy-5(or 2)-methyl-3(2H)-furanone. Site-directed mutagenesis to introduce single K458R, D445E, D343E, and V383A mutations and a double G433A/I434V mutation led to enhanced HDMF glucosylation activity compared to the wild-type enzymes. In contrast, a single mutation in the center of the plant secondary product glycosyltransferase box (A389V) reduced the enzymatic activity. Down-regulation of UGT71K3 transcript expression in strawberry receptacles led to a significant reduction in the level of HDMF-glucoside and a smaller decline in HDMF-glucoside-malonate compared with the level in control fruits. These results provide the foundation for improvement of strawberry flavor and the biotechnological production of HDMF-glucoside. PMID:26993618

  20. Purification and Characterization of an Inverting Stereo- and Enantioselective sec-Alkylsulfatase from the Gram-Positive Bacterium Rhodococcus ruber DSM 44541

    PubMed Central

    Pogorevc, Mateja; Faber, Kurt

    2003-01-01

    Whole cells of Rhodococcus ruber DSM 44541 were found to hydrolyze (±)-2-octyl sulfate in a stereo- and enantiospecific fashion. When growing on a complex medium, the cells produced two sec-alkylsulfatases and (at least) one prim-alkylsulfatase in the absence of an inducer, such as a sec-alkyl sulfate or a sec-alcohol. From the crude cell-free lysate, two proteins responsible for sulfate ester hydrolysis (designated RS1 and RS2) were separated from each other based on their different hydrophobicities and were subjected to further chromatographic purification. In contrast to sulfatase RS1, enzyme RS2 proved to be reasonably stable and thus could be purified to homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band at a molecular mass of 43 kDa. Maximal enzyme activity was observed at 30°C and at pH 7.5. Sulfatase RS2 showed a clear preference for the hydrolysis of linear secondary alkyl sulfates, such as 2-, 3-, or 4-octyl sulfate, with remarkable enantioselectivity (an enantiomeric ratio of up to 21 [23]). Enzymatic hydrolysis of (R)-2-octyl sulfate furnished (S)-2-octanol without racemization, which revealed that the enzymatic hydrolysis proceeded through inversion of the configuration at the stereogenic carbon atom. Screening of a broad palette of potential substrates showed that the enzyme exhibited limited substrate tolerance; while simple linear sec-alkyl sulfates (C7 to C10) were freely accepted, no activity was found with branched and mixed aryl-alkyl sec-sulfates. Due to the fact that prim-sulfates were not accepted, the enzyme was classified as sec-alkylsulfatase (EC 3.1.6.X). PMID:12732552

  1. Glucosylation of 4-Hydroxy-2,5-Dimethyl-3(2H)-Furanone, the Key Strawberry Flavor Compound in Strawberry Fruit.

    PubMed

    Song, Chuankui; Hong, Xiaotong; Zhao, Shuai; Liu, Jingyi; Schulenburg, Katja; Huang, Fong-Chin; Franz-Oberdorf, Katrin; Schwab, Wilfried

    2016-05-01

    Strawberries emit hundreds of different volatiles, but only a dozen, including the key compound HDMF [4-hydroxy-2,5-dimethyl-3(2H)-furanone] contribute to the flavor of the fruit. However, during ripening, a considerable amount of HDMF is metabolized to the flavorless HDMF β-d-glucoside. Here, we functionally characterize nine ripening-related UGTs (UDP-glucosyltransferases) in Fragaria that function in the glucosylation of volatile metabolites by comprehensive biochemical analyses. Some UGTs showed a rather broad substrate tolerance and glucosylated a range of aroma compounds in vitro, whereas others had a more limited substrate spectrum. The allelic UGT71K3a and b proteins and to a lesser extent UGT73B24, UGT71W2, and UGT73B23 catalyzed the glucosylation of HDMF and its structural homolog 2(or 5)-ethyl-4-hydroxy-5(or 2)-methyl-3(2H)-furanone. Site-directed mutagenesis to introduce single K458R, D445E, D343E, and V383A mutations and a double G433A/I434V mutation led to enhanced HDMF glucosylation activity compared to the wild-type enzymes. In contrast, a single mutation in the center of the plant secondary product glycosyltransferase box (A389V) reduced the enzymatic activity. Down-regulation of UGT71K3 transcript expression in strawberry receptacles led to a significant reduction in the level of HDMF-glucoside and a smaller decline in HDMF-glucoside-malonate compared with the level in control fruits. These results provide the foundation for improvement of strawberry flavor and the biotechnological production of HDMF-glucoside. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Determination of industrial color tolerance limits: case studies in the textile industry

    NASA Astrophysics Data System (ADS)

    Gay, Jennifer; Hirschler, Robert

    2002-06-01

    The approach and findings during the application of instrumental color quality control in industry are described, where the best tolerance formulae and tolerance limits were determined by correlating visual and instrumental evaluations. A panel of previously tested observers evaluated a collection of samples taken from production and color measurements are then compared to these assessments, according to different color difference formulae. T he formula and the limit giving the best agreement with visual evaluations were determined with two different methods. For a large variety of textile substrates, processes and market situations the CMC(2:1) formula was always the best or one of the bests, but the limits varied widely, according to the individual application. Additional shade sorting, based on the tolerance limit, was also applied in several companies. The ideal box size was also determined by comparing visual and instrumental evaluations. The application as logistical tools was established according to individual necessities.

  3. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production.

    PubMed

    Zhao, X Q; Bai, F W

    2009-10-12

    Yeast strains of Saccharomyces cerevisiae have been extensively studied in recent years for fuel ethanol production, in which yeast cells are exposed to various stresses such as high temperature, ethanol inhibition, and osmotic pressure from product and substrate sugars as well as the inhibitory substances released from the pretreatment of lignocellulosic biomass. An in-depth understanding of the mechanism of yeast stress tolerance contributes to breeding more robust strains for ethanol production, especially under very high gravity conditions. Taking advantage of the "omics" technology, the stress response and defense mechanism of yeast cells during ethanol fermentation were further explored, and the newly emerged tools such as genome shuffling and global transcription machinery engineering have been applied to breed stress resistant yeast strains for ethanol production. In this review, the latest development of stress tolerance mechanisms was focused, and improvement of yeast stress tolerance by both random and rational tools was presented.

  4. Effects of ovariectomy and exercise training intensity on energy substrate and hepatic lipid metabolism, and spontaneous physical activity in mice.

    PubMed

    Tuazon, Marc A; Campbell, Sara C; Klein, Dylan J; Shapses, Sue A; Anacker, Keith R; Anthony, Tracy G; Uzumcu, Mehmet; Henderson, Gregory C

    2018-06-01

    Menopause is associated with fatty liver, glucose dysregulation, increased body fat, and impaired bone quality. Previously, it was demonstrated that single sessions of high-intensity interval exercise (HIIE) are more effective than distance- and duration-matched continuous exercise (CE) on altering hepatic triglyceride (TG) metabolism and very-low density lipoprotein-TG (VLDL-TG) secretion. Six weeks training using these modalities was examined for effects on hepatic TG metabolism/secretion, glucose tolerance, body composition, and bone mineral density (BMD) in ovariectomized (OVX) and sham-operated (SHAM) mice. OVX and SHAM were assigned to distance- and duration-matched CE and HIIE, or sedentary control. Energy expenditure during exercise was confirmed to be identical between CE and HIIE and both similarly reduced post-exercise absolute carbohydrate oxidation and spontaneous physical activity (SPA). OVX vs. SHAM displayed impaired glucose tolerance and greater body fat despite lower hepatic TG, and these outcomes were not affected by training. Only HIIE increased hepatic AMPK in OVX and SHAM, but neither training type impacted VLDL-TG secretion. As expected, BMD was lower in OVX, and training did not affect long bones. The results reveal intensity-dependent effects on hepatic AMPK expression and general exercise effects on subsequent SPA and substrate oxidation that is independent of estrogen status. These findings support the notion that HIIE can impact aspects of liver physiology in females while the effects of exercise on whole body substrate selection appear to be independent of training intensity. However, neither exercise approach mitigated the impairment in glucose tolerance and elevated body fat occurring in OVX mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris.

    PubMed

    Kittl, Roman; Mueangtoom, Kitti; Gonaus, Christoph; Khazaneh, Shima Tahvilda; Sygmund, Christoph; Haltrich, Dietmar; Ludwig, Roland

    2012-01-20

    Fungal laccases from basidiomycetous fungi are thoroughly investigated in respect of catalytic mechanism and industrial applications, but the number of reported and well characterized ascomycetous laccases is much smaller although they exhibit interesting catalytic properties. We report on a highly chloride tolerant laccase produced by the plant pathogen ascomycete Botrytis aclada, which was recombinantly expressed in Pichia pastoris with an extremely high yield and purified to homogeneity. In a fed-batch fermentation, 495 mg L(-1) of laccase was measured in the medium, which is the highest concentration obtained for a laccase by a yeast expression system. The recombinant B. aclada laccase has a typical molecular mass of 61,565 Da for the amino acid chain. The pI is approximately 2.4, a very low value for a laccase. Glycosyl residues attached to the recombinant protein make up for approximately 27% of the total protein mass. B. aclada laccase exhibits very low K(M) values and high substrate turnover numbers for phenolic and non-phenolic substrates at acidic and near neutral pH. The enzyme's stability increases in the presence of chloride ions and, even more important, its substrate turnover is only weakly inhibited by chloride ions (I(50)=1.4M), which is in sharp contrast to most other described laccases. This high chloride tolerance is mandatory for some applications such as implantable biofuel cells and laccase catalyzed reactions, which suffer from the presence of chloride ions. The high expression yield permits fast and easy production for further basic and applied research. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Lanthanum Tricyanide-Catalyzed Acyl Silane-Ketone Benzoin Additions

    PubMed Central

    Tarr, James C.; Johnson, Jeffrey S.

    2009-01-01

    Lanthanum tricyanide efficiently catalyzes a benzoin-type coupling between acyl silanes and ketones. Yields range from moderate to excellent over a broad substrate scope encompassing aryl, alkyl, electron-rich, and sterically hindered ketones. PMID:19655731

  7. Direct transfer of graphene onto flexible substrates

    PubMed Central

    Martins, Luiz G. P.; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S.; Kong, Jing; Araujo, Paulo T.

    2013-01-01

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate’s hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene. PMID:24127582

  8. High Throughput Phenotypic Analysis of Mycobacterium tuberculosis and Mycobacterium bovis Strains' Metabolism Using Biolog Phenotype Microarrays

    PubMed Central

    Khatri, Bhagwati; Fielder, Mark; Jones, Gareth; Newell, William; Abu-Oun, Manal; Wheeler, Paul R.

    2013-01-01

    Tuberculosis is a major human and animal disease of major importance worldwide. Genetically, the closely related strains within the Mycobacterium tuberculosis complex which cause disease are well-characterized but there is an urgent need better to understand their phenotypes. To search rapidly for metabolic differences, a working method using Biolog Phenotype MicroArray analysis was developed. Of 380 substrates surveyed, 71 permitted tetrazolium dye reduction, the readout over 7 days in the method. By looking for ≥5-fold differences in dye reduction, 12 substrates differentiated M. tuberculosis H37Rv and Mycobacterium bovis AF2122/97. H37Rv and a Beijing strain of M. tuberculosis could also be distinguished in this way, as could field strains of M. bovis; even pairs of strains within one spoligotype could be distinguished by 2 to 3 substrates. Cluster analysis gave three clear groups: H37Rv, Beijing, and all the M. bovis strains. The substrates used agreed well with prior knowledge, though an unexpected finding that AF2122/97 gave greater dye reduction than H37Rv with hexoses was investigated further, in culture flasks, revealing that hexoses and Tween 80 were synergistic for growth and used simultaneously rather than in a diauxic fashion. Potential new substrates for growth media were revealed, too, most promisingly N-acetyl glucosamine. Osmotic and pH arrays divided the mycobacteria into two groups with different salt tolerance, though in contrast to the substrate arrays the groups did not entirely correlate with taxonomic differences. More interestingly, these arrays suggested differences between the amines used by the M. tuberculosis complex and enteric bacteria in acid tolerance, with some hydrophobic amino acids being highly effective. In contrast, γ-aminobutyrate, used in the enteric bacteria, had no effect in the mycobacteria. This study proved principle that Phenotype MicroArrays can be used with slow-growing pathogenic mycobacteria and already has generated interesting data worthy of further investigation. PMID:23326347

  9. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    PubMed

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  10. The first mammalian aldehyde oxidase crystal structure: insights into substrate specificity.

    PubMed

    Coelho, Catarina; Mahro, Martin; Trincão, José; Carvalho, Alexandra T P; Ramos, Maria João; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke; Romão, Maria João

    2012-11-23

    Aldehyde oxidases have pharmacological relevance, and AOX3 is the major drug-metabolizing enzyme in rodents. The crystal structure of mouse AOX3 with kinetics and molecular docking studies provides insights into its enzymatic characteristics. Differences in substrate and inhibitor specificities can be rationalized by comparing the AOX3 and xanthine oxidase structures. The first aldehyde oxidase structure represents a major advance for drug design and mechanistic studies. Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity.

  11. Tolerance to Phytophthora Fruit Rot in Watermelon Plant Introductions

    USDA-ARS?s Scientific Manuscript database

    Phytophthora capsici is distributed worldwide, and is an aggressive pathogen with a broad host range infecting solanaceous, leguminaceous, and cucurbitaceous crops. Fruit rot, caused by P. capsici is an emerging disease in most watermelon producing regions of Southeast US. Resistance to fruit rot o...

  12. Characterization of Biocontrol Traits in Heterorhabditis floridensis: A Species with Broad Temperature Tolerance.

    PubMed

    Shapiro-Ilan, David I; Blackburn, Dana; Duncan, Larry; El-Borai, Fahiem E; Koppenhöfer, Heather; Tailliez, Patrick; Adams, Byron J

    2014-12-01

    Biological characteristics of two strains of the entomopathogenic nematode, Heterorhabditis floridensis (332 isolated in Florida and K22 isolated in Georgia) were described. The identity of the nematode's symbiotic bacteria was elucidated and found to be Photorhabdus luminescens subsp. luminescens. Beneficial traits pertinent to biocontrol (environmental tolerance and virulence) were characterized. The range of temperature tolerance in the H. floridensis strains was broad and showed a high level of heat tolerance. The H. floridensis strains caused higher mortality or infection in G. mellonella at 30°C and 35°C compared with S. riobrave (355), a strain widely known to be heat tolerant, and the H. floridensis strains were also capable of infecting at 17°C whereas S. riobrave (355) was not. However, at higher temperatures (37°C and 39°C), though H. floridensis readily infected G. mellonella, S. riobrave strains caused higher levels of mortality. Desiccation tolerance in H. floridensis was similar to Heterorhabditis indica (Hom1) and S. riobrave (355) and superior to S. feltiae (SN). H. bacteriophora (Oswego) and S. carpocapsae (All) exhibited higher desiccation tolerance than the H. floridensis strains. The virulence of H. floridensis to four insect pests (Aethina tumida, Conotrachelus nenuphar, Diaprepes abbreviatus, and Tenebrio molitor) was determined relative to seven other nematodes: H. bacteriophora (Oswego), H. indica (Hom1), S. carpocapsae (All), S. feltiae (SN), S. glaseri (4-8 and Vs strains), and S. riobrave (355). Virulence to A. tumida was similar among the H. floridensis strains and other nematodes except S. glaseri (Vs), S. feltiae, and S. riobrave failed to cause higher mortality than the control. Only H. bacteriophora, H. indica, S. feltiae, S. riobrave, and S. glaseri (4-8) caused higher mortality than the control in C. nenuphar. All nematodes were pathogenic to D. abbreviatus though S. glaseri (4-8) and S. riobrave (355) were the most virulent. S. carpocapsae was the most virulent to T. molitor. In summary, the H. floridensis strains possess a wide niche breadth in temperature tolerance and have virulence and desiccation levels that are similar to a number of other entomopathogenic nematodes. The strains may be useful for biocontrol purposes in environments where temperature extremes occur within short durations.

  13. Stress Introduction Rate Alters the Benefit of AcrAB-TolC Efflux Pumps.

    PubMed

    Langevin, Ariel M; Dunlop, Mary J

    2018-01-01

    Stress tolerance studies are typically conducted in an all-or-none fashion. However, in realistic settings-such as in clinical or metabolic engineering applications-cells may encounter stresses at different rates. Therefore, how cells tolerate stress may depend on its rate of appearance. To address this, we studied how the rate of stress introduction affects bacterial stress tolerance by focusing on a key stress response mechanism. Efflux pumps, such as AcrAB-TolC of Escherichia coli , are membrane transporters well known for the ability to export a wide variety of substrates, including antibiotics, signaling molecules, and biofuels. Although efflux pumps improve stress tolerance, pump overexpression can result in a substantial fitness cost to the cells. We hypothesized that the ideal pump expression level would involve a rate-dependent trade-off between the benefit of pumps and the cost of their expression. To test this, we evaluated the benefit of the AcrAB-TolC pump under different rates of stress introduction, including a step, a fast ramp, and a gradual ramp. Using two chemically diverse stresses, the antibiotic chloramphenicol and the jet biofuel precursor pinene, we assessed the benefit provided by the pumps. A mathematical model describing these effects predicted the benefit as a function of the rate of stress introduction. Our findings demonstrate that as the rate of introduction is lowered, stress response mechanisms provide a disproportionate benefit to pump-containing strains, allowing cells to survive beyond the original inhibitory concentrations. IMPORTANCE Efflux pumps are ubiquitous in nature and provide stress tolerance in the cells of species ranging from bacteria to mammals. Understanding how pumps provide tolerance has far-reaching implications for diverse fields, from medicine to biotechnology. Here, we investigated how the rate of stressor appearance impacts tolerance. We focused on two distinct substrates of AcrAB-TolC efflux pumps, the antibiotic chloramphenicol and the biofuel precursor pinene. Interestingly, tolerance is highly dependent on the rate of stress introduction. Therefore, it is important to consider not only the total quantity of a stressor but also the rate at which it is applied. The implications of this work are significant because environments are rarely static; antibiotic concentrations change during dosing, and metabolic engineering processes change with time. Copyright © 2017 American Society for Microbiology.

  14. Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes.

    PubMed

    Tomás-Pejó, E; Ballesteros, M; Oliva, J M; Olsson, L

    2010-11-01

    An efficient fermenting microorganism for bioethanol production from lignocellulose is highly tolerant to the inhibitors released during pretreatment and is able to ferment efficiently both glucose and xylose. In this study, directed evolution was employed to improve the xylose fermenting Saccharomyces cerevisiae F12 strain for bioethanol production at high substrate loading. Adapted and parental strains were compared with respect to xylose consumption and ethanol production. Adaptation led to an evolved strain more tolerant to the toxic compounds present in the medium. When using concentrated prehydrolysate from steam-pretreated wheat straw with high inhibitor concentration, an improvement of 65 and 20% in xylose consumption and final ethanol concentration, respectively, were achieved using the adapted strain. To address the need of high substrate loadings, fed-batch SSF experiments were performed and an ethanol concentration as high as 27.4 g/l (61% of the theoretical) was obtained with 11.25% (w/w) of water insoluble solids (WIS).

  15. Natural Selection on Individual Variation in Tolerance of Gastrointestinal Nematode Infection

    PubMed Central

    Hayward, Adam D.; Nussey, Daniel H.; Wilson, Alastair J.; Berenos, Camillo; Pilkington, Jill G.; Watt, Kathryn A.; Pemberton, Josephine M.; Graham, Andrea L.

    2014-01-01

    Hosts may mitigate the impact of parasites by two broad strategies: resistance, which limits parasite burden, and tolerance, which limits the fitness or health cost of increasing parasite burden. The degree and causes of variation in both resistance and tolerance are expected to influence host–parasite evolutionary and epidemiological dynamics and inform disease management, yet very little empirical work has addressed tolerance in wild vertebrates. Here, we applied random regression models to longitudinal data from an unmanaged population of Soay sheep to estimate individual tolerance, defined as the rate of decline in body weight with increasing burden of highly prevalent gastrointestinal nematode parasites. On average, individuals lost weight as parasite burden increased, but whereas some lost weight slowly as burden increased (exhibiting high tolerance), other individuals lost weight significantly more rapidly (exhibiting low tolerance). We then investigated associations between tolerance and fitness using selection gradients that accounted for selection on correlated traits, including body weight. We found evidence for positive phenotypic selection on tolerance: on average, individuals who lost weight more slowly with increasing parasite burden had higher lifetime breeding success. This variation did not have an additive genetic basis. These results reveal that selection on tolerance operates under natural conditions. They also support theoretical predictions for the erosion of additive genetic variance of traits under strong directional selection and fixation of genes conferring tolerance. Our findings provide the first evidence of selection on individual tolerance of infection in animals and suggest practical applications in animal and human disease management in the face of highly prevalent parasites. PMID:25072883

  16. Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB.

    PubMed

    Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena

    2009-01-01

    Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively.

  17. Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB

    PubMed Central

    Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena

    2009-01-01

    Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively. PMID:24031313

  18. Mechanisms underlying sodium nitroprusside-induced tolerance in the mouse aorta: Role of ROS and cyclooxygenase-derived prostanoids.

    PubMed

    Diniz, Mariana C; Olivon, Vania C; Tavares, Lívia D; Simplicio, Janaina A; Gonzaga, Natália A; de Souza, Daniele G; Bendhack, Lusiane M; Tirapelli, Carlos R; Bonaventura, Daniella

    2017-05-01

    To determine the role of reactive oxygen species (ROS) on sodium nitroprusside (SNP)-induced tolerance. Additionally, we evaluated the role of ROS on NF-κB activation and pro-inflammatory cytokines production during SNP-induced tolerance. To induce in vitro tolerance, endothelium-intact or -denuded aortic rings isolated from male Balb-c mice were incubated for 15, 30, 45 or 60min with SNP (10nmol/L). Tolerance to SNP was observed after incubation of endothelium-denuded, but not endothelium-intact aortas for 60min with this inorganic nitrate. Pre-incubation of denuded rings with tiron (superoxide anion (O 2 - ) scavenger), and the NADPH oxidase inhibitors apocynin and atorvastatin reversed SNP-induced tolerance. l-NAME (non-selective NOS inhibitor) and l-arginine (NOS substrate) also prevented SNP-induced tolerance. Similarly, ibuprofen (non-selective cyclooxygenase (COX) inhibitor), nimesulide (selective COX-2 inhibitor), AH6809 (prostaglandin PGF 2 α receptor antagonist) or SQ29584 [PGH 2 /thromboxane TXA 2 receptor antagonist] reversed SNP-induced tolerance. Increased ROS generation was detected in tolerant arteries and both tiron and atorvastatin reversed this response. Tiron prevented tolerance-induced increase on O 2 - and hydrogen peroxide (H 2 O 2 ) levels. The increase onp65/NF-κB expression and TNF-α production in tolerant arteries was prevented by tiron. The major new finding of our study is that SNP-induced tolerance is mediated by NADPH-oxidase derived ROS and vasoconstrictor prostanoids derived from COX-2, which are capable of reducing the vasorelaxation induced by SNP. Additionally, we found that ROS mediate the activation of NF-κB and the production of TNF-α in tolerant arteries. These findings identify putative molecular mechanisms whereby SNP induces tolerance in the vasculature. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.

    PubMed

    García-Robledo, Carlos; Kuprewicz, Erin K; Staines, Charles L; Erwin, Terry L; Kress, W John

    2016-01-19

    The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming.

  20. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction

    PubMed Central

    García-Robledo, Carlos; Kuprewicz, Erin K.; Staines, Charles L.; Erwin, Terry L.; Kress, W. John

    2016-01-01

    The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming. PMID:26729867

  1. Biomonitoring for deposited sediment using benthic invertebrates: A test on 4 Missouri streams

    USGS Publications Warehouse

    Zweig, L.D.; Rabeni, Charles F.

    2001-01-01

    The response of stream benthic invertebrates to surficially deposited fine sediment was investigated in 4 Missouri streams. Twenty to 24 sampling sites in each stream were selected based on similarities of substrate particle-size distributions, depths, and current velocities but for differences in amounts of deposited sediment, which ranged from 0 to 100% surface cover. Deposited sediment was quantified 2 ways: a visual estimate of % surface cover, and a measurement of substrate embeddedness, which were highly correlated with each other and with the amount of sand. Invertebrates were collected using a kicknet for a specified time in a 1-m2 area. Five commonly used biomonitoring metrics (taxa richness, density, Ephemeroptera, Plecoptera, and Trichoptera [EPT] richness, EPT density, and EPT/Chironomidae richness) were consistently significantly correlated across streams to deposited sediment. Shannon diversity index, Chironomidae richness, Chironomidae density, a biotic index, and % dominant taxon did not relate to increasing levels of deposited sediment. Tolerance values representing taxa responses to deposited sediment were developed for 30 taxa. Deposited-sediment tolerance values were not correlated with biotic index tolerance values, indicating a different response by taxa to deposited sediment than to organic enrichment. Deposited-sediment tolerance values were used to develop the Deposited Sediment Biotic Index (DSBI). The DSBI was calculated for all samples (n = 85) to characterize sediment impairment of the sampled streams. DSBI values for each site were highly correlated with measures of deposited sediment. Model validation by a resampling procedure confirmed that the DSBI is a potentially useful tool for assessing ecological effects of deposited sediment.

  2. Negative Affect Mediates the Relation Between Trait Urgency and Behavioral Distress Tolerance

    PubMed Central

    Borges, Allison M.; Dahne, Jennifer; Lim, Aaron C.; MacPherson, Laura

    2017-01-01

    Distress tolerance is associated with a range of psychopathology and risk-taking behavior. Current research suggests that the behavioral ability to persist at goal-directed behavior when distressed may be malleable. However, little is known about the contributing factors that underlie individual differences in distress tolerance. Trait urgency, or the tendency to act impulsively in the context of acute changes in affect, may predict distress tolerance because the prepotent response to avoid or remove an aversive state may undermine persistence. To date, most research has examined the role of negative urgency, a valenced subfactor of urgency, in relation to distress tolerance. However, the broad trait of urgency may be associated with a greater change in affect that precedes the inability to tolerate distress. The current study examined whether greater changes in negative affect was indeed a mediator in the relationship between trait urgency and behavioral distress tolerance. The effects of both positive and negative urgency on affect change were examined to investigate the potential contribution of the broader urgency trait. The results suggest that a greater change in negative affect over the course of a stressor mediated the association between both subfactors of urgency and distress tolerance. These findings suggest that trait urgency, regardless of valence, may be associated with experiencing greater changes in affect that ultimately undermine the ability to tolerate distress. These findings also highlight important components of distress tolerance that could inform behavioral interventions. PMID:28080084

  3. Negative affect mediates the relation between trait urgency and behavioral distress tolerance.

    PubMed

    Borges, Allison M; Dahne, Jennifer; Lim, Aaron C; MacPherson, Laura

    2017-06-01

    Distress tolerance is associated with a range of psychopathology and risk-taking behavior. Current research suggests that the behavioral ability to persist at goal-directed behavior when distressed may be malleable. However, little is known about the contributing factors that underlie individual differences in distress tolerance. Trait urgency, or the tendency to act impulsively in the context of acute changes in affect, may predict distress tolerance because the prepotent response to avoid or remove an aversive state may undermine persistence. To date, most research has examined the role of negative urgency, a valenced subfactor of urgency, in relation to distress tolerance. However, the broad trait of urgency may be associated with a greater change in affect that precedes the inability to tolerate distress. The current study examined whether greater changes in negative affect was indeed a mediator in the relationship between trait urgency and behavioral distress tolerance. The effects of both positive and negative urgency on affect change were examined to investigate the potential contribution of the broader urgency trait. The results suggest that a greater change in negative affect over the course of a stressor mediated the association between both subfactors of urgency and distress tolerance. These findings suggest that trait urgency, regardless of valence, may be associated with experiencing greater changes in affect that ultimately undermine the ability to tolerate distress. These findings also highlight important components of distress tolerance that could inform behavioral interventions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Growth and characterization of V2O5 nanorods deposited by spray pyrolysis at low temperatures

    NASA Astrophysics Data System (ADS)

    Abd-Alghafour, N. M.; Ahmed, Naser M.; Hassan, Zai.; Mohammad, Sabah M.; Bououdina, M.

    2016-07-01

    Vanadium pentoxide (V2O5) nanorods were deposited by spray pyrolysis on preheated glass substrates at low temperatures. The influence of substrate temperature on the crystallization of V2O5 has been investigated. X-ray diffraction analysis (XRD) revealed that the films deposited at Tsub = 300°C were orthorhombic structures with preferential along (001) direction. Formation of nanorods from substrate surface which led to the formation of films with small-sized and rod-shaped nanostructure is observed by field scanning electron microscopy. Optical transmittance in the visible range increases to reach a maximum value of about 80% for a substrate temperature of 350°C. PL spectra reveal one main broad peak centered around 540 nm with high intensity.

  5. Allosteric regulation of rhomboid intramembrane proteolysis.

    PubMed

    Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne

    2014-09-01

    Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. © 2014 The Authors.

  6. Allosteric regulation of rhomboid intramembrane proteolysis

    PubMed Central

    Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne

    2014-01-01

    Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. PMID:25009246

  7. WOR5, a Novel Tungsten-Containing Aldehyde Oxidoreductase from Pyrococcus furiosus with a Broad Substrate Specificity

    PubMed Central

    Bevers, Loes E.; Bol, Emile; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2005-01-01

    WOR5 is the fifth and last member of the family of tungsten-containing oxidoreductases purified from the hyperthermophilic archaeon Pyrococcus furiosus. It is a homodimeric protein (subunit, 65 kDa) that contains one [4Fe-4S] cluster and one tungstobispterin cofactor per subunit. It has a broad substrate specificity with a high affinity for several substituted and nonsubstituted aliphatic and aromatic aldehydes with various chain lengths. The highest catalytic efficiency of WOR5 is found for the oxidation of hexanal (Vmax = 15.6 U/mg, Km = 0.18 mM at 60°C). Hexanal-incubated enzyme exhibits S = 1/2 electron paramagnetic resonance signals from [4Fe-4S]1+ (g values of 2.08, 1.93, and 1.87) and W5+ (g values of 1.977, 1.906, and 1.855). Cyclic voltammetry of ferredoxin and WOR5 on an activated glassy carbon electrode shows a catalytic wave upon addition of hexanal, suggesting that ferredoxin can be a physiological redox partner. The combination of WOR5, formaldehyde oxidoreductase, and aldehyde oxidoreductase forms an efficient catalyst for the oxidation of a broad range of aldehydes in P. furiosus. PMID:16199576

  8. Enzyme specificity under dynamic control

    NASA Astrophysics Data System (ADS)

    Ota, Nobuyuki; Agard, David A.

    2002-03-01

    The contributions of conformational dynamics to substrate specificity have been examined by the application of principal component analysis to molecular dynamics trajectories of alpha-lytic protease. The wild-type alpha-lytic protease is highly specific for substrates with small hydrophobic side chains at the specificity pocket, while the Met190Ala binding pocket mutant has a much broader specificity, actively hydrolyzing substrates ranging from Ala to Phe. We performed a principal component analysis using 1-nanosecond molecular dynamics simulations using solvent boundary condition. We found that the walls of the wild-type substrate binding pocket move in tandem with one another, causing the pocket size to remain fixed so that only small substrates are recognized. In contrast, the M190A mutant shows uncoupled movement of the binding pocket walls, allowing the pocket to sample both smaller and larger sizes, which appears to be the cause of the observed broad specificity. The results suggest that the protein dynamics of alpha-lytic protease may play a significant role in defining the patterns of substrate specificity.

  9. Structural insights into the cofactor-assisted substrate recognition of yeast methylglyoxal/isovaleraldehyde reductase Gre2.

    PubMed

    Guo, Peng-Chao; Bao, Zhang-Zhi; Ma, Xiao-Xiao; Xia, Qingyou; Li, Wei-Fang

    2014-09-01

    Saccharomyces cerevisiae Gre2 (EC1.1.1.283) serves as a versatile enzyme that catalyzes the stereoselective reduction of a broad range of substrates including aliphatic and aromatic ketones, diketones, as well as aldehydes, using NADPH as the cofactor. Here we present the crystal structures of Gre2 from S. cerevisiae in an apo-form at 2.00Å and NADPH-complexed form at 2.40Å resolution. Gre2 forms a homodimer, each subunit of which contains an N-terminal Rossmann-fold domain and a variable C-terminal domain, which participates in substrate recognition. The induced fit upon binding to the cofactor NADPH makes the two domains shift toward each other, producing an interdomain cleft that better fits the substrate. Computational simulation combined with site-directed mutagenesis and enzymatic activity analysis enabled us to define a potential substrate-binding pocket that determines the stringent substrate stereoselectivity for catalysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates

    DOE PAGES

    Jubb, A. M.; Jiao, Y.; Eres, Gyula; ...

    2016-02-15

    Here we demonstrate large area arrays of elevated gold ellipse dimers with precisely controlled gaps for use as sensitive and highly controllable surface enhanced Raman scattering (SERS) substrates. The significantly enhanced Raman signal observed with SERS arises from both localized and long range plasmonic effects. By controlling the geometry of a SERS substrate, in this case the size and aspect ratio of individual ellipses, the plasmon resonance can be tuned in a broad wavelength range, providing a method for designing the response of SERS substrates at different excitation wavelengths. Plasmon effects exhibited by the elevated gold ellipse dimer substrates aremore » also demonstrated and confirmed through finite difference time domain (FDTD) simulations. A plasmon resonance red shift with an increase of the ellipse aspect ratio is observed, allowing systematic control of the resulting SERS signal intensity. Optimized elevated ellipse dimer substrates with 10±2 nm gaps exhibit uniform SERS enhancement factors on the order of 10 9 for adsorbed p-mercaptoaniline molecules.« less

  11. Surface treatment of magnetic recording heads

    DOEpatents

    Komvopoulos, Kyriakos; Brown, Ian G.; Wei, Bo; Anders, Simone; Anders, Andre; Bhatia, C. Singh

    1998-01-01

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances.

  12. Surface treatment of magnetic recording heads

    DOEpatents

    Komvopoulos, Kyriakos; Brown, Ian G.; Wei, Bo; Anders, Simone; Anders, Andre; Bhatia, Singh C.

    1995-01-01

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances.

  13. Surface treatment of magnetic recording heads

    DOEpatents

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-11-17

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances. 22 figs.

  14. Surface treatment of magnetic recording heads

    DOEpatents

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, S.C.

    1995-12-19

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances. 15 figs.

  15. Characterization of biocontrol traits in Heterorhabditis floridensis: A species with broad temperature tolerance

    USDA-ARS?s Scientific Manuscript database

    Biological characteristics of two strains of the entomopathogenic nematode, Heterorhabditis floridensis (strain 332 isolated in Florida, and K22 isolated in Georgia, USA) were described. The identity of the nematode’s symbiotic bacteria was elucidated and found to be Photorhabdus luminescens lumines...

  16. Highly effective copper-mediated gem-difluoromethylenation of arylboronic acids.

    PubMed

    Ma, Guobin; Wan, Wen; Hu, Qingyang; Jiang, Haizhen; Wang, Jing; Zhu, Shizheng; Hao, Jian

    2014-07-18

    A copper-mediated gem-difluoromethylenation of aryl, heteroaryl and vinyl boronic acids with bromodifluoromethylated oxazole or thiazole derivatives has been developed. This novel reaction showed an excellent functional group tolerance and wide substrate scope, providing facile access to practical application in drug discovery and development.

  17. Genetic variance of tolerance and the toxicant threshold model.

    PubMed

    Tanaka, Yoshinari; Mano, Hiroyuki; Tatsuta, Haruki

    2012-04-01

    A statistical genetics method is presented for estimating the genetic variance (heritability) of tolerance to pollutants on the basis of a standard acute toxicity test conducted on several isofemale lines of cladoceran species. To analyze the genetic variance of tolerance in the case when the response is measured as a few discrete states (quantal endpoints), the authors attempted to apply the threshold character model in quantitative genetics to the threshold model separately developed in ecotoxicology. The integrated threshold model (toxicant threshold model) assumes that the response of a particular individual occurs at a threshold toxicant concentration and that the individual tolerance characterized by the individual's threshold value is determined by genetic and environmental factors. As a case study, the heritability of tolerance to p-nonylphenol in the cladoceran species Daphnia galeata was estimated by using the maximum likelihood method and nested analysis of variance (ANOVA). Broad-sense heritability was estimated to be 0.199 ± 0.112 by the maximum likelihood method and 0.184 ± 0.089 by ANOVA; both results implied that the species examined had the potential to acquire tolerance to this substance by evolutionary change. Copyright © 2012 SETAC.

  18. Heavy Ion Current Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, Robert A.; Vizkelethy, Gyorgy; McMorrow, Dale; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philipe; Duhanel, Olivier; Phillips, Stanley D.; Sutton, Akil K.; hide

    2009-01-01

    Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT: a) Position correlation[ b) Unique response for different bias schemes; c) Similarities to TPA pulsed-laser data. Heavy ion broad-beam transients provide more realistic device response: a) Feedback using microbeam data; b) Overcome issues of LET and ion range with microbeam. Both micro- and broad-beam data sets yield valuable input for TCAD simulations. Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates.

  19. Seasonal acclimatization of thallus proline contents of Mastocarpus stellatus and Chondrus crispus: intertidal rhodophytes that differ in freezing tolerance.

    PubMed

    Harris, Jonathan P; Logan, Barry A

    2018-02-17

    Mastocarpus stellatus and Chondrus crispus often co-occur in the lower intertidal of Northern Atlantic rocky shorelines. At our field site along the Maine coast (USA), Mastocarpus stellatus thalli possessed greater contents of proline when compared with thalli of Chondrus crispus. In addition, M. stellatus thalli acclimated to colder growth conditions in winter/early spring by increasing proline content several fold; no seasonal acclimation in proline content was observed in C. crispus. Proline accumulates in the tissues of a broad diversity of freezing-tolerant organisms and is among the most common cryoprotectant molecules. Thus, our observations provide a basis for the previously well-documented greater freezing tolerance of Mastocarpus stellatus when compared with Chondrus crispus. © 2018 Phycological Society of America.

  20. Production of a solvent, detergent, and thermotolerant lipase by a newly isolated Acinetobacter sp. in submerged and solid-state fermentations.

    PubMed

    Khoramnia, Anahita; Ebrahimpour, Afshin; Beh, Boon Kee; Lai, Oi Ming

    2011-01-01

    The lipase production ability of a newly isolated Acinetobacter sp. in submerged (SmF) and solid-state (SSF) fermentations was evaluated. The results demonstrated this strain as one of the rare bacterium, which is able to grow and produce lipase in SSF even more than SmF. Coconut oil cake as a cheap agroindustrial residue was employed as the solid substrate. The lipase production was optimized in both media using artificial neural network. Multilayer normal and full feed forward backpropagation networks were selected to build predictive models to optimize the culture parameters for lipase production in SmF and SSF systems, respectively. The produced models for both systems showed high predictive accuracy where the obtained conditions were close together. The produced enzyme was characterized as a thermotolerant lipase, although the organism was mesophile. The optimum temperature for the enzyme activity was 45°C where 63% of its activity remained at 70°C after 2 h. This lipase remained active after 24 h in a broad range of pH (6-11). The lipase demonstrated strong solvent and detergent tolerance potentials. Therefore, this inexpensive lipase production for such a potent and industrially valuable lipase is promising and of considerable commercial interest for biotechnological applications.

  1. Use of De Novo Transcriptome Libraries to Characterize a Novel Oleaginous Marine Chlorella Species during the Accumulation of Triacylglycerols.

    PubMed

    Mansfeldt, Cresten B; Richter, Lubna V; Ahner, Beth A; Cochlan, William P; Richardson, Ruth E

    2016-01-01

    Marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. "SAG-211-18" including its heterotrophic growth and tolerance to low salt. We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark. We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioning from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes-a galactoglycerolipid lipase and a diacylglyceride acyltransferase-were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems.

  2. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries

    PubMed Central

    Harris, Jennifer L.; Backes, Bradley J.; Leonetti, Francesco; Mahrus, Sami; Ellman, Jonathan A.; Craik, Charles S.

