Panagiotidi, Maria; Overton, Paul G; Stafford, Tom
2017-11-01
Abnormalities in multimodal processing have been found in many developmental disorders such as autism and dyslexia. However, surprisingly little empirical work has been conducted to test the integrity of multisensory integration in Attention Deficit Hyperactivity Disorder (ADHD). The main aim of the present study was to examine links between symptoms of ADHD (as measured using a self-report scale in a healthy adult population) and the temporal aspects of multisensory processing. More specifically, a Simultaneity Judgement (SJ) and a Temporal Order Judgement (TOJ) task were used in participants with low and high levels of ADHD-like traits to measure the temporal integration window and Just-Noticeable Difference (JND) (respectively) between the timing of an auditory beep and a visual pattern presented over a broad range of stimulus onset asynchronies. The Point of Subjective Similarity (PSS) was also measured in both cases. In the SJ task, participants with high levels of ADHD-like traits considered significantly fewer stimuli to be simultaneous than participants with high levels of ADHD-like traits, and the former were found to have significantly smaller temporal windows of integration (although no difference was found in the PSS in the SJ or TOJ tasks, or the JND in the latter). This is the first study to identify an abnormal temporal integration window in individuals with ADHD-like traits. Perceived temporal misalignment of two or more modalities can lead to distractibility (e.g., when the stimulus components from different modalities occur separated by too large of a temporal gap). Hence, an abnormality in the perception of simultaneity could lead to the increased distractibility seen in ADHD. Copyright © 2017 Elsevier B.V. All rights reserved.
Oscillatory integration windows in neurons
Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark
2016-01-01
Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720
Kobayashi, Kazuto; Kimura, Kazumi; Iguchi, Yasuyuki; Sakai, Kenichirou; Aoki, Junya; Iwanaga, Takeshi; Shibazaki, Kensaku
2012-01-01
There have been some reports on right-to-left shunt as a cause of cryptogenic stroke. Although contrast transcranial Doppler (c-TCD) can detect RLS, an insufficient temporal window has occasionally restricted its applicability. Thus, we compared the rates of detecting RLS among temporal windows for the middle cerebral arteries (MCAs) and the orbital window for the internal carotid artery (ICA) on c-TCD. We used c-TCD to detect RLS in patients with suspected ischemic stroke. We enrolled patients who had both sufficient bilateral temporal windows for MCAs and a right orbital window for ICA and performed c-TCD using all three windows simultaneously. We enrolled 106 consecutive patients and identified microembolic signals (MES) in 30 (28%) of them. Among these 30 patients, 15 had MES from all 3 windows. When these 30 patients were defined as being positive for RLS, the rates of detection were 67%, 73%, and 80% from the right temporal, left temporal, and right orbital windows, respectively (P= .795). The right orbital window as well as the temporal window for c-TCD could detect RLS. Insonation from the orbital window should be useful for patients who lack temporal windows. Copyright © 2010 by the American Society of Neuroimaging.
Henry, Kenneth S.; Kale, Sushrut; Heinz, Michael G.
2014-01-01
While changes in cochlear frequency tuning are thought to play an important role in the perceptual difficulties of people with sensorineural hearing loss (SNHL), the possible role of temporal processing deficits remains less clear. Our knowledge of temporal envelope coding in the impaired cochlea is limited to two studies that examined auditory-nerve fiber responses to narrowband amplitude modulated stimuli. In the present study, we used Wiener-kernel analyses of auditory-nerve fiber responses to broadband Gaussian noise in anesthetized chinchillas to quantify changes in temporal envelope coding with noise-induced SNHL. Temporal modulation transfer functions (TMTFs) and temporal windows of sensitivity to acoustic stimulation were computed from 2nd-order Wiener kernels and analyzed to estimate the temporal precision, amplitude, and latency of envelope coding. Noise overexposure was associated with slower (less negative) TMTF roll-off with increasing modulation frequency and reduced temporal window duration. The results show that at equal stimulus sensation level, SNHL increases the temporal precision of envelope coding by 20–30%. Furthermore, SNHL increased the amplitude of envelope coding by 50% in fibers with CFs from 1–2 kHz and decreased mean response latency by 0.4 ms. While a previous study of envelope coding demonstrated a similar increase in response amplitude, the present study is the first to show enhanced temporal precision. This new finding may relate to the use of a more complex stimulus with broad frequency bandwidth and a dynamic temporal envelope. Exaggerated neural coding of fast envelope modulations may contribute to perceptual difficulties in people with SNHL by acting as a distraction from more relevant acoustic cues, especially in fluctuating background noise. Finally, the results underscore the value of studying sensory systems with more natural, real-world stimuli. PMID:24596545
Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex.
McLelland, Douglas; Baker, Pamela M; Ahmed, Bashir; Kohn, Adam; Bair, Wyeth
2015-07-15
A key feature of neural networks is their ability to rapidly adjust their function, including signal gain and temporal dynamics, in response to changes in sensory inputs. These adjustments are thought to be important for optimizing the sensitivity of the system, yet their mechanisms remain poorly understood. We studied adaptive changes in temporal integration in direction-selective cells in macaque primary visual cortex, where specific hypotheses have been proposed to account for rapid adaptation. By independently stimulating direction-specific channels, we found that the control of temporal integration of motion at one direction was independent of motion signals driven at the orthogonal direction. We also found that individual neurons can simultaneously support two different profiles of temporal integration for motion in orthogonal directions. These findings rule out a broad range of adaptive mechanisms as being key to the control of temporal integration, including untuned normalization and nonlinearities of spike generation and somatic adaptation in the recorded direction-selective cells. Such mechanisms are too broadly tuned, or occur too far downstream, to explain the channel-specific and multiplexed temporal integration that we observe in single neurons. Instead, we are compelled to conclude that parallel processing pathways are involved, and we demonstrate one such circuit using a computer model. This solution allows processing in different direction/orientation channels to be separately optimized and is sensible given that, under typical motion conditions (e.g., translation or looming), speed on the retina is a function of the orientation of image components. Many neurons in visual cortex are understood in terms of their spatial and temporal receptive fields. It is now known that the spatiotemporal integration underlying visual responses is not fixed but depends on the visual input. For example, neurons that respond selectively to motion direction integrate signals over a shorter time window when visual motion is fast and a longer window when motion is slow. We investigated the mechanisms underlying this useful adaptation by recording from neurons as they responded to stimuli moving in two different directions at different speeds. Computer simulations of our results enabled us to rule out several candidate theories in favor of a model that integrates across multiple parallel channels that operate at different time scales. Copyright © 2015 the authors 0270-6474/15/3510268-13$15.00/0.
Sun, S P; Lu, W; Lei, Y B; Men, X M; Zuo, B; Ding, S G
2017-08-07
Objective: To discuss the prediction of round window(RW) visibility in cochlear implantation(CI) with temporal bone high resolution computed tomography(HRCT). Methods: From January 2013 to January 2017, 130 cases underwent both HRCT and CI in our hospital were analyzed. The distance from facial nerve to posterior canal wall(FWD), the angle between facial nerve and inner margin of round window(FRA), and the angle between facial nerve and tympanic anulus to inner margin of round window(FRAA) were detected at the level of round window on axial temporal bone HRCT. A line parallel to the posterior wall of ear canal was drawn from the anterior wall of facial nerve at the level of round window on axial temporal bone HRCT and its relationship with round window was detected (facial-round window line, FRL): type0-posterior to the round window, type1-between the round window, type2-anterior to the round window. Their(FWD, FRA, FRAA, FRL) relationships with intra-operative round window visibility were analyzed by SPSS 17.0 software. Results: FWD( F =18.76, P =0.00), FRA( F =34.57, P =0.00), FRAA ( F =14.24, P =0.00) could affect the intra-operative RW visibility significantly. RW could be exposed completely during CI when preoperative HRCT showing type0 FRL. RW might be partly exposed and not exposed when preoperative HRCT showing type1 and type2 FRL respectively. Conclusion: FWD, FRA, FRAA and FRL of temporal bone HRCT can predict intra-operative round window visibility effectively in CI surgery.
Stam, Floor J.; Hendricks, Timothy J.; Zhang, Jingming; Geiman, Eric J.; Francius, Cedric; Labosky, Patricia A.; Clotman, Frederic; Goulding, Martyn
2012-01-01
The spinal cord contains a diverse array of physiologically distinct interneuron cell types that subserve specialized roles in somatosensory perception and motor control. The mechanisms that generate these specialized interneuronal cell types from multipotential spinal progenitors are not known. In this study, we describe a temporally regulated transcriptional program that controls the differentiation of Renshaw cells (RCs), an anatomically and functionally discrete spinal interneuron subtype. We show that the selective activation of the Onecut transcription factors Oc1 and Oc2 during the first wave of V1 interneuron neurogenesis is a key step in the RC differentiation program. The development of RCs is additionally dependent on the forkhead transcription factor Foxd3, which is more broadly expressed in postmitotic V1 interneurons. Our demonstration that RCs are born, and activate Oc1 and Oc2 expression, in a narrow temporal window leads us to posit that neuronal diversity in the developing spinal cord is established by the composite actions of early spatial and temporal determinants. PMID:22115757
Ultra high vacuum broad band high power microwave window
Nguyen-Tuong, V.; Dylla, H.F. III
1997-11-04
An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.
Ultra high vacuum broad band high power microwave window
Nguyen-Tuong, Viet; Dylla, III, Henry Frederick
1997-01-01
An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.
Recalibration of the Multisensory Temporal Window of Integration Results from Changing Task Demands
Mégevand, Pierre; Molholm, Sophie; Nayak, Ashabari; Foxe, John J.
2013-01-01
The notion of the temporal window of integration, when applied in a multisensory context, refers to the breadth of the interval across which the brain perceives two stimuli from different sensory modalities as synchronous. It maintains a unitary perception of multisensory events despite physical and biophysical timing differences between the senses. The boundaries of the window can be influenced by attention and past sensory experience. Here we examined whether task demands could also influence the multisensory temporal window of integration. We varied the stimulus onset asynchrony between simple, short-lasting auditory and visual stimuli while participants performed two tasks in separate blocks: a temporal order judgment task that required the discrimination of subtle auditory-visual asynchronies, and a reaction time task to the first incoming stimulus irrespective of its sensory modality. We defined the temporal window of integration as the range of stimulus onset asynchronies where performance was below 75% in the temporal order judgment task, as well as the range of stimulus onset asynchronies where responses showed multisensory facilitation (race model violation) in the reaction time task. In 5 of 11 participants, we observed audio-visual stimulus onset asynchronies where reaction time was significantly accelerated (indicating successful integration in this task) while performance was accurate in the temporal order judgment task (indicating successful segregation in that task). This dissociation suggests that in some participants, the boundaries of the temporal window of integration can adaptively recalibrate in order to optimize performance according to specific task demands. PMID:23951203
Detail; Street Car Waiting House window, north wall North ...
Detail; Street Car Waiting House window, north wall - North Philadelphia Station, Street Car Waiting House, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA
Enlarged temporal integration window in schizophrenia indicated by the double-flash illusion.
Haß, Katharina; Sinke, Christopher; Reese, Tanya; Roy, Mandy; Wiswede, Daniel; Dillo, Wolfgang; Oranje, Bob; Szycik, Gregor R
2017-03-01
In the present study we were interested in the processing of audio-visual integration in schizophrenia compared to healthy controls. The amount of sound-induced double-flash illusions served as an indicator of audio-visual integration. We expected an altered integration as well as a different window of temporal integration for patients. Fifteen schizophrenia patients and 15 healthy volunteers matched for age and gender were included in this study. We used stimuli with eight different temporal delays (stimulus onset asynchronys (SOAs) 25, 50, 75, 100, 125, 150, 200 and 300 ms) to induce a double-flash illusion. Group differences and the widths of temporal integration windows were calculated on percentages of reported double-flash illusions. Patients showed significantly more illusions (ca. 36-44% vs. 9-16% in control subjects) for SOAs 150-300. The temporal integration window for control participants went from SOAs 25 to 200 whereas for patients integration was found across all included temporal delays. We found no significant relationship between the amount of illusions and either illness severity, chlorpromazine equivalent doses or duration of illness in patients. Our results are interpreted in favour of an enlarged temporal integration window for audio-visual stimuli in schizophrenia patients, which is consistent with previous research.
Pau, H; Fagan, P; Oleskevich, S
2006-11-01
To investigate the location of the scala media in relation to the round window niche in human temporal bones. Ten human temporal bones were investigated by radical mastoidectomy and promontory drill-out. Temporal bone laboratory. The distance from the scala media to the anterior edge of the round window niche, measured by Fisch's stapedectomy measuring cylinders. The scala media was identified at the transection point of a vertical line 1.6 to 2.2 mm (mean=1.8 mm; standard deviation=0.2) anterior to the anterior edge of the round window niche and a horizontal line 0.2 mm inferior to the lower border of the oval window. This report demonstrates the point of entry into the scala media via the promontory in fixed temporal bone models, which may provide a site of entry for stem cells and gene therapy insertion.
de Graaf, Tom A; Herring, Jim; Sack, Alexander T
2011-03-01
Transcranial magnetic stimulation (TMS) can induce masking by interfering with ongoing neural activity in early visual cortex. Previous work has explored the chronometry of occipital involvement in vision by using single pulses of TMS with high temporal resolution. However, conventionally TMS intensities have been high and the only measure used to evaluate masking was objective in nature. Recent studies have begun to incorporate subjective measures of vision, alongside objective ones. The current study goes beyond previous work in two regards. First, we explored both objective vision (an orientation discrimination task) and subjective vision (a stimulus visibility rating on a four-point scale), across a wide range of time windows with high temporal resolution. Second, we used a very sensitive TMS-masking paradigm: stimulation was at relatively low TMS intensities, with a figure-8 coil, and the small stimulus was difficult to discriminate already at baseline level. We hypothesized that this should increase the effective temporal resolution of our paradigm. Perhaps for this reason, we are able to report a rather interesting masking curve. Within the classical-masking time window, previously reported to encompass broad SOAs anywhere between 60 and 120 ms, we report not one, but at least two dips in objective performance, with no masking in-between. The subjective measure of vision did not mirror this pattern. These preliminary data from our exploratory design suggest that, with sensitive TMS masking, we might be able to reveal visual processes in early visual cortex previously unreported.
The Audiovisual Temporal Binding Window Narrows in Early Childhood
ERIC Educational Resources Information Center
Lewkowicz, David J.; Flom, Ross
2014-01-01
Binding is key in multisensory perception. This study investigated the audio-visual (A-V) temporal binding window in 4-, 5-, and 6-year-old children (total N = 120). Children watched a person uttering a syllable whose auditory and visual components were either temporally synchronized or desynchronized by 366, 500, or 666 ms. They were asked…
Integrating speech in time depends on temporal expectancies and attention.
Scharinger, Mathias; Steinberg, Johanna; Tavano, Alessandro
2017-08-01
Sensory information that unfolds in time, such as in speech perception, relies on efficient chunking mechanisms in order to yield optimally-sized units for further processing. Whether or not two successive acoustic events receive a one-unit or a two-unit interpretation seems to depend on the fit between their temporal extent and a stipulated temporal window of integration. However, there is ongoing debate on how flexible this temporal window of integration should be, especially for the processing of speech sounds. Furthermore, there is no direct evidence of whether attention may modulate the temporal constraints on the integration window. For this reason, we here examine how different word durations, which lead to different temporal separations of sound onsets, interact with attention. In an Electroencephalography (EEG) study, participants actively and passively listened to words where word-final consonants were occasionally omitted. Words had either a natural duration or were artificially prolonged in order to increase the separation of speech sound onsets. Omission responses to incomplete speech input, originating in left temporal cortex, decreased when the critical speech sound was separated from previous sounds by more than 250 msec, i.e., when the separation was larger than the stipulated temporal window of integration (125-150 msec). Attention, on the other hand, only increased omission responses for stimuli with natural durations. We complemented the event-related potential (ERP) analyses by a frequency-domain analysis on the stimulus presentation rate. Notably, the power of stimulation frequency showed the same duration and attention effects than the omission responses. We interpret these findings on the background of existing research on temporal integration windows and further suggest that our findings may be accounted for within the framework of predictive coding. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neural Correlates of Multisensory Perceptual Learning
Powers, Albert R.; Hevey, Matthew A.; Wallace, Mark T.
2012-01-01
The brain’s ability to bind incoming auditory and visual stimuli depends critically on the temporal structure of this information. Specifically, there exists a temporal window of audiovisual integration within which stimuli are highly likely to be perceived as part of the same environmental event. Several studies have described the temporal bounds of this window, but few have investigated its malleability. Recently, our laboratory has demonstrated that a perceptual training paradigm is capable of eliciting a 40% narrowing in the width of this window that is stable for at least one week after cessation of training. In the current study we sought to reveal the neural substrates of these changes. Eleven human subjects completed an audiovisual simultaneity judgment training paradigm, immediately before and after which they performed the same task during an event-related 3T fMRI session. The posterior superior temporal sulcus (pSTS) and areas of auditory and visual cortex exhibited robust BOLD decreases following training, and resting state and effective connectivity analyses revealed significant increases in coupling among these cortices after training. These results provide the first evidence of the neural correlates underlying changes in multisensory temporal binding and that likely represent the substrate for a multisensory temporal binding window. PMID:22553032
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
Antaris, Alexander L.; Chen, Hao; Diao, Shuo; Ma, Zhuoran; Zhang, Zhe; Zhu, Shoujun; Wang, Joy; Lozano, Alexander X.; Fan, Quli; Chew, Leila; Zhu, Mark; Cheng, Kai; Hong, Xuechuan; Dai, Hongjie; Cheng, Zhen
2017-01-01
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ∼50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body. PMID:28524850
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antaris, Alexander L.; Chen, Hao; Diao, Shuo
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
Antaris, Alexander L.; Chen, Hao; Diao, Shuo; ...
2017-05-19
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less
On the temporal window of auditory-brain system in connection with subjective responses
NASA Astrophysics Data System (ADS)
Mouri, Kiminori
2003-08-01
The human auditory-brain system processes information extracted from autocorrelation function (ACF) of the source signal and interaural cross correlation function (IACF) of binaural sound signals which are associated with the left and right cerebral hemispheres, respectively. The purpose of this dissertation is to determine the desirable temporal window (2T: integration interval) for ACF and IACF mechanisms. For the ACF mechanism, the visual change of Φ(0), i.e., the power of ACF, was associated with the change of loudness, and it is shown that the recommended temporal window is given as about 30(τe)min [s]. The value of (τe)min is the minimum value of effective duration of the running ACF of the source signal. It is worth noticing from the experiment of EEG that the most preferred delay time of the first reflection sound is determined by the piece indicating (τe)min in the source signal. For the IACF mechanism, the temporal window is determined as below: The measured range of τIACC corresponding to subjective angle for the moving image sound depends on the temporal window. Here, the moving image was simulated by the use of two loudspeakers located at +/-20° in the horizontal plane, reproducing amplitude modulated band-limited noise alternatively. It is found that the temporal window has a wide range of values from 0.03 to 1 [s] for the modulation frequency below 0.2 Hz. Thesis advisor: Yoichi Ando Copies of this thesis written in English can be obtained from Kiminori Mouri, 5-3-3-1110 Harayama-dai, Sakai city, Osaka 590-0132, Japan. E-mail address: km529756@aol.com
McCune, Heather J; Danielson, Laura S; Alvino, Gina M; Collingwood, David; Delrow, Jeffrey J; Fangman, Walton L; Brewer, Bonita J; Raghuraman, M K
2008-12-01
Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication without requiring an underlying temporal order. To distinguish between these possibilities, we examined a clb5Delta strain, where origin firing is largely limited to the first half of S phase, to ask whether all origins nonspecifically show decreased firing (as expected for disordered firing) or if only some origins ("late" origins) are affected. Approximately half the origins in the mutant genome show delayed replication while the remainder replicate largely on time. The delayed regions can encompass hundreds of kilobases and generally correspond to regions that replicate late in wild-type cells. Kinetic analysis of replication in wild-type cells reveals broad windows of origin firing for both early and late origins. Our results are consistent with a temporal model in which origins can show some heterogeneity in both time and probability of origin firing, but clustering of temporally like origins nevertheless yields a genome that is organized into blocks showing different replication times.
A test of multiple correlation temporal window characteristic of non-Markov processes
NASA Astrophysics Data System (ADS)
Arecchi, F. T.; Farini, A.; Megna, N.
2016-03-01
We introduce a sensitive test of memory effects in successive events. The test consists of a combination K of binary correlations at successive times. K decays monotonically from K = 1 for uncorrelated events as a Markov process. For a monotonic memory fading, K<1 always. Here we report evidence of a K>1 temporal window in cognitive tasks consisting of the visual identification of the front face of the Necker cube after a previous presentation of the same. We speculate that memory effects provide a temporal window with K>1 and this experiment could be a possible first step towards a better comprehension of this phenomenon. The K>1 behaviour is maximal at an inter-measurement time τ around 2s with inter-subject differences. The K>1 persists over a time window of 1s around τ; outside this window the K<1 behaviour is recovered. The universal occurrence of a K>1 window in pairs of successive perceptions suggests that, at variance with single visual stimuli eliciting a suitable response, a pair of stimuli shortly separated in time displays mutual correlations.
Pereira, Telma; Lemos, Luís; Cardoso, Sandra; Silva, Dina; Rodrigues, Ana; Santana, Isabel; de Mendonça, Alexandre; Guerreiro, Manuela; Madeira, Sara C
2017-07-19
Predicting progression from a stage of Mild Cognitive Impairment to dementia is a major pursuit in current research. It is broadly accepted that cognition declines with a continuum between MCI and dementia. As such, cohorts of MCI patients are usually heterogeneous, containing patients at different stages of the neurodegenerative process. This hampers the prognostic task. Nevertheless, when learning prognostic models, most studies use the entire cohort of MCI patients regardless of their disease stages. In this paper, we propose a Time Windows approach to predict conversion to dementia, learning with patients stratified using time windows, thus fine-tuning the prognosis regarding the time to conversion. In the proposed Time Windows approach, we grouped patients based on the clinical information of whether they converted (converter MCI) or remained MCI (stable MCI) within a specific time window. We tested time windows of 2, 3, 4 and 5 years. We developed a prognostic model for each time window using clinical and neuropsychological data and compared this approach with the commonly used in the literature, where all patients are used to learn the models, named as First Last approach. This enables to move from the traditional question "Will a MCI patient convert to dementia somewhere in the future" to the question "Will a MCI patient convert to dementia in a specific time window". The proposed Time Windows approach outperformed the First Last approach. The results showed that we can predict conversion to dementia as early as 5 years before the event with an AUC of 0.88 in the cross-validation set and 0.76 in an independent validation set. Prognostic models using time windows have higher performance when predicting progression from MCI to dementia, when compared to the prognostic approach commonly used in the literature. Furthermore, the proposed Time Windows approach is more relevant from a clinical point of view, predicting conversion within a temporal interval rather than sometime in the future and allowing clinicians to timely adjust treatments and clinical appointments.
Window type: paired 3x2 multipaned steel window flanked by 1x3 ...
Window type: paired 3x2 multipaned steel window flanked by 1x3 multipaned steel casements, breaking building corner. Broad overhanging eave also illustrated. Second story detail. Building 13, facing east - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA
VizieR Online Data Catalog: MALT-45, a 7mm survey of the southern Galaxy (Jordan+, 2015)
NASA Astrophysics Data System (ADS)
Jordan, C. H.; Walsh, A. J.; Lowe, V.; Voronkov, M. A.; Ellingsen, S. P.; Breen, S. L.; Purcell, C. R.; Barnes, P. J.; Burton, M. G.; Cunningham, M. R.; Hill, T.; Jackson, J. M.; Longmore, S. N.; Peretto, N.; Urquhart, J. S.
2018-03-01
MALT-45 is an untargeted Galactic plane survey for spectral lines which are commonly bright in star-forming regions at 45GHz (7mm waveband). We have so far observed 5 square degrees within the region bounded by 330°<=l<=335°, b=+/-0.5°. MALT-45 observations were conducted on the Australia Telescope Compact Array (ATCA), which provides 2x2048MHz broad-band continuum windows for observing. Section 1.1 discusses the primary lines surveyed, and their rest frequencies dictate the positions of the broad-band windows for MALT-45. Within the frequency ranges of the broad-band windows, we survey for 12 spectral lines. (2 data files).
Optimal pulse design for communication-oriented slow-light pulse detection.
Stenner, Michael D; Neifeld, Mark A
2008-01-21
We present techniques for designing pulses for linear slow-light delay systems which are optimal in the sense that they maximize the signal-to-noise ratio (SNR) and signal-to-noise-plus-interference ratio (SNIR) of the detected pulse energy. Given a communication model in which input pulses are created in a finite temporal window and output pulse energy in measured in a temporally-offset output window, the SNIR-optimal pulses achieve typical improvements of 10 dB compared to traditional pulse shapes for a given output window offset. Alternatively, for fixed SNR or SNIR, window offset (detection delay) can be increased by 0.3 times the window width. This approach also invites a communication-based model for delay and signal fidelity.
Mantokoudis, Georgios; Huth, Markus E; Weisstanner, Christian; Friedrich, Hergen M; Nauer, Claude; Candreia, Claudia; Caversaccio, Marco D; Senn, Pascal
2016-01-01
The preservation of residual hearing in cochlear implantation opens the door for optimal functional results. This atraumatic surgical technique requires training; however, the traditional human cadaveric temporal bones have become less available or unattainable in some institutions. This study investigates the suitability of an alternative model, using cadaveric lamb temporal bone, for surgical training of atraumatic round window electrode insertion. A total of 14 lamb temporal bones were dissected for cochlear implantation by four surgeons. After mastoidectomy, visualization, and drilling of the round window niche, an atraumatic round window insertion of a Medel Flex24 electrode was performed. Electrode insertion depth and position were verified by computed tomography scans. All cochleas were successfully implanted using the atraumatic round window approach; however, surgical access through the mastoid was substantially different when compared human anatomy. The mean number of intracochlear electrode contacts was 6.5 (range, 4-11) and the mean insertion depth 10.4 mm (range, 4-20 mm), which corresponds to a mean angular perimodiolar insertion depth of 229 degrees (range 67-540°). Full insertion of the electrode was not possible because of the smaller size of the lamb cochlea in comparison to that of the human. The lamb temporal bone model is well suited as a training model for atraumatic cochlear implantation at the level of the round window. The minimally pneumatized mastoid as well as the smaller cochlea can help prepare a surgeon for difficult cochlear implantations. Because of substantial differences to human anatomy, it is not an adequate training model for other surgical techniques such as mastoidectomy and posterior tympanotomy as well as full electrode insertion.
OCTOCAM: A Workhorse Instrument for the Gemini Telescopes During the Era of LSST
NASA Astrophysics Data System (ADS)
Roming, Peter; van der Horst, Alexander; OCTOCAM Team
2018-01-01
The decade of the 2020s are planned to be an era of large surveys and giant telescopes. A trademark of this era will be the large number of interesting objects observed daily by high-cadence surveys, such as the LSST. Because of the sheer numbers, only a very small fraction of these interesting objects will be observed with extremely large telescopes. The follow up workhorses during this era will be the 8-meter class telescopes and corresponding instruments that are prepared to pursue these interesting objects. One such workhorse instrument is OCTOCAM, a highly efficient instrument designed to probe the time domain window with simulatenous broad-wavelength coverage. OCTOCAM optimizes the use of Gemini for broadband imaging and spectroscopic single-target observations. The instrument is designed for high temporal resolution, broad spectral coverage, and moderate spectral resolution. OCTOCAM was selected as part of the Gemini instrumentation program in early 2017. Here we provide a description of the science cases to be addressed, overall instrument design, and current status.
Gabler, Christopher A; Siemann, Evan
2013-01-01
The rate of new exotic recruitment following removal of adult invaders (reinvasion pressure) influences restoration outcomes and costs but is highly variable and poorly understood. We hypothesize that broad variation in average reinvasion pressure of Triadica sebifera (Chinese tallow tree, a major invader) arises from differences among habitats in spatiotemporal availability of realized recruitment windows. These windows are periods of variable duration long enough to permit establishment given local environmental conditions. We tested this hypothesis via a greenhouse mesocosm experiment that quantified how the duration of favorable moisture conditions prior to flood or drought stress (window duration), competition and nutrient availability influenced Triadica success in high stress environments. Window duration influenced pre-stress seedling abundance and size, growth during stress and final abundance; it interacted with other factors to affect final biomass and germination during stress. Stress type and competition impacted final size and biomass, plus germination, mortality and changes in size during stress. Final abundance also depended on competition and the interaction of window duration, stress type and competition. Fertilization interacted with competition and stress to influence biomass and changes in height, respectively, but did not affect Triadica abundance. Overall, longer window durations promoted Triadica establishment, competition and drought (relative to flood) suppressed establishment, and fertilization had weak effects. Interactions among factors frequently produced different effects in specific contexts. Results support our 'outgrow the stress' hypothesis and show that temporal availability of abiotic windows and factors that influence growth rates govern Triadica recruitment in stressful environments. These findings suggest that native seed addition can effectively suppress superior competitors in stressful environments. We also describe environmental scenarios where specific management methods may be more or less effective. Our results enable better niche-based estimates of local reinvasion pressure, which can improve restoration efficacy and efficiency by informing site selection and optimal management.
Gabler, Christopher A.; Siemann, Evan
2013-01-01
The rate of new exotic recruitment following removal of adult invaders (reinvasion pressure) influences restoration outcomes and costs but is highly variable and poorly understood. We hypothesize that broad variation in average reinvasion pressure of Triadica sebifera (Chinese tallow tree, a major invader) arises from differences among habitats in spatiotemporal availability of realized recruitment windows. These windows are periods of variable duration long enough to permit establishment given local environmental conditions. We tested this hypothesis via a greenhouse mesocosm experiment that quantified how the duration of favorable moisture conditions prior to flood or drought stress (window duration), competition and nutrient availability influenced Triadica success in high stress environments. Window duration influenced pre-stress seedling abundance and size, growth during stress and final abundance; it interacted with other factors to affect final biomass and germination during stress. Stress type and competition impacted final size and biomass, plus germination, mortality and changes in size during stress. Final abundance also depended on competition and the interaction of window duration, stress type and competition. Fertilization interacted with competition and stress to influence biomass and changes in height, respectively, but did not affect Triadica abundance. Overall, longer window durations promoted Triadica establishment, competition and drought (relative to flood) suppressed establishment, and fertilization had weak effects. Interactions among factors frequently produced different effects in specific contexts. Results support our ‘outgrow the stress’ hypothesis and show that temporal availability of abiotic windows and factors that influence growth rates govern Triadica recruitment in stressful environments. These findings suggest that native seed addition can effectively suppress superior competitors in stressful environments. We also describe environmental scenarios where specific management methods may be more or less effective. Our results enable better niche-based estimates of local reinvasion pressure, which can improve restoration efficacy and efficiency by informing site selection and optimal management. PMID:23967212
Masking Period Patterns and Forward Masking for Speech-Shaped Noise: Age-Related Effects.
Grose, John H; Menezes, Denise C; Porter, Heather L; Griz, Silvana
2016-01-01
The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to nonsimultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Participants included younger (n = 11), middle-age (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions and assessed how well the temporal window fits accounted for these data. The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. This study demonstrated an age-related increase in susceptibility to nonsimultaneous masking, supporting the hypothesis that exacerbated nonsimultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data, suggesting an association between susceptibility to forward masking and speech understanding in modulated noise.
Blakely, Timothy; Ojemann, Jeffrey G.; Rao, Rajesh P.N.
2014-01-01
Background Electrocorticography (ECoG) signals can provide high spatio-temporal resolution and high signal to noise ratio recordings of local neural activity from the surface of the brain. Previous studies have shown that broad-band, spatially focal, high-frequency increases in ECoG signals are highly correlated with movement and other cognitive tasks and can be volitionally modulated. However, significant additional information may be present in inter-electrode interactions, but adding additional higher order inter-electrode interactions can be impractical from a computational aspect, if not impossible. New method In this paper we present a new method of calculating high frequency interactions between electrodes called Short-Time Windowed Covariance (STWC) that builds on mathematical techniques currently used in neural signal analysis, along with an implementation that accelerates the algorithm by orders of magnitude by leveraging commodity, off-the-shelf graphics processing unit (GPU) hardware. Results Using the hardware-accelerated implementation of STWC, we identify many types of event-related inter-electrode interactions from human ECoG recordings on global and local scales that have not been identified by previous methods. Unique temporal patterns are observed for digit flexion in both low- (10 mm spacing) and high-resolution (3 mm spacing) electrode arrays. Comparison with existing methods Covariance is a commonly used metric for identifying correlated signals, but the standard covariance calculations do not allow for temporally varying covariance. In contrast STWC allows and identifies event-driven changes in covariance without identifying spurious noise correlations. Conclusions: STWC can be used to identify event-related neural interactions whose high computational load is well suited to GPU capabilities. PMID:24211499
Window and Overlap Processing Effects on Power Estimates from Spectra
NASA Astrophysics Data System (ADS)
Trethewey, M. W.
2000-03-01
Fast Fourier transform (FFT) spectral processing is based on the assumption of stationary ergodic data. In engineering practice, the assumption is often violated and non-stationary data processed. Data windows are commonly used to reduce leakage by decreasing the signal amplitudes near the boundaries of the discrete samples. With certain combinations of non-stationary signals and windows, the temporal weighting may attenuate important signal characteristics to adversely affect any subsequent processing. In other words, the window artificially reduces a significant section of the time signal. Consequently, spectra and overall power estimated from the affected samples are unreliable. FFT processing can be particularly problematic when the signal consists of randomly occurring transients superimposed on a more continuous signal. Overlap processing is commonly used in this situation to improve the estimates. However, the results again depend on the temporal character of the signal in relation to the window weighting. A worst-case scenario, a short-duration half sine pulse, is used to illustrate the relationship between overlap percentage and resulting power estimates. The power estimates are shown to depend on the temporal behaviour of the square of overlapped window segments. An analysis shows that power estimates may be obtained to within 0.27 dB for the following windows and overlap combinations: rectangular (0% overlap), Hanning (62.5% overlap), Hamming (60.35% overlap) and flat-top (82.25% overlap).
HRCT Correlation with Round Window Identification during Cochlear Implantation in Children.
Pendem, Sai Kiran; Rangasami, Rajeswaran; Arunachalam, Ravi Kumar; Mohanarangam, Venkata Sai Pulivadulu; Natarajan, Paarthipan
2014-01-01
To determine the accuracy of High Resolution Computer Tomography (HRCT) temporal bone measurements in predicting the actual visualization of round window niche as viewed through posterior tympanotomy (i.e. facial recess). This is a prospective study of 37 cochlear implant candidates, aged between 1and 6 years, who were referred for HRCT temporal bone during the period December 2013 to July 2014. Cochlear implantation was done in 37 children (25 in the right ear and 12 in the left ear). The distance between the short process of incus and the round window niche and the distance between the oval window and the round window niche were measured preoperatively on sub-millimeter (0.7 mm) HRCT images. We classified the visibility of round window niche based on the surgical view (i.e. through posterior tympanotomy) during surgery into three types: 1) Type 1- fully visible, 2) Type 2- partially visible, and 3) Type 3- difficult to visualize. The preoperative HRCT measurements were used to predict the type of visualization of round window niche before surgery and correlated with the findings during surgery. The mean and standard deviation for the distance between the short process of incus and the round window niche and for the distance between the oval window and the round window niche for Types 1, 2, and 3 were 8.5 ± 0.2 mm and 3.2 ± 0.2 mm, 8.0 ± 0.4 mm and 3.8 ± 0.2 mm, 7.5 ± 0.2 mm and 4.4 ± 0.2 mm respectively, and showed statistically significant difference (P < 0.01) between them. The preoperative HRCT measurements had a sensitivity and specificity of 92.3% and 96.2%, respectively, in determining the actual visualization of round window niche. This study shows preoperative HRCT temporal bone measurements are useful in predicting the actual visualization of round window niche as viewed through posterior tympanotomy.
Baldini, Edoardo; Mann, Andreas; Borroni, Simone; Arrell, Christopher; van Mourik, Frank; Carbone, Fabrizio
2016-01-01
A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated electron systems. Using a single-shot readout array detector at frame rates of 10 kHz allows resolving coherent oscillations with amplitudes <10−4. We demonstrate its operation on the charge-transfer insulator La2CuO4, revealing coherent phonons with frequencies up to 13 THz and providing access into their Raman matrix elements. PMID:27990455
Duration of ultrasound-mediated enhanced plasma membrane permeability.
Lammertink, Bart; Deckers, Roel; Storm, Gert; Moonen, Chrit; Bos, Clemens
2015-03-30
Ultrasound (US) induced cavitation can be used to enhance the intracellular delivery of drugs by transiently increasing the cell membrane permeability. The duration of this increased permeability, termed temporal window, has not been fully elucidated. In this study, the temporal window was investigated systematically using an endothelial- and two breast cancer cell lines. Model drug uptake was measured as a function of time after sonication, in the presence of SonoVue™ microbubbles, in HUVEC, MDA-MB-468 and 4T1 cells. In addition, US pressure amplitude was varied in MDA-MB-468 cells to investigate its effect on the temporal window. Cell membrane permeability of HUVEC and MDA-MB-468 cells returned to control level within 1-2 h post-sonication, while 4T1 cells needed over 3h. US pressure affected the number of cells with increased membrane permeability, as well as the temporal window in MDA-MB-468 cells. This study shows that the duration of increased membrane permeability differed between the cell lines and US pressures used here. However, all were consistently in the order of 1-3 h after sonication. Copyright © 2014 Elsevier B.V. All rights reserved.
Sikka, Kapil; Kairo, Arvind; Singh, Chirom Amit; Roy, T S; Lalwani, Sanjeev; Kumar, Rakesh; Thakar, Alok; Sharma, Suresh C
2017-09-01
To evaluate the extent of intracochlear damage by histologic assessment of cadaveric temporal bones after insertion of cochlear implants by: round window approach and cochleostomy approach. Cochlear implantation was performed by transmastoid facial recess approach in 10 human cadaveric temporal bones. In 5 temporal bones, electrode insertion was acheieved by round window approach and in the remaining 5 bones, by cochleostomy approach. The bones were fixed, decalcified, sectioned and studied histologically. Grading of insertion trauma was assessed. In the round window insertion group, 2 bones had to be excluded from the study: one was damaged during handling with electrode extrusion and another bone did not show any demonstrable identifiable cochlear structure. Out of the 3 temporal bones, a total of 35 sections were examined: 24 demonstrated normal cochlea, 4 had basilar membrane bulging and 7 had fracture of bony spiral lamina. In the cochleostomy group, histology of 2 bones had to be discarded due to lack of any identifiable inner ear structures. Out of the 3 bones studied, 18 sections were examined: only 3 were normal, 4 sections had some bulge in spiral lamina and 11 had fracture of bony spiral lamina. The fracture of spiral lamina and bulge of basement membrane proportion is relatively higher if we perform cochleostomy as compared to round window approach. Therefore, round window insertion is relatively less traumatic as compared to cochleostomy. However, our sample size was very small and a study with a larger sample is required to further validate these findings.
Silicon micromachined broad band light source
NASA Technical Reports Server (NTRS)
George, Thomas (Inventor); Jones, Eric (Inventor); Tuma, Margaret L. (Inventor); Eastwood, Michael (Inventor); Hansler, Richard (Inventor)
2004-01-01
A micro electromechanical system (MEMS) broad band incandescent light source includes three layers: a top transmission window layer; a middle filament mount layer; and a bottom reflector layer. A tungsten filament with a spiral geometry is positioned over a hole in the middle layer. A portion of the broad band light from the heated filament is reflective off the bottom layer. Light from the filament and the reflected light of the filament are transmitted through the transmission window. The light source may operate at temperatures of 2500 K or above. The light source may be incorporated into an on board calibrator (OBC) for a spectrometer.
Masking Period Patterns & Forward Masking for Speech-Shaped Noise: Age-related effects
Grose, John H.; Menezes, Denise C.; Porter, Heather L.; Griz, Silvana
2015-01-01
Objective The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to non-simultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Design Participants included younger (n = 11), middle-aged (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions, and assessed how well the temporal window fits accounted for these data. Results The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. Conclusions This study demonstrated an age-related increase in susceptibility to non-simultaneous masking, supporting the hypothesis that exacerbated non-simultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data suggesting an association between susceptibility to forward masking and speech understanding in modulated noise. PMID:26230495
Wallace, Mark T.; Stevenson, Ryan A.
2014-01-01
Behavior, perception and cognition are strongly shaped by the synthesis of information across the different sensory modalities. Such multisensory integration often results in performance and perceptual benefits that reflect the additional information conferred by having cues from multiple senses providing redundant or complementary information. The spatial and temporal relationships of these cues provide powerful statistical information about how these cues should be integrated or “bound” in order to create a unified perceptual representation. Much recent work has examined the temporal factors that are integral in multisensory processing, with many focused on the construct of the multisensory temporal binding window – the epoch of time within which stimuli from different modalities is likely to be integrated and perceptually bound. Emerging evidence suggests that this temporal window is altered in a series of neurodevelopmental disorders, including autism, dyslexia and schizophrenia. In addition to their role in sensory processing, these deficits in multisensory temporal function may play an important role in the perceptual and cognitive weaknesses that characterize these clinical disorders. Within this context, focus on improving the acuity of multisensory temporal function may have important implications for the amelioration of the “higher-order” deficits that serve as the defining features of these disorders. PMID:25128432
[Applied anatomy of scala tympani inlet related to cochlear implantation].
Zou, Tuanming; Guo, Menghe; Zhang, Hongzheng; Shu, Fan; Xie, Nanping
2012-06-01
To investigate the related parameters of the temporal bone structure for determining the position of implanting electrode into the scala tympani in cochlear implantation surgery through the facial recess and epitympanum approach. In a surgical simulation experiment, 20 human temporal bones were studied and measured to determine the related parameters of the temporal bone structure. The distance 5.91∓0.29 mm between the short process of the incus and the round window niche, 2.11∓0.18 mm between the stapes and the round window niche, 6.70∓0.19 mm between the facial nerve in the perpendicular paragraph and the round window niche, 2.22∓0.21 mm from the pyramidal eminence to the round window, and 2.16∓0.14 mm between the stapes and the round window. The minimal distance between the implanting electrode and the vestibular window was 2.12∓0.19 mm. The distance between the cochleariform process and the round window niche was 3.79∓0.17 mm. The position of the cochlear electrode array insertion into the second cochlear turn was 2.25∓0.13 mm under the stapes. The location of the cochlear electrode array insertion into the second cochlear turn was 2.28∓0.20 mm inferior to the pyramidal eminence. These parameters provide a reference value to determine the different positions of cochlear electrode array insertion into the scale tympani in different patients.
Shin, Dong Ho; Kim, Dong Wook; Lim, Hyung Gyu; Jung, Eui Sung; Seong, Ki Woong; Lee, Jyung Hyun; Kim, Myoung Nam; Cho, Jin Ho
2014-01-01
Round window placement of a 3-coil transducer offers a new approach for coupling an implantable hearing aid to the inner ear. The transducer exhibits high performance at low-frequencies. One remarkable feature of the 3-coil transducer is that it minimizes leakage flux. Thus, the transducer, which consists of two permanent magnets and three coils, can enhance vibrational displacement. In human temporal bones, stapes vibration was observed by laser Doppler vibrometer in response to round window stimulation using the 3-coil transducer. Coupling between the 3-coil transducer and the round window was connected by a wire-rod. The stimulation created stapes velocity when the round window stimulated. Performance evaluation was conducted by measuring stapes velocity. To verify the performance of the 3-coil transducer, stapes velocity for round window and tympanic membrane stimulation were compared, respectively. Stapes velocity by round window stimulation using the 3-coil transducer was approximately 14 dB higher than that achieved by tympanic membrane stimulation. The study shows that 3-coil transducer is suitable for implantable hearing aids.
NASA Astrophysics Data System (ADS)
Salinas Solé, Celia; Peña Angulo, Dhais; Gonzalez Hidalgo, Jose Carlos; Brunetti, Michele
2017-04-01
In this poster we applied the moving window approach (see Poster I of this collection) to analyze trends of spring and its corresponding months (March, April, May) temperature mean values of maximum (Tmax) and minimum (Tmin) in Spanish mainland to detect the effects of length period and starting year. Monthly series belong to Monthly Temperature dataset of Spanish mainland (MOTEDAS). Database contains in its grid format of 5236 pixels of monthly series (10x10 km). The threshold used in spatial analyses considers 20% of land under significant trend (p<0.05). The most striking results are as follow: • Seasonal Tmax shows that global trend was positive and significant until the mid 80's with higher values than 75% from between 1954-2010 to 1979-2010, being reduced after to the north region. So, from 1985-2010 no significant trend have been detected. Monthly analyses show differences. March trend is not significant (<20% of area) since 1974-2010, while significant trend in April and May varies between 1961-2010/1979-2010 and 1965-2010/1980-2010 respectively, clearly located in northern midland and Mediterranean coastland. • Spring Tmin trend analyses is significantly (>20%) during all temporal windows, notwithstanding NW do not show global significant trend, and in the most recent temporal windows only affect significantly SE. Monthly analyses also differ. Not significant trend is detected in March from 1979-2010, and from 1985-2010 in May, being April the month in any temporal windows with more than 20% of land affected by significant trend. • Spatial differences are detected between windows (South-North in March, East-West in April-May. We can conclude Tmax trend varies accordingly temporal windows dramatically in spring and no significance has been detected in the recent decades. Northern areas and Mediterranean coastland seems to be the most affected. Monthy Tmax trend spatial analyses confirm the heterogeneity of diurnal temperatures; different spatial gradients in windows have been detected between months. Seasonal Tmin show a more global temporal pattern. Spatial gradients of significance between months have been detected, in some sense contraries to the observed in Tmax.
Vibration measurement by temporal Fourier analyses of a digital hologram sequence.
Fu, Yu; Pedrini, Giancarlo; Osten, Wolfgang
2007-08-10
A method for whole-field noncontact measurement of displacement, velocity, and acceleration of a vibrating object based on image-plane digital holography is presented. A series of digital holograms of a vibrating object are captured by use of a high-speed CCD camera. The result of the reconstruction is a three-dimensional complex-valued matrix with noise. We apply Fourier analysis and windowed Fourier analysis in both the spatial and the temporal domains to extract the displacement, the velocity, and the acceleration. The instantaneous displacement is obtained by temporal unwrapping of the filtered phase map, whereas the velocity and acceleration are evaluated by Fourier analysis and by windowed Fourier analysis along the time axis. The combination of digital holography and temporal Fourier analyses allows for evaluation of the vibration, without a phase ambiguity problem, and smooth spatial distribution of instantaneous displacement, velocity, and acceleration of each instant are obtained. The comparison of Fourier analysis and windowed Fourier analysis in velocity and acceleration measurements is also presented.
Measuring temporal summation in visual detection with a single-photon source.
Holmes, Rebecca; Victora, Michelle; Wang, Ranxiao Frances; Kwiat, Paul G
2017-11-01
Temporal summation is an important feature of the visual system which combines visual signals that arrive at different times. Previous research estimated complete summation to last for 100ms for stimuli judged "just detectable." We measured the full range of temporal summation for much weaker stimuli using a new paradigm and a novel light source, developed in the field of quantum optics for generating small numbers of photons with precise timing characteristics and reduced variance in photon number. Dark-adapted participants judged whether a light was presented to the left or right of their fixation in each trial. In Experiment 1, stimuli contained a stream of photons delivered at a constant rate while the duration was systematically varied. Accuracy should increase with duration as long as the later photons can be integrated with the proceeding ones into a single signal. The temporal integration window was estimated as the point that performance no longer improved, and was found to be 650ms on average. In Experiment 2, the duration of the visual stimuli was kept short (100ms or <30ms) while the number of photons was varied to explore the efficiency of summation over the integration window compared to Experiment 1. There was some indication that temporal summation remains efficient over the integration window, although there is variation between individuals. The relatively long integration window measured in this study may be relevant to studies of the absolute visual threshold, i.e., tests of single-photon vision, where "single" photons should be separated by greater than the integration window to avoid summation. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoessel, Chris
2013-11-13
This project developed a new high-performance R-10/high SHGC window design, reviewed market positioning and evaluated manufacturing solutions required for broad market adoption. The project objectives were accomplished by: identifying viable technical solutions based on modeling of modern and potential coating stacks and IGU designs; development of new coating material sets for HM thin film stacks, as well as improved HM IGU designs to accept multiple layers of HM films; matching promising new coating designs with new HM IGU designs to demonstrate performance gains; and, in cooperation with a window manufacturer, assess the potential for high-volume manufacturing and cost efficiency ofmore » a HM-based R-10 window with improved solar heat gain characteristics. A broad view of available materials and design options was applied to achieve the desired improvements. Gated engineering methodologies were employed to guide the development process from concept generation to a window demonstration. The project determined that a slightly de-rated window performance allows formulation of a path to achieve the desired cost reductions to support end consumer adoption.« less
Johnson, J A; Fusaro, R M
1992-01-01
Since window glass absorbs sunlight below 320 nm, it provides a means of assessing sensitivity to longer wavelengths, i.e. UVA and visible radiation. Positive responses to the query of whether symptoms develop in the auto with the windows up must now be interpreted with regard to the possible presence of tinted plastic film on side and rear windows. These films block nearly all UVA radiation, as does the plastic interleaf of windshields. Thus, occupants of an auto equipped with plastic film receive photoprotection from UVB radiation and well into the UVA region. We define three classes of topical sunscreens: (1) conventional UVB screens, (2) broad-spectrum preparations containing a UVB screen and a UVA absorber and (3) browning agents such as dihydroxyacetone (DHA) that produce a skin coloration that absorbs in the low end of the visible region, with overlap into long-wavelength UVA. By considering responses of photosensitive persons in autos with tinted or untinted windows, coupled with efficacy of appropriate sunscreens, we produced an algorithm defining three photosensitivity subsets. Persons sensitive to long-wavelength UVA and/or visible radiation will benefit from tinted auto windows. In particular, patients with lupus erythematosus (LE) have actively promoted legislation allowing tinted windows. Support for their position is documented by recent reports of induction of lesions in LE patients by exposure to UVA and visible radiation. The brown color produced by DHA is a useful adjunct to the screening action of broad-spectrum sunscreens. Development of a durable color overnight allows application of the DHA preparation in the evening, thus eliminating possible interference with sunscreen use during the day.