    2000-01-01

    A method is presented for the preparation and use of fluorogenic peptide substrates that allows for the configuration of general substrate libraries to rapidly identify the primary and extended specificity of proteases. The substrates contain the fluorogenic leaving group 7-amino-4-carbamoylmethylcoumarin (ACC). Substrates incorporating the ACC leaving group show kinetic profiles comparable to those with the traditionally used 7-amino-4-methylcoumarin (AMC) leaving group. The bifunctional nature of ACC allows for the efficient production of single substrates and substrate libraries by using 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase synthesis techniques. The approximately 3-fold-increased quantum yield of ACC over AMC permits reduction in enzyme and substrate concentrations. As a consequence, a greater number of substrates can be tolerated in a single assay, thus enabling an increase in the diversity space of the library. Soluble positional protease substrate libraries of 137,180 and 6,859 members, possessing amino acid diversity at the P4-P3-P2-P1 and P4-P3-P2 positions, respectively, were constructed. Employing this screening method, we profiled the substrate specificities of a diverse array of proteases, including the serine proteases thrombin, plasmin, factor Xa, urokinase-type plasminogen activator, tissue plasminogen activator, granzyme B, trypsin, chymotrypsin, human neutrophil elastase, and the cysteine proteases papain and cruzain. The resulting profiles create a pharmacophoric portrayal of the proteases to aid in the design of selective substrates and potent inhibitors. PMID:10869434

  3. CAH1 and CAH2 as key enzymes required for high bicarbonate tolerance of a novel microalga Dunaliella salina HTBS.

    PubMed

    Hou, Yuyong; Liu, Zhiyong; Zhao, Yue; Chen, Shulin; Zheng, Yubin; Chen, Fangjian

    2016-06-01

    Outdoor microalgal cultivation with high concentration bicarbonate has been considered as a strategy for reducing contamination and improving carbon supply efficiency. The mechanism responsible for algae's strong tolerance to high bicarbonate however, remains not clear. In this study, we isolated and characterized a strain and revealed its high bicarbonate tolerant mechanism by analyzing carbonic anhydrase (CA). The strain was identified as Dunaliella salina HTBS with broad temperature adaptability (7-30°C). The strain grew well under 30% CO2 or 70gL(-1) NaHCO3. In comparison, two periplasm CAs (CAH1 and CAH2) were detected with immunoblotting analysis in HTBS but not in a non-HCO3(-)-tolerant strain. The finding was also verified by an enzyme inhibition assay in which only HTBS showed significant inhibition by extracellular CA inhibitor. Thus, we inferred that the extracellular CAH1 and CAH2 played a multifunctional role in the toleration of high bicarbonate by HTBS. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Design of N-acyl homoserine lactonase with high substrate specificity by a rational approach.

    PubMed

    Kyeong, Hyun-Ho; Kim, Jin-Hyun; Kim, Hak-Sung

    2015-06-01

    N-Acyl homoserine lactone (AHL) is a major quorum-sensing signaling molecule in many bacterial species. Quorum-quenching (QQ) enzymes, which degrade such signaling molecules, have attracted much attention as an approach to controlling and preventing bacterial virulence and pathogenesis. However, naturally occurring QQ enzymes show a broad substrate spectrum, raising the concern of unintentionally attenuating beneficial effects by symbiotic bacteria. Here we report the rational design of acyl homoserine lactonase with high substrate specificity. Through docking analysis, we identified three key residues which play a key role in the substrate preference of the enzyme. The key residues were changed in a way that increases hydrophobic contact with a substrate having a short acyl chain (C4-AHL) while generating steric clashes with that containing a long acyl chain (C12-AHL). The resulting mutants exhibited a significantly shifted preference toward a substrate with a short acyl chain. Molecular dynamics simulations suggested that the mutations affect the behavior of a flexible loop, allowing tighter binding of a substrate with a short acyl chain.

  5. Plasticity and local adaptation explain lizard cold tolerance.

    PubMed

    Card, Daren C; Schield, Drew R; Castoe, Todd A

    2018-05-01

    How does climate variation limit the range of species and what does it take for species to colonize new regions? In this issue of Molecular Ecology, Campbell-Staton et al. () address these broad questions by investigating cold tolerance adaptation in the green anole lizard (Anolis carolinensis) across a latitudinal transect. By integrating physiological data, gene expression data and acclimation experiments, the authors disentangle the mechanisms underlying cold adaptation. They first establish that cold tolerance adaptation in Anolis lizards follows the predictions of the oxygen- and capacity-limited thermal tolerance hypothesis, which states that organisms are limited by temperature thresholds at which oxygen supply cannot meet demand. They then explore the drivers of cold tolerance at a finer scale, finding evidence that northern populations are adapted to cooler thermal regimes and that both phenotypic plasticity and heritable genetic variation contribute to cold tolerance. The integration of physiological and gene expression data further highlights the varied mechanisms that drive cold tolerance adaptation in Anolis lizards, including both supply-side and demand-side adaptations that improve oxygen economy. Altogether, their work provides new insight into the physiological and genetic mechanisms underlying adaptation to new climatic niches and demonstrates that cold tolerance in northern lizard populations is achieved through the synergy of physiological plasticity and local genetic adaptation for thermal performance. © 2018 John Wiley & Sons Ltd.

  6. Enhancement of butanol tolerance and butanol yield in Clostridium acetobutylicum mutant NT642 obtained by nitrogen ion beam implantation.

    PubMed

    Liu, Xiao-Bo; Gu, Qiu-Ya; Yu, Xiao-Bin; Luo, Wei

    2012-12-01

    As a promising alternative biofuel, biobutanol can be produced through acetone/butanol/ethanol (ABE) fermentation. Currently, ABE fermentation is still a small-scale industry due to its low production and high input cost. Moreover, butanol toxicity to the Clostridium fermentation host limits the accumulation of butanol in the fermentation broth. The wild-type Clostridium acetobutylicum D64 can only produce about 13 g butanol/L and tolerates less than 2% (v/v) butanol. To improve the tolerance of C. acetobutylicum D64 for enhancing the production of butanol, nitrogen ion beam implantation was employed and finally five mutants with enhanced butanol tolerance were obtained. Among these, the most butanol tolerant mutant C. acetobutylicum NT642 can tolerate above 3% (v/v) butanol while the wide-type strain can only withstand 2% (v/v). In batch fermentation, the production of butanol and ABE yield of C. acetobutylicum NT642 was 15.4 g/L and 22.3 g/L, respectively, which were both higher than those of its parental strain and the other mutants using corn or cassava as substrate. Enhancing butanol tolerance is a great precondition for obtaining a hyper-yield producer. Nitrogen ion beam implantation could be a promising biotechnology to improve butanol tolerance and production of the host strain C. acetobutylicum.

  7. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.

    PubMed

    Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish

    2017-01-01

    Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes, representing CBP-based fermentation approach. Here, the broad substrate utilization spectrum of isolated cellulolytic thermophilic anaerobic bacterium was shown to be of potential utility. We demonstrated that the co-culture strategy involving novel strains is efficient in improving ethanol production from real substrate.

  8. Radiation Hardened Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.

  9. 7 CFR 29.2351 - Elements of quality and degrees of each element.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... degrees. These degrees are arranged to show their relative value and are used in determining the quality of tobacco. The actual value of each degree varies with group. Elements Degrees Body Thin Medium... Moderate Deep. Width Narrow Normal Spready Broad. Uniformity. Expressed in percentages. Injury tolerance...

  10. School Health Education in a Multicultural Society. ERIC Digest.

    ERIC Educational Resources Information Center

    Anderson, Barbara Frye

    School health education needs to build a broad base of awareness, tolerance, and sensitivity to different expressions of healthy behavior while maintaining scientific accuracy. This can only be accomplished through exposing children to the various types of health knowledge found in different cultures. Health education involves helping students:…

  11. Pyrethroid tolerance of navel orangeworm after dietary exposure to almond phytochemicals

    USDA-ARS?s Scientific Manuscript database

    Inexpensive pyrethroid insecticides (IRAC Group 3A) play an increasingly important role for control of navel orangeworm in almonds and other nut crops. In addition to the insecticides used for their control, navel orangeworm larvae encounter a broad diversity of phytochemicals in their host plants. ...

  12. Catalytic asymmetric conjugate addition of Grignard reagents to chromones.

    PubMed

    Vila, Carlos; Hornillos, Valentín; Fañanás-Mastral, Martín; Feringa, Ben L

    2013-07-07

    A highly regio- and enantioselective copper catalysed direct conjugate addition of Grignard reagents to chromones has been developed taking advantage of the reduced reactivity of the resulting magnesium enolates. This methodology tolerates a broad scope of alkyl Grignards including secondary alkyl magnesium reagents as well as functionalised chromones.

  13. Democratic Nation-Building in South Africa.

    ERIC Educational Resources Information Center

    Rhoodie, Nic, Ed.; Liebenberg, Ian, Ed.

    This book is a collection of essays by 50 eminent experts/analysts representing a broad range of ideological perspectives and interest groups. Its aim is to contribute to the process of democratic nation-building and the creation of a culture of tolerance by educating South Africans about the intricacies of community reconciliation and…

  14. Integrated Lens Antennas for Multi-Pixel Receivers

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi-pixel receivers and imagers for future planetary and astronomical instruments. These antenna arrays can also be used in radars and imagers for contraband detection at stand-off distances. This will be enabling technology for future balloon-borne, smaller explorer class mission (SMEX), and other missions, and for a wide range of proposed planetary sounders and radars for planetary bodies.

  15. Mitochondrial Sirtuin 4 Resolves Immune Tolerance in Monocytes by Rebalancing Glycolysis and Glucose Oxidation Homeostasis

    PubMed Central

    Tao, Jie; Zhang, Jingpu; Ling, Yun; McCall, Charles E.; Liu, Tie Fu

    2018-01-01

    The goal of this investigation was to define the molecular mechanism underlying physiologic conversion of immune tolerance to resolution of the acute inflammatory response, which is unknown. An example of this knowledge gap and its clinical importance is the broad-based energy deficit and immunometabolic paralysis in blood monocytes from non-survivors of human and mouse sepsis that precludes sepsis resolution. This immunometabolic dysregulation is biomarked by ex vivo endotoxin tolerance to increased glycolysis and TNF-α expression. To investigate how tolerance switches to resolution, we adapted our previously documented models associated with acute inflammatory, immune, and metabolic reprogramming that induces endotoxin tolerance as a model of sepsis in human monocytes. We report here that mitochondrial sirtuin 4 (SIRT4) physiologically breaks tolerance and resolves acute inflammation in human monocytes by coordinately reprogramming of metabolism and bioenergetics. We find that increased SIRT4 mRNA and protein expression during immune tolerance counters the increase in pyruvate dehydrogenase kinase 1 (PDK1) and SIRT1 that promote tolerance by switching glucose-dependent support of immune resistance to fatty acid oxidation support of immune tolerance. By decreasing PDK1, pyruvate dehydrogenase complex reactivation rebalances mitochondrial respiration, and by decreasing SIRT1, SIRT4 represses fatty acid oxidation. The precise mechanism for the mitochondrial SIRT4 nuclear feedback is unclear. Our findings are consistent with a new concept in which mitochondrial SIRT4 directs the axis that controls anabolic and catabolic energy sources. PMID:29593712

  16. On the levels of enzymatic substrate specificity: Implications for the early evolution of metabolic pathways

    NASA Technical Reports Server (NTRS)

    Lazcano, A.; Diaz-Villagomez, E.; Mills, T.; Oro, J.

    1995-01-01

    The most frequently invoked explanation for the origin of metabolic pathways is the retrograde evolution hypothesis. In contrast, according to the so-called 'patchwork' theory, metabolism evolved by the recruitment of relatively inefficient small enzymes of broad specificity that could react with a wide range of chemically related substrates. In this paper it is argued that both sequence comparisons and experimental results on enzyme substrate specificity support the patchwork assembly theory. The available evidence supports previous suggestions that gene duplication events followed by a gradual neoDarwinian accumulation of mutations and other minute genetic changes lead to the narrowing and modification of enzyme function in at least some primordial metabolic pathways.

  17. Printable semiconductor structures and related methods of making and assembling

    DOEpatents

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2013-03-12

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  18. Printable semiconductor structures and related methods of making and assembling

    DOEpatents

    Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Durham, NC; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Westmont, IL; Meitl, Matthew [Raleigh, NC; Zhu, Zhengtao [Rapid City, SD; Ko, Heung Cho [Urbana, IL; Mack, Shawn [Goleta, CA

    2011-10-18

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  19. Printable semiconductor structures and related methods of making and assembling

    DOEpatents

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2010-09-21

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  20. ZnO buffer layer for metal films on silicon substrates

    DOEpatents

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  1. Open-label evaluation of a novel skin brightening system containing 0.01% decapeptide-12 in combination with 20% buffered glycolic acid for the treatment of mild to moderate facial melasma.

    PubMed

    Ramírez, Sandra P; Carvajal, Alfonso C; Salazar, Juan C; Arroyave, Gladys; Flórez, Ana M; Echeverry, Hector F

    2013-06-01

    Melasma is a cutaneous disorder that primarily affects females of Hispanic and Asian descent. Previous studies have shown that use of a brightening system comprised of 0.01% decapeptide-12 cream, an antioxidant cleanser, a 20% buffered glycolic acid lotion, and a broad spectrum SPF 30 sunscreen yields good clearance of mild-to-moderate melasma in Caucasian and Asian volunteers. The present open-label, prospective, and multicenter study sought to determine the tolerability and efficacy of the above-mentioned brightening system on mild-to-moderate melasma in 33 Hispanic females over 16 weeks. Clinical measures included self-assessment of tolerability, clinical grading, determination of Melasma Area and Severity Index (MASI) scores, and standardized clinical photography. Results showed that the system was well tolerated with no adverse events reported. Mean decreases of 36%, 46%, 54%, and 60% in MASI scores were observed at weeks 4, 8, 12, and 16, respectively, which were further corroborated by standardized photography showing visible reduction in the appearance of melasma. Results suggest that the brightening system consisting of 0.01% decapeptide-12 cream, an antioxidant cleanser, 20% buffered glycolic acid lotion, and broad spectrum SPF 30 sunscreen is safe and efficacious for the treatment of mild-to-moderate melasma in Hispanic females.

  2. Lack of Physiological Depth Patterns in Conspecifics of Endemic Antarctic Brown Algae: A Trade-Off between UV Stress Tolerance and Shade Adaptation?

    PubMed Central

    Gómez, Iván; Huovinen, Pirjo

    2015-01-01

    A striking characteristic of endemic Antarctic brown algae is their broad vertical distribution. This feature is largely determined by the shade adaptation in order to cope with the seasonal variation in light availability. However, during spring-summer months, when light penetrates deep in the water column these organisms have to withstand high levels of solar radiation, including UV. In the present study we examine the light use characteristics in parallel to a potential for UV tolerance (measured as content of phenolic compounds, antioxidant activity and maximum quantum yield of fluorescence) in conspecific populations of four Antarctic brown algae (Ascoseira mirabilis, Desmarestia menziesii, D. anceps and Himantothallus grandifolius) distributed over a depth gradient between 5 and 30 m. The main results indicated that a) photosynthetic efficiency was uniform along the depth gradient in all the studied species, and b) short-term (6 h) exposure to UV radiation revealed a high tolerance measured as chlorophyll fluorescence, phlorotannin content and antioxidant capacity. Multivariate analysis of similarity indicated that light requirements for photosynthesis, soluble phlorotannins and antioxidant capacity are the variables determining the responses along the depth gradient in all the studied species. The suite of physiological responses of algae with a shallower distribution (A. mirabilis and D. menziesii) differed from those with deeper vertical range (D. anceps and H. grandifolius). These patterns are consistent with the underwater light penetration that defines two zones: 0–15 m, with influence of UV radiation (1% of UV-B and UV-A at 9 m and 15 m respectively) and a zone below 15 m marked by PAR incidence (1% up to 30 m). These results support the prediction that algae show a UV stress tolerance capacity along a broad depth range according to their marked shade adaptation. The high contents of phlorotannins and antioxidant potential appear to be strongly responsible for the lack of clear depth patterns in light demand characteristics and UV tolerance. PMID:26252953

  3. Improved measurement of extracellular enzymatic activities in subsurface sediments using competitive desorption treatment

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Adrienne; Snider, Rachel; Arnosti, Carol

    2017-02-01

    Extracellular enzymatic activities initiate microbially-driven heterotrophic carbon cycling in subsurface sediments. While measurement of hydrolytic activities in sediments is fundamental to our understanding of carbon cycling, these measurements are often technically difficult due to sorption of organic substrates to the sediment matrix. Most methods that measure hydrolysis of organic substrates in sediments rely on recovery of a fluorophore or fluorescently-labeled target substrate from a sediment incubation. The tendency for substrates to sorb to sediments results in lower recovery of an added substrate, and can result in data that are unusable or difficult to interpret. We developed a treatment using competitive desorption of a fluorescently-labeled, high molecular weight organic substrate that improves recovery of the labeled substrate from sediment subsamples. Competitive desorption treatment improved recovery of the fluorescent substrate by a median of 66%, expanded the range of sediments for which activity measurements could be made, and was effective in sediments from a broad range of geochemical contexts. More reliable measurements of hydrolytic activities in sediments will yield usable and more easily interpretable data from a wider range of sedimentary environments, enabling better understanding of microbially-catalyzed carbon cycling in subsurface environments.

  4. Disruption of protein-tyrosine phosphatase 1B expression in the pancreas affects β-cell function.

    PubMed

    Liu, Siming; Xi, Yannan; Bettaieb, Ahmed; Matsuo, Kosuke; Matsuo, Izumi; Kulkarni, Rohit N; Haj, Fawaz G

    2014-09-01

    Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and energy balance. However, the role of PTP1B in pancreatic endocrine function remains largely unknown. To investigate the metabolic role of pancreatic PTP1B, we generated mice with pancreas PTP1B deletion (panc-PTP1B KO). Mice were fed regular chow or a high-fat diet, and metabolic parameters, insulin secretion and glucose tolerance were determined. On regular chow, panc-PTP1B KO and control mice exhibited comparable glucose tolerance whereas aged panc-PTP1B KO exhibited mild glucose intolerance. Furthermore, high-fat feeding promoted earlier impairment of glucose tolerance and attenuated glucose-stimulated insulin secretion in panc-PTP1B KO mice. The secretory defect in glucose-stimulated insulin secretion was recapitulated in primary islets ex vivo, suggesting that the effects were likely cell-autonomous. At the molecular level, PTP1B deficiency in vivo enhanced basal and glucose-stimulated tyrosyl phosphorylation of EphA5 in islets. Consistently, PTP1B overexpression in the glucose-responsive MIN6 β-cell line attenuated EphA5 tyrosyl phosphorylation, and substrate trapping identified EphA5 as a PTP1B substrate. In summary, these studies identify a novel role for PTP1B in pancreatic endocrine function.

  5. Application Of Optical Processing For Growth Of Silicon Dioxide

    DOEpatents

    Sopori, Bhushan L.

    1997-06-17

    A process for producing a silicon dioxide film on a surface of a silicon substrate. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm.sup.2 to about 6 watts/cm.sup.2 for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm.sup.2 for growth of a 100.ANG.-300.ANG. film at a resultant temperature of about 400.degree. C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO.sub.2 /Si interface to be very low.

  6. CVD diamond substrate for microelectronics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burden, J.; Gat, R.

    1996-11-01

    Chemical Vapor Deposition (CVD) of diamond films has evolved dramatically in recent years, and commercial opportunities for diamond substrates in thermal management applications are promising. The objective of this technology transfer initiative (TTI) is for Applied Science and Technology, Inc. (ASTEX) and AlliedSignal Federal Manufacturing and Technologies (FM&T) to jointly develop and document the manufacturing processes and procedures required for the fabrication of multichip module circuits using CVD diamond substrates, with the major emphasis of the project concentrating on lapping/polishing prior to metallization. ASTEX would provide diamond films for the study, and FM&T would use its experience in lapping, polishing,more » and substrate metallization to perform secondary processing on the parts. The primary goal of the project was to establish manufacturing processes that lower the manufacturing cost sufficiently to enable broad commercialization of the technology.« less

  7. Effects of the acid-tolerant engineered bacterial strain Megasphaera elsdenii H6F32 on ruminal pH and the lactic acid concentration of simulated rumen acidosis in vitro.

    PubMed

    Long, M; Feng, W J; Li, P; Zhang, Y; He, R X; Yu, L H; He, J B; Jing, W Y; Li, Y M; Wang, Z; Liu, G W

    2014-02-01

    The aim of this study was to examine the effects of the acid-tolerant engineered bacterial strain Megasphaera elsdenii H6F32 (M. elsdenii H6F32) on ruminal pH and the lactic acid concentrations in simulated rumen acidosis conditions in vitro. A mixed culture of ruminal bacteria, buffer, and primarily degradable substrates was inoculated with equal numbers of M. elsdenii H6 or M. elsdenii H6F32. The pH and lactic acid concentrations in the mixed culture were determined at 0, 2, 4, 6, 8, 10, 12, 14, 16, and 18 h of incubation. Acid-tolerant M. elsdenii H6F32 reduced the accumulation of lactic acid and increased the pH value. These results indicate that acid-tolerant M. elsdenii H6F32 could be a potential candidate for preventing rumen acidosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Natronospira proteinivora gen. nov., sp. nov, an extremely salt-tolerant, alkaliphilic gammaproteobacterium from hypersaline soda lakes.

    PubMed

    Sorokin, Dimitry Y; Kublanov, Ilya V; Khijniak, Tatiana V

    2017-08-01

    Brine samples from Kulunda Steppe soda lakes (Altai, Russia) were inoculated into a hypersaline alkaline mineral medium with β-keratin (chicken feather) as a substrate. The micro-organisms dominating the enrichment culture were isolated by limiting serial dilution on the same medium with casein as a substrate. The cells of strain BSker1T were motile, curved rods. The strain was an obligately aerobic heterotroph utilizing proteins and peptides as growth substrates. The isolate was an obligate alkaliphile with a pH range for growth from pH 8.5 to 10.25 (optimum at pH 9.5), and it was extremely salt tolerant, growing with between 1 and 4.5 M total Na+ (optimally at 2-2.5 M). BSker1T had a unique composition of polar lipid fatty acids, dominated by two C17 species. The membrane polar lipids included multiple unidentified phospholipids and two aminolipids. According to phylogenetic analysis of the 16S rRNA gene sequence, the isolate forms a novel branch within the family Ectothiorhodospiraceae (class Gammaproteobacteria) with the highest sequence similarity to the members of this family being 91 %. On the basis of distinct phenotypic and genotypic properties, strain BSker1T (=JCM 31341T=UNIQEM U1008T) is proposed to be classified as a representative of a novel genus and species, Natronospira proteinivora gen. nov., sp. nov.

  9. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal - A Demonstration Using Bird and Mammal Range Maps.

    PubMed

    Boucher-Lalonde, Véronique; Currie, David J

    2016-01-01

    Species' geographic ranges could primarily be physiological tolerances drawn in space. Alternatively, geographic ranges could be only broadly constrained by physiological climatic tolerances: there could generally be much more proximate constraints on species' ranges (dispersal limitation, biotic interactions, etc.) such that species often occupy a small and unpredictable subset of tolerable climates. In the literature, species' climatic tolerances are typically estimated from the set of conditions observed within their geographic range. Using this method, studies have concluded that broader climatic niches permit larger ranges. Similarly, other studies have investigated the biological causes of incomplete range filling. But, when climatic constraints are measured directly from species' ranges, are correlations between species' range size and climate necessarily consistent with a causal link? We evaluated the extent to which variation in range size among 3277 bird and 1659 mammal species occurring in the Americas is statistically related to characteristics of species' realized climatic niches. We then compared how these relationships differed from the ones expected in the absence of a causal link. We used a null model that randomizes the predictor variables (climate), while retaining their broad spatial autocorrelation structure, thereby removing any causal relationship between range size and climate. We found that, although range size is strongly positively related to climatic niche breadth, range filling and, to a lesser extent, niche position in nature, the observed relationships are not always stronger than expected from spatial autocorrelation alone. Thus, we conclude that equally strong relationships between range size and climate would result from any processes causing ranges to be highly spatially autocorrelated.

  10. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal — A Demonstration Using Bird and Mammal Range Maps

    PubMed Central

    Boucher-Lalonde, Véronique; Currie, David J.

    2016-01-01

    Species’ geographic ranges could primarily be physiological tolerances drawn in space. Alternatively, geographic ranges could be only broadly constrained by physiological climatic tolerances: there could generally be much more proximate constraints on species’ ranges (dispersal limitation, biotic interactions, etc.) such that species often occupy a small and unpredictable subset of tolerable climates. In the literature, species’ climatic tolerances are typically estimated from the set of conditions observed within their geographic range. Using this method, studies have concluded that broader climatic niches permit larger ranges. Similarly, other studies have investigated the biological causes of incomplete range filling. But, when climatic constraints are measured directly from species’ ranges, are correlations between species’ range size and climate necessarily consistent with a causal link? We evaluated the extent to which variation in range size among 3277 bird and 1659 mammal species occurring in the Americas is statistically related to characteristics of species’ realized climatic niches. We then compared how these relationships differed from the ones expected in the absence of a causal link. We used a null model that randomizes the predictor variables (climate), while retaining their broad spatial autocorrelation structure, thereby removing any causal relationship between range size and climate. We found that, although range size is strongly positively related to climatic niche breadth, range filling and, to a lesser extent, niche position in nature, the observed relationships are not always stronger than expected from spatial autocorrelation alone. Thus, we conclude that equally strong relationships between range size and climate would result from any processes causing ranges to be highly spatially autocorrelated. PMID:27855201

  11. In-situ composite formation of damage tolerant coatings utilizing laser

    DOEpatents

    Blue, Craig A [Knoxville, TN; Wong, Frank [Livermore, CA; Aprigliano, Louis F [Berlin, MD; Engleman, Peter G [Knoxville, TN; Peter, William H [Knoxville, TN; Rozgonyi, Tibor G [Golden, CO; Ozdemir, Levent [Golden, CO

    2011-05-10

    A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.

  12. In-situ composite formation of damage tolerant coatings utilizing laser

    DOEpatents

    Blue, Craig A; Wong, Frank; Aprigliano, Louis F; Engleman, Peter G; Rozgonyi, Tibor G; Ozdemir, Levent

    2014-03-18

    A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.

  13. In-situ composite formation of damage tolerant coatings utilizing laser

    DOEpatents

    Blue, Craig A.; Wong, Frank; Aprigliano, Louis F.; Engleman, Peter G.; Peter, William H.; Rozgonyi, Tibor G.; Ozdemir, Levent

    2016-05-24

    A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.

  14. Improving Escherichia coli FucO for furfural tolerance by saturation mutagenesis of individual amino acid positions.

    PubMed

    Zheng, Huabao; Wang, Xuan; Yomano, Lorraine P; Geddes, Ryan D; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2013-05-01

    Furfural is an inhibitory side product formed during the depolymerization of hemicellulose with mineral acids. In Escherichia coli, furfural tolerance can be increased by expressing the native fucO gene (encoding lactaldehyde oxidoreductase). This enzyme also catalyzes the NADH-dependent reduction of furfural to the less toxic alcohol. Saturation mutagenesis was combined with growth-based selection to isolate a mutated form of fucO that confers increased furfural tolerance. The mutation responsible, L7F, is located within the interfacial region of FucO homodimers, replacing the most abundant codon for leucine with the most abundant codon for phenylalanine. Plasmid expression of the mutant gene increased FucO activity by more than 10-fold compared to the wild-type fucO gene and doubled the rate of furfural metabolism during fermentation. No inclusion bodies were evident with either the native or the mutated gene. mRNA abundance for the wild-type and mutant fucO genes differed by less than 2-fold. The Km (furfural) for the mutant enzyme was 3-fold lower than that for the native enzyme, increasing efficiency at low substrate concentrations. The L7F mutation is located near the FucO N terminus, within the ribosomal binding region associated with translational initiation. Free-energy calculations for mRNA folding in this region (nucleotides -7 to +37) were weak for the native gene (-4.1 kcal mol(-1)) but weaker still for the fucO mutant (-1.0 to -0.1 kcal mol(-1)). The beneficial L7F mutation in FucO is proposed to increase furfural tolerance by improving gene expression and increasing enzyme effectiveness at low substrate levels.

  15. Improving Escherichia coli FucO for Furfural Tolerance by Saturation Mutagenesis of Individual Amino Acid Positions

    PubMed Central

    Zheng, Huabao; Wang, Xuan; Yomano, Lorraine P.; Geddes, Ryan D.; Shanmugam, Keelnatham T.

    2013-01-01

    Furfural is an inhibitory side product formed during the depolymerization of hemicellulose with mineral acids. In Escherichia coli, furfural tolerance can be increased by expressing the native fucO gene (encoding lactaldehyde oxidoreductase). This enzyme also catalyzes the NADH-dependent reduction of furfural to the less toxic alcohol. Saturation mutagenesis was combined with growth-based selection to isolate a mutated form of fucO that confers increased furfural tolerance. The mutation responsible, L7F, is located within the interfacial region of FucO homodimers, replacing the most abundant codon for leucine with the most abundant codon for phenylalanine. Plasmid expression of the mutant gene increased FucO activity by more than 10-fold compared to the wild-type fucO gene and doubled the rate of furfural metabolism during fermentation. No inclusion bodies were evident with either the native or the mutated gene. mRNA abundance for the wild-type and mutant fucO genes differed by less than 2-fold. The Km (furfural) for the mutant enzyme was 3-fold lower than that for the native enzyme, increasing efficiency at low substrate concentrations. The L7F mutation is located near the FucO N terminus, within the ribosomal binding region associated with translational initiation. Free-energy calculations for mRNA folding in this region (nucleotides −7 to +37) were weak for the native gene (−4.1 kcal mol−1) but weaker still for the fucO mutant (−1.0 to −0.1 kcal mol−1). The beneficial L7F mutation in FucO is proposed to increase furfural tolerance by improving gene expression and increasing enzyme effectiveness at low substrate levels. PMID:23475621

  16. A Novel Rice Cytochrome P450 Gene, CYP72A31, Confers Tolerance to Acetolactate Synthase-Inhibiting Herbicides in Rice and Arabidopsis1[C][W][OPEN

    PubMed Central

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-01-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. PMID:24406793

  17. Pharmacokinetics and tolerability of voriconazole and a combination oral contraceptive co-administered in healthy female subjects

    PubMed Central

    Andrews, Emma; Damle, Bharat D; Fang, Annie; Foster, Grover; Crownover, Penelope; LaBadie, Robert; Glue, Paul

    2008-01-01

    AIM To assess the two-way pharmacokinetic interaction between voriconazole and Ortho-Novum® 1/35, an oral contraceptive containing norethindrone 1 mg and ethinyl oestradiol 35 μg. METHODS In this open-label, three-period, fixed-sequence study, 16 healthy females received voriconazole (400 mg q12 h, day 1; 200 mg q12 h, days 2–4) (period 1), oral contraceptive (q24 h, days 12–32) (period 2), and combination voriconazole (400 mg q12 h, day 57; 200 mg q12 h, days 58–60) and oral contraceptive (q24 h, days 40–60) (period 3). RESULTS Voriconazole geometric mean AUCτ and Cmax increased 46% (12 682–18 495 ng h ml−1; 90% confidence interval [CI] 32, 61) and 14% (2485–2840 ng ml−1; 90% CI 3, 27), respectively, when co-administered with oral contraceptive vs. voriconazole alone. Ethinyl oestradiol geometric mean AUCτ and Cmax increased 61% (1031–1657 ng h ml−1; 90% CI 50, 72) and 36% (119–161 ng ml−1; 90% CI 28, 45), respectively, and norethindrone geometric mean AUCτ and Cmax increased 53% (116–177 ng h ml−1; 90% CI 44, 64) and 15% (18–20 ng ml−1; 90% CI 3, 28), respectively, during voriconazole co-administration vs. oral contraceptive alone. Neither ethinyl oestradiol nor norethindrone levels were reduced in subjects following voriconazole co-administration. Adverse events (AEs) were generally mild, occurring less in subjects receiving voriconazole alone (36 events) vs. oral contraceptive alone (88 events) or combination treatment (68 events); four subjects experienced a severe AE. CONCLUSIONS Co-administration of voriconazole and oral contraceptive increased systemic exposures of all analytes relative to respective monotherapy. Although generally safe and well tolerated, it is recommended that patients receiving co-administered voriconazole and oral contraceptive be monitored for development of AEs commonly associated with these medications. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Voriconazole, a broad-spectrum antifungal drug, is a substrate and inhibitor of CYP2C19 and CYP3A4 isozymes.Ethinyl oestradiol and norethindrone, components of the combination oral contraceptive drug Ortho-Novum® 1/35, also are substrates of cytochrome P450 CYP2C19 and CYP3A4 isozymes.Because co-administration of voriconazole and Ortho-Novum® 1/35 could potentially result in pharmacokinetic interactions that increase systemic exposure of one or both drugs to unsafe levels, clinical studies are needed to define better the two-way pharmacokinetic interaction between these drugs. WHAT THIS STUDY ADDS Although co-administered voriconazole and oral contraceptive did result in increased systemic exposures of all three drugs relative to respective monotherapy, co-administered treatment was generally safe and well tolerated.It is recommended, however, that patients receiving co-administered voriconazole and oral contraceptives be monitored for the development of adverse events commonly associated with these medications. PMID:18294327

  18. Registration of ‘Ok101’ Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Ok101’ (Reg. no. CV-932, PI 631493) is a hard red winter wheat (Triticum aestivum L.) developed cooperatively by the Oklahoma Agricultural Experiment Station and the USDA-ARS, and released in March 2001. Ok101 was released for its high tolerance to acidic soil, broad adaptation to both dual-purpose...

  19. COASTAL INVERTEBRATES AND FISHES: HOW WILL THEY BE AFFECTED BY CHANGING ENVIRONMENTAL CONDITIONS- INCORPORATING CLIMATE SCENARIOS INTO THE COASTAL BIODIVERSITY RISK ANALYSIS TOOL (CBRAT)

    EPA Science Inventory

    The Coastal Biodiversity Risk Analysis Tool (CBRAT) is a public website that functions as an ecoinformatics platform to synthesize biogeographical distributions, abundances, life history attributes, and environmental tolerances for near-coastal invertebrates and fishes on a broad...

  20. Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate

    PubMed Central

    Yan, Hai-Qin; Chang, Su-Hua; Tian, Zhe-Xian; Zhang, Le; Sun, Yi-Cheng; Li, Yan; Wang, Jing; Wang, Yi-Ping

    2011-01-01

    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1optimized) at the 5′ end. The PparoA1optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future. PMID:21611121

  1. Substrate specificity and pH dependence of homogeneous wheat germ acid phosphatase.

    PubMed

    Van Etten, R L; Waymack, P P

    1991-08-01

    The broad substrate specificity of a homogeneous isoenzyme of wheat germ acid phosphatase (WGAP) was extensively investigated by chromatographic, electrophoretic, NMR, and kinetic procedures. WGAP exhibited no divalent metal ion requirement and was unaffected upon incubation with EDTA or o-phenanthroline. A comparison of two catalytically homogeneous isoenzymes revealed little difference in substrate specificity. The specificity of WGAP was established by determining the Michaelis constants for a wide variety of substrates. p-Nitrophenyl phosphate, pyrophosphate, tripolyphosphate, and ATP were preferred substrates while lesser activities were seen toward sugar phosphates, trimetaphosphate, phosphoproteins, and (much less) phosphodiesters. An extensive table of Km and Vmax values is given. The pathway for the hydrolysis of trimetaphosphate was examined by colorimetric and 31P NMR methods and it was found that linear tripolyphosphate is not a free intermediate in the enzymatic reaction. In contrast to literature reports, homogeneous wheat germ acid phosphatase exhibits no measurable carboxylesterase activity, nor does it hydrolyze phenyl phosphonothioate esters or phytic acid at significant rates.

  2. Characterization of an atypical, thermostable, organic solvent- and acid-tolerant 2'-deoxyribosyltransferase from Chroococcidiopsis thermalis.

    PubMed

    Del Arco, Jon; Sánchez-Murcia, Pedro Alejandro; Mancheño, José Miguel; Gago, Federico; Fernández-Lucas, Jesús

    2018-06-05

    In our search for thermophilic and acid-tolerant nucleoside 2'-deoxyribosyltransferases (NDTs), we found a good candidate in an enzyme encoded by Chroococcidiopsis thermalis PCC 7203 (CtNDT). Biophysical and biochemical characterization revealed CtNDT as a homotetramer endowed with good activity and stability at both high temperatures (50-100 °C) and a wide range of pH values (from 3 to 7). CtNDT recognizes purine bases and their corresponding 2'-deoxynucleosides but is also proficient using cytosine and 2'-deoxycytidine as substrates. These unusual features preclude the strict classification of CtNDT as either a type I or a type II NDT and further suggest that this simple subdivision may need to be updated in the future. Our findings also hint at a possible link between oligomeric state and NDT's substrate specificity. Interestingly from a practical perspective, CtNDT displays high activity (80-100%) in the presence of several water-miscible co-solvents in a proportion of up to 20% and was successfully employed in the enzymatic production of several therapeutic nucleosides such as didanosine, vidarabine, and cytarabine.

  3. Origin and evolution of osmoregulatory mechanisms in blue-green algae (cyanobacteria) as a function of metabolic and structural complexity: Reflections of Precambrian paleobiology

    NASA Technical Reports Server (NTRS)

    Yopp, John H.; Tindall, Donald R.; Pavlicek, Kenneth

    1987-01-01

    Major accomplishments underlying the basic understanding of cyanobacterial resistance to salt tolerance and osmotic stress were made. The methodology proposed included: the tracing of the pathways of formation of osmoregulatory solutes by traditional methods involving C-14 labelled substrates; gas chromatography; amino acid analysis; X-ray analysis using scanning transmission electron microscopy; and most importantly, C-13 labelled substrates, followed by Nuclear Magnetic Resonance (NMR) spectroscopy. It was found that the cyanobacteria employ a diversity of organic, osmoregulatory solutes. Osmoregulatory solutes were found to serve four functions: adjustment of water activity, noninhibition of enzymes; lowering of K sub m of enzymes to allow functioning at normal levels when the intracellular salt accumulates, and extending the pH optimum of enzymes as intracellular pH rises due to proton-potassium ion pump action during osmoregulation. Differences in osmoregulatory solutes may, but are not always, be attributed to differences in nutritional capabilities. The mechanism of osmoregulation and concomitant salt tolerance in halophilic cyanobacteria was elucidated. The activities of betaine and S-Adenosylhomocysteine hydrolase are discussed.

  4. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

    PubMed

    Poreba, Marcin; Mihelic, Marko; Krai, Priscilla; Rajkovic, Jelena; Krezel, Artur; Pawelczak, Malgorzata; Klemba, Michael; Turk, Dusan; Turk, Boris; Latajka, Rafal; Drag, Marcin

    2014-04-01

    Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.

  5. Increasing atmospheric [CO2] from glacial through future levels affects drought tolerance via impacts on leaves, xylem and their integrated function

    PubMed Central

    Medeiros, Juliana S.; Ward, Joy K.