Vesseur, A C; Verbist, B M; Westerlaan, H E; Kloostra, F J J; Admiraal, R J C; van Ravenswaaij-Arts, C M A; Free, R H; Mylanus, E A M
2016-12-01
To provide an overview of anomalies of the temporal bone in CHARGE syndrome relevant to cochlear implantation (CI), anatomical structures of the temporal bone and the respective genotypes were analysed. In this retrospective study, 42 CTs of the temporal bone of 42 patients with CHARGE syndrome were reviewed in consensus by two head-and-neck radiologists and two otological surgeons. Anatomical structures of the temporal bone were evaluated and correlated with genetic data. Abnormalities that might affect CI surgery were seen, such as a vascular structure, a petrosquamosal sinus (13 %), an underdeveloped mastoid (8 %) and an aberrant course of the facial nerve crossing the round window (9 %) and/or the promontory (18 %). The appearance of the inner ear varied widely: in 77 % of patients all semicircular canals were absent and the cochlea varied from normal to hypoplastic. A stenotic cochlear aperture was observed in 37 %. The middle ear was often affected with a stenotic round (14 %) or oval window (71 %). More anomalies were observed in patients with truncating mutations than with non-truncating mutations. Temporal bone findings in CHARGE syndrome vary widely. Vascular variants, aberrant route of the facial nerve, an underdeveloped mastoid, aplasia of the semicircular canals, and stenotic round window may complicate cochlear implantation.
Stimulated Raman Spectroscopy with Entangled Light: Enhanced Resolution and Pathway Selection
2015-01-01
We propose a novel femtosecond stimulated Raman spectroscopy (FSRS) technique that combines entangled photons with interference detection to select matter pathways and enhance the resolution. Following photoexcitation by an actinic pump, the measurement uses a pair of broad-band entangled photons; one (signal) interacts with the molecule and together with a third narrow-band pulse induces the Raman process. The other (idler) photon provides a reference for the coincidence measurement. This interferometric photon coincidence counting detection allows one to separately measure the Raman gain and loss signals, which is not possible with conventional probe transmission detection. Entangled photons further provide a unique temporal and spectral detection window that can better resolve fast excited-state dynamics compared to classical and correlated disentangled states of light. PMID:25177427
Regulation of Viable and Optimal Cohorts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubin, Jean-Pierre, E-mail: aubin.jp@gmail.com
This study deals with the evolution of (scalar) attributes (resources or income in evolutionary demography or economics, position in traffic management, etc.) of a population of “mobiles” (economic agents, vehicles, etc.). The set of mobiles sharing the same attributes is regarded as an instantaneous cohort described by the number of its elements. The union of instantaneous cohorts during a mobile window between two attributes is a cohort. Given a measure defining the number of instantaneous cohorts, the accumulation of the mobile attributes on a evolving mobile window is the measure of the cohort on this temporal mobile window. Imposing accumulationmore » constraints and departure conditions, this study is devoted to the regulation of the evolutions of the attributes which are1.viable in the sense that the accumulations constraints are satisfied at each instant;2.and, among them, optimal, in the sense that both the duration of the temporal mobile window is maximum and that the accumulation on this temporal mobile window is the largest viable one. This value is the “accumulation valuation” function. Viable and optimal evolutions under accumulation constraints are regulated by an “implicit Volterra integro-differential inclusion” built from the accumulation valuation function, solution to an Hamilton–Jacobi–Bellman partial differential equation under constraints which is constructed for this purpose.« less
Perceptual learning shapes multisensory causal inference via two distinct mechanisms.
McGovern, David P; Roudaia, Eugenie; Newell, Fiona N; Roach, Neil W
2016-04-19
To accurately represent the environment, our brains must integrate sensory signals from a common source while segregating those from independent sources. A reasonable strategy for performing this task is to restrict integration to cues that coincide in space and time. However, because multisensory signals are subject to differential transmission and processing delays, the brain must retain a degree of tolerance for temporal discrepancies. Recent research suggests that the width of this 'temporal binding window' can be reduced through perceptual learning, however, little is known about the mechanisms underlying these experience-dependent effects. Here, in separate experiments, we measure the temporal and spatial binding windows of human participants before and after training on an audiovisual temporal discrimination task. We show that training leads to two distinct effects on multisensory integration in the form of (i) a specific narrowing of the temporal binding window that does not transfer to spatial binding and (ii) a general reduction in the magnitude of crossmodal interactions across all spatiotemporal disparities. These effects arise naturally from a Bayesian model of causal inference in which learning improves the precision of audiovisual timing estimation, whilst concomitantly decreasing the prior expectation that stimuli emanate from a common source.
Shot boundary detection and label propagation for spatio-temporal video segmentation
NASA Astrophysics Data System (ADS)
Piramanayagam, Sankaranaryanan; Saber, Eli; Cahill, Nathan D.; Messinger, David
2015-02-01
This paper proposes a two stage algorithm for streaming video segmentation. In the first stage, shot boundaries are detected within a window of frames by comparing dissimilarity between 2-D segmentations of each frame. In the second stage, the 2-D segments are propagated across the window of frames in both spatial and temporal direction. The window is moved across the video to find all shot transitions and obtain spatio-temporal segments simultaneously. As opposed to techniques that operate on entire video, the proposed approach consumes significantly less memory and enables segmentation of lengthy videos. We tested our segmentation based shot detection method on the TRECVID 2007 video dataset and compared it with block-based technique. Cut detection results on the TRECVID 2007 dataset indicate that our algorithm has comparable results to the best of the block-based methods. The streaming video segmentation routine also achieves promising results on a challenging video segmentation benchmark database.
Xie, Li-Hong; Tang, Jie; Miao, Wen-Jie; Tang, Xiang-Long; Li, Heng; Tang, An-Zhou
2018-06-01
We evaluated the risk of cochlear implantation through the round window membrane in the facial recess through a preoperative analysis of the angle between the facial nerve-round window and the cranial midline using high-resolution temporal bone CT. Temporal bone CT films of 176 patients with profound sensorineural hearing loss at our hospital from 2013 to 2015 were reviewed. The preoperative temporal bone CT scans of the patients were retrospectively analysed. The vertical distance (d value) from the leading edge of the facial nerve to the posterior wall of the external auditory canal and the angle (α value) between the line from the leading edge of the facial nerve to the midpoint of the round window membrane and the median sagittal line on the round window membrane plane were measured. Based on intraoperative observation, the round window membrane was divided into complete round window membrane exposure (group A), partial exposure (group B), and unexposed (group C) groups, and statistical analysis was performed. The α value could be effectively measured for all 176 patients (62.60 ± 7.12), and the d value could be effectively measured for 95 cases (5.53 ± 1.00). An analysis of the correlation between the α and d values of these 95 cases found a negative correlation. Of the 176 cases, one-way analysis of variance (ANOVA) showed that the differences among the groups were significant [P = 0.000 (< 0.05)]. The angle (α value) between the line connecting the leading edge of the facial nerve to the midpoint of the round window and the median sagittal line measured in preoperative CT scans was associated with the difficulty of intraoperatively exposing the round window membrane. When the α value was larger than a certain degree, the difficulty of exposing the round window membrane was increased. In such cases, the surgeon should fully expose the round window membrane during surgery, which could result decrease the likelihood of complications.
Roverud, Elin; Strickland, Elizabeth A
2014-03-01
The mechanisms of forward masking are not clearly understood. The temporal window model (TWM) proposes that masking occurs via a neural mechanism that integrates within a temporal window. The medial olivocochlear reflex (MOCR), a sound-evoked reflex that reduces cochlear amplifier gain, may also contribute to forward masking if the preceding sound reduces gain for the signal. Psychophysical evidence of gain reduction can be observed using a growth of masking (GOM) paradigm with an off-frequency forward masker and a precursor. The basilar membrane input/output (I/O) function is estimated from the GOM function, and the I/O function gain is reduced by the precursor. In this study, the effect of precursor duration on this gain reduction effect was examined for on- and off-frequency precursors. With on-frequency precursors, thresholds increased with increasing precursor duration, then decreased (rolled over) for longer durations. Thresholds with off-frequency precursors continued to increase with increasing precursor duration. These results are not consistent with solely neural masking, but may reflect gain reduction that selectively affects on-frequency stimuli. The TWM was modified to include history-dependent gain reduction to simulate the MOCR, called the temporal window model-gain reduction (TWM-GR). The TWM-GR predicted rollover and the differences with on- and off-frequency precursors whereas the TWM did not.
Wegner, Inge; Eldaebes, Mostafa M A S; Landry, Thomas G; Adamson, Robert B; Grolman, Wilko; Bance, Manohar L
2016-06-01
Round window reinforcement leads to conductive hearing loss. The round window is stiffened surgically as therapy for various conditions, including perilymphatic fistula and superior semicircular canal dehiscence. Round window reinforcement reduces symptoms in these patients. However, it also reduces fluid displacement in the cochlea and might therefore increase conductive hearing loss. Perichondrium was applied to the round window membrane in nine fresh-frozen, nonpathologic temporal bones. In four temporal bones cartilage was applied subsequently. Acoustic stimuli in the form of frequency sweeps from 250 to 8000 Hz were generated at 110 dB sound pressure level. A total of 16 frequencies in a 1/3-octave series were used. Stapes velocities in response to the acoustic stimuli were measured at equally spaced multiple points covering the stapes footplate using a scanning laser Doppler interferometry system. Measurements were made at baseline, after applying perichondrium, and after applying cartilage. At frequencies up to 1000 Hz perichondrium reinforcement decreased stapes velocities by 1.5 to 2.9 dB compared with no reinforcement (p value = 0.003). Reinforcement with cartilage led to a further deterioration of stapes velocities by 2.6 to 4.2 dB at frequencies up to 1000 Hz (p value = 0.050). The higher frequencies were not affected by perichondrium reinforcement (p value = 0.774) or cartilage reinforcement (p value = 0.644). Our results seem to suggest a modest, clinically negligible effect of reinforcement with perichondrium. Placing cartilage on the round window resulted in a graded effect on stapes velocities in keeping with the increased stiffness of cartilage compared with perichondrium. Even so, the effect was relatively small.
Multiscale field-aligned current analyzer
NASA Astrophysics Data System (ADS)
Bunescu, C.; Marghitu, O.; Constantinescu, D.; Narita, Y.; Vogt, J.; Blǎgǎu, A.
2015-11-01
The magnetosphere-ionosphere coupling is achieved, essentially, by a superposition of quasi-stationary and time-dependent field-aligned currents (FACs), over a broad range of spatial and temporal scales. The planarity of the FAC structures observed by satellite data and the orientation of the planar FAC sheets can be investigated by the well-established minimum variance analysis (MVA) of the magnetic perturbation. However, such investigations are often constrained to a predefined time window, i.e., to a specific scale of the FAC. The multiscale field-aligned current analyzer, introduced here, relies on performing MVA continuously and over a range of scales by varying the width of the analyzing window, appropriate for the complexity of the magnetic field signatures above the auroral oval. The proposed technique provides multiscale information on the planarity and orientation of the observed FACs. A new approach, based on the derivative of the largest eigenvalue of the magnetic variance matrix with respect to the length of the analysis window, makes possible the inference of the current structures' location (center) and scale (thickness). The capabilities of the FAC analyzer are explored analytically for the magnetic field profile of the Harris sheet and tested on synthetic FAC structures with uniform current density and infinite or finite geometry in the cross-section plane of the FAC. The method is illustrated with data observed by the Cluster spacecraft on crossing the nightside auroral region, and the results are cross checked with the optical observations from the Time History of Events and Macroscale Interactions during Substorms ground network.
Sone, M
1998-10-01
The inner layer of the round window membrane is composed of mesothelial cells and this mesothelial cell layer extends to the scala tympani. This study describes the histopathologic findings of temporal bone analysis from a patient with bilateral perilymphatic fistula of the round window membrane. The left ear showed proliferation of mesothelial cells in the scala tympani of the basal turn adjoining the round window membrane. This cell proliferation is thought to be a reaction to the rupture of the round window membrane.
Buss, Emily; He, Shuman; Grose, John H; Hall, Joseph W
2013-03-01
Several lines of evidence indicate that auditory temporal resolution improves over childhood, whereas other data implicate the development of processing efficiency. The present study used the masking period pattern paradigm to examine the maturation of temporal processing in normal-hearing children (4.8 to 10.7 yrs) compared to adults. Thresholds for a brief tone were measured at 6 temporal positions relative to the period of a 5-Hz quasi-square-wave masker envelope, with a 20-dB modulation depth, as well as in 2 steady maskers. The signal was a pure tone at either 1000 or 6500 Hz, and the masker was a band of noise, either spectrally wide or narrow (21.3 and 1.4 equivalent rectangular bandwidths, respectively). Masker modulation improved thresholds more for wide than narrow bandwidths, and adults tended to receive more benefit from modulation than young children. Fits to data for the wide maskers indicated a change in window symmetry with development, reflecting relatively greater backward masking for the youngest listeners. Data for children >6.5 yrs of age appeared more adult-like for the 6500- than the 1000-Hz signal. Differences in temporal window asymmetry with listener age cannot be entirely explained as a consequence of a higher criterion for detection in children, a form of inefficiency.
de Vries, Daniel H
2017-01-01
After major flooding associated with Hurricane Floyd (1999) in North Carolina, mitigation managers seized upon the "window of opportunity" to woo residents to accept residential buyout offers despite sizable community resistance. I present a theoretical explanation of how post-crisis periods turn into "opportunities" based on a temporal referential theory that complements alternative explanations based on temporal coincidence, panarchy, and shock-doctrine theories. Results from fieldwork conducted from 2002 to 2004 illustrate how several temporal influences compromised collective calibration of "normalcy" in local cultural models, leading to an especially heightened vulnerability to collective surprise. Four factors particularly influenced this temporal vulnerability: 1) epistemological uncertainty of floodplain dynamics due to colonization; 2) cultural practices that maintained a casual amnesia; 3) meaning attributed to stochastic timing of floods; and 4) competitive impact of referential flood baseline attractors.
Gostian, Antoniu-Oreste; Schwarz, David; Mandt, Philipp; Anagiotos, Andreas; Ortmann, Magdalene; Pazen, David; Beutner, Dirk; Hüttenbrink, Karl-Bernd
2016-11-01
The round window vibroplasty is a feasible option for the treatment of conductive, sensorineural and mixed hearing loss. Although clinical data suggest a satisfying clinical outcome with various coupling methods, the most efficient coupling technique of the floating mass transducer to the round window is still a matter of debate. For this, a soft silicone-made coupler has been developed recently that aims to ease and optimize the stimulation of the round window membrane of this middle ear implant. We performed a temporal bone study evaluating the performance of the soft coupler compared to the coupling with individually shaped cartilage, perichondrium and the titanium round window coupler with loads up to 20 mN at the unaltered and fully exposed round window niche. The stimulation of the cochlea was measured by the volume velocities of the stapes footplate detected by a laser Doppler vibrometer. The coupling method was computed as significant factor with cartilage and perichondrium allowing for the highest volume velocities followed by the soft and titanium coupler. Exposure of the round window niche allowed for higher volume velocities while the applied load did not significantly affect the results. The soft coupler allows for a good contact to the round window membrane and an effective backward stimulation of the cochlea. Clinical data are mandatory to evaluate performance of this novel coupling method in vivo.
Park, Edward; Amoodi, Hosam; Kuthubutheen, Jafri; Chen, Joseph M; Nedzelski, Julian M; Lin, Vincent Y W
2015-05-28
Cochlear implantation has become a mainstream treatment option for patients with severe to profound sensorineural hearing loss. During cochlear implant, there are key surgical steps which are influenced by anatomical variations between each patient. The aim of this study is to determine if there are potential predictors of difficulties that may be encountered during the cortical mastoidectomy, facial recess approach and round window access in cochlear implant surgery based upon pre-operative temporal bone CT scan. Fifty seven patients undergoing unilateral cochlear implantation were analyzed. Difficulty with 1) cortical mastoidectomy, 2) facial recess approach, and 3) round window access were scored intra-operatively by the surgeon in a blinded fashion (1 = "easy", 2 = "moderate", 3 = "difficult"). Pre-operative temporal bone CT scans were analyzed for 1) degree of mastoid aeration; 2) location of the sigmoid sinus; 3) height of the tegmen; 4) the presence of air cells in the facial recess, and 5) degree of round window bony overhang. Poor mastoid aeration and lower tegmen position, but not the location of sigmoid sinus, are associated with greater difficulty with the cortical mastoidectomy. Presence of an air cell around the facial nerve was predictive of easier facial recess access. However, the degree of round window bony overhang was not predictive of difficulty associated with round window access. Certain parameters on the pre-operative temporal bone CT scan may be useful in predicting potential difficulties encountered during the key steps involved in cochlear implant surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinh, Thanh-Hung, E-mail: dinh@cc.utsunomiya-u.ac.jp; Suzuki, Yuhei; Arai, Goki
2015-09-21
We have characterized the spectral structure and the temporal history of the laser-produced high-Z multi-charged ion plasmas for the efficient water window soft x-ray sources. Strong unresolved transition array emission was observed due to 4d–4f and 4f–5g transitions from Au, Pb, and Bi plasmas in the 280–700 eV photon energy region. The temporal behavior of the emission was essentially similar of that of the laser pulse with a slight delay between different transitions. These results provide feedback for accurate modeling of the atomic processes with the radiative hydrodynamic simulations.
Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim
2016-07-01
Recent analyses of animal movement networks focused on the static aggregation of trade contacts over different time windows, which neglects the system's temporal variation. In terms of disease spread, ignoring the temporal dynamics can lead to an over- or underestimation of an outbreak's speed and extent. This becomes particularly evident, if the static aggregation allows for the existence of more paths compared to the number of time-respecting paths (i.e. paths in the right chronological order). Therefore, the aim of this study was to reveal differences between static and temporal representations of an animal trade network and to assess the quality of the static aggregation in comparison to the temporal counterpart. Contact data from a pig trade network (2006-2009) of a producer community in Northern Germany were analysed. The results show that a median value of 8.7 % (4.6-14.1%) of the nodes and 3.1% (1.6-5.5%) of the edges were active on a weekly resolution. No fluctuations in the activity patterns were obvious. Furthermore, 50% of the nodes already had one trade contact after approximately six months. For an accumulation window with increasing size (one day each), the accumulation rate, i.e. the relative increase in the number of nodes or edges, stayed relatively constant below 0.07% for the nodes and 0.12 % for the edges. The temporal distances had a much wider distribution than the topological distances. 84% of the temporal distances were smaller than 90 days. The maximum temporal distance was 1000 days, which corresponds to the temporal diameter of the present network. The median temporal correlation coefficient, which measures the probability for an edge to persist across two consecutive time steps, was 0.47, with a maximum value of 0.63 at the accumulation window of 88 days. The causal fidelity measures the fraction of the number of static paths which can also be taken in the temporal network. For the whole observation period relatively high values indicate that 67% of the time-respecting paths existed in both network representations. An increase to 0.87 (0.82-0.88) and 0.92 (0.80-0.98), respectively, could be observed for yearly and monthly aggregation windows. The results show that the investigated pig trade network in its static aggregation represents the temporal dynamics of the system sufficiently well. Therefore, the methodology for analysing static instead of dynamic networks can be used without losing too much information. Copyright © 2016 Elsevier B.V. All rights reserved.
Measurement of Temporal Awareness in Air Traffic Control
NASA Technical Reports Server (NTRS)
Rantanen, E.M.
2009-01-01
Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.
Auditory Processing Efficiency and Temporal Resolution in Children and Adults.
ERIC Educational Resources Information Center
Hill, Penelope R.; Hartley, Douglas E.H.; Glasberg, Brian R.; Moore, Brian C.J.; Moore, David R.
2004-01-01
Children have higher auditory backward masking (BM) thresholds than adults. One explanation for this is poor temporal resolution, resulting in difficulty separating brief or rapidly presented sounds. This implies that the auditory temporal window is broader in children than in adults. Alternatively, elevated BM thresholds in children may indicate…
Chen, Guang-Hong; Li, Yinsheng
2015-08-01
In x-ray computed tomography (CT), a violation of the Tuy data sufficiency condition leads to limited-view artifacts. In some applications, it is desirable to use data corresponding to a narrow temporal window to reconstruct images with reduced temporal-average artifacts. However, the need to reduce temporal-average artifacts in practice may result in a violation of the Tuy condition and thus undesirable limited-view artifacts. In this paper, the authors present a new iterative reconstruction method, synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON), to eliminate limited-view artifacts using data acquired within an ultranarrow temporal window that severely violates the Tuy condition. In time-resolved contrast enhanced CT acquisitions, image contrast dynamically changes during data acquisition. Each image reconstructed from data acquired in a given temporal window represents one time frame and can be denoted as an image vector. Conventionally, each individual time frame is reconstructed independently. In this paper, all image frames are grouped into a spatial-temporal image matrix and are reconstructed together. Rather than the spatial and/or temporal smoothing regularizers commonly used in iterative image reconstruction, the nuclear norm of the spatial-temporal image matrix is used in SMART-RECON to regularize the reconstruction of all image time frames. This regularizer exploits the low-dimensional structure of the spatial-temporal image matrix to mitigate limited-view artifacts when an ultranarrow temporal window is desired in some applications to reduce temporal-average artifacts. Both numerical simulations in two dimensional image slices with known ground truth and in vivo human subject data acquired in a contrast enhanced cone beam CT exam have been used to validate the proposed SMART-RECON algorithm and to demonstrate the initial performance of the algorithm. Reconstruction errors and temporal fidelity of the reconstructed images were quantified using the relative root mean square error (rRMSE) and the universal quality index (UQI) in numerical simulations. The performance of the SMART-RECON algorithm was compared with that of the prior image constrained compressed sensing (PICCS) reconstruction quantitatively in simulations and qualitatively in human subject exam. In numerical simulations, the 240(∘) short scan angular span was divided into four consecutive 60(∘) angular subsectors. SMART-RECON enables four high temporal fidelity images without limited-view artifacts. The average rRMSE is 16% and UQIs are 0.96 and 0.95 for the two local regions of interest, respectively. In contrast, the corresponding average rRMSE and UQIs are 25%, 0.78, and 0.81, respectively, for the PICCS reconstruction. Note that only one filtered backprojection image can be reconstructed from the same data set with an average rRMSE and UQIs are 45%, 0.71, and 0.79, respectively, to benchmark reconstruction accuracies. For in vivo contrast enhanced cone beam CT data acquired from a short scan angular span of 200(∘), three 66(∘) angular subsectors were used in SMART-RECON. The results demonstrated clear contrast difference in three SMART-RECON reconstructed image volumes without limited-view artifacts. In contrast, for the same angular sectors, PICCS cannot reconstruct images without limited-view artifacts and with clear contrast difference in three reconstructed image volumes. In time-resolved CT, the proposed SMART-RECON method provides a new method to eliminate limited-view artifacts using data acquired in an ultranarrow temporal window, which corresponds to approximately 60(∘) angular subsectors.
Kaganovich, Natalya; Schumaker, Jennifer
2016-01-01
Sensitivity to the temporal relationship between auditory and visual stimuli is key to efficient audiovisual integration. However, even adults vary greatly in their ability to detect audiovisual temporal asynchrony. What underlies this variability is currently unknown. We recorded event-related potentials (ERPs) while participants performed a simultaneity judgment task on a range of audiovisual (AV) and visual-auditory (VA) stimulus onset asynchronies (SOAs) and compared ERP responses in good and poor performers to the 200 ms SOA, which showed the largest individual variability in the number of synchronous perceptions. Analysis of ERPs to the VA200 stimulus yielded no significant results. However, those individuals who were more sensitive to the AV200 SOA had significantly more positive voltage between 210 and 270 ms following the sound onset. In a follow-up analysis, we showed that the mean voltage within this window predicted approximately 36% of variability in sensitivity to AV temporal asynchrony in a larger group of participants. The relationship between the ERP measure in the 210-270 ms window and accuracy on the simultaneity judgment task also held for two other AV SOAs with significant individual variability - 100 and 300 ms. Because the identified window was time-locked to the onset of sound in the AV stimulus, we conclude that sensitivity to AV temporal asynchrony is shaped to a large extent by the efficiency in the neural encoding of sound onsets. PMID:27094850
Fluid volume displacement at the oval and round windows with air and bone conduction stimulation.
Stenfelt, Stefan; Hato, Naohito; Goode, Richard L
2004-02-01
The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180 degrees for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.
Fluid volume displacement at the oval and round windows with air and bone conduction stimulation
NASA Astrophysics Data System (ADS)
Stenfelt, Stefan; Hato, Naohito; Goode, Richard L.
2004-02-01
The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180° for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.
Angelopoulos, Elias; Koutsoukos, Elias; Maillis, Antonis; Papadimitriou, George N; Stefanis, Costas
2014-03-01
Thought blocks (TBs) are characterized by regular interruptions in the stream of thought. Outward signs are abrupt and repeated interruptions in the flow of conversation or actions while subjective experience is that of a total and uncontrollable emptying of the mind. In the very limited bibliography regarding TB, the phenomenon is thought to be conceptualized as a disturbance of consciousness that can be attributed to stoppages of continuous information processing due to an increase in the volume of information to be processed. In an attempt to investigate potential expression of the phenomenon on the functional properties of electroencephalographic (EEG) activity, an EEG study was contacted in schizophrenic patients with persisting auditory verbal hallucinations (AVHs) who additionally exhibited TBs. In this case, we hypothesized that the persistent and dense AVHs could serve the role of an increased information flow that the brain is unable to process, a condition that is perceived by the person as TB. Phase synchronization analyses performed on EEG segments during the experience of TBs showed that synchrony values exhibited a long-range common mode of coupling (grouped behavior) among the left temporal area and the remaining central and frontal brain areas. These common synchrony-fluctuation schemes were observed for 0.5 to 2s and were detected in a 4-s window following the estimated initiation of the phenomenon. The observation was frequency specific and detected in the broad alpha band region (6-12Hz). The introduction of synchrony entropy (SE) analysis applied on the cumulative synchrony distribution showed that TB states were characterized by an explicit preference of the system to be functioned at low values of synchrony, while the synchrony values are broadly distributed during the recovery state. Our results indicate that during TB states, the phase locking of several brain areas were converged uniformly in a narrow band of low synchrony values and in a distinct time window, impeding thus the ability of the system to recruit and to process information during this time window. Copyright © 2014 Elsevier B.V. All rights reserved.
Temporal dynamics of figure-ground segregation in human vision.
Neri, Peter; Levi, Dennis M
2007-01-01
The segregation of figure from ground is arguably one of the most fundamental operations in human vision. Neural signals reflecting this operation appear in cortex as early as 50 ms and as late as 300 ms after presentation of a visual stimulus, but it is not known when these signals are used by the brain to construct the percepts of figure and ground. We used psychophysical reverse correlation to identify the temporal window for figure-ground signals in human perception and found it to lie within the range of 100-160 ms. Figure enhancement within this narrow temporal window was transient rather than sustained as may be expected from measurements in single neurons. These psychophysical results prompt and guide further electrophysiological studies.
Emergence of two near-infrared windows for in vivo and intraoperative SERS.
Lane, Lucas A; Xue, Ruiyang; Nie, Shuming
2018-04-06
Two clear windows in the near-infrared (NIR) spectrum are of considerable current interest for in vivo molecular imaging and spectroscopic detection. The main rationale is that near-infrared light can penetrate biological tissues such as skin and blood more efficiently than visible light because these tissues scatter and absorb less light at longer wavelengths. The first clear window, defined as light wavelengths between 650nm and 950nm, has been shown to be far superior for in vivo and intraoperative optical imaging than visible light. The second clear window, operating in the wavelength range of 1000-1700nm, has been reported to further improve detection sensitivity, spatial resolution, and tissue penetration because tissue photon scattering and background interference are further reduced at longer wavelengths. Here we discuss recent advances in developing biocompatible plasmonic nanoparticles for in vivo and intraoperative surface-enhanced Raman scattering (SERS) in both the first and second NIR windows. In particular, a new class of 'broad-band' plasmonic nanostructures is well suited for surface Raman enhancement across a broad range of wavelengths allowing a direct comparison of detection sensitivity and tissue penetration between the two NIR window. Also, optimized and encoded SERS nanoparticles are generally nontoxic and are much brighter than near-infrared quantum dots (QDs), raising new possibilities for ultrasensitive detection of microscopic tumors and image-guided precision surgery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Separation of High Order Harmonics with Fluoride Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, Tom; van Tilborg, Jeroen; Wright, Travis
2010-08-02
The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.
Dynamic compression of synthetic diamond windows (final report for LDRD project 93531).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, Daniel H.,
2008-09-01
Diamond is an attractive dynamic compression window for many reasons: high elastic limit,large mechanical impedance, and broad transparency range. Natural diamonds, however, aretoo expensive to be used in destructive experiments. Chemical vapor deposition techniquesare now able to produce large single-crystal windows, opening up many potential dynamiccompression applications. This project studied the behavior of synthetic diamond undershock wave compression. The results suggest that synthetic diamond could be a usefulwindow in this field, though complete characterization proved elusive.3
Wittmann, Marc
2011-01-01
It has been suggested that perception and action can be understood as evolving in temporal epochs or sequential processing units. Successive events are fused into units forming a unitary experience or “psychological present.” Studies have identified several temporal integration levels on different time scales which are fundamental for our understanding of behavior and subjective experience. In recent literature concerning the philosophy and neuroscience of consciousness these separate temporal processing levels are not always precisely distinguished. Therefore, empirical evidence from psychophysics and neuropsychology on these distinct temporal processing levels is presented and discussed within philosophical conceptualizations of time experience. On an elementary level, one can identify a functional moment, a basic temporal building block of perception in the range of milliseconds that defines simultaneity and succession. Below a certain threshold temporal order is not perceived, individual events are processed as co-temporal. On a second level, an experienced moment, which is based on temporal integration of up to a few seconds, has been reported in many qualitatively different experiments in perception and action. It has been suggested that this segmental processing mechanism creates temporal windows that provide a logistical basis for conscious representation and the experience of nowness. On a third level of integration, continuity of experience is enabled by working memory in the range of multiple seconds allowing the maintenance of cognitive operations and emotional feelings, leading to mental presence, a temporal window of an individual’s experienced presence. PMID:22022310
McNab, Fiona; Hillebrand, Arjan; Swithenby, Stephen J; Rippon, Gina
2012-01-01
Early, lesion-based models of language processing suggested that semantic and phonological processes are associated with distinct temporal and parietal regions respectively, with frontal areas more indirectly involved. Contemporary spatial brain mapping techniques have not supported such clear-cut segregation, with strong evidence of activation in left temporal areas by both processes and disputed evidence of involvement of frontal areas in both processes. We suggest that combining spatial information with temporal and spectral data may allow a closer scrutiny of the differential involvement of closely overlapping cortical areas in language processing. Using beamforming techniques to analyze magnetoencephalography data, we localized the neuronal substrates underlying primed responses to nouns requiring either phonological or semantic processing, and examined the associated measures of time and frequency in those areas where activation was common to both tasks. Power changes in the beta (14-30 Hz) and gamma (30-50 Hz) frequency bands were analyzed in pre-selected time windows of 350-550 and 500-700 ms In left temporal regions, both tasks elicited power changes in the same time window (350-550 ms), but with different spectral characteristics, low beta (14-20 Hz) for the phonological task and high beta (20-30 Hz) for the semantic task. In frontal areas (BA10), both tasks elicited power changes in the gamma band (30-50 Hz), but in different time windows, 500-700 ms for the phonological task and 350-550 ms for the semantic task. In the left inferior parietal area (BA40), both tasks elicited changes in the 20-30 Hz beta frequency band but in different time windows, 350-550 ms for the phonological task and 500-700 ms for the semantic task. Our findings suggest that, where spatial measures may indicate overlapping areas of involvement, additional beamforming techniques can demonstrate differential activation in time and frequency domains.
Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements.
Wutz, Andreas; Muschter, Evelyn; van Koningsbruggen, Martijn G; Weisz, Nathan; Melcher, David
2016-07-11
When processing dynamic input, the brain balances the opposing needs of temporal integration and sensitivity to change. We hypothesized that the visual system might resolve this challenge by aligning integration windows to the onset of newly arriving sensory samples. In a series of experiments, human participants observed the same sequence of two displays separated by a brief blank delay when performing either an integration or segregation task. First, using magneto-encephalography (MEG), we found a shift in the stimulus-evoked time courses by a 150-ms time window between task signals. After stimulus onset, multivariate pattern analysis (MVPA) decoding of task in occipital-parietal sources remained above chance for almost 1 s, and the task-decoding pattern interacted with task outcome. In the pre-stimulus period, the oscillatory phase in the theta frequency band was informative about both task processing and behavioral outcome for each task separately, suggesting that the post-stimulus effects were caused by a theta-band phase shift. Second, when aligning stimulus presentation to the onset of eye fixations, there was a similar phase shift in behavioral performance according to task demands. In both MEG and behavioral measures, task processing was optimal first for segregation and then integration, with opposite phase in the theta frequency range (3-5 Hz). The best fit to neurophysiological and behavioral data was given by a dampened 3-Hz oscillation from stimulus or eye fixation onset. The alignment of temporal integration windows to input changes found here may serve to actively organize the temporal processing of continuous sensory input. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Drótos, Gábor; Bódai, Tamás; Tél, Tamás
2016-08-01
In nonautonomous dynamical systems, like in climate dynamics, an ensemble of trajectories initiated in the remote past defines a unique probability distribution, the natural measure of a snapshot attractor, for any instant of time, but this distribution typically changes in time. In cases with an aperiodic driving, temporal averages taken along a single trajectory would differ from the corresponding ensemble averages even in the infinite-time limit: ergodicity does not hold. It is worth considering this difference, which we call the nonergodic mismatch, by taking time windows of finite length for temporal averaging. We point out that the probability distribution of the nonergodic mismatch is qualitatively different in ergodic and nonergodic cases: its average is zero and typically nonzero, respectively. A main conclusion is that the difference of the average from zero, which we call the bias, is a useful measure of nonergodicity, for any window length. In contrast, the standard deviation of the nonergodic mismatch, which characterizes the spread between different realizations, exhibits a power-law decrease with increasing window length in both ergodic and nonergodic cases, and this implies that temporal and ensemble averages differ in dynamical systems with finite window lengths. It is the average modulus of the nonergodic mismatch, which we call the ergodicity deficit, that represents the expected deviation from fulfilling the equality of temporal and ensemble averages. As an important finding, we demonstrate that the ergodicity deficit cannot be reduced arbitrarily in nonergodic systems. We illustrate via a conceptual climate model that the nonergodic framework may be useful in Earth system dynamics, within which we propose the measure of nonergodicity, i.e., the bias, as an order-parameter-like quantifier of climate change.
ERIC Educational Resources Information Center
Sylvain-Roy, Stephanie; Bherer, Louis; Belleville, Sylvie
2010-01-01
Temporal preparation was assessed in 15 Alzheimer's disease (AD) patients, 20 persons with mild cognitive impairment (MCI) and 28 healthy older adults. Participants completed a simple reaction time task in which the preparatory interval duration varied randomly within two blocks (short versus long temporal window). Results indicated that AD and…
Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.
Wirtssohn, Sarah; Ronacher, Bernhard
2015-04-01
Temporal integration in the auditory system of locusts was quantified by presenting single clicks and click pairs while performing intracellular recordings. Auditory neurons were studied at three processing stages, which form a feed-forward network in the metathoracic ganglion. Receptor neurons and most first-order interneurons ("local neurons") encode the signal envelope, while second-order interneurons ("ascending neurons") tend to extract more complex, behaviorally relevant sound features. In different neuron types of the auditory pathway we found three response types: no significant temporal integration (some ascending neurons), leaky energy integration (receptor neurons and some local neurons), and facilitatory processes (some local and ascending neurons). The receptor neurons integrated input over very short time windows (<2 ms). Temporal integration on longer time scales was found at subsequent processing stages, indicative of within-neuron computations and network activity. These different strategies, realized at separate processing stages and in parallel neuronal pathways within one processing stage, could enable the grasshopper's auditory system to evaluate longer time windows and thus to implement temporal filters, while at the same time maintaining a high temporal resolution. Copyright © 2015 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guang-Hong, E-mail: gchen7@wisc.edu; Li, Yinsheng
Purpose: In x-ray computed tomography (CT), a violation of the Tuy data sufficiency condition leads to limited-view artifacts. In some applications, it is desirable to use data corresponding to a narrow temporal window to reconstruct images with reduced temporal-average artifacts. However, the need to reduce temporal-average artifacts in practice may result in a violation of the Tuy condition and thus undesirable limited-view artifacts. In this paper, the authors present a new iterative reconstruction method, synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON), to eliminate limited-view artifacts using data acquired within an ultranarrow temporal window that severely violates the Tuy condition. Methods:more » In time-resolved contrast enhanced CT acquisitions, image contrast dynamically changes during data acquisition. Each image reconstructed from data acquired in a given temporal window represents one time frame and can be denoted as an image vector. Conventionally, each individual time frame is reconstructed independently. In this paper, all image frames are grouped into a spatial–temporal image matrix and are reconstructed together. Rather than the spatial and/or temporal smoothing regularizers commonly used in iterative image reconstruction, the nuclear norm of the spatial–temporal image matrix is used in SMART-RECON to regularize the reconstruction of all image time frames. This regularizer exploits the low-dimensional structure of the spatial–temporal image matrix to mitigate limited-view artifacts when an ultranarrow temporal window is desired in some applications to reduce temporal-average artifacts. Both numerical simulations in two dimensional image slices with known ground truth and in vivo human subject data acquired in a contrast enhanced cone beam CT exam have been used to validate the proposed SMART-RECON algorithm and to demonstrate the initial performance of the algorithm. Reconstruction errors and temporal fidelity of the reconstructed images were quantified using the relative root mean square error (rRMSE) and the universal quality index (UQI) in numerical simulations. The performance of the SMART-RECON algorithm was compared with that of the prior image constrained compressed sensing (PICCS) reconstruction quantitatively in simulations and qualitatively in human subject exam. Results: In numerical simulations, the 240{sup ∘} short scan angular span was divided into four consecutive 60{sup ∘} angular subsectors. SMART-RECON enables four high temporal fidelity images without limited-view artifacts. The average rRMSE is 16% and UQIs are 0.96 and 0.95 for the two local regions of interest, respectively. In contrast, the corresponding average rRMSE and UQIs are 25%, 0.78, and 0.81, respectively, for the PICCS reconstruction. Note that only one filtered backprojection image can be reconstructed from the same data set with an average rRMSE and UQIs are 45%, 0.71, and 0.79, respectively, to benchmark reconstruction accuracies. For in vivo contrast enhanced cone beam CT data acquired from a short scan angular span of 200{sup ∘}, three 66{sup ∘} angular subsectors were used in SMART-RECON. The results demonstrated clear contrast difference in three SMART-RECON reconstructed image volumes without limited-view artifacts. In contrast, for the same angular sectors, PICCS cannot reconstruct images without limited-view artifacts and with clear contrast difference in three reconstructed image volumes. Conclusions: In time-resolved CT, the proposed SMART-RECON method provides a new method to eliminate limited-view artifacts using data acquired in an ultranarrow temporal window, which corresponds to approximately 60{sup ∘} angular subsectors.« less
NASA Astrophysics Data System (ADS)
Tikan, Alexey; Bielawski, Serge; Szwaj, Christophe; Randoux, Stéphane; Suret, Pierre
2018-04-01
Temporal imaging systems are outstanding tools for single-shot observation of optical signals that have irregular and ultrafast dynamics. They allow long time windows to be recorded with femtosecond resolution, and do not rely on complex algorithms. However, simultaneous recording of amplitude and phase remains an open challenge for these systems. Here, we present a new heterodyne time-lens arrangement that efficiently records both the amplitude and phase of complex and random signals over large temporal windows (tens of picoseconds). Phase and time are encoded onto the two spatial dimensions of a camera. We implement this phase-sensitive time-lens system in two configurations: a time microscope and a digital temporal-holography device that enables single-shot measurement with a temporal resolution of 80 fs. We demonstrate direct application of our heterodyne time-lens to turbulent-like optical fields and optical rogue waves generated from nonlinear propagation of partially coherent waves inside optical fibres.
Compensation for Blur Requires Increase in Field of View and Viewing Time
Kwon, MiYoung; Liu, Rong; Chien, Lillian
2016-01-01
Spatial resolution is an important factor for human pattern recognition. In particular, low resolution (blur) is a defining characteristic of low vision. Here, we examined spatial (field of view) and temporal (stimulus duration) requirements for blurry object recognition. The spatial resolution of an image such as letter or face, was manipulated with a low-pass filter. In experiment 1, studying spatial requirement, observers viewed a fixed-size object through a window of varying sizes, which was repositioned until object identification (moving window paradigm). Field of view requirement, quantified as the number of “views” (window repositions) for correct recognition, was obtained for three blur levels, including no blur. In experiment 2, studying temporal requirement, we determined threshold viewing time, the stimulus duration yielding criterion recognition accuracy, at six blur levels, including no blur. For letter and face recognition, we found blur significantly increased the number of views, suggesting a larger field of view is required to recognize blurry objects. We also found blur significantly increased threshold viewing time, suggesting longer temporal integration is necessary to recognize blurry objects. The temporal integration reflects the tradeoff between stimulus intensity and time. While humans excel at recognizing blurry objects, our findings suggest compensating for blur requires increased field of view and viewing time. The need for larger spatial and longer temporal integration for recognizing blurry objects may further challenge object recognition in low vision. Thus, interactions between blur and field of view should be considered for developing low vision rehabilitation or assistive aids. PMID:27622710
A unified approach to the study of temporal, correlational, and rate coding.
Panzeri, S; Schultz, S R
2001-06-01
We demonstrate that the information contained in the spike occurrence times of a population of neurons can be broken up into a series of terms, each reflecting something about potential coding mechanisms. This is possible in the coding regime in which few spikes are emitted in the relevant time window. This approach allows us to study the additional information contributed by spike timing beyond that present in the spike counts and to examine the contributions to the whole information of different statistical properties of spike trains, such as firing rates and correlation functions. It thus forms the basis for a new quantitative procedure for analyzing simultaneous multiple neuron recordings and provides theoretical constraints on neural coding strategies. We find a transition between two coding regimes, depending on the size of the relevant observation timescale. For time windows shorter than the timescale of the stimulus-induced response fluctuations, there exists a spike count coding phase, in which the purely temporal information is of third order in time. For time windows much longer than the characteristic timescale, there can be additional timing information of first order, leading to a temporal coding phase in which timing information may affect the instantaneous information rate. In this new framework, we study the relative contributions of the dynamic firing rate and correlation variables to the full temporal information, the interaction of signal and noise correlations in temporal coding, synergy between spikes and between cells, and the effect of refractoriness. We illustrate the utility of the technique by analyzing a few cells from the rat barrel cortex.
Pedersen, Mangor; Omidvarnia, Amir; Zalesky, Andrew; Jackson, Graeme D
2018-06-08
Correlation-based sliding window analysis (CSWA) is the most commonly used method to estimate time-resolved functional MRI (fMRI) connectivity. However, instantaneous phase synchrony analysis (IPSA) is gaining popularity mainly because it offers single time-point resolution of time-resolved fMRI connectivity. We aim to provide a systematic comparison between these two approaches, on both temporal and topological levels. For this purpose, we used resting-state fMRI data from two separate cohorts with different temporal resolutions (45 healthy subjects from Human Connectome Project fMRI data with repetition time of 0.72 s and 25 healthy subjects from a separate validation fMRI dataset with a repetition time of 3 s). For time-resolved functional connectivity analysis, we calculated tapered CSWA over a wide range of different window lengths that were temporally and topologically compared to IPSA. We found a strong association in connectivity dynamics between IPSA and CSWA when considering the absolute values of CSWA. The association between CSWA and IPSA was stronger for a window length of ∼20 s (shorter than filtered fMRI wavelength) than ∼100 s (longer than filtered fMRI wavelength), irrespective of the sampling rate of the underlying fMRI data. Narrow-band filtering of fMRI data (0.03-0.07 Hz) yielded a stronger relationship between IPSA and CSWA than wider-band (0.01-0.1 Hz). On a topological level, time-averaged IPSA and CSWA nodes were non-linearly correlated for both short (∼20 s) and long (∼100 s) windows, mainly because nodes with strong negative correlations (CSWA) displayed high phase synchrony (IPSA). IPSA and CSWA were anatomically similar in the default mode network, sensory cortex, insula and cerebellum. Our results suggest that IPSA and CSWA provide comparable characterizations of time-resolved fMRI connectivity for appropriately chosen window lengths. Although IPSA requires narrow-band fMRI filtering, we recommend the use of IPSA given that it does not mandate a (semi-)arbitrary choice of window length and window overlap. A code for calculating IPSA is provided. Copyright © 2018. Published by Elsevier Inc.
Audiovisual Asynchrony Detection in Human Speech
ERIC Educational Resources Information Center
Maier, Joost X.; Di Luca, Massimiliano; Noppeney, Uta
2011-01-01
Combining information from the visual and auditory senses can greatly enhance intelligibility of natural speech. Integration of audiovisual speech signals is robust even when temporal offsets are present between the component signals. In the present study, we characterized the temporal integration window for speech and nonspeech stimuli with…
NASA Astrophysics Data System (ADS)
Luck, M.; Landis, M.; Gassert, F.; Luo, T.; Reig, P.
2013-12-01
Climate adaptation and strategic planning by states, corporations, and long-term investors require reliable information on the range of possible climatic changes. However, most decision makers are incapable of planning over the century-scale time horizons for which global climate models (GCMs) are developed. Even the most forward-looking actors rarely consider scenarios more than several decades into the future. The mismatch in model design and practical demands poses a challenge in extracting useful information on the decadal scale from global climate change models. Here, we explore options and limitations in generating decadal water supply change projections, as evaluated for the World Resources Institute's Aqueduct project's estimates of future change in water stress. Our approach uses an ensemble of six CMIP5 GCMs, selected to represent a broad lineage of models that best reproduce the mean and standard deviation of recent streamflow records in 18 large river basins, bias corrected to GLDAS-2.0 runoff. We examine sensitivity of point estimates of climate normal supply and water supply variability (interannual and seasonal) at the years 2020, 2030, and 2040, with a focus on using temporal windows of different lengths (11-, 21-, and 31-years) to generate the point estimates. With the aim of creating practical information for non-expert audiences, we will discuss the persistent question of 'how can we balance uncertainty and usability in designing scientific data products?'
Chemical rescue of cleft palate and midline defects in conditional GSK-3beta mice.
Liu, Karen J; Arron, Joseph R; Stankunas, Kryn; Crabtree, Gerald R; Longaker, Michael T
2007-03-01
Glycogen synthase kinase-3beta (GSK-3beta) has integral roles in a variety of biological processes, including development, diabetes, and the progression of Alzheimer's disease. As such, a thorough understanding of GSK-3beta function will have a broad impact on human biology and therapeutics. Because GSK-3beta interacts with many different pathways, its specific developmental roles remain unclear. We have discovered a genetic requirement for GSK-3beta in midline development. Homozygous null mice display cleft palate, incomplete fusion of the ribs at the midline and bifid sternum as well as delayed sternal ossification. Using a chemically regulated allele of GSK-3beta (ref. 6), we have defined requirements for GSK-3beta activity during discrete temporal windows in palatogenesis and skeletogenesis. The rapamycin-dependent allele of GSK-3beta produces GSK-3beta fused to a tag, FRB* (FKBP/rapamycin binding), resulting in a rapidly destabilized chimaeric protein. In the absence of drug, GSK-3beta(FRB)*(/FRB)* mutants appear phenotypically identical to GSK-3beta-/- mutants. In the presence of drug, GSK-3betaFRB* is rapidly stabilized, restoring protein levels and activity. Using this system, mutant phenotypes were rescued by restoring endogenous GSK-3beta activity during two distinct periods in gestation. This technology provides a powerful tool for defining windows of protein function during development.
Ishikawa, Akira; Hattori, Mayuko; Ishii, Ken-Ichiro; Kulis, David M.; Anderson, Donald M.; Imai, Ichiro
2014-01-01
Temporal changes in the in situ germination flux of cysts and the abundance of vegetative cells of the toxic dinoflagellate Alexandrium catenella were investigated in Ago Bay, central Japan from July 2003 to December 2004. The in situ germination flux (cells m−2 day−1) was measured using ‘plankton emergence trap/chambers (PET chambers)’. Germination of the cysts in the sediments occurred continuously during the study, ranging from 52 to 1753 cells m−2 day−1, with no temporal trend. This germination pattern appeared to be promoted by a short mandatory dormancy period for newly formed cysts coupled with a broad temperature window for germination. For the vegetative populations, high abundances (>105 cells m−2) were recorded in the water column from spring to summer and from autumn to early winter. The size of the vegetative populations did not correlate with the cyst germination flux but rather larger vegetative populations were often observed when the water temperature was around 20°C, indicating that bloom development was mainly regulated by the temperature. Nonetheless, the continuous germination pattern of A. catenella is advantageous enabling the germinated cells to immediately exploit favorable bloom conditions. PMID:25221373
Scala tympani cochleostomy II: topography and histology.
Adunka, Oliver F; Radeloff, Andreas; Gstoettner, Wolfgang K; Pillsbury, Harold C; Buchman, Craig A
2007-12-01
To assess intracochlear trauma using two different round window-related cochleostomy techniques in human temporal bones. Twenty-eight human temporal bones were included in this study. In 21 specimens, cochleostomies were initiated inferior to the round window (RW) annulus. In seven bones, cochleostomies were drilled anterior-inferior to the RW annulus. Limited cochlear implant electrode insertions were performed in 19 bones. In each specimen, promontory anatomy and cochleostomy drilling were photographically documented. Basal cochlear damage was assessed histologically and electrode insertion properties were documented in implanted bones. All implanted specimens showed clear scala tympani electrode placements regardless of cochleostomy technique. All 21 inferior cochleostomies were atraumatic. Anterior-inferior cochleostomies resulted in various degrees of intracochlear trauma in all seven bones. For atraumatic opening of the scala tympani using a cochleostomy approach, initiation of drilling should proceed from inferior to the round window annulus, with gradual progression toward the undersurface of the lumen. While cochleostomies initiated anterior-inferior to the round window annulus resulted in scala tympani opening, many of these bones displayed varying degrees of intracochlear trauma that may result in hearing loss. When intracochlear drilling is avoided, the anterior bony margin of the cochleostomy remains a significant intracochlear impediment to in-line electrode insertion.