    2013-01-01

    Summary Changes in atmospheric carbon dioxide concentration ([CO2]) affect plant carbon/water trade-offs, with implications for drought tolerance. Leaf-level studies often indicate that drought tolerance may increase with rising [CO2], but integrated leaf and xylem responses are not well understood in this respect. In addition, the influence of low [CO2] of the last glacial period on drought tolerance and xylem properties is not well understood.We investigated the interactive effects of a broad range of [CO2] and plant water potentials on leaf function, xylem structure and function and the integration of leaf and xylem function in Phaseolus vulgaris.Elevated [CO2] decreased vessel implosion strength, reduced conduit specific hydraulic conductance, and compromised leaf specific xylem hydraulic conductance under moderate drought. By contrast, at glacial [CO2], transpiration was maintained under moderate drought via greater conduit specific and leaf specific hydraulic conductance in association with increased vessel implosion strength.Our study involving the integration of leaf and xylem responses suggests that increasing [CO2] does not improve drought tolerance. We show that under glacial conditions changes in leaf and xylem properties could increase drought tolerance, while under future conditions greater productivity may only occur when higher water use can be accommodated. PMID:23668237

  6. Dendritic cell expression of the signaling molecule TRAF6 is required for immune tolerance in the lung

    PubMed Central

    Han, Daehee; Walsh, Matthew C; Kim, Kwang Soon; Hong, Sung-Wook; Lee, Junyoung; Yi, Jaeu; Rivas, Gloriany; Choi, Yongwon; Surh, Charles D

    2017-01-01

    Abstract Immune tolerance in the lung is important for preventing hypersensitivity, such as allergic asthma. Maintenance of tolerance in the lung is established by coordinated activities of poorly understood cellular and molecular mechanisms, including participation of dendritic cells (DCs). We have previously identified DC expression of the signaling molecule TRAF6 as a non-redundant requirement for the maintenance of immune tolerance in the small intestine of mice. Because mucosal tissues share similarities in how they interact with exogenous antigens, we examined the role of DC-expressed TRAF6 in the lung. As with the intestine, we found that the absence TRAF6 expression by DCs led to spontaneous generation of Th2-associated immune responses and increased susceptibility to model antigen-induced asthma. To examine the role of commensal microbiota, mice deficient in TRAF6 in DCs were treated with broad-spectrum antibiotics and/or re-derived on a germ-free (GF) background. Interestingly, we found that antibiotics-treated specific pathogen-free, but not GF, mice showed restored immune tolerance in the absence of DC-expressed TRAF6. We further found that antibiotics mediate microbiota-independent effects on lung T cells to promote immune tolerance in the lung. This work provides both a novel tool for studying immune tolerance in the lung and an advance in our conceptual understanding of potentially common molecular mechanisms of immune tolerance in both the intestine and the lung. PMID:28338920

  7. Heavy metal tolerance and accumulation of Triarrhena sacchariflora, a large amphibious ornamental grass.

    PubMed

    Tian, R N; Yu, S; Wang, S G; Zhang, Y; Tang, J Y; Liu, Y L; Nie, Y H

    2013-01-01

    In this study, we report the tolerance and accumulation of Triarrhena sacchariflora to copper (Cu) and cadmium (Cd). The results show that T. sacchariflora had strong tolerance to Cu and Cd stress. The tolerance indexes (TI) were greater than 0.5 for all treatments. The bioconcentration factors (BCFs) to Cu and Cd were both above 1.0. The accumulation ability of roots was stronger than that of shoots, and ranges of BCF to Cu and Cd in roots were 37.89-79.08 and 83.96-300.57, respectively. However, the translocation ability to Cu and Cd was weak, with more than 86% of Cu or Cd accumulated in roots, suggesting an exclusion strategy for heavy metal tolerance. The uptake efficiency (UE) and translocation efficiency (TE) to Cu and Cd increased linearly as the Cu and Cd concentration in the substrate increased. UE was higher than TE, with a maximum of 2,118.90 μg g(-1) root dry weight (DW) (50 mg L(-1) Cu) and 1,847.51 μg g(-1) root DW (20 mg L(-1)Cd), respectively. The results indicate that T. sacchariflora is a Cu- and Cd-tolerant non-hyperaccumulator plant, suggesting that T. sacchariflora could play an important role in phytoremediation in areas contaminated with Cu and Cd.

  8. Impact of pseudo-continuous fermentation on the ethanol tolerance of Scheffersomyces stipitis.

    PubMed

    Liang, Meng; Kim, Min Hea; He, Qinghua Peter; Wang, Jin

    2013-09-01

    In this work we conducted the pseudo-continuous fermentation, i.e., continuous fermentation with cell retention, using Scheffersomyces stipitis, and studied its effect on ethanol tolerance of the strain. During the fermentation experiments, S. stipitis was adapted to a mild concentration of ethanol (20-26 g/L) for two weeks. Two substrates (glucose and xylose) were used in different fermentation experiments. After fermentation, various experiments were performed to evaluate the ethanol tolerance of adapted cells and unadapted cells. Compared to the unadapted cells, the viability of adapted cells increased by 8 folds with glucose as the carbon source and 6 folds with xylose as the carbon source following exposure to 60 g/L ethanol for 2 h. Improved ethanol tolerance of the adapted cells was also revealed in the effects of ethanol on plasma membrane permeability, extracellular alkalization and acidification. The mathematical modeling of cell leakage, extracellular alkalization and acidification revealed that cells cultured on glucose show better ethanol tolerance than cells cultured on xylose but the differences become smaller for adapted cells. The results show that pseudo-continuous fermentation can effectively improve cell's ethanol tolerance due to the environmental pressure during the fermentation process. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Mid-infrared tunable metamaterials

    DOEpatents

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A.; Passmore, Brandon Scott

    2017-07-11

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  10. Mid-infrared tunable metamaterials

    DOEpatents

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  11. Correlation of Factor IXa Subsite Modulations with Effects on Substrate Discrimination

    PubMed Central

    Neuenschwander, Pierre F.; Deadmond, Kimberly J.; Zepeda, Karla; Rutland, Joshua

    2012-01-01

    Summary Background A key feature of factor IXa (fIXa) is its allosteric transformation from an enzymatically latent form into a potent procoagulant. Whilst several small molecules have been found capable of partially effecting fIXa function (i.e. ethylene glycol, calcium ion and LMWH), the resulting modest changes in peptidolytic activity have made the study of their mechanisms of action challenging. Since these effects yield hints into potential regulatory forces that may be operational in full expression of fIXa coagulant activity, their description remains of high interest. Studies of crystal structures have yielded insight into structural changes induced by these effectors, but there remains a paucity of information to correlate any given structural change with specific consequences on fIXa function. Objectives To correlate structural changes induced by these modulators with defined consequences in fIXa substrate discrimination and function. Methods A peptidomics-based MS approach was used to examine patterns of hydrolysis of four combinatorial chemistry-derived pentapeptide libraries by fIXa under various conditions in a soluble, active enzyme system. Results Ethylene glycol specifically alters the S3 subsite of fIXa to render it more tolerant to side chains at the P3 substrate position, while calcium enhances tolerance at the S2 subsite. In contrast, LMWH alters both S2 and S1' subsites. Conclusions These results demonstrate the role of plasticity in regulating fIXa function with respect to discrimination of extended substrate sequences, as well as provide crucial insight into active site modulations that may be capitalized upon by various physiological cofactors of fIXa and in future drug design. PMID:22212890

  12. Geological Substrates Shape Tree Species and Trait Distributions in African Moist Forests

    PubMed Central

    Fayolle, Adeline; Engelbrecht, Bettina; Freycon, Vincent; Mortier, Frédéric; Swaine, Michael; Réjou-Méchain, Maxime; Doucet, Jean-Louis; Fauvet, Nicolas; Cornu, Guillaume; Gourlet-Fleury, Sylvie

    2012-01-01

    Background Understanding the factors that shape the distribution of tropical tree species at large scales is a central issue in ecology, conservation and forest management. The aims of this study were to (i) assess the importance of environmental factors relative to historical factors for tree species distributions in the semi-evergreen forests of the northern Congo basin; and to (ii) identify potential mechanisms explaining distribution patterns through a trait-based approach. Methodology/Principal Findings We analyzed the distribution patterns of 31 common tree species in an area of more than 700,000 km2 spanning the borders of Cameroon, the Central African Republic, and the Republic of Congo using forest inventory data from 56,445 0.5-ha plots. Spatial variation of environmental (climate, topography and geology) and historical factors (human disturbance) were quantified from maps and satellite records. Four key functional traits (leaf phenology, shade tolerance, wood density, and maximum growth rate) were extracted from the literature. The geological substrate was of major importance for the distribution of the focal species, while climate and past human disturbances had a significant but lesser impact. Species distribution patterns were significantly related to functional traits. Species associated with sandy soils typical of sandstone and alluvium were characterized by slow growth rates, shade tolerance, evergreen leaves, and high wood density, traits allowing persistence on resource-poor soils. In contrast, fast-growing pioneer species rarely occurred on sandy soils, except for Lophira alata. Conclusions/Significance The results indicate strong environmental filtering due to differential soil resource availability across geological substrates. Additionally, long-term human disturbances in resource-rich areas may have accentuated the observed patterns of species and trait distributions. Trait differences across geological substrates imply pronounced differences in population and ecosystem processes, and call for different conservation and management strategies. PMID:22905127

  13. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  14. Laser Trimming of CuAlMo Thin-Film Resistors: Effect of Laser Processing Parameters

    NASA Astrophysics Data System (ADS)

    Birkett, Martin; Penlington, Roger

    2012-08-01

    This paper reports the effect of varying laser trimming process parameters on the electrical performance of a novel CuAlMo thin-film resistor material. The films were prepared on Al2O3 substrates by direct-current (DC) magnetron sputtering, before being laser trimmed to target resistance value. The effect of varying key laser parameters of power, Q-rate, and bite size on the resistor stability and tolerance accuracy were systematically investigated. By reducing laser power and bite size and balancing this with Q-rate setting, significant improvements in resistor stability and resistor tolerance accuracies of less than ±0.5% were achieved.

  15. Xpo7 is a broad-spectrum exportin and a nuclear import receptor.

    PubMed

    Aksu, Metin; Pleiner, Tino; Karaca, Samir; Kappert, Christin; Dehne, Heinz-Jürgen; Seibel, Katharina; Urlaub, Henning; Bohnsack, Markus T; Görlich, Dirk

    2018-05-10

    Exportins bind cargo molecules in a RanGTP-dependent manner inside nuclei and transport them through nuclear pores to the cytoplasm. CRM1/Xpo1 is the best-characterized exportin because specific inhibitors such as leptomycin B allow straightforward cargo validations in vivo. The analysis of other exportins lagged far behind, foremost because no such inhibitors had been available for them. In this study, we explored the cargo spectrum of exportin 7/Xpo7 in depth and identified not only ∼200 potential export cargoes but also, surprisingly, ∼30 nuclear import substrates. Moreover, we developed anti-Xpo7 nanobodies that acutely block Xpo7 function when transfected into cultured cells. The inhibition is pathway specific, mislocalizes export cargoes of Xpo7 to the nucleus and import substrates to the cytoplasm, and allowed validation of numerous tested cargo candidates. This establishes Xpo7 as a broad-spectrum bidirectional transporter and paves the way for a much deeper analysis of exportin and importin function in the future. © 2018 Aksu et al.

  16. The First Mammalian Aldehyde Oxidase Crystal Structure

    PubMed Central

    Coelho, Catarina; Mahro, Martin; Trincão, José; Carvalho, Alexandra T. P.; Ramos, Maria João; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke; Romão, Maria João

    2012-01-01

    Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity. PMID:23019336

  17. Effective cleaning of hexagonal boron nitride for graphene devices.

    PubMed

    Garcia, Andrei G F; Neumann, Michael; Amet, François; Williams, James R; Watanabe, Kenji; Taniguchi, Takashi; Goldhaber-Gordon, David

    2012-09-12

    Hexagonal boron nitride (h-BN) films have attracted considerable interest as substrates for graphene. ( Dean, C. R. et al. Nat. Nanotechnol. 2010 , 5 , 722 - 6 ; Wang, H. et al. Electron Device Lett. 2011 , 32 , 1209 - 1211 ; Sanchez-Yamagishi, J. et al. Phys. Rev. Lett. 2012 , 108 , 1 - 5 .) We study the presence of organic contaminants introduced by standard lithography and substrate transfer processing on h-BN films exfoliated on silicon oxide substrates. Exposure to photoresist processing adds a large broad luminescence peak to the Raman spectrum of the h-BN flake. This signal persists through typical furnace annealing recipes (Ar/H(2)). A recipe that successfully removes organic contaminants and results in clean h-BN flakes involves treatment in Ar/O(2) at 500 °C.

  18. Interactions of Penicillium griseofulvum with inorganic and organic substrates: vanadium, lead and hexachlorocyclohexane

    NASA Astrophysics Data System (ADS)

    Ceci, Andrea; Pierro, Lucia; Riccardi, Carmela; Maggi, Oriana; Pinzari, Flavia; Gadd, Geoffrey Michael; Petrangeli Papini, Marco; Persiani, Anna Maria

    2015-04-01

    Soil is an essential and non-renewable resource for human beings and ecosystems. In recent years, anthropogenic activities mainly related to hydrocarbon fuel combustion, mining and industrial activities have increased the levels of vanadium in the environment, raising concern over its spread. Vanadium may be essential for some bacteria and fungi, but can have toxic effects at high concentrations. The pesticide lindane or γ-hexachlorocyclohexane (γ-HCH) and another two isomers of hexachlorocyclohexane (HCH), α-HCH, and β-HCH, were included as persistent organic pollutants in the Stockholm Convention in 2008, and their worldwide spread and toxic effects on organisms are severe environmental problems. Fungi play important roles in soil and can survive in high concentrations of toxic elements and pesticides by possessing mechanisms for the degradation, utilization and transformation of organic and inorganic substrates. The transformation of potentially toxic elements (PTEs), and degradation of chlorinated pesticides and other persistent organic pollutants may provide environmentally-friendly and economical approaches for environmental management and restoration. In this work, we have investigated the tolerance of a soil fungal species, Penicillum griseofulvum, to different hexachlorocyclohexane (HCH) isomers, α-HCH, β-HCH, δ-HCH and γ-HCH or lindane, and two PTEs, vanadium and lead in relation to growth responses and biotransformation. P. griseofulvum was isolated from soils with high levels of PTEs (including vanadium and lead), and HCH residues. P. griseofulvum was able to tolerate vanadium concentrations up to 5 mM, combinations of 2.5 mM vanadium and lead compounds, and was able to grow in the presence of a 4 mg L-1 mixture of α-HCH, β-HCH, δ-HCH and γ-HCH, and degrade these substrates. Tolerance mechanisms may explain the occurrence of fungi in polluted habitats: their roles in the biotransformation of metals and persistent organic pollutants may provide opportunities for bioremediation. (287 words)

  19. Application of optical processing for growth of silicon dioxide

    DOEpatents

    Sopori, B.L.

    1997-06-17

    A process for producing a silicon dioxide film on a surface of a silicon substrate is disclosed. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm{sup 2} to about 6 watts/cm{sup 2} for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm{sup 2} for growth of a 100{angstrom}-300{angstrom} film at a resultant temperature of about 400 C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO{sub 2}/Si interface to be very low. 1 fig.

  20. [Biogas production from cellulose-containing substrates: a review].

    PubMed

    Tsavkelova, E A; Netrusov, A I

    2012-01-01

    Anaerobic microbial conversion of organic substrates to various biofuels is one of the alternative energy sources attracting the greatest attention of scientists. The advantages of biogas production over other technologies are the ability of methanogenic communities to degrade a broad range of substrates and concomitant benefits: neutralization of organic waste, reduction of greenhouse gas emission, and fertilizer production. Cellulose-containing materials are a good substrate, but their full-scale utilization encounters a number of problems, including improvement of the quality and amount ofbiogas produced and maintenance of the stability and high efficiency of microbial communities. We review data on microorganisms that form methanogenic cellulolytic communities, enzyme complexes of anaerobes essential for cellulose fiber degradation, and feedstock pretreatment, as biodegradation is hindered in the presence of lignin. Methods for improving biogas production by optimization of microbial growth conditions are considered on the examples of biogas formation from various types of plant and paper materials: writing paper and cardboard.

  1. Processing of silicon solar cells by ion implantation and laser annealing

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Matthei, K. W.; Greenwald, A. C.

    1981-01-01

    Methods to improve the radiation tolerance of silicon cells for spacecraft use are described. The major emphasis of the program was to reduce the process-induced carbon and oxygen impurities in the junction and base regions of the solar cell, and to measure the effect of reduced impurity levels on the radiation tolerance of cells. Substrates of 0.1, 1.0 and 10.0 ohm-cm float-zone material were used as starting material in the process sequence. High-dose, low-energy ion implantation was used to form the junction in n+p structures. Implant annealing was performed by conventional furnace techniques and by pulsed laser and pulsed electron beam annealing. Cells were tested for radiation tolerance at Spire and NASA-LeRC. After irradiation by 1 MeV electrons to a fluence of 10 to the 16th power per sq cm, the cells tested at Spire showed no significant process induced variations in radiation tolerance. However, for cells tested at Lewis to a fluence of 10 to the 15th power per sq cm, ion-implanted cells annealed in vacuum by pulsed electron beam consistently showed the best radiation tolerance for all cell resistivities.

  2. Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates

    PubMed Central

    Lee, Chi Hwan; Kim, Dong Rip; Cho, In Sun; William, Nemeth; Wang, Qi; Zheng, Xiaolin

    2012-01-01

    Fabrication of thin-film solar cells (TFSCs) on substrates other than Si and glass has been challenging because these nonconventional substrates are not suitable for the current TFSC fabrication processes due to poor surface flatness and low tolerance to high temperature and chemical processing. Here, we report a new peel-and-stick process that circumvents these fabrication challenges by peeling off the fully fabricated TFSCs from the original Si wafer and attaching TFSCs to virtually any substrates regardless of materials, flatness and rigidness. With the peel-and-stick process, we integrated hydrogenated amorphous silicon (a-Si:H) TFSCs on paper, plastics, cell phone and building windows while maintaining the original 7.5% efficiency. The new peel-and-stick process enables further reduction of the cost and weight for TFSCs and endows TFSCs with flexibility and attachability for broader application areas. We believe that the peel-and-stick process can be applied to thin film electronics as well. PMID:23277871

  3. Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates

    NASA Astrophysics Data System (ADS)

    Lee, Chi Hwan; Kim, Dong Rip; Cho, In Sun; William, Nemeth; Wang, Qi; Zheng, Xiaolin

    2012-12-01

    Fabrication of thin-film solar cells (TFSCs) on substrates other than Si and glass has been challenging because these nonconventional substrates are not suitable for the current TFSC fabrication processes due to poor surface flatness and low tolerance to high temperature and chemical processing. Here, we report a new peel-and-stick process that circumvents these fabrication challenges by peeling off the fully fabricated TFSCs from the original Si wafer and attaching TFSCs to virtually any substrates regardless of materials, flatness and rigidness. With the peel-and-stick process, we integrated hydrogenated amorphous silicon (a-Si:H) TFSCs on paper, plastics, cell phone and building windows while maintaining the original 7.5% efficiency. The new peel-and-stick process enables further reduction of the cost and weight for TFSCs and endows TFSCs with flexibility and attachability for broader application areas. We believe that the peel-and-stick process can be applied to thin film electronics as well.

  4. Mapping estuarine distributions of the non-indigenous Japanese Eelgrass Zostera japonica using Color Infrared Aerial Photography

    EPA Science Inventory

    This presentation describes a technique for mapping distributions of the nonindigenous Japanese eelgrass Zostera japonica in estuarine ecosystems of the Pacific Northwest. The relatively broad distribution of this intertidal plant, often on very soft substrate, makes classical g...

  5. Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway.

    PubMed Central

    Abril, M A; Michan, C; Timmis, K N; Ramos, J L

    1989-01-01

    The TOL plasmid upper pathway operon encodes enzymes involved in the catabolism of aromatic hydrocarbons such as toluene and xylenes. The regulator of the gene pathway, the XylR protein, exhibits a very broad effector specificity, being able to recognize as effectors not only pathway substrates but also a wide variety of mono- and disubstituted methyl-, ethyl-, and chlorotoluenes, benzyl alcohols, and p-chlorobenzaldehyde. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase, two upper pathway enzymes, exhibit very broad substrate specificities and transform unsubstituted substrates and m- and p-methyl-, m- and p-ethyl-, and m- and p-chloro-substituted benzyl alcohols and benzaldehydes, respectively, at a high rate. In contrast, toluene oxidase only oxidizes toluene, m- and p-xylene, m-ethyltoluene, and 1,2,4-trimethylbenzene [corrected], also at a high rate. A biological test showed that toluene oxidase attacks m- and p-chlorotoluene, albeit at a low rate. No evidence for the transformation of p-ethyltoluene by toluene oxidase has been found. Hence, toluene oxidase acts as the bottleneck step for the catabolism of p-ethyl- and m- and p-chlorotoluene through the TOL upper pathway. A mutant toluene oxidase able to transform p-ethyltoluene was isolated, and a mutant strain capable of fully degrading p-ethyltoluene was constructed with a modified TOL plasmid meta-cleavage pathway able to mineralize p-ethylbenzoate. By transfer of a TOL plasmid into Pseudomonas sp. strain B13, a clone able to slowly degrade m-chlorotoluene was also obtained. PMID:2687253

  6. The evolving roles of memory immune cells in transplantation

    PubMed Central

    Chen, Wenhao; Ghobrial, Rafik M.; Li, Xian C.

    2015-01-01

    Memory cells are the products of immune responses but also exert significant impact on subsequent immunity and immune tolerance, thus placing them in a unique position in transplant research. Memory cells are heterogeneous, including not only memory T cells but also memory B cells and innate memory cells. Memory cells are a critical component of protective immunity against invading pathogens, especially in immunosuppressed patients, but they also mediate graft loss and tolerance resistance. Recent studies suggest that some memory cells unexpectedly act as regulatory cells, promoting rather than hindering transplant survival. This functional diversity makes therapeutic targeting of memory cells a challenging task in transplantation. In this article we highlight recent advances in our understanding of memory cells, focusing on diversity of memory cells and mechanisms involved in their induction and functions. We also provide a broad overview on the challenges and opportunities in targeting memory cells in the induction of transplant tolerance. PMID:26102615

  7. Phenotyping for drought tolerance of crops in the genomics era

    PubMed Central

    Tuberosa, Roberto

    2012-01-01

    Improving crops yield under water-limited conditions is the most daunting challenge faced by breeders. To this end, accurate, relevant phenotyping plays an increasingly pivotal role for the selection of drought-resilient genotypes and, more in general, for a meaningful dissection of the quantitative genetic landscape that underscores the adaptive response of crops to drought. A major and universally recognized obstacle to a more effective translation of the results produced by drought-related studies into improved cultivars is the difficulty in properly phenotyping in a high-throughput fashion in order to identify the quantitative trait loci that govern yield and related traits across different water regimes. This review provides basic principles and a broad set of references useful for the management of phenotyping practices for the study and genetic dissection of drought tolerance and, ultimately, for the release of drought-tolerant cultivars. PMID:23049510

  8. Orchestration of intestinal homeostasis and tolerance by group 3 innate lymphoid cells.

    PubMed

    Penny, Hugo A; Hodge, Suzanne H; Hepworth, Matthew R

    2018-05-08

    The gastrointestinal tract is the primary site of exposure to a multitude of microbial, environmental, and dietary challenges. As a result, immune responses in the intestine need to be tightly regulated in order to prevent inappropriate inflammatory responses to exogenous stimuli. Intestinal homeostasis and tolerance are mediated through a multitude of immune mechanisms that act to reinforce barrier integrity, maintain the segregation and balance of commensal microbes, and ensure tissue health and regeneration. Here, we discuss the role of group 3 innate lymphoid cells (ILC3) as key regulators of intestinal health and highlight how increasing evidence implicates dysregulation of this innate immune cell population in the onset or progression of a broad range of clinically relevant pathologies. Finally, we discuss how the next generation of immunotherapeutics may be utilized to target ILC3 in disease and restore gastrointestinal tolerance and tissue health.

  9. Advances in the Breeding and Genetics of Heat Tolerance to Alleviate the Effects of Climate Change, with a Focus on Common Bean

    USDA-ARS?s Scientific Manuscript database

    Crop plants are broadly sensitive to high ambient temperatures during reproductive development while breeding efforts are helping to alleviate the impact of heat stress. Common bean, Phaseolus vulgaris L., is sensitive to moderately high ambient temperature, where temperatures greater than 25C have ...

  10. Multi-environment selection of small sieve snap beans reduces production constraints in East Africa and subtropical regions

    USDA-ARS?s Scientific Manuscript database

    Common bean rust caused by Uromyces appendiculatus, and heat stress lower the yield and quality of snap beans (Phaseolus vulgaris L.) in East Africa. Four snap bean breeding lines previously selected for broad-spectrum rust resistance (involving Ur-4 and Ur-11 rust genes) and heat tolerance followin...

  11. Dear Colleague Letter: Responding to Bullying of Students with Disabilities

    ERIC Educational Resources Information Center

    Lhamon, Catherine E.

    2014-01-01

    While there is broad consensus that bullying is wrong and cannot be tolerated in schools, the reality is that bullying persists in schools today, and especially for students with disabilities. In recent years, the Office for Civil Rights (OCR) in the U.S. Department of Education (Department) has received an ever-increasing number of complaints…

  12. Levetiracetam-induced acute psychosis in a child

    PubMed Central

    Zaki, Syed Ahmed; Gupta, Saurabh

    2014-01-01

    Levetiracetam is well-tolerated and commonly used as a broad spectrum antiepileptic in both partial and generalized seizures. Few cases of levetiracetam-induced psychosis in children are reported in the literature. The present case of levetiracetam-induced acute psychosis highlights the adverse effect of this drug and also emphasizes the need for close monitoring of children on levetiracetam. PMID:24987186

  13. 78 FR 79579 - Energy Conservation Program: Alternative Efficiency Determination Methods, Basic Model Definition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... Working Group agreed on a one- sided 5 percent tolerance when comparing the validation test results to the... one DOE representative. 78 FR 22431. The members of the Working Group were selected to ensure a broad... Issues 1. Pre-Approval The Working Group unanimously recommended that DOE not require pre- approval for...

  14. Evaluating Factor XIII Specificity for Glutamine-Containing Substrates Using a MALDI-TOF Mass Spectrometry Assay

    PubMed Central

    Doiphode, Prakash G.; Malovichko, Marina V.; Mouapi, Kelly Njine; Maurer, Muriel C.

    2014-01-01

    Activated Factor XIII (FXIIIa) catalyzes the formation of γ-glutamyl-ε-lysyl cross-links within the fibrin blood clot network. Although several cross-linking targets have been identified, the characteristic features that define FXIIIa substrate specificity are not well understood. To learn more about how FXIIIa selects its targets, a matrix-assisted laser desorption ionization – time of flight mass spectrometry (MALDI-TOF MS) based assay was developed that could directly follow the consumption of a glutamine-containing substrate and the formation of a cross-linked product with glycine ethylester. This FXIIIa kinetics assay is no longer reliant on a secondary coupled reaction, on substrate labeling, or on detecting the final deacylation portion of the transglutaminase reaction. With the MALDI-TOF MS assay, glutamine-containing peptides derived from α2-antiplasmin, S. Aureus fibronectin binding protein A, and thrombin activatable fibrinolysis inhibitor were examined directly. Results suggest that the FXIIIa active site surface responds to changes in substrate residues following the reactive glutamine. The P-1 substrate position is sensitive to charge character and the P-2 and P-3 to the broad FXIIIa substrate specificity pockets. The more distant P-8 to P-11 region serves as a secondary substrate anchoring point. New knowledge on FXIIIa specificity may be used to design better substrates or inhibitors of this transglutaminase. PMID:24751466

  15. Age, allocation and availability of nonstructural carbon in mature red maple trees

    Treesearch

    Mariah S. Carbone; Claudia I. Czimczik; Trevor F. Keenan; Paula F. Murakami; Neil Pederson; Paul G. Schaberg; Xiaomei Xu; Andrew D. Richardson

    2013-01-01

    The allocation of nonstructural carbon (NSC) to growth, metabolism and storage remains poorly understood, but is critical for the prediction of stress tolerance and mortality.We used the radiocarbon (14C) ‘bomb spike’ as a tracer of substrate and age of carbon in stemwood NSC, CO2 emitted by stems, tree...

  16. The Use of Conductive Ink in Antenna Education and Design

    ERIC Educational Resources Information Center

    Addison, David W.

    2017-01-01

    Conductive ink from a printer allows for the fabrication of conductive material with tight tolerances without the cost and time of chemical etching. This paper explores the use of AGIC printable conductive ink on a paper substrate as design tool for antennas as well as classroom use in antenna education. The antenna designs satisfy the…

  17. Mrp Antiporters Have Important Roles in Diverse Bacteria and Archaea.

    PubMed

    Ito, Masahiro; Morino, Masato; Krulwich, Terry A

    2017-01-01

    Mrp (Multiple resistance and pH) antiporter was identified as a gene complementing an alkaline-sensitive mutant strain of alkaliphilic Bacillus halodurans C-125 in 1990. At that time, there was no example of a multi-subunit type Na + /H + antiporter comprising six or seven hydrophobic proteins, and it was newly designated as the monovalent cation: proton antiporter-3 (CPA3) family in the classification of transporters. The Mrp antiporter is broadly distributed among bacteria and archaea, not only in alkaliphiles. Generally, all Mrp subunits, mrpA-G , are required for enzymatic activity. Two exceptions are Mrp from the archaea Methanosarcina acetivorans and the eubacteria Natranaerobius thermophilus , which are reported to sustain Na + /H + antiport activity with the MrpA subunit alone. Two large subunits of the Mrp antiporter, MrpA and MrpD, are homologous to membrane-embedded subunits of the respiratory chain complex I, NuoL, NuoM, and NuoN, and the small subunit MrpC has homology with NuoK. The functions of the Mrp antiporter include sodium tolerance and pH homeostasis in an alkaline environment, nitrogen fixation in Schizolobium meliloti , bile salt tolerance in Bacillus subtilis and Vibrio cholerae , arsenic oxidation in Agrobacterium tumefaciens , pathogenesis in Pseudomonas aeruginosa and Staphylococcus aureus , and the conversion of energy involved in metabolism and hydrogen production in archaea. In addition, some Mrp antiporters transport K + and Ca 2+ instead of Na + , depending on the environmental conditions. Recently, the molecular structure of the respiratory chain complex I has been elucidated by others, and details of the mechanism by which it transports protons are being clarified. Based on this, several hypotheses concerning the substrate transport mechanism in the Mrp antiporter have been proposed. The MrpA and MrpD subunits, which are homologous to the proton transport subunit of complex I, are involved in the transport of protons and their coupling cations. Herein, we outline other recent findings on the Mrp antiporter.

  18. Mrp Antiporters Have Important Roles in Diverse Bacteria and Archaea

    PubMed Central

    Ito, Masahiro; Morino, Masato; Krulwich, Terry A.

    2017-01-01

    Mrp (Multiple resistance and pH) antiporter was identified as a gene complementing an alkaline-sensitive mutant strain of alkaliphilic Bacillus halodurans C-125 in 1990. At that time, there was no example of a multi-subunit type Na+/H+ antiporter comprising six or seven hydrophobic proteins, and it was newly designated as the monovalent cation: proton antiporter-3 (CPA3) family in the classification of transporters. The Mrp antiporter is broadly distributed among bacteria and archaea, not only in alkaliphiles. Generally, all Mrp subunits, mrpA–G, are required for enzymatic activity. Two exceptions are Mrp from the archaea Methanosarcina acetivorans and the eubacteria Natranaerobius thermophilus, which are reported to sustain Na+/H+ antiport activity with the MrpA subunit alone. Two large subunits of the Mrp antiporter, MrpA and MrpD, are homologous to membrane-embedded subunits of the respiratory chain complex I, NuoL, NuoM, and NuoN, and the small subunit MrpC has homology with NuoK. The functions of the Mrp antiporter include sodium tolerance and pH homeostasis in an alkaline environment, nitrogen fixation in Schizolobium meliloti, bile salt tolerance in Bacillus subtilis and Vibrio cholerae, arsenic oxidation in Agrobacterium tumefaciens, pathogenesis in Pseudomonas aeruginosa and Staphylococcus aureus, and the conversion of energy involved in metabolism and hydrogen production in archaea. In addition, some Mrp antiporters transport K+ and Ca2+ instead of Na+, depending on the environmental conditions. Recently, the molecular structure of the respiratory chain complex I has been elucidated by others, and details of the mechanism by which it transports protons are being clarified. Based on this, several hypotheses concerning the substrate transport mechanism in the Mrp antiporter have been proposed. The MrpA and MrpD subunits, which are homologous to the proton transport subunit of complex I, are involved in the transport of protons and their coupling cations. Herein, we outline other recent findings on the Mrp antiporter. PMID:29218041

  19. Microbial Cellulose Utilization: Fundamentals and Biotechnology

    PubMed Central

    Lynd, Lee R.; Weimer, Paul J.; van Zyl, Willem H.; Pretorius, Isak S.

    2002-01-01

    Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for “consolidated bioprocessing” (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts. PMID:12209002

  20. Crystal structure of salt-tolerant glutaminase from Micrococcus luteus K-3 in the presence and absence of its product L-glutamate and its activator Tris.

    PubMed

    Yoshimune, Kazuaki; Shirakihara, Yasuo; Wakayama, Mamoru; Yumoto, Isao

    2010-02-01

    Glutaminase from Micrococcus luteus K-3 [Micrococcus glutaminase (Mglu); 456 amino acid residues (aa); 48 kDa] is a salt-tolerant enzyme. Our previous study determined the structure of its major 42-kDa fragment. Here, using new crystallization conditions, we determined the structures of the intact enzyme in the presence and absence of its product L-glutamate and its activator Tris, which activates the enzyme by sixfold. With the exception of a 'lid' part (26-29 aa) and a few other short stretches, the structures were all very similar over the entire polypeptide chain. However, the presence of the ligands significantly reduced the length of the disordered regions: 41 aa in the unliganded structure (N), 21 aa for L-glutamate (G), 8 aa for Tris (T) and 6 aa for both L-glutamate and Tris (TG). L-glutamate was identified in both the G and TG structures, whereas Tris was only identified in the TG structure. Comparison of the glutamate-binding site between Mglu and salt-labile glutaminase (YbgJ) from Bacillus subtilis showed significantly smaller structural changes of the protein part in Mglu. A comparison of the substrate-binding pocket of Mglu, which is highly specific for L-glutamine, with that of Erwinia carotovora asparaginase, which has substrates other than L-glutamine, shows that Mglu has a larger substrate-binding pocket that prevents the binding of L-asparagine with proper interactions.

  1. A comparative framework for maneuverability and gust tolerance of aerial microsystems

    NASA Astrophysics Data System (ADS)

    Campbell, Renee

    Aerial microsystems have the potential of navigating low-altitude, cluttered environments such as urban corridors and building interiors. Reliable systems require both agility and tolerance to gusts. While many platform designs are under development, no framework currently exists to quantitatively assess these inherent bare airframe characteristics which are independent of closed loop controllers. This research develops a method to quantify the maneuverability and gust tolerance of vehicles using reachability and disturbance sensitivity sets. The method is applied to a stable flybar helicopter and an unstable flybarless helicopter, whose state space models were formed through system identification. Model-based static H∞ controllers were also implemented on the vehicles and tested in the lab using fan-generated gusts. It is shown that the flybar restricts the bare airframe's ability to maneuver in translational velocity directions. As such, the flybarless helicopter proved more maneuverable and gust tolerant than the flybar helicopter. This approach was specifically applied here to compare stable and unstable helicopter platforms; however, the framework may be used to assess a broad range of aerial microsystems.

  2. More than 400 million years of evolution and some plants still can't make it on their own: Plant stress tolerance via fungal symbiosis

    USGS Publications Warehouse

    Rodriguez, R.; Redman, R.

    2008-01-01

    All plants in natural ecosystems are thought to be symbiotic with mycorrhizal and/or endophytic fungi. Collectively, these fungi express different symbiotic lifestyles ranging from parasitism to mutualism. Analysis of Colletotrichum species indicates that individual isolates can express either parasitic or mutualistic lifestyles depending on the host genotype colonized. The endophyte colonization pattern and lifestyle expression indicate that plants can be discerned as either disease, non-disease, or non-hosts. Fitness benefits conferred by fungi expressing mutualistic lifestyles include biotic and abiotic stress tolerance, growth enhancement, and increased reproductive success. Analysis of plant-endophyte associations in high stress habitats revealed that at least some fungal endophytes confer habitat-specific stress tolerance to host plants. Without the habitat-adapted fungal endophytes, the plants are unable to survive in their native habitats. Moreover, the endophytes have a broad host range encompassing both monocots and eudicots, and confer habitat-specific stress tolerance to both plant groups. ?? The Author [2008]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.

  3. Breaching peripheral tolerance promotes the production of HIV-1–neutralizing antibodies

    PubMed Central

    Schroeder, Kristin M.S.; Harper, Michael S.; Santiago, Mario L.

    2017-01-01

    A subset of characterized HIV-1 broadly neutralizing antibodies (bnAbs) are polyreactive with additional specificities for self-antigens and it has been proposed immunological tolerance may present a barrier to their participation in protective humoral immunity. We address this hypothesis by immunizing autoimmune-prone mice with HIV-1 Envelope (Env) and characterizing the primary antibody response for HIV-1 neutralization. We find autoimmune mice generate neutralizing antibody responses to tier 2 HIV-1 strains with alum treatment alone in the absence of Env. Importantly, experimentally breaching immunological tolerance in wild-type mice also leads to the production of tier 2 HIV-1–neutralizing antibodies, which increase in breadth and potency following Env immunization. In both genetically prone and experimentally induced mouse models of autoimmunity, increased serum levels of IgM anti-histone H2A autoantibodies significantly correlated with tier 2 HIV-1 neutralization, and anti-H2A antibody clones were found to neutralize HIV-1. These data demonstrate that breaching peripheral tolerance permits a cross-reactive HIV-1 autoantibody response able to neutralize HIV-1. PMID:28698284

  4. Opioid analgesics and P-glycoprotein efflux transporters: a potential systems-level contribution to analgesic tolerance.

    PubMed

    Mercer, Susan L; Coop, Andrew

    2011-01-01

    Chronic clinical pain remains poorly treated. Despite attempts to develop novel analgesic agents, opioids remain the standard analgesics of choice in the clinical management of chronic and severe pain. However, mu opioid analgesics have undesired side effects including, but not limited to, respiratory depression, physical dependence and tolerance. A growing body of evidence suggests that P-glycoprotein (P-gp), an efflux transporter, may contribute a systems-level approach to the development of opioid tolerance. Herein, we describe current in vitro and in vivo methodology available to analyze interactions between opioids and P-gp and critically analyze P-gp data associated with six commonly used mu opioids to include morphine, methadone, loperamide, meperidine, oxycodone, and fentanyl. Recent studies focused on the development of opioids lacking P-gp substrate activity are explored, concentrating on structure-activity relationships to develop an optimal opioid analgesic lacking this systems-level contribution to tolerance development. Continued work in this area will potentially allow for delineation of the mechanism responsible for opioid-related P-gp up-regulation and provide further support for evidence based medicine supporting clinical opioid rotation.

  5. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance

    PubMed Central

    2013-01-01

    Background Understanding the function of a particular gene under various stresses is important for engineering plants for broad-spectrum stress tolerance. Although virus-induced gene silencing (VIGS) has been used to characterize genes involved in abiotic stress tolerance, currently available gene silencing and stress imposition methodology at the whole plant level is not suitable for high-throughput functional analyses of genes. This demands a robust and reliable methodology for characterizing genes involved in abiotic and multi-stress tolerance. Results Our methodology employs VIGS-based gene silencing in leaf disks combined with simple stress imposition and effect quantification methodologies for easy and faster characterization of genes involved in abiotic and multi-stress tolerance. By subjecting leaf disks from gene-silenced plants to various abiotic stresses and inoculating silenced plants with various pathogens, we show the involvement of several genes for multi-stress tolerance. In addition, we demonstrate that VIGS can be used to characterize genes involved in thermotolerance. Our results also showed the functional relevance of NtEDS1 in abiotic stress, NbRBX1 and NbCTR1 in oxidative stress; NtRAR1 and NtNPR1 in salinity stress; NbSOS1 and NbHSP101 in biotic stress; and NtEDS1, NbETR1, NbWRKY2 and NbMYC2 in thermotolerance. Conclusions In addition to widening the application of VIGS, we developed a robust, easy and high-throughput methodology for functional characterization of genes involved in multi-stress tolerance. PMID:24289810

  6. Development and Event-specific Detection of Transgenic Glyphosate-resistant Rice Expressing the G2-EPSPS Gene

    PubMed Central

    Dong, Yufeng; Jin, Xi; Tang, Qiaoling; Zhang, Xin; Yang, Jiangtao; Liu, Xiaojing; Cai, Junfeng; Zhang, Xiaobing; Wang, Xujing; Wang, Zhixing

    2017-01-01

    Glyphosate is a widely used herbicide, due to its broad spectrum, low cost, low toxicity, high efficiency, and non-selective characteristics. Rice farmers rarely use glyphosate as a herbicide, because the crop is sensitive to this chemical. The development of transgenic glyphosate-tolerant rice could greatly improve the economics of rice production. Here, we transformed the Pseudomonas fluorescens G2 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) gene G2-EPSPS, which conferred tolerance to glyphosate herbicide into a widely used japonica rice cultivar, Zhonghua 11 (ZH11), to develop two highly glyphosate-tolerant transgenic rice lines, G2-6 and G2-7, with one exogenous gene integration. Seed germination tests and glyphosate-tolerance assays of plants grown in a greenhouse showed that the two transgenic lines could greatly improve glyphosate-tolerance compared with the wild-type; The glyphosate-tolerance field test indicated that both transgenic lines could grow at concentrations of 20,000 ppm glyphosate, which is more than 20-times the recommended concentration in the field. Isolation of the flanking sequence of transgenic rice G2-6 indicated that the 5′-terminal of T-DNA was inserted into chromosome 8 of the rice genome. An event-specific PCR test system was established and the limit of detection of the primers reached five copies. Overall, the G2-EPSPS gene significantly improved glyphosate-tolerance in transgenic rice; furthermore, it is a useful candidate gene for the future development of commercial transgenic rice. PMID:28611804

  7. Gross mismatch between thermal tolerances and environmental temperatures in a tropical freshwater snail: climate warming and evolutionary implications.

    PubMed

    Polgar, Gianluca; Khang, Tsung Fei; Chua, Teddy; Marshall, David J

    2015-01-01

    The relationship between acute thermal tolerance and habitat temperature in ectotherm animals informs about their thermal adaptation and is used to assess thermal safety margins and sensitivity to climate warming. We studied this relationship in an equatorial freshwater snail (Clea nigricans), belonging to a predominantly marine gastropod lineage (Neogastropoda, Buccinidae). We found that tolerance of heating and cooling exceeded average daily maximum and minimum temperatures, by roughly 20°C in each case. Because habitat temperature is generally assumed to be the main selective factor acting on the fundamental thermal niche, the discordance between thermal tolerance and environmental temperature implies trait conservation following 'in situ' environmental change, or following novel colonisation of a thermally less-variable habitat. Whereas heat tolerance could relate to an historical association with the thermally variable and extreme marine intertidal fringe zone, cold tolerance could associate with either an ancestral life at higher latitudes, or represent adaptation to cooler, higher-altitudinal, tropical lotic systems. The broad upper thermal safety margin (difference between heat tolerance and maximum environmental temperature) observed in this snail is grossly incompatible with the very narrow safety margins typically found in most terrestrial tropical ectotherms (insects and lizards), and hence with the emerging prediction that tropical ectotherms, are especially vulnerable to environmental warming. A more comprehensive understanding of climatic vulnerability of animal ectotherms thus requires greater consideration of taxonomic diversity, ecological transition and evolutionary history. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism

    USDA-ARS?s Scientific Manuscript database

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catecholase activity (i.e., they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and oth...

  9. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling.

    PubMed

    Gérando, H Máté de; Fayolle-Guichard, F; Rudant, L; Millah, S K; Monot, F; Ferreira, Nicolas Lopes; López-Contreras, A M

    2016-06-01

    Random mutagenesis and genome shuffling was applied to improve solvent tolerance and isopropanol/butanol/ethanol (IBE) production in the strictly anaerobic bacteria Clostridium beijerinckii DSM 6423. Following chemical mutagenesis with N-methyl-N-nitro-N-nitrosoguanidine (NTG), screening of putatively improved strains was done by submitting the mutants to toxic levels of inhibitory chemicals or by screening for their tolerance to isopropanol (>35 g/L). Suicide substrates, such as ethyl or methyl bromobutyrate or alcohol dehydrogenase inhibitors like allyl alcohol, were tested and, finally, 36 mutants were isolated. The fermentation profiles of these NTG mutant strains were characterized, and the best performing mutants were used for consecutive rounds of genome shuffling. Screening of strains with further enhancement in isopropanol tolerance at each recursive shuffling step was then used to spot additionally improved strains. Three highly tolerant strains were finally isolated and able to withstand up to 50 g/L isopropanol on plates. Even if increased tolerance to the desired end product was not always accompanied by higher production capabilities, some shuffled strains showed increased solvent titers compared to the parental strains and the original C. beijerinckii DSM 6423. This study confirms the efficiency of genome shuffling to generate improved strains toward a desired phenotype such as alcohol tolerance. This tool also offers the possibility of obtaining improved strains of Clostridium species for which targeted genetic engineering approaches have not been described yet.

  10. Use of De Novo transcriptome libraries to characterize a novel oleaginous marine Chlorella species during the accumulation of triacylglycerols

    DOE PAGES

    Mansfeldt, Cresten B.; Richter, Lubna V.; Ahner, Beth A.; ...

    2016-02-03

    Here, marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. “SAG-211-18” including its heterotrophic growth and tolerance to low salt.We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark.We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioningmore » from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes—a galactoglycerolipid lipase and a diacylglyceride acyltransferase—were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems.« less

  11. Protein engineering of Saccharomyces cerevisiae transporter Pdr5p identifies key residues that impact Fusarium mycotoxin export and resistance to inhibition.

    PubMed

    Gunter, Amanda B; Hermans, Anne; Bosnich, Whynn; Johnson, Douglas A; Harris, Linda J; Gleddie, Steve

    2016-12-01

    Cereal infection by the broad host range fungal pathogen Fusarium graminearum is a significant global agricultural and food safety issue due to the deposition of mycotoxins within infected grains. Methods to study the intracellular effects of mycotoxins often use the baker's yeast model system (Saccharomyces cerevisiae); however, this organism has an efficient drug export network known as the pleiotropic drug resistance (PDR) network, which consists of a family of multidrug exporters. This study describes the first study that has evaluated the potential involvement of all known or putative ATP-binding cassette (ABC) transporters from the PDR network in exporting the F. graminearum trichothecene mycotoxins deoxynivalenol (DON) and 15-acetyl-deoxynivalenol (15A-DON) from living yeast cells. We found that Pdr5p appears to be the only transporter from the PDR network capable of exporting these mycotoxins. We engineered mutants of Pdr5p at two sites previously identified as important in determining substrate specificity and inhibitor susceptibility. These results indicate that it is possible to alter inhibitor insensitivity while maintaining the ability of Pdr5p to export the mycotoxins DON and 15A-DON, which may enable the development of resistance strategies to generate more Fusarium-tolerant crop plants. © 2016 Her Majesty the Queen in Right of Canada. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Use of De Novo Transcriptome Libraries to Characterize a Novel Oleaginous Marine Chlorella Species during the Accumulation of Triacylglycerols

    PubMed Central

    Ahner, Beth A.; Cochlan, William P.; Richardson, Ruth E.

    2016-01-01

    Marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. “SAG-211-18” including its heterotrophic growth and tolerance to low salt. We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark. We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioning from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes—a galactoglycerolipid lipase and a diacylglyceride acyltransferase—were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems. PMID:26840425

  13. Co-expression of P173S Mutant Rice EPSPS and igrA Genes Results in Higher Glyphosate Tolerance in Transgenic Rice

    PubMed Central

    Fartyal, Dhirendra; Agarwal, Aakrati; James, Donald; Borphukan, Bhabesh; Ram, Babu; Sheri, Vijay; Yadav, Renu; Manna, Mrinalini; Varakumar, Panditi; Achary, V. Mohan M.; Reddy, Malireddy K.

    2018-01-01

    Weeds and their devastating effects have been a great threat since the start of agriculture. They compete with crop plants in the field and negatively influence the crop yield quality and quantity along with survival of the plants. Glyphosate is an important broad-spectrum systemic herbicide which has been widely used to combat various weed problems since last two decades. It is very effective even at low concentrations, and possesses low environmental toxicity and soil residual activity. However, the residual concentration of glyphosate inside the plant has been of major concern as it severely affects the important metabolic pathways, and results in poor plant growth and grain yield. In this study, we compared the glyphosate tolerance efficiency of two different transgenic groups over expressing proline/173/serine (P173S) rice EPSPS glyphosate tolerant mutant gene (OsmEPSPS) alone and in combination with the glyphosate detoxifying encoding igrA gene, recently characterized from Pseudomonas. The molecular analysis of all transgenic plant lines showed a stable integration of transgenes and their active expression in foliar tissues. The physiological analysis of glyphosate treated transgenic lines at seed germination and vegetative stages showed a significant difference in glyphosate tolerance between the two transgenic groups. The transgenic plants with OsmEPSPS and igrA genes, representing dual glyphosate tolerance mechanisms, showed an improved root-shoot growth, physiology, overall phenotype and higher level of glyphosate tolerance compared to the OsmEPSPS transgenic plants. This study highlights the advantage of igrA led detoxification mechanism as a crucial component of glyphosate tolerance strategy in combination with glyphosate tolerant OsmEPSPS gene, which offered a better option to tackle in vivo glyphosate accumulation and imparted more robust glyphosate tolerance in rice transgenic plants. PMID:29487608

  14. Co-expression of P173S Mutant Rice EPSPS and igrA Genes Results in Higher Glyphosate Tolerance in Transgenic Rice.

    PubMed

    Fartyal, Dhirendra; Agarwal, Aakrati; James, Donald; Borphukan, Bhabesh; Ram, Babu; Sheri, Vijay; Yadav, Renu; Manna, Mrinalini; Varakumar, Panditi; Achary, V Mohan M; Reddy, Malireddy K

    2018-01-01

    Weeds and their devastating effects have been a great threat since the start of agriculture. They compete with crop plants in the field and negatively influence the crop yield quality and quantity along with survival of the plants. Glyphosate is an important broad-spectrum systemic herbicide which has been widely used to combat various weed problems since last two decades. It is very effective even at low concentrations, and possesses low environmental toxicity and soil residual activity. However, the residual concentration of glyphosate inside the plant has been of major concern as it severely affects the important metabolic pathways, and results in poor plant growth and grain yield. In this study, we compared the glyphosate tolerance efficiency of two different transgenic groups over expressing proline/173/serine (P173S) rice EPSPS glyphosate tolerant mutant gene ( OsmEPSPS ) alone and in combination with the glyphosate detoxifying encoding igrA gene, recently characterized from Pseudomonas . The molecular analysis of all transgenic plant lines showed a stable integration of transgenes and their active expression in foliar tissues. The physiological analysis of glyphosate treated transgenic lines at seed germination and vegetative stages showed a significant difference in glyphosate tolerance between the two transgenic groups. The transgenic plants with OsmEPSPS and igrA genes, representing dual glyphosate tolerance mechanisms, showed an improved root-shoot growth, physiology, overall phenotype and higher level of glyphosate tolerance compared to the OsmEPSPS transgenic plants. This study highlights the advantage of igrA led detoxification mechanism as a crucial component of glyphosate tolerance strategy in combination with glyphosate tolerant OsmEPSPS gene, which offered a better option to tackle in vivo glyphosate accumulation and imparted more robust glyphosate tolerance in rice transgenic plants.

  15. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  16. How a microbial drug transporter became essential for crop cultivation on acid soils: aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family

    PubMed Central

    Magalhaes, Jurandir V.

    2010-01-01

    Background Aluminium (Al) toxicity is a major agricultural constraint for crop cultivation on acid soils, which comprise a large portion of the world's arable land. One of the most widely accepted mechanisms of Al tolerance in plants is based on Al-activated organic acid release into the rhizosphere, with organic acids forming stable, non-toxic complexes with Al. This mechanism has recently been validated by the isolation of bona-fide Al-tolerance genes in crop species, which encode membrane transporters that mediate Al-activated organic acid release leading to Al exclusion from root apices. In crop species such as sorghum and barley, members in the multidrug and toxic compound extrusion (MATE) family underlie Al tolerance by a mechanism based on Al-activated citrate release. Scope and Conclusions The study of Al tolerance in plants as conferred by MATE family members is in its infancy. Therefore, much is yet to be discovered about the functional diversity and evolutionary dynamics that led MATE proteins to acquire transport properties conducive to Al tolerance in plants. In this paper we review the major characteristics of transporters in the MATE family and will relate this knowledge to Al tolerance in plants. The MATE family is clearly extremely flexible with respect to substrate specificity, which raises the possibility that Al tolerance as encoded by MATE proteins may not be restricted to Al-activated citrate release in plant species. There are also indications that regulatory loci may be of pivotal importance to fully explore the potential for Al-tolerance improvement based on MATE genes. PMID:20511585

  17. Investigation of antenna-coupled Nb5N6 microbolometer THz detector with substrate resonant cavity.

    PubMed

    Tu, Xuecou; Jiang, Chengtao; Xiao, Peng; Kang, Lin; Zhai, Shimin; Jiang, Zhou; Feng Su, Run; Jia, Xiaoqing; Zhang, Labao; Chen, Jian; Wu, Peiheng

    2018-04-02

    Fabricating resonant cavities with conventional methods to improve the coupling efficiency of a detector in the terahertz (THz) region is difficult for the wavelength is too long. Here, we propose a solution by using the substrate cavity effect given that the substrate wavelength and thickness of the preparation device are in the same order. The planar dipole antenna-coupled Nb 5 N 6 microbolometers with different substrate thicknesses were fabricated. The interference effect of the substrate cavity on the optical voltage response of the detector is analyzed experimentally and theoretically. The experimental results show that the optical response of the detector is determined by the length of the substrate cavity. Thus, the THz devices with different detection frequencies can be designed by changing the substrate cavity length. Furthermore, on the basis of this substrate cavity effect, an asymmetric coupled Fabry-Pérot (FP) cavity is constituted by simply placing a movable metallic planar mirror at the backside of the Si substrate. The incident THz radiation on the Nb 5 N 6 microbolometer can be effectively manipulated by changing the substrate-mirror distance to modulate the phase relation between the reflect wave and the incident wave. The distinct radiation control can be observed, and the experiments can be well explained by numerically analyzing the responsivity dynamics that highlights the role of the FP cavity effect during radiation. All of the results discussed here can be extended to a broad range of frequency and other type of THz detectors.

  18. A miniature filter on a suspended substrate with a two-sided pattern of strip conductors

    NASA Astrophysics Data System (ADS)

    Belyaev, B. A.; Voloshin, A. S.; Bulavchuk, A. S.; Galeev, R. G.

    2016-06-01

    A miniature bandpass filter of new design with original stripline resonators on suspended substrate has been studied. The proposed filters of third to sixth order are distinguished for their high frequency-selective properties and mush smaller size in comparison to analogs. It is shown that a broad stopband extending above three-fold central bandpass frequency is determined by weak coupling of resonators at resonances of the second and third modes. A prototype sixth-order filter with a central frequency of 1 GHz, manufactured on a ceramic substrate with dielectric permittivity ɛ = 80, has contour dimensions of 36.6 × 4.8 × 0.5 mm3. Parametric synthesis of the filter, based on electrodynamic 3D model simulations, showed quite good agreement with the results of measurements.

  19. Evolutionary dynamics of enzymes.

    PubMed

    Demetrius, L

    1995-08-01

    This paper codifies and rationalizes the large diversity in reaction rates and substrate specificity of enzymes in terms of a model which postulates that the kinetic properties of present-day enzymes are the consequence of the evolutionary force of mutation and selection acting on a class of primordial enzymes with poor catalytic activity and broad substrate specificity. Enzymes are classified in terms of their thermodynamic parameters, activation enthalpy delta H* and activation entropy delta S*, in their kinetically significant transition states as follows: type 1, delta H* > 0, delta S* < 0; type 2, delta H* < or = 0, delta S* < or = 0; type 3, delta H* > 0, delta S* > 0. We study the evolutionary dynamics of these three classes of enzymes subject to mutation, which acts at the level of the gene which codes for the enzyme and selection, which acts on the organism that contains the enzyme. Our model predicts the following evolutionary trends in the reaction rate and binding specificity for the three classes of molecules. In type 1 enzymes, evolution results in random, non-directional changes in the reaction rate and binding specificity. In type 2 and 3 enzymes, evolution results in a unidirectional increase in both the reaction rate and binding specificity. We exploit these results in order to codify the diversity in functional properties of present-day enzymes. Type 1 molecules will be described by intermediate reaction rates and broad substrate specificity. Type 2 enzymes will be characterized by diffusion-controlled rates and absolute substrate specificity. The type 3 catalysts can be further subdivided in terms of their activation enthalpy into two classes: type 3a (delta H* small) and type 3b (delta H* large). We show that type 3a will be represented by the same functional properties that identify type 2, namely, diffusion-controlled rates and absolute substrate specificity, whereas type 3b will be characterized by non-diffusion-controlled rates and absolute substrate specificity. We infer from this depiction of the three classes of enzymes, a general relation between the two functional properties, reaction rate and substrate specificity, namely, enzymes with diffusion-controlled rates have absolute substrate specificity. By appealing to energetic considerations, we furthermore show that enzymes with diffusion-controlled rates (types 2 and 3a) form a small subset of the class of all enzymes. This codification of present-day enzymes derived from an evolutionary model, essentially relates the structural properties of enzymes, as described by their thermodynamic parameters, to their functional properties, as represented by the reaction rate and substrate specificity.

  20. Climatic consequences of adopting drought-tolerant vegetation over Los Angeles as a response to California drought

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Ban-Weiss, G.

    2016-08-01

    During 2012-2014, drought in California resulted in policies to reduce water consumption. One measure pursued was replacing lawns with landscapes that minimize water consumption, such as drought-tolerant vegetation. If implemented at broad scale, this strategy would result in reductions in irrigation and changes in land surface characteristics. In this study, we employ a modified regional climate model to assess the climatic consequences of adopting drought-tolerant vegetation over the Los Angeles metropolitan area. Transforming lawns to drought-tolerant vegetation resulted in daytime warming of up to 1.9°C, largely due to decreases in irrigation that shifted surface energy partitioning toward higher sensible and lower latent heat flux. During nighttime, however, adopting drought-tolerant vegetation caused mean cooling of 3.2°C, due to changes in soil thermodynamic properties and heat exchange dynamics between the surface and subsurface. Our results show that nocturnal cooling effects, which are larger in magnitude and of great importance for public health during heat events, could counterbalance the daytime warming attributed to the studied water conservation strategy. A more aggressive implementation, assuming all urban vegetation was replaced with drought-tolerant vegetation, resulted in an average daytime cooling of 0.2°C, largely due to strengthened sea breeze patterns, highlighting the important role of land surface roughness in this coastal megacity.

  1. Climatic consequences of adopting drought tolerant vegetation over Los Angeles as a response to California drought

    NASA Astrophysics Data System (ADS)

    Ban-Weiss, G. A.; Vahmani, P.

    2016-12-01

    During 2012-2014, drought in California resulted in policies to reduce water consumption. One measure pursued was replacing lawns with landscapes that minimize water consumption, such as drought tolerant vegetation. If implemented at broad scale, this strategy would result in reductions in irrigation, and changes in land surface characteristics. In this study, we employ a modified regional climate model to assess the climatic consequences of adopting drought tolerant vegetation over the Los Angeles metropolitan area. Transforming lawns to drought tolerant vegetation resulted in daytime warming of up to 1.9°C, largely due to decreases in irrigation that shifted surface energy partitioning toward higher sensible and lower latent heat flux. During nighttime, however, adopting drought tolerant vegetation caused mean cooling of about 3°C, due to changes in soil thermodynamic properties and heat exchange dynamics between the surface and ground. Our results show that nocturnal cooling effects, which are larger in magnitude and of great importance for public health during heat events, could counterbalance the daytime warming attributed to the studied water conservation strategy. A more aggressive implementation, assuming all urban vegetation was replaced with drought tolerant vegetation, resulted in an average daytime cooling of 0.2°C, largely due to weakened sea-breeze patterns, highlighting the important role of land surface roughness in this coastal megacity.

  2. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice

    PubMed Central

    Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright’s F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance. PMID:27494320

  3. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    PubMed

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai; Pandit, Elssa

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  4. A Novel Naturally Occurring Class I 5-Enolpyruvylshikimate-3-Phosphate Synthase from Janibacter sp. Confers High Glyphosate Tolerance to Rice

    PubMed Central

    Yi, Shu-yuan; Cui, Ying; Zhao, Yan; Liu, Zi-duo; Lin, Yong-jun; Zhou, Fei

    2016-01-01

    As glyphosate is a broad spectrum herbicide extensively used in agriculture worldwide, identification of new aroA genes with high level of glyphosate tolerance is essential for the development and breeding of transgenic glyphosate-tolerant crops. In this study, an aroA gene was cloned from a Janibacter sp. strain isolated from marine sediment (designated as aroAJ. sp). The purified aroAJ. sp enzyme has a Km value of 30 μM for PEP and 83 μM for S3P, and a significantly higher Ki value for glyphosate (373 μM) than aroAE. coli. AroAJ. sp is characterized as a novel and naturally occurring class I aroA enzyme with glyphosate tolerance. Furthermore, we show that aroAJ. sp can be used as an effective selectable marker in both japonica and indica rice cultivar. Transgenic rice lines were tested by herbicide bioassay and it was confirmed that they could tolerate up to 3360 g/ha glyphosate, a dosage four-fold that of the recommended agricultural application level. To our knowledge, it is the first report of a naturally occurring novel class I aroA gene which can be efficiently utilized to study and develop transgenic glyphosate-tolerant crops, and can facilitate a more economical and simplified weed control system. PMID:26754957

  5. Neuroimaging and Anxiety: the Neural Substrates of Pathological and Non-pathological Anxiety.

    PubMed

    Taylor, James M; Whalen, Paul J

    2015-06-01

    Advances in the use of noninvasive neuroimaging to study the neural correlates of pathological and non-pathological anxiety have shone new light on the underlying neural bases for both the development and manifestation of anxiety. This review summarizes the most commonly observed neural substrates of the phenotype of anxiety. We focus on the neuroimaging paradigms that have shown promise in exposing this relevant brain circuitry. In this way, we offer a broad overview of how anxiety is studied in the neuroimaging laboratory and the key findings that offer promise for future research and a clearer understanding of anxiety.

  6. Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings

    NASA Astrophysics Data System (ADS)

    Stoddart, P. R.; Cadusch, P. J.; Boyce, T. M.; Erasmus, R. M.; Comins, J. D.

    2006-02-01

    The transparent wings of some cicada species present ordered arrays of papillary structures with a spacing of approximately 200 nm. These structures serve an antireflection function, with optical transmission peaking at a value of approximately 98% and rising above 90% over a broad band from 450 to 2500 nm. The dimensions of the papillae are comparable to the roughness scale of surface-enhanced Raman scattering (SERS) substrates. SERS measurements performed on silver- and gold-coated wings display enhancement factors of approximately 106 with no apparent background contribution from the wing.

  7. SEMICONDUCTOR MATERIALS: White light photoluminescence from ZnS films on porous Si substrates

    NASA Astrophysics Data System (ADS)

    Caifeng, Wang; Qingshan, Li; Bo, Hu; Weibing, Li

    2010-03-01

    ZnS films were deposited on porous Si (PS) substrates using a pulsed laser deposition (PLD) technique. White light emission is observed in photoluminescence (PL) spectra, and the white light is the combination of blue and green emission from ZnS and red emission from PS. The white PL spectra are broad, intense in a visible band ranging from 450 to 700 nm. The effects of the excitation wavelength, growth temperature of ZnS films, PS porosity and annealing temperature on the PL spectra of ZnS/PS were also investigated.

  8. Bacterial Anabaena variabilis phenylalanine ammonia lyase: a biocatalyst with broad substrate specificity.

    PubMed

    Lovelock, Sarah L; Turner, Nicholas J

    2014-10-15

    Phenylalanine ammonia lyases (PALs) catalyse the regio- and stereoselective hydroamination of cinnamic acid analogues to yield optically enriched α-amino acids. Herein, we demonstrate that a bacterial PAL from Anabaena variabilis (AvPAL) displays significantly higher activity towards a series of non-natural substrates than previously described eukaryotic PALs. Biotransformations performed on a preparative scale led to the synthesis of the 2-chloro- and 4-trifluoromethyl-phenylalanine derivatives in excellent ee, highlighting the enormous potential of bacterial PALs as biocatalysts for the synthesis of high value, non-natural amino acids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. n-BuLi as a highly efficient precatalyst for hydrophosphonylation of aldehydes and unactivated ketones.

    PubMed

    Liu, Chengwei; Zhang, Yu; Qian, Qinqin; Yuan, Dan; Yao, Yingming

    2014-12-05

    It was found for the first time that organic alkali metal compounds serve as highly efficient precatalysts for the hydrophosphonylation reactions of aldehydes and unactivated ketones with dialkyl phosphite under mild conditions. For ketone substrates, a reversible reaction was observed, and the influence of catalyst loading and reaction temperature on the reaction equilibrium was studied in detail. Overall, the hydrophosphonylation reactions catalyzed by 0.1 mol % n-BuLi were completed within 5 min for a broad range of substrates and generated a series of α-hydroxy phosphonates in high yields.

  10. A simplified characterization of S-adenosyl-l-methionine-consuming enzymes with 1-Step EZ-MTase: a universal and straightforward coupled-assay for in vitro and in vivo setting.

    PubMed

    Burgos, Emmanuel S; Walters, Ryan O; Huffman, Derek M; Shechter, David

    2017-09-01

    Methyltransferases use S -adenosyl-l-methionine (SAM) to deposit methyl marks. Many of these epigenetic 'writers' are associated with gene regulation. As cancer etiology is highly correlated with misregulated methylation patterns, methyltransferases are emerging therapeutic targets. Successful assignment of methyltransferases' roles within intricate biological networks relies on (1) the access to enzyme mechanistic insights and (2) the efficient screening of chemical probes against these targets. To characterize methyltransferases in vitro and in vivo , we report a highly-sensitive one-step deaminase-linked continuous assay where the S -adenosyl-l-homocysteine (SAH) enzyme-product is rapidly and quantitatively catabolized to S -inosyl-l-homocysteine (SIH). To highlight the broad capabilities of this assay, we established enzymatic characteristics of two protein arginine methyltransferases (PRMT5 and PRMT7), a histone-lysine N -methyltransferase (DIM-5) and a sarcosine/dimethylglycine N -methyltransferase (SDMT). Since the coupling deaminase TM0936 displays robust activity over a broad pH-range we determined the pH dependence of SDMT reaction rates. TM0936 reactions are monitored at 263 nm, so a drawback may arise when methyl acceptor substrates absorb within this UV-range. To overcome this limitation, we used an isosteric fluorescent SAM-analog: S -8-aza-adenosyl-l-methionine. Most enzymes tolerated this probe and sustained methyltransfers were efficiently monitored through loss of fluorescence at 360 nm. Unlike discontinuous radioactive- and antibody-based assays, our assay provides a simple, versatile and affordable approach towards the characterization of methyltransferases. Supported by three logs of linear dynamic range, the 1-Step EZ-MTase can detect methylation rates as low as 2 μM h -1 , thus making it possible to quantify low nanomolar concentrations of glycine N -methyltransferase within crude biological samples. With Z '-factors above 0.75, this assay is well suited to high-throughput screening and may promote the identification of novel therapeutics.

  11. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  12. Analytical modeling and tolerance analysis of a linear variable filter for spectral order sorting.

    PubMed

    Ko, Cheng-Hao; Chang, Kuei-Ying; Huang, You-Min

    2015-02-23

    This paper proposes an innovative method to overcome the low production rate of current linear variable filter (LVF) fabrication. During the fabrication process, a commercial coater is combined with a local mask on a substrate. The proposed analytical thin film thickness model, which is based on the geometry of the commercial coater, is developed to more effectively calculate the profiles of LVFs. Thickness tolerance, LVF zone width, thin film layer structure, transmission spectrum and the effects of variations in critical parameters of the coater are analyzed. Profile measurements demonstrate the efficacy of local mask theory in the prediction of evaporation profiles with a high degree of accuracy.

  13. Synthesis of lipase-catalysed silicone-polyesters and silicone-polyamides at elevated temperatures.

    PubMed

    Frampton, Mark B; Zelisko, Paul M

    2013-10-18

    More and more enzymes are being explored as alternatives to conventional catalysts in chemical reactions. To utilize these biocatalysts to their fullest, it is incumbent on researchers to gain a complete understanding of the reaction conditions that particular enzymes will tolerate. To this end siloxane-containing polyesters and polyamides have been produced via N435-mediated catalysis at temperatures well above the normal denaturation temperature for free CalB. Low molecular weight disiloxane-based acceptors release the enzyme from its acylated state with equal proficiency while longer chain siloxanes favours polyester synthesis. The thermal tolerance of the enzyme catalyst is increased using longer chain diesters and generally more hydrophobic substrates.

  14. Improving the Fatigue Crack Propagation Resistance and Damage Tolerance of 2524-T3 Alloy with Amorphous Electroless Ni-P Coating

    NASA Astrophysics Data System (ADS)

    Chen, Lai; Zeng, Diping; Liu, Zhiyi; Bai, Song; Li, Junlin

    2018-02-01

    The surface microhardness, as well as the fatigue crack propagation (FCP) resistance of 2524-T3 alloy, is improved by producing a 20-μm-thick amorphous electroless Ni-12% P coating on its surface. Compared to the substrate, this deposited EN coating possesses higher strength properties and exhibits a greater ability of accommodating the plastic deformation at the fatigue crack tip, thereby remarkably improving the FCP resistance in near-threshold and early Paris regimes. Regardless of the similar FCP rates in Paris regime (Δ K ≥ 16.2 MPa m0.5), the coated sample exhibits extended Paris regime and enhanced damage tolerance.

  15. The environment shapes microbial enzymes: five cold-active and salt-resistant carboxylesterases from marine metagenomes.

    PubMed

    Tchigvintsev, Anatoli; Tran, Hai; Popovic, Ana; Kovacic, Filip; Brown, Greg; Flick, Robert; Hajighasemi, Mahbod; Egorova, Olga; Somody, Joseph C; Tchigvintsev, Dmitri; Khusnutdinova, Anna; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Savchenko, Alexei; Golyshin, Peter N; Jaeger, Karl-Erich; Yakunin, Alexander F

    2015-03-01

    Most of the Earth's biosphere is cold and is populated by cold-adapted microorganisms. To explore the natural enzyme diversity of these environments and identify new carboxylesterases, we have screened three marine metagenome gene libraries for esterase activity. The screens identified 23 unique active clones, from which five highly active esterases were selected for biochemical characterization. The purified metagenomic esterases exhibited high activity against α-naphthyl and p-nitrophenyl esters with different chain lengths. All five esterases retained high activity at 5 °C indicating that they are cold-adapted enzymes. The activity of MGS0010 increased more than two times in the presence of up to 3.5 M NaCl or KCl, whereas the other four metagenomic esterases were inhibited to various degrees by these salts. The purified enzymes showed different sensitivities to inhibition by solvents and detergents, and the activities of MGS0010, MGS0105 and MGS0109 were stimulated three to five times by the addition of glycerol. Screening of purified esterases against 89 monoester substrates revealed broad substrate profiles with a preference for different esters. The metagenomic esterases also hydrolyzed several polyester substrates including polylactic acid suggesting that they can be used for polyester depolymerization. Thus, esterases from marine metagenomes are cold-adapted enzymes exhibiting broad biochemical diversity reflecting the environmental conditions where they evolved.

  16. Reversible Self-Assembly of 3D Architectures Actuated by Responsive Polymers.

    PubMed

    Zhang, Cheng; Su, Jheng-Wun; Deng, Heng; Xie, Yunchao; Yan, Zheng; Lin, Jian

    2017-11-29

    An assembly of three-dimensional (3D) architectures with defined configurations has important applications in broad areas. Among various approaches of constructing 3D structures, a stress-driven assembly provides the capabilities of creating 3D architectures in a broad range of functional materials with unique merits. However, 3D architectures built via previous methods are simple, irreversible, or not free-standing. Furthermore, the substrates employed for the assembly remain flat, thus not involved as parts of the final 3D architectures. Herein, we report a reversible self-assembly of various free-standing 3D architectures actuated by the self-folding of smart polymer substrates with programmed geometries. The strategically designed polymer substrates can respond to external stimuli, such as organic solvents, to initiate the 3D assembly process and subsequently become the parts of the final 3D architectures. The self-assembly process is highly controllable via origami and kirigami designs patterned by direct laser writing. Self-assembled geometries include 3D architectures such as "flower", "rainbow", "sunglasses", "box", "pyramid", "grating", and "armchair". The reported self-assembly also shows wide applicability to various materials including epoxy, polyimide, laser-induced graphene, and metal films. The device examples include 3D architectures integrated with a micro light-emitting diode and a flex sensor, indicting the potential applications in soft robotics, bioelectronics, microelectromechanical systems, and others.

  17. Prolonged Maltose-Limited Cultivation of Saccharomyces cerevisiae Selects for Cells with Improved Maltose Affinity and Hypersensitivity

    PubMed Central

    Jansen, Mickel L. A.; Daran-Lapujade, Pascale; de Winde, Johannes H.; Piper, Matthew D. W.; Pronk, Jack T.

    2004-01-01

    Prolonged cultivation (>25 generations) of Saccharomyces cerevisiae in aerobic, maltose-limited chemostat cultures led to profound physiological changes. Maltose hypersensitivity was observed when cells from prolonged cultivations were suddenly exposed to excess maltose. This substrate hypersensitivity was evident from massive cell lysis and loss of viability. During prolonged cultivation at a fixed specific growth rate, the affinity for the growth-limiting nutrient (i.e., maltose) increased, as evident from a decreasing residual maltose concentration. Furthermore, the capacity of maltose-dependent proton uptake increased up to 2.5-fold during prolonged cultivation. Genome-wide transcriptome analysis showed that the increased maltose transport capacity was not primarily due to increased transcript levels of maltose-permease genes upon prolonged cultivation. We propose that selection for improved substrate affinity (ratio of maximum substrate consumption rate and substrate saturation constant) in maltose-limited cultures leads to selection for cells with an increased capacity for maltose uptake. At the same time, the accumulative nature of maltose-proton symport in S. cerevisiae leads to unrestricted uptake when maltose-adapted cells are exposed to a substrate excess. These changes were retained after isolation of individual cell lines from the chemostat cultures and nonselective cultivation, indicating that mutations were involved. The observed trade-off between substrate affinity and substrate tolerance may be relevant for metabolic engineering and strain selection for utilization of substrates that are taken up by proton symport. PMID:15066785

  18. Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation.

    PubMed

    Scott, Daniel C; Rhee, David Y; Duda, David M; Kelsall, Ian R; Olszewski, Jennifer L; Paulo, Joao A; de Jong, Annemieke; Ovaa, Huib; Alpi, Arno F; Harper, J Wade; Schulman, Brenda A

    2016-08-25

    Hundreds of human cullin-RING E3 ligases (CRLs) modify thousands of proteins with ubiquitin (UB) to achieve vast regulation. Current dogma posits that CRLs first catalyze UB transfer from an E2 to their client substrates and subsequent polyubiquitylation from various linkage-specific E2s. We report an alternative E3-E3 tagging cascade: many cellular NEDD8-modified CRLs associate with a mechanistically distinct thioester-forming RBR-type E3, ARIH1, and rely on ARIH1 to directly add the first UB and, in some cases, multiple additional individual monoubiquitin modifications onto CRL client substrates. Our data define ARIH1 as a component of the human CRL system, demonstrate that ARIH1 can efficiently and specifically mediate monoubiquitylation of several CRL substrates, and establish principles for how two distinctive E3s can reciprocally control each other for simultaneous and joint regulation of substrate ubiquitylation. These studies have broad implications for CRL-dependent proteostasis and mechanisms of E3-mediated UB ligation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Structure of a [NiFe] hydrogenase maturation protease HycI provides insights into its substrate selectivity.

    PubMed

    Kwon, Sunghark; Nishitani, Yuichi; Hirao, Yoshinori; Kanai, Tamotsu; Atomi, Haruyuki; Miki, Kunio

    2018-04-15

    The immature large subunit of [NiFe] hydrogenases undergoes C-terminal cleavage by a specific protease in the final step of the post-translational process before assembly with other subunits. It has been reported that the [NiFe] hydrogenase maturation protease HycI from Thermococcus kodakarensis (TkHycI) has the catalytic ability to target the membrane-bound hydrogenase large subunit MbhL from T. kodakarensis. However, the detailed mechanism of its substrate recognition remains elusive. We determined the crystal structure of TkHycI at 1.59 Å resolution to clarify how TkHycI recognizes its own substrate MbhL. Although the overall structure of TkHycI is similar to that of its homologous protease TkHybD, TkHycI adopts a larger loop than TkHybD, thereby creating a broad and deep cleft. We analyzed the structural properties of the TkHycI cleft probably involved in its substrate recognition. Our findings provide novel and profound insights into the substrate selectivity of TkHycI. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Probing the substrate specificity of the bacterial Pnkp/Hen1 RNA repair system using synthetic RNAs

    PubMed Central

    Zhang, Can; Chan, Chio Mui; Wang, Pei; Huang, Raven H.

    2012-01-01

    Ribotoxins cleave essential RNAs involved in protein synthesis as a strategy for cell killing. RNA repair systems exist in nature to counteract the lethal actions of ribotoxins, as first demonstrated by the RNA repair system from bacteriophage T4 25 yr ago. Recently, we found that two bacterial proteins, named Pnkp and Hen1, form a stable complex and are able to repair ribotoxin-cleaved tRNAs in vitro. However, unlike the well-studied T4 RNA repair system, the natural RNA substrates of the bacterial Pnkp/Hen1 RNA repair system are unknown. Here we present comprehensive RNA repair assays with the recombinant Pnkp/Hen1 proteins from Anabaena variabilis using a total of 33 different RNAs as substrates that might mimic various damaged forms of RNAs present in living cells. We found that unlike the RNA repair system from bacteriophage T4, the bacterial Pnkp/Hen1 RNA repair system exhibits broad substrate specificity. Based on the experimental data presented here, a model of preferred RNA substrates of the Pnkp/Hen1 repair system is proposed. PMID:22190744

  1. Advancements in n-Type Base Crystalline Silicon Solar Cells and Their Emergence in the Photovoltaic Industry

    PubMed Central

    ur Rehman, Atteq; Lee, Soo Hong

    2013-01-01

    The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed. PMID:24459433

  2. Advancements in n-type base crystalline silicon solar cells and their emergence in the photovoltaic industry.

    PubMed

    ur Rehman, Atteq; Lee, Soo Hong

    2013-01-01

    The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed.

  3. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, James L.; Truher, Joel B.; Weiner, Kurt H.; Sigmon, Thomas W.

    1994-01-01

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  4. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, J.L.; Truher, J.B.; Weiner, K.H.; Sigmon, T.W.

    1994-09-13

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate is disclosed. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900 C), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180 C for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180 C) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide. 5 figs.

  5. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis.

    PubMed

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-11-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  6. Ferromagnetism and Ru-Ru distance in SrRuO3 thin film grown on SrTiO3 (111) substrate

    PubMed Central

    2014-01-01

    Epitaxial SrRuO3 thin films were grown on both (100) and (111) SrTiO3 substrates with atomically flat surfaces that are required to grow high-quality films of materials under debate. The following notable differences were observed in the (111)-oriented SrRuO3 films: (1) slightly different growth mode, (2) approximately 10 K higher ferromagnetic transition temperature, and (3) better conducting behavior with higher relative resistivity ratio, than (100)c-oriented SrRuO3 films. Together with the reported results on SrRuO3 thin films grown on (110) SrTiO3 substrate, the different physical properties were discussed newly in terms of the Ru-Ru nearest neighbor distance instead of the famous tolerance factor. PACS 75.70.Ak; 75.60.Ej; 81.15.Fg PMID:24393495

  7. Spatiotemporal variation in deer browse and tolerance in a woodland herb

    Treesearch

    Holly R. Prendeville; Janet C. Steven; Laura F. Galloway

    2015-01-01

    Herbivory can shape the dynamics of plant populations, including effects on survival and reproduction, and is in turn affected by environmental factors that vary in space and time. White-tailed deer are significant herbivores in North America that have been broadly documented to affect plant reproductive success. If variation in the frequency and impact of herbivory by...

  8. Composite Structures Damage Tolerance Analysis Methodologies

    NASA Technical Reports Server (NTRS)

    Chang, James B.; Goyal, Vinay K.; Klug, John C.; Rome, Jacob I.