Real-time 3-D contrast-enhanced transcranial ultrasound and aberration correction.
Ivancevich, Nikolas M; Pinton, Gianmarco F; Nicoletto, Heather A; Bennett, Ellen; Laskowitz, Daniel T; Smith, Stephen W
2008-09-01
Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3-D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3-D contrast-enhanced transcranial ultrasound. Using real-time 3-D (RT3D) ultrasound and microbubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and nine via the suboccipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the suboccipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44%, the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology.
Real-Time 3D Contrast-Enhanced Transcranial Ultrasound and Aberration Correction
Ivancevich, Nikolas M.; Pinton, Gianmarco F.; Nicoletto, Heather A.; Bennett, Ellen; Laskowitz, Daniel T.; Smith, Stephen W.
2008-01-01
Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3D contrast-enhanced transcranial ultrasound. Using real-time 3D (RT3D) ultrasound and micro-bubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and 9 via the sub-occipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the sub-occipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44% the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology. PMID:18395321
NREL Electrochromic Window Research Wins Award
None
2017-12-09
Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.
Perceptual learning shapes multisensory causal inference via two distinct mechanisms
McGovern, David P.; Roudaia, Eugenie; Newell, Fiona N.; Roach, Neil W.
2016-01-01
To accurately represent the environment, our brains must integrate sensory signals from a common source while segregating those from independent sources. A reasonable strategy for performing this task is to restrict integration to cues that coincide in space and time. However, because multisensory signals are subject to differential transmission and processing delays, the brain must retain a degree of tolerance for temporal discrepancies. Recent research suggests that the width of this ‘temporal binding window’ can be reduced through perceptual learning, however, little is known about the mechanisms underlying these experience-dependent effects. Here, in separate experiments, we measure the temporal and spatial binding windows of human participants before and after training on an audiovisual temporal discrimination task. We show that training leads to two distinct effects on multisensory integration in the form of (i) a specific narrowing of the temporal binding window that does not transfer to spatial binding and (ii) a general reduction in the magnitude of crossmodal interactions across all spatiotemporal disparities. These effects arise naturally from a Bayesian model of causal inference in which learning improves the precision of audiovisual timing estimation, whilst concomitantly decreasing the prior expectation that stimuli emanate from a common source. PMID:27091411
Using scan statistics for congenital anomalies surveillance: the EUROCAT methodology.
Teljeur, Conor; Kelly, Alan; Loane, Maria; Densem, James; Dolk, Helen
2015-11-01
Scan statistics have been used extensively to identify temporal clusters of health events. We describe the temporal cluster detection methodology adopted by the EUROCAT (European Surveillance of Congenital Anomalies) monitoring system. Since 2001, EUROCAT has implemented variable window width scan statistic for detecting unusual temporal aggregations of congenital anomaly cases. The scan windows are based on numbers of cases rather than being defined by time. The methodology is imbedded in the EUROCAT Central Database for annual application to centrally held registry data. The methodology was incrementally adapted to improve the utility and to address statistical issues. Simulation exercises were used to determine the power of the methodology to identify periods of raised risk (of 1-18 months). In order to operationalize the scan methodology, a number of adaptations were needed, including: estimating date of conception as unit of time; deciding the maximum length (in time) and recency of clusters of interest; reporting of multiple and overlapping significant clusters; replacing the Monte Carlo simulation with a lookup table to reduce computation time; and placing a threshold on underlying population change and estimating the false positive rate by simulation. Exploration of power found that raised risk periods lasting 1 month are unlikely to be detected except when the relative risk and case counts are high. The variable window width scan statistic is a useful tool for the surveillance of congenital anomalies. Numerous adaptations have improved the utility of the original methodology in the context of temporal cluster detection in congenital anomalies.
McNab, Fiona; Hillebrand, Arjan; Swithenby, Stephen J.; Rippon, Gina
2012-01-01
Early, lesion-based models of language processing suggested that semantic and phonological processes are associated with distinct temporal and parietal regions respectively, with frontal areas more indirectly involved. Contemporary spatial brain mapping techniques have not supported such clear-cut segregation, with strong evidence of activation in left temporal areas by both processes and disputed evidence of involvement of frontal areas in both processes. We suggest that combining spatial information with temporal and spectral data may allow a closer scrutiny of the differential involvement of closely overlapping cortical areas in language processing. Using beamforming techniques to analyze magnetoencephalography data, we localized the neuronal substrates underlying primed responses to nouns requiring either phonological or semantic processing, and examined the associated measures of time and frequency in those areas where activation was common to both tasks. Power changes in the beta (14–30 Hz) and gamma (30–50 Hz) frequency bands were analyzed in pre-selected time windows of 350–550 and 500–700 ms In left temporal regions, both tasks elicited power changes in the same time window (350–550 ms), but with different spectral characteristics, low beta (14–20 Hz) for the phonological task and high beta (20–30 Hz) for the semantic task. In frontal areas (BA10), both tasks elicited power changes in the gamma band (30–50 Hz), but in different time windows, 500–700 ms for the phonological task and 350–550 ms for the semantic task. In the left inferior parietal area (BA40), both tasks elicited changes in the 20–30 Hz beta frequency band but in different time windows, 350–550 ms for the phonological task and 500–700 ms for the semantic task. Our findings suggest that, where spatial measures may indicate overlapping areas of involvement, additional beamforming techniques can demonstrate differential activation in time and frequency domains. PMID:22908001
Chien, Wade; Ravicz, Michael E.; Rosowski, John J.; Merchant, Saumil N.
2008-01-01
Objectives (1) To develop a cadaveric temporal-bone preparation to study the mechanism of hearing loss resulting from superior semicircular canal dehiscence (SCD) and (2) to assess the potential usefulness of clinical measurements of umbo velocity for the diagnosis of SCD. Background The syndrome of dehiscence of the superior semicircular canal is a clinical condition encompassing a variety of vestibular and auditory symptoms, including an air-bone gap at low frequencies. It has been hypothesized that the dehiscence acts as a “third window” into the inner ear that shunts acoustic energy away from the cochlea at low frequencies, causing hearing loss. Methods Sound-induced stapes, umbo, and round-window velocities were measured in prepared temporal bones (n = 8) using laser-Doppler vibrometry (1) with the superior semicircular canal intact, (2) after creation of a dehiscence in the superior canal, and (3) with the dehiscence patched. Clinical measurements of umbo velocity in live SCD ears (n = 29) were compared with similar data from our cadaveric temporal-bone preparations. Results An SCD caused a significant reduction in sound-induced round-window velocity at low frequencies, small but significant increases in sound-induced stapes and umbo velocities, and a measurable fluid velocity inside the dehiscence. The increase in sound-induced umbo velocity in temporal bones was also found to be similar to that measured in the 29 live ears with SCD. Conclusion Findings from the cadaveric temporal-bone preparation were consistent with the third-window hypothesis. In addition, measurement of umbo velocity in live ears is helpful in distinguishing SCD from other otologic pathologies presenting with an air-bone gap (e.g., otosclerosis). PMID:17255894
NASA Astrophysics Data System (ADS)
Saleem, M.; Resmi, L.; Misra, Kuntal; Pai, Archana; Arun, K. G.
2018-03-01
Short duration Gamma Ray Bursts (SGRB) and their afterglows are among the most promising electromagnetic (EM) counterparts of Neutron Star (NS) mergers. The afterglow emission is broad-band, visible across the entire electromagnetic window from γ-ray to radio frequencies. The flux evolution in these frequencies is sensitive to the multidimensional afterglow physical parameter space. Observations of gravitational wave (GW) from BNS mergers in spatial and temporal coincidence with SGRB and associated afterglows can provide valuable constraints on afterglow physics. We run simulations of GW-detected BNS events and assuming that all of them are associated with a GRB jet which also produces an afterglow, investigate how detections or non-detections in X-ray, optical and radio frequencies can be influenced by the parameter space. We narrow down the regions of afterglow parameter space for a uniform top-hat jet model, which would result in different detection scenarios. We list inferences which can be drawn on the physics of GRB afterglows from multimessenger astronomy with coincident GW-EM observations.
Windows and Envelope R&D Opportunities Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building Technologies Office
BTO's Emerging Technologies program held a two-day workshop on “Windows and Envelope R&D Opportunities” on May 31 and June 1, 2017 at the Illinois Institute of Technology in Chicago, Illinois. A broad range of about 100 experts from industry, academia, national laboratories, and government participated, contributing their ideas, insights, and perspectives. Their feedback is intended to help inform and augment BTO’s research and development activities.
Challenges of pedodiversity in soil science
NASA Astrophysics Data System (ADS)
Toomanian, N.; Esfandiarpoor, I.
2010-12-01
Soil diversity is not a completely new concept in soil science. It has been discussed from early times but it was not challenged this much broad. Ibañez with introducing the pedodiversity opened a new conceptual window to ease the induction of the soils complexity, spatial and temporal evolution and distribution. Pedodiversity now attracts more attention and goes to open new windows in soil science. Pedodiversity faces now with different challenges, which could be critical in its way on. Do the current soil diversity indices conceptually define all aspects of soil variability, or do we need to bind them with other characteristics like taxonomic distances? How is the soil individualism defined within the context of spatial variability and soil continuum? How are pedocomplexity, connectance, pedodiversity and soil spatial structure related? Can the changes of soil diversity be accounted as the rate of soil development? Can a range of pedodiversity index be a scale for soil series definition? Initial and some of current pedodiversity studies were/are focused on the concepts and measurement of pedodiversity and soil complexity indices of soilscape compared with the biological diversity and complexity. However, for the pedogenetic studies, the most important issues are the evolutionary concerns out of this approach compared with the other biotic systems. The new contexts, which should be more undertaken in future studies are: functional diversity, temporal diversity, study of soil and landform extinction and preservation. The last question could be: how pedodiversity could be changed under different understanding levels? A case study has been carried out in Charmahal and Bakhtiary province, Iran. Its objectives are the following: comparing the pedodiversity indices combined with and without taxonomic distances within tow replication of a geomorphic surface (Pi 111). What the pedodiversity says here? Did the unique calcification process which rules the soil formation here result in endemism or soil zonality? Do different pedodiversity indices correlate with the soil patterns?
Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data
Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao
2015-01-01
Owing to low temporal resolution and cloud interference, there is a shortage of high spatial resolution remote sensing data. To address this problem, this study introduces a modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the limitations of the conditional spatial temporal data fusion approach (STDFA) including the constant window for disaggregation and the sensor difference. An adaptive window size selection method is proposed in this study to select the best window size and moving steps for the disaggregation of coarse pixels. The linear regression method is used to remove the influence of differences in sensor systems using disaggregated mean coarse reflectance by testing and validation in two study areas located in Xinjiang Province, China. The results show that the MSTDFA algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97. PMID:26393607
Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data.
Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao
2015-09-18
Owing to low temporal resolution and cloud interference, there is a shortage of high spatial resolution remote sensing data. To address this problem, this study introduces a modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the limitations of the conditional spatial temporal data fusion approach (STDFA) including the constant window for disaggregation and the sensor difference. An adaptive window size selection method is proposed in this study to select the best window size and moving steps for the disaggregation of coarse pixels. The linear regression method is used to remove the influence of differences in sensor systems using disaggregated mean coarse reflectance by testing and validation in two study areas located in Xinjiang Province, China. The results show that the MSTDFA algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97.
Spatial, temporal, and hybrid decompositions for large-scale vehicle routing with time windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, Russell W
This paper studies the use of decomposition techniques to quickly find high-quality solutions to large-scale vehicle routing problems with time windows. It considers an adaptive decomposition scheme which iteratively decouples a routing problem based on the current solution. Earlier work considered vehicle-based decompositions that partitions the vehicles across the subproblems. The subproblems can then be optimized independently and merged easily. This paper argues that vehicle-based decompositions, although very effective on various problem classes also have limitations. In particular, they do not accommodate temporal decompositions and may produce spatial decompositions that are not focused enough. This paper then proposes customer-based decompositionsmore » which generalize vehicle-based decouplings and allows for focused spatial and temporal decompositions. Experimental results on class R2 of the extended Solomon benchmarks demonstrates the benefits of the customer-based adaptive decomposition scheme and its spatial, temporal, and hybrid instantiations. In particular, they show that customer-based decompositions bring significant benefits over large neighborhood search in contrast to vehicle-based decompositions.« less
Tóth, Miklós; Sirirattanapan, Jarinratn; Mann, Wolf
2013-08-01
The purpose of this study is to offer new data about facial nerve malformations in the tympanic cavity. Prospective anatomic study of newborns to demonstrate the submacroscopic anatomy of the intratympanic facial nerve and its surrounding structures by malformations. Step-by-step microdissection of 12 newborn temporal bones and histologic evaluation of 4 middle ears showing multiple malformations. Four of 12 temporal bones presented malformation in the middle ear. All 4 temporal bones showed developmental failures of the stapes, and 3 of them had malposition of the tympanic portion of the facial nerve. In 3 cases, there was an oval window atresia, and in 1 case, the rim of the oval window was not ossified and was positioned medial to the stapes. Malformation or displacement of the stapes can be an indirect sign for facial nerve malformation. The most common site for facial nerve malformation is the tympanic portion. The tympanic segment of the nerve is devoid of bony covering in association with these anomalies of the stapes.
Vernez Moudon, Anne; Hurvitz, Philip M.; Aggarwal, Anju; Drewnowski, Adam
2017-01-01
To assess differences between GPS and self-reported measures of location, we examined visits to fast food restaurants and supermarkets using a spatiotemporal framework. Data came from 446 participants who responded to a survey, filled out travel diaries of places visited, and wore a GPS receiver for seven consecutive days. Provided by Public Health Seattle King County, addresses from food permit data were matched to King County tax assessor parcels in a GIS. A three-step process was used to verify travel-diary reported visits using GPS records: (1) GPS records were temporally matched if their timestamps were within the time window created by the arrival and departure times reported in the travel diary; (2) the temporally matched GPS records were then spatially matched if they were located in a food establishment parcel of the same type reported in the diary; (3) the travel diary visit was then GPS-sensed if the name of food establishment in the parcel matched the one reported in the travel diary. To account for errors in reporting arrival and departure times, GPS records were temporally matched to three time windows: the exact time, +/- 10 minutes, and +/- 30 minutes. One third of the participants reported 273 visits to fast food restaurants; 88% reported 1,102 visits to supermarkets. Of these, 77.3 percent of the fast food and 78.6 percent supermarket visits were GPS-sensed using the +/-10-minute time window. At this time window, the mean travel-diary reported fast food visit duration was 14.5 minutes (SD 20.2), 1.7 minutes longer than the GPS-sensed visit. For supermarkets, the reported visit duration was 23.7 minutes (SD 18.9), 3.4 minutes longer than the GPS-sensed visit. Travel diaries provide reasonably accurate information on the locations and brand names of fast food restaurants and supermarkets participants report visiting. PMID:28388619
Scully, Jason Y; Vernez Moudon, Anne; Hurvitz, Philip M; Aggarwal, Anju; Drewnowski, Adam
2017-01-01
To assess differences between GPS and self-reported measures of location, we examined visits to fast food restaurants and supermarkets using a spatiotemporal framework. Data came from 446 participants who responded to a survey, filled out travel diaries of places visited, and wore a GPS receiver for seven consecutive days. Provided by Public Health Seattle King County, addresses from food permit data were matched to King County tax assessor parcels in a GIS. A three-step process was used to verify travel-diary reported visits using GPS records: (1) GPS records were temporally matched if their timestamps were within the time window created by the arrival and departure times reported in the travel diary; (2) the temporally matched GPS records were then spatially matched if they were located in a food establishment parcel of the same type reported in the diary; (3) the travel diary visit was then GPS-sensed if the name of food establishment in the parcel matched the one reported in the travel diary. To account for errors in reporting arrival and departure times, GPS records were temporally matched to three time windows: the exact time, +/- 10 minutes, and +/- 30 minutes. One third of the participants reported 273 visits to fast food restaurants; 88% reported 1,102 visits to supermarkets. Of these, 77.3 percent of the fast food and 78.6 percent supermarket visits were GPS-sensed using the +/-10-minute time window. At this time window, the mean travel-diary reported fast food visit duration was 14.5 minutes (SD 20.2), 1.7 minutes longer than the GPS-sensed visit. For supermarkets, the reported visit duration was 23.7 minutes (SD 18.9), 3.4 minutes longer than the GPS-sensed visit. Travel diaries provide reasonably accurate information on the locations and brand names of fast food restaurants and supermarkets participants report visiting.
TH-CD-207B-03: How to Quantify Temporal Resolution in X-Ray MDCT Imaging?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budde, A; GE Healthcare Technologies, Madison, WI; Li, Y
Purpose: In modern CT scanners, a quantitative metric to assess temporal response, namely, to quantify the temporal resolution (TR), remains elusive. Rough surrogate metrics, such as half of the gantry rotation time for single source CT, a quarter of the gantry rotation time for dual source CT, or measurements of motion artifact’s size, shape, or intensity have previously been used. In this work, a rigorous framework which quantifies TR and a practical measurement method are developed. Methods: A motion phantom was simulated which consisted of a single rod that is in motion except during a static period at the temporalmore » center of the scan, termed the TR window. If the image of the motion scan has negligible motion artifacts compared to an image from a totally static scan, then the system has a TR no worse than the TR window used. By repeating this comparison with varying TR windows, the TR of the system can be accurately determined. Motion artifacts were also visually assessed and the TR was measured across varying rod motion speeds, directions, and locations. Noiseless fan beam acquisitions were simulated and images were reconstructed with a short-scan image reconstruction algorithm. Results: The size, shape, and intensity of motion artifacts varied when the rod speed, direction, or location changed. TR measured using the proposed method, however, was consistent across rod speeds, directions, and locations. Conclusion: Since motion artifacts vary depending upon the motion speed, direction, and location, they are not suitable for measuring TR. In this work, a CT system with a specified TR is defined as having the ability to produce a static image with negligible motion artifacts, no matter what motion occurs outside of a static window of width TR. This framework allows for practical measurement of temporal resolution in clinical CT imaging systems. Funding support: GE Healthcare; Conflict of Interest: Employee, GE Healthcare.« less
Globally Gridded Satellite observations for climate studies
Knapp, K.R.; Ansari, S.; Bain, C.L.; Bourassa, M.A.; Dickinson, M.J.; Funk, Chris; Helms, C.N.; Hennon, C.C.; Holmes, C.D.; Huffman, G.J.; Kossin, J.P.; Lee, H.-T.; Loew, A.; Magnusdottir, G.
2011-01-01
Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them that no central archive of geostationary data for all international satellites exists, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multisatellite climate studies. The International Satellite Cloud Climatology Project (ISCCP) set the stage for overcoming these issues by archiving a subset of the full-resolution geostationary data at ~10-km resolution at 3-hourly intervals since 1983. Recent efforts at NOAA's National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in Network Common Data Format (netCDF) using standards that permit a wide variety of tools and libraries to process the data quickly and easily. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.
Globally Gridded Satellite (GridSat) Observations for Climate Studies
NASA Technical Reports Server (NTRS)
Knapp, Kenneth R.; Ansari, Steve; Bain, Caroline L.; Bourassa, Mark A.; Dickinson, Michael J.; Funk, Chris; Helms, Chip N.; Hennon, Christopher C.; Holmes, Christopher D.; Huffman, George J.;
2012-01-01
Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them: there is no central archive of geostationary data for all international satellites, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multi-satellite climate studies. The International Satellite Cloud Climatology Project set the stage for overcoming these issues by archiving a subset of the full resolution geostationary data at approx.10 km resolution at 3 hourly intervals since 1983. Recent efforts at NOAA s National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in the netCDF format using standards that permit a wide variety of tools and libraries to quickly and easily process the data. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.
NASA Astrophysics Data System (ADS)
UŻarowska, E.; Czajkowski, Rafał; Konopka, W.
2014-11-01
We aim to create a set of genetic tools where permanent opsin expression (ChR or NpHR) is precisely limited to the population of neurons that express immediate early gene c-fos during a specific temporal window of behavioral training. Since the c-fos gene is only expressed in neurons that form experience-dependent ensemble, this approach will result in specific labeling of a small subset of cells that create memory trace for the learned behavior. To this end we employ two alternative inducible gene expression systems: Tet Expression System and Cre/lox System. In both cases, the temporal window for opsin induction is controlled pharmacologically, by doxycycline or tamoxifen, respectively. Both systems will be used for creating lines of transgenic animals.
The Rhythm Aftereffect: Support for Time Sensitive Neurons with Broad Overlapping Tuning Curves
ERIC Educational Resources Information Center
Becker, Mark W.; Rasmussen, Ian P.
2007-01-01
Ivry [Ivry, R. B. (1996). The representation of temporal information in perception and motor control. Current Opinion in Neurobiology, 6, 851-857.] proposed that explicit coding of brief time intervals is accomplished by neurons that are tuned to a preferred temporal interval and have broad overlapping tuning curves. This proposal is analogous to…
Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David
2014-01-22
Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.
Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C
2010-06-01
Transgenic wheat (Triticum aestivum L.) with improved agronomic traits is currently being field-tested. Gene flow in space is well-documented, but isolation in time has not received comparable attention. Here, we report the results of a field experiment that investigated reductions in intraspecific gene flow associated with temporal isolation of flowering between T. aestivum conspecifics. Pollen-mediated gene flow (PMGF) between an imazamox-resistant (IR) volunteer wheat population and a non-IR spring wheat crop was assessed over a range of volunteer emergence timings and plant population densities that collectively promoted flowering asynchrony. Natural hybridization events between the two populations were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) lines. Based on the examination of >545,000 seedlings, we identified a hybridization window in spring wheat approximately 125 growing degree-days (GDD) in length. We found a sizeable reduction (two- to four-fold) in gene flow frequencies when flowering occurred outside of this window. The hybridization window identified in this research also will serve to temporally isolate neighboring wheat crops. However, strict control of volunteer populations or spatial isolation of neighbouring crops emerging within a 125 GDD hybridization window will be necessary to maintain low frequencies of PMGF in spring wheat fields. The model developed herein also is likely to be applicable to other wind-pollinated species.
Threshold model of cascades in empirical temporal networks
NASA Astrophysics Data System (ADS)
Karimi, Fariba; Holme, Petter
2013-08-01
Threshold models try to explain the consequences of social influence like the spread of fads and opinions. Along with models of epidemics, they constitute a major theoretical framework of social spreading processes. In threshold models on static networks, an individual changes her state if a certain fraction of her neighbors has done the same. When there are strong correlations in the temporal aspects of contact patterns, it is useful to represent the system as a temporal network. In such a system, not only contacts but also the time of the contacts are represented explicitly. In many cases, bursty temporal patterns slow down disease spreading. However, as we will see, this is not a universal truth for threshold models. In this work we propose an extension of Watts’s classic threshold model to temporal networks. We do this by assuming that an agent is influenced by contacts which lie a certain time into the past. I.e., the individuals are affected by contacts within a time window. In addition to thresholds in the fraction of contacts, we also investigate the number of contacts within the time window as a basis for influence. To elucidate the model’s behavior, we run the model on real and randomized empirical contact datasets.
Al-Saleem, Fetweh H; Nasser, Zidoon; Olson, Rebecca M; Cao, Linsen; Simpson, Lance L
2011-08-01
Therapeutic antibodies are one of the major classes of medical countermeasures that can provide protection against potential bioweapons such as botulinum toxin. Although a broad array of antibodies are being evaluated for their ability to neutralize the toxin, there is little information that defines the circumstances under which these antibodies can be used. In the present study, an effort was made to quantify the temporal factors that govern therapeutic antibody use in a postchallenge scenario. Experiments were done involving inhalation administration of toxin to mice, intravenous administration to mice, and direct application to murine phrenic nerve-hemidiaphragm preparations. As part of this study, several pharmacokinetic characteristics of botulinum toxin and neutralizing antibodies were measured. The core observation that emerged from the work was that the window of opportunity within which postchallenge administration of antibodies exerted a beneficial effect increased as the challenge dose of toxin decreased. The critical factor in establishing the window of opportunity was the amount of time needed for fractional redistribution of a neuroparalytic quantum of toxin from the extraneuronal space to the intraneuronal space. This redistribution event was a dose-dependent phenomenon. It is likely that the approach used to identify the factors that govern postchallenge efficacy of antibodies against botulinum toxin can be used to assess the factors that govern postchallenge efficacy of medical countermeasures against any agent of bioterrorism or biological warfare.
Cecere, Roberto; Gross, Joachim; Thut, Gregor
2016-06-01
The ability to integrate auditory and visual information is critical for effective perception and interaction with the environment, and is thought to be abnormal in some clinical populations. Several studies have investigated the time window over which audiovisual events are integrated, also called the temporal binding window, and revealed asymmetries depending on the order of audiovisual input (i.e. the leading sense). When judging audiovisual simultaneity, the binding window appears narrower and non-malleable for auditory-leading stimulus pairs and wider and trainable for visual-leading pairs. Here we specifically examined the level of independence of binding mechanisms when auditory-before-visual vs. visual-before-auditory input is bound. Three groups of healthy participants practiced audiovisual simultaneity detection with feedback, selectively training on auditory-leading stimulus pairs (group 1), visual-leading stimulus pairs (group 2) or both (group 3). Subsequently, we tested for learning transfer (crossover) from trained stimulus pairs to non-trained pairs with opposite audiovisual input. Our data confirmed the known asymmetry in size and trainability for auditory-visual vs. visual-auditory binding windows. More importantly, practicing one type of audiovisual integration (e.g. auditory-visual) did not affect the other type (e.g. visual-auditory), even if trainable by within-condition practice. Together, these results provide crucial evidence that audiovisual temporal binding for auditory-leading vs. visual-leading stimulus pairs are independent, possibly tapping into different circuits for audiovisual integration due to engagement of different multisensory sampling mechanisms depending on leading sense. Our results have implications for informing the study of multisensory interactions in healthy participants and clinical populations with dysfunctional multisensory integration. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
New U/Th ages for Pleistocene megafauna deposits of southeastern Queensland, Australia
NASA Astrophysics Data System (ADS)
Price, Gilbert J.; Zhao, Jian-xin; Feng, Yue-xing; Hocknull, Scott A.
2009-02-01
Arguments over the extinction of Pleistocene megafauna have become particularly polarised in recent years. Causes for the extinctions are widely debated with climate change, human hunting and/or habitat modification, or a combination of those factors, being the dominant hypotheses. However, a lack of a spatially constrained chronology for many megafauna renders most hypotheses difficult to test. Here, we present several new U/Th dates for a series of previously undated, megafauna-bearing localities from southeastern Queensland, Australia. The sites were previously used to argue for or against various megafauna extinction hypotheses, and are the type localities for two now-extinct Pleistocene marsupials (including the giant koala, Phascolarctos stirtoni). The new dating allows the deposits to be placed in a spatially- and temporally constrained context relevant to the understanding of Australian megafaunal extinctions. The results indicate that The Joint (Texas Caves) megafaunal assemblage is middle Pleistocene or older (>292 ky); the Cement Mills (Gore) megafaunal assemblage is late Pleistocene or older (>53 ky); and the Russenden Cave Bone Chamber (Texas Caves) megafaunal assemblage is late Pleistocene (˜55 ky). Importantly, the new results broadly show that the sites date prior to the hypothesised megafaunal extinction 'window' (i.e., ˜30-50 ky), and therefore, cannot be used to argue exclusively for or against human/climate change extinction models, without first exploring their palaeoecological significance on wider temporal and spatial scales.
Song Perception by Professional Singers and Actors: An MEG Study
Rosslau, Ken; Herholz, Sibylle C.; Knief, Arne; Ortmann, Magdalene; Deuster, Dirk; Schmidt, Claus-Michael; Zehnhoff-Dinnesen, Antoinetteam; Pantev, Christo; Dobel, Christian
2016-01-01
The cortical correlates of speech and music perception are essentially overlapping, and the specific effects of different types of training on these networks remain unknown. We compared two groups of vocally trained professionals for music and speech, singers and actors, using recited and sung rhyme sequences from German art songs with semantic and/ or prosodic/melodic violations (i.e. violations of pitch) of the last word, in order to measure the evoked activation in a magnetoencephalographic (MEG) experiment. MEG data confirmed the existence of intertwined networks for the sung and spoken modality in an early time window after word violation. In essence for this early response, higher activity was measured after melodic/prosodic than semantic violations in predominantly right temporal areas. For singers as well as for actors, modality-specific effects were evident in predominantly left-temporal lateralized activity after semantic expectancy violations in the spoken modality, and right-dominant temporal activity in response to melodic violations in the sung modality. As an indication of a special group-dependent audiation process, higher neuronal activity for singers appeared in a late time window in right temporal and left parietal areas, both after the recited and the sung sequences. PMID:26863437
The sense of body ownership relaxes temporal constraints for multisensory integration.
Maselli, Antonella; Kilteni, Konstantina; López-Moliner, Joan; Slater, Mel
2016-08-03
Experimental work on body ownership illusions showed how simple multisensory manipulation can generate the illusory experience of an artificial limb as being part of the own-body. This work highlighted how own-body perception relies on a plastic brain representation emerging from multisensory integration. The flexibility of this representation is reflected in the short-term modulations of physiological states and perceptual processing observed during these illusions. Here, we explore the impact of ownership illusions on the temporal dimension of multisensory integration. We show that, during the illusion, the temporal window for integrating touch on the physical body with touch seen on a virtual body representation, increases with respect to integration with visual events seen close but separated from the virtual body. We show that this effect is mediated by the ownership illusion. Crucially, the temporal window for visuotactile integration was positively correlated with participants' scores rating the illusory experience of owning the virtual body and touching the object seen in contact with it. Our results corroborate the recently proposed causal inference mechanism for illusory body ownership. As a novelty, they show that the ensuing illusory causal binding between stimuli from the real and fake body relaxes constraints for the integration of bodily signals.
A General Audiovisual Temporal Processing Deficit in Adult Readers With Dyslexia.
Francisco, Ana A; Jesse, Alexandra; Groen, Margriet A; McQueen, James M
2017-01-01
Because reading is an audiovisual process, reading impairment may reflect an audiovisual processing deficit. The aim of the present study was to test the existence and scope of such a deficit in adult readers with dyslexia. We tested 39 typical readers and 51 adult readers with dyslexia on their sensitivity to the simultaneity of audiovisual speech and nonspeech stimuli, their time window of audiovisual integration for speech (using incongruent /aCa/ syllables), and their audiovisual perception of phonetic categories. Adult readers with dyslexia showed less sensitivity to audiovisual simultaneity than typical readers for both speech and nonspeech events. We found no differences between readers with dyslexia and typical readers in the temporal window of integration for audiovisual speech or in the audiovisual perception of phonetic categories. The results suggest an audiovisual temporal deficit in dyslexia that is not specific to speech-related events. But the differences found for audiovisual temporal sensitivity did not translate into a deficit in audiovisual speech perception. Hence, there seems to be a hiatus between simultaneity judgment and perception, suggesting a multisensory system that uses different mechanisms across tasks. Alternatively, it is possible that the audiovisual deficit in dyslexia is only observable when explicit judgments about audiovisual simultaneity are required.
Effects of Spatio-Temporal Aliasing on Out-the-Window Visual Systems
NASA Technical Reports Server (NTRS)
Sweet, Barbara T.; Stone, Leland S.; Liston, Dorion B.; Hebert, Tim M.
2014-01-01
Designers of out-the-window visual systems face a challenge when attempting to simulate the outside world as viewed from a cockpit. Many methodologies have been developed and adopted to aid in the depiction of particular scene features, or levels of static image detail. However, because aircraft move, it is necessary to also consider the quality of the motion in the simulated visual scene. When motion is introduced in the simulated visual scene, perceptual artifacts can become apparent. A particular artifact related to image motion, spatiotemporal aliasing, will be addressed. The causes of spatio-temporal aliasing will be discussed, and current knowledge regarding the impact of these artifacts on both motion perception and simulator task performance will be reviewed. Methods of reducing the impact of this artifact are also addressed
NASA Astrophysics Data System (ADS)
Paul, J. D.; Roberts, G. G.; White, N.
2012-04-01
It is generally accepted that the surface topography of Africa is a manifestation of convective circulation in the sub-lithospheric mantle. Here, we present an inverse method whereby longitudinal river profiles are interrogated to extract quantitative estimates of spatial and temporal variations in the rate of tectonic uplift. Surface processes can provide an important window into transient convective circulation in the sub-lithospheric mantle. River profiles act as 'tectonic tape recorders': we assume the generation of broad, convex-upward knickzones to represent the effect of tectonic uplift shifting the river system into a state of disequilibrium. Profiles evolve through time primarily via the headward retreat of these knickzones. We use a conjugate gradient inverse algorithm to minimise the misfit between observed river profiles - derived from a regional Digital Elevation Model (DEM) - and calculated profiles obtained by varying the uplift rate history. We jointly invert a total of 98 Malagasy and 570 African river profiles to obtain a history of the cumulative tectonic uplift through geological time. We show that Africa has undergone two phases of rapid uplift: first in Eocene times; secondly, since 10 Ma. While the first gave rise to broad, long wavelength topography, the second led to more localised domal swells of high relief. We propose the existence of two wavelengths of dynamic support, reflecting a change in the style of convection in the upper mantle since 50 Ma. Our results correlate strongly with independent geological estimates of uplift across Africa and Madagascar, while our calculated landscape surface following 50 Myr of uplift corresponds closely to a surface fit across present-day drainage divides. Finally we calculate the solid sediment flux delivered to major African deltas as a function of time. This onshore record provides an important indirect constraint on the history of vertical motions at the surface, and agrees well with the offshore flux record, obtained from mapping the thickness of chronostratigraphic sediment packages at the deltas.
Carreiro, André V; Amaral, Pedro M T; Pinto, Susana; Tomás, Pedro; de Carvalho, Mamede; Madeira, Sara C
2015-12-01
Amyotrophic Lateral Sclerosis (ALS) is a devastating disease and the most common neurodegenerative disorder of young adults. ALS patients present a rapidly progressive motor weakness. This usually leads to death in a few years by respiratory failure. The correct prediction of respiratory insufficiency is thus key for patient management. In this context, we propose an innovative approach for prognostic prediction based on patient snapshots and time windows. We first cluster temporally-related tests to obtain snapshots of the patient's condition at a given time (patient snapshots). Then we use the snapshots to predict the probability of an ALS patient to require assisted ventilation after k days from the time of clinical evaluation (time window). This probability is based on the patient's current condition, evaluated using clinical features, including functional impairment assessments and a complete set of respiratory tests. The prognostic models include three temporal windows allowing to perform short, medium and long term prognosis regarding progression to assisted ventilation. Experimental results show an area under the receiver operating characteristics curve (AUC) in the test set of approximately 79% for time windows of 90, 180 and 365 days. Creating patient snapshots using hierarchical clustering with constraints outperforms the state of the art, and the proposed prognostic model becomes the first non population-based approach for prognostic prediction in ALS. The results are promising and should enhance the current clinical practice, largely supported by non-standardized tests and clinicians' experience. Copyright © 2015 Elsevier Inc. All rights reserved.
Femtosecond optical packet generation by a direct space-to-time pulse shaper.
Leaird, D E; Weiner, A M
1999-06-15
We demonstrate femtosecond operation of a direct space-to-time pulse shaper in which there is direct mapping (no Fourier transform) between the spatial position of the masking function and the temporal position in the output waveform. We use this apparatus to generate trains of 20 pulses as an ultrafast optical data packet over an approximately 40-ps temporal window.
Alterations in audiovisual simultaneity perception in amblyopia
2017-01-01
Amblyopia is a developmental visual impairment that is increasingly recognized to affect higher-level perceptual and multisensory processes. To further investigate the audiovisual (AV) perceptual impairments associated with this condition, we characterized the temporal interval in which asynchronous auditory and visual stimuli are perceived as simultaneous 50% of the time (i.e., the AV simultaneity window). Adults with unilateral amblyopia (n = 17) and visually normal controls (n = 17) judged the simultaneity of a flash and a click presented with both eyes viewing. The signal onset asynchrony (SOA) varied from 0 ms to 450 ms for auditory-lead and visual-lead conditions. A subset of participants with amblyopia (n = 6) was tested monocularly. Compared to the control group, the auditory-lead side of the AV simultaneity window was widened by 48 ms (36%; p = 0.002), whereas that of the visual-lead side was widened by 86 ms (37%; p = 0.02). The overall mean window width was 500 ms, compared to 366 ms among controls (37% wider; p = 0.002). Among participants with amblyopia, the simultaneity window parameters were unchanged by viewing condition, but subgroup analysis revealed differential effects on the parameters by amblyopia severity, etiology, and foveal suppression status. Possible mechanisms to explain these findings include visual temporal uncertainty, interocular perceptual latency asymmetry, and disruption of normal developmental tuning of sensitivity to audiovisual asynchrony. PMID:28598996
Alterations in audiovisual simultaneity perception in amblyopia.
Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F
2017-01-01
Amblyopia is a developmental visual impairment that is increasingly recognized to affect higher-level perceptual and multisensory processes. To further investigate the audiovisual (AV) perceptual impairments associated with this condition, we characterized the temporal interval in which asynchronous auditory and visual stimuli are perceived as simultaneous 50% of the time (i.e., the AV simultaneity window). Adults with unilateral amblyopia (n = 17) and visually normal controls (n = 17) judged the simultaneity of a flash and a click presented with both eyes viewing. The signal onset asynchrony (SOA) varied from 0 ms to 450 ms for auditory-lead and visual-lead conditions. A subset of participants with amblyopia (n = 6) was tested monocularly. Compared to the control group, the auditory-lead side of the AV simultaneity window was widened by 48 ms (36%; p = 0.002), whereas that of the visual-lead side was widened by 86 ms (37%; p = 0.02). The overall mean window width was 500 ms, compared to 366 ms among controls (37% wider; p = 0.002). Among participants with amblyopia, the simultaneity window parameters were unchanged by viewing condition, but subgroup analysis revealed differential effects on the parameters by amblyopia severity, etiology, and foveal suppression status. Possible mechanisms to explain these findings include visual temporal uncertainty, interocular perceptual latency asymmetry, and disruption of normal developmental tuning of sensitivity to audiovisual asynchrony.
2017-01-01
Purpose Earlier, my colleagues and I showed that children with a history of specific language impairment (H-SLI) are significantly less able to detect audiovisual asynchrony compared with children with typical development (TD; Kaganovich & Schumaker, 2014). Here, I first replicate this finding in a new group of children with H-SLI and TD and then examine a relationship among audiovisual function, attention skills, and language in a combined pool of children. Method The stimuli were a pure tone and an explosion-shaped figure. Stimulus onset asynchrony (SOA) varied from 0–500 ms. Children pressed 1 button for perceived synchrony and another for asynchrony. I measured the number of synchronous perceptions at each SOA and calculated children's temporal binding windows. I, then, conducted multiple regressions to determine if audiovisual processing and attention can predict language skills. Results As in the earlier study, children with H-SLI perceived asynchrony significantly less frequently than children with TD at SOAs of 400–500 ms. Their temporal binding windows were also larger. Temporal precision and attention predicted 23%–37% of children's language ability. Conclusions Audiovisual temporal processing is impaired in children with H-SLI. The degree of this impairment is a predictor of language skills. Once understood, the mechanisms underlying this deficit may become a new focus for language remediation. PMID:28715546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, Michael; Ives, Robert Lawrence; Marsden, David
The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range ofmore » advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.« less
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Li, Shuguang; Liu, Qiang; Zhang, Shuhuan; Wang, Yujun; Wu, Junjun
2018-02-01
A broad bandwidth and 600-μm length photonic crystal fiber polarization filter at the communication window of 1.55 μm is proposed. The physical parameters are analyzed by the finite element method. In the structure, the loss is 705.81 dB/cm for y-polarized mode and 24.06 dB/cm for x-polarized mode at the wavelength of 1.55 μm; the y-polarized mode will be filtered out because of this property. The bandwidth of an extinction ratio (ER) better than -20 dB is 65 nm when the filter length is 600 μm, and the ER is -41 dB at the communication wavelength of 1.55 μm. The filter structure is simple and easy to produce, and it can be used to produce a single-polarization filter.
Bhandarkar, Suhas; Fair, Jim; Haid, Ben; ...
2018-01-19
Many of the early cryogenic shots on NIF were plagued by buildup of considerable mass of extraneous ice on the LEH windows, a consequence of condensation of the residual air in the surrounding chamber. Thickness of this ice depended on the exact chamber pressure and the target fielding time duration, both extremely difficult to keep constant given the broad range of target types being shot. In this paper, we describe our work in designing a robust solution in the form of a second thin film that shielded the LEH window from the contaminating ice. Several detailed cryogenic considerations were requiredmore » to ensure the proper functioning of this new window, which were simulated and verified experimentally. Data from numerous subsequent shots showed marked improvement in performance, which made this new feature an essential component for all cryogenic NIF targets.« less
Energy Savings of Low-E Storm Windows and Panels across US Climate Zones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culp, Thomas D.; Cort, Katherine A.
This report builds off of previous modeling work related to low-e storm windows used to create a "Database of U.S. Climate-Based Analysis for Low-E Storm Windows." This work updates similar studies using new fuel costs and examining the separate contributions of reduced air leakage and reduced coefficients of overall heat transfer and solar heat gain. In this report we examine the energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates, excluding the impact from infiltration reductions, which tend to vary using the National Energy Audit Tool (NEAT) and RESFEN modelmore » calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by climate zone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandarkar, Suhas; Fair, Jim; Haid, Ben
Many of the early cryogenic shots on NIF were plagued by buildup of considerable mass of extraneous ice on the LEH windows, a consequence of condensation of the residual air in the surrounding chamber. Thickness of this ice depended on the exact chamber pressure and the target fielding time duration, both extremely difficult to keep constant given the broad range of target types being shot. In this paper, we describe our work in designing a robust solution in the form of a second thin film that shielded the LEH window from the contaminating ice. Several detailed cryogenic considerations were requiredmore » to ensure the proper functioning of this new window, which were simulated and verified experimentally. Data from numerous subsequent shots showed marked improvement in performance, which made this new feature an essential component for all cryogenic NIF targets.« less
From naturalistic neuroscience to modeling radical embodiment with narrative enactive systems
Tikka, Pia; Kaipainen, Mauri Ylermi
2014-01-01
Mainstream cognitive neuroscience has begun to accept the idea of embodied mind, which assumes that the human mind is fundamentally constituted by the dynamical interactions of the brain, body, and the environment. In today’s paradigm of naturalistic neurosciences, subjects are exposed to rich contexts, such as video sequences or entire films, under relatively controlled conditions, against which researchers can interpret changes in neural responses within a time window. However, from the point of view of radical embodied cognitive neuroscience, the increasing complexity alone will not suffice as the explanatory apparatus for dynamical embodiment and situatedness of the mind. We suggest that narrative enactive systems with dynamically adaptive content as stimuli, may serve better to account for the embodied mind engaged with the surrounding world. Among the ensuing challenges for neuroimaging studies is how to interpret brain data against broad temporal contexts of previous experiences that condition the unfolding experience of nowness. We propose means to tackle this issue, as well as ways to limit the exponentially growing combinatoria of narrative paths to a controllable number. PMID:25339890
Etchells, Peter J; Benton, Christopher P; Ludwig, Casimir J H; Gilchrist, Iain D
2011-01-01
A growing number of studies in vision research employ analyses of how perturbations in visual stimuli influence behavior on single trials. Recently, we have developed a method along such lines to assess the time course over which object velocity information is extracted on a trial-by-trial basis in order to produce an accurate intercepting saccade to a moving target. Here, we present a simplified version of this methodology, and use it to investigate how changes in stimulus contrast affect the temporal velocity integration window used when generating saccades to moving targets. Observers generated saccades to one of two moving targets which were presented at high (80%) or low (7.5%) contrast. In 50% of trials, target velocity stepped up or down after a variable interval after the saccadic go signal. The extent to which the saccade endpoint can be accounted for as a weighted combination of the pre- or post-step velocities allows for identification of the temporal velocity integration window. Our results show that the temporal integration window takes longer to peak in the low when compared to high contrast condition. By enabling the assessment of how information such as changes in velocity can be used in the programming of a saccadic eye movement on single trials, this study describes and tests a novel methodology with which to look at the internal processing mechanisms that transform sensory visual inputs into oculomotor outputs.
Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells.
Uribe, Rosa A; Hong, Stephanie S; Bronner, Marianne E
2018-01-01
The enteric nervous system arises from neural crest cells that migrate as chains into and along the primitive gut, subsequently differentiating into enteric neurons and glia. Little is known about the mechanisms governing neural crest migration en route to and along the gut in vivo. Here, we report that Retinoic Acid (RA) temporally controls zebrafish enteric neural crest cell chain migration. In vivo imaging reveals that RA loss severely compromises the integrity and migration of the chain of neural crest cells during the window of time window when they are moving along the foregut. After loss of RA, enteric progenitors accumulate in the foregut and differentiate into enteric neurons, but subsequently undergo apoptosis resulting in a striking neuronal deficit. Moreover, ectopic expression of the transcription factor meis3 and/or the receptor ret, partially rescues enteric neuron colonization after RA attenuation. Collectively, our findings suggest that retinoic acid plays a critical temporal role in promoting enteric neural crest chain migration and neuronal survival upstream of Meis3 and RET in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
Gostian, Antoniu-Oreste; Pazen, David; Ortmann, Magdalene; Luers, Jan-Christoffer; Anagiotos, Andreas; Hüttenbrink, Karl-Bernd; Beutner, Dirk
2015-01-01
Interposed cartilage and the round window coupler (RWC) increase the efficiency of cochlea stimulation with the floating mass transducer (FMT) of a single active middle ear implant (AMEI) placed against the round window membrane. Treatment of mixed and conductive hearing loss with an AMEI attached to the round window is effective, yet the best placement technique of its FMT for the most efficient stimulation of the cochlea remains to be determined. Experimental study on human temporal bones with the FMT placed against firstly the unaltered round window niche and then subsequently against the fully exposed round window membrane with and without interposed cartilage and the RWC. Cochlea stimulation is measured by the volume velocities of the stapes footplate using LASER vibrometry. At the undrilled round window niche, placement of the FMT by itself and with the RWC resulted in similar volume velocities. The response was significantly raised by interposing cartilage into the undrilled round window niche. Complete exposure of the round window membrane allowed for significantly increased volume velocities. Among these, coupling of the FMT with interposed cartilage yielded responses of similar magnitude compared with the RWC but significantly higher compared with the FMT by itself. Good contact to the round window membrane is essential for efficient stimulation of the cochlea. Therefore, interposing cartilage into the undrilled round window niche is a viable option. At the drilled round window membrane, the FMT with interposed cartilage and attached to the RWC are similarly effective.
Femtosecond direct space-to-time pulse shaping in an integrated-optic configuration.
Leaird, D E; Weiner, A M
2004-07-01
We demonstrate femtosecond operation of an integrated-optic direct space-to-time pulse shaper for which there is a direct mapping (no Fourier transform) between the spatial position of the masking function and the temporal position in the output waveform. The apparatus is used to generate trains of more than 30 pulses as an ultrafast optical data packet over approximately an 80-ps temporal window.
Creation of a 3D printed temporal bone model from clinical CT data.
Cohen, Joss; Reyes, Samuel A
2015-01-01
Generate and describe the process of creating a 3D printed, rapid prototype temporal bone model from clinical quality CT images. We describe a technique to create an accurate, alterable, and reproducible rapid prototype temporal bone model using freely available software to segment clinical CT data and generate three different 3D models composed of ABS plastic. Each model was evaluated based on the appearance and size of anatomical structures and response to surgical drilling. Mastoid air cells had retained scaffolding material in the initial versions. This required modifying the model to allow drainage of the scaffolding material. External auditory canal dimensions were similar to those measured from the clinical data. Malleus, incus, oval window, round window, promontory, horizontal semicircular canal, and mastoid segment of the facial nerve canal were identified in all models. The stapes was only partially formed in two models and absent in the third. Qualitative feel of the ABS plastic was softer than bone. The pate produced by drilling was similar to bone dust when appropriate irrigation was used. We present a rapid prototype temporal bone model made based on clinical CT data using 3D printing technology. The model can be made quickly and inexpensively enough to have potential applications for educational training. Copyright © 2015 Elsevier Inc. All rights reserved.