    2012-01-01

    This report presents the results of a literature review as part of the development of composite hardware fracture control guidelines funded by NASA Engineering and Safety Center (NESC) under contract NNL04AA09B. The objectives of the overall development tasks are to provide a broad information and database to the designers, analysts, and testing personnel who are engaged in space flight hardware production.

  9. Manpower Services in the Workplace. An Employer Technical Services Program for a State Employment Service.

    ERIC Educational Resources Information Center

    Kirsch, Arthur W.; And Others

    This report outlines a program through which a State Employment Service, using existing resources, can provide employers and their workers with a broad range of technical services in order to improve productivity and make work more tolerable. The report is based on observations and analysis by a team of participant-observers of a Skill Improvement…

  10. When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces

    NASA Astrophysics Data System (ADS)

    Hughes, Robert A.; Menumerov, Eredzhep; Neretina, Svetlana

    2017-07-01

    One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and employ a wide scope of chemical processes including redox reactions, alloying, dealloying, phase separation, galvanic replacement, preferential etching, template-mediated reactions, and facet-selective capping agents. Taken together, they highlight the diverse toolset available when fabricating organized surfaces of substrate-supported nanostructures.

  11. Hydrophenoxylation of internal alkynes catalysed with a heterobimetallic Cu-NHC/Au-NHC system.

    PubMed

    Lazreg, Faïma; Guidone, Stefano; Gómez-Herrera, Alberto; Nahra, Fady; Cazin, Catherine S J

    2017-02-21

    A straightforward method for the hydrophenoxylation of internal alkynes, using N-heterocyclic carbene-based copper(i) and gold(i) complexes, is described. The heterobimetallic catalytic system proceeds via dual activation of the substrates to afford the desired vinylether derivatives. This methodology is shown to be highly efficient and tolerates a wide range of substituted phenols and alkynes.

  12. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I.

    PubMed

    Ye, Yingda; Sanford, Melanie S

    2012-06-06

    This communication describes the development of a mild method for the cross-coupling of arylboronic acids with CF(3)I via the merger of photoredox and Cu catalysis. This method has been applied to the trifluoromethylation of electronically diverse aromatic and heteroaromatic substrates and tolerates many common functional groups.

  13. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations.

    PubMed

    Sun, Zhizeng; Mehta, Shrenik C; Adamski, Carolyn J; Gibbs, Richard A; Palzkill, Timothy

    2016-09-12

    CphA is a Zn(2+)-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function.

  14. Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7.

    PubMed

    Zhu, Hong-Ji; Sun, Li-Fan; Zhang, Yan-Fei; Zhang, Xiao-Li; Qiao, Jian-Jun

    2012-05-01

    To develop high-efficient biofertilizer, an environmental stress-tolerant phosphate-solubilizing microorganism (PSM) was isolated from agricultural wastes compost, and then applied to spent mushroom substrate (SMS). The isolate FL7 was identified as Pichia farinose with resistance against multiple environmental stresses, including 5-45°C temperature, 3-10 pH range, 0-23% (w/v) NaCl and 0-6M ammonium ion. Under the optimized cultivation condition, 852.8 mg/l total organic acids can be produced and pH can be reduced to 3.8 after 60 h, meanwhile, the soluble phosphate content reached 816.16 mg/l. The P. farinose was used to convert SMS to a phosphate biofertilizer through a semi-solid fermentation (SSF) process. After fermentation of 10 days, cell density can be increased to 5.6 × 10(8)CFU/g in biomass and pH in this medium can be decreased to 4.0. SMS biofertilizer produced by P. farinose significantly improved the growth of soybean in pot experiments, demonstrating a tremendous potential in agricultural application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The role thermal physiology plays in species invasion

    PubMed Central

    Kelley, Amanda L.

    2014-01-01

    The characterization of physiological phenotypes that may play a part in the establishment of non-native species can broaden our understanding about the ecology of species invasion. Here, an assessment was carried out by comparing the responses of invasive and native species to thermal stress. The goal was to identify physiological patterns that facilitate invasion success and to investigate whether these traits are widespread among invasive ectotherms. Four hypotheses were generated and tested using a review of the literature to determine whether they could be supported across taxonomically diverse invasive organisms. The four hypotheses are as follows: (i) broad geographical temperature tolerances (thermal width) confer a higher upper thermal tolerance threshold for invasive rather than native species; (ii) the upper thermal extreme experienced in nature is more highly correlated with upper thermal tolerance threshold for invasive vs. native animals; (iii) protein chaperone expression—a cellular mechanism that underlies an organism's thermal tolerance threshold—is greater in invasive organisms than in native ones; and (iv) acclimation to higher temperatures can promote a greater range of thermal tolerance for invasive compared with native species. Each hypothesis was supported by a meta-analysis of the invasive/thermal physiology literature, providing further evidence that physiology plays a substantial role in the establishment of invasive ectotherms. PMID:27293666

  16. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate.

    PubMed

    Chhapekar, Sushil; Raghavendrarao, Sanagala; Pavan, Gadamchetty; Ramakrishna, Chopperla; Singh, Vivek Kumar; Phanindra, Mullapudi Lakshmi Venkata; Dhandapani, Gurusamy; Sreevathsa, Rohini; Ananda Kumar, Polumetla

    2015-05-01

    Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4--EPSPS. The transformants could tolerate up to 1% commercial glyphosate and has the potential to be used for DSR (direct-seeded rice). Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR). Herbicide-resistant rice has potential to improve the efficiency of weed management under DSR. Hence, the popular indica rice cultivar IR64, was genetically modified using Agrobacterium-mediated transformation with a codon-optimized CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, with N-terminal chloroplast targeting peptide from Petunia hybrida. Integration of the transgenes in the selected rice plants was confirmed by Southern hybridization and expression by Northern and herbicide tolerance assays. Transgenic plants showed EPSPS enzyme activity even at high concentrations of glyphosate, compared to untransformed control plants. T0, T1 and T2 lines were tested by herbicide bioassay and it was confirmed that the transgenic rice could tolerate up to 1% of commercial Roundup, which is five times more in dose used to kill weeds under field condition. All together, the transgenic rice plants developed in the present study could be used efficiently to overcome weed menace.

  17. Widespread range expansions shape latitudinal variation in insect thermal limits

    NASA Astrophysics Data System (ADS)

    Lancaster, Lesley T.

    2016-06-01

    Current anthropogenic impacts, including habitat modification and climate change, may contribute to a sixth mass extinction. To mitigate these impacts and slow further losses of biodiversity, we need to understand which species are most at risk and identify the factors contributing to current and future declines. Such information is often obtained through large-scale, comparative and biogeographic analysis of lineages or traits that are potentially sensitive to ongoing anthropogenic change--for instance to predict which regions are most susceptible to climate change-induced biodiversity loss. However, for this approach to be generally successful, the underlying causes of identified geographical trends need to be carefully considered. Here, I augment and reanalyse a global data set of insect thermal tolerances, evaluating the contribution of recent and contemporary range expansions to latitudinal variation in thermal niche breadth. Previous indications that high-latitude ectotherms exhibit broad thermal niches and high warming tolerances held only for species undergoing range expansions or invasions. In contrast, species with stable or declining geographic ranges exhibit latitudinally decreasing absolute thermal tolerances and no latitudinal variation in tolerance breadths. Thus, non-range-expanding species, particularly insular or endemic species, which are often of highest conservation priority, are unlikely to tolerate future climatic warming at high latitudes.

  18. Synthesis of fructooligosaccharides (FosA) and inulin (InuO) by GH68 fructosyltransferases from Bacillus agaradhaerens strain WDG185.

    PubMed

    Kralj, Slavko; Leeflang, Chris; Sierra, Estefanía Ibáñez; Kempiński, Błażej; Alkan, Veli; Kolkman, Marc

    2018-01-01

    Fructooligosaccharides (FOS) and inulin, composed of β-2-1 linked fructose units, have a broad range of industrial applications. They are known to have various beneficial health effects and therefore have broad application potential in nutrition. For (modified) inulin also for non-food purposes more applications are arising. Examples are carboxymethylated inulin as anti-scalant and carboymlated inulin as emulsifiers. Various plants synthesize FOS and/or inulin type of fructans. However, isolating of FOS and inulin from plants is challenging due to for instance varying chains length. There is an increasing demand for FOS and inulin oligosaccharides and alternative procedures for their synthesis are attractive. We identified and characterized two fructosyltransferases from Bacillus agaradhaerens WDG185. FosA, a β-fructofuranosidase, synthesises short chain fructooligosaccharides (GF2-GF4) at high sucrose concentration, whereas InuO, an inulosucrase, synthesises a broad range of inulooligosaccharides (GF2-GF24) from sucrose, very similar to plant derived inulin. FosA and InuO showed activity over a broad pH range from 6 to 10 and optimal temperature at 60°C. Calcium ions and EDTA were found to have no effect on the activity of both enzymes. Kinetic analysis showed that only at relatively low substrate concentrations both enzymes showed Michaelis-Menten type of kinetics for total and transglycosylation activity. Both enzymes showed increased transglycosylation upon increasing substrate concentrations. These are the first examples of the molecular and biochemical characterization of a β-fructofuranosidase (FosA) and an inulosucrase enzyme (InuO) and its product from a Bacillus agaradhaerens strain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Design of 2.5 GHz broad bandwidth microwave bandpass filter at operating frequency of 10 GHz using HFSS

    NASA Astrophysics Data System (ADS)

    Jasim, S. E.; Jusoh, M. A.; Mahmud, S. N. S.; Zamani, A. H.

    2018-04-01

    Development of low losses, small size and broad bandwidth microwave bandpass filter operating at higher frequencies is an active area of research. This paper presents a new route used to design and simulate microwave bandpass filter using finite element modelling and realized broad bandwidth, low losses, small dimension microwave bandpass filter operating at 10 GHz frequency using return loss method. The filter circuit has been carried out using Computer Aid Design (CAD), Ansoft HFSS software and designed with four parallel couple line model and small dimension (10 × 10 mm2) using LaAlO3 substrate. The response of the microwave filter circuit showed high return loss -50 dB at operating frequency at 10.4 GHz and broad bandwidth of 2.5 GHz from 9.5 to 12 GHz. The results indicate the filter design and simulation using HFSS is reliable and have the opportunity to transfer from lab potential experiments to the industry.

  20. Enzymatic Detoxication, Conformational Selection, and the Role of Molten Globule Active Sites*

    PubMed Central

    Honaker, Matthew T.; Acchione, Mauro; Zhang, Wei; Mannervik, Bengt; Atkins, William M.

    2013-01-01

    The role of conformational ensembles in enzymatic reactions remains unclear. Discussion concerning “induced fit” versus “conformational selection” has, however, ignored detoxication enzymes, which exhibit catalytic promiscuity. These enzymes dominate drug metabolism and determine drug-drug interactions. The detoxication enzyme glutathione transferase A1–1 (GSTA1–1), exploits a molten globule-like active site to achieve remarkable catalytic promiscuity wherein the substrate-free conformational ensemble is broad with barrierless transitions between states. A quantitative index of catalytic promiscuity is used to compare engineered variants of GSTA1–1 and the catalytic promiscuity correlates strongly with characteristics of the thermodynamic partition function, for the substrate-free enzymes. Access to chemically disparate transition states is encoded by the substrate-free conformational ensemble. Pre-steady state catalytic data confirm an extension of the conformational selection model, wherein different substrates select different starting conformations. The kinetic liability of the conformational breadth is minimized by a smooth landscape. We propose that “local” molten globule behavior optimizes detoxication enzymes. PMID:23649628

  1. Improved GaSb-based quantum well laser performance through metamorphic growth on GaAs substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Christopher J. K., E-mail: richardson@lps.umd.edu; He, Lei; Apiratikul, Paveen

    The promise of the metamorphic growth paradigm is to enable design freedom of the substrate selection criteria beyond current choices that are limited by lattice matching requirements. A demonstration of this emerging degree of freedom is reported here by directly comparing identical laser structures grown both pseudomorphically on a GaSb substrate and metamorphically on a GaAs substrate. Improved thermal performance of the metamorphic laser material enables a higher output power before thermal roll-over begins. These performance gains are demonstrated in minimally processed gain-guided broad-area type-I lasers emitting close to 2-μm wavelengths and mounted p-side up. Continuous wave measurements at roommore » temperature yield a T{sub 0} of 145 K and peak output power of 192 mW from metamorphic lasers, compared to a T{sub 0} of 96 K and peak output power of 164 mW from identical lasers grown pseudomorphically on GaSb.« less

  2. Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate.

    PubMed

    Cortes-Tolalpa, Larisa; Norder, Justin; van Elsas, Jan Dirk; Falcao Salles, Joana

    2018-03-01

    The microbial degradation of plant-derived compounds under salinity stress remains largely underexplored. The pretreatment of lignocellulose material, which is often needed to improve the production of lignocellulose monomers, leads to high salt levels, generating a saline environment that raises technical considerations that influence subsequent downstream processes. Here, we constructed halotolerant lignocellulose degrading microbial consortia by enriching a salt marsh soil microbiome on a recalcitrant carbon and energy source, i.e., wheat straw. The consortia were obtained after six cycles of growth on fresh substrate (adaptation phase), which was followed by four cycles on pre-digested (highly-recalcitrant) substrate (stabilization phase). The data indicated that typical salt-tolerant bacteria made up a large part of the selected consortia. These were "trained" to progressively perform better on fresh substrate, but a shift was observed when highly recalcitrant substrate was used. The most dominant bacteria in the consortia were Joostella marina, Flavobacterium beibuense, Algoriphagus ratkowskyi, Pseudomonas putida, and Halomonas meridiana. Interestingly, fungi were sparsely present and negatively affected by the change in the substrate composition. Sarocladium strictum was the single fungal strain recovered at the end of the adaptation phase, whereas it was deselected by the presence of recalcitrant substrate. Consortia selected in the latter substrate presented higher cellulose and lignin degradation than consortia selected on fresh substrate, indicating a specialization in transforming the recalcitrant regions of the substrate. Moreover, our results indicate that bacteria have a prime role in the degradation of recalcitrant lignocellulose under saline conditions, as compared to fungi. The final consortia constitute an interesting source of lignocellulolytic haloenzymes that can be used to increase the efficiency of the degradation process, while decreasing the associated costs.

  3. A comparative study of performance parameters of n(+)-p InP solar cells made by closed-ampoule sulfur diffusion into Cd- and Zn-doped p-type InP substrates

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Thomas, Ralph D.; Brinker, David J.; Fatemi, Navid S.; Honecy, Frank S.

    1991-01-01

    Preliminary results indicate that Cd-doped substrates are better candidates for achieving high efficiency solar cells fabricated by closed-ampoule sulfur (S) diffusion than Zn-doped substrates. The differences in performance parameters (i.e., 14.3 percent efficiency for Cd-doped vs. 11.83 percent in the case of Zn-doped substrates of comparable doping and etch pit densities) were explained in terms of a large increase in dislocation density as a result of S diffusion in the case of Zn-doped as compared to Cd-doped substrates. The In(x)S(y) and probably Zn(S) precipitates in the case of Zn-doped substrates, produce a dead layer which extends deep below the surface and strongly affects the performance parameters. It should be noted that the cells had an unoptimized single layer antireflective coating of SiO, a grid shadowing of 6.25 percent, and somewhat poor contacts, all contributing to a reduction in efficiency. It is believed that by reducing the external losses and further improvement in cell design, efficiencies approaching 17 percent at 1 AMO, 25 degrees should be possible for cells fabricated on these relatively high defect density Cd-doped substrates. Even higher efficiencies, 18 to 19 percent should be possible by using long-lifetime substrates and further improving front surface passivation. If solar cells fabricated on Cd-doped substrates turn out to have comparable radiation tolerance as those reported in the case of cells fabricated on Zn-doped substrates, then for certain space missions 18 to 19 percent efficient cells made by this method of fabrication would be viable.

  4. Stereo- and regio-selective one-pot synthesis of triazole-based unnatural amino acids and β- amino triazoles

    EPA Science Inventory

    Synthesis of triazole based unnatural amino acids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW conditions. The developed method is applicable to a broad substrate scope a...

  5. Freezing and desiccation tolerance in entomopathogenic nematodes: diversity and correlation of traits.

    PubMed

    Shapiro-Ilan, David I; Brown, Ian; Lewis, Edwin E

    2014-03-01

    The ability of entomopathogenic nematodes to tolerate environmental stress such as desiccating or freezing conditions, can contribute significantly to biocontrol efficacy. Thus, in selecting which nematode to use in a particular biocontrol program, it is important to be able to predict which strain or species to use in target areas where environmental stress is expected. Our objectives were to (i) compare inter- and intraspecific variation in freeze and desiccation tolerance among a broad array of entomopathogenic nematodes, and (ii) determine if freeze and desiccation tolerance are correlated. In laboratory studies we compared nematodes at two levels of relative humidity (RH) (97% and 85%) and exposure periods (24 and 48 h), and nematodes were exposed to freezing temperatures (-2°C) for 6 or 24 h. To assess interspecific variation, we compared ten species including seven that are of current or recent commercial interest: Heterorhabditis bacteriophora (VS), H. floridensis, H. georgiana, (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All), S. feltiae (SN), S. glaseri (VS), S. rarum (17C&E), and S. riobrave (355). To assess intraspecific variation we compared five strains of H. bacteriophora (Baine, Fl1-1, Hb, Oswego, and VS) and four strains of S. carpocapsae (All, Cxrd, DD136, and Sal), and S. riobrave (355, 38b, 7-12, and TP). S. carpocapsae exhibited the highest level of desiccation tolerance among species followed by S. feltiae and S. rarum; the heterorhabditid species exhibited the least desiccation tolerance and S. riobrave and S. glaseri were intermediate. No intraspecific variation was observed in desiccation tolerance; S. carpocapsae strains showed higher tolerance than all H. bacteriophora or S. riobrave strains yet there was no difference detected within species. In interspecies comparisons, poor freeze tolerance was observed in H. indica, and S. glaseri, S. rarum, and S. riobrave whereas H. georgiana and S. feltiae exhibited the highest freeze tolerance, particularly in the 24-h exposure period. Unlike desiccation tolerance, substantial intraspecies variation in freeze tolerance was observed among H. bacteriophora and S. riobrave strains, yet within species variation was not detected among S. carpocapsae strains. Correlation analysis did not detect a relationship between freezing and desiccation tolerance.

  6. Characterization of the multixenobiotic resistance (MXR) mechanism in embryos and larvae of the zebra mussel (Dreissena polymorpha) and studies on its role in tolerance to single and mixture combinations of toxicants.

    PubMed

    Faria, Melissa; Navarro, Ana; Luckenbach, Till; Piña, Benjamin; Barata, Carlos

    2011-01-17

    The study of the cellular mechanisms of tolerance of organisms to pollution is a key issue in aquatic environmental risk assessment. Recent evidence indicates that multixenobiotic resistance (MXR) mechanisms represent a general biological defense of many marine and freshwater organisms against environmental toxicants. In this work, toxicologically relevant xenobiotic efflux transporters were studied in early life stages of zebra mussels (Dreissena polymorpha). Expression of a P-gp1 (ABCB1) transporter gene and its associated efflux activities during development were studied, using qRT-PCR and the fluorescent transporter substrates rhodamine B and calcein-AM combined with specific transporter inhibitors (chemosensitizers). Toxicity bioassays with the model P-gp1 chemotherapeutic drug vinblastine applied singly and in combination with different chemosensitizers were performed to elucidate the tolerance role of the P-gp1 efflux transporter. Results evidenced that the gene expression and associated efflux activities of ABC transporters were low or absent in eggs and increased significantly in 1-3d old trochophora and veliger larvae. Specific inhibitors of Pgp1 and/or MRP transport activities including cyclosporine A, MK571, verapamil and reversin 205 and the musk celestolide resulted in a concentration dependent inhibition of related transport activities in zebra mussel veliger larvae, with IC50 values in the lower micromolar range and similar to those reported for mammals, fish and mussels. Binary mixtures of the tested transporter inhibitors except celestolide with the anticancer drug and P-gp1 substrate vinblastine increased the toxicity of the former compound more than additively. These results indicate that MXR transporter activity is high in early life-stages of the zebra mussel and that may play an important role in the tolerance to environmental contaminants. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Oviposition Substrate of the Mountain Fly Drosophila nigrosparsa (Diptera: Drosophilidae)

    PubMed Central

    Tratter, Magdalena; Bächli, Gerhard; Kirchmair, Martin; Kaufmann, Rüdiger; Arthofer, Wolfgang; Schlick-Steiner, Birgit C.; Steiner, Florian M.

    2016-01-01

    The survival of insect larvae often depends on the mother’s choice of oviposition substrate, and thus, this choice is an essential part of an insect species’ ecology. Especially species with narrow substrate preferences may suffer from changes in substrate availability triggered by, for example, climate change. Recent climate warming is affecting species directly (e.g., physiology) but also indirectly (e.g., biological interactions) leading to mismatching phenologies and distributions. However, the preferred oviposition substrate is still unknown for many drosophilid species, especially for those at higher elevations. In this study, we investigated the oviposition-substrate preference of the montane-alpine fly Drosophila nigrosparsa in rearing and multiple-choice experiments using natural substrates in the laboratory. Insect emergence from field-collected substrates was tested. More than 650 insects were reared from natural substrates, among them 152 drosophilids but no individual of D. nigrosparsa. In the multiple-choice experiments, D. nigrosparsa preferred ovipositing on mushrooms (> 93% of eggs); additionally, a few eggs were laid on berries but none on other substrates such as cow faeces, rotten plant material, and soil. The flies laid 24 times more eggs per day when mushrooms were included in the substrates than when they were excluded. We infer that D. nigrosparsa is a mushroom breeder with some variation in oviposition choice. The flies favoured some mushrooms over others, but they were not specialised on a single fungal taxon. Although it is unclear if and how climate change will affect D. nigrosparsa, our results indicate that this species will not be threatened by oviposition-substrate limitations in the near future because of the broad altitudinal distribution of the mushrooms considered here, even if the flies will have to shift upwards to withstand increasing temperatures. PMID:27788257

  8. Response of avian embryonic brain to spatially segmented x-ray microbeams.

    PubMed

    Dilmanian, F A; Morris, G M; Le Duc, G; Huang, X; Ren, B; Bacarian, T; Allen, J C; Kalef-Ezra, J; Orion, I; Rosen, E M; Sandhu, T; Sathé, P; Wu, X Y; Zhong, Z; Shivaprasad, H L

    2001-05-01

    Duck embryo was studied as a model for assessing the effects of microbeam radiation therapy (MRT) on the human infant brain. Because of the high risk of radiation-induced disruption of the developmental process in the immature brain, conventional wide-beam radiotherapy of brain tumors is seldom carried out in infants under the age of three. Other types of treatment for pediatric brain tumors are frequently ineffective. Recent findings from studies in Grenoble on the brain of suckling rats indicate that MRT could be of benefit for the treatment of early childhood tumors. In our studies, duck embryos were irradiated at 3-4 days prior to hatching. Irradiation was carried out using a single exposure of synchrotron-generated X-rays, either in the form of parallel microplanar beams (microbeams), or as non-segmented broad beam. The individual microplanar beams had a width of 27 microm and height of 11 mm, and a center-to-center spacing of 100 microm. Doses to the exposed areas of embryo brain were 40, 80, 160 and 450 Gy (in-slice dose) for the microbeam, and 6, 12 and 18 Gy for the broad beam. The biological end point employed in the study was ataxia. This neurological symptom of radiation damage to the brain developed within 75 days of hatching. Histopathological analysis of brain tissue did not reveal any radiation induced lesions for microbeam doses of 40-160 Gy (in-slice), although some incidences of ataxia were observed in that dose group. However, severe brain lesions did occur in animals in the 450 Gy microbeam dose groups, and mild lesions in the 18 Gy broad beam dose group. These results indicate that embryonic duck brain has an appreciably higher tolerance to the microbeam modality, as compared to the broad beam modality. When the microbeam dose was normalized to the full volume of the irradiated tissue. i.e., the dose averaged over microbeams and the space between the microbeams, brain tolerance was estimated to be about three times higher to microbeam irradiation as compared with broad beam irradiation.

  9. Thermochemical Wastewater Valorization via Enhanced Microbial Toxicity Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, Gregg T; Thelhawadigedara, Lahiru Niroshan Jayakody; Johnson, Christopher W

    Thermochemical (TC) biomass conversion processes such as pyrolysis and liquefaction generate considerable amounts of wastewater, which often contains highly toxic compounds that are incredibly challenging to convert via standard wastewater treatment approaches such as anaerobic digestion. These streams represent a cost for TC biorefineries, and a potential valorization opportunity, if effective conversion methods are developed. The primary challenge hindering microbial conversion of TC wastewater is toxicity. In this study, we employ a robust bacterium, Pseudomonas putida, with TC wastewater streams to demonstrate that aldehydes are the most inhibitory compounds in these streams. Proteomics, transcriptomics, and fluorescence-based immunoassays of P. putidamore » grown in a representative wastewater stream indicate that stress results from protein damage, which we hypothesize is a primary toxicity mechanism. Constitutive overexpression of the chaperone genes, groEL, groES, and clpB, in a genome-reduced P. putida strain improves the tolerance towards multiple TC wastewater samples up to 200-fold. Moreover, the concentration ranges of TC wastewater are industrially relevant for further bioprocess development for all wastewater streams examined here, representing different TC process configurations. Furthermore, we demonstrate proof-of-concept polyhydroxyalkanoate production from the usable carbon in an exemplary TC wastewater stream. Overall, this study demonstrates that protein quality control machinery and repair mechanisms can enable substantial gains in microbial tolerance to highly toxic substrates, including heterogeneous waste streams. When coupled to other metabolic engineering advances such as expanded substrate utilization and enhanced product accumulation, this study generally enables new strategies for biological conversion of highly-toxic, organic-rich wastewater via engineered aerobic monocultures or designer consortia.« less

  10. Direct metal transfer printing on flexible substrate for fabricating optics functional devices

    NASA Astrophysics Data System (ADS)

    Jiang, Yingjie; Zhou, Xiaohong; Zhang, Feng; Shi, Zhenwu; Chen, Linsen; Peng, Changsi

    2015-11-01

    New functional materials and devices based on metal patterns can be widely used in many new and expanding industries,such as flat panel displays, alternative energy,sensors and so on. In this paper, we introduce a new transfer printing method for fabricating metal optics functional devices. This method can directly transfer a metal pattern from a polyethylene terephthalate (PET)supported UV or polydimethylsiloxane (PDMS) pattern to another PET substrate. Purely taking advantage of the anaerobic UV curing adhesive (a-UV) on PET substrate, metal film can be easily peeled off from micro/nano-structured surface. As a result, metal film on the protrusion can be selectively transferred onto the target substrate, to make it the metal functional surface. But which on the bottom can not be transferred. This method provides low cost fabrication of metal thin film devices by avoiding high cost lithography process. Compared with conventional approach, this method can get more smooth rough edges and has wider tolerance range for the original master mold. Future developments and potential applications of this metal transfer method will be addressed.

  11. Enhancement of thickness uniformity of thin films grown by pulsed laser deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1995-01-01

    A peculiarity of the pulsed laser deposition technique of thin-film growth which limits its applicability is the very rapid drop of resulting film thickness as a function of distance from the deposition axis. This is due to the narrow forward peaking of the emission plume characteristic of the laser ablation process. The plume is usually modeled by a cos(sup n) theta function with n greater, and in some cases, much higher, than 1. Based on this behavior, a method is presented to substantially enhance coverage uniformity in substrate zones of the order of the target-substrate distance h, and to within a specified thickness tolerance. Essentially, target irradiation is caused to form an annular emission source instead of the usual spot. By calculating the resulting thickness profiles, an optimum radius s is found for the annular source, corresponding to a given power in the emission characteristic and a given value of h. The radius of this annulus scales with h. Calculated numerical results for optimal s/h ratios corresponding to a wide range of values for n are provided for the case of +/- 1% tolerance in deviation from the thickness at deposition axis. Manners of producing annular illumination of the target by means of conic optics are presented for the case of a laser beam with radially symmetric profile. The region of uniform coverage at the substrate can be further augmented by extension of the method to multiple concentric annular sources. By using a conic optic of novel design, it is shown also how a single-laser beam can be focused onto a target in the required manner. Applicability of the method would be limited in practice by the available laser power. On the other hand, the effective emitting area can be large, which favors extremely high growth rates, and since growth can occur uniformly over the whole substrate for each laser pulse, single-shot depositions with substantial thicknesses are possible. In addition, the simultaneity of growth over the complete substrate is desirable when monitoring the growth in situ.

  12. Variation in cassava germplasm for tolerance to post-harvest physiological deterioration.

    PubMed

    Venturini, M T; Santos, L R; Vildoso, C I A; Santos, V S; Oliveira, E J

    2016-05-06

    Tolerant varieties can effectively control post-harvest physiological deterioration (PPD) of cassava, although knowledge on the genetic variability and inheritance of this trait is needed. The objective of this study was to estimate genetic parameters and identify sources of tolerance to PPD and their stability in cassava accessions. Roots from 418 cassava accessions, grown in four independent experiments, were evaluated for PPD tolerance 0, 2, 5, and 10 days post-harvest. Data were transformed into area under the PPD-progress curve (AUP-PPD) to quantify tolerance. Genetic parameters, stability (Si), adaptability (Ai), and the joint analysis of stability and adaptability (Zi) were obtained via residual maximum likelihood (REML) and best linear unbiased prediction (BLUP) methods. Variance in the genotype (G) x environment (E) interaction and genotypic variance were important for PPD tolerance. Individual broad-sense heritability (hg(2)= 0.38 ± 0.04) and average heritability in accessions (hmg(2)= 0.52) showed high genetic control of PPD tolerance. Genotypic correlation of AUP-PPD in different experiments was of medium magnitude (ȓgA = 0.42), indicating significant G x E interaction. The predicted genotypic values o f G x E free of interaction (û + ĝi) showed high variation. Of the 30 accessions with high Zi, 19 were common to û + ĝi, Si, and Ai parameters. The genetic gain with selection of these 19 cassava accessions was -55.94, -466.86, -397.72, and -444.03% for û + ĝi, Si, Ai, and Zi, respectively, compared with the overall mean for each parameter. These results demonstrate the variability and potential of cassava germplasm to introduce PPD tolerance in commercial varieties.

  13. Study of Protein Phosphatase 2A (PP2A) Activity in LPS-Induced Tolerance Using Fluorescence-Based and Immunoprecipitation-Aided Methodology.

    PubMed

    Sun, Lei; Ii, Adlai L Pappy; Pham, Tiffany T; Shanley, Thomas P

    2015-06-29

    Protein phosphatase 2A (PP2A) is one of the most abundant intracellular serine/threonine (Ser/Thr) phosphatases accounting for 1% of the total cellular protein content. PP2A is comprised of a heterodimeric core enzyme and a substrate-specific regulatory subunit. Potentially, at least seventy different compositions of PP2A exist because of variable regulatory subunit binding that accounts for various activity modulating numerous cell functions. Due to the constitutive phosphatase activity present inside cells, a sensitive assay is required to detect the changes of PP2A activity under various experimental conditions. We optimized a fluorescence assay (DIFMU assay) by combining it with prior anti-PP2A immunoprecipitation to quantify PP2A-specific phosphatase activity. It is also known that prior exposure to lipopolysaccharides (LPS) induces "immune tolerance" of the cells to subsequent stimulation. Herein we report that PP2A activity is upregulated in tolerized peritoneal macrophages, corresponding to decreased TNF-α secretion upon second LPS stimulation. We further examined the role of PP2A in the tolerance effect by using PP2ACαl°xl°x;lyM-Cre conditional knockout macrophages. We found that PP2A phosphatase activity cannot be further increased by tolerance. TNF-α secretion from tolerized PP2ACαl°xl°x;lyM-Cre macrophages is higher than tolerized control macrophages. Furthermore, we showed that the increased TNF-α secretion may be due to an epigenetic transcriptionally active signature on the promoter of TNF-α gene rather than regulation of the NFκB/IκB signaling pathway. These results suggest a role for increased PP2A activity in the regulation of immune tolerance.

  14. Temporal and spectral properties of the songs of the southern green stink bug Nezara viridula (L.) from Slovenia.

    PubMed

    Cokl, A; Virant-Doberlet, M; Stritih, N

    2000-01-01

    Substrate born songs of the southern green stinkbug Nezara viridula (L.) from Slovenia were recorded and analysed. The male calling song is composed of narrow-band regularly repeated single pulses and of broad-band frequency modulated pulses grouped into pulse trains. The female calling song is characterised by broad-band pulsed and narrow-band non-pulsed pulse trains. A frequency modulated pre-pulse precedes the narrow-band pulse train. A frequency-modulated post-pulse usually follows the pulse train of the male courtship song. The male calling song triggers broad-band pulse trains of the female courtship song. The female also produces a repelling low-frequency vibration that inhibits male calling and courtship. The male rival song is characterised by prolonged pulses with a typical frequency modulation.

  15. Kinetic analysis of extension of substrate specificity with Xanthomonas maltophilia, Aeromonas hydrophila, and Bacillus cereus metallo-beta-lactamases.

    PubMed Central

    Felici, A; Amicosante, G

    1995-01-01

    Twenty beta-lactam molecules, including penicillins, cephalosporins, penems, carbapenems, and monobactams, were investigated as potential substrates for Xanthomonas maltophilia ULA-511, Aeromonas hydrophila AE036, and Bacillus cereus 5/B/6 metallo-beta-lactamases. A detailed analysis of the kinetic parameters examined confirmed these enzymes to be broad-spectrum beta-lactamases with different ranges of catalytic efficiency. Cefoxitin and moxalactam, substrates for the beta-lactamases from X. maltophilia ULA-511 and B. cereus 5/B/6, behaved as inactivators of the A. hydrophila AE036 metallo-beta-lactamase, which appeared to be unique among the enzymes tested in this study. In addition, we report a new, faster, and reliable purification procedure for the B. cereus 5/B/6 metallo-beta-lactamase, cloned in Escherichia coli HB101. PMID:7695305

  16. Chiral poly-rare earth metal complexes in asymmetric catalysis

    PubMed Central

    Shibasaki, Masakatsu

    2006-01-01

    Asymmetric catalysis is a powerful component of modern synthetic organic chemistry. To further broaden the scope and utility of asymmetric catalysis, new basic concepts for the design of asymmetric catalysts are crucial. Because most chemical reactions involve bond-formation between two substrates or moieties, high enantioselectivity and catalyst activity should be realized if an asymmetric catalyst can activate two reacting substrates simultaneously at defined positions. Thus, we proposed the concept of bifunctional asymmetric catalysis, which led us to the design of new asymmetric catalysts containing two functionalities (e.g. a Lewis acid and a Brønsted base or a Lewis acid and a Lewis base). These catalysts demonstrated broad reaction applicability with excellent substrate generality. Using our catalytic asymmetric reactions as keys steps, efficient total syntheses of pharmaceuticals and their biologically active lead natural products were achieved. PMID:25792774

  17. Measurement of Nonribosomal Peptide Synthetase Adenylation Domain Activity Using a Continuous Hydroxylamine Release Assay.

    PubMed

    Duckworth, Benjamin P; Wilson, Daniel J; Aldrich, Courtney C

    2016-01-01

    Adenylation is a crucial enzymatic process in the biosynthesis of nonribosomal peptide synthetase (NRPS) derived natural products. Adenylation domains are considered the gatekeepers of NRPSs since they select, activate, and load the carboxylic acid substrate onto a downstream peptidyl carrier protein (PCP) domain of the NRPS. We describe a coupled continuous kinetic assay for NRPS adenylation domains that substitutes the PCP domain with hydroxylamine as the acceptor molecule. The pyrophosphate released from the first-half reaction is then measured using a two-enzyme coupling system, which detects conversion of the chromogenic substrate 7-methylthioguanosine (MesG) to 7-methylthioguanine. From profiling substrate specificity of unknown or engineered adenylation domains to studying chemical inhibition of adenylating enzymes, this robust assay will be of widespread utility in the broad field NRPS enzymology.

  18. Characterization of a Highly Thermostable and Organic Solvent-Tolerant Copper-Containing Polyphenol Oxidase with Dye-Decolorizing Ability from Kurthia huakuii LAM0618T

    PubMed Central

    Guo, Xiang; Zhou, Shan; Wang, Yanwei; Song, Jinlong; Wang, Huimin; Kong, Delong; Zhu, Jie; Dong, Weiwei; He, Mingxiong; Hu, Guoquan; Ruan, Zhiyong

    2016-01-01

    Laccases are green biocatalysts that possess attractive advantages for the treatment of resistant environmental pollutants and dye effluents. A putative laccase-like gene, laclK, encoding a protein of 29.3 kDa and belonging to the Cu-oxidase_4 superfamily, was cloned and overexpressed in Escherichia coli. The purified recombinant protein LaclK (LaclK) was able to oxidize typical laccase substrates such as 2,6-dimethoxyphenol and l-dopamine. The characteristic adsorption maximums of typical laccases at 330 nm and 610 nm were not detected for LaclK. Cu2+ was essential for substrate oxidation, but the ratio of copper atoms/molecule of LaclK was determined to only be 1:1. Notably, the optimal temperature of LaclK was 85°C with 2,6-dimethoxyphenol as substrates, and the half-life approximately 3 days at 80°C. Furthermore, 10% (v/v) organic solvents (methanol, ethanol, isopropyl alcohol, butyl alcohol, Triton x-100 or dimethyl sulfoxide) could promote enzymatic activity. LaclK exhibited wide-spectrum decolorization ability towards triphenylmethane dyes, azo dyes and aromatic dyes, decolorizing 92% and 94% of Victoria Blue B (25 μM) and Ethyl Violet (25 μM), respectively, at a concentration of 60 U/L after 1 h of incubation at 60°C. Overall, we characterized a novel thermostable and organic solvent-tolerant copper-containing polyphenol oxidase possessing dye-decolorizing ability. These unusual properties make LaclK an alternative for industrial applications, particularly processes that require high-temperature conditions. PMID:27741324

  19. Insight into Cr6+ reduction efficiency of Rhodococcus erythropolis isolated from coalmine waste water.

    PubMed

    Banerjee, Soumya; Joshi, S R; Mandal, Tamal; Halder, Gopinath

    2017-01-01

    A microbial treatment of Cr 6+ contaminated wastewater with a chromium reducing bacteria isolated from coal mine area was investigated. In a series of batch study metal removal was executed under different parametric conditions which include pH (2-7), temperature (20-50 °C), initial Cr 6+ concentration (1-100 mg/L), substrate utilization and its overall effect on biomass generation. Impact of oxygen availability was checked at different agitation speed and its role on the remedial process. Liquid phase reduction of Cr 6+ was measured in terms of substrate reduction and total biomass yield. The bacterium species isolated was able to tolerate Cr 6+ over a wide range from 1 to 100 mg/L before it reached minimum inhibition concentration. Apart from Cr 6+ , the bacterial isolate showed tolerance towards Fe, As, Cu, Ag, Zn, Mn, Mg and Pb. Removal mechanism adopted by the bacterium recommended that it employed accumulation of Cr 6+ as Cr 3+ both within and outside the cell. Classical Monod equation was used to determine the biokinetics of the bacterial isolate along with the interference of metal ion concentration and substrate utilization. Cr 6+ removal was found prominent even in bimetallic solutions. The bacterial isolate was confirmed to be Rhodococcus erythopolis by 16s rRNA molecular characterization. Thus the bacterial isolate obtained from the coal mine area proved to be a potential agent for microbial remediation of Cr 6+ laden waste water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Draft Genome Sequence of Exiguobacterium sp. Strain BMC-KP, an Environmental Isolate from Bryn Mawr, Pennsylvania.

    PubMed

    Hyson, Peter; Shapiro, Joshua A; Wien, Michelle W

    2015-10-08

    Exiguobacterium sp. strain BMC-KP was isolated as part of a student environmental sampling project at Bryn Mawr College, PA. Sequencing of bacterial DNA assembled a 3.32-Mb draft genome. Analysis suggests the presence of genes for tolerance to cold and toxic metals, broad carbohydrate metabolism, and genes derived from phage. Copyright © 2015 Hyson et al.

  1. Untreated and copper-treated wood soaked in sodium oxalate: effects of decay by copper-tolerant and copper-sensitive fungi

    Treesearch

    Katie M. Ohno; Grant T. Kirker; Amy B. Bishell; Carol A. Clausen

    2017-01-01

    Copper is widely used as the primary component in wood protectants because it demonstrates a broad range of biocidal properties. However, a key concern with using copper in wood preservative formulations is the possibility for brown-rot basidiomycetes to resist the toxic effect. Many brown-rot basidiomycetes have evolved mechanisms, like the production and accumulation...

  2. A resonance-free nano-film airborne ultrasound emitter

    NASA Astrophysics Data System (ADS)

    Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias

    2013-01-01

    In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.

  3. Broad Frequency LTCC Vertical Interconnect Transition for Multichip Modules and System on Package Applications

    NASA Technical Reports Server (NTRS)

    Decrossas, Emmanuel; Glover, Michael D.; Porter, Kaoru; Cannon, Tom; Mantooth, H. Alan; Hamilton, M. C.

    2013-01-01

    Various stripline structures and flip chip interconnect designs for high-speed digital communication systems implemented in low temperature co-fired ceramic (LTCC) substrates are studied in this paper. Specifically, two different transition designs from edge launch 2.4 millimeter connectors to stripline transmission lines embedded in LTCC are discussed. After characterizing the DuPont (sup trademark) 9K7 green tape, different designs are proposed to improve signal integrity for high-speed digital data. The full-wave simulations and experimental data validate the presented designs over a broad frequency band from Direct Current to 50 gigahertz and beyond.

  4. Matrix metalloproteinase processing of signaling molecules to regulate inflammation.

    PubMed

    Butler, Georgina S; Overall, Christopher M

    2013-10-01

    Inflammation is a complex and highly regulated process that facilitates the clearance of pathogens and mediates tissue repair. Failure to resolve inflammation can lead to chronic inflammatory diseases such as periodontitis. Matrix metalloproteinases are generally thought to be detrimental in disease because degradation of extracellular matrix contributes to pathology. However, proteomic techniques (degradomics) are revealing that matrix metalloproteinases process a diverse array of substrates and therefore have a broad range of functions. Many matrix metalloproteinase substrates modulate inflammation and hence, by processing these proteins, matrix metalloproteinases can orchestrate the inflammatory response. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The Aldo-Keto Reductase Superfamily and its Role in Drug Metabolism and Detoxification

    PubMed Central

    Barski, Oleg A.; Tipparaju, Srinivas M.; Bhatnagar, Aruni

    2008-01-01

    The Aldo-Keto Reductase (AKR) superfamily comprises of several enzymes that catalyze redox transformations involved in biosynthesis, intermediary metabolism and detoxification. Substrates of the family include glucose, steroids, glycosylation end products, lipid peroxidation products, and environmental pollutants. These proteins adopt a (β/α)8 barrel structural motif interrupted by a number of extraneous loops and helixes that vary between proteins and bring structural identity to individual families. The human AKR family differs from the rodent families. Due to their broad substrate specificity, AKRs play an important role in the Phase II detoxification of a large number of pharmaceuticals, drugs, and xenobiotics. PMID:18949601

  6. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction

    PubMed Central

    Siegel, Justin B.; Zanghellini, Alexandre; Lovick, Helena M.; Kiss, Gert; Lambert, Abigail R.; St.Clair, Jennifer L.; Gallaher, Jasmine L.; Hilvert, Donald; Gelb, Michael H.; Stoddard, Barry L.; Houk, Kendall N.; Michael, Forrest E.; Baker, David

    2011-01-01

    The Diels-Alder reaction is a cornerstone in organic synthesis, forming two carbon-carbon bonds and up to four new stereogenic centers in one step. No naturally occurring enzymes have been shown to catalyze bimolecular Diels-Alder reactions. We describe the de novo computational design and experimental characterization of enzymes catalyzing a bimolecular Diels-Alder reaction with high stereoselectivity and substrate specificity. X-ray crystallography confirms that the structure matches the design for the most active of the enzymes, and binding site substitutions reprogram the substrate specificity. Designed stereoselective catalysts for carbon-carbon bond forming reactions should be broadly useful in synthetic chemistry. PMID:20647463

  7. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction.

    PubMed

    Siegel, Justin B; Zanghellini, Alexandre; Lovick, Helena M; Kiss, Gert; Lambert, Abigail R; St Clair, Jennifer L; Gallaher, Jasmine L; Hilvert, Donald; Gelb, Michael H; Stoddard, Barry L; Houk, Kendall N; Michael, Forrest E; Baker, David

    2010-07-16

    The Diels-Alder reaction is a cornerstone in organic synthesis, forming two carbon-carbon bonds and up to four new stereogenic centers in one step. No naturally occurring enzymes have been shown to catalyze bimolecular Diels-Alder reactions. We describe the de novo computational design and experimental characterization of enzymes catalyzing a bimolecular Diels-Alder reaction with high stereoselectivity and substrate specificity. X-ray crystallography confirms that the structure matches the design for the most active of the enzymes, and binding site substitutions reprogram the substrate specificity. Designed stereoselective catalysts for carbon-carbon bond-forming reactions should be broadly useful in synthetic chemistry.

  8. Combustion-Assisted Photonic Annealing of Printable Graphene Inks via Exothermic Binders.

    PubMed

    Secor, Ethan B; Gao, Theodore Z; Dos Santos, Manuel H; Wallace, Shay G; Putz, Karl W; Hersam, Mark C

    2017-09-06

    High-throughput and low-temperature processing of high-performance nanomaterial inks is an important technical challenge for large-area, flexible printed electronics. In this report, we demonstrate nitrocellulose as an exothermic binder for photonic annealing of conductive graphene inks, leveraging the rapid decomposition kinetics and built-in energy of nitrocellulose to enable versatile process integration. This strategy results in superlative electrical properties that are comparable to extended thermal annealing at 350 °C, using a pulsed light process that is compatible with thermally sensitive substrates. The resulting porous microstructure and broad liquid-phase patterning compatibility are exploited for printed graphene microsupercapacitors on paper-based substrates.

  9. Carbohydrates as efficient catalysts for the hydration of α-amino nitriles.

    PubMed

    Chitale, Sampada; Derasp, Joshua S; Hussain, Bashir; Tanveer, Kashif; Beauchemin, André M

    2016-11-01

    Directed hydration of α-amino nitriles was achieved under mild conditions using simple carbohydrates as catalysts exploiting temporary intramolecularity. A broadly applicable procedure using both formaldehyde and NaOH as catalysts efficiently hydrated a variety of primary and secondary susbtrates, and allowed the hydration of enantiopure substrates to proceed without racemization. This work also provides a rare comparison of the catalytic activity of carbohydrates, and shows that the simple aldehydes at the basis of chemical evolution are efficient organocatalysts mimicking the function of hydratase enzymes. Optimal catalytic efficiency was observed with destabilized aldehydes, and with difficult substrates only simple carbohydrates such as formaldehyde and glycolaldehyde proved reliable.

  10. The Post-polyketide Synthase Steps in iso-Migrastatin Biosynthesis Featuring Tailoring Enzymes with Broad Substrate Specificity

    PubMed Central

    Ma, Ming; Kwong, Thomas; Lim, Si-Kyu; Ju, Jianhua; Lohman, Jeremy R.; Shen, Ben

    2013-01-01

    The iso-migrastatin (iso-MGS) biosynthetic gene cluster from Streptomyces platensis NRRL 18993 consists of 11 genes, featuring an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes MgsIJK. Systematic inactivation of mgsIJK in S. platensis enabled us to (i) identify two nascent products (10 and 13) of the iso-MGS AT-less type I PKS, establishing an unprecedented novel feature for AT-less type I PKSs, and (ii) account for the formation of all known post-PKS biosynthetic intermediates (10-17) generated by the three tailoring enzymes MgsIJK, which possessed significant substrate promiscuities. PMID:23394593

  11. Growing Eremanthus erythropappus in crushed laterite: A promising alternative to topsoil for bauxite-mine revegetation.

    PubMed

    Machado, Naiara Amaral de Miranda; Leite, Mariangela Garcia Praça; Figueiredo, Maurílio Assis; Kozovits, Alessandra Rodrigues

    2013-11-15

    Topsoil is the preferred substrate for areas requiring rehabilitation after bauxite mining. However, topsoil is sometimes lacking and so there is a need to test the suitability of other, locally available substrates. In an abandoned bauxite mine in Southeastern Brazil, small patches of native vegetation spontaneously established in shallow depressions over weathered laterite, suggesting that granulometric reduction may have facilitated the establishment of plants. To test this hypothesis, blocks of laterite collected in the area were crushed to simulate texture observed in the vegetation patches. Topsoil collected in a preserved ferruginous field near to the extraction area was also used as a substrate in which Eremanthus erythropappus seedlings, a native woody species, were grown. Seedlings were cultivated without fertilizers in these two substrates and also directly over the exposed and uncrushed laterite. The species proved to be very promising for the revegetation, showing a high survival rate in all substrates. Higher annual growth rates and higher final biomass values were observed in topsoil, but the granulometric reduction of laterite doubled plant growth rate in comparison to the exposed laterite. This result was likely due to the increased availability of essential nutrients to plants and to the improvement in physical conditions for root growth and functioning. Moreover, seedling allometry was not altered by the type of substrate, suggesting that the species was highly tolerant to the new substrate conditions, a fundamental characteristic for success of revegetation of bauxite extraction degraded areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Synergistic N-Heterocyclic Carbene/Palladium-Catalyzed Reactions of Aldehyde Acyl Anions with either Diarylmethyl or Allylic Carbonates.

    PubMed

    Yasuda, Shigeo; Ishii, Takuya; Takemoto, Shunsuke; Haruki, Hiroki; Ohmiya, Hirohisa

    2018-03-05

    Benzylation and allylation of aldehyde acyl anions were enabled by the merger of a thiazolium N-heterocyclic carbene (NHC) catalyst and a palladium/bisphosphine catalyst in a synergistic manner. Owing to the mildness of the reaction conditions, various functional groups were tolerated in the substrates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Asymmetric hydrogenation of aromatic ketones by new recyclable ionic tagged ferrocene-ruthenium catalyst system.

    PubMed

    Xu, Di; Zhou, Zhi-Ming; Dai, Li; Tang, Li-Wei; Zhang, Jun

    2015-05-01

    Newly developed ferrocene-oxazoline-phosphine ligands containing quaternary ammonium ionic groups exhibited excellent catalytic performance for the ruthenium-catalyzed hydrogenation of aromatic ketonic substrates to give chiral secondary alcohols with high levels of conversions and enantioselectivities. Simple manipulation process, water tolerance, high activity and good recyclable property make this catalysis practical and appealing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The evolution of ecological tolerance in prokaryotes

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Bauld, J.

    1989-01-01

    The ecological ranges of Archaeobacteria and Eubacteria are constrained by a requirement for liquid water and the physico-chemical stability limits of biomolecules, but within this broad envelope, prokaryotes have evolved adaptations that permit them to tolerate a remarkable spectrum of habitats. Laboratory experiments indicate that prokaryotes can adapt rapidly to novel environmental conditions, yet geological studies suggest early diversification and long-term stasis within the prokaryotic kingdoms. These apparently contradictory perspectives can be reconciled by understanding that, in general, rates and patterns of prokaryotic evolution reflect the developmental history of the Earth's surface environments. Our understanding of modern microbial ecology provides a lens through which our accumulating knowledge of physiology, molecular phylogeny and the Earth's history can be integrated and focussed on the phenomenon of prokaryotic evolution.

  15. Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism

    PubMed Central

    Nasuno, Ryo; Hirano, Yoshinori; Itoh, Takafumi; Hakoshima, Toshio; Hibi, Takao; Takagi, Hiroshi

    2013-01-01

    Mpr1 (sigma1278b gene for proline-analog resistance 1), which was originally isolated as N-acetyltransferase detoxifying the proline analog l-azetidine-2-carboxylate, protects yeast cells from various oxidative stresses. Mpr1 mediates the l-proline and l-arginine metabolism by acetylating l-Δ1-pyrroline-5-carboxylate, leading to the l-arginine–dependent production of nitric oxide, which confers oxidative stress tolerance. Mpr1 belongs to the Gcn5-related N-acetyltransferase (GNAT) superfamily, but exhibits poor sequence homology with the GNAT enzymes and unique substrate specificity. Here, we present the X-ray crystal structure of Mpr1 and its complex with the substrate cis-4-hydroxy-l-proline at 1.9 and 2.3 Å resolution, respectively. Mpr1 is folded into α/β-structure with eight-stranded mixed β-sheets and six α-helices. The substrate binds to Asn135 and the backbone amide of Asn172 and Leu173, and the predicted acetyl-CoA–binding site is located near the backbone amide of Phe138 and the side chain of Asn178. Alanine substitution of Asn178, which can interact with the sulfur of acetyl-CoA, caused a large reduction in the apparent kcat value. The replacement of Asn135 led to a remarkable increase in the apparent Km value. These results indicate that Asn178 and Asn135 play an important role in catalysis and substrate recognition, respectively. Such a catalytic mechanism has not been reported in the GNAT proteins. Importantly, the amino acid substitutions in these residues increased the l-Δ1-pyrroline-5-carboxylate level in yeast cells exposed to heat stress, indicating that these residues are also crucial for its physiological functions. These studies provide some benefits of Mpr1 applications, such as the breeding of industrial yeasts and the development of antifungal drugs. PMID:23818613

  16. A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion

    PubMed Central

    Sommer, Morten OA; Church, George M; Dantas, Gautam

    2010-01-01

    Sustainable biofuel alternatives to fossil fuel energy are hampered by recalcitrance and toxicity of biomass substrates to microbial biocatalysts. To address this issue, we present a culture-independent functional metagenomic platform for mining Nature's vast enzymatic reservoir and show its relevance to biomass conversion. We performed functional selections on 4.7 Gb of metagenomic fosmid libraries and show that genetic elements conferring tolerance toward seven important biomass inhibitors can be identified. We select two metagenomic fosmids that improve the growth of Escherichia coli by 5.7- and 6.9-fold in the presence of inhibitory concentrations of syringaldehyde and 2-furoic acid, respectively, and identify the individual genes responsible for these tolerance phenotypes. Finally, we combine the individual genes to create a three-gene construct that confers tolerance to mixtures of these important biomass inhibitors. This platform presents a route for expanding the repertoire of genetic elements available to synthetic biology and provides a starting point for efforts to engineer robust strains for biofuel generation. PMID:20393580

  17. An alkaline and surfactant-tolerant lipase from Trichoderma lentiforme ACCC30425 with high application potential in the detergent industry.

    PubMed

    Wang, Yuzhou; Ma, Rui; Li, Shigui; Gong, Mingbo; Yao, Bin; Bai, Yingguo; Gu, Jingang

    2018-06-05

    Alkaline lipases with adaptability to low temperatures and strong surfactant tolerance are favorable for application in the detergent industry. In the present study, a lipase-encoding gene, TllipA, was cloned from Trichoderma lentiforme ACCC30425 and expressed in Pichia pastoris GS115. The purified recombinant TlLipA was found to have optimal activities at 50 °C and pH 9.5 and retain stable over the pH range of 6.0-10.0 and 40 °C and below. When using esters of different lengths as substrates, TlLipA showed preference for the medium length p-nitrophenyl octanoate. In comparison to commercial lipases, TlLipA demonstrated higher tolerance to various surfactants (SDS, Tween 20, and Triton X100) and retained more activities after incubation with Triton X100 for up to 24 h. These favorable characteristics make TlLipA prospective as an additive in the detergent industry.

  18. Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar

    2018-02-01

    The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.

  19. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees.

    PubMed

    He, Wei-Ming; Sun, Zhen-Kai

    2016-02-08

    Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints.

  20. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees

    PubMed Central

    He, Wei-Ming; Sun, Zhen-Kai

    2016-01-01

    Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints. PMID:26854019

  1. Degree of adaptive response in urban tolerant birds shows influence of habitat-of-origin

    PubMed Central

    2014-01-01

    Urban exploiters and adapters are often coalesced under a term of convenience as ‘urban tolerant’. This useful but simplistic characterisation masks a more nuanced interplay between and within assemblages of birds that are more or less well adapted to a range of urban habitats. I test the hypotheses that objectively-defined urban exploiter and suburban adapter assemblages within the broad urban tolerant grouping in Melbourne vary in their responses within the larger group to predictor variables, and that the most explanatory predictor variables vary between the two assemblages. A paired, partitioned analysis of exploiter and adapter preferences for points along the urban–rural gradient was undertaken to decompose the overall trend into diagnosable parts for each assemblage. In a similar way to that in which time since establishment has been found to be related to high urban densities of some bird species and biogeographic origin predictive of urban adaptation extent, habitat origins of members of bird assemblages influence the degree to which they become urban tolerant. Bird species that objectively classify as urban tolerant will further classify as either exploiters or adapters according to the degree of openness of their habitats-of-origin. PMID:24688881

  2. Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete.

    PubMed

    Wang, Jianyun; Jonkers, Henk M; Boon, Nico; De Belie, Nele

    2017-06-01

    The suitability of using a spore-forming ureolytic strain, Bacillus sphaericus, was evaluated for self-healing of concrete cracks. The main focus was on alkaline tolerance, calcium tolerance, oxygen dependence, and low-temperature adaptability. Experimental results show that B. sphaericus had a good tolerance. It can grow and germinate in a broad range of alkaline pH. The optimal pH range is 7 ∼ 9. High alkaline conditions (pH 10 ∼ 11) slow down but not stop the growth and germination. Oxygen was strictly needed during bacterial growth and germination, but not an essential factor during bacterial urea decomposition. B. sphaericus also had a good Ca tolerance, especially at a high bacterial concentration of 10 8  cells/mL; no significant influence was observed on bacterial ureolytic activity of the presence of 0.9M Ca 2+ . Furthermore, at a low temperature (10 °C), bacterial spores germinated and revived ureolytic activity with some retardation. However, this retardation can be counteracted by using a higher bacterial concentration and by supplementing yeast extract. It can be concluded that B. sphaericus is a suitable bacterium for application in bacteria-based self-healing concrete.

  3. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability.

    PubMed

    Bickler, Philip E; Buck, Leslie T

    2007-01-01

    The ability of fishes, amphibians, and reptiles to survive extremes of oxygen availability derives from a core triad of adaptations: profound metabolic suppression, tolerance of ionic and pH disturbances, and mechanisms for avoiding free-radical injury during reoxygenation. For long-term anoxic survival, enhanced storage of glycogen in critical tissues is also necessary. The diversity of body morphologies and habitats and the utilization of dormancy have resulted in a broad array of adaptations to hypoxia in lower vertebrates. For example, the most anoxia-tolerant vertebrates, painted turtles and crucian carp, meet the challenge of variable oxygen in fundamentally different ways: Turtles undergo near-suspended animation, whereas carp remain active and responsive in the absence of oxygen. Although the mechanisms of survival in both of these cases include large stores of glycogen and drastically decreased metabolism, other mechanisms, such as regulation of ion channels in excitable membranes, are apparently divergent. Common themes in the regulatory adjustments to hypoxia involve control of metabolism and ion channel conductance by protein phosphorylation. Tolerance of decreased energy charge and accumulating anaerobic end products as well as enhanced antioxidant defenses and regenerative capacities are also key to hypoxia survival in lower vertebrates.

  4. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions.

    PubMed

    Engle, Keary M; Mei, Tian-Sheng; Wasa, Masayuki; Yu, Jin-Quan

    2012-06-19

    Reactions that convert carbon-hydrogen (C-H) bonds into carbon-carbon (C-C) or carbon-heteroatom (C-Y) bonds are attractive tools for organic chemists, potentially expediting the synthesis of target molecules through new disconnections in retrosynthetic analysis. Despite extensive inorganic and organometallic study of the insertion of homogeneous metal species into unactivated C-H bonds, practical applications of this technology in organic chemistry are still rare. Only in the past decade have metal-catalyzed C-H functionalization reactions become more widely utilized in organic synthesis. Research in the area of homogeneous transition metal-catalyzed C-H functionalization can be broadly grouped into two subfields. They reflect different approaches and goals and thus have different challenges and opportunities. One approach involves reactions of completely unfunctionalized aromatic and aliphatic hydrocarbons, which we refer to as "first functionalization". Here the substrates are nonpolar and hydrophobic and thus interact very weakly with polar metal species. To overcome this weak affinity and drive metal-mediated C-H cleavage, chemists often use hydrocarbon substrates in large excess (for example, as solvent). Because highly reactive metal species are needed in first functionalization, controlling the chemoselectivity to avoid overfunctionalization is often difficult. Additionally, because both substrates and products are comparatively low-value chemicals, developing cost-effective catalysts with exceptionally high turnover numbers that are competitive with alternatives (including heterogeneous catalysts) is challenging. Although an exciting field, first functionalization is beyond the scope of this Account. The second subfield of C-H functionalization involves substrates containing one or more pre-existing functional groups, termed "further functionalization". One advantage of this approach is that the existing functional group (or groups) can be used to chelate the metal catalyst and position it for selective C-H cleavage. Precoordination can overcome the paraffin nature of C-H bonds by increasing the effective concentration of the substrate so that it need not be used as solvent. From a synthetic perspective, it is desirable to use a functional group that is an intrinsic part of the substrate so that extra steps for installation and removal of an external directing group can be avoided. In this way, dramatic increases in molecular complexity can be accomplished in a single stroke through stereo- and site-selective introduction of a new functional group. Although reactivity is a major challenge (as with first functionalization), the philosophy in further functionalization differs; the major challenge is developing reactions that work with predictable selectivity in intricately functionalized contexts on commonly occurring structural motifs. In this Account, we focus on an emergent theme within the further functionalization literature: the use of commonly occurring functional groups to direct C-H cleavage through weak coordination. We discuss our motivation for studying Pd-catalyzed C-H functionalization assisted by weakly coordinating functional groups and chronicle our endeavors to bring reactions of this type to fruition. Through this approach, we have developed reactions with a diverse range of substrates and coupling partners, with the broad scope likely stemming from the high reactivity of the cyclopalladated intermediates, which are held together through weak interactions.

  5. Weak Coordination as a Powerful Means for Developing Broadly Useful C–H Functionalization Reactions

    PubMed Central

    Engle, Keary M.; Mei, Tian-Sheng; Wasa, Masayuki

    2011-01-01

    Conspectus Reactions that convert carbon–hydrogen (C–H) bonds into carbon–carbon (C–C) or carbon–heteroatom (C–Y) bonds are attractive tools for organic chemists, potentially expediting the synthesis of target molecules through new disconnections in retrosynthetic analysis. Despite extensive inorganic and organometallic study of the insertion of homogeneous metal species into unactivated C–H bonds, practical applications of this technology in organic chemistry are still rare. Only in the past decade have metal-catalyzed C–H functionalization reactions become more widely utilized in organic synthesis. Research in the area of homogeneous transition metal–catalyzed C–H functionalization can be broadly grouped into two subfields. They reflect different approaches and goals and thus have different challenges and opportunities. One approach involves reactions of completely unfunctionalized aromatic and aliphatic hydrocarbons, which we refer to as “first functionalization.” Here the substrates are nonpolar and hydrophobic and thus interact very weakly with polar metal species. To overcome this weak affinity and drive metal-mediated C–H cleavage, chemists often use hydrocarbon substrates in large excess (for example, as solvent). Because highly reactive metal species are needed in first functionalization, controlling the chemoselectivity to avoid over-functionalization is often difficult. Additionally, because both substrates and products are comparatively low-value chemicals, developing cost-effective catalysts with exceptionally high turnover numbers that are competitive with alternatives (including heterogeneous catalysts) is challenging. Although an exciting field, first functionalization is beyond the scope of this Account. The second subfield of C–H functionalization involves substrates containing one or more pre-existing functional groups, termed “further functionalization.” One advantage of this approach is that the existing functional group (or groups) can be used to chelate the metal catalyst and position it for selective C–H cleavage. Precoordination can overcome the paraffin nature of C–H bonds by increasing the effective concentration of the substrate so that it needn't be used as solvent. From a synthetic perspective, it is desirable to use a functional group that is an intrinsic part of the substrate so that extra steps for installation and removal of an external directing group can be avoided. In this way, dramatic increases in molecular complexity can be accomplished in a single stroke through stereo- and site-selective introduction of a new functional group. Although reactivity is a major challenge (as with first functionalization), the philosophy in further functionalization differs—the major challenge is developing reactions that work with predictable selectivity in intricately functionalized contexts on commonly occurring structural motifs. In this Account, we focus on an emergent theme within the further functionalization literature: the use of commonly occurring functional groups to direct C–H cleavage through weak coordinations. We discuss our motivation for studying Pd-catalyzed C–H functionalization assisted by weakly coordinating functional groups and chronicle our endeavors to bring reactions of this type to fruition. Through this approach, we have developed reactions with a diverse range of substrates and coupling partners, with the broad scope likely stemming from higher reactivity of the less stable cyclopalladated intermediates held in place by weak coordinations. PMID:22166158

  6. The genomic landscape of rapid repeated evolutionary ...

    EPA Pesticide Factsheets

    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor–based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediatinggenes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversityhas likely been a crucial substrate for selective sweeps to propel rapid adaptation. This manuscript describes genomic evaluations that contribute to our understanding of the ecological and evolutionary risks associated with chronic contaminant exposures to wildlife populations. Here, we assessed genetic patterns associated with long-term response to an important class of highly toxic environmental pollutants. Specifically, chemical-specific tolerance has rapidly and repeatedly evolved in an estuarine fish species resident to estuaries of the Atlantic U.S. coast. We used laboratory studies to ch

  7. Opioid Analgesics and P-glycoprotein Efflux Transporters: A Potential Systems-Level Contribution to Analgesic Tolerance

    PubMed Central

    Mercer, Susan L.; Coop, Andrew

    2012-01-01

    Chronic clinical pain remains poorly treated. Despite attempts to develop novel analgesic agents, opioids remain the standard analgesics of choice in the clinical management of chronic and severe pain. However, mu opioid analgesics have undesired side effects including, but not limited to, respiratory depression, physical dependence and tolerance. A growing body of evidence suggests that P-glycoprotein (P-gp), an efflux transporter, may contribute a systems-level approach to the development of opioid tolerance. Herein, we describe current in vitro and in vivo methodology available to analyze interactions between opioids and P-gp and critically analyze P-gp data associated with six commonly used mu opioids to include morphine, methadone, loperamide, meperidine, oxycodone, and fentanyl. Recent studies focused on the development of opioids lacking P-gp substrate activity are explored, concentrating on structure-activity relationship development to develop an optimal opioid analgesic lacking this systems-level contribution to tolerance development. Continued work in this area will potentially allow for delineation of the mechanism responsible for opioid-related P-gp up-regulation and provide further support for evidence based medicine supporting clinical opioid rotation. PMID:21050174

  8. General method to evaluate substrate surface modification techniques for light extraction enhancement of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Krummacher, B. C.; Mathai, M. K.; Choong, V.; Choulis, S. A.; So, F.; Winnacker, A.

    2006-09-01

    The external light output of organic light emitting diodes (OLEDs) can be increased by modifying the light emitting surface. The apparent light extraction enhancement is given by the ratio between the efficiency of the unmodified device and the efficiency of the modified device. This apparent light extraction enhancement is dependent on the OLED architecture itself and is not the correct value to judge the effectiveness of a technique to enhance light outcoupling due to substrate surface modification. We propose a general method to evaluate substrate surface modification techniques for light extraction enhancement of OLEDs independent from the device architecture. This method is experimentally demonstrated using green electrophosphorescent OLEDs with different device architectures. The substrate surface of these OLEDs was modified by applying a prismatic film to increase light outcoupling from the device stack. It was demonstrated that the conventionally measured apparent light extraction enhancement by means of the prismatic film does not reflect the actual performance of the light outcoupling technique. Rather, by comparing the light extracted out of the prismatic film to that generated in the OLED layers and coupled into the substrate (before the substrate/air interface), a more accurate evaluation of light outcoupling enhancement can be achieved. Furthermore we show that substrate surface modification can change the output spectrum of a broad band emitting OLED.

  9. Large-scale uniform ZnO tetrapods on catalyst free glass substrate by thermal evaporation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsultany, Forat H., E-mail: foratusm@gmail.com; Hassan, Z.; Ahmed, Naser M.

    2016-07-15

    Highlights: • Investigate the growth of ZnO-Ts on glass substrate by thermal evaporation method. • Glass substrate without any catalyst or a seed layer. • The morphology was controlled by adjusting the temperature of the material and the substrate. • Glass substrate was placed vertically in the quartz tube. - Abstract: Here, we report for the first time the catalyst-free growth of large-scale uniform shape and size ZnO tetrapods on a glass substrate via thermal evaporation method. Three-dimensional networks of ZnO tetrapods have needle–wire junctions, an average leg length of 2.1–2.6 μm, and a diameter of 35–240 nm. The morphologymore » and structure of ZnO tetrapods were investigated by controlling the preparation temperature of each of the Zn powder and the glass substrate under O{sub 2} and Ar gases. Studies were carried out on ZnO tetrapods using X-ray diffraction, field emission scanning electron microscopy, UV–vis spectrophotometer, and a photoluminescence. The results showed that the sample grow in the hexagonal wurtzite structure with preferentially oriented along (002) direction, good crystallinity and high transmittance. The band gap value is about 3.27 eV. Photoluminescence spectrum exhibits a very sharp peak at 378 nm and a weak broad green emission.« less

  10. Precise micropatterning of silver nanoparticles on plastic substrates

    NASA Astrophysics Data System (ADS)

    Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2017-04-01

    Conventional fabrication methods to obtain metal patterns on polymer substrates are restricted by high operating temperature and complex preparation steps. The present study demonstrates a simple yet versatile method for preparation of silver nanoparticle micropatterns on polymer substrates with various surface geometry. With the microworking robot technique, we were able not only to directly structure the surface, but also precisely deposit silver nanoparticle ink on the desired surface location with the minimum usage of ink material. The prepared silver nanoparticle ink, containing silver cations and polyethylene glycol (PEG) as a reducing agent, yields silver nanoparticle micropatterns on plastic substrates at low sintering temperature without any contamination. The influence of the ink behaviour was studied, such as substrate wettability, ink volume, and sintering temperature. The ultraviolet visible (UV-vis), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) measurements revealed the formation of micropatterns with uniformly distributed silver nanoparticles. The prepared patterns are expected to have a broad range of applications in optics, medicine, and sensor devices owing to the unique properties of silver. Furthermore, the deposition of a chemical compound, which is different from the substrate material, not only adds a fourth dimension to the prestructured three-dimensional (3D) surfaces, but also opens new application areas to the conventional surface structures.

  11. Vacuum-assisted fluid flow in microchannels to pattern substrates and cells.

    PubMed

    Shrirao, Anil B; Kung, Frank H; Yip, Derek; Cho, Cheul H; Townes-Anderson, Ellen

    2014-09-01

    Substrate and cell patterning are widely used techniques in cell biology to study cell-to-cell and cell-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This paper describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. Our method builds upon a previous vacuum-assisted method used for micromolding (Jeon et al 1999 Adv. Mater 11 946) and successfully patterned collagen-I, fibronectin and Sal-1 substrates on glass and polystyrene surfaces, filling microchannels with lengths up to 120 mm and covering areas up to 13 × 10 mm(2). Vacuum-patterned substrates were subsequently used to culture mammalian PC12 and fibroblast cells and amphibian neurons. Cells were also patterned directly by injecting cell suspensions into microchannels using vacuum. Fibroblast and neuronal cells patterned using vacuum showed normal growth and minimal cell death indicating no adverse effects of vacuum on cells. Our method fills reversibly sealed PDMS microchannels. This enables the user to remove the PDMS microchannel cast and access the patterned biomaterial or cells for further experimental purposes. Overall, this is a straightforward technique that has broad applicability for cell biology.

  12. Vacuum-assisted Fluid Flow in Microchannels to Pattern Substrates and Cells

    PubMed Central

    Shrirao, Anil B.; Kung, Frank H.; Yip, Derek; Cho, Cheul H.; Townes-Anderson, Ellen

    2014-01-01

    Substrate and cell patterning are widely used techniques in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This paper describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. Our method builds upon a previous vacuum-assisted method used for micromolding (Jeon, Choi et al. 1999) and successfully patterned collagen-I, fibronectin and Sal-1 substrates on glass and polystyrene surfaces, filling microchannels with lengths up to 120 mm and covering areas up to 13 × 10 mm2. Vacuum-patterned substrates were subsequently used to culture mammalian PC12 and fibroblast cells and amphibian neurons. Cells were also patterned directly by injecting cell suspensions into microchannels using vacuum. Fibroblast and neuronal cells patterned using vacuum showed normal growth and minimal cell death indicating no adverse effects of vacuum on cells. Our method fills reversibly sealed PDMS microchannels. This enables the user to remove the PDMS microchannel cast and access the patterned biomaterial or cells for further experimental purposes. Overall, this is a straightforward technique that has broad applicability for cell biology. PMID:24989641

  13. Copper-Catalyzed C(sp2)-S Coupling Reactions for the Synthesis of Aryl Dithiocarbamates with Thiuram Disulfide Reagents.

    PubMed

    Dong, Zhi-Bing; Liu, Xing; Bolm, Carsten

    2017-11-03

    An efficient protocol for the copper-catalyzed preparation of aryl dithiocarbamates from aryl iodides and inexpensive, environmentally benign tetraalkylthiuram disulfides was developed. The features of mild reaction conditions, high yields, and broad substrate scope render this new approach synthetically attractive for the preparation of potentially biologically active compounds.

  14. DREW-UCLA Breast Cancer Research and Training Program: Molecular/Cellular Pathogenesis Model

    DTIC Science & Technology

    2007-03-01

    system in bovine renal brush- border [13] and in a bovine renal epithelial cell line NBL -1 [14]. In order to highlight the substrate difference with an... NBL -1 expresses a broad specificity Na(+)-dependent neu- tral amino acid transport system (System B0) similar to that in bovine renal brush border

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, T.A.; Tallant, D.R.; Barbour, J.C.

    Carbon Nitride (CN{sub x}) films have been grown by ion-assisted pulsed-laser deposition (IAPLD). Graphite targets were laser ablated while bombarding the substrate with ions from a broad-beam Kaufman-type ion source. Ion voltage, current density, substrate temperature, and feed gas composition (N{sub 2} in Ar) were varied. Resultant films were characterized by Raman. Fourier transform infrared (FTIR), and Rutherford back scattering (RBS) spectroscopy. Samples with {approximately} 30% N/C ratio have been fabricated. The corresponding Raman and FTIR spectra indicate that nitrogen is incorporated into the samples by insertion into sp{sup 2}-bonded structures. A low level of C{identical_to}N triple bonds is alsomore » found. As the ion current and voltage are increased with a pure Ar ion beam, Raman peaks associated with nanocrystalline graphite appear in the spectra. Adding low levels of nitrogen to the ion beam first reduces the Raman intensity in the vicinity of the graphite disorder peak without adding detectable amounts of nitrogen to the films (as measured by RBS). At higher nitrogen levels in the ion beam, significant amounts of nitrogen are incorporated into the samples, and the magnitude of the ``disorder`` peak increases. By increasing the temperature of the substrate during deposition, the broad peak due mainly to sp{sup 2}-bonded C-N in the FTIR spectra is shifted to lower wavenumber. This could be interpreted as evidence of single-bonded C-N; however, it is more likely that the character of the sp{sup 2} bonding is changing.« less

  16. Optimization of Cold Spray Deposition of High-Density Polyethylene Powders

    NASA Astrophysics Data System (ADS)

    Bush, Trenton B.; Khalkhali, Zahra; Champagne, Victor; Schmidt, David P.; Rothstein, Jonathan P.

    2017-10-01

    When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure and plastic deformation can produce bonding between the particle and the substrate. The use of a cool supersonic gas flow to accelerate these solid particles is known as cold spray deposition. The cold spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting potential material properties possible with polymeric particles. In this work, a combined computational and experimental study was employed to study the cold spray deposition of high-density polyethylene powders over a wide range of particle temperatures and impact velocities. Cold spray deposition of polyethylene powders was demonstrated across a range broad range of substrate materials including several different polymer substrates with different moduli, glass and aluminum. A material-dependent window of successful deposition was determined for each substrate as a function of particle temperature and impact velocity. Additionally, a study of deposition efficiency revealed the optimal process parameters for high-density polyethylene powder deposition which yielded a deposition efficiency close to 10% and provided insights into the physical mechanics responsible for bonding while highlighting paths toward future process improvements.

  17. Comparative interactions of withanolides and sterols with two members of sterol glycosyltransferases from Withania somnifera.

    PubMed

    Pandey, Vibha; Dhar, Yogeshwar Vikram; Gupta, Parul; Bag, Sumit K; Atri, Neelam; Asif, Mehar Hasan; Trivedi, Prabodh Kumar; Misra, Pratibha

    2015-04-16

    Sterol glycosyltransferases (SGTs) are ubiquitous but one of the most diverse group of enzymes of glycosyltransferases family. Members of this family modulate physical and chemical properties of secondary plant products important for various physiological processes. The role of SGTs has been demonstrated in the biosynthesis of pharmaceutically important molecules of medicinal plants like Withania somnifera. Analysis suggested conserved behaviour and high similarity in active sites of WsSGTs with other plant GTs. Substrate specificity of WsSGTs were analysed through docking performance of WsSGTs with different substrates (sterols and withanolides). Best docking results of WsSGTL1 in the form of stable enzyme-substrate complex having lowest binding energies were obtained with brassicasterol, transandrosteron and WsSGTL4 with solasodine, stigmasterol and 24-methylene cholesterol. This study reveals topological characters and conserved nature of two SGTs from W. somnifera (WsSGTs) i.e. WsSGTL1 and WsSGTL4. However, besides being ubiquitous in nature and with broad substrate specificity, difference between WsSGTL1 and WsSGTL4 is briefly described by difference in stability (binding energy) of enzyme-substrate complexes through comparative docking.

  18. Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in cancer cells

    PubMed Central

    Liu, Bing; Gao, Yankun; Ruan, Hai-Bin; Chen, Yue

    2016-01-01

    Proline hydroxylation is a critical cellular mechanism regulating oxygen-response pathways in tumor initiation and progression. Yet, its substrate diversity and functions remain largely unknown. Here, we report a system-wide analysis to characterize proline hydroxylation substrates in cancer cells using an immunoaffinity-purification assisted proteomics strategy. We identified 562 sites from 272 proteins in HeLa cells. Bioinformatic analysis revealed that proline hydroxylation substrates are significantly enriched with mRNA processing and stress-response cellular pathways with canonical and diverse flanking sequence motifs. Structural analysis indicates a significant enrichment of proline hydroxylation participating in the secondary structure of substrate proteins. Our study identified and validated Brd4, a key transcription factor, as a novel proline hydroxylation substrate. Functional analysis showed that the inhibition of proline hydroxylation pathway significantly reduced the proline hydroxylation abundance on Brd4 and affected Brd4-mediated transcriptional activity as well as cell proliferation in AML leukemia cells. Taken together, our study identified a broad regulatory role of proline hydroxylation in cellular oxygen-sensing pathways and revealed potentially new targets that dynamically respond to hypoxia microenvironment in tumor cells. PMID:27764789

  19. Intrinsic Flexibility of Ubiquitin on Proliferating Cell Nuclear Antigen (PCNA) in Translesion Synthesis*

    PubMed Central

    Hibbert, Richard G.; Sixma, Titia K.

    2012-01-01

    Ubiquitin conjugation provides a crucial signaling role in hundreds of cellular pathways; however, a structural understanding of ubiquitinated substrates is lacking. One important substrate is monoubiquitinated PCNA (PCNA-Ub), which signals for recruitment of damage-tolerant polymerases in the translesion synthesis (TLS) pathway of DNA damage avoidance. We use a novel and efficient enzymatic method to produce PCNA-Ub at high yield with a native isopeptide bond and study its Usp1/UAF1-dependent deconjugation. In solution we find that the ubiquitin moiety is flexible relative to the PCNA, with its hydrophobic patch mostly accessible for recruitment of TLS polymerases, which promotes the interaction with polymerase η. The studies are a prototype for the nature of the ubiquitin modification. PMID:22989887

  20. Fluorogenic kinetic assay for high-throughput discovery of stereoselective ketoreductases relevant to pharmaceutical synthesis.