Al-Saleem, Fetweh H.; Nasser, Zidoon; Olson, Rebecca M.; Cao, Linsen
2011-01-01
Therapeutic antibodies are one of the major classes of medical countermeasures that can provide protection against potential bioweapons such as botulinum toxin. Although a broad array of antibodies are being evaluated for their ability to neutralize the toxin, there is little information that defines the circumstances under which these antibodies can be used. In the present study, an effort was made to quantify the temporal factors that govern therapeutic antibody use in a postchallenge scenario. Experiments were done involving inhalation administration of toxin to mice, intravenous administration to mice, and direct application to murine phrenic nerve-hemidiaphragm preparations. As part of this study, several pharmacokinetic characteristics of botulinum toxin and neutralizing antibodies were measured. The core observation that emerged from the work was that the window of opportunity within which postchallenge administration of antibodies exerted a beneficial effect increased as the challenge dose of toxin decreased. The critical factor in establishing the window of opportunity was the amount of time needed for fractional redistribution of a neuroparalytic quantum of toxin from the extraneuronal space to the intraneuronal space. This redistribution event was a dose-dependent phenomenon. It is likely that the approach used to identify the factors that govern postchallenge efficacy of antibodies against botulinum toxin can be used to assess the factors that govern postchallenge efficacy of medical countermeasures against any agent of bioterrorism or biological warfare. PMID:21586604
Zhang, Qingfang; Wang, Cheng
2016-01-01
A central issue in written production concerns how phonological codes influence the output of orthographic codes. We used a picture-word interference paradigm combined with the event-related potential technique to investigate the temporal courses of phonological and orthographic activation and their interplay in Chinese writing. Distractors were orthographically related, phonologically related, orthographically plus phonologically related, or unrelated to picture names. The behavioral results replicated the classic facilitation effect for all three types of relatedness. The ERP results indicated an orthographic effect in the time window of 370–500 ms (onset latency: 370 ms), a phonological effect in the time window of 460–500 ms (onset latency: 464 ms), and an additive pattern of both effects in both time windows, thus indicating that orthographic codes were accessed earlier than, and independent of, phonological codes in written production. The orthographic activation originates from the semantic system, whereas the phonological effect results from the activation spreading from the orthographic lexicon to the phonological lexicon. These findings substantially strengthen the existing evidence that shows that access to orthographic codes is not mediated by phonological information, and they provide important support for the orthographic autonomy hypothesis. PMID:27605911
Hasegawa, Naoya; Kitamura, Hideaki; Murakami, Hiroatsu; Kameyama, Shigeki; Sasagawa, Mutsuo; Egawa, Jun; Endo, Taro; Someya, Toshiyuki
2013-08-09
The present study investigated the relationship between neural activity associated with gaze processing and autistic traits in typically developed subjects using magnetoencephalography. Autistic traits in 24 typically developed college students with normal intelligence were assessed using the Autism Spectrum Quotient (AQ). The Minimum Current Estimates method was applied to estimate the cortical sources of magnetic responses to gaze stimuli. These stimuli consisted of apparent motion of the eyes, displaying direct or averted gaze motion. Results revealed gaze-related brain activations in the 150-250 ms time window in the right posterior superior temporal sulcus (pSTS), and in the 150-450 ms time window in medial prefrontal regions. In addition, the mean amplitude in the 150-250 ms time window in the right pSTS region was modulated by gaze direction, and its activity in response to direct gaze stimuli correlated with AQ score. pSTS activation in response to direct gaze is thought to be related to higher-order social processes. Thus, these results suggest that brain activity linking eye contact and social signals is associated with autistic traits in a typical population. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Herz, Damian M; Little, Simon; Pedrosa, David J; Tinkhauser, Gerd; Cheeran, Binith; Foltynie, Tom; Bogacz, Rafal; Brown, Peter
2018-04-23
To optimally balance opposing demands of speed and accuracy during decision-making, we must flexibly adapt how much evidence we require before making a choice. Such adjustments in decision thresholds have been linked to the subthalamic nucleus (STN), and therapeutic STN deep-brain stimulation (DBS) has been shown to interfere with this function. Here, we performed continuous as well as closed-loop DBS of the STN while Parkinson's disease patients performed a perceptual decision-making task. Closed-loop STN DBS allowed temporally patterned STN stimulation and simultaneous recordings of STN activity. This revealed that DBS only affected patients' ability to adjust decision thresholds if applied in a specific temporally confined time window during deliberation. Only stimulation in that window diminished the normal slowing of response times that occurred on difficult trials when DBS was turned off. Furthermore, DBS eliminated a relative, time-specific increase in STN beta oscillations and compromised its functional relationship with trial-by-trial adjustments in decision thresholds. Together, these results provide causal evidence that the STN is involved in adjusting decision thresholds in distinct, time-limited processing windows during deliberation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tabelow, Karsten; König, Reinhard; Polzehl, Jörg
2016-01-01
Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning. PMID:27303809
Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang
2014-01-01
Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing. PMID:25146672
Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang
2014-08-22
Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing.
ten Oever, Sanne; Sack, Alexander T.; Wheat, Katherine L.; Bien, Nina; van Atteveldt, Nienke
2013-01-01
Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception. PMID:23805110
Ten Oever, Sanne; Sack, Alexander T; Wheat, Katherine L; Bien, Nina; van Atteveldt, Nienke
2013-01-01
Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L; Shen, C; Wang, J
Purpose: To reduce cone beam CT (CBCT) imaging dose, we previously proposed a progressive dose control (PDC) scheme to employ temporal correlation between CBCT images at different fractions for image quality enhancement. A temporal non-local means (TNLM) method was developed to enhance quality of a new low-dose CBCT using existing high-quality CBCT. To enhance a voxel value, the TNLM method searches for similar voxels in a window. Due to patient deformation among the two CBCTs, a large searching window was required, reducing image quality and computational efficiency. This abstract proposes a deformation-assisted TNLM (DA-TNLM) method to solve this problem. Methods:more » For a low-dose CBCT to be enhanced using a high-quality CBCT, we first performed deformable image registration between the low-dose CBCT and the high-quality CBCT to approximately establish voxel correspondence between the two. A searching window for a voxel was then set based on the deformation vector field. Specifically, the search window for each voxel was shifted by the deformation vector. A TNLM step was then applied using only voxels within this determined window to correct image intensity at the low-dose CBCT. Results: We have tested the proposed scheme on simulated CIRS phantom data and real patient data. The CITS phantom was scanned on Varian onboard imaging CBCT system with coach shifting and dose reducing for each time. The real patient data was acquired in four fractions with dose reduced from standard CBCT dose to 12.5% of standard dose. It was found that the DA-TNLM method can reduce total dose by over 75% on average in the first four fractions. Conclusion: We have developed a PDC scheme which can enhance the quality of image scanned at low dose using a DA-TNLM method. Tests in phantom and patient studies demonstrated promising results.« less
Treml, Eric A; Ford, John R; Black, Kerry P; Swearer, Stephen E
2015-01-01
Population connectivity, which is essential for the persistence of benthic marine metapopulations, depends on how life history traits and the environment interact to influence larval production, dispersal and survival. Although we have made significant advances in our understanding of the spatial and temporal dynamics of these individual processes, developing an approach that integrates the entire population connectivity process from reproduction, through dispersal, and to the recruitment of individuals has been difficult. We present a population connectivity modelling framework and diagnostic approach for quantifying the impact of i) life histories, ii) demographics, iii) larval dispersal, and iv) the physical seascape, on the structure of connectivity and metapopulation dynamics. We illustrate this approach using the subtidal rocky reef ecosystem of Port Phillip Bay, were we provide a broadly-applicable framework of population connectivity and quantitative methodology for evaluating the relative importance of individual factors in determining local and system outcomes. The spatial characteristics of marine population connectivity are primarily influenced by larval mortality, the duration of the pelagic larval stage, and the settlement competency characteristics, with significant variability imposed by the geographic setting and the timing of larval release. The relative influence and the direction and strength of the main effects were strongly consistent among 10 connectivity-based metrics. These important intrinsic factors (mortality, length of the pelagic larval stage, and the extent of the precompetency window) and the spatial and temporal variability represent key research priorities for advancing our understanding of the connectivity process and metapopulation outcomes.
NASA Astrophysics Data System (ADS)
Schafer, Rachel; Gmitro, Arthur F.
2015-03-01
Tumor regions under hypoxic or low oxygen conditions respond less effectively to many treatment strategies, including radiation therapy. A novel investigational therapeutic, NVX-108 (NuvOx Pharma), has been developed to increase delivery of oxygen through the use of a nano-emulsion of dodecofluoropentane. By raising pO2 levels prior to delivering radiation, treatment efficacy may be improved. To aid in evaluating the novel drug, oxygen tension was quantitatively measured, spatially and temporally, to record the effect of administrating NVX-108 in an orthotopic mammary window chamber mouse model of breast cancer. The oxygen tension was measured through the use of an oxygen-sensitive coating, comprised of phosphorescent platinum porphyrin dye embedded in a polystyrene matrix. The coating, applied to the surface of the coverslip of the window chamber through spin coating, is placed in contact with the mammary fat pad to record the oxygenation status of the surface tissue layer. Prior to implantation of the window chamber, a tumor is grown in the SCID mouse model by injection of MCF-7 cells into the mammary fat pad. Two-dimensional spatial distributions of the pO2 levels were obtained through conversion of measured maps of phosphorescent lifetime. The resulting information on the spatial and temporal variation of the induced oxygen modulation could provide valuable insight into the optimal timing between administration of NVX-108 and radiation treatment to provide the most effective treatment outcome.
An investigation of chaotic Kolmogorov flows
NASA Technical Reports Server (NTRS)
Platt, N.; Sirovich, L.; Fitzmaurice, N.
1990-01-01
A two dimensional flow governed by the incompressible Navier-Stokes equations with a steady spatially periodic forcing (known as the Kolmogorov flow) is numerically simulated. The behavior of the flow and its transition states as the Reynolds number (Re) varies is investigated in detail, as well as a number of the flow features. A sequence of bifurcations is shown to take place in the flow as Re varied. Two main regimes of the flow were observed: small and large scale structure regimes corresponding to different ranges of Re. Each of the regimes includes a number of quasiperiodic, chaotic, and relaminarization windows. In addition, each range contains a chaotic window with non-ergodic chaotic attractors. Spatially disordered, but temporally steady states were discovered in large scale structure regime. Features of the diverse cases are displayed in terms of the temporal power spectrum, Poincare sections and, where possible, Lyapunov exponents and Kaplan-Yorke dimension.
Glerean, Enrico; Salmi, Juha; Lahnakoski, Juha M; Jääskeläinen, Iiro P; Sams, Mikko
2012-01-01
Functional brain activity and connectivity have been studied by calculating intersubject and seed-based correlations of hemodynamic data acquired with functional magnetic resonance imaging (fMRI). To inspect temporal dynamics, these correlation measures have been calculated over sliding time windows with necessary restrictions on the length of the temporal window that compromises the temporal resolution. Here, we show that it is possible to increase temporal resolution by using instantaneous phase synchronization (PS) as a measure of dynamic (time-varying) functional connectivity. We applied PS on an fMRI dataset obtained while 12 healthy volunteers watched a feature film. Narrow frequency band (0.04-0.07 Hz) was used in the PS analysis to avoid artifactual results. We defined three metrics for computing time-varying functional connectivity and time-varying intersubject reliability based on estimation of instantaneous PS across the subjects: (1) seed-based PS, (2) intersubject PS, and (3) intersubject seed-based PS. Our findings show that these PS-based metrics yield results consistent with both seed-based correlation and intersubject correlation methods when inspected over the whole time series, but provide an important advantage of maximal single-TR temporal resolution. These metrics can be applied both in studies with complex naturalistic stimuli (e.g., watching a movie or listening to music in the MRI scanner) and more controlled (e.g., event-related or blocked design) paradigms. A MATLAB toolbox FUNPSY ( http://becs.aalto.fi/bml/software.html ) is openly available for using these metrics in fMRI data analysis.
Management of Temporal Constraints for Factory Scheduling.
1987-06-01
consistency of scheduling decisions were implemented in both the ISIS [Fox 84] and SOJA [LePape 85a] scheduling systems. More recent work with the...kinds of time propagation systems: the symbolic and the numeric ones. Symbolic systems combine relationships with a temporal logic a la Allen [Allen 81...maintains consistency by narrowing time windows associated with activities as decisions are made, and SOJA [LePape 85b] guarantees a schedule’s
Retrofacial approach to access the round window for cochlear implantation of malformed ears.
Rizk, Habib; O'Connell, Brendan; Stevens, Shawn; Meyer, Ted
2015-03-01
To report the use of the retrofacial approach for cochlear implantation in three cases of malformed ears with inaccessible round windows through the standard facial recess. Two children with bilateral profound sensorineural hearing loss who were cochlear implant candidates. One patient had bilateral sequential cochlear implantations and the other a unilateral implant. Retrofacial approach to access the posterior mesotympanum and visualize the round window. Ability to complete the surgery with full insertion of the implant and no complications such as facial nerve injury. We implanted three ears in two patients with multiple external and middle ear malformations with an aberrant facial nerve or a posteriorly displaced round window niche. The standard facial recess approach did not allow visualization of the round window. We resorted to a retrofacial approach to access the posterior mesotympanum and proceeded with the surgery through an anterior and inferior cochleostomy or through the round window. In cases with an aberrant facial nerve or inaccessible round window through the facial recess, the retrofacial approach is a good alternative but requires a certain level of expertise and familiarity with temporal bone anatomy. The decision to use an unconventional approach should be considered before surgery, but the ultimate decision may require intraoperative assessment.
NASA Astrophysics Data System (ADS)
Upadhyaya, A. S.; Bandyopadhyay, P. K.
2012-11-01
In state of art technology, integrated devices are widely used or their potential advantages. Common system reduces weight as well as total space covered by its various parts. In the state of art surveillance system integrated SWIR and night vision system used for more accurate identification of object. In this system a common optical window is used, which passes the radiation of both the regions, further both the spectral regions are separated in two channels. ZnS is a good choice for a common window, as it transmit both the region of interest, night vision (650 - 850 nm) as well as SWIR (0.9 - 1.7 μm). In this work a broad band anti reflection coating is developed on ZnS window to enhance the transmission. This seven layer coating is designed using flip flop design method. After getting the final design, some minor refinement is done, using simplex method. SiO2 and TiO2 coating material combination is used for this work. The coating is fabricated by physical vapour deposition process and the materials were evaporated by electron beam gun. Average transmission of both side coated substrate from 660 to 1700 nm is 95%. This coating also acts as contrast enhancement filter for night vision devices, as it reflect the region of 590 - 660 nm. Several trials have been conducted to check the coating repeatability, and it is observed that transmission variation in different trials is not very much and it is under the tolerance limit. The coating also passes environmental test for stability.
Dielectric Windows with a Flat-Topped Characteristic of Transparency
NASA Astrophysics Data System (ADS)
Shcherbak, V. V.
2013-09-01
The construction of radiotransparent bafflers in a waveguide, with essentially improved matching with the tract is suggested, and optimized in a broad frequency range. This being a strip, diaphragm inside a dielectric layer. Also, on this basis, the efficient, absorber is created.
Wireless Communications Infrastructure for Collaboration in Common Space
2004-03-01
creation tools accessible to a broad range of computer graphics professionals in the film, broadcast, industrial design, visualization, game ... development and web design industries. It is one of the leading full 3D production solutions. Maya Complete is available for Windows 2000 Professional
Temporal Binding Window of the Sound-Induced Flash Illusion in Amblyopia.
Narinesingh, Cindy; Goltz, Herbert C; Wong, Agnes M F
2017-03-01
Amblyopia is a neurodevelopmental visual disorder caused by abnormal visual experience in childhood. In addition to known visual deficits, there is evidence for changes in audiovisual integration in amblyopia using explicit tasks. We examined audiovisual integration in amblyopia using an implicit task that is more relevant in a real-world context. A total of 11 participants with amblyopia and 16 controls were tested binocularly and monocularly on the sound-induced flash illusion, in which flashes and beeps are presented concurrently and the perceived number of flashes is influenced by the number of beeps. The task used 1 to 2 rapid peripheral flashes presented with 0 to 2 beeps, at 5 stimulus onset asynchronies, that is, beep (-200 milliseconds, -100 milliseconds) or flash leading (100 milliseconds, 200 milliseconds) or simultaneous (0 milliseconds). Participants reported the number of perceived flashes. Susceptibility was indicated by a "2 flashes" response to "fission" (1 flash, 2 beeps) or "1 flash" to "fusion" (2 flashes, 1 beep). For fission with the beep leading during binocular viewing, controls showed an expected decrease in illusion strength as stimulus onset asynchronies increased, whereas the illusion strength remained constant in participants with amblyopia, indicating a wider temporal binding window in amblyopia (P = 0.007). For fusion, participants with amblyopia showed reduced illusion strength during amblyopic eye viewing (P = 0.044) with the flash leading. Amblyopia is associated with the widening of the temporal binding window, specifically for fission when viewing binocularly with the beep leading. This suggests a developmental adaptation to delayed amblyopic eye visual processing to optimize audiovisual integration.
NASA Astrophysics Data System (ADS)
Deininger, Michael; Lippold, Jörg; Abele, Florian; McDermott, Frank
2016-04-01
Speleothems are considered as a valuable continental climate archive. Their δ18O records provide information onto past changes of the atmospheric circulation accompanied by changes in surface air temperature and precipitation. During the last decades European speleothem studies have assembled a European speleothem network (including numerous speleothem δ18O records) that allow now not only to picture past climate variability in time but also in space. In particular the climate variability of the last 4.5 ka was investigated by these studies. This allows the comparison of the speleothem-based reconstructed palaeoclimate with the timings of the rise and fall of ancient civilisations in this period - including the Dark Ages. Here we evaluate a compilation of 10 speleothem δ18O records covering the last 4.5 ka using a Monte Carlo based Principal Component Analysis (MC-PCA) that accounts for uncertainties in individual speleothem age models and for the different and varying temporal resolutions of each speleothem δ18O record. Our MC-PCA approach allows not only the identification of temporally coherent changes in δ18O records, i.e. the common signal in all investigated speleothem δ18O records, but it also facilitates their depiction and evaluation spatially. The speleothem δ18O records are spanning almost the entire European continent ranging from the western Margin of the European continent to Northern Turkey and from Northern Italy to Norway. For the MC-PCA analysis the 4.5 ka are divided into eight 1ka long time windows that overlap the subsequent time window by 500 years to allow a comparison of the spatio-temporal evolution of the common signal. For every single time window we derive a common mode of climate variability of all speleothem δ18O records as well as its spatial extent. This allows us to compare the rise and fall of ancient civilisations, like the Hittite and the Roman Empire, with our reconstructed spatio-temporal record.
NASA Astrophysics Data System (ADS)
Wu, C.; Peng, Z.; Ben-Zion, Y.
2009-12-01
Recent studies based on spectral ratio analysis have found clear temporal changes of material properties in the shallow crust and around active fault zones during large earthquakes with peak ground acceleration (PGA) larger than 100-200 gals (e.g., Sawazaki et al., GRL, 2006; Rubenstein et al., JGR, 2007; Wu et al., GJI, 2009). The temporal evolution of properties is generally characterized by a clear drop of resonant frequency and increased damping, followed by logarithmic recoveries with time. The shift in resonant frequency and damping are considered two hallmarks of nonlinear response associated with increasing material damage. However, an existing damage can produce similar changes in resonance curves with increasing wave amplitude, even in cases when the material damage does not increase (Lyakhovsky et al., GJI, 2009). In such cases the recovery of resonance properties with reduced source amplitude should be essentially instantaneous. It is important to distinguish with in situ seismic data nonlinear wave propagation effects that reflect fixed vs. evolving material damage. Here we systematically analyze temporal changes of material properties and nonlinear response associated with small and medium earthquakes, using seismic data recorded by the Japanese Strong Motion Network KIK-Net, a temporary 10-station PASSCAL seismic network along the North Anatolian Fault in Turkey, and the borehole and surface stations around the Parkfield section of the San Andreas fault. We compute the spectral ratios of windowed records from a pair of target and reference stations, and apply the sliding-window to the entire seismic records including the pre-event noise, P and S waves, and the early and late S-coda waves. We choose small and medium events to reduce the effects from additional material damage and use small sliding-window size to capture the subtle changes in the spectral ratios. The spectral ratio traces from windows within certain PGA ranges are then stacked to enhance the stability of the results. The preliminary results from the KIK-Net data suggest that the resonant frequency starts to decrease for PGA levels of several tens of gals, followed by near instantaneous recovery. Updated results from analysis of all the datasets will be presented in the meeting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, B; Wiersma, R
Purpose: Low temporal latency between a gating on/off signal and a linac beam on/off during respiratory gating is critical for patient safety. Although, a measurement of temporal lag is recommended by AAPM Task Group 142 for commissioning and annual quality assurance, there currently exists no published method. Here we describe a simple, inexpensive, and reliable method to precisely measure gating lag at millisecond resolutions. Methods: A Varian Real-time Position Management™ (RPM) gating simulator with rotating disk was modified with a resistive flex sensor (Spectra Symbol) attached to the gating box platform. A photon diode was placed at machine isocenter. Outputmore » signals of the flex sensor and diode were monitored with a multichannel oscilloscope (Tektronix™ DPO3014). Qualitative inspection of the gating window/beam on synchronicity were made by setting the linac to beam on/off at end-expiration, and the oscilloscope's temporal window to 100 ms to visually examine if the on/off timing was within the recommended 100-ms tolerance. Quantitative measurements were made by saving the signal traces and analyzing in MatLab™. The on and off of the beam signal were located and compared to the expected gating window (e.g. 40% to 60%). Four gating cycles were measured and compared. Results: On a Varian TrueBeam™ STx linac with RPM gating software, the average difference in synchronicity at beam on and off for four cycles was 14 ms (3 to 30 ms) and 11 ms (2 to 32 ms), respectively. For a Varian Clinac™ 21EX the average difference at beam on and off was 127 ms (122 to 133 ms) and 46 ms (42 to 49 ms), respectively. The uncertainty in the synchrony difference was estimated at ±6 ms. Conclusion: This new gating QA method is easy to implement and allows for fast qualitative inspection and quantitative measurements for commissioning and TG-142 annual QA measurements.« less
Impact of Audio-Visual Asynchrony on Lip-Reading Effects -Neuromagnetic and Psychophysical Study-
Yahata, Izumi; Kanno, Akitake; Sakamoto, Shuichi; Takanashi, Yoshitaka; Takata, Shiho; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio
2016-01-01
The effects of asynchrony between audio and visual (A/V) stimuli on the N100m responses of magnetoencephalography in the left hemisphere were compared with those on the psychophysical responses in 11 participants. The latency and amplitude of N100m were significantly shortened and reduced in the left hemisphere by the presentation of visual speech as long as the temporal asynchrony between A/V stimuli was within 100 ms, but were not significantly affected with audio lags of -500 and +500 ms. However, some small effects were still preserved on average with audio lags of 500 ms, suggesting similar asymmetry of the temporal window to that observed in psychophysical measurements, which tended to be more robust (wider) for audio lags; i.e., the pattern of visual-speech effects as a function of A/V lag observed in the N100m in the left hemisphere grossly resembled that in psychophysical measurements on average, although the individual responses were somewhat varied. The present results suggest that the basic configuration of the temporal window of visual effects on auditory-speech perception could be observed from the early auditory processing stage. PMID:28030631
Adjustment of Pesticide Concentrations for Temporal Changes in Analytical Recovery, 1992-2006
Martin, Jeffrey D.; Stone, Wesley W.; Wydoski, Duane S.; Sandstrom, Mark W.
2009-01-01
Recovery is the proportion of a target analyte that is quantified by an analytical method and is a primary indicator of the analytical bias of a measurement. Recovery is measured by analysis of quality-control (QC) water samples that have known amounts of target analytes added ('spiked' QC samples). For pesticides, recovery is the measured amount of pesticide in the spiked QC sample expressed as percentage of the amount spiked, ideally 100 percent. Temporal changes in recovery have the potential to adversely affect time-trend analysis of pesticide concentrations by introducing trends in environmental concentrations that are caused by trends in performance of the analytical method rather than by trends in pesticide use or other environmental conditions. This report examines temporal changes in the recovery of 44 pesticides and 8 pesticide degradates (hereafter referred to as 'pesticides') that were selected for a national analysis of time trends in pesticide concentrations in streams. Water samples were analyzed for these pesticides from 1992 to 2006 by gas chromatography/mass spectrometry. Recovery was measured by analysis of pesticide-spiked QC water samples. Temporal changes in pesticide recovery were investigated by calculating robust, locally weighted scatterplot smooths (lowess smooths) for the time series of pesticide recoveries in 5,132 laboratory reagent spikes; 1,234 stream-water matrix spikes; and 863 groundwater matrix spikes. A 10-percent smoothing window was selected to show broad, 6- to 12-month time scale changes in recovery for most of the 52 pesticides. Temporal patterns in recovery were similar (in phase) for laboratory reagent spikes and for matrix spikes for most pesticides. In-phase temporal changes among spike types support the hypothesis that temporal change in method performance is the primary cause of temporal change in recovery. Although temporal patterns of recovery were in phase for most pesticides, recovery in matrix spikes was greater than recovery in reagent spikes for nearly every pesticide. Models of recovery based on matrix spikes are deemed more appropriate for adjusting concentrations of pesticides measured in groundwater and stream-water samples than models based on laboratory reagent spikes because (1) matrix spikes are expected to more closely match the matrix of environmental water samples than are reagent spikes and (2) method performance is often matrix dependent, as was shown by higher recovery in matrix spikes for most of the pesticides. Models of recovery, based on lowess smooths of matrix spikes, were developed separately for groundwater and stream-water samples. The models of recovery can be used to adjust concentrations of pesticides measured in groundwater or stream-water samples to 100 percent recovery to compensate for temporal changes in the performance (bias) of the analytical method.
Visual information for judging temporal range
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Mowafy, Lyn
1993-01-01
Work in our laboratory suggests that pilots can extract temporal range information (i.e., the time to pass a given waypoint) directly from out-the-window motion information. This extraction does not require the use of velocity or distance, but rather operates solely on a 2-D motion cue. In this paper, we present the mathematical derivation of this information, psychophysical evidence of human observers' sensitivity, and possible advantages and limitations of basing vehicle control on this parameter.
Jain, Shraddha; Gaurkar, Sagar; Deshmukh, Prasad T; Khatri, Mohnish; Kalambe, Sanika; Lakhotia, Pooja; Chandravanshi, Deepshikha; Disawal, Ashish
2018-04-19
Various aspects of the round window anatomy and anatomy of posterior tympanum have relevant implications for designing cochlear implant electrodes and visualizing the round window through facial recess. Preoperative information about possible anatomical variations of the round window and its relationships to the adjacent neurovascular structures can help reduce complications in cochlear implant surgery. The present study was undertaken to assess the common variations in round window anatomy and the relationships to structures of the tympanum that may be relevant for cochlear implant surgery. Thirty-five normal wet human cadaveric temporal bones were studied by dissection for anatomy of round window and its relation to facial nerve, carotid canal, jugular fossa and other structures of posterior tympanum. The dissected bones were photographed by a digital camera of 18 megapixels, which were then imported to a computer to determine various parameters using ScopyDoc 8.0.0.22 version software, after proper calibration and at 1× magnification. When the round window niche is placed posteriorly and inferiorly, the distance between round window and vertical facial nerve decreases, whereas that with horizontal facial nerve increases. In such cases, the distance between oval window and round window also increases. Maximum height of the round window in our study ranged from 0.51-1.27mm (mean of 0.69±0.25mm). Maximum width of round window ranged from 0.51 to 2.04mm (mean of 1.16±0.47mm). Average minimum distance between round window and carotid canal was 3.71±0.88mm (range of 2.79-5.34mm) and that between round window and jugular fossa was 2.47±0.9mm (range of 1.24-4.3mm). The distances from the round window to the oval window and facial nerve are important parameters in identifying a difficult round window niche. Modification of the electrode may be a better option than drilling off the round window margins for insertion of cochlear implant electrodes. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Information content in Iris spectra. [Infrared Interferometer Spectrometer of Nimbus 4 satellite
NASA Technical Reports Server (NTRS)
Price, J. C.
1975-01-01
Spectra from the satellite instrument Iris (infrared interferometer spectrometer) were examined to find the number of independent variables needed to describe the broad-band high-resolution spectral data. The radiated power in the atmospheric window from 771 to 981 per cm was the first parameter chosen for fitting observed spectra. At succeeding levels of analysis, the residual variability (observed spectrum minus best-fit spectrum) in an ensemble of observations was partitioned into spectral eigenvectors. The eigenvector describing the largest fraction of this variability was examined for a strong spectral signature; the power in the corresponding spectral band was then used as the next fitting parameter. The measured power in nine spectral intervals, when it was inserted in the spectral-fitting functions, was adequate to describe most spectra to within the noise level of Iris. Considerations of relative signal strength and scales of atmospheric variability suggest a combination sounder (multichannel, broad field of view) scanner (window channel, small field of view) as an efficient observing instrument.
Perthen, Joanna E; Bydder, Mark; Restom, Khaled; Liu, Thomas T
2008-05-01
Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies using parallel imaging to reduce the readout window have reported a loss in temporal signal-to-noise ratio (SNR) that is less than would be expected given a purely thermal noise model. In this study, the impact of parallel imaging on the noise components and functional sensitivity of both BOLD and perfusion-based fMRI data was investigated. Dual-echo arterial spin labeling data were acquired on five subjects using sensitivity encoding (SENSE), at reduction factors (R) of 1, 2 and 3. Direct recording of cardiac and respiratory activity during data acquisition enabled the retrospective removal of physiological noise. The temporal SNR of the perfusion time series closely followed the thermal noise prediction of a radicalR loss in SNR as the readout window was shortened, with temporal SNR values (relative to the R=1 data) of 0.72 and 0.56 for the R=2 and R=3 data, respectively, after accounting for physiological noise. However, the BOLD temporal SNR decreased more slowly than predicted even after accounting for physiological noise, with relative temporal SNR values of 0.80 and 0.63 for the R=2 and R=3 data, respectively. Spectral analysis revealed that the BOLD trends were dominated by low-frequency fluctuations, which were not dominant in the perfusion data due to signal processing differences. The functional sensitivity, assessed using mean F values over activated regions of interest (ROIs), followed the temporal SNR trends for the BOLD data. However, results for the perfusion data were more dependent on the threshold used for ROI selection, most likely due to the inherently low SNR of functional perfusion data.
Temporal-contrast measurements of a white-light-seeded noncollinear optical parametric amplifier
Bromage, J.; Dorrer, C.; Zuegel, J. D.
2015-09-01
Ultra-intense optical parametric chirped-pulse systems require front ends with broad bandwidth and high temporal contrast. Temporal cross-correlation measurements of a white-light–seeded noncollinear optical parametric amplifier (NOPA) show that its prepulse contrast exceeds the 120 dB dynamic range of the broadband NOPA-based cross-correlator.
Imaging using a supercontinuum laser to assess tumors in patients with breast carcinoma
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Sordillo, Peter P.; Alfano, R. R.
2016-03-01
The supercontinuum laser light source has many advantages over other light sources, including broad spectral range. Transmission images of paired normal and malignant breast tissue samples from two patients were obtained using a Leukos supercontinuum (SC) laser light source with wavelengths in the second and third NIR optical windows and an IR- CCD InGaAs camera detector (Goodrich Sensors Inc. high response camera SU320KTSW-1.7RT with spectral response between 900 nm and 1,700 nm). Optical attenuation measurements at the four NIR optical windows were obtained from the samples.
Towards a portable Raman spectrometer using a concave grating and a time-gated CMOS SPAD.
Li, Zhiyun; Deen, M Jamal
2014-07-28
A low-cost, compact Raman spectrometer suitable for the on-line water monitoring applications is explored. A custom-designed concave grating for wavelength selection was fabricated and tested. The detection of the Raman signal is accomplished with a time-gated single photon avalanche diode (TG-SPAD). A fixed gate window of 3.5ns is designed and applied to the TG-SPAD. The temporal resolution of the SPAD was ~60ps when tested with a 7ps, 532nm solid-state laser. To test the efficiency of the gating in fluorescence signal suppression, different detection windows (3ns-0.25ns) within the 3.5ns gate window are used to measure the Raman spectra of Rhodamine B. Strong Raman peaks are resolved with this low-cost system.
HABs Monitoring and Prediction
Monitoring techniques for harmful algal blooms (HABs) vary across temporal and spatial domains. Remote satellite imagery provides information on water quality at relatively broad spatial and lengthy temporal scales. At the other end of the spectrum, local in-situ monitoring tec...
A unifying view of synchronization for data assimilation in complex nonlinear networks
NASA Astrophysics Data System (ADS)
Abarbanel, Henry D. I.; Shirman, Sasha; Breen, Daniel; Kadakia, Nirag; Rey, Daniel; Armstrong, Eve; Margoliash, Daniel
2017-12-01
Networks of nonlinear systems contain unknown parameters and dynamical degrees of freedom that may not be observable with existing instruments. From observable state variables, we want to estimate the connectivity of a model of such a network and determine the full state of the model at the termination of a temporal observation window during which measurements transfer information to a model of the network. The model state at the termination of a measurement window acts as an initial condition for predicting the future behavior of the network. This allows the validation (or invalidation) of the model as a representation of the dynamical processes producing the observations. Once the model has been tested against new data, it may be utilized as a predictor of responses to innovative stimuli or forcing. We describe a general framework for the tasks involved in the "inverse" problem of determining properties of a model built to represent measured output from physical, biological, or other processes when the measurements are noisy, the model has errors, and the state of the model is unknown when measurements begin. This framework is called statistical data assimilation and is the best one can do in estimating model properties through the use of the conditional probability distributions of the model state variables, conditioned on observations. There is a very broad arena of applications of the methods described. These include numerical weather prediction, properties of nonlinear electrical circuitry, and determining the biophysical properties of functional networks of neurons. Illustrative examples will be given of (1) estimating the connectivity among neurons with known dynamics in a network of unknown connectivity, and (2) estimating the biophysical properties of individual neurons in vitro taken from a functional network underlying vocalization in songbirds.
Chronobiology of Takotsubo Syndrome and Myocardial Infarction: Analogies and Differences.
Manfredini, Roberto; Manfredini, Fabio; Fabbian, Fabio; Salmi, Raffaella; Gallerani, Massimo; Bossone, Eduardo; Deshmukh, Abhishek J
2016-10-01
Several pathophysiologic factors, not harmful if taken alone, are capable of triggering unfavorable events when presenting together within the same temporal window (chronorisk), and the occurrence of many cardiovascular events is not evenly distributed in time. Both acute myocardial infarction and takotsubo syndrome seem to exhibit a temporal preference in their onset, characterized by variations according to time of day, day of the week, and month of the year, although with both analogies and differences. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
He, L.; Chen, J. M.; Liu, J.; Mo, G.; Zhen, T.; Chen, B.; Wang, R.; Arain, M.
2013-12-01
Terrestrial ecosystem models have been widely used to simulate carbon, water and energy fluxes and climate-ecosystem interactions. In these models, some vegetation and soil parameters are determined based on limited studies from literatures without consideration of their seasonal variations. Data assimilation (DA) provides an effective way to optimize these parameters at different time scales . In this study, an ensemble Kalman filter (EnKF) is developed and applied to optimize two key parameters of an ecosystem model, namely the Boreal Ecosystem Productivity Simulator (BEPS): (1) the maximum photosynthetic carboxylation rate (Vcmax) at 25 °C, and (2) the soil water stress factor (fw) for stomatal conductance formulation. These parameters are optimized through assimilating observations of gross primary productivity (GPP) and latent heat (LE) fluxes measured in a 74 year-old pine forest, which is part of the Turkey Point Flux Station's age-sequence sites. Vcmax is related to leaf nitrogen concentration and varies slowly over the season and from year to year. In contrast, fw varies rapidly in response to soil moisture dynamics in the root-zone. Earlier studies suggested that DA of vegetation parameters at daily time steps leads to Vcmax values that are unrealistic. To overcome the problem, we developed a three-step scheme to optimize Vcmax and fw. First, the EnKF is applied daily to obtain precursor estimates of Vcmax and fw. Then Vcmax is optimized at different time scales assuming fw is unchanged from first step. The best temporal period or window size is then determined by analyzing the magnitude of the minimized cost-function, and the coefficient of determination (R2) and Root-mean-square deviation (RMSE) of GPP and LE between simulation and observation. Finally, the daily fw value is optimized for rain free days corresponding to the Vcmax curve from the best window size. The optimized fw is then used to model its relationship with soil moisture. We found that the optimized fw is best correlated linearly to soil water content at 5 to 10 cm depth. We also found that both the temporal scale or window size and the priori uncertainty of Vcmax (given as its standard deviation) are important in determining the seasonal trajectory of Vcmax. During the leaf expansion stage, an appropriate window size leads to reasonable estimate of Vcmax. In the summer, the fluctuation of optimized Vcmax is mainly caused by the uncertainties in Vcmax but not the window size. Our study suggests that a smooth Vcmax curve optimized from an optimal time window size is close to the reality though the RMSE of GPP at this window is not the minimum. It also suggests that for the accurate optimization of Vcmax, it is necessary to set appropriate levels of uncertainty of Vcmax in the spring and summer because the rate of leaf nitrogen concentration change is different over the season. Parameter optimizations for more sites and multi-years are in progress.
NASA Astrophysics Data System (ADS)
Pierini, J. O.; Restrepo, J. C.; Aguirre, J.; Bustamante, A. M.; Velásquez, G. J.
2017-04-01
A measure of the variability in seasonal extreme streamflow was estimated for the Colombian Caribbean coast, using monthly time series of freshwater discharge from ten watersheds. The aim was to detect modifications in the streamflow monthly distribution, seasonal trends, variance and extreme monthly values. A 20-year length time moving window, with 1-year successive shiftments, was applied to the monthly series to analyze the seasonal variability of streamflow. The seasonal-windowed data were statistically fitted through the Gamma distribution function. Scale and shape parameters were computed using the Maximum Likelihood Estimation (MLE) and the bootstrap method for 1000 resample. A trend analysis was performed for each windowed-serie, allowing to detect the window of maximum absolute values for trends. Significant temporal shifts in seasonal streamflow distribution and quantiles (QT), were obtained for different frequencies. Wet and dry extremes periods increased significantly in the last decades. Such increase did not occur simultaneously through the region. Some locations exhibited continuous increases only at minimum QT.
Action-outcome learning and prediction shape the window of simultaneity of audiovisual outcomes.
Desantis, Andrea; Haggard, Patrick
2016-08-01
To form a coherent representation of the objects around us, the brain must group the different sensory features composing these objects. Here, we investigated whether actions contribute in this grouping process. In particular, we assessed whether action-outcome learning and prediction contribute to audiovisual temporal binding. Participants were presented with two audiovisual pairs: one pair was triggered by a left action, and the other by a right action. In a later test phase, the audio and visual components of these pairs were presented at different onset times. Participants judged whether they were simultaneous or not. To assess the role of action-outcome prediction on audiovisual simultaneity, each action triggered either the same audiovisual pair as in the learning phase ('predicted' pair), or the pair that had previously been associated with the other action ('unpredicted' pair). We found the time window within which auditory and visual events appeared simultaneous increased for predicted compared to unpredicted pairs. However, no change in audiovisual simultaneity was observed when audiovisual pairs followed visual cues, rather than voluntary actions. This suggests that only action-outcome learning promotes temporal grouping of audio and visual effects. In a second experiment we observed that changes in audiovisual simultaneity do not only depend on our ability to predict what outcomes our actions generate, but also on learning the delay between the action and the multisensory outcome. When participants learned that the delay between action and audiovisual pair was variable, the window of audiovisual simultaneity for predicted pairs increased, relative to a fixed action-outcome pair delay. This suggests that participants learn action-based predictions of audiovisual outcome, and adapt their temporal perception of outcome events based on such predictions. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Letter-sound processing deficits in children with developmental dyslexia: An ERP study.
Moll, Kristina; Hasko, Sandra; Groth, Katharina; Bartling, Jürgen; Schulte-Körne, Gerd
2016-04-01
The time course during letter-sound processing was investigated in children with developmental dyslexia (DD) and typically developing (TD) children using electroencephalography. Thirty-eight children with DD and 25 TD children participated in a visual-auditory oddball paradigm. Event-related potentials (ERPs) elicited by standard and deviant stimuli in an early (100-190 ms) and late (560-750 ms) time window were analysed. In the early time window, ERPs elicited by the deviant stimulus were delayed and less left lateralized over fronto-temporal electrodes for children with DD compared to TD children. In the late time window, children with DD showed higher amplitudes extending more over right frontal electrodes. Longer latencies in the early time window and stronger right hemispheric activation in the late time window were associated with slower reading and naming speed. Additionally, stronger right hemispheric activation in the late time window correlated with poorer phonological awareness skills. Deficits in early stages of letter-sound processing influence later more explicit cognitive processes during letter-sound processing. Identifying the neurophysiological correlates of letter-sound processing and their relation to reading related skills provides insight into the degree of automaticity during letter-sound processing beyond behavioural measures of letter-sound-knowledge. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Warren, Joshua; Fuentes, Montserrat; Herring, Amy; Langlois, Peter
2012-12-01
Exposure to high levels of air pollution during the pregnancy is associated with increased probability of preterm birth (PTB), a major cause of infant morbidity and mortality. New statistical methodology is required to specifically determine when a particular pollutant impacts the PTB outcome, to determine the role of different pollutants, and to characterize the spatial variability in these results. We develop a new Bayesian spatial model for PTB which identifies susceptible windows throughout the pregnancy jointly for multiple pollutants (PM(2.5) , ozone) while allowing these windows to vary continuously across space and time. We geo-code vital record birth data from Texas (2002-2004) and link them with standard pollution monitoring data and a newly introduced EPA product of calibrated air pollution model output. We apply the fully spatial model to a region of 13 counties in eastern Texas consisting of highly urban as well as rural areas. Our results indicate significant signal in the first two trimesters of pregnancy with different pollutants leading to different critical windows. Introducing the spatial aspect uncovers critical windows previously unidentified when space is ignored. A proper inference procedure is introduced to correctly analyze these windows. © 2012, The International Biometric Society.
Seasonal timing of fire alters biomass and species composition of northern mixed prairie
USDA-ARS?s Scientific Manuscript database
Fire plays a central role in influencing ecosystem patterns and processes. However, documentation of fire seasonality and plant community response is limited in semi-arid grasslands. Most prescribed burns occur during spring and fall, when windows of safe burning conditions are often broad. Burnin...
A fast non-contact imaging photoplethysmography method using a tissue-like model
NASA Astrophysics Data System (ADS)
McDuff, Daniel J.; Blackford, Ethan B.; Estepp, Justin R.; Nishidate, Izumi
2018-02-01
Imaging photoplethysmography (iPPG) allows non-contact, concomitant measurement and visualization of peripheral blood flow using just an RGB camera. Most iPPG methods require a window of temporal data and complex computation, this makes real-time measurement and spatial visualization impossible. We present a fast,"window-less", non-contact imaging photoplethysmography method, based on a tissue-like model of the skin, that allows accurate measurement of heart rate and heart rate variability parameters. The error in heart rate estimates is equivalent to state-of-the-art techniques and computation is much faster.
Exploiting visual search theory to infer social interactions
NASA Astrophysics Data System (ADS)
Rota, Paolo; Dang-Nguyen, Duc-Tien; Conci, Nicola; Sebe, Nicu
2013-03-01
In this paper we propose a new method to infer human social interactions using typical techniques adopted in literature for visual search and information retrieval. The main piece of information we use to discriminate among different types of interactions is provided by proxemics cues acquired by a tracker, and used to distinguish between intentional and casual interactions. The proxemics information has been acquired through the analysis of two different metrics: on the one hand we observe the current distance between subjects, and on the other hand we measure the O-space synergy between subjects. The obtained values are taken at every time step over a temporal sliding window, and processed in the Discrete Fourier Transform (DFT) domain. The features are eventually merged into an unique array, and clustered using the K-means algorithm. The clusters are reorganized using a second larger temporal window into a Bag Of Words framework, so as to build the feature vector that will feed the SVM classifier.
Lin, Gong-Ru; Pan, Ci-Ling; Yu, Kun-Chieh
2007-10-01
By spectrally and temporally reshaping the gain-window of a traveling-wave semiconductor optical amplifier (TWSOA) with a backward injected multi- or single-wavelength inverse-optical-comb, we theoretically and experimentally investigate the dynamic frequency chirp of the all-optical 10GBit/s Return-to-Zero (RZ) data-stream format-converted from the TWSOA under strong cross-gain depletion scheme. The multi-wavelength inverse-optical-comb injection effectively depletes the TWSOA gain spectrally and temporally, remaining a narrow gain-window and a reduced spectral linewidth and provide a converted RZ data with a smaller peak-to-peak frequency chirp of 6.7 GHz. Even at high inverse-optical-comb injection power and highly biased current condition for improving the operational bit-rate, the chirp of the multi-wavelength-injection converted RZ pulse is still 2.1-GHz smaller than that obtained by using single-wavelength injection at a cost of slight pulse-width broadening by 1 ps.
Wildfire cluster detection using space-time scan statistics
NASA Astrophysics Data System (ADS)
Tonini, M.; Tuia, D.; Ratle, F.; Kanevski, M.
2009-04-01
The aim of the present study is to identify spatio-temporal clusters of fires sequences using space-time scan statistics. These statistical methods are specifically designed to detect clusters and assess their significance. Basically, scan statistics work by comparing a set of events occurring inside a scanning window (or a space-time cylinder for spatio-temporal data) with those that lie outside. Windows of increasing size scan the zone across space and time: the likelihood ratio is calculated for each window (comparing the ratio "observed cases over expected" inside and outside): the window with the maximum value is assumed to be the most probable cluster, and so on. Under the null hypothesis of spatial and temporal randomness, these events are distributed according to a known discrete-state random process (Poisson or Bernoulli), which parameters can be estimated. Given this assumption, it is possible to test whether or not the null hypothesis holds in a specific area. In order to deal with fires data, the space-time permutation scan statistic has been applied since it does not require the explicit specification of the population-at risk in each cylinder. The case study is represented by Florida daily fire detection using the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product during the period 2003-2006. As result, statistically significant clusters have been identified. Performing the analyses over the entire frame period, three out of the five most likely clusters have been identified in the forest areas, on the North of the country; the other two clusters cover a large zone in the South, corresponding to agricultural land and the prairies in the Everglades. Furthermore, the analyses have been performed separately for the four years to analyze if the wildfires recur each year during the same period. It emerges that clusters of forest fires are more frequent in hot seasons (spring and summer), while in the South areas they are widely present along the whole year. The analysis of fires distribution to evaluate if they are statistically more frequent in some area or/and in some period of the year, can be useful to support fire management and to focus on prevention measures.
Applicability of optical scanner method for fine root dynamics
NASA Astrophysics Data System (ADS)
Kume, Tomonori; Ohashi, Mizue; Makita, Naoki; Khoon Kho, Lip; Katayama, Ayumi; Matsumoto, Kazuho; Ikeno, Hidetoshi
2016-04-01
Fine root dynamics is one of the important components in forest carbon cycling, as ~60 % of tree photosynthetic production can be allocated to root growth and metabolic activities. Various techniques have been developed for monitoring fine root biomass, production, mortality in order to understand carbon pools and fluxes resulting from fine roots dynamics. The minirhizotron method is now a widely used technique, in which a transparent tube is inserted into the soil and researchers count an increase and decrease of roots along the tube using images taken by a minirhizotron camera or minirhizotron video camera inside the tube. This method allows us to observe root behavior directly without destruction, but has several weaknesses; e.g., the difficulty of scaling up the results to stand level because of the small observation windows. Also, most of the image analysis are performed manually, which may yield insufficient quantitative and objective data. Recently, scanner method has been proposed, which can produce much bigger-size images (A4-size) with lower cost than those of the minirhizotron methods. However, laborious and time-consuming image analysis still limits the applicability of this method. In this study, therefore, we aimed to develop a new protocol for scanner image analysis to extract root behavior in soil. We evaluated applicability of this method in two ways; 1) the impact of different observers including root-study professionals, semi- and non-professionals on the detected results of root dynamics such as abundance, growth, and decomposition, and 2) the impact of window size on the results using a random sampling basis exercise. We applied our new protocol to analyze temporal changes of root behavior from sequential scanner images derived from a Bornean tropical forests. The results detected by the six observers showed considerable concordance in temporal changes in the abundance and the growth of fine roots but less in the decomposition. We also examined potential errors due to window size in the temporal changes in abundance and growth using the detected results, suggesting high applicability of the scanner methods with wide observation windows.
From bird to sparrow: Learning-induced modulations in fine-grained semantic discrimination.
De Meo, Rosanna; Bourquin, Nathalie M-P; Knebel, Jean-François; Murray, Micah M; Clarke, Stephanie
2015-09-01
Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra-categorical auditory discrimination for untrained items follows the temporal hierarchy and transpires in a late stage of semantic processing. On the other hand, correct categorization of individually trained stimuli occurs earlier, during a period contemporaneous with human vs. animal vocalization discrimination, and involves a parallel semantic pathway requiring expertise. Copyright © 2015 Elsevier Inc. All rights reserved.
Kowalik, Grzegorz T; Knight, Daniel S; Steeden, Jennifer A; Tann, Oliver; Odille, Freddy; Atkinson, David; Taylor, Andrew; Muthurangu, Vivek
2015-02-01
To develop a real-time phase contrast MR sequence with high enough temporal resolution to assess cardiac time intervals. The sequence utilized spiral trajectories with an acquisition strategy that allowed a combination of temporal encoding (Unaliasing by fourier-encoding the overlaps using the temporal dimension; UNFOLD) and parallel imaging (Sensitivity encoding; SENSE) to be used (UNFOLDed-SENSE). An in silico experiment was performed to determine the optimum UNFOLD filter. In vitro experiments were carried out to validate the accuracy of time intervals calculation and peak mean velocity quantification. In addition, 15 healthy volunteers were imaged with the new sequence, and cardiac time intervals were compared to reference standard Doppler echocardiography measures. For comparison, in silico, in vitro, and in vivo experiments were also carried out using sliding window reconstructions. The in vitro experiments demonstrated good agreement between real-time spiral UNFOLDed-SENSE phase contrast MR and the reference standard measurements of velocity and time intervals. The protocol was successfully performed in all volunteers. Subsequent measurement of time intervals produced values in keeping with literature values and good agreement with the gold standard echocardiography. Importantly, the proposed UNFOLDed-SENSE sequence outperformed the sliding window reconstructions. Cardiac time intervals can be successfully assessed with UNFOLDed-SENSE real-time spiral phase contrast. Real-time MR assessment of cardiac time intervals may be beneficial in assessment of patients with cardiac conditions such as diastolic dysfunction. © 2014 Wiley Periodicals, Inc.
High-dynamic-range cross-correlator for shot-to-shot measurement of temporal contrast
NASA Astrophysics Data System (ADS)
Kon, Akira; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Ogura, Koichi; Mori, Michiaki; Sakaki, Hironao; Kando, Masaki; Kondo, Kiminori
2017-01-01
The temporal contrast of an ultrahigh-intensity laser is a crucial parameter for laser plasma experiments. We have developed a multichannel cross-correlator (MCCC) for single-shot measurements of the temporal contrast in a high-power laser system. The MCCC is based on third-order cross-correlation, and has four channels and independent optical delay lines. We have experimentally demonstrated that the MCCC system achieves a high dynamic range of ˜1012 and a large temporal window of ˜1 ns. Moreover, we were able to measure the shot-to-shot fluctuations of a short-prepulse intensity at -26 ps and long-pulse (amplified spontaneous emission, ASE) intensities at -30, -450, and -950 ps before the arrival of the main pulse at the interaction point.
NASA Astrophysics Data System (ADS)
Pellerin, Morgane; Castaing, Victor; Gourier, Didier; Chanéac, Corinne; Viana, Bruno
2018-02-01
Persistent luminescence materials present many applications including security lighting and bio-imaging. Many progresses have been made in the elaboration of persistent luminescent nanoparticles suitable for the first NIR partial transparency window (650 - 950 nm). Moving to the second and third near-infrared partial transparency windows (1000 nm - 1800 nm) allows further reducing of scattering, absorption and tissue autofluorescence effects. In this work, we present the synthesis of Co2+ and Ni2+ doped zinc-gallate nanoparticles with broad emission covering the NIR-II range. Site occupancy, energy levels, optical features and persistent phenomena are presented.
Solar Transparent Radiators by Optical Nanoantennas.
Jönsson, Gustav; Tordera, Daniel; Pakizeh, Tavakol; Jaysankar, Manoj; Miljkovic, Vladimir; Tong, Lianming; Jonsson, Magnus P; Dmitriev, Alexandre
2017-11-08
Architectural windows are a major cause of thermal discomfort as the inner glazing during cold days can be several degrees colder than the indoor air. Mitigating this, the indoor temperature has to be increased, leading to unavoidable thermal losses. Here we present solar thermal surfaces based on complex nanoplasmonic antennas that can raise the temperature of window glazing by up to 8 K upon solar irradiation while transmitting light with a color rendering index of 98.76. The nanoantennas are directional, can be tuned to absorb in different spectral ranges, and possess a structural integrity that is not substrate-dependent, and thus they open up for application on a broad range of surfaces.
Broadband continuous-variable entanglement source using a chirped poling nonlinear crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J. S.; Sun, L.; Yu, X. Q.
2010-01-15
Aperiodically poled nonlinear crystal can be used as a broadband continuous-variable entanglement source and has strong stability under perturbations. We study the conversion dynamics of the sum-frequency generation and the quantum correlation of the two pump fields in a chirped-structure nonlinear crystal using the quantum stochastic method. The results show that there exists a frequency window for the pumps where two optical fields can perform efficient upconversion. The two pump fields are demonstrated to be entangled in the window and the chirped-structure crystal can be used as a continuous-variable entanglement source with a broad response bandwidth.
Coverage centralities for temporal networks*
NASA Astrophysics Data System (ADS)
Takaguchi, Taro; Yano, Yosuke; Yoshida, Yuichi
2016-02-01
Structure of real networked systems, such as social relationship, can be modeled as temporal networks in which each edge appears only at the prescribed time. Understanding the structure of temporal networks requires quantifying the importance of a temporal vertex, which is a pair of vertex index and time. In this paper, we define two centrality measures of a temporal vertex based on the fastest temporal paths which use the temporal vertex. The definition is free from parameters and robust against the change in time scale on which we focus. In addition, we can efficiently compute these centrality values for all temporal vertices. Using the two centrality measures, we reveal that distributions of these centrality values of real-world temporal networks are heterogeneous. For various datasets, we also demonstrate that a majority of the highly central temporal vertices are located within a narrow time window around a particular time. In other words, there is a bottleneck time at which most information sent in the temporal network passes through a small number of temporal vertices, which suggests an important role of these temporal vertices in spreading phenomena. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-60498-7
Matsumoto, Atsushi; Kakigi, Ryusuke
2014-01-01
Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.
Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W
2018-02-16
Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Measurement of cochlear length using the 'A' value for cochlea basal diameter: A feasibility study.
Deep, Nicholas L; Howard, Brittany E; Holbert, Sarah O; Hoxworth, Joseph M; Barrs, David M
2017-07-01
To determine whether the cochlea basal diameter (A value) measurement can be consistently and precisely obtained from high-resolution temporal bone imaging for use in cochlear length estimation. A feasibility study at a tertiary referral center was performed using the temporal bone CTs of 40 consecutive patients. The distance from the round window to the lateral wall was measured for each cochlea by two independent reviewers, a neuroradiologist and an otolaryngologist. The interrater reliability was calculated using the intraclass correlation coefficient (ICC) and the Bland-Altman plot. Forty patients (19 males, 21 females) for a total of 80 cochleae were included. Interrater reliability on the same ear had a high level of agreement by both the ICC and the Bland-Altman plot. ICCs were 0.90 (95% CI: 0.82, 0.94) for the left ear and 0.96 (95% CI: 0.92, 0.98) for the right ear. Bland-Altman plot confirmed interrater reliability with all 96% of measurements falling within the 95% limits of agreement. Measurement between the round window and lateral cochlear wall can be consistently and reliably obtained from high-resolution temporal bone CT scans. Thus, it is feasible to utilize this method to estimate the cochlear length of patients undergoing cochlear implantation.
Colonius, Hans; Diederich, Adele
2011-07-01
The concept of a "time window of integration" holds that information from different sensory modalities must not be perceived too far apart in time in order to be integrated into a multisensory perceptual event. Empirical estimates of window width differ widely, however, ranging from 40 to 600 ms depending on context and experimental paradigm. Searching for theoretical derivation of window width, Colonius and Diederich (Front Integr Neurosci 2010) developed a decision-theoretic framework using a decision rule that is based on the prior probability of a common source, the likelihood of temporal disparities between the unimodal signals, and the payoff for making right or wrong decisions. Here, this framework is extended to the focused attention task where subjects are asked to respond to signals from a target modality only. Evoking the framework of the time-window-of-integration (TWIN) model, an explicit expression for optimal window width is obtained. The approach is probed on two published focused attention studies. The first is a saccadic reaction time study assessing the efficiency with which multisensory integration varies as a function of aging. Although the window widths for young and older adults differ by nearly 200 ms, presumably due to their different peripheral processing speeds, neither of them deviates significantly from the optimal values. In the second study, head saccadic reactions times to a perfectly aligned audiovisual stimulus pair had been shown to depend on the prior probability of spatial alignment. Intriguingly, they reflected the magnitude of the time-window widths predicted by our decision-theoretic framework, i.e., a larger time window is associated with a higher prior probability.
Brown, Andrew D; Tollin, Daniel J
2016-09-21
In mammals, localization of sound sources in azimuth depends on sensitivity to interaural differences in sound timing (ITD) and level (ILD). Paradoxically, while typical ILD-sensitive neurons of the auditory brainstem require millisecond synchrony of excitatory and inhibitory inputs for the encoding of ILDs, human and animal behavioral ILD sensitivity is robust to temporal stimulus degradations (e.g., interaural decorrelation due to reverberation), or, in humans, bilateral clinical device processing. Here we demonstrate that behavioral ILD sensitivity is only modestly degraded with even complete decorrelation of left- and right-ear signals, suggesting the existence of a highly integrative ILD-coding mechanism. Correspondingly, we find that a majority of auditory midbrain neurons in the central nucleus of the inferior colliculus (of chinchilla) effectively encode ILDs despite complete decorrelation of left- and right-ear signals. We show that such responses can be accounted for by relatively long windows of bilateral excitatory-inhibitory interaction, which we explicitly measure using trains of narrowband clicks. Neural and behavioral data are compared with the outputs of a simple model of ILD processing with a single free parameter, the duration of excitatory-inhibitory interaction. Behavioral, neural, and modeling data collectively suggest that ILD sensitivity depends on binaural integration of excitation and inhibition within a ≳3 ms temporal window, significantly longer than observed in lower brainstem neurons. This relatively slow integration potentiates a unique role for the ILD system in spatial hearing that may be of particular importance when informative ITD cues are unavailable. In mammalian hearing, interaural differences in the timing (ITD) and level (ILD) of impinging sounds carry critical information about source location. However, natural sounds are often decorrelated between the ears by reverberation and background noise, degrading the fidelity of both ITD and ILD cues. Here we demonstrate that behavioral ILD sensitivity (in humans) and neural ILD sensitivity (in single neurons of the chinchilla auditory midbrain) remain robust under stimulus conditions that render ITD cues undetectable. This result can be explained by "slow" temporal integration arising from several-millisecond-long windows of excitatory-inhibitory interaction evident in midbrain, but not brainstem, neurons. Such integrative coding can account for the preservation of ILD sensitivity despite even extreme temporal degradations in ecological acoustic stimuli. Copyright © 2016 the authors 0270-6474/16/369908-14$15.00/0.
NASA Astrophysics Data System (ADS)
Lindsey, Brooks D.; Ivancevich, Nikolas M.; Whitman, John; Light, Edward; Fronheiser, Matthew; Nicoletto, Heather A.; Laskowitz, Daniel T.; Smith, Stephen W.
2009-02-01
We describe early stage experiments to test the feasibility of an ultrasound brain helmet to produce multiple simultaneous real-time 3D scans of the cerebral vasculature from temporal and suboccipital acoustic windows of the skull. The transducer hardware and software of the Volumetrics Medical Imaging real-time 3D scanner were modified to support dual 2.5 MHz matrix arrays of 256 transmit elements and 128 receive elements which produce two simultaneous 64° pyramidal scans. The real-time display format consists of two coronal B-mode images merged into a 128° sector, two simultaneous parasagittal images merged into a 128° × 64° C-mode plane, and a simultaneous 64° axial image. Real-time 3D color Doppler images acquired in initial clinical studies after contrast injection demonstrate flow in several representative blood vessels. An offline Doppler rendering of data from two transducers simultaneously scanning via the temporal windows provides an early visualization of the flow in vessels on both sides of the brain. The long-term goal is to produce real-time 3D ultrasound images of the cerebral vasculature from a portable unit capable of internet transmission, thus enabling interactive 3D imaging, remote diagnosis and earlier therapeutic intervention. We are motivated by the urgency for rapid diagnosis of stroke due to the short time window of effective therapeutic intervention.
[Applied anatomy of facial recess and posterior tympanum related to cochlear implantation].
Zou, Tuanming; Xie, Nanping; Guo, Menghe; Shu, Fan; Zhang, Hongzheng
2012-05-01
To investigate the related parameters of temporal bone structure in the surgery of cochlear implantation through facial recess approach so as to offer a theoretical reference for the avoidance of facial nerve injury and the accurate localization. In a surgical simulation experiment, twenty human temporal bones were studied. The correlation parameters were measured under surgical microscope. Distance between suprameatal spine and short process of incus was (12.44 +/- 0.51) mm. Width from crotch of chorda tympani nerve to stylomastoid foramen was (2.67 +/- 0.51) mm. Distance between short process of incus and crotch of chorda tympani nerve was (15.22 +/- 0.83) mm. The location of maximal width of the facial recess into short process of incus, crotch of chorda tympani nerve were (6.28 +/- 0.41) mm, (9.81 +/- 0.71) mm, respectively. The maximal width of the facial recess was (2.73 +/- 0.20) mm. The value at level of stapes and round window were (2.48 +/- 0.20 mm) and (2.24 +/- 0.18) mm, respectively. Distance between pyramidalis eminence and anterior round window was (2.22 +/- 0.21) mm. Width from stapes to underneath round window was (2.16 +/- 0.14) mm. These parameters provide a reference value to determine the position of cochlear inserting the electrode array into the scale tympani and opening facial recess firstly to avoid potential damage to facial nerve in surgery.
Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones
NASA Astrophysics Data System (ADS)
Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Merchant, Saumil N.; Ravicz, Michael E.; Rosowski, John J.
2009-02-01
We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. Micro-scale fiberoptic pressure sensors enabled the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. Results showed that: pressure of scala vestibuli was much greater than scala tympani except at low and high frequencies where scala tympani pressure affects the input to the cochlea; the differential pressure proved to be an excellent measure of normal ossicular transduction of sound (shown to decrease 30-50 dB with ossicular disarticulation, whereas the individual scala pressures were significantly affected by non-ossicular conduction of sound at high frequencies); the middle-ear gain and differential pressure were generally bandpass in frequency dependence; and the middle-ear delay in the human was over twice that of the gerbil. Concurrent stapes velocity measurements allowed determination of the differential impedance across the partition and round-window impedance. The differential impedance was generally resistive, while the round-window impedance was consistent with a compliance in conjunction with distributed inertia and damping. Our techniques can be used to study inner-ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round-window stimulation) - situations that cannot be completely quantified by measurements of stapes velocity or scala-vestibuli pressure by themselves.
Physical activity classification with dynamic discriminative methods.
Ray, Evan L; Sasaki, Jeffer E; Freedson, Patty S; Staudenmayer, John
2018-06-19
A person's physical activity has important health implications, so it is important to be able to measure aspects of physical activity objectively. One approach to doing that is to use data from an accelerometer to classify physical activity according to activity type (e.g., lying down, sitting, standing, or walking) or intensity (e.g., sedentary, light, moderate, or vigorous). This can be formulated as a labeled classification problem, where the model relates a feature vector summarizing the accelerometer signal in a window of time to the activity type or intensity in that window. These data exhibit two key characteristics: (1) the activity classes in different time windows are not independent, and (2) the accelerometer features have moderately high dimension and follow complex distributions. Through a simulation study and applications to three datasets, we demonstrate that a model's classification performance is related to how it addresses these aspects of the data. Dynamic methods that account for temporal dependence achieve better performance than static methods that do not. Generative methods that explicitly model the distribution of the accelerometer signal features do not perform as well as methods that take a discriminative approach to establishing the relationship between the accelerometer signal and the activity class. Specifically, Conditional Random Fields consistently have better performance than commonly employed methods that ignore temporal dependence or attempt to model the accelerometer features. © 2018, The International Biometric Society.
Non ictal onset zone: A window to ictal dynamics.
Afra, Pegah; Hanrahan, Sara J; Kellis, Spencer Sterling; House, Paul
2017-01-01
The focal and network concepts of epilepsy present different aspects of electroclinical phenomenon of seizures. Here, we present a 23-year-old man undergoing surgical evaluation with left fronto-temporal electrocorticography (ECoG) and microelectrode-array (MEA) in the middle temporal gyrus (MTG). We compare action-potential (AP) and local field potentials (LFP) recorded from MEA with ECoG. Seizure onset in the mesial-temporal lobe was characterized by changes in the pattern of AP-firing without clear changes in LFP or ECoG in MTG. This suggests simultaneous analysis of neuronal activity in differing spatial scales and frequency ranges provide complementary insights into how focal and network neurophysiological activity contribute to ictal activity.
Research on spatio-temporal database techniques for spatial information service
NASA Astrophysics Data System (ADS)
Zhao, Rong; Wang, Liang; Li, Yuxiang; Fan, Rongshuang; Liu, Ping; Li, Qingyuan
2007-06-01
Geographic data should be described by spatial, temporal and attribute components, but the spatio-temporal queries are difficult to be answered within current GIS. This paper describes research into the development and application of spatio-temporal data management system based upon GeoWindows GIS software platform which was developed by Chinese Academy of Surveying and Mapping (CASM). Faced the current and practical requirements of spatial information application, and based on existing GIS platform, one kind of spatio-temporal data model which integrates vector and grid data together was established firstly. Secondly, we solved out the key technique of building temporal data topology, successfully developed a suit of spatio-temporal database management system adopting object-oriented methods. The system provides the temporal data collection, data storage, data management and data display and query functions. Finally, as a case study, we explored the application of spatio-temporal data management system with the administrative region data of multi-history periods of China as the basic data. With all the efforts above, the GIS capacity of management and manipulation in aspect of time and attribute of GIS has been enhanced, and technical reference has been provided for the further development of temporal geographic information system (TGIS).
Trbusek, J
2009-11-01
Detection of HCV core antigen as direct marker of hepatitis C infection clearly improves diagnosis of this disease (especially reduction of window period) and brings broad clinical utilization. The company Abbott Laboratories offers fully automated laboratory test for measurement of HCV core antigen on ARCHITECT analyzers.
Dynamic CRM occupancy reflects a temporal map of developmental progression.
Wilczyński, Bartek; Furlong, Eileen E M
2010-06-22
Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.
Syed, Mubarak Hussain; Mark, Brandon; Doe, Chris Q
2017-04-10
An important question in neuroscience is how stem cells generate neuronal diversity. During Drosophila embryonic development, neural stem cells (neuroblasts) sequentially express transcription factors that generate neuronal diversity; regulation of the embryonic temporal transcription factor cascade is lineage-intrinsic. In contrast, larval neuroblasts generate longer ~50 division lineages, and currently only one mid-larval molecular transition is known: Chinmo/Imp/Lin-28+ neuroblasts transition to Syncrip+ neuroblasts. Here we show that the hormone ecdysone is required to down-regulate Chinmo/Imp and activate Syncrip, plus two late neuroblast factors, Broad and E93. We show that Seven-up triggers Chinmo/Imp to Syncrip/Broad/E93 transition by inducing expression of the Ecdysone receptor in mid-larval neuroblasts, rendering them competent to respond to the systemic hormone ecdysone. Importantly, late temporal gene expression is essential for proper neuronal and glial cell type specification. This is the first example of hormonal regulation of temporal factor expression in Drosophila embryonic or larval neural progenitors.
Ultrafast chirped optical waveform recorder using a time microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Corey Vincent
2015-04-21
A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.
Shade, Ashley; Carey, Cayelan C; Kara, Emily; Bertilsson, Stefan; McMahon, Katherine D; Smith, Matthew C
2009-08-01
Automated sensing technologies, 'ASTs,' are tools that can monitor environmental or microbial-related variables at increasingly high temporal resolution. Microbial ecologists are poised to use AST data to couple microbial structure, function and associated environmental observations on temporal scales pertinent to microbial processes. In the context of aquatic microbiology, we discuss three applications of ASTs: windows on the microbial world, adaptive sampling and adaptive management. We challenge microbial ecologists to push AST potential in helping to reveal relationships between microbial structure and function.
Window of opportunity--positioning food and nutrition policy within a sustainability agenda.
Yeatman, Heather
2008-04-01
Public health professionals have an opportunity to refocus national attention on food and nutrition policy, within a sustainability agenda. A broadly based national Food and Nutrition Policy was developed in 1992. However, its implementation has been selective and primarily based within the health sector. Other major policy areas, for example; industry, agriculture and trade, have dominated Australian nutrition and health policy. A broad, whole-of-government commitment to a comprehensive food and nutrition policy that engages with the community is required to achieve outcomes in terms of public health, a sustainable environment and viable food production for future generations.
Fontaine, Sarah N; Ingram, Alexandria; Cloyd, Ryan A; Meier, Shelby E; Miller, Emily; Lyons, Danielle; Nation, Grant K; Mechas, Elizabeth; Weiss, Blaine; Lanzillotta, Chiara; Di Domenico, Fabio; Schmitt, Frederick; Powell, David K; Vandsburger, Moriel; Abisambra, Jose F
2017-08-01
Tauopathies, the most common of which is Alzheimer's disease (AD), constitute the most crippling neurodegenerative threat to our aging population. Tauopathic patients have significant cognitive decline accompanied by irreversible and severe brain atrophy, and it is thought that neuronal dysfunction begins years before diagnosis. Our current understanding of tauopathies has yielded promising therapeutic interventions but have all failed in clinical trials. This is partly due to the inability to identify and intervene in an effective therapeutic window early in the disease process. A major challenge that contributes to the definition of an early therapeutic window is limited technologies. To address these challenges, we modified and adapted a manganese-enhanced magnetic resonance imaging (MEMRI) approach to provide sensitive and quantitative power to detect changes in broad neuronal function in aging mice. Considering that tau tangle burden correlates well with cognitive impairment in Alzheimer's patients, we performed our MEMRI approach in a time course of aging mice and an accelerated mouse model of tauopathy. We measured significant changes in broad neuronal function as a consequence of age, and in transgenic mice, before the deposition of bona fide tangles. This MEMRI approach represents the first diagnostic measure of neuronal dysfunction in mice. Successful translation of this technology in the clinic could serve as a sensitive diagnostic tool for the definition of effective therapeutic windows. Copyright © 2017 Elsevier Inc. All rights reserved.
Sweetkind, Donald S.; Rytuba, James J.; Langenheim, V.E.; Fleck, Robert J.
2011-01-01
The volcanic fields in the California Coast Ranges north of San Francisco Bay are temporally and spatially associated with the northward migration of the Mendocino triple junction and the transition from subduction and associated arc volcanism to a slab window tectonic environment. Our geochemical analyses from the Sonoma volcanic field highlight the geochemical diversity of these volcanic rocks, allowing us to clearly distinguish these volcanic rocks from those of the roughly coeval ancestral Cascades magmatic arc to the west, and also to compare rocks of the Sonoma volcanic field to rocks from other slab window settings.
Attosecond light sources in the water window
NASA Astrophysics Data System (ADS)
Ren, Xiaoming; Li, Jie; Yin, Yanchun; Zhao, Kun; Chew, Andrew; Wang, Yang; Hu, Shuyuan; Cheng, Yan; Cunningham, Eric; Wu, Yi; Chini, Michael; Chang, Zenghu
2018-02-01
As a compact and burgeoning alternative to synchrotron radiation and free-electron lasers, high harmonic generation (HHG) has proven its superiority in static and time-resolved extreme ultraviolet spectroscopy for the past two decades and has recently gained many interests and successes in generating soft x-ray emissions covering the biologically important water window spectral region. Unlike synchrotron and free-electron sources, which suffer from relatively long pulse width or large time jitter, soft x-ray sources from HHG could offer attosecond time resolution and be synchronized with their driving field to investigate time-resolved near edge absorption spectroscopy, which could reveal rich structural and dynamical information of the interrogated samples. In this paper, we review recent progresses on generating and characterizing attosecond light sources in the water window region. We show our development of an energetic, two-cycle, carrier-envelope phase stable laser source at 1.7 μm and our achievement in producing a 53 as soft x-ray pulse covering the carbon K-edge in the water window. Such source paves the ways for the next generation x-ray spectroscopy with unprecedented temporal resolution.
Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels.
Al-Samman, A M; Azmi, M H; Rahman, T A; Khan, I; Hindia, M N; Fattouh, A
2016-01-01
This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk-1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method.
Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels
Al-Samman, A. M.; Azmi, M. H.; Rahman, T. A.; Khan, I.; Hindia, M. N.; Fattouh, A.
2016-01-01
This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk−1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method. PMID:27992445
Ariza, Pedro; Solesio-Jofre, Elena; Martínez, Johann H.; Pineda-Pardo, José A.; Niso, Guiomar; Maestú, Fernando; Buldú, Javier M.
2015-01-01
In this study we used graph theory analysis to investigate age-related reorganization of functional networks during the active maintenance of information that is interrupted by external interference. Additionally, we sought to investigate network differences before and after averaging network parameters between both maintenance and interference windows. We compared young and older adults by measuring their magnetoencephalographic recordings during an interference-based working memory task restricted to successful recognitions. Data analysis focused on the topology/temporal evolution of functional networks during both the maintenance and interference windows. We observed that: (a) Older adults require higher synchronization between cortical brain sites in order to achieve a successful recognition, (b) The main differences between age groups arise during the interference window, (c) Older adults show reduced ability to reorganize network topology when interference is introduced, and (d) Averaging network parameters leads to a loss of sensitivity to detect age differences. PMID:26029079
Replacement Sequence of Events Generator
NASA Technical Reports Server (NTRS)
Fisher, Forest; Gladden, Daniel Wenkert Roy; Khanampompan, Teerpat
2008-01-01
The soeWINDOW program automates the generation of an ITAR (International Traffic in Arms Regulations)-compliant sub-RSOE (Replacement Sequence of Events) by extracting a specified temporal window from an RSOE while maintaining page header information. RSOEs contain a significant amount of information that is not ITAR-compliant, yet that foreign partners need to see for command details to their instrument, as well as the surrounding commands that provide context for validation. soeWINDOW can serve as an example of how command support products can be made ITAR-compliant for future missions. This software is a Perl script intended for use in the mission operations UNIX environment. It is designed for use to support the MRO (Mars Reconnaissance Orbiter) instrument team. The tool also provides automated DOM (Distributed Object Manager) storage into the special ITAR-okay DOM collection, and can be used for creating focused RSOEs for product review by any of the MRO teams.
NASA Astrophysics Data System (ADS)
Rossi, A.; Montefoschi, F.; Rizzo, A.; Diligenti, M.; Festucci, C.
2017-10-01
Machine Learning applied to Automatic Audio Surveillance has been attracting increasing attention in recent years. In spite of several investigations based on a large number of different approaches, little attention had been paid to the environmental temporal evolution of the input signal. In this work, we propose an exploration in this direction comparing the temporal correlations extracted at the feature level with the one learned by a representational structure. To this aim we analysed the prediction performances of a Recurrent Neural Network architecture varying the length of the processed input sequence and the size of the time window used in the feature extraction. Results corroborated the hypothesis that sequential models work better when dealing with data characterized by temporal order. However, so far the optimization of the temporal dimension remains an open issue.
Emergence of artistic talent in frontotemporal dementia.
Miller, B L; Cummings, J; Mishkin, F; Boone, K; Prince, F; Ponton, M; Cotman, C
1998-10-01
To describe the clinical, neuropsychological, and imaging features of five patients with frontotemporal dementia (FTD) who acquired new artistic skills in the setting of dementia. Creativity in the setting of dementia has recently been reported. We describe five patients who became visual artists in the setting of FTD. Sixty-nine FTD patients were interviewed regarding visual abilities. Five became artists in the early stages of FTD. Their history, artistic process, neuropsychology, and anatomy are described. On SPECT or pathology, four of the five patients had the temporal variant of FTD in which anterior temporal lobes are involved but the dorsolateral frontal cortex is spared. Visual skills were spared but language and social skills were devastated. Loss of function in the anterior temporal lobes may lead to the "facilitation" of artistic skills. Patients with the temporal lobe variant of FTD offer a window into creativity.
HVI Ballistic Limit Characterization of Fused Silica Thermal Panes
NASA Technical Reports Server (NTRS)
Miller, J. E.; Bohl, W. D.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.
2015-01-01
Fused silica window systems are used heavily on crewed reentry vehicles, and they are currently being used on the next generation of US crewed spacecraft, Orion. These systems improve crew situational awareness and comfort, as well as, insulating the reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on a fused silica window system proposed for the Orion spacecraft. A ballistic limit equation that describes the threshold of perforation of a fuse silica pane over a broad range of impact velocities, obliquities and projectile materials is discussed here.
Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial
NASA Astrophysics Data System (ADS)
Yan, Zhendong; Qian, Lina; Zhan, Peng; Wang, Zhenlin
2018-07-01
We proposed the excitation of double Fano resonances by the destructive interference between the narrow electric symmetric/antisymmetric resonant modes formed by plasmon hybridization and a broad magnetic dipole resonance in a novel hybrid metamaterial composed of periodically patterned stacked graphene–ribbon pairs and gold split-ring resonators. The double Fano transparency windows in this hybrid metamaterial can be actively controlled by tuning the Fermi energy of graphene through the use of electric gating and its electronic mobility. Our designed dual Fano resonances exhibit a large group index associated with the resonance response in the transparency windows, suggesting promising applications in nanophotonics, such as a slow light device.
Reducing Sensor Noise in MEG and EEG Recordings Using Oversampled Temporal Projection.
Larson, Eric; Taulu, Samu
2018-05-01
Here, we review the theory of suppression of spatially uncorrelated, sensor-specific noise in electro- and magentoencephalography (EEG and MEG) arrays, and introduce a novel method for suppression. Our method requires only that the signals of interest are spatially oversampled, which is a reasonable assumption for many EEG and MEG systems. Our method is based on a leave-one-out procedure using overlapping temporal windows in a mathematical framework to project spatially uncorrelated noise in the temporal domain. This method, termed "oversampled temporal projection" (OTP), has four advantages over existing methods. First, sparse channel-specific artifacts are suppressed while limiting mixing with other channels, whereas existing linear, time-invariant spatial operators can spread such artifacts to other channels with a spatial distribution which can be mistaken for one produced by an electrophysiological source. Second, OTP minimizes distortion of the spatial configuration of the data. During source localization (e.g., dipole fitting), many spatial methods require corresponding modification of the forward model to avoid bias, while OTP does not. Third, noise suppression factors at the sensor level are maintained during source localization, whereas bias compensation removes the denoising benefit for spatial methods that require such compensation. Fourth, OTP uses a time-window duration parameter to control the tradeoff between noise suppression and adaptation to time-varying sensor characteristics. OTP efficiently optimizes noise suppression performance while controlling for spatial bias of the signal of interest. This is important in applications where sensor noise significantly limits the signal-to-noise ratio, such as high-frequency brain oscillations.
ISERV Pathfinder. The ISS SERVIR Environmental Research and Visualization System
NASA Technical Reports Server (NTRS)
Howell, Burgess
2011-01-01
SERVIR integrates Earth observations (e.g., space imagery), predictive models, and in situ data to provide timely information products to support environmental decision makers. ISERV propoesed development -- ISERV-W: Internal Visible/Near-Infrared (VNIR), attached to ISS via Window Observational Research Facility (WORF), ISERV-E: External Visible/Broad-Infrared (V/IR) and ISERV-PM: External Passive Microwave.
An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization.
Nisar, Shibli; Khan, Omar Usman; Tariq, Muhammad
2016-01-01
Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection.
Angeli, Roberto D; Lavinsky, Joel; Setogutti, Enio T; Lavinsky, Luiz
2017-01-01
The aim of this work was to describe the dimensions of the crista fenestra and determine its presence by means of high-resolution computed tomography (CT) for the purpose of cochlear implantation via the round window approach. A series of 10 adult human temporal bones underwent high-resolution CT scanning and were further dissected for microscopic study of the round window niche. In all of the specimens, the round window membrane was fully visualized after the complete removal of bony overhangs. The crista fenestra was identified as a sharp bony crest located in the anterior and inferior borders of the niche; its area ranged from 0.28 to 0.80 mm2 (mean 0.51 ± 0.18). The proportion of the area occupied by the crista fenestra in the whole circumference of the round window ranged from 23 to 50% (mean 36%). We found a moderate positive correlation between the area of the niche and the dimensions of the crista fenestra (Spearman rho: 0.491). In every case, high-resolution CT scanning was unable to determine the presence of the crista fenestra. The crista fenestra occupies a variable but expressive area within the bony round window niche. Narrower round window niches tended to house smaller crests. The presence of the crista fenestra is an important obstacle to adequate access to the scala tympani. Nevertheless, a high-resolution CT scan provides no additional preoperative information with regard to its presence for the purpose of surgical access to the scala tympani via the round window niche. © 2017 S. Karger AG, Basel.
Neural measures of the role of affective prosody in empathy for pain.
Meconi, Federica; Doro, Mattia; Lomoriello, Arianna Schiano; Mastrella, Giulia; Sessa, Paola
2018-01-10
Emotional communication often needs the integration of affective prosodic and semantic components from speech and the speaker's facial expression. Affective prosody may have a special role by virtue of its dual-nature; pre-verbal on one side and accompanying semantic content on the other. This consideration led us to hypothesize that it could act transversely, encompassing a wide temporal window involving the processing of facial expressions and semantic content expressed by the speaker. This would allow powerful communication in contexts of potential urgency such as witnessing the speaker's physical pain. Seventeen participants were shown with faces preceded by verbal reports of pain. Facial expressions, intelligibility of the semantic content of the report (i.e., participants' mother tongue vs. fictional language) and the affective prosody of the report (neutral vs. painful) were manipulated. We monitored event-related potentials (ERPs) time-locked to the onset of the faces as a function of semantic content intelligibility and affective prosody of the verbal reports. We found that affective prosody may interact with facial expressions and semantic content in two successive temporal windows, supporting its role as a transverse communication cue.
Temporal relation between top-down and bottom-up processing in lexical tone perception
Shuai, Lan; Gong, Tao
2013-01-01
Speech perception entails both top-down processing that relies primarily on language experience and bottom-up processing that depends mainly on instant auditory input. Previous models of speech perception often claim that bottom-up processing occurs in an early time window, whereas top-down processing takes place in a late time window after stimulus onset. In this paper, we evaluated the temporal relation of both types of processing in lexical tone perception. We conducted a series of event-related potential (ERP) experiments that recruited Mandarin participants and adopted three experimental paradigms, namely dichotic listening, lexical decision with phonological priming, and semantic violation. By systematically analyzing the lateralization patterns of the early and late ERP components that are observed in these experiments, we discovered that: auditory processing of pitch variations in tones, as a bottom-up effect, elicited greater right hemisphere activation; in contrast, linguistic processing of lexical tones, as a top-down effect, elicited greater left hemisphere activation. We also found that both types of processing co-occurred in both the early (around 200 ms) and late (around 300–500 ms) time windows, which supported a parallel model of lexical tone perception. Unlike the previous view that language processing is special and performed by dedicated neural circuitry, our study have elucidated that language processing can be decomposed into general cognitive functions (e.g., sensory and memory) and share neural resources with these functions. PMID:24723863
NASA Astrophysics Data System (ADS)
Salinas Solé, Celia; Peña Angulo, Dhais; Gonzalez HIgaldo, Jose Carlos; Brunetti, MIchele
2017-04-01
In this poster we applied the moving window approach (see Poster I of this collection) to analyze trends of autumn and its corresponding months (September, October, November) temperature mean values of maximum (Tmax) and minimum (Tmin) in Spanish mainland to detect the effects of length period and starting year. Monthly series belong to Monthly Temperature dataset of Spanish mainland (MOTEDAS). Database contains in its grid format of 5236 pixels of monthly series (10x10 km). The threshold used in spatial analyses considers 20% of land under significant trend (p<0.05). The most striking results are as follow: • Seasonal trend analyses of Autumn Tmax show no significance at any temporal Windows. Trends of Tmin are significant in more than 20% of land until 1974-2010. The area affected in Tmin progressively increase from SE to NW. • Monthly trend analyses not detect any significance in Tmax, while in Tmin, particularly in October, an extended area is detected in temporal windows in between 1951-2010 to 1978-2010, but clearly concentrated in the starting years of initial 70´s. Spatial pattern of areas affected significantly seems to be from SE to NW for October, and South-North in September. To conclude autumn trend analyses of Tmax and Tmin in Spanish mainland only detect significant trend in Tmin, mostly located in the 70´s and extending from SE to central areas of study area.
Nguyen, Duc-Loc; Wimberley, Catriona; Truillet, Charles; Jego, Benoit; Caillé, Fabien; Pottier, Géraldine; Boisgard, Raphaël; Buvat, Irène; Bouilleret, Viviane
2018-06-01
Mesiotemporal lobe epilepsy is the most common type of drug-resistant partial epilepsy, with a specific history that often begins with status epilepticus due to various neurological insults followed by a silent period. During this period, before the first seizure occurs, a specific lesion develops, described as unilateral hippocampal sclerosis (HS). It is still challenging to determine which drugs, administered at which time point, will be most effective during the formation of this epileptic process. Neuroinflammation plays an important role in pathophysiological mechanisms in epilepsy, and therefore brain inflammation biomarkers such as translocator protein 18 kDa (TSPO) can be potent epilepsy biomarkers. TSPO is associated with reactive astrocytes and microglia. A unilateral intrahippocampal kainate injection mouse model can reproduce the defining features of human temporal lobe epilepsy with unilateral HS and the pattern of chronic pharmacoresistant temporal seizures. We hypothesized that longitudinal imaging using TSPO positron emission tomography (PET) with 18 F-DPA-714 could identify optimal treatment windows in a mouse model during the formation of HS. The model was induced into the right dorsal hippocampus of male C57/Bl6 mice. Micro-PET/computed tomographic scanning was performed before model induction and along the development of the HS at 7 days, 14 days, 1 month, and 6 months. In vitro autoradiography and immunohistofluorescence were performed on additional mice at each time point. TSPO PET uptake reached peak at 7 days and mostly related to microglial activation, whereas after 14 days, reactive astrocytes were shown to be the main cells expressing TSPO, reflected by a continuing increased PET uptake. TSPO-targeted PET is a highly potent longitudinal biomarker of epilepsy and could be of interest to determine the therapeutic windows in epilepsy and to monitor response to treatment. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.
Temporal processing deficit leads to impaired multisensory binding in schizophrenia.
Zvyagintsev, Mikhail; Parisi, Carmen; Mathiak, Klaus
2017-09-01
Schizophrenia has been characterised by neurodevelopmental dysconnectivity resulting in cognitive and perceptual dysmetria. Hence patients with schizophrenia may be impaired to detect the temporal relationship between stimuli in different sensory modalities. However, only a few studies described deficit in perception of temporally asynchronous multisensory stimuli in schizophrenia. We examined the perceptual bias and the processing time of synchronous and delayed sounds in the streaming-bouncing illusion in 16 patients with schizophrenia and a matched control group of 18 participants. Equal for patients and controls, the synchronous sound biased the percept of two moving squares towards bouncing as opposed to the more frequent streaming percept in the condition without sound. In healthy controls, a delay of the sound presentation significantly reduced the bias and led to prolonged processing time whereas patients with schizophrenia did not differentiate between this condition and the condition with synchronous sound. Schizophrenia leads to a prolonged window of simultaneity for audiovisual stimuli. Therefore, temporal processing deficit in schizophrenia can lead to hyperintegration of temporally unmatched multisensory stimuli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z.; Hering, P.; Brown, S. B.
To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Here, temporal evolution of AC conductivity in laser excited warm dense gold was also measured.
Chen, Z.; Hering, P.; Brown, S. B.; ...
2016-09-19
To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Here, temporal evolution of AC conductivity in laser excited warm dense gold was also measured.
A risk-informed decision framework for setting environmental windows for dredging projects.
Suedel, Burton C; Kim, Jongbum; Clarke, Douglas G; Linkov, Igor
2008-09-15
Sediment dredging is necessary to sustain navigation infrastructure in ports and harbor areas. In the United States alone between 250 and 300 million cubic yards of sediment are dredged annually. Dredging activities may cause stress on aquatic biota by locally increasing turbidity and suspended sediment concentrations, physically disturbing habitat by elevated sedimentation rates, interfering in migratory behaviors, and hydraulically entraining bottom dwelling organisms. Environmental windows are a management practice used to alleviate such stresses on resident and transient biota by placing temporal restrictions on the conduct of dredging operations. Adherence to environmental windows can significantly inflate costs for project sponsors and local stakeholders. Since their inception following passage of NEPA in 1969 the process for setting environmental windows has not followed structured procedures and represents an example of the difficulty inherent in achieving a balance between biological resource protection and cost-effective construction and maintenance of navigation infrastructure. Recent developments in the fields of risk assessment for non-chemical stressors as well as experience in implementing structured risk-informed decision-making tools for sediment and natural resource management are summarized in this paper in relation to setting environmental windows. Combining risk assessment and multi-criteria decision analysis allows development of a framework for an objective process consistent with recommendations by the National Academy of Sciences for setting environmental windows. A hypothetical application of the framework for protection of Pacific herring (Clupea pallasii) in San Francisco Bay is discussed.
a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data
NASA Astrophysics Data System (ADS)
Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.
2017-09-01
The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.
Miotto, Riccardo; Li, Li; Kidd, Brian A.; Dudley, Joel T.
2016-01-01
Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name “deep patient”. We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems. PMID:27185194
NASA Astrophysics Data System (ADS)
Miotto, Riccardo; Li, Li; Kidd, Brian A.; Dudley, Joel T.
2016-05-01
Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name “deep patient”. We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems.
Modified skin window technique for the extended characterisation of acute inflammation in humans
Marks, D. J. B.; Radulovic, M.; McCartney, S.; Bloom, S.; Segal, A. W.
2009-01-01
Objective To modify the skin window technique for extended analysis of acute inflammatory responses in humans, and demonstrate its applicability for investigating disease. Subjects 15 healthy subjects and 5 Crohn’s patients. Treatment Skin windows, created by dermal abrasion, were overlaid for various durations with filter papers saturated in saline, 100 ng/ml muramyl dipeptide (MDP) or 10 μg/ml interleukin-8 (IL-8). Methods Exuded leukocytes were analyzed by microscopy, immunoblot, DNA-bound transcription factor arrays and RT-PCR. Inflammatory mediators were quantified by ELISA. Results Infiltrating leukocytes were predominantly neutrophils. Numerous secreted mediators were detectable. MDP and IL-8 enhanced responses. Many signalling proteins were phosphorylated with differential patterns in Crohn’s patients, notably PKC α/β hyperphosphorylation (11.3 ± 3.1 vs 1.2 ± 0.9 units, P < 0.02). Activities of 44 transcription factors were detectable, and sufficient RNA isolated for expression analysis of over 400 genes. Conclusions The modifications enable broad characterisation of inflammatory responses and administration of exogenous immunomodulators. PMID:17522815
Syed, Mubarak Hussain; Mark, Brandon; Doe, Chris Q
2017-01-01
An important question in neuroscience is how stem cells generate neuronal diversity. During Drosophila embryonic development, neural stem cells (neuroblasts) sequentially express transcription factors that generate neuronal diversity; regulation of the embryonic temporal transcription factor cascade is lineage-intrinsic. In contrast, larval neuroblasts generate longer ~50 division lineages, and currently only one mid-larval molecular transition is known: Chinmo/Imp/Lin-28+ neuroblasts transition to Syncrip+ neuroblasts. Here we show that the hormone ecdysone is required to down-regulate Chinmo/Imp and activate Syncrip, plus two late neuroblast factors, Broad and E93. We show that Seven-up triggers Chinmo/Imp to Syncrip/Broad/E93 transition by inducing expression of the Ecdysone receptor in mid-larval neuroblasts, rendering them competent to respond to the systemic hormone ecdysone. Importantly, late temporal gene expression is essential for proper neuronal and glial cell type specification. This is the first example of hormonal regulation of temporal factor expression in Drosophila embryonic or larval neural progenitors. DOI: http://dx.doi.org/10.7554/eLife.26287.001 PMID:28394252
Time-marching multi-grid seismic tomography
NASA Astrophysics Data System (ADS)
Tong, P.; Yang, D.; Liu, Q.
2016-12-01
From the classic ray-based traveltime tomography to the state-of-the-art full waveform inversion, because of the nonlinearity of seismic inverse problems, a good starting model is essential for preventing the convergence of the objective function toward local minima. With a focus on building high-accuracy starting models, we propose the so-called time-marching multi-grid seismic tomography method in this study. The new seismic tomography scheme consists of a temporal time-marching approach and a spatial multi-grid strategy. We first divide the recording period of seismic data into a series of time windows. Sequentially, the subsurface properties in each time window are iteratively updated starting from the final model of the previous time window. There are at least two advantages of the time-marching approach: (1) the information included in the seismic data of previous time windows has been explored to build the starting models of later time windows; (2) seismic data of later time windows could provide extra information to refine the subsurface images. Within each time window, we use a multi-grid method to decompose the scale of the inverse problem. Specifically, the unknowns of the inverse problem are sampled on a coarse mesh to capture the macro-scale structure of the subsurface at the beginning. Because of the low dimensionality, it is much easier to reach the global minimum on a coarse mesh. After that, finer meshes are introduced to recover the micro-scale properties. That is to say, the subsurface model is iteratively updated on multi-grid in every time window. We expect that high-accuracy starting models should be generated for the second and later time windows. We will test this time-marching multi-grid method by using our newly developed eikonal-based traveltime tomography software package tomoQuake. Real application results in the 2016 Kumamoto earthquake (Mw 7.0) region in Japan will be demonstrated.
Gender-specific effects of emotional modulation on visual temporal order thresholds.
Liang, Wei; Zhang, Jiyuan; Bao, Yan
2015-09-01
Emotions affect temporal information processing in the low-frequency time window of a few seconds, but little is known about their effect in the high-frequency domain of some tens of milliseconds. The present study aims to investigate whether negative and positive emotional states influence the ability to discriminate the temporal order of visual stimuli, and whether gender plays a role in temporal processing. Due to the hemispheric lateralization of emotion, a hemispheric asymmetry between the left and the right visual field might be expected. Using a block design, subjects were primed with neutral, negative and positive emotional pictures before performing temporal order judgment tasks. Results showed that male subjects exhibited similarly reduced order thresholds under negative and positive emotional states, while female subjects demonstrated increased threshold under positive emotional state and reduced threshold under negative emotional state. Besides, emotions influenced female subjects more intensely than male subjects, and no hemispheric lateralization was observed. These observations indicate an influence of emotional states on temporal order processing of visual stimuli, and they suggest a gender difference, which is possibly associated with a different emotional stability.
Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B.; Sturm, Benjamin W.
2016-02-09
According to one embodiment, a scintillator radiation detector system includes a scintillator, and a processing device for processing pulse traces corresponding to light pulses from the scintillator, where the processing device is configured to: process each pulse trace over at least two temporal windows and to use pulse digitization to improve energy resolution of the system. According to another embodiment, a scintillator radiation detector system includes a processing device configured to: fit digitized scintillation waveforms to an algorithm, perform a direct integration of fit parameters, process multiple integration windows for each digitized scintillation waveform to determine a correction factor, and apply the correction factor to each digitized scintillation waveform.
Luminescence from edge fracture in shocked lithium fluoride crystals
Turley, W. D.; Stevens, G. D.; Capelle, G. A.; ...
2013-04-03
Light emitted from a [100] lithium fluoride crystal was characterized under shock wave compression to 28 GPa followed by complete stress release at the edges. We examined the light using time-gated optical spectrometry and imaging, time-resolved optical emission measurements, and hydrodynamic modeling. The shock arrival at the circumference of the crystal was delayed relative to the center so that the two regions could be studied at different times. The majority of the light emission originated when the shock waves released at the circumference of the crystal. Unlike previously reported results for shocked lithium fluoride, we found that the light spectrummore » is not strictly broad band, but has spectral lines associated with atomic lithium in addition to a broad band background. Also, the emission spectrum depends strongly on the gas surrounding the sample. Based on our observations, the line emission appears to be related to fracture of the lithium fluoride crystal from the shock wave releasing at the edges. Moreover, experimenters frequently utilize lithium fluoride crystals as transparent windows for observing shock compressed samples. Because of the experimental geometries used, the shock wave in such cases often reaches the circumference of the window at nearly the same moment as when it reaches the center of the sample-window interface. Light generated at the circumference could contaminate the measurement at the interface when this light scatters into the observed region. Finally, this background light may be reduced or avoided using experimental geometries which delay the arrival of the shock wave at the edges of the crystal.« less
ERIC Educational Resources Information Center
Roever, Carol
2007-01-01
A beverage, as well as the way it is served, can be a window into the soul of a culture. For the author and her husband, Turkish tea helped them understand and enjoy the culture of Turkey. They learned that the broad nuances of culture can be as instructive as a classroom experience. The tea story begins in Chicago in the spring of 2005 when the…
ERIC Educational Resources Information Center
Lee, Carol D.
2017-01-01
This chapter addresses how fundamental principles regarding how people learn in the last decade open up possibilities for conceptualizing a broad ecological culturally rooted framework for the design of robust learning environments in a variety of settings, especially schools. These cross-disciplinary principles emerging from across relevant…
Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L.; Cong, D. Y.; Ma, L.
Reversibility of the magnetocaloric effect in materials with first-order magnetostructural transformation is of vital significance for practical magnetic refrigeration applications. Here, we report a large reversible magnetocaloric effect in a Ni49.8Co1.2Mn33.5In15.5 magnetic shape memory alloy. A large reversible magnetic entropy change of 14.6 J/(kg K) and a broad operating temperature window of 18 K under 5 T were simultaneously achieved, correlated with the low thermal hysteresis (-8 K) and large magnetic-field-induced shift of transformation temperatures (4.9 K/T) that lead to a narrow magnetic hysteresis (1.1 T) and small average magnetic hysteresis loss (48.4 J/kg under 5 T) as well. Furthermore,more » a large reversible effective refrigeration capacity (76.6 J/kg under 5 T) was obtained, as a result of the large reversible magnetic entropy change, broad operating temperature window, and small magnetic hysteresis loss. The large reversible magnetic entropy change and large reversible effective refrigeration capacity are important for improving the magnetocaloric performance, and the small magnetic hysteresis loss is beneficial to reducing energy dissipation during magnetic field cycle in potential applications.« less
Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns
Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M.; ...
2016-08-16
Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyreneblock-poly(methyl methacrylate). Faster assembly kinetics aremore » observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. Lastly, the rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces.« less
NASA Astrophysics Data System (ADS)
Fang, Li
The Geostationary Operational Environmental Satellites (GOES) have been continuously monitoring the earth surface since 1970, providing valuable and intensive data from a very broad range of wavelengths, day and night. The National Oceanic and Atmospheric Administration's (NOAA's) National Environmental Satellite, Data, and Information Service (NESDIS) is currently operating GOES-15 and GOES-13. The design of the GOES series is now heading to the 4 th generation. GOES-R, as a representative of the new generation of the GOES series, is scheduled to be launched in 2015 with higher spatial and temporal resolution images and full-time soundings. These frequent observations provided by GOES Image make them attractive for deriving information on the diurnal land surface temperature (LST) cycle and diurnal temperature range (DTR). These parameters are of great value for research on the Earth's diurnal variability and climate change. Accurate derivation of satellite-based LSTs from thermal infrared data has long been an interesting and challenging research area. To better support the research on climate change, the generation of consistent GOES LST products for both GOES-East and GOES-West from operational dataset as well as historical archive is in great demand. The derivation of GOES LST products and the evaluation of proposed retrieval methods are two major objectives of this study. Literature relevant to satellite-based LST retrieval techniques was reviewed. Specifically, the evolution of two LST algorithm families and LST retrieval methods for geostationary satellites were summarized in this dissertation. Literature relevant to the evaluation of satellite-based LSTs was also reviewed. All the existing methods are a valuable reference to develop the GOES LST product. The primary objective of this dissertation is the development of models for deriving consistent GOES LSTs with high spatial and high temporal coverage. Proper LST retrieval algorithms were studied according to the characteristics of the imager onboard the GOES series. For the GOES 8-11 and GOES R series with split window (SW) channels, a new temperature and emissivity separation (TES) approach was proposed for deriving LST and LSE simultaneously by using multiple-temporal satellite observations. Two split-window regression formulas were selected for this approach, and two satellite observations over the same geo-location within a certain time interval were utilized. This method is particularly applicable to geostationary satellite missions from which qualified multiple-temporal observations are available. For the GOES M(12)-Q series without SW channels, the dual-window LST algorithm was adopted to derive LST. Instead of using the conventional training method to generate coefficients for the LST regression algorithms, a machine training technique was introduced to automatically select the criteria and the boundary of the sub-ranges for generating algorithm coefficients under different conditions. A software package was developed to produce a brand new GOES LST product from both operational GOES measurements and historical archive. The system layers of the software and related system input and output were illustrated in this work. Comprehensive evaluation of GOES LST products was conducted by validating products against multiple ground-based LST observations, LST products from fine-resolution satellites (e.g. MODIS) and GSIP LST products. The key issues relevant to the cloud diffraction effect were studied as well. GOES measurements as well as ancillary data, including satellite and solar geometry, water vapor, cloud mask, land emissivity etc., were collected to generate GOES LST products. In addition, multiple in situ temperature measurements were collected to test the performance of the proposed GOES LST retrieval algorithms. The ground-based dataset included direct surface temperature measurements from the Atmospheric Radiation Measurement program (ARM), and indirect measurements (surface long-wave radiation observations) from the SURFace RADiation Budget (SURFRAD) Network. A simulated dataset was created to analyse the sensitivity of the proposed retrieval algorithms. In addition, the MODIS LST and GSIP LST products were adopted to cross-evaluate the accuracy of the GOES LST products. Evaluation results demonstrate that the proposed GOES LST system is capable of deriving consistent land surface temperatures with good retrieval precision. Consistent GOES LST products with high spatial/temporal coverage and reliable accuracy will better support detections and observations of meteorological over land surfaces.