    PubMed

    Thai, Yen-Chi; Szekrenyi, Anna; Qi, Yuyin; Black, Gary W; Charnock, Simon J; Fessner, Wolf-Dieter

    2018-04-01

    Enantiomerically pure 1-(6-methoxynaphth-2-yl) and 1-(6-(dimethylamino)naphth-2-yl) carbinols are fluorogenic substrates for aldo/keto reductase (KRED) enzymes, which allow the highly sensitive and reliable determination of activity and kinetic constants of known and unknown enzymes, as well as an immediate enantioselectivity typing. Because of its simplicity in microtiter plate format, the assay qualifies for the discovery of novel KREDs of yet unknown specificity among this vast enzyme superfamily. The suitability of this approach for enzyme typing is illustrated by an exemplary screening of a large collection of short-chain dehydrogenase/reductase (SDR) enzymes arrayed from a metagenomic approach. We believe that this assay format should match well the pharmaceutical industry's demand for acetophenone-type substrates and the continuing interest in new enzymes with broad substrate promiscuity for the synthesis of chiral, non-racemic carbinols. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Patterned microstructures formed with MeV Au implantation in Si(1 0 0)

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Greco, Richard R.; Zachry, Daniel P.; Dymnikov, Alexander D.; Glass, Gary A.

    2006-09-01

    Energetic (MeV) Au implantation in Si(1 0 0) (n-type) through masked micropatterns has been used to create layers resistant to KOH wet etching. Microscale patterns were produced in PMMA and SU(8) resist coatings on the silicon substrates using P-beam writing and developed. The silicon substrates were subsequently exposed using 1.5 MeV Au 3+ ions with fluences as high as 1 × 10 16 ions/cm 2 and additional patterns were exposed using copper scanning electron microscope calibration grids as masks on the silicon substrates. When wet etched with KOH microstructures were created in the silicon due to the resistance to KOH etching cause by the Au implantation. The process of combining the fabrication of masked patterns with P-beam writing with broad beam Au implantation through the masks can be a promising, cost-effective process for nanostructure engineering with Si.

  2. Adhesion of Antireflective Coatings in Multijunction Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, Ryan; Miller, David C.; Dauskardt, Reinhold H.

    2016-11-21

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even withmore » germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.« less

  3. Adhesion of Antireflective Coatings in Multijunction Photovoltaics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, Ryan; Dauskardt, Reinhold H.; Miller, David C.

    2016-06-16

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even withmore » germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.« less

  4. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators

    PubMed Central

    Spinelli, P.; Verschuuren, M.A.; Polman, A.

    2012-01-01

    Reflection is a natural phenomenon that occurs when light passes the interface between materials with different refractive index. In many applications, such as solar cells or photodetectors, reflection is an unwanted loss process. Many ways to reduce reflection from a substrate have been investigated so far, including dielectric interference coatings, surface texturing, adiabatic index matching and scattering from plasmonic nanoparticles. Here we present an entirely new concept that suppresses the reflection of light from a silicon surface over a broad spectral range. A two-dimensional periodic array of subwavelength silicon nanocylinders designed to possess strongly substrate-coupled Mie resonances yields almost zero total reflectance over the entire spectral range from the ultraviolet to the near-infrared. This new antireflection concept relies on the strong forward scattering that occurs when a scattering structure is placed in close proximity to a high-index substrate with a high optical density of states. PMID:22353722

  5. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins

    NASA Astrophysics Data System (ADS)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.

  6. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins

    PubMed Central

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.

    2011-01-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. PMID:21974603

  7. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins.

    PubMed

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. © 2011 American Institute of Physics

  8. Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids.

    PubMed

    Kautzky, Jacob A; Wang, Tao; Evans, Ryan W; MacMillan, David W C

    2018-05-14

    Herein we disclose an efficient method for the conversion of carboxylic acids to trifluoromethyl groups via the combination of photoredox and copper catalysis. This transformation tolerates a wide range of functionality including heterocycles, olefins, alcohols, and strained ring systems. To demonstrate the broad potential of this new methodology for late-stage functionalization, we successfully converted a diverse array of carboxylic acid-bearing natural products and medicinal agents to the corresponding trifluoromethyl analogues.

  9. Fault Tolerant Considerations and Methods for Guidance and Control Systems

    DTIC Science & Technology

    1987-07-01

    multifunction devices such as microprocessors with software. In striving toward the economic goal, however, a cost is incurred in a different coin, i.e...therefore been developed which reduces the software risk to acceptable proportions. Several of the techniques thus developed incur no significant cost ...complex that their design and implementation need computerized tools in order to be cost -effective (in a broad sense, including the capability of

  10. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety

    PubMed Central

    Petrovsky, Nikolai; Cooper, Peter D.

    2015-01-01

    There is an ongoing need for new adjuvants to facilitate development of vaccines against HIV, tuberculosis, malaria and cancer, amongst many others. Unfortunately, the most potent adjuvants are often associated with toxicity and safety issues. Inulin, a plant-derived polysaccharide, has no immunological activity in its native soluble form but when crystallised into stable microparticles (delta inulin) acquires potent adjuvant activity. Delta inulin has been shown to enhance humoral and cellular immune responses against a broad range of co-administered viral, bacterial, parasitic and toxin antigens. Inulin normally crystallises as large heterogeneous particles with a broad size distribution and variable solubility temperatures. To ensure reproducible delta inulin particles with a consistent size distribution and temperature of solubility, a current Good Manufacturing Practice (cGMP) process was designed to produce Advax™ adjuvant. In its cGMP form, Advax™ adjuvant has proved successful in human trials of vaccines against seasonal and pandemic influenza, hepatitis B and insect sting anaphylaxis, enhancing antibody and T-cell responses while at the same time being safe and well tolerated. Advax™ adjuvant thereby represents a novel human adjuvant with positive effects on both humoral and cellular immunity. This review describes the discovery and development of Advax™ adjuvant and research into its unique mechanism of action. PMID:26407920

  11. FFA2 Contribution to Gestational Glucose Tolerance Is Not Disrupted by Antibiotics.

    PubMed

    Fuller, Miles; Li, Xiaoran; Fisch, Robert; Bughara, Moneb; Wicksteed, Barton; Kovatcheva-Datchary, Petia; Layden, Brian T

    2016-01-01

    During the insulin resistant phase of pregnancy, the mRNA expression of free fatty acid 2 receptor (Ffar2) is upregulated and as we recently reported, this receptor contributes to insulin secretion and pancreatic beta cell mass expansion in order to maintain normal glucose homeostasis during pregnancy. As impaired gestational glucose levels can affect metabolic health of offspring, we aimed to explore the role of maternal Ffar2 expression during pregnancy on the metabolic health of offspring and also the effects of antibiotics, which have been shown to disrupt gut microbiota fermentative activity (the source of the FFA2 ligands) on gestational glucose homeostasis. We found that maternal Ffar2 expression and impaired glucose tolerance during pregnancy had no effect on the growth rates, ad lib glucose and glucose tolerance in the offspring between 3 and 6 weeks of age. To disrupt short chain fatty acid production, we chronically treated WT mice and Ffar2-/- mice with broad range antibiotics and further compared their glucose tolerance prior to pregnancy and at gestational day 15, and also quantified cecum and plasma SCFAs. We found that during pregnancy antibiotic treatment reduced the levels of SCFAs in the cecum of the mice, but resulted in elevated levels of plasma SCFAs and altered concentrations of individual SCFAs. Along with these changes, gestational glucose tolerance in WT mice, but not Ffar2-/- mice improved while on antibiotics. Additional data showed that gestational glucose tolerance worsened in Ffar2-/- mice during a second pregnancy. Together, these results indicate that antibiotic treatment alone is inadequate to deplete plasma SCFA concentrations, and that modulation of gut microbiota by antibiotics does not disrupt the contribution of FFA2 to gestational glucose tolerance.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Russell L.; Calle, Paul P.; Figueras, Miranda P.

    Terrapene carolina (Eastern Box Turtle) is the only turtle species in which adults are known to be tolerant of freezing. We report the first systematically collected data on internal body temperatures of an overwintering Eastern Box Turtle. Despite nearby air temperatures as low as -21.8 °C, this turtle probably supercooled rather than froze. Snow cover, thermal inertia, and the insulating effects of its refugium’s substrate may have protected this turtle from the very cold conditions.

  13. Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays

    PubMed Central

    2011-01-01

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices. PMID:27502660

  14. The Use of Field and Mesocosm Experiments to Quantify Effects of Physical and Chemical Stressors in Mining-Contaminated Streams.

    PubMed

    Cadmus, Pete; Clements, William H; Williamson, Jacob L; Ranville, James F; Meyer, Joseph S; Gutiérrez Ginés, María Jesús

    2016-07-19

    Identifying causal relationships between acid mine drainage (AMD) and ecological responses in the field is challenging. In addition to the direct toxicological effects of elevated metals and reduced pH, mining activities influence aquatic organisms indirectly through physical alterations of habitat. The primary goal of this research was to quantify the relative importance of physical (metal-oxide deposition) and chemical (elevated metal concentrations) stressors on benthic macroinvertebrate communities. Mesocosm experiments conducted with natural assemblages of benthic macroinvertebrates established concentration-response relationships between metals and community structure. Field experiments quantified effects of metal-oxide contaminated substrate and showed significant differences in sensitivity among taxa. To predict the recovery of dominant taxa in the field, we integrated our measures of metal tolerance and substrate tolerance with estimates of drift propensity obtained from the literature. Our estimates of recovery were consistent with patterns observed at downstream recovery sites in the NFCC, which were dominated by caddisflies and baetid mayflies. We conclude that mesocosm and small-scale field experiments, particularly those conducted with natural communities, provide an ecologically realistic complement to laboratory toxicity tests. These experiments also control for the confounding variables associated with field-based approaches, thereby supporting causal relationships between AMD stressors and responses.

  15. Color filters based on a nanoporous Al-AAO resonator featuring structure tolerant color saturation.

    PubMed

    Yue, Wenjing; Li, Yang; Wang, Cong; Yao, Zhao; Lee, Sang-Shin; Kim, Nam-Young

    2015-10-19

    Reflection type subtractive tri-color filters, enabling metal-thickness tolerant high color saturation, were proposed and demonstrated capitalizing on a nanoporous metal-dielectric-metal (MDM) resonant structure, which comprises a cavity made of self-assembled nanoporous anodic aluminum oxide (AAO), sandwiched between an Al film of the same nanoporous configuration and a highly reflective aluminum (Al) substrate. For the proposed filter, the output color was easily determined by controlling the resonance wavelength via the thickness of the porous AAO cavity. In particular, the spectral response was deemed to exhibit a near-zero resonant dip, thereby achieving enhanced color saturation, which was stably maintained irrespective of the thickness of the porous Al film, due to its reduced effective refractive index. In order to manufacture the proposed color filters on a large scale, a porous Al film of hexagonal lattice configuration was integrated with an identically porous self-assembled AAO layer, which has been grown on an Al substrate. For the realized tri-color filters for cyan, magenta, and yellow (CMY), having a 15-nm Al film, near-zero reflection dips were observed to be centered at the wavelengths of 436, 500, and 600 nm, respectively. The resulting enhanced color saturation was stably maintained even though the variations were as large as 10 nm in the metal thickness.

  16. Esterase in Imported Fire Ants, Solenopsis invicta and S. richteri (Hymenoptera: Formicidae): Activity, Kinetics and Variation

    PubMed Central

    Chen, J.; Rashid, T.; Feng, G.

    2014-01-01

    Solenopsis invicta and Solenopsis richteri are two closely related invasive ants native to South America. Despite their similarity in biology and behavior, S. invicta is a more successful invasive species. Toxic tolerance has been found to be important to the success of some invasive species. Esterases play a crucial role in toxic tolerance of insects. Hence, we hypothesized that the more invasive S. invicta would have a higher esterase activity than S. richteri. Esterase activities were measured for workers and male and female alates of both ant species using α-naphthyl acetate and β-naphthyl acetate as substrates. Esterase activities in S. invicta were always significantly higher than those in S. richteri supporting our hypothesis. In S. invicta, male alates had the highest esterase activities followed by workers then female alates for both substrates. In S. richetri, for α-naphthyl acetate, male alates had the highest activity followed by female alates then workers, while for β-naphthyl acetate, female alates had the highest activity followed by male alates then workers. For workers, S. richteri showed significantly higher levels of variation about the mean esterase activity than S. invicta. However, S. invicta showed significantly higher levels of variation in both female and male alates. PMID:25408118

  17. The Acid Test: pH Tolerance of the Eggs and Larvae of the Invasive Cane Toad (Rhinella marina) in Southeastern Australia.

    PubMed

    Wijethunga, Uditha; Greenlees, Matthew; Shine, Richard

    2015-01-01

    Invasive cane toads are colonizing southeastern Australia via a narrow coastal strip sandwiched between unsuitable areas (Pacific Ocean to the east, mountains to the west). Many of the available spawning sites exhibit abiotic conditions (e.g., temperature, salinity, and pH) more extreme than those encountered elsewhere in the toad's native or already invaded range. Will that challenge impede toad expansion? To answer that question, we measured pH in 35 ponds in northeastern New South Wales and 8 ponds in the Sydney region, in both areas where toads occur (and breed) and adjacent areas where toads are likely to invade, and conducted laboratory experiments to quantify effects of pH on the survival and development of toad eggs and larvae. Our field surveys revealed wide variation in pH (3.9-9.8) among natural water bodies. In the laboratory, the hatching success of eggs was increased at low pH (down to pH 4), whereas the survival, growth, and developmental rates of tadpoles were enhanced by higher pH levels. We found that pH influenced metamorph size and shape (relative head width, relative leg length) but not locomotor performance. The broad tolerance range of these early life-history stages suggests that pH conditions in ponds will not significantly slow the toad's expansion southward. Indeed, toads may benefit from transiently low pH conditions, and habitat where pH in wetlands is consistently low (such as coastal heath) may enhance rather than reduce toad reproductive success. A broad physiological tolerance during embryonic and larval life has contributed significantly to the cane toad's success as a widespread colonizer.

  18. Immune tolerance negatively regulates B cells in knock-in mice expressing broadly neutralizing HIV antibody 4E10.

    PubMed

    Doyle-Cooper, Colleen; Hudson, Krystalyn E; Cooper, Anthony B; Ota, Takayuki; Skog, Patrick; Dawson, Phillip E; Zwick, Michael B; Schief, William R; Burton, Dennis R; Nemazee, David

    2013-09-15

    A major goal of HIV research is to develop vaccines reproducibly eliciting broadly neutralizing Abs (bNAbs); however, this has proved to be challenging. One suggested explanation for this difficulty is that epitopes seen by bNAbs mimic self, leading to immune tolerance. We generated knock-in mice expressing bNAb 4E10, which recognizes the membrane proximal external region of gp41. Unlike b12 knock-in mice, described in the companion article (Ota et al. 2013. J. Immunol. 191: 3179-3185), 4E10HL mice were found to undergo profound negative selection of B cells, indicating that 4E10 is, to a physiologically significant extent, autoreactive. Negative selection occurred by various mechanisms, including receptor editing, clonal deletion, and receptor downregulation. Despite significant deletion, small amounts of IgM and IgG anti-gp41 were found in the sera of 4E10HL mice. On a Rag1⁻/⁻ background, 4E10HL mice had virtually no serum Ig of any kind. These results are consistent with a model in which B cells with 4E10 specificity are counterselected, raising the question of how 4E10 was generated in the patient from whom it was isolated. This represents the second example of a membrane proximal external region-directed bNAb that is apparently autoreactive in a physiological setting. The relative conservation in HIV of the 4E10 epitope might reflect the fact that it is under less intense immunological selection as a result of B cell self-tolerance. The safety and desirability of targeting this epitope by a vaccine is discussed in light of the newly described bNAb 10E8.

  19. Production of xylanase from an alkali tolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization.

    PubMed

    Bajaj, Bijender Kumar; Singh, Narendera Pratap

    2010-11-01

    Streptomyces sp. 7b showed highest xylanase activity among 41 bacterial isolates screened under submerged fermentation. The organism grew over broad pH (5-11) and temperatures range (25-55 degrees C) and displayed maximum xylanase production on wheat bran (1230 U/g) under solid-state fermentation. Xylanase production was enhanced substantially (76%-77%) by inclusion of trypton (2180 U/g) or beef extract (2170 U/g) and moderately (36%-46%) by yeast extract (1800 U/g) or soybean meal (1670 U/g). Inclusion of readily utilizable sugars such as glucose, maltose, fructose, lactose or xylose in the substrate repressed the xylanase production. The optimum initial pH of the medium for maximum enzyme production was 7 to 8; however, appreciable level of activity was obtained at pH 6 (1,680 U/g) and 9 (1,900 U/g). Most appropriate solid to liquid ratio for maximum xylanase production in solid-state fermentation was found to be 1:2.5. The organism produced a single xylanase of molecular weight of approximately 30 kDa as analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis after purification with ammonium sulfate precipitation, and carboxy methyl sephadex chromatography. The enzyme was purified to the extent of 5.68-fold by salt precipitation and ion-exchange chromatography. Optimum temperature and pH for maximum xylanase activity were 50 degrees C and 6, respectively.

  20. A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.; hide

    2015-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  1. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; hide

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  2. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests.

    PubMed

    Hawkins, Bradford A; Rueda, Marta; Rangel, Thiago F; Field, Richard; Diniz-Filho, José Alexandre F; Linder, Peter

    2014-01-01

    Aim The fossil record has led to a historical explanation for forest diversity gradients within the cool parts of the Northern Hemisphere, founded on a limited ability of woody angiosperm clades to adapt to mid-Tertiary cooling. We tested four predictions of how this should be manifested in the phylogenetic structure of 91,340 communities: (1) forests to the north should comprise species from younger clades (families) than forests to the south; (2) average cold tolerance at a local site should be associated with the mean family age (MFA) of species; (3) minimum temperature should account for MFA better than alternative environmental variables; and (4) traits associated with survival in cold climates should evolve under a niche conservatism constraint. Location The contiguous United States. Methods We extracted angiosperms from the US Forest Service's Forest Inventory and Analysis database. MFA was calculated by assigning age of the family to which each species belongs and averaging across the species in each community. We developed a phylogeny to identify phylogenetic signal in five traits: realized cold tolerance, seed size, seed dispersal mode, leaf phenology and height. Phylogenetic signal representation curves and phylogenetic generalized least squares were used to compare patterns of trait evolution against Brownian motion. Eleven predictors structured at broad or local scales were generated to explore relationships between environment and MFA using random forest and general linear models. Results Consistent with predictions, (1) southern communities comprise angiosperm species from older families than northern communities, (2) cold tolerance is the trait most strongly associated with local MFA, (3) minimum temperature in the coldest month is the environmental variable that best describes MFA, broad-scale variables being much stronger correlates than local-scale variables, and (4) the phylogenetic structures of cold tolerance and at least one other trait associated with survivorship in cold climates indicate niche conservatism. Main conclusions Tropical niche conservatism in the face of long-term climate change, probably initiated in the Late Cretaceous associated with the rise of the Rocky Mountains, is a strong driver of the phylogenetic structure of the angiosperm component of forest communities across the USA. However, local deterministic and/or stochastic processes account for perhaps a quarter of the variation in the MFA of local communities.

  3. Impacts of rapid urbanization on the water quality and macroinvertebrate communities of streams: A case study in Liangjiang New Area, China.

    PubMed

    Luo, Kun; Hu, Xuebin; He, Qiang; Wu, Zhengsong; Cheng, Hao; Hu, Zhenlong; Mazumder, Asit

    2018-04-15

    Rapid urbanization in China has dramatically deteriorated the water quality of streams and threatening aquatic ecosystem health. This study aims to 1) assess the impacts of urbanization on water quality and macroinvertebrate composition and 2) address the question of how urbanization affects macroinvertebrate distribution patterns. Environmental variables over multispatial scales and macroinvertebrate community data were collected on April (dry season) and September (wet season) of 2014 and 2015 at 19 sampling sites, of which nine had a high urbanization level (HUL), six had moderate urbanization level (MUL) and four had low urbanization level (LUL), in the Liangjiang New Area. The results of this study showed that macroinvertebrate assemblages significantly varied across the three urbanization levels. The sensitive species (e.g., EPT taxa) were mainly centralized at LUL sites, whereas tolerant species, such as Tubificidae (17.3%), Chironomidae (12.1%), and Physidae (4.61%), reached highest relative abundance at LUL sites. The values of family biotic index (FBI) and biological monitoring working party (BMWP) indicated the deterioration of water quality along urbanization gradient. Seasonal and inter - annual changes in macroinvertebrate communities were not observed. The results of variation partitioning analyses (CCAs) showed that habitat scale variables explained the major variation in macroinvertebrate community composition. Specifically, the increased nutrient concentrations favored tolerant species, whereas high water flow and substrate coarseness benefitted community taxa richness, diversity and EPT richness. Considering the interactions between scale-related processes, the results of this study suggested that urbanization resulted in less diverse and more tolerant stream macroinvertebrate assemblages mainly via increased nutrient concentrations and reduced substrate coarseness. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Circulating metabolite predictors of glycemia in middle-aged men and women.

    PubMed

    Würtz, Peter; Tiainen, Mika; Mäkinen, Ville-Petteri; Kangas, Antti J; Soininen, Pasi; Saltevo, Juha; Keinänen-Kiukaanniemi, Sirkka; Mäntyselkä, Pekka; Lehtimäki, Terho; Laakso, Markku; Jula, Antti; Kähönen, Mika; Vanhala, Mauno; Ala-Korpela, Mika

    2012-08-01

    Metabolite predictors of deteriorating glucose tolerance may elucidate the pathogenesis of type 2 diabetes. We investigated associations of circulating metabolites from high-throughput profiling with fasting and postload glycemia cross-sectionally and prospectively on the population level. Oral glucose tolerance was assessed in two Finnish, population-based studies consisting of 1,873 individuals (mean age 52 years, 58% women) and reexamined after 6.5 years for 618 individuals in one of the cohorts. Metabolites were quantified by nuclear magnetic resonance spectroscopy from fasting serum samples. Associations were studied by linear regression models adjusted for established risk factors. Nineteen circulating metabolites, including amino acids, gluconeogenic substrates, and fatty acid measures, were cross-sectionally associated with fasting and/or postload glucose (P < 0.001). Among these metabolic intermediates, branched-chain amino acids, phenylalanine, and α1-acid glycoprotein were predictors of both fasting and 2-h glucose at 6.5-year follow-up (P < 0.05), whereas alanine, lactate, pyruvate, and tyrosine were uniquely associated with 6.5-year postload glucose (P = 0.003-0.04). None of the fatty acid measures were prospectively associated with glycemia. Changes in fatty acid concentrations were associated with changes in fasting and postload glycemia during follow-up; however, changes in branched-chain amino acids did not follow glucose dynamics, and gluconeogenic substrates only paralleled changes in fasting glucose. Alterations in branched-chain and aromatic amino acid metabolism precede hyperglycemia in the general population. Further, alanine, lactate, and pyruvate were predictive of postchallenge glucose exclusively. These gluconeogenic precursors are potential markers of long-term impaired insulin sensitivity that may relate to attenuated glucose tolerance later in life.

  5. Kinetic models for nitrogen inhibition in ANAMMOX and nitrification process on deammonification system at room temperature.

    PubMed

    De Prá, Marina C; Kunz, Airton; Bortoli, Marcelo; Scussiato, Lucas A; Coldebella, Arlei; Vanotti, Matias; Soares, Hugo M

    2016-02-01

    In this study were fitted the best kinetic model for nitrogen removal inhibition by ammonium and/or nitrite in three different nitrogen removal systems operated at 25 °C: a nitrifying system (NF) containing only ammonia oxidizing bacteria (AOB), an ANAMMOX system (AMX) containing only ANAMMOX bacteria, and a deammonification system (DMX) containing both AOB and ANAMMOX bacteria. NF system showed inhibition by ammonium and was best described by Andrews model. The AMX system showed a strong inhibition by nitrite and Edwards model presented a best system representation. For DMX system, the increased substrate concentration (until 1060 mg NH3-N/L) tested was not limiting for the ammonia consumption rate and the Monod model was the best model to describe this process. The AOB and ANAMMOX sludges combined in the DMX system displayed a better activity, substrate affinity and excellent substrate tolerance than in nitrifying and ANAMMOX process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Summary of Workshop on InP: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Walters, R. J.; Weinberg, I.

    1994-01-01

    The primary objective of most of the programs in InP solar cells is the development of the most radiation hard solar cell technology. In the workshop, it was generally agreed that the goal is a cell which displays high radiation tolerance in a radiation environment equivalent to a 1 MeV electron fluence of about 10(exp 16)/sq cm. Furthermore, it is desired that the radiation response of the cell be essentially flat out to this fluence - i.e. that the power output of the cell not decrease from its beginning of life (BOL) value in this radiation environment. It was also agreed in the workshop that the manufacturability of InP solar cells needs to be improved. In particular, since InP wafers are relatively dense and brittle, alternative substrates need to be developed. Research on hetero-epitaxial InP cells grown on Si, Ge, and GaAs substrates is currently underway. The ultimate goal is to develop hetero-epitaxial InP solar cells using a cheap, strong, and lightweight substrate.

  7. Effects of thermal inhomogeneity on 4m class mirror substrates

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Westerhoff, Thomas

    2016-07-01

    The new ground based telescope generation is moving to a next stage of performance and resolution. Mirror substrate material properties tolerance and homogeneity are getting into focus. The coefficient of thermal expansion (CTE) homogeneity is even more important than the absolute CTE. The error in shape of a mirror, even one of ZERODUR, is affected by changes in temperature, and by gradients in temperature. Front to back gradients will change the radius of curvature R that in turn will change the focus. Some systems rely on passive athermalization and do not have means to focus. Similarly changes in soak temperature will result in surface changes to the extent there is a non-zero coefficient of thermal expansion. When there are in-homogeneities in CTE, the mirror will react accordingly. Results of numerical experiments are presented discussing the impact of CTE in-homogeneities on the optical performance of 4 m class mirror substrates. Latest improvements in 4 m class ZERODUR CTE homogeneity and the thermal expansion metrology are presented as well.

  8. Allosteric Control of Substrate Specificity of the Escherichia coli ADP-glucose Pyrophosphorylase

    NASA Astrophysics Data System (ADS)

    Ebrecht, Ana C.; Solamen, Ligin; Hill, Benjamin L.; Iglesias, Alberto A.; Olsen, Kenneth W.; Ballicora, Miguel A.

    2017-06-01

    The substrate specificity of enzymes is crucial to control the fate of metabolites to different pathways. However, there is growing evidence that many enzymes can catalyze alternative reactions. This promiscuous behavior has important implications in protein evolution and the acquisition of new functions. The question is how the undesirable outcomes of in vivo promiscuity can be prevented. ADP-glucose pyrophosphorylase from Escherichia coli is an example of an enzyme that needs to select the correct substrate from a broad spectrum of alternatives. This selection will guide the flow of carbohydrate metabolism towards the synthesis of reserve polysaccharides. Here, we show that the allosteric activator fructose-1,6-bisphosphate plays a role in such selection by increasing the catalytic efficiency of the enzyme towards the use of ATP rather than other nucleotides. In the presence of fructose-1,6-bisphosphate, the kcat/S0.5 for ATP was near 600-fold higher that other nucleotides, whereas in the absence of activator was only 3-fold higher. We propose that the allosteric regulation of certain enzymes is an evolutionary mechanism of adaptation for the selection of specific substrates.

  9. Solid-substrate bioprocessing of cow dung for the production of carboxymethyl cellulase by Bacillus halodurans IND18.

    PubMed

    Vijayaraghavan, P; Prakash Vincent, S G; Dhillon, G S

    2016-02-01

    The production of carboxymethyl cellulase (CMCase) by Bacillus halodurans IND18 under solid substrate fermentation (SSF) using cow dung was optimized through two level full factorial design and second order response surface methodology (RSM). The central composite design (CCD) was employed to optimize the vital fermentation parameters, such as pH of the substrate, concentration of nitrogen source (peptone) and ion (sodium dihydrogen phosphate) sources in medium for achieving higher enzyme production. The optimum medium composition was found to be 1.46% (w/w) peptone, 0.095% (w/w) sodium dihydrogen phosphate and pH 8.0. The model prediction of 4210IU/g enzyme activity at optimum conditions was verified experimentally as 4140IU/g. The enzyme was active over a broad temperature range (40-60±1°C) and pH (7.0-9.0) with maximal activity at 60±1°C and pH 8.0. This study demonstrated the potential of cow dung as novel substrate for CMCase production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Genetic and Metabolic Intraspecific Biodiversity of Ganoderma lucidum

    PubMed Central

    Pawlik, Anna; Janusz, Grzegorz; Dębska, Iwona; Siwulski, Marek; Frąc, Magdalena; Rogalski, Jerzy

    2015-01-01

    Fourteen Ganoderma lucidum strains from different geographic regions were identified using ITS region sequencing. Based on the sequences obtained, the genomic relationship between the analyzed strains was determined. All G. lucidum strains were also genetically characterized using the AFLP technique. G. lucidum strains included in the analysis displayed an AFLP profile similarity level in the range from 9.6 to 33.9%. Biolog FF MicroPlates were applied to obtain data on utilization of 95 carbon sources and mitochondrial activity. The analysis allowed comparison of functional diversity of the fungal strains. The substrate utilization profiles for the isolates tested revealed a broad variability within the analyzed G. lucidum species and proved to be a good profiling technology for studying the diversity in fungi. Significant differences have been demonstrated in substrate richness values. Interestingly, the analysis of growth and biomass production also differentiated the strains based on the growth rate on the agar and sawdust substrate. In general, the mycelial growth on the sawdust substrate was more balanced and the fastest fungal growth was observed for GRE3 and FCL192. PMID:25815332

  11. A method to restrain the charging effect on an insulating substrate in high energy electron beam lithography

    NASA Astrophysics Data System (ADS)

    Mingyan, Yu; Shirui, Zhao; Yupeng, Jing; Yunbo, Shi; Baoqin, Chen

    2014-12-01

    Pattern distortions caused by the charging effect should be reduced while using the electron beam lithography process on an insulating substrate. We have developed a novel process by using the SX AR-PC 5000/90.1 solution as a spin-coated conductive layer, to help to fabricate nanoscale patterns of poly-methyl-methacrylate polymer resist on glass for phased array device application. This method can restrain the influence of the charging effect on the insulating substrate effectively. Experimental results show that the novel process can solve the problems of the distortion of resist patterns and electron beam main field stitching error, thus ensuring the accuracy of the stitching and overlay of the electron beam lithography system. The main characteristic of the novel process is that it is compatible to the multi-layer semiconductor process inside a clean room, and is a green process, quite simple, fast, and low cost. It can also provide a broad scope in the device development on insulating the substrate, such as high density biochips, flexible electronics and liquid crystal display screens.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevapuram, Nikhila; Mitra, Indranil; Sridhar, Shyam

    Thin films of lamellar poly(styrene-b-methyl methacrylate) (PS-PMMA) block copolymers are widely investigated for surface patterning. These materials can generate dense arrays of nanoscale lines when the lamellar domains are oriented perpendicular to the substrate. To stabilize this preferred domain orientation, we tuned the substrate surface energy using oxidation of hydrophobic silane coatings. This simple approach is effective for a broad range of PS-PMMA film thicknesses when the oxidation time is optimized, which demonstrates that the substrate coating is energetically neutral with respect to PS and PMMA segments. The lamellar films are characterized by high densities of defects that exhibit amore » strong dependence on film thickness: in-plane topological defects disrupt the lateral order in ultrathin films, while lamellar domains in thick films can bend and tilt to large misorientation angles. As a result, the types and densities of these defects are similar to those observed with other classes of neutral substrate coatings, such as random copolymer brushes, which demonstrates that oxidized silanes can be used to control PS-PMMA self assembly in thin films.« less

  13. Ordering of lamellar block copolymers on oxidized silane coatings

    DOE PAGES

    Mahadevapuram, Nikhila; Mitra, Indranil; Sridhar, Shyam; ...

    2016-01-02

    Thin films of lamellar poly(styrene-b-methyl methacrylate) (PS-PMMA) block copolymers are widely investigated for surface patterning. These materials can generate dense arrays of nanoscale lines when the lamellar domains are oriented perpendicular to the substrate. To stabilize this preferred domain orientation, we tuned the substrate surface energy using oxidation of hydrophobic silane coatings. This simple approach is effective for a broad range of PS-PMMA film thicknesses when the oxidation time is optimized, which demonstrates that the substrate coating is energetically neutral with respect to PS and PMMA segments. The lamellar films are characterized by high densities of defects that exhibit amore » strong dependence on film thickness: in-plane topological defects disrupt the lateral order in ultrathin films, while lamellar domains in thick films can bend and tilt to large misorientation angles. As a result, the types and densities of these defects are similar to those observed with other classes of neutral substrate coatings, such as random copolymer brushes, which demonstrates that oxidized silanes can be used to control PS-PMMA self assembly in thin films.« less

  14. Preparing high-adhesion silver coating on APTMS modified polyethylene with excellent anti-bacterial performance

    NASA Astrophysics Data System (ADS)

    Li, Wenfei; Chen, Yunxiang; Wu, Song; Zhang, Jian; Wang, Hao; Zeng, Dawen; Xie, Changsheng

    2018-04-01

    Silver coating as a broad-spectrum antimicrobial agent was considered to alleviate the inflammation caused by intrauterine device (IUD) in endometrium. In this work, to avoid the damage of silver coating and ensure its antibacterial properties, 3-aminopropyltrimethoxysilane (APTMS) was introduced to modify the polyethylene (PE) substrate for the purpose of improving the adhesion of the silver coating. From the 90° peel test, it could be found that the adhesive strength of silver coating on the APTMS modified PE substrate was nearly 23 times stronger than the silver coating on substrate without surface modification. The dramatically enhanced adhesive strength could be attributed to the formation of continuous chemical bonds between the silver coatings and substrates after surface modification, which had been confirmed by the XPS. Moreover, the standard antibacterial test revealed that the silver coated samples against Staphylococcus aureus (S. aureus) exhibit excellent antibacterial efficacy. Considering the largely enhanced adhesion and the effective antibacterial property, it is reasonable to believe that the silver coating could be considered as a potential candidate for the antibacterial agent in IUD.

  15. Computational study of β-N-acetylhexosaminidase from Talaromyces flavus, a glycosidase with high substrate flexibility.

    PubMed

    Kulik, Natallia; Slámová, Kristýna; Ettrich, Rüdiger; Křen, Vladimír

    2015-01-28

    β-N-Acetylhexosaminidase (GH20) from the filamentous fungus Talaromyces flavus, previously identified as a prominent enzyme in the biosynthesis of modified glycosides, lacks a high resolution three-dimensional structure so far. Despite of high sequence identity to previously reported Aspergillus oryzae and Penicilluim oxalicum β-N-acetylhexosaminidases, this enzyme tolerates significantly better substrate modification. Understanding of key structural features, prediction of effective mutants and potential substrate characteristics prior to their synthesis are of general interest. Computational methods including homology modeling and molecular dynamics simulations were applied to shad light on the structure-activity relationship in the enzyme. Primary sequence analysis revealed some variable regions able to influence difference in substrate affinity of hexosaminidases. Moreover, docking in combination with consequent molecular dynamics simulations of C-6 modified glycosides enabled us to identify the structural features required for accommodation and processing of these bulky substrates in the active site of hexosaminidase from T. flavus. To access the reliability of predictions on basis of the reported model, all results were confronted with available experimental data that demonstrated the principal correctness of the predictions as well as the model. The main variable regions in β-N-acetylhexosaminidases determining difference in modified substrate affinity are located close to the active site entrance and engage two loops. Differences in primary sequence and the spatial arrangement of these loops and their interplay with active site amino acids, reflected by interaction energies and dynamics, account for the different catalytic activity and substrate specificity of the various fungal and bacterial β-N-acetylhexosaminidases.

  16. Levofloxacin in enteric fever--a study.

    PubMed

    Kadam, G S; Naikwadi, Akram; Rao, S K Srinivasa; Sawardekar, Suresh S; Gawde, Ashish; Baliga, Vidyagauri; Desai, Anish

    2005-08-01

    Typhoid fever is an important cause of morbidity and mortality in patients especially in developing country. Therapy with conventional drugs is associated with increasing resistance, non-compliance to therapy and toxicity. Oral fluoroquinolones have been shown to be effective compared to parenteral broad-spectrum cephalosporins in the treatment of uncomplicated typhoid. However, there is no data available regarding the use of levofloxacin in the treatment of typhoid fever in spite of the susceptibility of Salmonella species to levofloxacin. The present study was undertaken to evaluate the efficacy, safety and tolerability of oral levofloxacin 750 mg once daily in the treatment of typhoid fever. Results indicated that levofloxacin 750 mg administered orally once daily was an effective, safe, well-tolerated and cost-effective option in the treatment of typhoid fever in adult Indian males and non-pregnant females.

  17. Green oxidations of furans--initiated by molecular oxygen--that give key natural product motifs.

    PubMed

    Montagnon, Tamsyn; Noutsias, Dimitris; Alexopoulou, Ioanna; Tofi, Maria; Vassilikogiannakis, Georgios

    2011-04-07

    In this article, we explore how changes in the positioning of pendant hydroxyl functionalities in the photooxygenation substrate dramatically alter the course of furan oxidations that are initiated by singlet oxygen; and, how these different reactivities can be harnessed through cascade reaction sequences to access, rapidly and effectively, a broad range of important natural product motifs.

  18. Ion-Deposited Polished Coatings

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1986-01-01

    Polished, dense, adherent coatings relatively free of imperfections. New process consists of using broad-beam ion source in evacuated chamber to ion-clean rotating surface that allows grazing incidence of ion beam. This sputter cleans off absorbed gases, organic contaminants, and oxides of mirror surface. In addition to cleaning, surface protrusions sputter-etched away. Process particularly adaptable to polishing of various substrates for optical or esthetic purposes.

  19. Catalytic Conia-ene and related reactions.

    PubMed

    Hack, Daniel; Blümel, Marcus; Chauhan, Pankaj; Philipps, Arne R; Enders, Dieter

    2015-10-07

    Since its initial inception, the Conia-ene reaction, known as the intramolecular addition of enols to alkynes or alkenes, has experienced a tremendous development and appealing catalytic protocols have emerged. This review fathoms the underlying mechanistic principles rationalizing how substrate design, substrate activation, and the nature of the catalyst work hand in hand for the efficient synthesis of carbocycles and heterocycles at mild reaction conditions. Nowadays, Conia-ene reactions can be found as part of tandem reactions, and the road for asymmetric versions has already been paved. Based on their broad applicability, Conia-ene reactions have turned into a highly appreciated synthetic tool with impressive examples in natural product synthesis reported in recent years.

  20. Transferable self-welding silver nanowire network as high performance transparent flexible electrode.

    PubMed

    Zhu, Siwei; Gao, Yuan; Hu, Bin; Li, Jia; Su, Jun; Fan, Zhiyong; Zhou, Jun

    2013-08-23

    High performance transparent electrodes (TEs) with figures-of-merit as high as 471 were assembled using ultralong silver nanowires (Ag NWs). A room-temperature plasma was employed to enhance the conductivity of the Ag NW TEs by simultaneously removing the insulating PVP layer coating on the NWs and welding the junctions tightly. Furthermore, we developed a general way to fabricate TEs regardless of substrate limitations by transferring the as-fabricated Ag NW network onto various substrates directly, and the transmittance can remain as high as 91% with a sheet resistivity of 13 Ω/sq. The highly robust and stable flexible TEs will have broad applications in flexible optoelectronic and electronic devices.

  1. Discovery of a metalloenzyme-like cooperative catalytic system of metal nanoclusters and catechol derivatives for the aerobic oxidation of amines.

    PubMed

    Yuan, Hao; Yoo, Woo-Jin; Miyamura, Hiroyuki; Kobayashi, Shū

    2012-08-29

    We have discovered a new class of cooperative catalytic system, consisting of heterogeneous polymer-immobilized bimetallic Pt/Ir alloyed nanoclusters (NCs) and 4-tert-butylcatechol, for the aerobic oxidation of amines to imines under ambient conditions. After optimization, the desired imines were obtained in good to excellent yields with broad substrate scope. The reaction rate was determined to be first-order with respect to the substrate and catechol and zero-order for the alloyed Pt/Ir NC catalyst. Control studies revealed that both the heterogeneous NC catalyst and 4-tert-butylcatechol are essential and act cooperatively to facilitate the aerobic oxidation under mild conditions.

  2. Computer-assisted enzyme immunoassays and simplified immunofluorescence assays: applications for the diagnostic laboratory and the veterinarian's office.

    PubMed

    Jacobson, R H; Downing, D R; Lynch, T J

    1982-11-15

    A computer-assisted enzyme-linked immunosorbent assay (ELISA) system, based on kinetics of the reaction between substrate and enzyme molecules, was developed for testing large numbers of sera in laboratory applications. Systematic and random errors associated with conventional ELISA technique were identified leading to results formulated on a statistically validated, objective, and standardized basis. In a parallel development, an inexpensive system for field and veterinary office applications contained many of the qualities of the computer-assisted ELISA. This system uses a fluorogenic indicator (rather than the enzyme-substrate interaction) in a rapid test (15 to 20 minutes' duration) which promises broad application in serodiagnosis.

  3. Structural, optical and Carrier dynamics of self-assembled InGaN nanocolumns on Si(111)

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Devi, Pooja; Soto Rodriguez, P. E. D.; Jain, Rishabh; Jaggi, Neena; Sinha, R. K.; Kumar, Mahesh

    2018-05-01

    We investigated the morphological, structural, optical, electrical and carrier relaxation dynamic changes on the self-assembled grown InGaN nanocolumns (NCs) directly on p-Si(111) substrate at two different substrate temperature, namely 580 °C (A) and 500 °C (B). The emission wavelength of comparably low temperature (LT) grown NCs was red-shifted from 3.2eV to 2.4eV. First observations on the charge carrier dynamics of these directly grown NCs show comparable broad excited state absorption (ESA) for LT gown NCs, which manifest bi-exponential decay due to the radiative defects generated during the coalescence of these NCs.

  4. Effect of urbanization on the structure and functional traits of remnant subtropical evergreen broad-leaved forests in South China.

    PubMed

    Huang, Liujing; Chen, Hongfeng; Ren, Hai; Wang, Jun; Guo, Qinfeng

    2013-06-01

    We investigated the effects of major environmental drivers associated with urbanization on species diversity and plant functional traits (PFTs) in the remnant subtropical evergreen broad-leaved forests in Metropolitan Guangzhou (Guangdong, China). Twenty environmental factors including topography, light, and soil properties were used to quantify the effects of urbanization. Vegetation data and soil properties were collected from 30 400-m(2) plots at 6 study sites in urban and rural areas. The difference of plant species diversity and PFTs of remnant forests between urban and rural areas were analyzed. To discern the complex relationships, multivariate statistical analyses (e.g., canonical correspondence analysis and regression analysis) were employed. Pioneer species and stress-tolerant species can survive and vigorously establish their population dominance in the urban environment. The native herb diversity was lower in urban forests than in rural forests. Urban forests tend to prefer the species with Mesophanerophyte life form. In contrast, species in rural forests possessed Chamaephyte and Nanophanerophyte life forms and gravity/clonal growth dispersal mode. Soil pH and soil nutrients (K, Na, and TN) were positively related to herb diversity, while soil heavy metal concentrations (Cu) were negatively correlated with herb diversity. The herb plant species diversity declines and the species in the remnant forests usually have stress-tolerant functional traits in response to urbanization. The factors related to urbanization such as soil acidification, nutrient leaching, and heavy metal pollution were important in controlling the plant diversity in the forests along the urban-rural gradients. Urbanization affects the structure and functional traits of remnant subtropical evergreen broad-leaved forests.

  5. Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants.

    PubMed

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R; Hellmann, Hanjo

    2013-06-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that cullin3-based E3 ligases have the potential to interact with a broad range of ethylene response factor (ERF)/APETALA2 (AP2) transcription factors, mediated by Math-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the wrinkled1 ERF/AP2 protein. Furthermore, loss of Math-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members.

  6. Synthesis and properties of SiN coatings as stable fluorescent markers on vertically aligned carbon nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearce, Ryan; Klein, Kate L; Ivanov, Ilia N

    2014-01-01

    The growth of vertically aligned carbon nanofibers (VACNFs) in a catalytic dc ammonia/acetylene plasma process on silicon substrates is often accompanied by sidewall deposition of material that contains mostly Si and N. In fluorescent microscopy experiments, imaging VACNF interfacing to live cell cultures it turned out that this material is broadly fluorescent, which made VACNFs useful as spatial markers, or created nuisance when DNA-labeling got masked. In this paper we provide insight into nature of this silicon/nitrogen in situ coatings. Here we have proposed a potential mechanism for deposition of SiNx coating on the sidewalls of VACNFs during PECVD synthesismore » in addition to exploring the origin of the coatings fluorescence. It seems most likely that the substrate reacts with the process gases through both processes similar to reactive sputtering and CVD to form silane and other silicon bearing compounds before being deposited isotropically as a SiNx coating onto the VACNFs. The case for the presence of Si-NCs is made strong through a combination of the strong fluorescence and elemental analysis of the samples. These broadly luminescent fibers can prove useful as registry markers in fluorescent cellular studies.« less

  7. The Use of Arbuscular Mycorrhizal Fungi to Improve Strawberry Production in Coir Substrate

    PubMed Central

    Robinson Boyer, Louisa; Feng, Wei; Gulbis, Natallia; Hajdu, Klara; Harrison, Richard J.; Jeffries, Peter; Xu, Xiangming

    2016-01-01

    Strawberry is an important fruit crop within the UK. To reduce the impact of soil-borne diseases and extend the production season, more than half of the UK strawberry production is now in substrate (predominantly coir) under protection. Substrates such as coir are usually depleted of microbes including arbuscular mycorrhizal fungi (AMF) and consequently the introduction of beneficial microbes is likely to benefit commercial cropping systems. Inoculating strawberry plants in substrate other than coir has been shown to increase plants tolerance to soil-borne pathogens and water stress. We carried out studies to investigate whether AMF could improve strawberry production in coir under low nitrogen input and regulated deficit irrigation. Application of AMF led to an appreciable increase in the size and number of class I fruit, especially under either deficient irrigation or low nitrogen input condition. However, root length colonization by AMF was reduced in strawberry grown in coir compared to soil and Terragreen. Furthermore, the appearance of AMF colonizing strawberry and maize roots grown in coir showed some physical differences from the structure in colonized roots in soil and Terragreen: the colonization structure appeared to be more compact and smaller in coir. PMID:27594859

  8. Comparing Enchytraeus albidus populations from contrasting climatic environments suggest a link between cold tolerance and metabolic activity.

    PubMed

    Žagar, Anamarija; Holmstrup, Martin; Simčič, Tatjana; Debeljak, Barabara; Slotsbo, Stine

    2018-06-06

    Basal metabolic activity and freezing of body fluids create reactive oxygen species (ROS) in freeze-tolerant organisms. These sources of ROS can have an additive negative effect via oxidative stress. In cells, antioxidant systems are responsible for removing ROS in order to avoid damage due to oxidative stress. Relatively little is known about the importance of metabolic rate for the survival of freezing, despite a good understanding of several cold tolerance related physiological mechanisms. We hypothesized that low basal metabolism would be selected for in freeze-tolerant organisms where winter survival is important for fitness for two reasons. First, avoidance of the additive effect of ROS production from metabolism and freezing, and second, as an energy-saving mechanism under extended periods of freezing where the animal is metabolically active, but unable to feed. We used the terrestrial oligochaete, Enchytraeus albidus, which is widely distributed from Spain to the high Arctic and compared eight populations originating across a broad geographical and climatic gradient after they had been cold acclimated at 5 °C in a common garden experiment. Cold tolerance (lower lethal temperature: LT50) and the potential metabolic activity (PMA, an estimator of the maximal enzymatic potential of the mitochondrial respiration chain) of eight populations were positively correlated amongst each other and correlated negatively with latitude and positively with average yearly temperature and the average temperature of the coldest month. These results indicate that low PMA in cold tolerant populations is important for survival in extremely cold environments. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Solar-Blind Photodetectors for Harsh Electronics

    PubMed Central

    Tsai, Dung-Sheng; Lien, Wei-Cheng; Lien, Der-Hsien; Chen, Kuan-Ming; Tsai, Meng-Lin; Senesky, Debbie G.; Yu, Yueh-Chung; Pisano, Albert P.; He, Jr-Hau

    2013-01-01

    We demonstrate solar-blind photodetectors (PDs) by employing AlN thin films on Si(100) substrates with excellent temperature tolerance and radiation hardness. Even at a bias higher than 200 V the AlN PDs on Si show a dark current as low as ~ 1 nA. The working temperature is up to 300°C and the radiation tolerance is up to 1013 cm−2 of 2-MeV proton fluences for AlN metal-semiconductor-metal (MSM) PDs. Moreover, the AlN PDs show a photoresponse time as fast as ~ 110 ms (the rise time) and ~ 80 ms (the fall time) at 5 V bias. The results demonstrate that AlN MSM PDs hold high potential in next-generation deep ultraviolet PDs for use in harsh environments. PMID:24022208

  10. Organizing principles underlying microorganism's growth-robustness trade-off.

    PubMed

    Bolli, Alessandro; Salvador, Armindo

    2014-10-01

    Growth Robustness Reciprocity (GRR) is an intriguing microbial manifestation: the impairment of microorganism's growth enhances their ability to resist acute stresses, and vice-versa. This is caused by regulatory interactions that determine higher expression of protection mechanisms in response to low growth rates. But because such regulatory mechanisms are species-specific, GRR must result from convergent evolution. Why does natural selection favor such an outcome? We used mathematical models of optimal cellular resource allocation to identify the general principles underlying GRR. Non-linear optimization allowed to predict allocation patterns of biosynthetic resources (ribosomes devoted to the synthesis of each cell component) that maximize growth. These models predict the down-regulation of stress defenses under high substrate availabilities and low stress levels. Under these conditions, stress tolerance ensues from growth-related damage dilution: the higher the substrate availability, the fastest the dilution of damaged proteins by newly synthesized proteins, the lower the accumulation of damaged components into the cell. In turn, under low substrate availability growth is too slow for effective damage dilution, and the expression of the defenses up to some optimal level then increases growth. As a consequence, slow-growing cells are pre-adapted to withstand acute stresses. Therefore, the observed negative correlation between growth and stress tolerance can be explained as a consequence of optimal resource allocation for maximal growth. We acknowledge fellowship SFRH/BPD/90065/2012 and grants PEst-C/SAU/LA0001/2013-2014 and FCOMP-01-0124-FEDER-020978 financed by FEDER through the "Programa Operacional Factores de Competitividade, COMPETE" and by national funds through "FCT, Fundação para a Ciência e a Tecnologia" (project PTDC/QUI-BIQ/119657/2010). Copyright © 2014. Published by Elsevier Inc.

  11. The copper spoil heap Knappenberg, Austria, as a model for metal habitats - Vegetation, substrate and contamination.

    PubMed

    Adlassnig, Wolfram; Weiss, Yasmin S; Sassmann, Stefan; Steinhauser, Georg; Hofhansl, Florian; Baumann, Nils; Lichtscheidl, Irene K; Lang, Ingeborg

    2016-09-01

    Historic mining in the Eastern Alps has left us with a legacy of numerous spoil heaps hosting specific, metal tolerant vegetation. Such habitats are characterized by elevated concentrations of toxic elements but also by high irradiation, a poorly developed substrate or extreme pH of the soil. This study investigates the distribution of vascular plants, mosses and lichens on a copper spoil heap on the ore bearing Knappenberg formed by Prebichl Layers and Werfener Schist in Lower Austria. It serves as a model for discriminating between various ecological traits and their effects on vegetation. Five distinct clusters were distinguished: (1) The bare, metal rich Central Spoil Heap was only colonised by highly resistant specialists. (2) The Northern and (3) Southern Peripheries contained less copper; the contrasting vegetation was best explained by the different microclimate. (4) A forest over acidic bedrock hosted a vegetation overlapping with the periphery of the spoil heap. (5) A forest over calcareous bedrock was similar to the spoil heap with regard to pH and humus content but hosted a vegetation differing strongly to all other habitats. Among the multiple toxic elements at the spoil heap, only Cu seems to exert a crucial influence on the vegetation pattern. Besides metal concentrations, irradiation, humidity, humus, pH and grain size distribution are important for the establishment of a metal tolerant vegetation. The difference between the species poor Northern and the diverse Southern Periphery can be explained by the microclimate rather than by the substrate. All plant species penetrating from the forest into the periphery of the spoil heap originate from the acidic but not from the calcareous bedrock. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry.

    PubMed

    Hanf, Stefan; Fischer, Sarah; Hartmann, Henrik; Keiner, Robert; Trumbore, Susan; Popp, Jürgen; Frosch, Torsten

    2015-07-07

    Photosynthesis and respiration are major components of the plant carbon balance. During stress, like drought, carbohydrate supply from photosynthesis is reduced and the Krebs cycle respiration must be fueled with other stored carbon compounds. However, the dynamics of storage use are still unknown. The respiratory quotient (RQ, CO2 released per O2 consumed during respiration) is an excellent indicator of the nature of the respiration substrate. In plant science, however, online RQ measurements have been challenging or even impossible so far due to very small gas exchange fluxes during respiration. Here we apply cavity-enhanced multi-gas Raman spectrometry (CERS) for online in situ RQ measurements in drought-tolerant pine (Pinus sylvestris [L.]) and drought-intolerant spruce (Picea abies [L. H. Karst]). Two different treatments, drought and shading, were applied to reduce photosynthesis and force dependency on stored substrates. Changes in respiration rates and RQ values were continuously monitored over periods of several days with low levels of variance. The results show that both species switched from COH-dominated respiration (RQ = 1.0) to a mixture of substrates during shading (RQ = 0.77-0.81), while during drought only pine did so (RQ = 0.75). The gas phase measurements were complemented by concentration measurements of non-structural carbohydrates and lipids. These first results suggest a physiological explanation for greater drought tolerance in pine. CERS was proven as powerful technique for non-consumptive and precise real-time monitoring of respiration rates and respirational quotients for the investigation of plant metabolism under drought stress conditions that are predicted to increase with future climate change.

  13. Arabidopsis ATG4 cysteine proteases specificity toward ATG8 substrates

    PubMed Central

    Park, Eunsook; Woo, Jongchan; Dinesh-Kumar, SP

    2014-01-01

    Macroautophagy (hereafter autophagy) is a regulated intracellular process during which cytoplasmic cargo engulfed by double-membrane autophagosomes is delivered to the vacuole or lysosome for degradation and recycling. Atg8 that is conjugated to phosphatidylethanolamine (PE) during autophagy plays an important role not only in autophagosome biogenesis but also in cargo recruitment. Conjugation of PE to Atg8 requires processing of the C-terminal conserved glycine residue in Atg8 by the Atg4 cysteine protease. The Arabidopsis plant genome contains 9 Atg8 (AtATG8a to AtATG8i) and 2 Atg4 (AtATG4a and AtATG4b) family members. To understand AtATG4’s specificity toward different AtATG8 substrates, we generated a unique synthetic substrate C-AtATG8-ShR (citrine-AtATG8-Renilla luciferase SuperhRLUC). In vitro analyses indicated that AtATG4a is catalytically more active and has broad AtATG8 substrate specificity compared with AtATG4b. Arabidopsis transgenic plants expressing the synthetic substrate C-AtAtg8a-ShR is efficiently processed by endogenous AtATG4s and targeted to the vacuole during nitrogen starvation. These results indicate that the synthetic substrate mimics endogenous AtATG8, and its processing can be monitored in vivo by a bioluminescence resonance energy transfer (BRET) assay. The synthetic Atg8 substrates provide an easy and versatile method to study plant autophagy during different biological processes. PMID:24658121

  14. Use of Activity-Based Probes to Develop High Throughput Screening Assays That Can Be Performed in Complex Cell Extracts

    PubMed Central

    Deu, Edgar; Yang, Zhimou; Wang, Flora; Klemba, Michael; Bogyo, Matthew

    2010-01-01

    Background High throughput screening (HTS) is one of the primary tools used to identify novel enzyme inhibitors. However, its applicability is generally restricted to targets that can either be expressed recombinantly or purified in large quantities. Methodology and Principal Findings Here, we described a method to use activity-based probes (ABPs) to identify substrates that are sufficiently selective to allow HTS in complex biological samples. Because ABPs label their target enzymes through the formation of a permanent covalent bond, we can correlate labeling of target enzymes in a complex mixture with inhibition of turnover of a substrate in that same mixture. Thus, substrate specificity can be determined and substrates with sufficiently high selectivity for HTS can be identified. In this study, we demonstrate this method by using an ABP for dipeptidyl aminopeptidases to identify (Pro-Arg)2-Rhodamine as a specific substrate for DPAP1 in Plasmodium falciparum lysates and Cathepsin C in rat liver extracts. We then used this substrate to develop highly sensitive HTS assays (Z’>0.8) that are suitable for use in screening large collections of small molecules (i.e >300,000) for inhibitors of these proteases. Finally, we demonstrate that it is possible to use broad-spectrum ABPs to identify target-specific substrates. Conclusions We believe that this approach will have value for many enzymatic systems where access to large amounts of active enzyme is problematic. PMID:20700487

  15. Radiation tolerant back biased CMOS VLSI

    NASA Technical Reports Server (NTRS)

    Maki, Gary K. (Inventor); Gambles, Jody W. (Inventor); Hass, Kenneth J. (Inventor)

    2003-01-01

    A CMOS circuit formed in a semiconductor substrate having improved immunity to total ionizing dose radiation, improved immunity to radiation induced latch up, and improved immunity to a single event upset. The architecture of the present invention can be utilized with the n-well, p-well, or dual-well processes. For example, a preferred embodiment of the present invention is described relative to a p-well process wherein the p-well is formed in an n-type substrate. A network of NMOS transistors is formed in the p-well, and a network of PMOS transistors is formed in the n-type substrate. A contact is electrically coupled to the p-well region and is coupled to first means for independently controlling the voltage in the p-well region. Another contact is electrically coupled to the n-type substrate and is coupled to second means for independently controlling the voltage in the n-type substrate. By controlling the p-well voltage, the effective threshold voltages of the n-channel transistors both drawn and parasitic can be dynamically tuned. Likewise, by controlling the n-type substrate, the effective threshold voltages of the p-channel transistors both drawn and parasitic can also be dynamically tuned. Preferably, by optimizing the threshold voltages of the n-channel and p-channel transistors, the total ionizing dose radiation effect will be neutralized and lower supply voltages can be utilized for the circuit which would result in the circuit requiring less power.

  16. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.

    Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interactionmore » between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less

  17. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates

    DOE PAGES

    Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.

    2016-09-21

    Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interactionmore » between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less

  18. Palladium pincer complex catalyzed stannyl and silyl transfer to propargylic substrates: synthetic scope and mechanism.

    PubMed

    Kjellgren, Johan; Sundén, Henrik; Szabó, Kálmán J

    2005-02-16

    Pincer complex catalyzed substitution of various propargylic substrates could be achieved using tin- and silicon-based dimetallic reagents to obtain propargyl- and allenylstannanes and silanes. These reactions involving chloride, mesylate, and epoxide substrates could be carried out under mild conditions, and therefore many functionalities (such as COOEt, OR, OH, NR, and NAc) are tolerated. It was shown that pincer catalysts with electron-supplying ligands, such as NCN, SCS, and SeCSe complexes, display the highest catalytic activity. The catalytic substitution of secondary propargyl chlorides and primary propargyl chlorides with electron-withdrawing substituents proceeds with high regioselectivity providing the allenyl product. Opening of the propargyl epoxides takes place with an excellent stereo- and regioselectivity to give stereodefined allenylstannanes. Silylstannanes as dimetallic reagents undergo an exclusive silyl transfer to the propargylic substrate affording allenylsilanes with high regioselectivity. According to our mechanistic studies, the key intermediate of the reaction is an organostannane (or silane)-coordinated pincer complex, which is formed from the dimetallic reagent and the corresponding pincer complex catalyst. DFT modeling studies have shown that the trimethylstannyl functionality is transferred to the propargylic substrate in a single reaction step with high allenyl selectivity. Inspection of the TS structures reveals that the trimethylstannyl group transfer is initiated by the attack of the palladium-tin sigma-bond electrons on the propargylic substrate. This is a novel mechanism in palladium chemistry, which is based on the unique topology of the pincer complex catalysts.

  19. Na+/substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-labeled Substrate

    PubMed Central

    Steed, P. Ryan; Stein, Richard A.; Mishra, Smriti; Goodman, Michael C.; Mchaourab, Hassane S.

    2013-01-01

    NorM of the multidrug and toxic compound extrusion (MATE) family of transporters couples the efflux of a broad range of hydrophobic molecules to an inward Na+ gradient across the cell membrane. Several crystal structures of MATE transporters revealed distinct substrate binding sites leading to differing models of the mechanism of ion-coupled substrate extrusion. In the experiments reported here, we observed that a spin-labeled derivative of daunorubicin, Ruboxyl, is transported by NorM from Vibrio cholerae. It is therefore ideal to characterize mechanistically relevant binding interactions with NorM and to directly address the coupling of ion and drug binding. Fluorescence and EPR experiments revealed that Ruboxyl binds to NorM with micromolar affinity and becomes immobilized upon binding, even in the presence of Na+. Using double electron-electron resonance (DEER) spectroscopy, we determined that Ruboxyl binds to a single site on the periplasmic side of the protein. The presence of Na+ did not translocate the substrate to a second site as previously proposed. These experiments surprisingly show that Na+ does not affect the affinity or location of the substrate binding site on detergent-solubilized NorM, thus suggesting that additional factors beyond simple mutual exclusivity of binding, such as the presence of a Na+ gradient across the native membrane, govern Na+/drug coupling during antiport. PMID:23902581

  20. Synthesis of Secondary Aromatic Amides via Pd-Catalyzed Aminocarbonylation of Aryl Halides Using Carbamoylsilane as an Amide Source.

    PubMed

    Tong, Wenting; Cao, Pei; Liu, Yanhong; Chen, Jianxin

    2017-11-03

    Using N-methoxymethyl-N-organylcarbamoyl(trimethyl)silanes as secondary amides source, the direct transformation of aryl halides into the corresponding secondary aromatic amides via palladium-catalyzed aminocarbonylation is described. The reactions tolerated a broad range of functional groups on the aryl ring except big steric hindrance of substituent. The types and the relative position of substituents on the aryl ring impact the coupling efficiency.

  1. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    PubMed

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metal-Free-Visible Light C-H Alkylation of Heteroaromatics via Hypervalent Iodine-Promoted Decarboxylation.

    PubMed

    Genovino, Julien; Lian, Yajing; Zhang, Yuan; Hope, Taylor O; Juneau, Antoine; Gagné, Yohann; Ingle, Gajendra; Frenette, Mathieu

    2018-05-16

    A metal-free photoredox C-H alkylation of heteroaromatics from readily available carboxylic acids using an organic photocatalyst and hypervalent iodine reagents under blue LED light is reported. The developed methodology tolerates a broad range of functional groups and can be applied to the late-stage functionalization of drugs and drug-like molecules. The reaction mechanism was investigated with control experiments and photophysical experiments as well as DFT calculations.

  3. Aerobic oxidation in nanomicelles of aryl alkynes, in water at room temperature.

    PubMed

    Handa, Sachin; Fennewald, James C; Lipshutz, Bruce H

    2014-03-24

    On the basis of the far higher solubility of oxygen gas inside the hydrocarbon core of nanomicelles, metal and peroxide free aerobic oxidation of aryl alkynes to β-ketosulfones has been achieved in water at room temperature. Many examples are offered that illustrate broad functional group tolerance. The overall process is environmentally friendly, documented by the associated low E Factors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Improved Schmidt Conversion of Aldehydes to Nitriles Using Azidotrimethylsilane in 1,1,1,3,3,3-Hexafluoro-2-propanol.

    PubMed

    Motiwala, Hashim F; Yin, Qin; Aubé, Jeffrey

    2015-12-29

    The Schmidt reaction of aromatic aldehydes using a substoichiometric amount (40 mol %) of triflic acid is described. Low catalyst loading was enabled by a strong hydrogen-bond-donating solvent hexafluoro-2-propanol (HFIP). This improved protocol tolerates a broad scope of aldehydes with diverse functional groups and the corresponding nitriles were obtained in good to high yields without the need for aqueous work up.

  5. Loss of evolutionary resistance by the oligochaete Limnodrilus hoffmeisteri to a toxic substance--cost or gene flow?

    PubMed

    Mackie, Joshua A; Levinton, Jeffrey S; Przeslawski, Rachel; Delambert, Dominique; Wallace, William

    2010-01-01

    The oligochaete Limnodrilus hoffmeisteri at Foundry Cove (FC), New York evolved genetic resistance to cadmium (Cd) and lost resistance after contaminated sediments were removed by dredging. Selection (on survival time in dissolved Cd) was used to generate tolerance to evaluate fitness cost, the commonplace expectation for evolutionary reversal. The hypothesis that gene flow from neighboring populations could "swamp" resistance was addressed by 16S rDNA sequences. In disagreement with the cost hypothesis, selected-Cd tolerant worms and controls showed no difference in total fecundity or growth rate in environments. Highly-Cd-tolerant worms of the FC-selected population grew rapidly at different temperatures and showed no growth impairment in the presence of Cd, indicating metabolically efficient resistance. Genetic structure at FC was consistent with invasion of genotypes from an adjacent population in the time since dredging. Applying selection to lines from FC and a reference site, demonstrated a more rapid increase in Cd tolerance in FC-origin lines, indicating standing allelic variation for resistance at FC (despite phenotypic erosion). The selection experiment supports the view that resistance is simply controlled--probably by one allele of large effect. Whether such rapid "readaptation" could occur naturally is an important question for understanding broad effects of pollutants.

  6. Realm of Thermoalkaline Lipases in Bioprocess Commodities.

    PubMed

    Lajis, Ahmad Firdaus B

    2018-01-01

    For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article.

  7. Functional role of oppA encoding an oligopeptide-binding protein from Lactobacillus salivarius Ren in bile tolerance.

    PubMed

    Wang, Guohong; Li, Dan; Ma, Xiayin; An, Haoran; Zhai, Zhengyuan; Ren, Fazheng; Hao, Yanling

    2015-08-01

    Lactobacillus salivarius is a member of the indigenous microbiota of the human gastrointestinal tract (GIT), and some L. salivarius strains are considered as probiotics. Bile tolerance is a crucial property for probiotic bacteria to survive the transit through the GIT and exert their beneficial effects. In this work, the functional role of oppA encoding an oligopeptide transporter substrate-binding protein from L. salivarius Ren in bile salt tolerance was investigated. In silico analysis revealed that the oppA gene encodes a 61.7-kDa cell surface-anchored hydrophilic protein with a canonical lipoprotein signal peptide. Homologous overexpression of OppA was shown to confer 20-fold higher tolerance to 0.5 % oxgall in L. salivarius Ren. Furthermore, the recombinant strain exhibited 1.8-fold and 3.6-fold higher survival when exposed to the sublethal concentration of sodium taurocholate and sodium taurodeoxycholate, respectively, while no significant change was observed when exposed to sodium glycocholate and sodium glycodeoxycholate (GDCA). Our results indicate that OppA confers specific resistance to taurine-conjugated bile salts in L. salivarius Ren. In addition, the OppA overexpression strain also showed significant increased resistance to heat and salt stresses, suggesting the protective role of OppA against multiple stresses in L. salivarius Ren.

  8. Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration.

    PubMed

    Lehtovirta-Morley, Laura E; Ross, Jenna; Hink, Linda; Weber, Eva B; Gubry-Rangin, Cécile; Thion, Cécile; Prosser, James I; Nicol, Graeme W

    2016-05-01

    Studies of the distribution of ammonia oxidising archaea (AOA) and bacteria (AOB) suggest distinct ecological niches characterised by ammonia concentration and pH, arising through differences in substrate affinity and ammonia tolerance. AOA form five distinct phylogenetic clades, one of which, the 'Nitrososphaera sister cluster', has no cultivated isolate. A representative of this cluster, named 'Candidatus Nitrosocosmicus franklandus', was isolated from a pH 7.5 arable soil and we propose a new cluster name:'Nitrosocosmicus' While phylogenetic analysis of amoA genes indicates its association with the Nitrososphaera sister cluster, analysis of 16S rRNA genes provided no support for a relative branching that is consistent with a 'sister cluster', indicating placement within a lineage of the order Nitrososphaerales 'Ca.N. franklandus' is capable of ureolytic growth and its tolerances to nitrite and ammonia are higher than in other AOA and similar to those of typical soil AOB. Similarity of other growth characteristics of 'Ca.N. franklandus' with those of typical soil AOB isolates reduces support for niche differentiation between soil AOA and AOB and suggests that AOA have a wider physiological diversity than previously suspected. In particular, the high ammonia tolerance of 'Ca.N. franklandus' suggests potential contributions to nitrification in fertilised soils. © FEMS 2016.

  9. Storable Arylpalladium(II) Reagents for Alkene Labeling in Aqueous Media

    PubMed Central

    Simmons, Rebecca L.; Yu, Robert T.; Myers, Andrew G.

    2011-01-01

    We show that arylpalladium(II) reagents linked to biotin and indocyanine dye residues can be prepared by decarboxylative palladation of appropriately substituted electron-rich benzoic acid derivatives. When prepared under the conditions described, these organometallic intermediates are tolerant of air and water, can be stored for several months in solution in dimethylsulfoxide, and permit biotin- and indocyanine dye-labeling of functionally complex olefinic substrates in water by Heck-type coupling reactions. PMID:21888420

  10. Landsat-Assisted Environmental Mapping in the Arctic National Wildlife Refuge, Alaska,

    DTIC Science & Technology

    1982-11-01

    during storm surges, support saline -tolerant plant communities and haline soils. Mountainous terrain occurs only in a small portion of the study area...line, even the saline fibrous Histic Pergelic Crya- understood (Mackay 1963). Probably the biggest quepts and Cryohemists along the coast. questions...which due to the very unstable substrate. A few species, Cantion (1961) termed "littoral tundra," lies such as sea purslane (Honcken’a peploides), north

  11. Narcotic Tolerance and Dependence Mechanism: A Neurological Correlate.

    DTIC Science & Technology

    1977-05-01

    chromatin proteins as substrate. Additional histone, 40 ug/0.2 ml did not increase the amount of !-(32P)ATP incorporation. However, additional casein (40...materials. Since casein is not a natural component of brain tissue, the significance of the stimulation of phosphorylation is unclear. There is no...radioactivity at the interface and heptane phase but the ,radioactivity in heptane was negligible. The degree of the partition from the aqueous micelles to the

  12. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration

    PubMed Central

    Li, Song; Avera, Bethany N.; Strahm, Brian D.; Badgley, Brian D.

    2017-01-01

    ABSTRACT Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages. PMID:28476769

  13. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration.

    PubMed

    Sun, Shan; Li, Song; Avera, Bethany N; Strahm, Brian D; Badgley, Brian D

    2017-07-15

    Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages. Copyright © 2017 American Society for Microbiology.

  14. High-alignment-accuracy transfer printing of passive silicon waveguide structures.

    PubMed

    Ye, Nan; Muliuk, Grigorij; Trindade, Antonio Jose; Bower, Chris; Zhang, Jing; Uvin, Sarah; Van Thourhout, Dries; Roelkens, Gunther

    2018-01-22

    We demonstrate the transfer printing of passive silicon devices on a silicon-on-insulator target waveguide wafer. Adiabatic taper structures and directional coupler structures were designed for 1310 nm and 1600 nm wavelength coupling tolerant for ± 1 µm misalignment. The release of silicon devices from the silicon substrate was realized by underetching the buried oxide layer while protecting the back-end stack. Devices were successfully picked by a PDMS stamp, by breaking the tethers that kept the silicon coupons in place on the source substrate, and printed with high alignment accuracy on a silicon photonic target wafer. Coupling losses of -1.5 +/- 0.5 dB for the adiabatic taper at 1310 nm wavelength and -0.5 +/- 0.5 dB for the directional coupler at 1600 nm wavelength are obtained.

  15. Extremely Robust and Patternable Electrodes for Copy-Paper-Based Electronics.

    PubMed

    Ahn, Jaeho; Seo, Ji-Won; Lee, Tae-Ik; Kwon, Donguk; Park, Inkyu; Kim, Taek-Soo; Lee, Jung-Yong

    2016-07-27

    We propose a fabrication process for extremely robust and easily patternable silver nanowire (AgNW) electrodes on paper. Using an auxiliary donor layer and a simple laminating process, AgNWs can be easily transferred to copy paper as well as various other substrates using a dry process. Intercalating a polymeric binder between the AgNWs and the substrate through a simple printing technique enhances adhesion, not only guaranteeing high foldability of the electrodes, but also facilitating selective patterning of the AgNWs. Using the proposed process, extremely crease-tolerant electronics based on copy paper can be fabricated, such as a printed circuit board for a 7-segment display, portable heater, and capacitive touch sensor, demonstrating the applicability of the AgNWs-based electrodes to paper electronics.

  16. Structure of YciA from Haemophilus influenzae (HI0827), a Hexameric Broad Specificity Acyl-Coenzyme A Thioesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Mark A.; Zhuang, Zhihao; Song, Feng

    2008-04-02

    The crystal structure of HI0827 from Haemophilus influenzae Rd KW20, initially annotated 'hypothetical protein' in sequence databases, exhibits an acyl-coenzyme A (acyl-CoA) thioesterase 'hot dog' fold with a trimer of dimers oligomeric association, a novel assembly for this enzyme family. In studies described in the preceding paper [Zhuang, Z., Song, F., Zhao, H., Li, L., Cao, J., Eisenstein, E., Herzberg, O., and Dunaway-Mariano, D. (2008) Biochemistry 47, 2789-2796], HI0827 is shown to be an acyl-CoA thioesterase that acts on a wide range of acyl-CoA compounds. Two substrate binding sites are located across the dimer interface. The binding sites are occupiedmore » by two CoA molecules, one with full occupancy and the second only partially occupied. The CoA molecules, acquired from HI0827-expressing Escherichia coli cells, remained tightly bound to the enzyme through the protein purification steps. The difference in CoA occupancies indicates a different substrate affinity for each of the binding sites, which in turn implies that the enzyme might be subject to allosteric regulation. Mutagenesis studies have shown that the replacement of the putative catalytic carboxylate Asp44 with an alanine residue abolishes activity. The impact of this mutation is seen in the crystal structure of D44A HI0827. Whereas the overall fold and assembly of the mutant protein are the same as those of the wild-type enzyme, the CoA ligands are absent. The dimer interface is perturbed, and the channel that accommodates the thioester acyl chain is more open and wider than that observed in the wild-type enzyme. A model of intact substrate bound to wild-type HI0827 provides a structural rationale for the broad substrate range.« less

  17. aKMT Catalyzes Extensive Protein Lysine Methylation in the Hyperthermophilic Archaeon Sulfolobus islandicus but is Dispensable for the Growth of the Organism *

    PubMed Central

    Chu, Yindi; Zhu, Yanping; Chen, Yuling; Li, Wei; Zhang, Zhenfeng; Liu, Di; Wang, Tongkun; Ma, Juncai; Deng, Haiteng; Liu, Zhi-Jie; Ouyang, Songying; Huang, Li

    2016-01-01

    Protein methylation is believed to occur extensively in creanarchaea. Recently, aKMT, a highly conserved crenarchaeal protein lysine methyltransferase, was identified and shown to exhibit broad substrate specificity in vitro. Here, we have constructed an aKMT deletion mutant of the hyperthermophilic crenarchaeon Sulfolobus islandicus. The mutant was viable but showed a moderately slower growth rate than the parental strain under non-optimal growth conditions. Consistent with the moderate effect of the lack of aKMT on the growth of the cell, expression of a small number of genes, which encode putative functions in substrate transportation, energy metabolism, transcriptional regulation, stress response proteins, etc, was differentially regulated by more than twofold in the mutant strain, as compared with that in the parental strain. Analysis of the methylation of total cellular protein by mass spectrometry revealed that methylated proteins accounted for ∼2/3 (1,158/1,751) and ∼1/3 (591/1,757) of the identified proteins in the parental and the mutant strains, respectively, indicating that there is extensive protein methylation in S. islandicus and that aKMT is a major protein methyltransferase in this organism. No significant sequence preference was detected at the sites of methylation by aKMT. Methylated lysine residues, when visible in the structure, are all located on the surface of the proteins. The crystal structure of aKMT in complex with S-adenosyl-l-methionine (SAM) or S-adenosyl homocysteine (SAH) reveals that the protein consists of four α helices and seven β sheets, lacking a substrate recognition domain found in PrmA, a bacterial homolog of aKMT, in agreement with the broad substrate specificity of aKMT. Our results suggest that aKMT may serve a role in maintaining the methylation status of cellular proteins required for the efficient growth of the organism under certain non-optimal conditions. PMID:27329856

  18. One-pot synthesis of active copper-containing carbon dots with laccase-like activities

    NASA Astrophysics Data System (ADS)

    Ren, Xiangling; Liu, Jing; Ren, Jun; Tang, Fangqiong; Meng, Xianwei

    2015-11-01

    Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching.Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04685h

  19. A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance

    NASA Astrophysics Data System (ADS)

    Snoeys, W.; Aglieri Rinella, G.; Hillemanns, H.; Kugathasan, T.; Mager, M.; Musa, L.; Riedler, P.; Reidt, F.; Van Hoorne, J.; Fenigstein, A.; Leitner, T.

    2017-11-01

    For the upgrade of its Inner Tracking System, the ALICE experiment plans to install a new tracker fully constructed with monolithic active pixel sensors implemented in a standard 180 nm CMOS imaging sensor process, with a deep pwell allowing full CMOS within the pixel. Reverse substrate bias increases the tolerance to non-ionizing energy loss (NIEL) well beyond 1013 1 MeVneq /cm2, but does not allow full depletion of the sensitive layer and hence full charge collection by drift, mandatory for more extreme radiation tolerance. This paper describes a process modification to fully deplete the epitaxial layer even with a small charge collection electrode. It uses a low dose blanket deep high energy n-type implant in the pixel array and does not require significant circuit or layout changes so that the same design can be fabricated both in the standard and modified process. When exposed to a 55 Fe source at a reverse substrate bias of -6 V, pixels implemented in the standard and the modified process in a low and high dose variant for the deep n-type implant respectively yield a signal of about 115 mV, 110 mV and 90 mV at the output of a follower circuit. Signal rise times heavily affected by the speed of this circuit are 27 . 8 + / - 5 ns, 23 . 2 + / - 4 . 2 ns, and 22 . 2 + / - 3 . 7 ns rms, respectively. In a different setup, the single pixel signal from a 90 Sr source only degrades by less than 20% for the modified process after a 1015 1 MeVneq /cm2 irradiation, while the signal rise time only degrades by about 16 + / - 2 ns to 19 + / - 2 . 8 ns rms. From sensors implemented in the standard process no useful signal could be extracted after the same exposure. These first results indicate the process modification maintains low sensor capacitance, improves timing performance and increases NIEL tolerance by at least an order of magnitude.

  20. Drosophila as an unconventional substrate for microfabrication

    NASA Astrophysics Data System (ADS)

    Shum, Angela J.; Parviz, Babak A.

    2007-02-01

    We present the application of Drosophila fruit flies as an unconventional substrate for microfabrication. Drosophila by itself represents a complex system capable of many functions not attainable with current microfabrication technology. By using Drosophila as a substrate, we are able to capitalize on these natural functions while incorporating additional functionality into a superior hybrid system. In the following, development of microfabrication processes for Drosophila substrates is discussed. In particular, results of a study on Drosophila tolerance to vacuum pressure during multiple stages of development are given. A remarkable finding that adult Drosophila may withstand up to 3 hours of exposure to vacuum with measurable survival is noted. This finding opens a number of new opportunities for performing fabrication processes, similar to the ones performed on a silicon wafer, on a fruit fly as a live substrate. As a model microfabrication process, it is shown how a collection of Drosophila can be made to self-assemble into an array of microfabricated recesses on a silicon wafer and how a shadow mask can be used to thermally evaporate 100 nm of indium on flies. The procedure resulted in the production of a number of live flies with a pre-designed metal micropattern on their wings. This demonstration of vacuum microfabrication on a live organism provides the first step towards the development of a hybrid biological/solid-state manufacturing process for complex microsystems.

Top