[Computed tomography of the temporal bone in diagnosis of chronic exudative otitis media].
Zelikovich, E I
2005-01-01
Computed tomography (CT) of the temporal bone was made in 37 patients aged 2 to 55 years with chronic exudative otitis media (CEOM). In 21 of them the pathology was bilateral. The analysis of 58 CT images has identified CT signs of chronic exudative otitis media. They include partial (17 temporary bones) or complete (38 temporal bones) block of the bone opening of the auditory tube, pneumatic defects of the tympanic cavity (58 temporal bones), pneumatic defects of the mastoid process and antrum (47 temporal bones), pathologic retraction of the tympanic membrane. The examination of the temporal bone detected both CT-signs of CEOM and other causes of hearing disorders in 14 patients (26 temporal bones) with CEOM symptoms and inadequately high hypoacusis. Among these causes were malformation of the auditory ossicula (n=5), malformation of the labynthine window (n=2), malformation of the middle and internal ear (n=4), a wide aqueduct of the vestibule, labyrinthine anomaly of Mondini's type (n=1), cochlear hypoplasia (n=4), stenosis of the internal acoustic meatuses (n=2). Sclerotic fibrous dysplasia was suggested in 2 temporal bones (by CT data). CT was repeated after surgical treatment of 10 patients (14 temporal bones) and visual assessment of tympanostomy results was made.
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.
Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B
2017-07-01
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
Latency as a region contrast: Measuring ERP latency differences with Dynamic Time Warping.
Zoumpoulaki, A; Alsufyani, A; Filetti, M; Brammer, M; Bowman, H
2015-12-01
Methods for measuring onset latency contrasts are evaluated against a new method utilizing the dynamic time warping (DTW) algorithm. This new method allows latency to be measured across a region instead of single point. We use computer simulations to compare the methods' power and Type I error rates under different scenarios. We perform per-participant analysis for different signal-to-noise ratios and two sizes of window (broad vs. narrow). In addition, the methods are tested in combination with single-participant and jackknife average waveforms for different effect sizes, at the group level. DTW performs better than the other methods, being less sensitive to noise as well as to placement and width of the window selected. © 2015 Society for Psychophysiological Research.
Star-Shaped Crack Pattern of Broken Windows
NASA Astrophysics Data System (ADS)
Vandenberghe, Nicolas; Vermorel, Romain; Villermaux, Emmanuel
2013-04-01
Broken thin brittle plates like windows and windshields are ubiquitous in our environment. When impacted locally, they typically present a pattern of cracks extending radially outward from the impact point. We study the variation of the pattern of cracks by performing controlled transverse impacts on brittle plates over a broad range of impact speed, plate thickness, and material properties, and we establish from experiments a global scaling law for the number of radial cracks incorporating all these parameters. A model based on Griffith’s theory of fracture combining bending elastic energy and fracture energy accounts for our observations. These findings indicate how the postmortem shape of broken samples are related to material properties and impact parameters, a procedure relevant to forensic science, archaeology, or astrophysics.
ERIC Educational Resources Information Center
Stevenson, Ryan A.; Zemtsov, Raquel K.; Wallace, Mark T.
2012-01-01
Human multisensory systems are known to bind inputs from the different sensory modalities into a unified percept, a process that leads to measurable behavioral benefits. This integrative process can be observed through multisensory illusions, including the McGurk effect and the sound-induced flash illusion, both of which demonstrate the ability of…
UAVSAR: An Airborne Window on Earth Surface Deformation
NASA Technical Reports Server (NTRS)
Hensley, Scott
2011-01-01
This study demonstrates that UAVSAR's precision autopilot and electronic steering have allowed for the reliable collection of airborne repeat pass radar interferometric data for deformation mapping. Deformation maps from temporal scales ranging from hours to months over a variety of signals of geophysical interest illustrate the utility of UAVSAR airborne repeat pass interferometry to these studies.
Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope
Bennett, Corey Vincent
2010-06-15
A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.
Ultrafast chirped optical waveform recorder using referenced heterodyning and a time microscope
Bennett, Corey Vincent [Livermore, CA
2011-11-22
A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.
Kardos, Zsófia; Oláh, Csaba; Sepsi, Mariann; Sas, Attila; Kostyál, László; Bóta, Tünde; Bhattoa, Harjit Pal; Hodosi, Katalin; Kerekes, György; Tamási, László; Bereczki, Dániel; Szekanecz, Zoltán
2018-05-01
Assessment of intracranial vessels includes transcranial Doppler (TCD). TCD performance requires intact temporal acoustic windows (TAW). Failure of TAW (TAWF) is present in 8-20% of people. There have been no reports on TAWF in rheumatoid arthritis (RA). Altogether, 62 female RA patients were included. Among them, 20 were MTX-treated and biologic-free, 20 received infliximab, and 22 tocilizumab. The controls included 60 non-RA women. TAWF, temporal bone thickness, and texture were determined by ultrasound and CT. BMD and T-scores of multiple bones were determined by DEXA. Several bone biomarkers were assessed by ELISA. In RA, 54.8% of the patients had TAWF on at least one side. Neither TAW could be identified in 34% of RA subjects. In contrast, only 20.0% of control subjects had TAWF on either or both sides (p < 0.001). In RA vs controls, 53.0 vs 2.9% of subjects exerted the trilayer, "sandwich-like" structure of TAW (p < 0.001). Finally, in RA vs controls, the mean temporal bone thickness values of the right TAW were 3.58 ± 1.43 vs 2.92 ± 1.22 mm (p = NS), while those of the left TAW were 4.16 ± 1.56 vs 2.90 ± 1.16 mm (p = 0.001). There was close association between TAWF, bone thickness, and texture (p < 0.05). These TAW parameters all correlated with age; however, TAW failure and texture also correlated with serum osteoprotegerin. TAW bone thickness inversely correlated with hip BMD (p < 0.05). TAWF, thicker, and heterogeneous temporal bones were associated with RA. These features have been associated with bone loss and OPG production. Bone loss seen in RA may result in OPG release and stimulation of bone formation around TAW.
van Vugt, Floris T.; Tillmann, Barbara
2014-01-01
The human brain is able to predict the sensory effects of its actions. But how precise are these predictions? The present research proposes a tool to measure thresholds between a simple action (keystroke) and a resulting sound. On each trial, participants were required to press a key. Upon each keystroke, a woodblock sound was presented. In some trials, the sound came immediately with the downward keystroke; at other times, it was delayed by a varying amount of time. Participants were asked to verbally report whether the sound came immediately or was delayed. Participants' delay detection thresholds (in msec) were measured with a staircase-like procedure. We hypothesised that musicians would have a lower threshold than non-musicians. Comparing pianists and brass players, we furthermore hypothesised that, as a result of a sharper attack of the timbre of their instrument, pianists might have lower thresholds than brass players. Our results show that non-musicians exhibited higher thresholds for delay detection (180±104 ms) than the two groups of musicians (102±65 ms), but there were no differences between pianists and brass players. The variance in delay detection thresholds could be explained by variance in sensorimotor synchronisation capacities as well as variance in a purely auditory temporal irregularity detection measure. This suggests that the brain's capacity to generate temporal predictions of sensory consequences can be decomposed into general temporal prediction capacities together with auditory-motor coupling. These findings indicate that the brain has a relatively large window of integration within which an action and its resulting effect are judged as simultaneous. Furthermore, musical expertise may narrow this window down, potentially due to a more refined temporal prediction. This novel paradigm provides a simple test to estimate the temporal precision of auditory-motor action-effect coupling, and the paradigm can readily be incorporated in studies investigating both healthy and patient populations. PMID:24498299
Optimization of ramp area aircraft push back time windows in the presence of uncertainty
NASA Astrophysics Data System (ADS)
Coupe, William Jeremy
It is well known that airport surface traffic congestion at major airports is responsible for increased taxi-out times, fuel burn and excess emissions and there is potential to mitigate these negative consequences through optimizing airport surface traffic operations. Due to a highly congested voice communication channel between pilots and air traffic controllers and a data communication channel that is used only for limited functions, one of the most viable near-term strategies for improvement of the surface traffic is issuing a push back advisory to each departing aircraft. This dissertation focuses on the optimization of a push back time window for each departing aircraft. The optimization takes into account both spatial and temporal uncertainties of ramp area aircraft trajectories. The uncertainties are described by a stochastic kinematic model of aircraft trajectories, which is used to infer distributions of combinations of push back times that lead to conflict among trajectories from different gates. The model is validated and the distributions are included in the push back time window optimization. Under the assumption of a fixed taxiway spot schedule, the computed push back time windows can be integrated with a higher level taxiway scheduler to optimize the flow of traffic from the gate to the departure runway queue. To enable real-time decision making the computational time of the push back time window optimization is critical and is analyzed throughout.
Cecere, Roberto; Gross, Joachim; Willis, Ashleigh; Thut, Gregor
2017-05-24
In multisensory integration, processing in one sensory modality is enhanced by complementary information from other modalities. Intersensory timing is crucial in this process because only inputs reaching the brain within a restricted temporal window are perceptually bound. Previous research in the audiovisual field has investigated various features of the temporal binding window, revealing asymmetries in its size and plasticity depending on the leading input: auditory-visual (AV) or visual-auditory (VA). Here, we tested whether separate neuronal mechanisms underlie this AV-VA dichotomy in humans. We recorded high-density EEG while participants performed an audiovisual simultaneity judgment task including various AV-VA asynchronies and unisensory control conditions (visual-only, auditory-only) and tested whether AV and VA processing generate different patterns of brain activity. After isolating the multisensory components of AV-VA event-related potentials (ERPs) from the sum of their unisensory constituents, we ran a time-resolved topographical representational similarity analysis (tRSA) comparing the AV and VA ERP maps. Spatial cross-correlation matrices were built from real data to index the similarity between the AV and VA maps at each time point (500 ms window after stimulus) and then correlated with two alternative similarity model matrices: AV maps = VA maps versus AV maps ≠ VA maps The tRSA results favored the AV maps ≠ VA maps model across all time points, suggesting that audiovisual temporal binding (indexed by synchrony perception) engages different neural pathways depending on the leading sense. The existence of such dual route supports recent theoretical accounts proposing that multiple binding mechanisms are implemented in the brain to accommodate different information parsing strategies in auditory and visual sensory systems. SIGNIFICANCE STATEMENT Intersensory timing is a crucial aspect of multisensory integration, determining whether and how inputs in one modality enhance stimulus processing in another modality. Our research demonstrates that evaluating synchrony of auditory-leading (AV) versus visual-leading (VA) audiovisual stimulus pairs is characterized by two distinct patterns of brain activity. This suggests that audiovisual integration is not a unitary process and that different binding mechanisms are recruited in the brain based on the leading sense. These mechanisms may be relevant for supporting different classes of multisensory operations, for example, auditory enhancement of visual attention (AV) and visual enhancement of auditory speech (VA). Copyright © 2017 Cecere et al.
2017-01-01
In multisensory integration, processing in one sensory modality is enhanced by complementary information from other modalities. Intersensory timing is crucial in this process because only inputs reaching the brain within a restricted temporal window are perceptually bound. Previous research in the audiovisual field has investigated various features of the temporal binding window, revealing asymmetries in its size and plasticity depending on the leading input: auditory–visual (AV) or visual–auditory (VA). Here, we tested whether separate neuronal mechanisms underlie this AV–VA dichotomy in humans. We recorded high-density EEG while participants performed an audiovisual simultaneity judgment task including various AV–VA asynchronies and unisensory control conditions (visual-only, auditory-only) and tested whether AV and VA processing generate different patterns of brain activity. After isolating the multisensory components of AV–VA event-related potentials (ERPs) from the sum of their unisensory constituents, we ran a time-resolved topographical representational similarity analysis (tRSA) comparing the AV and VA ERP maps. Spatial cross-correlation matrices were built from real data to index the similarity between the AV and VA maps at each time point (500 ms window after stimulus) and then correlated with two alternative similarity model matrices: AVmaps = VAmaps versus AVmaps ≠ VAmaps. The tRSA results favored the AVmaps ≠ VAmaps model across all time points, suggesting that audiovisual temporal binding (indexed by synchrony perception) engages different neural pathways depending on the leading sense. The existence of such dual route supports recent theoretical accounts proposing that multiple binding mechanisms are implemented in the brain to accommodate different information parsing strategies in auditory and visual sensory systems. SIGNIFICANCE STATEMENT Intersensory timing is a crucial aspect of multisensory integration, determining whether and how inputs in one modality enhance stimulus processing in another modality. Our research demonstrates that evaluating synchrony of auditory-leading (AV) versus visual-leading (VA) audiovisual stimulus pairs is characterized by two distinct patterns of brain activity. This suggests that audiovisual integration is not a unitary process and that different binding mechanisms are recruited in the brain based on the leading sense. These mechanisms may be relevant for supporting different classes of multisensory operations, for example, auditory enhancement of visual attention (AV) and visual enhancement of auditory speech (VA). PMID:28450537
Static and Dynamic Compaction of CL-20 Powders
NASA Astrophysics Data System (ADS)
Cooper, Marcia; Brundage, Aaron; Dudley, Evan
2009-06-01
Hexanitrohexaazaisowurtzitane (CL-20) powders were compacted under quasi-static and dynamic loading conditions. A uniaxial compression apparatus quasi-statically compressed the powders to 90% theoretical maximum density with applied stresses up to 0.5 GPa. Dynamic compaction measurements using low-density pressings (62-70% theoretical maximum density) were obtained in a single-stage gas gun at impact velocities between 0.17-0.70 km/s. Experiments were conducted in a reverse ballistic arrangement in which the CL-20 ladened projectile impacted a target consisting of an aluminized window. VISAR-measured particle velocities at the explosive-window interface determined the shock Hugoniot states for pressures up to 0.9 GPa. The powder compaction behavior is found to be stiffer under dynamic loading than under quasi-static loading. Additional gas gun tests were conducted in which the low-density CL-20 pressings were confined within a target cup by the aluminized window. This arrangement enabled temporal measurement of the transmitted wave profiles in which elastic wave precursors were observed.
Micromirror-based manipulation of synchrotron x-ray beams
NASA Astrophysics Data System (ADS)
Walko, D. A.; Chen, Pice; Jung, I. W.; Lopez, D.; Schwartz, C. P.; Shenoy, G. K.; Wang, Jin
2017-08-01
Synchrotron beamlines typically use macroscopic, quasi-static optics to manipulate x-ray beams. We present the use of dynamic microelectromechanical systems-based optics (MEMS) to temporally modulate synchrotron x-ray beams. We demonstrate this concept using single-crystal torsional MEMS micromirrors oscillating at frequencies of 75 kHz. Such a MEMS micromirror, with lateral dimensions of a few hundred micrometers, can interact with x rays by operating in grazing-incidence reflection geometry; x rays are deflected only when an x-ray pulse is incident on the rotating micromirror under appropriate conditions, i.e., at an angle less than the critical angle for reflectivity. The time window for such deflections depends on the frequency and amplitude of the MEMS rotation. We demonstrate that reflection geometry can produce a time window of a few microseconds. We further demonstrate that MEMS optics can isolate x rays from a selected synchrotron bunch or group of bunches. With ray-trace simulations we explain the currently achievable time windows and suggest a path toward improvements.
Inter-Comparison of GOES-8 Imager and Sounder Skin Temperature Retrievals
NASA Technical Reports Server (NTRS)
Haines, Stephanie L.; Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)
2001-01-01
Skin temperature (ST) retrievals derived from geostationary satellite observations have both high temporal and spatial resolutions and are therefore useful for applications such as assimilation into mesoscale forecast models, nowcasting, and diagnostic studies. Our retrieval method uses a Physical Split Window technique requiring at least two channels within the longwave infrared window. On current GOES satellites, including GOES-11, there are two Imager channels within the required spectral interval. However, beginning with the GOES-M satellite the 12-um channel will be removed, leaving only one longwave channel. The Sounder instrument will continue to have three channels within the longwave window, and therefore ST retrievals will be derived from Sounder measurements. This research compares retrievals from the two instruments and evaluates the effects of the spatial resolution and sensor calibration differences on the retrievals. Both Imager and Sounder retrievals are compared to ground-truth data to evaluate the overall accuracy of the technique. An analysis of GOES-8 and GOES-11 intercomparisons is also presented.
Temporal differentiation of pH-dependent capacitive current from dopamine.
Yoshimi, Kenji; Weitemier, Adam
2014-09-02
Voltammetric recording of dopamine (DA) with fast-scan cyclic voltammetry (FSCV) on carbon fiber microelectrodes have been widely used, because of its high sensitivity to dopamine. However, since an electric double layer on a carbon fiber surface in a physiological ionic solution behaves as a capacitor, fast voltage manipulation in FSCV induces large capacitive current. The faradic current from oxidation/reduction of target chemicals must be extracted from this large background current. It is known that ionic shifts, including H(+), influence this capacitance, and pH shift can cause confounding influences on the FSCV recordings within a wide range of voltage. Besides FSCV with a triangular waveform, we have been using rectangular pulse voltammetry (RPV) for dopamine detection in the brain. In this method, the onset of a single pulse causes a large capacitive current, but unlike FSCV, the capacitive current is restricted to a narrow temporal window of just after pulse onset (<5 ms). In contrast, the peak of faradic current from dopamine oxidation occurs after a delay of more than a few milliseconds. Taking advantage of the temporal difference, we show that RPV could distinguish dopamine from pH shifts clearly and easily. In addition, the early onset current was useful to evaluate pH shifts. The narrow voltage window of our RPV pulse allowed a clear differentiation of dopamine and serotonin (5-HT), as we have shown previously. Additional recording with RPV, alongside FSCV, would improve identification of chemicals such as dopamine, pH, and 5-HT.
Intraglomerular inhibition shapes the strength and temporal structure of glomerular output
Shao, Zuoyi; Puche, Adam C.; Liu, Shaolin
2012-01-01
Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites via the MC→GC→MC circuit. We investigated the contribution of intraglomerular inhibition to MC and ETCs responses to ON input. ON input evokes initial excitation followed by early, strongly summating inhibitory postsynaptic currents (IPSCs) in MCs; this is followed by prolonged, intermittent IPSCs. The N-methyl-d-aspartate receptor antagonist dl-amino-5-phosphovaleric acid, known to suppress GABA release by GCs, reduced late IPSCs but had no effect on early IPSCs. In contrast, selective intraglomerular block of GABAA receptors eliminated all early IPSCs and caused a 5-fold increase in ON-evoked MC spiking and a 10-fold increase in response duration. ETCs also receive intraglomerular inhibition; blockade of inhibition doubled ETC spike responses. By reducing ETC excitatory drive and directly inhibiting MCs, intraglomerular inhibition is a key factor shaping the strength and temporal structure of MC responses to sensory input. Sensory input generates an intraglomerular excitation-inhibition sequence that limits MC spike output to a brief temporal window. Glomerular circuits may dynamically regulate this input-output window to optimize MC encoding across sniff-sampled inputs. PMID:22592311
Intraglomerular inhibition shapes the strength and temporal structure of glomerular output.
Shao, Zuoyi; Puche, Adam C; Liu, Shaolin; Shipley, Michael T
2012-08-01
Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites via the MC→GC→MC circuit. We investigated the contribution of intraglomerular inhibition to MC and ETCs responses to ON input. ON input evokes initial excitation followed by early, strongly summating inhibitory postsynaptic currents (IPSCs) in MCs; this is followed by prolonged, intermittent IPSCs. The N-methyl-d-aspartate receptor antagonist dl-amino-5-phosphovaleric acid, known to suppress GABA release by GCs, reduced late IPSCs but had no effect on early IPSCs. In contrast, selective intraglomerular block of GABA(A) receptors eliminated all early IPSCs and caused a 5-fold increase in ON-evoked MC spiking and a 10-fold increase in response duration. ETCs also receive intraglomerular inhibition; blockade of inhibition doubled ETC spike responses. By reducing ETC excitatory drive and directly inhibiting MCs, intraglomerular inhibition is a key factor shaping the strength and temporal structure of MC responses to sensory input. Sensory input generates an intraglomerular excitation-inhibition sequence that limits MC spike output to a brief temporal window. Glomerular circuits may dynamically regulate this input-output window to optimize MC encoding across sniff-sampled inputs.
Aging and the Mammalian Regulatory Triumvirate
Rollo, C. David
2010-01-01
A temporal framework linking circadian rhythms and clocks to aging rates identifies a specific window of target of rapamycin (TOR) signaling associated with growth hormone (GH) and insulin-like growth factor (IGF-1) (largely exclusive of insulin) in early sleep. IGF-1 signaling is released by growth hormone secretory peaks and downregulation of IGF-1 binding protein-1 resulting in activation of the mitogen activated protein kinase/extracellular signal response kinase (MAPK/ERK) and phosphoinositide 3-kinase-protein kinase B (PI3K-PKB/Akt) signaling pathways. Phosphorylation of Akt activates TOR which mediates the protein synthesis and growth functions of the GH axis. TOR activity is also associated with downregulated stress resistance, faster aging and reduced lifespan. IGF-1 signaling is terminated by falling GH and upregulation of IGF-1 binding proteins mediated by somatostatin and rising corticosteroids in later sleep. This suppresses PI3K-Akt signaling, thus activating the forkhead transcription factors (FOXOs) and stress-resistance pathways involved in promoting longevity. Thus, sleep appears to encompass both pathways currently identified as most relevant to aging and they toggle successively on the phosphorylation status of Akt. I propose a modified version of Pearl’s rate of living theory emphasizing the hard-wired antagonism of growth (TOR) and stress resistance (FOXO). The sleep association of TOR and FOXO in temporally separated windows and their sequential temporal deployment may change much of the way we think about aging and how to manipulate it. PMID:22396860
Temporal Characterization of Aircraft Noise Sources
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Sullivan, Brenda M.; Rizzi, Stephen A.
2004-01-01
Current aircraft source noise prediction tools yield time-independent frequency spectra as functions of directivity angle. Realistic evaluation and human assessment of aircraft fly-over noise require the temporal characteristics of the noise signature. The purpose of the current study is to analyze empirical data from broadband jet and tonal fan noise sources and to provide the temporal information required for prediction-based synthesis. Noise sources included a one-tenth-scale engine exhaust nozzle and a one-fifth scale scale turbofan engine. A methodology was developed to characterize the low frequency fluctuations employing the Short Time Fourier Transform in a MATLAB computing environment. It was shown that a trade-off is necessary between frequency and time resolution in the acoustic spectrogram. The procedure requires careful evaluation and selection of the data analysis parameters, including the data sampling frequency, Fourier Transform window size, associated time period and frequency resolution, and time period window overlap. Low frequency fluctuations were applied to the synthesis of broadband noise with the resulting records sounding virtually indistinguishable from the measured data in initial subjective evaluations. Amplitude fluctuations of blade passage frequency (BPF) harmonics were successfully characterized for conditions equivalent to take-off and approach. Data demonstrated that the fifth harmonic of the BPF varied more in frequency than the BPF itself and exhibited larger amplitude fluctuations over the duration of the time record. Frequency fluctuations were found to be not perceptible in the current characterization of tonal components.
Ronconi, Luca; Melcher, David
2017-11-01
Recent behavioral, neuroimaging, and neurophysiological studies have renewed the idea that the information processing within different temporal windows is linked to the phase and/or frequency of the ongoing oscillations, predominantly in the theta/alpha band (∼4-7 and 8-12 Hz, respectively). However, being correlational in nature, this evidence might reflect a nonfunctional byproduct rather than having a causal role. A more direct link can be shown with methods that manipulate oscillatory activity. Here, we used audiovisual entrainment at different frequencies in the prestimulus period of a temporal integration/segregation task. We hypothesized that entrainment would align ongoing oscillations and drive them toward the stimulation frequency. To reveal behavioral oscillations in temporal perception after the entrainment, we sampled the segregation/integration performance densely in time. In Experiment 1, two groups of human participants (both males and females) received stimulation either at the lower or the upper boundary of the alpha band (∼8.5 vs 11.5 Hz). For both entrainment frequencies, we found a phase alignment of the perceptual oscillation across subjects, but with two different power spectra that peaked near the entrainment frequency. These results were confirmed when perceptual oscillations were characterized in the time domain with sinusoidal fittings. In Experiment 2, we replicated the findings in a within-subject design, extending the results for frequencies in the theta (∼6.5 Hz), but not in the beta (∼15 Hz), range. Overall, these findings show that temporal segregation can be modified by sensory entrainment, providing evidence for a critical role of ongoing oscillations in the temporal organization of perception. SIGNIFICANCE STATEMENT The continuous flow of sensory input is not processed in an analog fashion, but rather is grouped by the perceptual system over time. Recent studies pinpointed the phase and/or frequency of the neural oscillations in the theta/alpha band (∼4-12 Hz) as possible mechanisms underlying temporal windows in perception. Here, we combined two innovative methodologies to provide more direct support for this evidence. We used sensory entrainment to align neural oscillations to different frequencies and then characterized the resultant perceptual oscillation with a temporal dense sampling of the integration/segregation performance. Our results provide the first evidence that the frequency of temporal segregation can be modified by sensory entrainment, supporting a critical role of ongoing oscillations in the integration/segregation of information over time. Copyright © 2017 Ronconi and Melcher.
Bidelman, Gavin M
2016-10-01
Musical training is associated with behavioral and neurophysiological enhancements in auditory processing for both musical and nonmusical sounds (e.g., speech). Yet, whether the benefits of musicianship extend beyond enhancements to auditory-specific skills and impact multisensory (e.g., audiovisual) processing has yet to be fully validated. Here, we investigated multisensory integration of auditory and visual information in musicians and nonmusicians using a double-flash illusion, whereby the presentation of multiple auditory stimuli (beeps) concurrent with a single visual object (flash) induces an illusory perception of multiple flashes. We parametrically varied the onset asynchrony between auditory and visual events (leads and lags of ±300 ms) to quantify participants' "temporal window" of integration, i.e., stimuli in which auditory and visual cues were fused into a single percept. Results show that musically trained individuals were both faster and more accurate at processing concurrent audiovisual cues than their nonmusician peers; nonmusicians had a higher susceptibility for responding to audiovisual illusions and perceived double flashes over an extended range of onset asynchronies compared to trained musicians. Moreover, temporal window estimates indicated that musicians' windows (<100 ms) were ~2-3× shorter than nonmusicians' (~200 ms), suggesting more refined multisensory integration and audiovisual binding. Collectively, findings indicate a more refined binding of auditory and visual cues in musically trained individuals. We conclude that experience-dependent plasticity of intensive musical experience extends beyond simple listening skills, improving multimodal processing and the integration of multiple sensory systems in a domain-general manner.
Wavelet-based clustering of resting state MRI data in the rat.
Medda, Alessio; Hoffmann, Lukas; Magnuson, Matthew; Thompson, Garth; Pan, Wen-Ju; Keilholz, Shella
2016-01-01
While functional connectivity has typically been calculated over the entire length of the scan (5-10min), interest has been growing in dynamic analysis methods that can detect changes in connectivity on the order of cognitive processes (seconds). Previous work with sliding window correlation has shown that changes in functional connectivity can be observed on these time scales in the awake human and in anesthetized animals. This exciting advance creates a need for improved approaches to characterize dynamic functional networks in the brain. Previous studies were performed using sliding window analysis on regions of interest defined based on anatomy or obtained from traditional steady-state analysis methods. The parcellation of the brain may therefore be suboptimal, and the characteristics of the time-varying connectivity between regions are dependent upon the length of the sliding window chosen. This manuscript describes an algorithm based on wavelet decomposition that allows data-driven clustering of voxels into functional regions based on temporal and spectral properties. Previous work has shown that different networks have characteristic frequency fingerprints, and the use of wavelets ensures that both the frequency and the timing of the BOLD fluctuations are considered during the clustering process. The method was applied to resting state data acquired from anesthetized rats, and the resulting clusters agreed well with known anatomical areas. Clusters were highly reproducible across subjects. Wavelet cross-correlation values between clusters from a single scan were significantly higher than the values from randomly matched clusters that shared no temporal information, indicating that wavelet-based analysis is sensitive to the relationship between areas. Copyright © 2015 Elsevier Inc. All rights reserved.
Yuan, Hong-Jie; Liang, Bo; Zheng, Liang-Liang; Liu, Yu-Xiang; Luo, Ming-Jiu; Tan, Jing-He
2013-01-01
It is known that psychological stress affects reproduction in women, but it is unknown whether the effect is by impairing implantation. Although studies suggest that long periods of auditory or restraint stress may inhibit implantation in rats and mice, the exact stage of pregnancy at which stress impairs implantation is unclear. Furthermore, whether stress impairs implantation by decreasing the heparin-binding epidermal growth factor-like growth factor (HB-EGF), estrogen and/or progesterone and whether by acting on embryos or on the uterus need further investigations. In this study, a 24-h restraint stress was initiated at 15:30 of day 3 (regimen 1) or at 07:30 (regimen 2) or 15:30 of day 4 (regimen 3) of pregnancy (vaginal plug = day 1) to observe effects of restraint stress applied at different peri-implantation stages on implantation. Among the three regimens, whereas regimens 1 and 3 affected neither term pregnancy nor litter size, regimen 2 reduced both. Further observations indicated that regimen 2 of restraint stress also delayed blastocyst hatching and the attachment reaction, decreased serum concentrations of progesterone and estradiol, and down regulated the expression of HB-EGF in both the endometrium and blastocysts. Taken together, the results suggested that restraint stress inhibited mouse implantation in a temporal window-dependent manner and by impairing blastocyst activation and hatching and uterine receptivity via down-regulating HB-EGF, estrogen and progesterone. Thus, the stress applied within the implantation window impaired implantation by acting on both embryos and the uterus. PMID:24244689
Analysis of all-optical temporal integrator employing phased-shifted DFB-SOA.
Jia, Xin-Hong; Ji, Xiao-Ling; Xu, Cong; Wang, Zi-Nan; Zhang, Wei-Li
2014-11-17
All-optical temporal integrator using phase-shifted distributed-feedback semiconductor optical amplifier (DFB-SOA) is investigated. The influences of system parameters on its energy transmittance and integration error are explored in detail. The numerical analysis shows that, enhanced energy transmittance and integration time window can be simultaneously achieved by increased injected current in the vicinity of lasing threshold. We find that the range of input pulse-width with lower integration error is highly sensitive to the injected optical power, due to gain saturation and induced detuning deviation mechanism. The initial frequency detuning should also be carefully chosen to suppress the integration deviation with ideal waveform output.
Shehzad, Khurram; Xu, Yang; Gao, Chao; Li, Hanying; Dang, Zhi-Min; Hasan, Tawfique; Luo, Jack; Duan, Xiangfeng
2017-03-01
Polymer dielectrics offer key advantages over their ceramic counterparts such as flexibility, scalability, low cost, and high breakdown voltages. However, a major drawback that limits more widespread application of polymer dielectrics is their temperature-dependent dielectric properties. Achieving dielectric constants with low/zero-temperature coefficient (L/0TC) over a broad temperature range is essential for applications in diverse technologies. Here, we report a hybrid filler strategy to produce polymer composites with an ultrawide L/0TC window of dielectric constant, as well as a significantly enhanced dielectric value, maximum energy storage density, thermal conductivity, and stability. By creating a series of percolative polymer composites, we demonstrated hybrid carbon filler based composites can exhibit a zero-temperature coefficient window of 200 °C (from -50 to 150 °C), the widest 0TC window for all polymer composite dielectrics reported to date. We further show the electric and dielectric temperature coefficient of the composites is highly stable against stretching and bending, even under AC electric field with frequency up to 1 MHz. We envision that our method will push the functional limits of polymer dielectrics for flexible electronics in extreme conditions such as in hybrid vehicles, aerospace, power electronics, and oil/gas exploration.
Eric J. Gustafson; Luke V. Rasmussen
2002-01-01
Forest management planners must develop strategies to produce timber in ways that do not compromise ecological integrity or sustainability. These strategies often involve modifications to the spatial and temporal scheduling of harvest activities, and these strategies may interact in unexpected ways. We used a timber harvest simulator (HARVEST 6.0) to determine the...
First results of ground-based LWIR hyperspectral imaging remote gas detection
NASA Astrophysics Data System (ADS)
Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Wang, Hai-yang; Fu, Yan-peng; Liao, Ning-fang; Su, Jun-hong
2014-11-01
The new progress of ground-based long-wave infrared remote sensing is presented. The LWIR hyperspectral imaging by using the windowing spatial and temporal modulation Fourier spectroscopy, and the results of outdoor ether gas detection, verify the features of LWIR hyperspectral imaging remote sensing and technical approach. It provides a new technical means for ground-based gas remote sensing.
Chen, Xia; Fu, Junhong; Cheng, Wenbo; Song, Desheng; Qu, Xiaolei; Yang, Zhuo; Zhao, Kanxing
2017-01-01
Visual deprivation during the critical period induces long-lasting changes in cortical circuitry by adaptively modifying neuro-transmission and synaptic connectivity at synapses. Spike timing-dependent plasticity (STDP) is considered a strong candidate for experience-dependent changes. However, the visual deprivation forms that affect timing-dependent long-term potentiation(LTP) and long-term depression(LTD) remain unclear. Here, we demonstrated the temporal window changes of tLTP and tLTD, elicited by coincidental pre- and post-synaptic firing, following different modes of 6-day visual deprivation. Markedly broader temporal windows were found in robust tLTP and tLTD in the V1M of the deprived visual cortex in mice after 6-day MD and DE. The underlying mechanism for the changes seen with visual deprivation in juvenile mice using 6 days of dark exposure or monocular lid suture involves an increased fraction of NR2b-containing NMDAR and the consequent prolongation of NMDAR-mediated response duration. Moreover, a decrease in NR2A protein expression at the synapse is attributable to the reduction of the NR2A/2B ratio in the deprived cortex. PMID:28520739
Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli
Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.
2016-01-01
Transient-evoked otoacoustic emission (TEOAE) responses (0.7–8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data. PMID:27914441
Miyata, Ryota; Ota, Keisuke; Aonishi, Toru
2013-01-01
Recently reported experimental findings suggest that the hippocampal CA1 network stores spatio-temporal spike patterns and retrieves temporally reversed and spread-out patterns. In this paper, we explore the idea that the properties of the neural interactions and the synaptic plasticity rule in the CA1 network enable it to function as a hetero-associative memory recalling such reversed and spread-out spike patterns. In line with Lengyel’s speculation (Lengyel et al., 2005), we firstly derive optimally designed spike-timing-dependent plasticity (STDP) rules that are matched to neural interactions formalized in terms of phase response curves (PRCs) for performing the hetero-associative memory function. By maximizing object functions formulated in terms of mutual information for evaluating memory retrieval performance, we search for STDP window functions that are optimal for retrieval of normal and doubly spread-out patterns under the constraint that the PRCs are those of CA1 pyramidal neurons. The system, which can retrieve normal and doubly spread-out patterns, can also retrieve reversed patterns with the same quality. Finally, we demonstrate that purposely designed STDP window functions qualitatively conform to typical ones found in CA1 pyramidal neurons. PMID:24204822
An improvement of drought monitoring through the use of a multivariate magnitude index
NASA Astrophysics Data System (ADS)
Real-Rangel, R. A.; Alcocer-Yamanaka, V. H.; Pedrozo-Acuña, A.; Breña-Naranjo, J. A.; Ocón-Gutiérrez, A. R.
2017-12-01
In drought monitoring activities it is widely acknowledged that the severity of an event is determined in relation to monthly values of univariate indices of one or more hydrological variables. Normally, these indices are estimated using temporal windows from 1 to 12 months or more to aggregate the effects of deficits in the variable of interest. However, the use of these temporal windows may lead to a misperception of both, the drought event intensity and the timing of its occurrence. In this context, this work presents the implementation of a trivariate drought magnitude index, considering key hydrological variables (e.g., precipitation, soil moisture and runoff) using for this the framework of the Multivariate Standardized Drought Index (MSDI). Despite the popularity and simplicity of the concept of drought magnitude for standardized drought indices, its implementation in drought monitoring and early warning systems has not been reported. This approach has been tested for operational purposes in the recently launched Multivariate Drought Monitor of Mexico (MOSEMM) and the results shows that the inclusion of a Magnitude index facilitates the drought detection and, thus, improves the decision making process for emergency managers.
Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli.
Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F
2016-09-01
Transient-evoked otoacoustic emission (TEOAE) responses (0.7-8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data.
Siano, M; Paroli, B; Chiadroni, E; Ferrario, M; Potenza, M A C
2015-12-28
We exploit the speckle field generated by scattering from a colloidal suspension to access both spatial and temporal coherence properties of broadband radiation. By applying the Wiener-Khinchine theorem to the retrieved temporal coherence function, information about the emission spectrum of the source is obtained in good agreement with the results of a grating spectrometer. Experiments have been performed with visible light. We prove more generally that our approach can be considered as a tool for modeling a variety of cases. Here we discuss how to apply such diagnostics to broad-spectrum betatron radiation produced in the laser-driven wakefield accelerator under development at SPARC LAB facility in Frascati.
Multiple adaptable mechanisms early in the primate visual pathway
Dhruv, Neel T.; Tailby, Chris; Sokol, Sach H.; Lennie, Peter
2011-01-01
We describe experiments that isolate and characterize multiple adaptable mechanisms that influence responses of orientation-selective neurons in primary visual cortex (V1) of anesthetized macaque (Macaca fascicularis). The results suggest that three adaptable stages of machinery shape neural responses in V1: a broadly-tuned early stage and a spatio-temporally tuned later stage, both of which provide excitatory input, and a normalization pool that is also broadly tuned. The early stage and the normalization pool are revealed by adapting gratings that themselves fail to evoke a response from the neuron: either low temporal frequency gratings at the null orientation or gratings of any orientation drifting at high temporal frequencies. When effective, adapting stimuli that altered the sensitivity of these two mechanisms caused reductions of contrast gain and often brought about a paradoxical increase in response gain due to a relatively greater desensitization of the normalization pool. The tuned mechanism is desensitized only by stimuli well-matched to a neuron’s receptive field. We could thus infer desensitization of the tuned mechanism by comparing effects obtained with adapting gratings of preferred and null orientation modulated at low temporal frequencies. PMID:22016535
Temporal Ventriloquism Reveals Intact Audiovisual Temporal Integration in Amblyopia.
Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F
2018-02-01
We have shown previously that amblyopia involves impaired detection of asynchrony between auditory and visual events. To distinguish whether this impairment represents a defect in temporal integration or nonintegrative multisensory processing (e.g., cross-modal matching), we used the temporal ventriloquism effect in which visual temporal order judgment (TOJ) is normally enhanced by a lagging auditory click. Participants with amblyopia (n = 9) and normally sighted controls (n = 9) performed a visual TOJ task. Pairs of clicks accompanied the two lights such that the first click preceded the first light, or second click lagged the second light by 100, 200, or 450 ms. Baseline audiovisual synchrony and visual-only conditions also were tested. Within both groups, just noticeable differences for the visual TOJ task were significantly reduced compared with baseline in the 100- and 200-ms click lag conditions. Within the amblyopia group, poorer stereo acuity and poorer visual acuity in the amblyopic eye were significantly associated with greater enhancement in visual TOJ performance in the 200-ms click lag condition. Audiovisual temporal integration is intact in amblyopia, as indicated by perceptual enhancement in the temporal ventriloquism effect. Furthermore, poorer stereo acuity and poorer visual acuity in the amblyopic eye are associated with a widened temporal binding window for the effect. These findings suggest that previously reported abnormalities in audiovisual multisensory processing may result from impaired cross-modal matching rather than a diminished capacity for temporal audiovisual integration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurence, Ted A., E-mail: laurence2@llnl.gov; Bude, Jeff D.; Shen, Nan
2014-02-28
We previously reported a novel photoluminescence (PL) with a distribution of fast decay times in fused silica surface flaws that is correlated with damage propensity by high fluence lasers. The source of the PL was not attributable to any known silica point defect. Due to its broad spectral and temporal features, we here give this PL the name quasi-continuum PL (QC-PL) and describe the features of QC-PL in more detail. The primary features of QC-PL include broad excitation and emission spectra, a broad distribution of PL lifetimes from 20 ps to 5 ns, continuous shifts in PL lifetime distributions with respectmore » to emission wavelength, and a propensity to photo-bleach and photo-brighten. We found similar PL characteristics in surface flaws of other optical materials, including CaF{sub 2}, DKDP, and quartz. Based on the commonality of the features in different optical materials and the proximity of QC-PL to surfaces, we suggest that these properties arise from interactions associated with high densities of defects, rather than a distribution over a large number of types of defects and is likely found in a wide variety of structures from nano-scale composites to bulk structures as well as in both broad and narrow band materials from dielectrics to semiconductors.« less
Tabuchi, Masashi; Sakurai, Takeshi; Mitsuno, Hidefumi; Namiki, Shigehiro; Minegishi, Ryo; Shiotsuki, Takahiro; Uchino, Keiro; Sezutsu, Hideki; Tamura, Toshiki; Haupt, Stephan Shuichi; Nakatani, Kei; Kanzaki, Ryohei
2013-01-01
The olfactory system of male moths has an extreme sensitivity with the capability to detect and recognize conspecific pheromones dispersed and greatly diluted in the air. Just 170 molecules of the silkmoth (Bombyx mori) sex pheromone bombykol are sufficient to induce sexual behavior in the male. However, it is still unclear how the sensitivity of olfactory receptor neurons (ORNs) is relayed through the brain to generate high behavioral responsiveness. Here, we show that ORN activity that is subthreshold in terms of behavior can be amplified to suprathreshold levels by temporal integration in antennal lobe projection neurons (PNs) if occurring within a specific time window. To control ORN inputs with high temporal resolution, channelrhodopsin-2 was genetically introduced into bombykol-responsive ORNs. Temporal integration in PNs was only observed for weak inputs, but not for strong inputs. Pharmacological dissection revealed that GABAergic mechanisms inhibit temporal integration of strong inputs, showing that GABA signaling regulates PN responses in a stimulus-dependent fashion. Our results show that boosting of the PNs’ responses by temporal integration of olfactory information occurs specifically near the behavioral threshold, effectively defining the lower bound for behavioral responsiveness. PMID:24006366
NASA Astrophysics Data System (ADS)
De Ridder, Simon; Vandermarliere, Benjamin; Ryckebusch, Jan
2016-11-01
A framework based on generalized hierarchical random graphs (GHRGs) for the detection of change points in the structure of temporal networks has recently been developed by Peel and Clauset (2015 Proc. 29th AAAI Conf. on Artificial Intelligence). We build on this methodology and extend it to also include the versatile stochastic block models (SBMs) as a parametric family for reconstructing the empirical networks. We use five different techniques for change point detection on prototypical temporal networks, including empirical and synthetic ones. We find that none of the considered methods can consistently outperform the others when it comes to detecting and locating the expected change points in empirical temporal networks. With respect to the precision and the recall of the results of the change points, we find that the method based on a degree-corrected SBM has better recall properties than other dedicated methods, especially for sparse networks and smaller sliding time window widths.
It's about time: Presentation in honor of Ira Hirsh
NASA Astrophysics Data System (ADS)
Grant, Ken
2002-05-01
Over his long and illustrious career, Ira Hirsh has returned time and time again to his interest in the temporal aspects of pattern perception. Although Hirsh has studied and published articles and books pertaining to many aspects of the auditory system, such as sound conduction in the ear, cochlear mechanics, masking, auditory localization, psychoacoustic behavior in animals, speech perception, medical and audiological applications, coupling between psychophysics and physiology, and ecological acoustics, it is his work on auditory timing of simple and complex rhythmic patterns, the backbone of speech and music, that are at the heart of his more recent work. Here, we will focus on several aspects of temporal processing of simple and complex signals, both within and across sensory systems. Data will be reviewed on temporal order judgments of simple tones, and simultaneity judgments and intelligibility of unimodal and bimodal complex stimuli where stimulus components are presented either synchronously or asynchronously. Differences in the symmetry and shape of ``temporal windows'' derived from these data sets will be highlighted.
Analytical Computation of the Epidemic Threshold on Temporal Networks
NASA Astrophysics Data System (ADS)
Valdano, Eugenio; Ferreri, Luca; Poletto, Chiara; Colizza, Vittoria
2015-04-01
The time variation of contacts in a networked system may fundamentally alter the properties of spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic threshold. Despite the great interest in the problem for the physics, applied mathematics, computer science, and epidemiology communities, a full theoretical understanding is still missing and currently limited to the cases where the time-scale separation holds between spreading and network dynamics or to specific temporal network models. We consider a Markov chain description of the susceptible-infectious-susceptible process on an arbitrary temporal network. By adopting a multilayer perspective, we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is confirmed on a set of temporal models and empirical networks and against numerical results. In addition, we explore how the threshold changes when varying the overall time of observation of the temporal network, so as to provide insights on the optimal time window for data collection of empirical temporal networked systems. Our framework is of both fundamental and practical interest, as it offers novel understanding of the interplay between temporal networks and spreading dynamics.
de Silva, Vashista C; Nyga, Piotr; Drachev, Vladimir P
2016-12-15
Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction normalized by mass. The fractal nanostructures can provide a broadband extinction. It allows as well for a laser photoburning of holes in the extinction spectra and consequently windows of transparency in a controlled manner. The studied core-shell microparticles synthesized using colloidal chemistry consist of gold fractal nanostructures grown on precipitated calcium carbonate (PCC) microparticles or silica (SiO 2 ) microspheres. The optimization includes different core sizes and shapes, and shell nanostructures. It shows that the rich surface of the PCC flakes is the best core for the fractal shells providing the highest mass normalized extinction over the extremely broad spectral range. The mass normalized extinction cross section up to 3m 2 /g has been demonstrated in the broad spectral range from the visible to mid-infrared. Essentially, the broadband response is a characteristic feature of each core-shell microparticle in contrast to a combination of several structures resonant at different wavelengths, for example nanorods with different aspect ratios. The photomodification at an IR wavelength makes the window of transparency at the longer wavelength side. Copyright © 2016 Elsevier Inc. All rights reserved.
Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow
Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L.
2014-01-01
Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. PMID:24780131
ERIC Educational Resources Information Center
Braithwaite, Jason J.; Humphreys, Glyn W.; Hulleman, Johan; Watson, Derrick G.
2007-01-01
The authors report 4 experiments that examined color grouping and negative carryover effects in preview search via a probe detection task (J. J. Braithwaite, G. W. Humphreys, & J. Hodsoll, 2003). In Experiment 1, there was evidence of a negative color carryover from the preview to new items, using both search and probe detection measures. There…
Wei Li; Philippe Ciais; Shushi Peng; Chao Yue; Yilong Wang; Martin Thurner; Sassan S. Saatchi; Almut Arneth; Valerio Avitabile; Nuno Carvalhais; Anna B. Harper; Etsushi Kato; Charles Koven; Yi Y. Liu; Julia E. M. S. Nabel; Yude Pan; Julia Pongratz; Benjamin Poulter; Thomas A. M. Pugh; Maurizio Santoro; Stephen Sitch; Benjamin D. Stocker; Nicolas Viovy; Andy Wiltshire; Rasoul Yousefpour; Sönke Zaehle
2017-01-01
The use of dynamic global vegetation models (DGVMs) to estimate CO2 emissions from land-use and land-cover change (LULCC) offers a new window to account for spatial and temporal details of emissions and for ecosystem processes affected by LULCC. One drawback of LULCC emissions from DGVMs, however, is lack of observation constraint. Here, we...
ERIC Educational Resources Information Center
Roberts, Leah
2008-01-01
Baggio presents the results of an event-related potential (ERP) study in which he examines the processing consequences of reading tense violations such as *"Afgelopen zondag lakt Vincent de kozijnen van zijn landhuis" (*"Last Sunday Vincent paints the window-frames of his country house"). The violation is arguably caused by a mismatch between the…
NASA Astrophysics Data System (ADS)
Medynska-Gulij, Beata; Myszczuk, Miłosz
2012-11-01
This study presents an attempt to design geographical visualisation tools that allow to tackle the immensity of spatial data provided by Volunteered Geographic Information (VGI), both in terms of temporal and spatial aspects. In accordance with the assumptions made at the conceptual stage, the final action was the implementation of the window entitled ‘Geovisualisation of the Panoramio.com Activities in District of Poznan 2011’ into the web browser. The concept has been based on a division of the geovisualisation window into three panels, of which the most important - in order to capture spatial variability - have statistical maps at the general level (dot map and choropleth map), while at the detailed level - a dot map on a topographic reference map or tourist map. For two ranges, temporal variability is presented by graphs, while a review of attributes of individual activities of the social website in question is set forward in the table panel. The element that visually interlinks all of the panels is the emphasised individual activity. Problemem podjetym w tych badaniach stało sie wykorzystanie metod z nurtu geograficznej wizualizacji do wskazania cech fenomenu VGI w zakresie zmiennosci czasowo-przestrzennej. Zgodnie z załozeniami poczynionymi w etapie koncepcyjnym finalnym działaniem stało sie zaimplementowanie do przegladarki internetowej okna pod tytułem: ”Geowizualizacja aktywnosci społecznosci Panoramio.com w powiecie poznanskim w 2011 roku”. Koncepcja została oparta na podziale okna geowizualizacji na trzy panele, z których najwazniejsze znaczenie dla uchwycenia zmiennosci przestrzennej na poziomie ogólnym ma kartogram, natomiast na poziomie szczegółowym mapa kropkowa wyswietlana na podkładzie mapy topograficznej lub turystycznej. Zmiennosc czasowa w dwóch zakresach prezentuja wykresy, a przeglad atrybutów poszczególnych aktywnosci prezentowanego portalu społecznosciowego zapewnia tabela. Elementem spajajacym wizualnie wszystkie panele jest wyeksponowana graficznie pojedyncza aktywnosc. Przetwarzanie danych odbyło sie w srodowisku open source, a technologia funkcjonowania aplikacji okna geowizualizacji bazowała na zastosowaniu asynchronicznych zapytan do serwera WWW oraz serwera baz danych co zapewnia sprawne "odswiezanie” poszczególnych paneli.
NASA Astrophysics Data System (ADS)
Rivas, Ioar; Kumar, Prashant; Hagen-Zanker, Alex; Andrade, Maria de Fatima; Slovic, Anne Dorothee; Pritchard, John P.; Geurs, Karst T.
2017-07-01
We investigated the determinants of personal exposure concentrations of commuters' to black carbon (BC), ultrafine particle number concentrations (PNC), and particulate matter (PM1, PM2.5 and PM10) in different travel modes. We quantified the contribution of key factors that explain the variation of the previous pollutants in four commuting routes in London, each covered by four transport modes (car, bus, walk and underground). Models were performed for each pollutant, separately to assess the effect of meteorology (wind speed) or ambient concentrations (with either high spatial or temporal resolution). Concentration variations were mainly explained by wind speed or ambient concentrations and to a lesser extent by route and period of the day. In multivariate models with wind speed, the wind speed was the common significant predictor for all the pollutants in the above-ground modes (i.e., car, bus, walk); and the only predictor variable for the PM fractions. Wind speed had the strongest effect on PM during the bus trips, with an increase in 1 m s-1 leading to a decrease in 2.25, 2.90 and 4.98 μg m-3 of PM1, PM2.5 and PM10, respectively. PM2.5 and PM10 concentrations in car trips were better explained by ambient concentrations with high temporal resolution although from a single monitoring station. On the other hand, ambient concentrations with high spatial coverage but lower temporal resolution predicted better the concentrations in bus trips, due to bus routes passing through streets with a high variability of traffic intensity. In the underground models, wind speed was not significant and line and type of windows on the train explained 42% of the variation of PNC and 90% of all PM fractions. Trains in the district line with openable windows had an increase in concentrations of 1 684 cm-3 for PNC and 40.69 μg m-3 for PM2.5 compared with trains that had non-openable windows. The results from this work can be used to target efforts to reduce personal exposures of London commuters.
Tringali, Stéphane; Koka, Kanthaiah; Deveze, Arnaud; Holland, N. Julian; Jenkins, Herman A.; Tollin, Daniel J.
2010-01-01
Objectives To assess the importance of 2 variables, transducer tip diameter and resection of the round window (RW) niche, affecting the optimization of the mechanical stimulation of the RW membrane with an active middle ear implant (AMEI). Materials and Methods: Ten temporal bones were prepared with combined atticotomy and facial recess approach to expose the RW. An AMEI stimulated the RW with 2 ball tip diameters (0.5 and 1.0 mm) before and after the resection of the bony rim of the RW niche. The RW drive performance, assessed by stapes velocities using laser Doppler velocimetry, was analyzed in 3 frequency ranges: low (0.25–1 kHz), medium (1–3 kHz) and high (3–8 kHz). Results Driving the RW produced mean peak stapes velocities (HEV) of 0.305 and 0.255 mm/s/V at 3.03 kHz, respectively, for the 1- and 0.5-mm tips, with the RW niche intact. Niche drilling increased the HEV to 0.73 and 0.832 mm/s/V for the 1- and 0.5-mm tips, respectively. The tip diameter produced no difference in output at low and medium frequencies; however, the 0.5-mm tip was 5 and 6 dB better than the 1-mm tip at high frequencies before and after niche drilling, respectively. Drilling the niche significantly improved the output by 4 dB at high frequencies for the 1-mm tip, and by 6 and 10 dB in the medium- and high-frequency ranges for the 0.5-mm tip. Conclusion The AMEI was able to successfully drive the RW membrane in cadaveric temporal bones using a classical facial recess approach. Stimulation of the RW membrane with an AMEI without drilling the niche is sufficient for successful hearing outputs. However, the resection of the bony rim of the RW niche significantly improved the RW stimulation at medium and higher frequencies. Drilling the niche enhances the exposure of the RW membrane and facilitates positioning the implant tip. PMID:20150727
It's about time: revisiting temporal processing deficits in dyslexia.
Casini, Laurence; Pech-Georgel, Catherine; Ziegler, Johannes C
2018-03-01
Temporal processing in French children with dyslexia was evaluated in three tasks: a word identification task requiring implicit temporal processing, and two explicit temporal bisection tasks, one in the auditory and one in the visual modality. Normally developing children matched on chronological age and reading level served as a control group. Children with dyslexia exhibited robust deficits in temporal tasks whether they were explicit or implicit and whether they involved the auditory or the visual modality. First, they presented larger perceptual variability when performing temporal tasks, whereas they showed no such difficulties when performing the same task on a non-temporal dimension (intensity). This dissociation suggests that their difficulties were specific to temporal processing and could not be attributed to lapses of attention, reduced alertness, faulty anchoring, or overall noisy processing. In the framework of cognitive models of time perception, these data point to a dysfunction of the 'internal clock' of dyslexic children. These results are broadly compatible with the recent temporal sampling theory of dyslexia. © 2017 John Wiley & Sons Ltd.
Round and Oval Window Anatomic Variability: Its Implication for the Vibroplasty Technique.
Mancheño, Marta; Aristegui, Miguel; Sañudo, Jose Ramon
2017-06-01
The objective of this study is to evaluate the anatomical variability of round and oval window regions and its relationship with their closest structures, to determine its implication on the fitting and stabilization of the middle ear implant Vibrant Soundbridge. Variations of the anatomy of round and oval window regions were assessed in a total of 85 human dissected temporal bones. Afterward, we evaluated the adaptation and subsequent stabilization of the floating mass transducer (FMT) of the Vibrant Soundbridge in 67 cases in round window (RW) and in 22 cases in oval window (OW), and the influence that the variability of the different anatomical features examined had on this stabilization. We also assessed access and surgeon's view of the RW niche through the facial recess approach. Stabilization of the FMT in the RW was achieved in 53 (79%) of the 67 cases; we found that the less favorable anatomical conditions for stabilization were: membrane smaller than 1.5 mm, presence of a high jugular bulb and a narrow or very narrow RW niche. Frequently, two or more of these conditions happened simultaneously. In seven cases (22%) access to the RW through facial recess approach did not allow positioning the FMT in place. OW stabilization succeeded in 18 (82%) of the 22 cases. Round and oval window vibroplasty are difficult surgical techniques. To place the FMT directly on the OW may be easier as we do not have to drill the niche. In both regions there are some anatomical conditions that hinder fitting the FMT and even make it impossible. Once fitted, the main problem is to achieve good stabilization of the device.
Voss, Susan E.; Rosowski, John J.; Merchant, Saumil N.; Peake, William T.
2008-01-01
Direct acoustic stimulation of the cochlea by the sound-pressure difference between the oval and round windows (called the “acoustic route”) has been thought to contribute to hearing in some pathological conditions, along with the normally dominant “ossicular route.” To determine the efficacy of this acoustic route and its constituent mechanisms in human ears, sound pressures were measured at three locations in cadaveric temporal bones [with intact and perforated tympanic membranes (TMs)]: (1) in the external ear canal lateral to the TM, PTM; (2) in the tympanic cavity lateral to the oval window, POW; and (3) near the round window, PRW. Sound transmission via the acoustic route is described by two concatenated processes: (1) coupling of sound pressure from ear canal to middle-ear cavity, HPCAV≡PCAV/PTM, where PCAV represents the middle-ear cavity pressure, and (2) sound-pressure difference between the windows, HWPD≡(POW−PRW)/PCAV. Results show that: HPCAV depends on perforation size but not perforation location; HWPD depends on neither perforation size nor location. The results (1) provide a description of the window pressures based on measurements, (2) refute the common otological view that TM perforation location affects the “relative phase of the pressures at the oval and round windows,” and (3) show with an intact ossicular chain that acoustic-route transmission is substantially below ossicular-route transmission except for low frequencies with large perforations. Thus, hearing loss from TM perforations results primarily from reduction in sound coupling via the ossicular route. Some features of the frequency dependence of HPCAV and HWPD can be interpreted in terms of a structure-based lumped-element acoustic model of the perforation and middle-ear cavities. PMID:17902851
Realigning thunder and lightning: temporal adaptation to spatiotemporally distant events.
Navarra, Jordi; Fernández-Prieto, Irune; Garcia-Morera, Joel
2013-01-01
The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants' SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events).
Improved safety of retinal photocoagulation with a shaped beam and modulated pulse
NASA Astrophysics Data System (ADS)
Sramek, Christopher; Brown, Jefferson; Paulus, Yannis M.; Nomoto, Hiroyuki; Palanker, Daniel
2010-02-01
Shorter pulse durations help confine thermal damage during retinal photocoagulation, decrease treatment time and minimize pain. However, safe therapeutic window (the ratio of threshold powers for rupture and mild coagulation) decreases with shorter exposures. A ring-shaped beam enables safer photocoagulation than conventional beams by reducing the maximum temperature in the center of the spot. Similarly, a temporal pulse modulation decreasing its power over time improves safety by maintaining constant temperature for a significant portion of the pulse. Optimization of the beam and pulse shapes was performed using a computational model. In vivo experiments were performed to verify the predicted improvement. With each of these approaches, the pulse duration can be decreased by a factor of two, from 20 ms down to 10 ms while maintaining the same therapeutic window.
Whisking mechanics and active sensing
Bush, Nicholas E; Solla, Sara A
2017-01-01
We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem (‘where’ is an object) and the feature extraction problem (‘what’ is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the ‘windowed sampling’ hypothesis for active sensing: that rats can estimate an object’s spatial features by integrating mechanical information across whiskers during brief (25–60 ms) windows of ‘haptic enclosure’ with the whiskers, a motion that resembles a hand grasp. PMID:27632212
Whisking mechanics and active sensing.
Bush, Nicholas E; Solla, Sara A; Hartmann, Mitra Jz
2016-10-01
We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem ('where' is an object) and the feature extraction problem ('what' is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the 'windowed sampling' hypothesis for active sensing: that rats can estimate an object's spatial features by integrating mechanical information across whiskers during brief (25-60ms) windows of 'haptic enclosure' with the whiskers, a motion that resembles a hand grasp. Copyright © 2016. Published by Elsevier Ltd.
Metronidazole-triazole conjugates: Activity against Clostridium difficile and parasites
Jarrad, Angie M.; Karoli, Tomislav; Debnath, Anjan; Tay, Chin Yen; Huang, Johnny X.; Kaeslin, Geraldine; Elliott, Alysha G.; Miyamoto, Yukiko; Ramu, Soumya; Kavanagh, Angela M.; Zuegg, Johannes; Eckmann, Lars; Blaskovich, Mark A.T.; Cooper, Matthew A.
2015-01-01
Metronidazole has been used clinically for over 50 years as an antiparasitic and broad-spectrum antibacterial agent effective against anaerobic bacteria. However resistance to metronidazole in parasites and bacteria has been reported, and improved second-generation metronidazole analogues are needed. The copper catalysed Huigsen azide-alkyne 1,3-dipolar cycloaddition offers a way to efficiently assemble new libraries of metronidazole analogues. Several new metronidazole-triazole conjugates (Mtz-triazoles) have been identified with excellent broad spectrum antimicrobial and antiparasitic activity targeting Clostridium difficile, Entamoeba histolytica and Giardia lamblia. Cross resistance to metronidazole was observed against stable metronidazole resistant C. difficile and G. lamblia strains. However for the most potent Mtz-triazoles, the activity remained in a therapeutically relevant window. PMID:26117821
Propagation of terahertz pulses in random media.
Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M
2004-02-15
We describe measurements of single-cycle terahertz pulse propagation in a random medium. The unique capabilities of terahertz time-domain spectroscopy permit the characterization of a multiply scattered field with unprecedented spatial and temporal resolution. With these results, we can develop a framework for understanding the statistics of broadband laser speckle. Also, the ability to extract information on the phase of the field opens up new possibilities for characterizing multiply scattered waves. We illustrate this with a simple example, which involves computing a time-windowed temporal correlation between fields measured at different spatial locations. This enables the identification of individual scattering events, and could lead to a new method for imaging in random media.
Micro-endoscopic ear anatomy of guinea pig applied to experimental surgery.
Barros, Bruno Borges de Carvalho; Andrade, José Santos Cruz de; Garcia, Leandro Borborema; Pifaia, Gustavo Ribeiro; Cruz, Oswaldo Laércio Mendonça; Onishi, Ektor Tsuneo; Penido, Norma de Oliveira
2014-01-01
To describe topographic and endoscopic anatomy of guinea pig ear for development of surgical approaches in experimental studies. Experimental study. Eight adult guinea pigs (Cavia porcellus) were used in this study. Four animals were described through endoscopic view and four animals were used to describe topographic anatomy. The main structures of middle ear were well identified through endoscopy view: oval and round window, ossicles and vascular structures. Temporal bone position, landmarks and its relations to skull are perceived with topographic description. Topographic anatomic description allowed exposition of temporal bone relations for external surgical approaches. Alternatively, grooves and middle ear structures were identified and may be used to transcanal accesses.
Navigating the auditory scene: an expert role for the hippocampus.
Teki, Sundeep; Kumar, Sukhbinder; von Kriegstein, Katharina; Stewart, Lauren; Lyness, C Rebecca; Moore, Brian C J; Capleton, Brian; Griffiths, Timothy D
2012-08-29
Over a typical career piano tuners spend tens of thousands of hours exploring a specialized acoustic environment. Tuning requires accurate perception and adjustment of beats in two-note chords that serve as a navigational device to move between points in previously learned acoustic scenes. It is a two-stage process that depends on the following: first, selective listening to beats within frequency windows, and, second, the subsequent use of those beats to navigate through a complex soundscape. The neuroanatomical substrates underlying brain specialization for such fundamental organization of sound scenes are unknown. Here, we demonstrate that professional piano tuners are significantly better than controls matched for age and musical ability on a psychophysical task simulating active listening to beats within frequency windows that is based on amplitude modulation rate discrimination. Tuners show a categorical increase in gray matter volume in the right frontal operculum and right superior temporal lobe. Tuners also show a striking enhancement of gray matter volume in the anterior hippocampus, parahippocampal gyrus, and superior temporal gyrus, and an increase in white matter volume in the posterior hippocampus as a function of years of tuning experience. The relationship with gray matter volume is sensitive to years of tuning experience and starting age but not actual age or level of musicality. Our findings support a role for a core set of regions in the hippocampus and superior temporal cortex in skilled exploration of complex sound scenes in which precise sound "templates" are encoded and consolidated into memory over time in an experience-dependent manner.
Temporal texture of associative encoding modulates recall processes.
Tibon, Roni; Levy, Daniel A
2014-02-01
Binding aspects of an experience that are distributed over time is an important element of episodic memory. In the current study, we examined how the temporal complexity of an experience may govern the processes required for its retrieval. We recorded event-related potentials during episodic cued recall following pair associate learning of concurrently and sequentially presented object-picture pairs. Cued recall success effects over anterior and posterior areas were apparent in several time windows. In anterior locations, these recall success effects were similar for concurrently and sequentially encoded pairs. However, in posterior sites clustered over parietal scalp the effect was larger for the retrieval of sequentially encoded pairs. We suggest that anterior aspects of the mid-latency recall success effects may reflect working-with-memory operations or direct access recall processes, while more posterior aspects reflect recollective processes which are required for retrieval of episodes of greater temporal complexity. Copyright © 2013 Elsevier Inc. All rights reserved.
Salience driven value integration explains decision biases and preference reversal
Tsetsos, Konstantinos; Chater, Nick; Usher, Marius
2012-01-01
Human choice behavior exhibits many paradoxical and challenging patterns. Traditional explanations focus on how values are represented, but little is known about how values are integrated. Here we outline a psychophysical task for value integration that can be used as a window on high-level, multiattribute decisions. Participants choose between alternative rapidly presented streams of numerical values. By controlling the temporal distribution of the values, we demonstrate that this process underlies many puzzling choice paradoxes, such as temporal, risk, and framing biases, as well as preference reversals. These phenomena can be explained by a simple mechanism based on the integration of values, weighted by their salience. The salience of a sampled value depends on its temporal order and momentary rank in the decision context, whereas the direction of the weighting is determined by the task framing. We show that many known choice anomalies may arise from the microstructure of the value integration process. PMID:22635271
Functional correlates of musical and visual ability in frontotemporal dementia.
Miller, B L; Boone, K; Cummings, J L; Read, S L; Mishkin, F
2000-05-01
The emergence of new skills in the setting of dementia suggests that loss of function in one brain area can release new functions elsewhere. To characterise 12 patients with frontotemporal dementia (FTD) who acquired, or sustained, new musical or visual abilities despite progression of their dementia. Twelve patients with FTD who acquired or maintained musical or artistic ability were compared with 46 patients with FTD in whom new or sustained ability was absent. The group with musical or visual ability performed better on visual, but worse on verbal tasks than did the other patients with FTD. Nine had asymmetrical left anterior dysfunction. Nine showed the temporal lobe variant of FTD. Loss of function in the left anterior temporal lobe may lead to facilitation of artistic or musical skills. Patients with the left-sided temporal lobe variant of FTD offer an unexpected window into the neurological mediation of visual and musical talents.
NASA Technical Reports Server (NTRS)
Albus, James S.
1996-01-01
The Real-time Control System (RCS) developed at NIST and elsewhere over the past two decades defines a reference model architecture for design and analysis of complex intelligent control systems. The RCS architecture consists of a hierarchically layered set of functional processing modules connected by a network of communication pathways. The primary distinguishing feature of the layers is the bandwidth of the control loops. The characteristic bandwidth of each level is determined by the spatial and temporal integration window of filters, the temporal frequency of signals and events, the spatial frequency of patterns, and the planning horizon and granularity of the planners that operate at each level. At each level, tasks are decomposed into sequential subtasks, to be performed by cooperating sets of subordinate agents. At each level, signals from sensors are filtered and correlated with spatial and temporal features that are relevant to the control function being implemented at that level.
Adjoint-Based Climate Model Tuning: Application to the Planet Simulator
NASA Astrophysics Data System (ADS)
Lyu, Guokun; Köhl, Armin; Matei, Ion; Stammer, Detlef
2018-01-01
The adjoint method is used to calibrate the medium complexity climate model "Planet Simulator" through parameter estimation. Identical twin experiments demonstrate that this method can retrieve default values of the control parameters when using a long assimilation window of the order of 2 months. Chaos synchronization through nudging, required to overcome limits in the temporal assimilation window in the adjoint method, is employed successfully to reach this assimilation window length. When assimilating ERA-Interim reanalysis data, the observations of air temperature and the radiative fluxes are the most important data for adjusting the control parameters. The global mean net longwave fluxes at the surface and at the top of the atmosphere are significantly improved by tuning two model parameters controlling the absorption of clouds and water vapor. The global mean net shortwave radiation at the surface is improved by optimizing three model parameters controlling cloud optical properties. The optimized parameters improve the free model (without nudging terms) simulation in a way similar to that in the assimilation experiments. Results suggest a promising way for tuning uncertain parameters in nonlinear coupled climate models.
NASA Astrophysics Data System (ADS)
Hua, Hui; Wang, Jingmin; Jiang, Chengbao; Xu, Huibin
2018-05-01
Ni42-xCoxCu8Mn37Ga13 (0 ≤ x ≤ 14) alloys are reported to exhibit a magnetostructural transition from weakly-magnetic martensite to ferromagnetic austenite over a rather wide temperature window ranging from 200 K to 380 K. Simultaneously a large magnetization change Δσ of up to 105 Am2 kg-1 is obtained at the martensitic transformation. A reversible magnetic-field-induced martensitic transformation is realized, resulting in a large magnetocaloric effect related to the high magnetic entropy change with a broad working temperature span. This work shows how it is possible to effectively tailor the magnetostructural transition in Ni-Mn-Ga alloys so as to achieve a reversible magnetic-field-induced martensitic transformation and associated functionalities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dongxing; Wu, Jiarui; Gu, Ying, E-mail: ygu@pku.edu.cn
2014-09-15
We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter formore » visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.« less
STS-35 ASTRO-1 telescopes documented in OV-102's payload bay (PLB)
1990-12-10
STS035-604-058 (2-10 Dec 1990) --- The various components of the Astro-1 payload are seen backdropped against the blue and white Earth in this scene photographed through Columbia's aft flight deck windows. Parts of the Hopkins Ultraviolet Telescope (HUT), Ultraviolet Imaging Telescope (UIT) and the Wisconsin Ultraviolet Photopolarimetry Experiment (WUPPE) are visible on the Spacelab pallet in the foreground. The Broad Band X-ray Telescope (BBXRT) is behind this pallet and is not visible in this scene. The smaller cylinder in the foreground is the "Igloo," which is a pressurized container housing the Command and Data Management System, which interfaces with the in-cabin controllers to control the Instrument Pointing System (IPS) and the telescopes. The photograph was made with a handheld Rolleiflex camera aimed through Columbia's aft flight deck windows.
Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh
2016-04-01
In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source.
Advances in Fabry-Perot and tunable quantum cascade lasers
NASA Astrophysics Data System (ADS)
Patel, C. Kumar N.
2017-05-01
Quantum cascade lasers (QCLs) are becoming mature infrared emitting devices that convert electrical power directly into optical power and generate laser radiation in the mid wave infrared (MWIR) and long wave infrared (LWIR) regions. These lasers operate at room temperature in the 3.5 μm to >12.0 μm region. QCLs operate at longer wavelengths into the terahertz region; however, these require some level of cryogenic cooling. Nonetheless, QCLs are the only solid-state sources that convert electrical power into optical power directly in these spectral regions. Three critical advances have contributed to the broad range of applications of QCLs, since their first demonstration in 1994 [1]. The first of these was the utilization of two phonon resonance for deexcitation of electrons from the lower lasing level [2]; the second is the utilization of epi-down mounting with hard solder of QCLs for practical applications [3]; and the third is the invention of nonresonant extraction for deexciting electrons from the lower laser level and simultaneously removing constraints on QCL structure design for extending high power room temperature operation to a broad range of wavelengths [4]. Although QCLs generate CW radiation at room temperature at wavelengths ranging from 3.5 μm to <12.0 μm, two spectral regions are very important for a broad range of applications. These are the first and the second atmospheric transmission windows from 3.5 μm to 5.0 μm and from 8.0 μm to 12.0 μm, respectively. Both of these windows (except for the spectral region near 4.2 μm, which is dominated by the infrared absorption from atmospheric carbon dioxide) are relatively free from atmospheric absorption and have a range of applications that involve long distance propagation.
A spatio-temporal index for aerial full waveform laser scanning data
NASA Astrophysics Data System (ADS)
Laefer, Debra F.; Vo, Anh-Vu; Bertolotto, Michela
2018-04-01
Aerial laser scanning is increasingly available in the full waveform version of the raw signal, which can provide greater insight into and control over the data and, thus, richer information about the scanned scenes. However, when compared to conventional discrete point storage, preserving raw waveforms leads to vastly larger and more complex data volumes. To begin addressing these challenges, this paper introduces a novel bi-level approach for storing and indexing full waveform (FWF) laser scanning data in a relational database environment, while considering both the spatial and the temporal dimensions of that data. In the storage scheme's upper level, the full waveform datasets are partitioned into spatial and temporal coherent groups that are indexed by a two-dimensional R∗-tree. To further accelerate intra-block data retrieval, at the lower level a three-dimensional local octree is created for each pulse block. The local octrees are implemented in-memory and can be efficiently written to a database for reuse. The indexing solution enables scalable and efficient three-dimensional (3D) spatial and spatio-temporal queries on the actual pulse data - functionalities not available in other systems. The proposed FWF laser scanning data solution is capable of managing multiple FWF datasets derived from large flight missions. The flight structure is embedded into the data storage model and can be used for querying predicates. Such functionality is important to FWF data exploration since aircraft locations and orientations are frequently required for FWF data analyses. Empirical tests on real datasets of up to 1 billion pulses from Dublin, Ireland prove the almost perfect scalability of the system. The use of the local 3D octree in the indexing structure accelerated pulse clipping by 1.2-3.5 times for non-axis-aligned (NAA) polyhedron shaped clipping windows, while axis-aligned (AA) polyhedron clipping was better served using only the top indexing layer. The distinct behaviours of the hybrid indexing for AA and NAA clipping windows are attributable to the different proportion of the local-index-related overheads with respect to the total querying costs. When temporal constraints were added, generally the number of costly spatial checks were reduced, thereby shortening the querying times.
NASA Astrophysics Data System (ADS)
Paciello, Rossana; Coviello, Irina; Filizzola, Carolina; Genzano, Nicola; Lisi, Mariano; Mazzeo, Giuseppe; Pergola, Nicola; Sileo, Giancanio; Tramutoli, Valerio
2014-05-01
In environmental studies the integration of heterogeneous and time-varying data, is a very common requirement for investigating and possibly visualize correlations among physical parameters underlying the dynamics of complex phenomena. Datasets used in such kind of applications has often different spatial and temporal resolutions. In some case superimposition of asynchronous layers is required. Traditionally the platforms used to perform spatio-temporal visual data analyses allow to overlay spatial data, managing the time using 'snapshot' data model, each stack of layers being labeled with different time. But this kind of architecture does not incorporate the temporal indexing neither the third spatial dimension which is usually given as an independent additional layer. Conversely, the full representation of a generic environmental parameter P(x,y,z,t) in the 4D space-time domain could allow to handle asynchronous datasets as well as less traditional data-products (e.g. vertical sections, punctual time-series, etc.) . In this paper we present the 4 Dimensions Environmental Observation Platform (4-DEOS), a system based on a web services architecture Client-Broker-Server. This platform is a new open source solution for both a timely access and an easy integration and visualization of heterogeneous (maps, vertical profiles or sections, punctual time series, etc.) asynchronous, geospatial products. The innovative aspect of the 4-DEOS system is that users can analyze data/products individually moving through time, having also the possibility to stop the display of some data/products and focus on other parameters for better studying their temporal evolution. This platform gives the opportunity to choose between two distinct display modes for time interval or for single instant. Users can choose to visualize data/products in two ways: i) showing each parameter in a dedicated window or ii) visualize all parameters overlapped in a single window. A sliding time bar, allows to follow the temporal evolution of the selected data/product. With this software, users have the possibility to identify events partially correlated each other not only in the spatial dimension but also in the time domain even at different time lags.
Latitudinal and photic effects on diel foraging and predation risk in freshwater pelagic ecosystems
Hansen, Adam G.; Beauchamp, David A.
2014-01-01
1. Clark & Levy (American Naturalist, 131, 1988, 271–290) described an antipredation window for smaller planktivorous fish during crepuscular periods when light permits feeding on zooplankton, but limits visual detection by piscivores. Yet, how the window is influenced by the interaction between light regime, turbidity and cloud cover over a broad latitudinal gradi- ent remains unexplored. 2. We evaluated how latitudinal and seasonal shifts in diel light regimes alter the foraging- risk environment for visually feeding planktivores and piscivores across a natural range of turbidities and cloud covers. Pairing a model of aquatic visual feeding with a model of sun and moon illuminance, we estimated foraging rates of an idealized planktivore and piscivore over depth and time across factorial combinations of latitude (0–70°), turbidity (01–5 NTU) and cloud cover (clear to overcast skies) during the summer solstice and autumnal equinox. We evaluated the foraging-risk environment based on changes in the magnitude, duration and peak timing of the antipredation window. 3. The model scenarios generated up to 10-fold shifts in magnitude, 24-fold shifts in duration and 55-h shifts in timing of the peak antipredation window. The size of the window increased with latitude. This pattern was strongest during the solstice. In clear water at low turbidity (01–05 NTU), peaks in the magnitude and duration of the window formed at 57–60° latitude, before falling to near zero as surface waters became saturated with light under a midnight sun and clear skies at latitudes near 70°. Overcast dampened the midnight sun enough to allow larger windows to form in clear water at high latitudes. Conversely, at turbidities ≥2 NTU, greater reductions in the visual range of piscivores than planktivores created a window for long periods at high latitudes. Latitudinal dependencies were essentially lost during the equinox, indicating a progressive compression of the window from early summer into autumn. 4. Model results show that diel-seasonal foraging and predation risk in freshwater pelagic ecosystems changes considerably with latitude, turbidity and cloud cover. These changes alter the structure of pelagic predator–prey interactions, and in turn, the broader role of pelagic consumers in habitat coupling in lakes.
James, Clara E.; Oechslin, Mathias S.; Michel, Christoph M.; De Pretto, Michael
2017-01-01
This original research focused on the effect of musical training intensity on cerebral and behavioral processing of complex music using high-density event-related potential (ERP) approaches. Recently we have been able to show progressive changes with training in gray and white matter, and higher order brain functioning using (f)MRI [(functional) Magnetic Resonance Imaging], as well as changes in musical and general cognitive functioning. The current study investigated the same population of non-musicians, amateur pianists and expert pianists using spatio-temporal ERP analysis, by means of microstate analysis, and ERP source imaging. The stimuli consisted of complex musical compositions containing three levels of transgression of musical syntax at closure that participants appraised. ERP waveforms, microstates and underlying brain sources revealed gradual differences according to musical expertise in a 300–500 ms window after the onset of the terminal chords of the pieces. Within this time-window, processing seemed to concern context-based memory updating, indicated by a P3b-like component or microstate for which underlying sources were localized in the right middle temporal gyrus, anterior cingulate and right parahippocampal areas. Given that the 3 expertise groups were carefully matched for demographic factors, these results provide evidence of the progressive impact of training on brain and behavior. PMID:29163017
Dawson, Lindsay A.; Yu, Ling; Yan, Mingquan; Marrero, Luis; Schanes, Paula P.; Dolan, Connor; Pela, Maegan; Petersen, Britta; Han, Manjong
2017-01-01
Abstract Regeneration of mammalian limbs is restricted to amputation of the distal digit tip, the terminal phalanx (P3). The adjacent skeletal element, the middle phalanx (P2), has emerged as a model system to investigate regenerative failure and as a site to test approaches aimed at enhancing regeneration. We report that exogenous application of bone morphogenetic protein 2 (BMP2) stimulates the formation of a transient cartilaginous callus distal to the amputation plane that mediates the regeneration of the amputated P2 bone. BMP2 initiates a significant regeneration response during the periosteal‐derived cartilaginous healing phase of P2 bone repair, yet fails to induce regeneration in the absence of periosteal tissue, or after boney callus formation. We provide evidence that a temporal component exists in the induced regeneration of P2 that we define as the “regeneration window.” In this window, cells are transiently responsive to BMP2 after the amputation injury. Simple re‐injury of the healed P2 stump acts to reinitiate endogenous bone repair, complete with periosteal chondrogenesis, thus reopening the “regeneration window” and thereby recreating a regeneration‐permissive environment that is responsive to exogenous BMP2 treatment. PMID:28975034
Calibration of Safecast dose rate measurements.
Cervone, Guido; Hultquist, Carolynne
2018-10-01
A methodology is presented to calibrate contributed Safecast dose rate measurements acquired between 2011 and 2016 in the Fukushima prefecture of Japan. The Safecast data are calibrated using observations acquired by the U.S. Department of Energy at the time of the 2011 Fukushima Daiichi power plant nuclear accident. The methodology performs a series of interpolations between the U.S. government and contributed datasets at specific temporal windows and at corresponding spatial locations. The coefficients found for all the different temporal windows are aggregated and interpolated using quadratic regressions to generate a time dependent calibration function. Normal background radiation, decay rates, and missing values are taken into account during the analysis. Results show that the standard Safecast static transformation function overestimates the official measurements because it fails to capture the presence of two different Cesium isotopes and their changing magnitudes with time. A model is created to predict the ratio of the isotopes from the time of the accident through 2020. The proposed time dependent calibration takes into account this Cesium isotopes ratio, and it is shown to reduce the error between U.S. government and contributed data. The proposed calibration is needed through 2020, after which date the errors introduced by ignoring the presence of different isotopes will become negligible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Episodic Future Thinking: Expansion of the Temporal Window in Individuals with Alcohol Dependence.
Snider, Sarah E; LaConte, Stephen M; Bickel, Warren K
2016-07-01
Episodic future thinking (EFT) requires an individual to vividly pre-experience a realistic future event. Inspired by previous reports of reducing delay discounting following EFT in other populations, we examined the effects of engaging alcohol-dependent individuals in EFT or episodic recent thinking (ERT; control) to examine its effects on delay discounting and alcohol purchasing. Participants (n = 50) with alcohol dependence were allocated into EFT or ERT groups and asked to generate positive future or recent past events for each of 5 time points. Participants then completed a delay-discounting task, during which event cues were displayed, and a hypothetical alcohol purchase task. EFT significantly increased valuation of future monetary rewards, while decreasing initial consumption (Q0 ) of alcoholic drinks indicative of lower demand intensity. Two additional findings suggest potential moderators of this effect. EFT more readily influenced individuals with lower Alcohol Use Disorders Identification Test scores, and self-reported cue valence differed between groups. Together, these results suggest a widening of alcohol-dependent individuals' temporal window following engagement of EFT. While our data suggest that EFT may be moderated by certain susceptibility criteria, exercises such as EFT could be easily adaptable as a potential therapeutic tool for use in rehabilitation programs. Copyright © 2016 by the Research Society on Alcoholism.
James, Clara E; Oechslin, Mathias S; Michel, Christoph M; De Pretto, Michael
2017-01-01
This original research focused on the effect of musical training intensity on cerebral and behavioral processing of complex music using high-density event-related potential (ERP) approaches. Recently we have been able to show progressive changes with training in gray and white matter, and higher order brain functioning using (f)MRI [(functional) Magnetic Resonance Imaging], as well as changes in musical and general cognitive functioning. The current study investigated the same population of non-musicians, amateur pianists and expert pianists using spatio-temporal ERP analysis, by means of microstate analysis, and ERP source imaging. The stimuli consisted of complex musical compositions containing three levels of transgression of musical syntax at closure that participants appraised. ERP waveforms, microstates and underlying brain sources revealed gradual differences according to musical expertise in a 300-500 ms window after the onset of the terminal chords of the pieces. Within this time-window, processing seemed to concern context-based memory updating, indicated by a P3b-like component or microstate for which underlying sources were localized in the right middle temporal gyrus, anterior cingulate and right parahippocampal areas. Given that the 3 expertise groups were carefully matched for demographic factors, these results provide evidence of the progressive impact of training on brain and behavior.
NASA Astrophysics Data System (ADS)
Sramek, Christopher; Leung, Loh-Shan; Leng, Theodore; Brown, Jefferson; Paulus, Yannis M.; Schuele, Georg; Palanker, Daniel
2011-02-01
Decreasing the pulse duration helps confine damage, shorten treatment time, and minimize pain during retinal photocoagulation. However, the safe therapeutic window (TW), the ratio of threshold powers for thermomechanical rupture of Bruch's membrane and mild coagulation, also decreases with shorter exposures. Two potential approaches toward increasing TW are investigated: (a) decreasing the central irradiance of the laser beam and (b) temporally modulating the pulse. An annular beam with adjustable central irradiance was created by coupling a 532-nm laser into a 200-μm core multimode optical fiber at a 4-7 deg angle to normal incidence. Pulse shapes were optimized using a computational model, and a waveform generator was used to drive a PASCAL photocoagulator (532 nm), producing modulated laser pulses. Acute thresholds for mild coagulation and rupture were measured in Dutch-Belted rabbit in vivo with an annular beam (154-163 μm retinal diameter) and modulated pulse (132 μm, uniform irradiance ``flat-top'' beam) with 2-50 ms pulse durations. Thresholds with conventional constant-power pulse and a flat-top beam were also determined. Both annular beam and modulated pulse provided a 28% increase in TW at 10-ms duration, affording the same TW as 20-ms pulses with conventional parameters.
Foster, Simon; Gmel, Gerhard; Estévez, Natalia; Bähler, Caroline; Mohler-Kuo, Meichun
2015-09-01
To assess seasonal, weekday, and public holiday effects on alcohol-related road accidents and drinking diaries among young Swiss men. Federal road accident data (35,485 accidents) from Switzerland and drinking diary data from a large cohort of young Swiss men (11,930 subjects) were analysed for temporal effects by calendar week, weekday and public holiday (Christmas, New Years, National Day). Alcohol-related accidents were analysed using rate ratios for observed versus expected numbers of accidents and proportions of alcohol-related accidents relative to the total number. Drinking diaries were analysed for the proportion of drinkers, median number of drinks consumed, and the 90th percentile's number of drinks consumed. Several parallel peaks were identified in alcohol-related accidents and drinking diaries. These included increases on Fridays and Saturdays, with Saturday drinking extending until early Sunday morning, an increase during the summer on workdays but not weekends, an increase at the end of the year, and increases on public holidays and the evening before. Our results suggest specific time-windows that are associated with increases in drinking and alcohol-related harm. Established prevention measures should be enforced during these time-windows to reduce associated peaks. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Earthquake Occurrence in Bangladesh and Surrounding Region
NASA Astrophysics Data System (ADS)
Al-Hussaini, T. M.; Al-Noman, M.
2011-12-01
The collision of the northward moving Indian plate with the Eurasian plate is the cause of frequent earthquakes in the region comprising Bangladesh and neighbouring India, Nepal and Myanmar. Historical records indicate that Bangladesh has been affected by five major earthquakes of magnitude greater than 7.0 (Richter scale) during 1869 to 1930. This paper presents some statistical observations of earthquake occurrence in fulfilment of a basic groundwork for seismic hazard assessment of this region. An up to date catalogue covering earthquake information in the region bounded within 17°-30°N and 84°-97°E for the period of historical period to 2010 is derived from various reputed international sources including ISC, IRIS, Indian sources and available publications. Careful scrutiny is done to remove duplicate or uncertain earthquake events. Earthquake magnitudes in the range of 1.8 to 8.1 have been obtained and relationships between different magnitude scales have been studied. Aftershocks are removed from the catalogue using magnitude dependent space window and time window. The main shock data are then analyzed to obtain completeness period for different magnitudes evaluating their temporal homogeneity. Spatial and temporal distribution of earthquakes, magnitude-depth histograms and other statistical analysis are performed to understand the distribution of seismic activity in this region.
Dynamic Granger-Geweke causality modeling with application to interictal spike propagation
Lin, Fa-Hsuan; Hara, Keiko; Solo, Victor; Vangel, Mark; Belliveau, John W.; Stufflebeam, Steven M.; Hamalainen, Matti S.
2010-01-01
A persistent problem in developing plausible neurophysiological models of perception, cognition, and action is the difficulty of characterizing the interactions between different neural systems. Previous studies have approached this problem by estimating causal influences across brain areas activated during cognitive processing using Structural Equation Modeling and, more recently, with Granger-Geweke causality. While SEM is complicated by the need for a priori directional connectivity information, the temporal resolution of dynamic Granger-Geweke estimates is limited because the underlying autoregressive (AR) models assume stationarity over the period of analysis. We have developed a novel optimal method for obtaining data-driven directional causality estimates with high temporal resolution in both time and frequency domains. This is achieved by simultaneously optimizing the length of the analysis window and the chosen AR model order using the SURE criterion. Dynamic Granger-Geweke causality in time and frequency domains is subsequently calculated within a moving analysis window. We tested our algorithm by calculating the Granger-Geweke causality of epileptic spike propagation from the right frontal lobe to the left frontal lobe. The results quantitatively suggested the epileptic activity at the left frontal lobe was propagated from the right frontal lobe, in agreement with the clinical diagnosis. Our novel computational tool can be used to help elucidate complex directional interactions in the human brain. PMID:19378280
Brain functional connectivity and the pathophysiology of schizophrenia.
Angelopoulos, E
2014-01-01
In the last decade there is extensive evidence to suggest that cognitive functions depending on coordination of distributed neuronal responses are associated with synchronized oscillatory activity in various frequency ranges suggesting a functional mechanism of neural oscillations in cortical networks. In addition to their role in normal brain functioning, there is increasing evidence that altered oscillatory activity may be associated with certain neuropsychiatric disorders, such as schizophrenia. Consequently, disturbances in neural synchronization may represent the functional relationship of disordered connectivity of cortical networks underlying the characteristic fragmentation of mind and behavior in schizophrenia. In recent studies the synchronization of oscillatory activity in the experience of characteristic symptoms such as auditory verbal hallucinations and thought blocks have been studied in patients with schizophrenia. Studies involving analysis of EEG activity obtained from individuals in resting state (in cage Faraday, isolated from external influences and with eyes closed). In patients with schizophrenia and persistent auditory verbal hallucinations (AVHs) observed a temporary increase in the synchronization phase of α and high θ oscillations of the electroencephalogram (EEG) compared with those of healthy controls and patients without AVHs . This functional hyper-connection manifested in time windows corresponding to experience AVHs, as noted by the patients during the recording of EEG and observed in speech related cortical areas. In another study an interaction of theta and gamma oscillations engages in the production and experience of AVHs. The results showed increased phase coupling between theta and gamma EEG rhythms in the left temporal cortex during AVHs experiences. A more recent study, approaches the thought blocking experience in terms of functional brain connectivity. Thought blocks (TBs) are characterized by regular interruptions of the flow of thought. Outward signs are abrupt and repeated interruptions in the flow of conversation or actions while subjective experience is that of a total and uncontrollable emptying of the mind. In the very limited bibliography regarding TB, the phenomenon is thought to be conceptualized as a disturbance of consciousness that can be attributed to stoppages of continuous information processing due to an increase in the volume of information to be processed. In an attempt to investigate potential expression of the phenomenon on the functional properties of electroencephalographic (EEG) activity, an EEG study was contacted in schizophrenic patients with persisting auditory verbal hallucinations (AVHs) who additionally exhibited TBs. Phase synchronization analyses performed on EEG segments during the experience of TBs showed that synchrony values exhibited a long-range common mode of coupling (grouped behavior) among the left temporal area and the remaining central and frontal brain areas. These common synchrony-fluctuation schemes were observed for 0.5 to 2 s and were detected in a 4-s window following the estimated initiation of the phenomenon. The observation was frequency specific and detected in the broad alpha band region (6-12 Hz). The introduction of synchrony entropy (SE) analysis applied on the cumulative synchrony distribution showed that TB states were characterized by an explicit preference of the system to be functioned at low values of synchrony, while the synchrony values are broadly distributed during the recovery state. The results indicate that during TB states, the phase locking of several brain areas were converged uniformly in a narrow band of low synchrony values and in a distinct time window, impeding thus the ability of the system to recruit and to process information during this time window. The results of this study seem to have greater importance on neuronal correlation of consciousness. The brain is a highly distributed system in which numerous operations are executed in parallel and that lacks a single coordinating center. This raises the question of how the computations occurring simultaneously in spatially segregated processing areas are coordinated and bound together to give rise to coherent percepts and actions. One of the coordinating mechanisms appears to be the synchronization of neuronal activity by phase locking of self-generated network oscillations. This led to the hypothesis that the cerebral cortex might exploit the option to synchronize the discharges of neurons with millisecond ` theoretical formulations of the binding-by-synchrony hypothesis were proposed earlier by Milner (1974), but the Singer lab in the 1990s was the first to obtain experimental evidence supporting the potential role of synchrony as a relational code. The results concerning the functional connectivity of the brain during TBs further support the hypothesis of phase synchronization as a key mechanism for neuronal assemblies underlying mental representations in the human brain.
Temporal correlation coefficient for directed networks.
Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim
2016-01-01
Previous studies dealing with network theory focused mainly on the static aggregation of edges over specific time window lengths. Thus, most of the dynamic information gets lost. To assess the quality of such a static aggregation the temporal correlation coefficient can be calculated. It measures the overall possibility for an edge to persist between two consecutive snapshots. Up to now, this measure is only defined for undirected networks. Therefore, we introduce the adaption of the temporal correlation coefficient to directed networks. This new methodology enables the distinction between ingoing and outgoing edges. Besides a small example network presenting the single calculation steps, we also calculated the proposed measurements for a real pig trade network to emphasize the importance of considering the edge direction. The farm types at the beginning of the pork supply chain showed clearly higher values for the outgoing temporal correlation coefficient compared to the farm types at the end of the pork supply chain. These farm types showed higher values for the ingoing temporal correlation coefficient. The temporal correlation coefficient is a valuable tool to understand the structural dynamics of these systems, as it assesses the consistency of the edge configuration. The adaption of this measure for directed networks may help to preserve meaningful additional information about the investigated network that might get lost if the edge directions are ignored.
NASA Astrophysics Data System (ADS)
Zhao, P.; Peng, Z.
2008-12-01
We systemically identify repeating earthquakes and investigate spatio-temporal variations of fault zone properties associated with the 2004 Mw6.0 Parkfield earthquake along the Parkfield section of the San Andreas fault, and the 1984 Mw6.2 Morgan Hill earthquake along the central Calaveras fault. The procedure for identifying repeating earthquakes is based on overlapping of the source regions and the waveform similarity, and is briefly described as follows. First, we estimate the source radius of each event based on a circular crack model and a normal stress drop of 3 MPa. Next, we compute inter-hypocentral distance for events listed in the relocated catalog of Thurber et al. (2006) around Parkfield, and Schaff et al. (2002) along the Calaveras fault. Then, we group all events into 'initial' clusters by requiring the separation distance between each event pair to be less than the source radius of larger event, and their magnitude difference to be less than 1. Next, we calculate the correlation coefficients between every event pair within each 'initial' cluster using a 3-s time window around the direct P waves for all available stations. The median value of the correlation coefficients is used as a measure of similarity between each event pair. We drop an event if the median similarity to the rest events in that cluster is less than 0.9. After identifying repeating clusters in both regions, our next step is to apply a sliding window waveform cross-correlation technique (Niu et al., 2003; Peng and Ben-Zion, 2006) to calculate the delay time and decorrelation index for each repeating cluster. By measuring temporal changes in waveforms of repeating clusters at different locations and depth, we hope to obtain a better constraint on spatio-temporal variations of fault zone properties and near-surface layers associated with the occurrence of major earthquakes.
Spatial attention does improve temporal discrimination.
Chica, Ana B; Christie, John
2009-02-01
It has recently been stated that exogenous attention impairs temporal-resolution tasks (Hein, Rolke, & Ulrich, 2006; Rolke, Dinkelbach, Hein, & Ulrich, 2008; Yeshurun, 2004; Yeshurun & Levy, 2003). In comparisons of performance on spatially cued trials versus neutral cued trials, the results have suggested that spatial attention decreases temporal resolution. However, when performance on cued and uncued trials has been compared in order to equate for cue salience, typically speed-accuracy trade-offs (SATs) have been observed, making the interpretation of the results difficult. In the present experiments, we aimed at studying the effect of spatial attention in temporal resolution while using a procedure to control for SATs. We controlled reaction times (RTs) by constraining the time to respond, so that response decisions would be made within comparable time windows. The results revealed that when RT was controlled, performance was impaired for cued trials as compared with neutral trials, replicating previous findings. However, when cued and uncued trials were compared, performance was actually improved for cued trials as compared with uncued trials. These results suggest that SAT effects may have played an important role in the previous studies, because when they were controlled and measured, the results reversed, revealing that exogenous attention does improve performance on temporal-resolution tasks.
Broadly tunable ultrafast pump-probe system operating at multi-kHz repetition rate
NASA Astrophysics Data System (ADS)
Grupp, Alexander; Budweg, Arne; Fischer, Marco P.; Allerbeck, Jonas; Soavi, Giancarlo; Leitenstorfer, Alfred; Brida, Daniele
2018-01-01
Femtosecond systems based on ytterbium as active medium are ideal for driving ultrafast optical parametric amplifiers in a broad frequency range. The excellent stability of the source and the repetition rate tunable to up to hundreds of kHz allow for the implementation of an advanced two-color pump probe setup with the capability to achieve excellent signal-to-noise performances with sub-10 fs temporal resolution.
Reconstruction of stochastic temporal networks through diffusive arrival times
NASA Astrophysics Data System (ADS)
Li, Xun; Li, Xiang
2017-06-01
Temporal networks have opened a new dimension in defining and quantification of complex interacting systems. Our ability to identify and reproduce time-resolved interaction patterns is, however, limited by the restricted access to empirical individual-level data. Here we propose an inverse modelling method based on first-arrival observations of the diffusion process taking place on temporal networks. We describe an efficient coordinate-ascent implementation for inferring stochastic temporal networks that builds in particular but not exclusively on the null model assumption of mutually independent interaction sequences at the dyadic level. The results of benchmark tests applied on both synthesized and empirical network data sets confirm the validity of our algorithm, showing the feasibility of statistically accurate inference of temporal networks only from moderate-sized samples of diffusion cascades. Our approach provides an effective and flexible scheme for the temporally augmented inverse problems of network reconstruction and has potential in a broad variety of applications.
Reconstruction of stochastic temporal networks through diffusive arrival times
Li, Xun; Li, Xiang
2017-01-01
Temporal networks have opened a new dimension in defining and quantification of complex interacting systems. Our ability to identify and reproduce time-resolved interaction patterns is, however, limited by the restricted access to empirical individual-level data. Here we propose an inverse modelling method based on first-arrival observations of the diffusion process taking place on temporal networks. We describe an efficient coordinate-ascent implementation for inferring stochastic temporal networks that builds in particular but not exclusively on the null model assumption of mutually independent interaction sequences at the dyadic level. The results of benchmark tests applied on both synthesized and empirical network data sets confirm the validity of our algorithm, showing the feasibility of statistically accurate inference of temporal networks only from moderate-sized samples of diffusion cascades. Our approach provides an effective and flexible scheme for the temporally augmented inverse problems of network reconstruction and has potential in a broad variety of applications. PMID:28604687
Temporal Dependency and the Structure of Early Looking.
Messinger, Daniel S; Mattson, Whitney I; Todd, James Torrence; Gangi, Devon N; Myers, Nicholas D; Bahrick, Lorraine E
2017-01-01
Although looking time is used to assess infant perceptual and cognitive processing, little is known about the temporal structure of infant looking. To shed light on this temporal structure, 127 three-month-olds were assessed in an infant-controlled habituation procedure and presented with a pre-recorded display of a woman addressing the infant using infant-directed speech. Previous individual look durations positively predicted subsequent look durations over a six look window, suggesting a temporal dependency between successive infant looks. The previous look duration continued to predict the subsequent look duration after accounting for habituation-linked declines in look duration, and when looks were separated by an inter-trial interval in which no stimulus was displayed. Individual differences in temporal dependency, the strength of associations between consecutive look durations, are distinct from individual differences in mean infant look duration. Nevertheless, infants with stronger temporal dependency had briefer mean look durations, a potential index of stimulus processing. Temporal dependency was evident not only between individual infant looks but between the durations of successive habituation trials (total looking within a trial). Finally, temporal dependency was evident in associations between the last look at the habituation stimulus and the first look at a novel test stimulus. Thus temporal dependency was evident across multiple timescales (individual looks and trials comprised of multiple individual looks) and persisted across conditions including brief periods of no stimulus presentation and changes from a familiar to novel stimulus. Associations between consecutive look durations over multiple timescales and stimuli suggest a temporal structure of infant attention that has been largely ignored in previous work on infant looking.
Temporal Dependency and the Structure of Early Looking
Messinger, Daniel S.; Mattson, Whitney I.; Todd, James Torrence; Gangi, Devon N.; Myers, Nicholas D.; Bahrick, Lorraine E.
2017-01-01
Although looking time is used to assess infant perceptual and cognitive processing, little is known about the temporal structure of infant looking. To shed light on this temporal structure, 127 three-month-olds were assessed in an infant-controlled habituation procedure and presented with a pre-recorded display of a woman addressing the infant using infant-directed speech. Previous individual look durations positively predicted subsequent look durations over a six look window, suggesting a temporal dependency between successive infant looks. The previous look duration continued to predict the subsequent look duration after accounting for habituation-linked declines in look duration, and when looks were separated by an inter-trial interval in which no stimulus was displayed. Individual differences in temporal dependency, the strength of associations between consecutive look durations, are distinct from individual differences in mean infant look duration. Nevertheless, infants with stronger temporal dependency had briefer mean look durations, a potential index of stimulus processing. Temporal dependency was evident not only between individual infant looks but between the durations of successive habituation trials (total looking within a trial). Finally, temporal dependency was evident in associations between the last look at the habituation stimulus and the first look at a novel test stimulus. Thus temporal dependency was evident across multiple timescales (individual looks and trials comprised of multiple individual looks) and persisted across conditions including brief periods of no stimulus presentation and changes from a familiar to novel stimulus. Associations between consecutive look durations over multiple timescales and stimuli suggest a temporal structure of infant attention that has been largely ignored in previous work on infant looking. PMID:28076362
Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow.
Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L
2014-07-01
Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Costello, Sadie; Applebaum, Katie M.; Ray, Roberta M.; Astrakianakis, George; Gao, Dao Li; Thomas, David B.; Checkoway, Harvey; Eisen, Ellen A.
2012-01-01
Objective Exposure to endotoxin has been consistently associated with a reduced risk of lung cancer. However, there is a paucity of information regarding temporal aspects of this relationship. The objective of this study was to investigate the associations between contiguous windows of endotoxin exposure and risk of lung cancer. Methods Data were reanalyzed from a case-cohort study (602 cases, 3,038 subcohort) of female textile workers in Shanghai, China. Cumulative endotoxin exposure was partitioned into two windows: ≥20 and <20 years before risk. Exposure–response relations were examined using categorical and non-linear (semi-parametric) models, accounting for confounding by previous exposure windows. Results There was an inverse trend of decreasing risk of lung cancer associated with increasing levels of endotoxin exposure ≥20 years before risk (p trend = 0.02). Women in the highest two categories of cumulative exposures had hazard ratios of 0.78 (95% CI 0.60–1.03) and 0.77 (95% CI 0.58–1.02) for lung cancer, respectively, in comparison with unexposed textile workers. There was, however, a weaker association and not statistically significant between lung cancer and endotoxin exposure accumulated in the more recent window (<20 years before risk). Conclusion Results provide further evidence that endotoxin exposure that occurred 20 years or more before risk confers the strongest protection against lung cancer, indicating a possible early anti-carcinogenic effect. Further studies are needed to better understand the underlying biological mechanisms for this effect. PMID:21732048
Auditory Time-Frequency Masking for Spectrally and Temporally Maximally-Compact Stimuli
Laback, Bernhard; Savel, Sophie; Ystad, Sølvi; Balazs, Peter; Meunier, Sabine; Kronland-Martinet, Richard
2016-01-01
Many audio applications perform perception-based time-frequency (TF) analysis by decomposing sounds into a set of functions with good TF localization (i.e. with a small essential support in the TF domain) using TF transforms and applying psychoacoustic models of auditory masking to the transform coefficients. To accurately predict masking interactions between coefficients, the TF properties of the model should match those of the transform. This involves having masking data for stimuli with good TF localization. However, little is known about TF masking for mathematically well-localized signals. Most existing masking studies used stimuli that are broad in time and/or frequency and few studies involved TF conditions. Consequently, the present study had two goals. The first was to collect TF masking data for well-localized stimuli in humans. Masker and target were 10-ms Gaussian-shaped sinusoids with a bandwidth of approximately one critical band. The overall pattern of results is qualitatively similar to existing data for long maskers. To facilitate implementation in audio processing algorithms, a dataset provides the measured TF masking function. The second goal was to assess the potential effect of auditory efferents on TF masking using a modeling approach. The temporal window model of masking was used to predict present and existing data in two configurations: (1) with standard model parameters (i.e. without efferents), (2) with cochlear gain reduction to simulate the activation of efferents. The ability of the model to predict the present data was quite good with the standard configuration but highly degraded with gain reduction. Conversely, the ability of the model to predict existing data for long maskers was better with than without gain reduction. Overall, the model predictions suggest that TF masking can be affected by efferent (or other) effects that reduce cochlear gain. Such effects were avoided in the experiment of this study by using maximally-compact stimuli. PMID:27875575
Auditory Time-Frequency Masking for Spectrally and Temporally Maximally-Compact Stimuli.
Necciari, Thibaud; Laback, Bernhard; Savel, Sophie; Ystad, Sølvi; Balazs, Peter; Meunier, Sabine; Kronland-Martinet, Richard
2016-01-01
Many audio applications perform perception-based time-frequency (TF) analysis by decomposing sounds into a set of functions with good TF localization (i.e. with a small essential support in the TF domain) using TF transforms and applying psychoacoustic models of auditory masking to the transform coefficients. To accurately predict masking interactions between coefficients, the TF properties of the model should match those of the transform. This involves having masking data for stimuli with good TF localization. However, little is known about TF masking for mathematically well-localized signals. Most existing masking studies used stimuli that are broad in time and/or frequency and few studies involved TF conditions. Consequently, the present study had two goals. The first was to collect TF masking data for well-localized stimuli in humans. Masker and target were 10-ms Gaussian-shaped sinusoids with a bandwidth of approximately one critical band. The overall pattern of results is qualitatively similar to existing data for long maskers. To facilitate implementation in audio processing algorithms, a dataset provides the measured TF masking function. The second goal was to assess the potential effect of auditory efferents on TF masking using a modeling approach. The temporal window model of masking was used to predict present and existing data in two configurations: (1) with standard model parameters (i.e. without efferents), (2) with cochlear gain reduction to simulate the activation of efferents. The ability of the model to predict the present data was quite good with the standard configuration but highly degraded with gain reduction. Conversely, the ability of the model to predict existing data for long maskers was better with than without gain reduction. Overall, the model predictions suggest that TF masking can be affected by efferent (or other) effects that reduce cochlear gain. Such effects were avoided in the experiment of this study by using maximally-compact stimuli.
Sheikh, Saad; Xia, Leilei; Pierce, John; Newton, Andrew; Predina, Jarrod; Cho, Steve; Nasrallah, MacLean; Singhal, Sunil; Dorsey, Jay; Lee, John Y. K.
2017-01-01
Introduction Fluorescence-guided surgery has emerged as a powerful tool to detect, localize and resect tumors in the operative setting. Our laboratory has pioneered a novel way to administer an FDA-approved near-infrared (NIR) contrast agent to help surgeons with this task. This technique, coined Second Window ICG, exploits the natural permeability of tumor vasculature and its poor clearance to deliver high doses of indocyanine green (ICG) to tumors. This technique differs substantially from established ICG video angiography techniques that visualize ICG within minutes of injection. We hypothesized that Second Window ICG can provide NIR optical contrast with good signal characteristics in intracranial brain tumors over a longer period of time than previously appreciated with ICG video angiography alone. We tested this hypothesis in an intracranial mouse glioblastoma model, and corroborated this in a human clinical trial. Methods Intracranial tumors were established in 20 mice using the U251-Luc-GFP cell line. Successful grafts were confirmed with bioluminescence. Intravenous tail vein injections of 5.0 mg/kg (high dose) or 2.5 mg/kg (low dose) ICG were performed. The Perkin Elmer IVIS Spectrum (closed field) was used to visualize NIR fluorescence signal at seven delayed time points following ICG injection. NIR signals were quantified using LivingImage software. Based on the success of our results, human subjects were recruited to a clinical trial and intravenously injected with high dose 5.0 mg/kg. Imaging was performed with the VisionSense Iridium (open field) during surgery one day after ICG injection. Results In the murine model, the NIR signal-to-background ratio (SBR) in gliomas peaks at one hour after infusion, then plateaus and remains strong and stable for at least 48 hours. Higher dose 5.0 mg/kg improves NIR signal as compared to lower dose at 2.5 mg/kg (SBR = 3.5 vs. 2.8; P = 0.0624). Although early (≤ 6 hrs) visualization of the Second Window ICG accumulation in gliomas is stronger than late (≥24 hrs) visualization (SBR = 3.94 vs. 2.32; p<0.05) there appears to be a long plateau period of stable ICG NIR signal accumulation within tumors in the murine model. We call this long plateau period the “Second Window” of ICG. In glioblastoma patients, the delayed visualization of intratumoral NIR signal was strong (SBR 7.50 ± 0.74), without any significant difference within the 19 to 30 hour visualization window (R2 = 0.019). Conclusion The Second Window ICG technique allows neurosurgeons to deliver NIR optical contrast agent to human glioblastoma patients, thus providing real-time tumor identification in the operating room. This nonspecific tumor accumulation of ICG within the tumor provides strong signal to background contrast, and is not significantly time dependent between 6 hours to 48 hours, providing a broad plateau for stable visualization. This finding suggests that optimal imaging of the “Second Window of ICG” may be within this plateau period, thus providing signal uniformity across subjects. PMID:28738091
Thomas, Cyril; Didierjean, André; Maquestiaux, François; Goujon, Annabelle
2018-04-12
Since the seminal study by Chun and Jiang (Cognitive Psychology, 36, 28-71, 1998), a large body of research based on the contextual-cueing paradigm has shown that the cognitive system is capable of extracting statistical contingencies from visual environments. Most of these studies have focused on how individuals learn regularities found within an intratrial temporal window: A context predicts the target position within a given trial. However, Ono, Jiang, and Kawahara (Journal of Experimental Psychology, 31, 703-712, 2005) provided evidence of an intertrial implicit-learning effect when a distractor configuration in preceding trials N - 1 predicted the target location in trials N. The aim of the present study was to gain further insight into this effect by examining whether it occurs when predictive relationships are impeded by interfering task-relevant noise (Experiments 2 and 3) or by a long delay (Experiments 1, 4, and 5). Our results replicated the intertrial contextual-cueing effect, which occurred in the condition of temporally close contingencies. However, there was no evidence of integration across long-range spatiotemporal contingencies, suggesting a temporal limitation of statistical learning.
Audiovisual Simultaneity Judgment and Rapid Recalibration throughout the Lifespan.
Noel, Jean-Paul; De Niear, Matthew; Van der Burg, Erik; Wallace, Mark T
2016-01-01
Multisensory interactions are well established to convey an array of perceptual and behavioral benefits. One of the key features of multisensory interactions is the temporal structure of the stimuli combined. In an effort to better characterize how temporal factors influence multisensory interactions across the lifespan, we examined audiovisual simultaneity judgment and the degree of rapid recalibration to paired audiovisual stimuli (Flash-Beep and Speech) in a sample of 220 participants ranging from 7 to 86 years of age. Results demonstrate a surprisingly protracted developmental time-course for both audiovisual simultaneity judgment and rapid recalibration, with neither reaching maturity until well into adolescence. Interestingly, correlational analyses revealed that audiovisual simultaneity judgments (i.e., the size of the audiovisual temporal window of simultaneity) and rapid recalibration significantly co-varied as a function of age. Together, our results represent the most complete description of age-related changes in audiovisual simultaneity judgments to date, as well as being the first to describe changes in the degree of rapid recalibration as a function of age. We propose that the developmental time-course of rapid recalibration scaffolds the maturation of more durable audiovisual temporal representations.
Wavelength selection method with standard deviation: application to pulse oximetry.
Vazquez-Jaccaud, Camille; Paez, Gonzalo; Strojnik, Marija
2011-07-01
Near-infrared spectroscopy provides useful biological information after the radiation has penetrated through the tissue, within the therapeutic window. One of the significant shortcomings of the current applications of spectroscopic techniques to a live subject is that the subject may be uncooperative and the sample undergoes significant temporal variations, due to his health status that, from radiometric point of view, introduce measurement noise. We describe a novel wavelength selection method for monitoring, based on a standard deviation map, that allows low-noise sensitivity. It may be used with spectral transillumination, transmission, or reflection signals, including those corrupted by noise and unavoidable temporal effects. We apply it to the selection of two wavelengths for the case of pulse oximetry. Using spectroscopic data, we generate a map of standard deviation that we propose as a figure-of-merit in the presence of the noise introduced by the living subject. Even in the presence of diverse sources of noise, we identify four wavelength domains with standard deviation, minimally sensitive to temporal noise, and two wavelengths domains with low sensitivity to temporal noise.
A psychophysical investigation of differences between synchrony and temporal order judgments.
Love, Scott A; Petrini, Karin; Cheng, Adam; Pollick, Frank E
2013-01-01
Synchrony judgments involve deciding whether cues to an event are in synch or out of synch, while temporal order judgments involve deciding which of the cues came first. When the cues come from different sensory modalities these judgments can be used to investigate multisensory integration in the temporal domain. However, evidence indicates that that these two tasks should not be used interchangeably as it is unlikely that they measure the same perceptual mechanism. The current experiment further explores this issue across a variety of different audiovisual stimulus types. Participants were presented with 5 audiovisual stimulus types, each at 11 parametrically manipulated levels of cue asynchrony. During separate blocks, participants had to make synchrony judgments or temporal order judgments. For some stimulus types many participants were unable to successfully make temporal order judgments, but they were able to make synchrony judgments. The mean points of subjective simultaneity for synchrony judgments were all video-leading, while those for temporal order judgments were all audio-leading. In the within participants analyses no correlation was found across the two tasks for either the point of subjective simultaneity or the temporal integration window. Stimulus type influenced how the two tasks differed; nevertheless, consistent differences were found between the two tasks regardless of stimulus type. Therefore, in line with previous work, we conclude that synchrony and temporal order judgments are supported by different perceptual mechanisms and should not be interpreted as being representative of the same perceptual process.
A Psychophysical Investigation of Differences between Synchrony and Temporal Order Judgments
Love, Scott A.; Petrini, Karin; Cheng, Adam; Pollick, Frank E.
2013-01-01
Background Synchrony judgments involve deciding whether cues to an event are in synch or out of synch, while temporal order judgments involve deciding which of the cues came first. When the cues come from different sensory modalities these judgments can be used to investigate multisensory integration in the temporal domain. However, evidence indicates that that these two tasks should not be used interchangeably as it is unlikely that they measure the same perceptual mechanism. The current experiment further explores this issue across a variety of different audiovisual stimulus types. Methodology/Principal Findings Participants were presented with 5 audiovisual stimulus types, each at 11 parametrically manipulated levels of cue asynchrony. During separate blocks, participants had to make synchrony judgments or temporal order judgments. For some stimulus types many participants were unable to successfully make temporal order judgments, but they were able to make synchrony judgments. The mean points of subjective simultaneity for synchrony judgments were all video-leading, while those for temporal order judgments were all audio-leading. In the within participants analyses no correlation was found across the two tasks for either the point of subjective simultaneity or the temporal integration window. Conclusions Stimulus type influenced how the two tasks differed; nevertheless, consistent differences were found between the two tasks regardless of stimulus type. Therefore, in line with previous work, we conclude that synchrony and temporal order judgments are supported by different perceptual mechanisms and should not be interpreted as being representative of the same perceptual process. PMID:23349971
Realigning Thunder and Lightning: Temporal Adaptation to Spatiotemporally Distant Events
Navarra, Jordi; Fernández-Prieto, Irune; Garcia-Morera, Joel
2013-01-01
The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants’ SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events). PMID:24391928
Window of visibility - A psychophysical theory of fidelity in time-sampled visual motion displays
NASA Technical Reports Server (NTRS)
Watson, A. B.; Ahumada, A. J., Jr.; Farrell, J. E.
1986-01-01
A film of an object in motion presents on the screen a sequence of static views, while the human observer sees the object moving smoothly across the screen. Questions related to the perceptual identity of continuous and stroboscopic displays are examined. Time-sampled moving images are considered along with the contrast distribution of continuous motion, the contrast distribution of stroboscopic motion, the frequency spectrum of continuous motion, the frequency spectrum of stroboscopic motion, the approximation of the limits of human visual sensitivity to spatial and temporal frequencies by a window of visibility, the critical sampling frequency, the contrast distribution of staircase motion and the frequency spectrum of this motion, and the spatial dependence of the critical sampling frequency. Attention is given to apparent motion, models of motion, image recording, and computer-generated imagery.
Understanding face perception by means of human electrophysiology.
Rossion, Bruno
2014-06-01
Electrophysiological recordings on the human scalp provide a wealth of information about the temporal dynamics and nature of face perception at a global level of brain organization. The time window between 100 and 200 ms witnesses the transition between low-level and high-level vision, an N170 component correlating with conscious interpretation of a visual stimulus as a face. This face representation is rapidly refined as information accumulates during this time window, allowing the individualization of faces. To improve the sensitivity and objectivity of face perception measures, it is increasingly important to go beyond transient visual stimulation by recording electrophysiological responses at periodic frequency rates. This approach has recently provided face perception thresholds and the first objective signature of integration of facial parts in the human brain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Window panes of eternity. Health, disease, and inherited risk.
Scriver, C. R.
1982-01-01
Personal health reflects harmony between individual and experience; it is optimal homeostasis. Disease is an outcome of incongruity leading to dishomeostasis. Relative to earlier times, disease in modern society has higher "heritability" (in the broad meaning of the term). Inherited risks are facts compatible with anticipation and prevention of disease. This viewpoint has major implications for medical practice, deployment of health services, themes of research, and education of health care personnel and citizens. PMID:6763817
Adaptive Liquid Crystal Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taheri, Bahman; Bodnar, Volodymyr
2011-12-31
Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. Atmore » a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power consumption by ALCWs allows for on-board power electronics for automatic matching of transmission through windows to varying climate conditions without drawing the power from the power grid. ALCWs are capable of transmitting more sunlight in winters to assist in heating and less sunlight in summers to minimize overheating. As such, they can change the window from being a source of energy loss to a source of energy gain. In addition, the scalable AMI’s roll-to-roll process, proved by making 1ft × 1ftALCW prototype panels, allows for cost-effective production of large-scale window panels along with capability to change easily their color and shape. In addition to architectural glazing in houses and commercial buildings, ALCWs can be used in other applications where control of sunlight is needed, such as green houses, used by commercial produce growers and botanical gardens, cars, aircrafts, etc.« less
Processing temporal agreement in a tenseless language: an ERP study of Mandarin Chinese.
Qiu, Yinchen; Zhou, Xiaolin
2012-03-29
Human languages are equipped with an impressive repertoire of time-encoding devices which vary significantly across different cultures. Previous research on temporal processing has focused on morphosyntactic processes in Indo-European languages. This study investigated the neural correlates of temporal processing in Mandarin Chinese, a language that is not morphologically marked for tense. In a sentence acceptability judgment task, we manipulated the agreement between semantically enriched temporal adverbs or a highly grammaticalized aspectual particle (-guo) and temporal noun phrases. Disagreement of both the temporal adverbs and the aspectual particle elicited a centro-parietal P600 effect in event-related potentials (ERPs) whereas only disagreeing temporal adverbs evoked an additional broadly distributed N400 effect. Moreover, a sustained negativity effect was observed on both the words following the critical ones and the last words in sentences with temporal disagreement. These results reveal both commonalities and differences between Chinese and Indo-European languages in temporal agreement processing. In particular, we demonstrate that temporal reference in Chinese relies on both lexical semantics and morphosyntactic processes and that the level of grammaticalization of linguistic devices representing similar temporal information is reflected in differential ERP responses. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Meliker, Jaymie R.; Slotnick, Melissa J.; Avruskin, Gillian A.; Kaufmann, Andrew; Jacquez, Geoffrey M.; Nriagu, Jerome O.
2005-05-01
A thorough assessment of human exposure to environmental agents should incorporate mobility patterns and temporal changes in human behaviors and concentrations of contaminants; yet the temporal dimension is often under-emphasized in exposure assessment endeavors, due in part to insufficient tools for visualizing and examining temporal datasets. Spatio-temporal visualization tools are valuable for integrating a temporal component, thus allowing for examination of continuous exposure histories in environmental epidemiologic investigations. An application of these tools to a bladder cancer case-control study in Michigan illustrates continuous exposure life-lines and maps that display smooth, continuous changes over time. Preliminary results suggest increased risk of bladder cancer from combined exposure to arsenic in drinking water (>25 μg/day) and heavy smoking (>30 cigarettes/day) in the 1970s and 1980s, and a possible cancer cluster around automotive, paint, and organic chemical industries in the early 1970s. These tools have broad application for examining spatially- and temporally-specific relationships between exposures to environmental risk factors and disease.
Temporal Instabilities in Amblyopic Perception: A Quantitative Approach.
Thiel, Aylin; Iftime, Adrian
2016-04-01
The purpose of this study is to quantify the temporal characteristics of spatial misperceptions in human amblyopia. Twenty-two adult participants with strabismus, strabismic, anisometropic, or mixed amblyopia were asked to describe their subjective percept of static geometrical patterns with different spatial frequencies and shapes, as seen with their non-dominant eye. We generated digital reconstructions of their perception (static images or movies) that were subsequently validated by the subjects using consecutive matching sessions. We calculated the Shannon entropy variation in time for each recorded movie, as a measure of temporal instability. Nineteen of the 22 subjects perceived temporal instabilities that can be broadly classified in two categories. We found that the average frequency of the perceived temporal instabilities is ∼1 Hz. The stimuli with higher spatial frequencies yielded more often temporally unstable perceptions with higher frequencies. We suggest that type and amount of temporal instabilities in amblyopic vision are correlated with the etiology and spatial frequency of the stimulus.
Jung, Yongmin; Brambilla, Gilberto; Richardson, David J
2008-09-15
We report the use of a sub-wavelength optical wire (SOW) with a specifically designed transition region as an efficient tool to filter higher-order modes in multimode waveguides. Higher-order modes are effectively suppressed by controlling the transition taper profile and the diameter of the sub-wavelength optical wire. As a practical example, single-mode operation of a standard telecom optical fiber over a broad spectral window (400 approximately 1700 nm) was demonstrated with a 1microm SOW. The ability to obtain robust and stable single-mode operation over a very broad range of wavelengths offers new possibilities for mode control within fiber devices and is relevant to a range of application sectors including high performance fiber lasers, sensors, photolithography, and optical coherence tomography systems.
Ribeiro da Luz, Beatriz; Crowley, James K.
2007-01-01
In contrast to visible and short-wave infrared data, thermal infrared spectra of broad leaf plants show considerable spectral diversity, suggesting that such data eventually could be utilized to map vegetation composition. However, remotely measuring the subtle emissivity features of leaves still presents major challenges. To be successful, sensors operating in the 8–14 μm atmospheric window must have high signal-to-noise and a small enough instantaneous field of view to allow measurements of only a few leaf surfaces. Methods for atmospheric compensation, temperature–emissivity separation, and spectral feature analysis also will need to be refined to allow the recognition, and perhaps, exploitation of leaf thermal infrared spectral properties.
Dispersion-free continuum two-dimensional electronic spectrometer
Zheng, Haibin; Caram, Justin R.; Dahlberg, Peter D.; Rolczynski, Brian S.; Viswanathan, Subha; Dolzhnikov, Dmitriy S.; Khadivi, Amir; Talapin, Dmitri V.; Engel, Gregory S.
2015-01-01
Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an ~180 nm window of the available bandwidth at ~10 fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a. PMID:24663470
Time-series analysis of sleep wake stage of rat EEG using time-dependent pattern entropy
NASA Astrophysics Data System (ADS)
Ishizaki, Ryuji; Shinba, Toshikazu; Mugishima, Go; Haraguchi, Hikaru; Inoue, Masayoshi
2008-05-01
We performed electroencephalography (EEG) for six male Wistar rats to clarify temporal behaviors at different levels of consciousness. Levels were identified both by conventional sleep analysis methods and by our novel entropy method. In our method, time-dependent pattern entropy is introduced, by which EEG is reduced to binary symbolic dynamics and the pattern of symbols in a sliding temporal window is considered. A high correlation was obtained between level of consciousness as measured by the conventional method and mean entropy in our entropy method. Mean entropy was maximal while awake (stage W) and decreased as sleep deepened. These results suggest that time-dependent pattern entropy may offer a promising method for future sleep research.
Rapid visual grouping and figure-ground processing using temporally structured displays.
Cheadle, Samuel; Usher, Marius; Müller, Hermann J
2010-08-23
We examine the time course of visual grouping and figure-ground processing. Figure (contour) and ground (random-texture) elements were flickered with different phases (i.e., contour and background are alternated), requiring the observer to group information within a pre-specified time window. It was found this grouping has a high temporal resolution: less than 20ms for smooth contours, and less than 50ms for line conjunctions with sharp angles. Furthermore, the grouping process takes place without an explicit knowledge of the phase of the elements, and it requires a cumulative build-up of information. The results are discussed in relation to the neural mechanism for visual grouping and figure-ground segregation. Copyright 2010 Elsevier Ltd. All rights reserved.
Pattern Discovery and Change Detection of Online Music Query Streams
NASA Astrophysics Data System (ADS)
Li, Hua-Fu
In this paper, an efficient stream mining algorithm, called FTP-stream (Frequent Temporal Pattern mining of streams), is proposed to find the frequent temporal patterns over melody sequence streams. In the framework of our proposed algorithm, an effective bit-sequence representation is used to reduce the time and memory needed to slide the windows. The FTP-stream algorithm can calculate the support threshold in only a single pass based on the concept of bit-sequence representation. It takes the advantage of "left" and "and" operations of the representation. Experiments show that the proposed algorithm only scans the music query stream once, and runs significant faster and consumes less memory than existing algorithms, such as SWFI-stream and Moment.
Exploring the structure and function of temporal networks with dynamic graphlets
Hulovatyy, Y.; Chen, H.; Milenković, T.
2015-01-01
Motivation: With increasing availability of temporal real-world networks, how to efficiently study these data? One can model a temporal network as a single aggregate static network, or as a series of time-specific snapshots, each being an aggregate static network over the corresponding time window. Then, one can use established methods for static analysis on the resulting aggregate network(s), but losing in the process valuable temporal information either completely, or at the interface between different snapshots, respectively. Here, we develop a novel approach for studying a temporal network more explicitly, by capturing inter-snapshot relationships. Results: We base our methodology on well-established graphlets (subgraphs), which have been proven in numerous contexts in static network research. We develop new theory to allow for graphlet-based analyses of temporal networks. Our new notion of dynamic graphlets is different from existing dynamic network approaches that are based on temporal motifs (statistically significant subgraphs). The latter have limitations: their results depend on the choice of a null network model that is required to evaluate the significance of a subgraph, and choosing a good null model is non-trivial. Our dynamic graphlets overcome the limitations of the temporal motifs. Also, when we aim to characterize the structure and function of an entire temporal network or of individual nodes, our dynamic graphlets outperform the static graphlets. Clearly, accounting for temporal information helps. We apply dynamic graphlets to temporal age-specific molecular network data to deepen our limited knowledge about human aging. Availability and implementation: http://www.nd.edu/∼cone/DG. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072480
ECOLOGICAL FORECASTING FOR WATERSHEDS
To effectively manage watersheds, the assessment of watershed ecological response to physicochemical stressors such as nutrients, sediments, pathogens, and toxics over broad spatial and temporal scales is needed. Assessments at this level of complexity requires the development of...
The Zwicky Transient Facility Camera
NASA Astrophysics Data System (ADS)
Dekany, Richard; Smith, Roger M.; Belicki, Justin; Delacroix, Alexandre; Duggan, Gina; Feeney, Michael; Hale, David; Kaye, Stephen; Milburn, Jennifer; Murphy, Patrick; Porter, Michael; Reiley, Daniel J.; Riddle, Reed L.; Rodriguez, Hector; Bellm, Eric C.
2016-08-01
The Zwicky Transient Facility Camera (ZTFC) is a key element of the ZTF Observing System, the integrated system of optoelectromechanical instrumentation tasked to acquire the wide-field, high-cadence time-domain astronomical data at the heart of the Zwicky Transient Facility. The ZTFC consists of a compact cryostat with large vacuum window protecting a mosaic of 16 large, wafer-scale science CCDs and 4 smaller guide/focus CCDs, a sophisticated vacuum interface board which carries data as electrical signals out of the cryostat, an electromechanical window frame for securing externally inserted optical filter selections, and associated cryo-thermal/vacuum system support elements. The ZTFC provides an instantaneous 47 deg2 field of view, limited by primary mirror vignetting in its Schmidt telescope prime focus configuration. We report here on the design and performance of the ZTF CCD camera cryostat and report results from extensive Joule-Thompson cryocooler tests that may be of broad interest to the instrumentation community.
The global need for lived experience leadership.
Byrne, Louise; Stratford, Anthony; Davidson, Larry
2018-03-01
Common challenges and experiences of the lived experience/peer workforce globally are considered, with an emphasis on ensuring that future developments both protect and promote the unique lived experience perspective. In the Western world, rapid growth in lived experience roles has led to an urgent need for training and workforce development. However, research indicates the roles risk being coopted without clear lived experience leadership, which is often not occurring. In developing countries and in many Western contexts, the lived experience role has not yet been accepted within the mental health workforce. The need for lived experience leadership to guide these issues is highlighted. Peer-reviewed research, relevant gray literature, and professional experience in countries where little published material currently exists. A window of opportunity currently exists to maximize lived experience leadership, and that window may be closing fast if broad-based actions are not initiated now. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
CRDS with a VECSEL for broad-band high sensitivity spectroscopy in the 2.3 μm window.
Čermák, P; Chomet, B; Ferrieres, L; Vasilchenko, S; Mondelain, D; Kassi, S; Campargue, A; Denet, S; Lecocq, V; Myara, M; Cerutti, L; Garnache, A
2016-08-01
The integration of an industry ready packaged Sb-based Vertical-External-Cavity Surface-Emitting-Laser (VECSEL) into a Cavity Ring Down Spectrometer (CRDS) is presented. The instrument operates in the important 2.3 μm atmospheric transparency window and provides a high sensitivity (minimum detectable absorption of 9 × 10(-11) cm(-1)) over a wide spectra range. The VECSEL performances combine a large continuous tunability over 120 cm(-1) around 4300 cm(-1) together with a powerful (∼5 mW) TEM00 diffraction limited beam and linewidth at MHz level (for 1 ms of integration time). The achieved performances are illustrated by high sensitivity recordings of the very weak absorption spectrum of water vapor in the region. The developed method gives potential access to the 2-2.7 μm range for CRDS.
Vacuum-barrier window for wide-bandwidth high-power microwave transmission
Caplan, M.; Shang, C.C.
1996-08-20
A vacuum output window comprises a planar dielectric material with identical systems of parallel ridges and valleys formed in opposite surfaces. The valleys in each surface neck together along parallel lines in the bulk of the dielectric. Liquid-coolant conduits are disposed linearly along such lines of necking and have water or even liquid nitrogen pumped through to remove heat. The dielectric material can be alumina, or its crystalline form, sapphire. The electric-field of a broadband incident megawatt millimeter-wave radio frequency energy is oriented perpendicular to the system of ridges and valleys. The ridges, about one wavelength tall and with a period of about one wavelength, focus the incident energy through in ribbons that squeeze between the liquid-coolant conduits without significant losses over very broad bands of the radio spectrum. In an alternative embodiment, the liquid-coolant conduits are encased in metal within the bulk of the dielectric. 4 figs.
Vacuum-barrier window for wide-bandwidth high-power microwave transmission
Caplan, Malcolm; Shang, Clifford C.
1996-01-01
A vacuum output window comprises a planar dielectric material with identical systems of parallel ridges and valleys formed in opposite surfaces. The valleys in each surface neck together along parallel lines in the bulk of the dielectric. Liquid-coolant conduits are disposed linearly along such lines of necking and have water or even liquid nitrogen pumped through to remove heat. The dielectric material can be alumina, or its crystalline form, sapphire. The electric-field of a broadband incident megawatt millimeter-wave radio frequency energy is oriented perpendicular to the system of ridges and valleys. The ridges, about one wavelength tall and with a period of about one wavelength, focus the incident energy through in ribbons that squeeze between the liquid-coolant conduits without significant losses over very broad bands of the radio spectrum. In an alternative embodiment, the liquid-coolant conduits are encased in metal within the bulk of the dielectric.
CRDS with a VECSEL for broad-band high sensitivity spectroscopy in the 2.3 μm window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Čermák, P., E-mail: cermak@fmph.uniba.sk; CNRS, LIPhy, UMR 5588, F-38000 Grenoble; Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, 842 48 Bratislava
2016-08-15
The integration of an industry ready packaged Sb-based Vertical-External-Cavity Surface-Emitting-Laser (VECSEL) into a Cavity Ring Down Spectrometer (CRDS) is presented. The instrument operates in the important 2.3 μm atmospheric transparency window and provides a high sensitivity (minimum detectable absorption of 9 × 10{sup −11} cm{sup −1}) over a wide spectra range. The VECSEL performances combine a large continuous tunability over 120 cm{sup −1} around 4300 cm{sup −1} together with a powerful (∼5 mW) TEM{sub 00} diffraction limited beam and linewidth at MHz level (for 1 ms of integration time). The achieved performances are illustrated by high sensitivity recordings of themore » very weak absorption spectrum of water vapor in the region. The developed method gives potential access to the 2-2.7 μm range for CRDS.« less
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Jones, Reese; Ward, Donald; Spataru, Catalin; Shulenburger, Luke; Benedict, Lorin X.
2015-06-01
Window materials are ubiquitous in shock physics and with high energy density drivers capable of reaching multi-Mbar pressures the use of LiF is increasing. Velocimetry and temperature measurements of a sample through a window are both influenced by the assumed index of refraction and thermal conductivity, respectively. We report on calculations of index of refraction using the many-body theory GW and thermal ionic conductivity using linear response theory and model potentials. The results are expected to increase the accuracy of a broad range of high-pressure shock- and ramp compression experiments. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Clark, M. L.
2016-12-01
The goal of this study was to assess multi-temporal, Hyperspectral Infrared Imager (HyspIRI) satellite imagery for improved forest class mapping relative to multispectral satellites. The study area was the western San Francisco Bay Area, California and forest alliances (e.g., forest communities defined by dominant or co-dominant trees) were defined using the U.S. National Vegetation Classification System. Simulated 30-m HyspIRI, Landsat 8 and Sentinel-2 imagery were processed from image data acquired by NASA's AVIRIS airborne sensor in year 2015, with summer and multi-temporal (spring, summer, fall) data analyzed separately. HyspIRI reflectance was used to generate a suite of hyperspectral metrics that targeted key spectral features related to chemical and structural properties. The Random Forests classifier was applied to the simulated images and overall accuracies (OA) were compared to those from real Landsat 8 images. For each image group, broad land cover (e.g., Needle-leaf Trees, Broad-leaf Trees, Annual agriculture, Herbaceous, Built-up) was classified first, followed by a finer-detail forest alliance classification for pixels mapped as closed-canopy forest. There were 5 needle-leaf tree alliances and 16 broad-leaf tree alliances, including 7 Quercus (oak) alliance types. No forest alliance classification exceeded 50% OA, indicating that there was broad spectral similarity among alliances, most of which were not spectrally pure but rather a mix of tree species. In general, needle-leaf (Pine, Redwood, Douglas Fir) alliances had better class accuracies than broad-leaf alliances (Oaks, Madrone, Bay Laurel, Buckeye, etc). Multi-temporal data classifications all had 5-6% greater OA than with comparable summer data. For simulated data, HyspIRI metrics had 4-5% greater OA than Landsat 8 and Sentinel-2 multispectral imagery and 3-4% greater OA than HyspIRI reflectance. Finally, HyspIRI metrics had 8% greater OA than real Landsat 8 imagery. In conclusion, forest alliance classification was found to be a difficult remote sensing application with moderate resolution (30 m) satellite imagery; however, of the data tested, HyspIRI spectral metrics had the best performance relative to multispectral satellites.
Linewidth narrowing for 31Phosphorus MRI of cell membranes
NASA Astrophysics Data System (ADS)
Barrett, Sean; Frey, Merideth; Madri, Joseph; Michaud, Michael
2011-03-01
Most 31 P Magnetic Resonance Spectroscopy studies of tissues try to avoid contamination by a relatively large, but broad, spectral feature attributed to cell membrane phospholipids. MRI using this broad 31 P membrane spectrum is not even attempted, since the spatial resolution and signal-to-noise would be poor, relative to conventional MRI using the narrow 1 H water spectrum. This long-standing barrier has been overcome by a novel pulse sequence, recently discovered in fundamental quantum computation research, which narrows the broad 31 P spectrum by ~ 1000 × . Applying time-dependent gradients in synch with a repeating pulse block enables a new route to high spatial resolution, 3D 31 P MRI of the soft solid components of cells and tissues. So far, intact and sectioned samples of ex vivo fixed mouse organs have been imaged, with (sub-mm)3 voxels. Extending the reach of MRI to broad spectra in natural and artificial tissues opens a new window into cells, enabling progress in biomedical research. W.J. Thoma et al., J. MR 61, 141 (1985); E.J. Murphy et al., MR Med 12, 282 (1989); R. McNamara et al., NMR Biomed 7, 237 (1994).
NASA Astrophysics Data System (ADS)
Taira, T.; Kato, A.
2013-12-01
A high-resolution Vp/Vs ratio estimate is one of the key parameters to understand spatial variations of composition and physical state within the Earth. Lin and Shearer (2007, BSSA) recently developed a methodology to obtain local Vp/Vs ratios in individual similar earthquake clusters, based on P- and S-wave differential times. A waveform cross-correlation approach is typically employed to measure those differential times for pairs of seismograms from similar earthquakes clusters, at narrow time windows around the direct P and S waves. This approach effectively collects P- and S-wave differential times and however requires the robust P- and S-wave time windows that are extracted based on either manually or automatically picked P- and S-phases. We present another technique to estimate P- and S-wave differential times by exploiting temporal properties of delayed time as a function of elapsed time on the seismograms with a moving-window cross-correlation analysis (e.g., Snieder, 2002, Phys. Rev. E; Niu et al. 2003, Nature). Our approach is based on the principle that the delayed time for the direct S wave differs from that for the direct P wave. Two seismograms aligned by the direct P waves from a pair of similar earthquakes yield that delayed times become zero around the direct P wave. In contrast, delayed times obtained from time windows including the direct S wave have non-zero value. Our approach, in principle, is capable of measuring both P- and S-wave differential times from single-component seismograms. In an ideal case, the temporal evolution of delayed time becomes a step function with its discontinuity at the onset of the direct S wave. The offset in the resulting step function would be the S-wave differential time, relative to the P-wave differential time as the two waveforms are aligned by the direct P wave. We apply our moving-window cross-correlation technique to the two different data sets collected at: 1) the Wakayama district, Japan and 2) the Geysers geothermal field, California. The both target areas are characterized by earthquake swarms that provide a number of similar events clusters. We use the following automated procedure to systematically analyze the two data sets: 1) the identification of the direct P arrivals by using an Akaike Information Criterion based phase picking algorithm introduced by Zhang and Thurber (2003, BSSA), 2) the waveform alignment by the P-wave with a waveform cross-correlation to obtain P-wave differential time, 3) the moving-time window analysis to estimate the S-differential time. Kato et al. (2010, GRL) have estimated the Vp/Vs ratios for a few similar earthquake clusters from the Wakayama data set, by a conventional approach to obtain differential times. We find that the resulting Vp/Vs ratios from our approach for the same earthquake clusters are comparable with those obtained from Kato et al. (2010, GRL). We show that the moving-window cross-correlation technique effectively measures both P- and S-wave differential times for the seismograms in which the clear P and S phases are not observed. We will show spatial distributions in Vp/Vs ratios in our two target areas.
Sun, Yu; Collinson, Simon L; Suckling, John; Sim, Kang
2018-06-07
Emerging evidence suggests that schizophrenia is associated with brain dysconnectivity. Nonetheless, the implicit assumption of stationary functional connectivity (FC) adopted in most previous resting-state functional magnetic resonance imaging (fMRI) studies raises an open question of schizophrenia-related aberrations in dynamic properties of resting-state FC. This study introduces an empirical method to examine the dynamic functional dysconnectivity in patients with schizophrenia. Temporal brain networks were estimated from resting-state fMRI of 2 independent datasets (patients/controls = 18/19 and 53/57 for self-recorded dataset and a publicly available replication dataset, respectively) by the correlation of sliding time-windowed time courses among regions of a predefined atlas. Through the newly introduced temporal efficiency approach and temporal random network models, we examined, for the first time, the 3D spatiotemporal architecture of the temporal brain network. We found that although prominent temporal small-world properties were revealed in both groups, temporal brain networks of patients with schizophrenia in both datasets showed a significantly higher temporal global efficiency, which cannot be simply attributable to head motion and sampling error. Specifically, we found localized changes of temporal nodal properties in the left frontal, right medial parietal, and subcortical areas that were associated with clinical features of schizophrenia. Our findings demonstrate that altered dynamic FC may underlie abnormal brain function and clinical symptoms observed in schizophrenia. Moreover, we provide new evidence to extend the dysconnectivity hypothesis in schizophrenia from static to dynamic brain network and highlight the potential of aberrant brain dynamic FC in unraveling the pathophysiologic mechanisms of the disease.
Dietz, Aarno; Gazibegovic, Dzemal; Tervaniemi, Jyrki; Vartiainen, Veli-Matti; Löppönen, Heikki
2016-12-01
The aim of this study was to evaluate the insertion results and placement of the new Advanced Bionics HiFocus Mid-Scala (HFms) electrode array, inserted through the round window membrane, in eight fresh human temporal bones using cone beam computed tomography (CBCT). Pre- and post-insertion CBCT scans were registered to create a 3D reconstruction of the cochlea with the array inserted. With an image fusion technique both the bony edges of the cochlea and the electrode array in situ could accurately be determined, thus enabling to identify the exact position of the electrode array within the scala tympani. Vertical and horizontal scalar location was measured at four points along the cochlea base at an angular insertion depth of 90°, 180° and 270° and at electrode 16, the most basal electrode. Smooth insertion through the round window membrane was possible in all temporal bones. The imaging results showed that there were no dislocations from the scala tympani into the scala vestibule. The HFms electrode was positioned in the middle of the scala along the whole electrode array in three out of the eight bones and in 62 % of the individual locations measured along the base of the cochlea. In only one cochlea a close proximity of the electrode with the basilar membrane was observed, indicating possible contact with the basilar membrane. The results and assessments presented in this study appear to be highly accurate. Although a further validation including histopathology is needed, the image fusion technique described in this study represents currently the most accurate method for intracochlear electrode assessment obtainable with CBCT.
Crustal Fracturing Field and Presence of Fluid as Revealed by Seismic Anisotropy
NASA Astrophysics Data System (ADS)
Pastori, M.; Piccinini, D.; de Gori, P.; Margheriti, L.; Barchi, M. R.; di Bucci, D.
2010-12-01
In the last three years, we developed, tested and improved an automatic analysis code (Anisomat+) to calculate the shear wave splitting parameters, fast polarization direction (φ) and delay time (∂t). The code is a set of MatLab scripts able to retrieve crustal anisotropy parameters from three-component seismic recording of local earthquakes using horizontal component cross-correlation method. The analysis procedure consists in choosing an appropriate frequency range, that better highlights the signal containing the shear waves, and a length of time window on the seismogram centered on the S arrival (the temporal window contains at least one cycle of S wave). The code was compared to other two automatic analysis code (SPY and SHEBA) and tested on three Italian areas (Val d’Agri, Tiber Valley and L’Aquila surrounding) along the Apennine mountains. For each region we used the anisotropic parameters resulting from the automatic computation as a tool to determine the fracture field geometries connected with the active stress field. We compare the temporal variations of anisotropic parameters to the evolution of vp/vs ratio for the same seismicity. The anisotropic fast directions are used to define the active stress field (EDA model), finding a general consistence between fast direction and main stress indicators (focal mechanism and borehole break-out). The magnitude of delay time is used to define the fracture field intensity finding higher value in the volume where micro-seismicity occurs. Furthermore we studied temporal variations of anisotropic parameters and vp/vs ratio in order to explain if fluids play an important role in the earthquake generation process. The close association of anisotropic and vp/vs parameters variations and seismicity rate changes supports the hypothesis that the background seismicity is influenced by the fluctuation of pore fluid pressure in the rocks.
Khushaba, Rami N; Al-Timemy, Ali H; Al-Ani, Ahmed; Al-Jumaily, Adel
2017-10-01
The extraction of the accurate and efficient descriptors of muscular activity plays an important role in tackling the challenging problem of myoelectric control of powered prostheses. In this paper, we present a new feature extraction framework that aims to give an enhanced representation of muscular activities through increasing the amount of information that can be extracted from individual and combined electromyogram (EMG) channels. We propose to use time-domain descriptors (TDDs) in estimating the EMG signal power spectrum characteristics; a step that preserves the computational power required for the construction of spectral features. Subsequently, TDD is used in a process that involves: 1) representing the temporal evolution of the EMG signals by progressively tracking the correlation between the TDD extracted from each analysis time window and a nonlinearly mapped version of it across the same EMG channel and 2) representing the spatial coherence between the different EMG channels, which is achieved by calculating the correlation between the TDD extracted from the differences of all possible combinations of pairs of channels and their nonlinearly mapped versions. The proposed temporal-spatial descriptors (TSDs) are validated on multiple sparse and high-density (HD) EMG data sets collected from a number of intact-limbed and amputees performing a large number of hand and finger movements. Classification results showed significant reductions in the achieved error rates in comparison to other methods, with the improvement of at least 8% on average across all subjects. Additionally, the proposed TSDs achieved significantly well in problems with HD-EMG with average classification errors of <5% across all subjects using windows lengths of 50 ms only.
NASA Astrophysics Data System (ADS)
Shih, Marian Pei-Ling
The problem of optical imaging through a highly scattering volume diffuser, in particular, biological tissue, has received renewed interest in recent years because of a search for alternative imaging diagnostics in the optical wavelengths for the early detection of human breast cancer. This dissertation discusses the optical imaging of objects obscured by diffusers that contribute an otherwise overwhelming degree of multiple scatter. Many optical imaging techniques are based on the first-arriving light principle. These methods usually combine a transilluminating optical short pulse with a time windowing gate in order to form a flat shadowgraph image of absorbing objects either embedded within or hidden behind a scattering medium. The gate selectively records an image of the first-arriving light, while simultaneously rejecting the later-arriving scattered light. One set of the many implementations of the first -arriving light principle relies on the gating property of holography. This thesis presents several holographic optical gating experiments that demonstrate the role that the temporal coherence function of the illumination source plays in the imaging of all objects with short coherence length holography, with special emphasis on the application to image through diffusers and its resolution capabilities. Previous researchers have already successfully combined electronic holography, holography in which the recording medium is a two dimensional detector array instead of photographic film, with light-in-flight holography into a short coherence length holography method that images through various types of multiply scattering random media, including chicken breast tissue and wax. This thesis reports further experimental exploration of the short coherence holography method for imaging through severely scattering diffusers. There is a study on the effectiveness of spatial filtering of the first-arriving light, as well as a report of the imaging, by means of the short coherence holographic method, of an absorber through a living human hand. This thesis also includes both theoretical analyses and experimental results of a spectral dispersion holography system which, instead of optically synthesizing the broad spectrum illumination source that is used for the short coherence holography method, digitally synthesizes a broad spectrum hologram from a collection of single frequency component holograms. This system has the time gating properties of short coherence length holography, as well as experimentally demonstrated applications for imaging through multiply scattering media.
Ocean state estimation for climate studies
NASA Technical Reports Server (NTRS)
Lee, T.
2002-01-01
Climate variabilities, which are of interest to CLIVAR, involve a broad range of spatial and temporal scales. Ocean state estimation (often referred to as ocean data assimilation), by optimally combining observations and models, becomes an important element of CLIVAR.
Stegen, James C.; Fredrickson, James K.; Wilkins, Michael J.; Konopka, Allan E.; Nelson, William C.; Arntzen, Evan V.; Chrisler, William B.; Chu, Rosalie K.; Danczak, Robert E.; Fansler, Sarah J.; Kennedy, David W.; Resch, Charles T.; Tfaily, Malak
2016-01-01
Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater–surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater–surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds. PMID:27052662
Stegen, James C; Fredrickson, James K; Wilkins, Michael J; Konopka, Allan E; Nelson, William C; Arntzen, Evan V; Chrisler, William B; Chu, Rosalie K; Danczak, Robert E; Fansler, Sarah J; Kennedy, David W; Resch, Charles T; Tfaily, Malak
2016-04-07
Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater-surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater-surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds.
Neural correlates of own- and other-race face perception: spatial and temporal response differences.
Natu, Vaidehi; Raboy, David; O'Toole, Alice J
2011-02-01
Humans show an "other-race effect" for face recognition, with more accurate recognition of own- versus other-race faces. We compared the neural representations of own- and other-race faces using functional magnetic resonance imaging (fMRI) data in combination with a multi-voxel pattern classifier. Neural activity was recorded while Asians and Caucasians viewed Asian and Caucasian faces. A pattern classifier, applied to voxels across a broad range of ventral temporal areas, discriminated the brain activity maps elicited in response to Asian versus Caucasian faces in the brains of both Asians and Caucasians. Classification was most accurate in the first few time points of the block and required the use of own-race faces in the localizer scan to select voxels for classifier input. Next, we examined differences in the time-course of neural responses to own- and other-race faces and found evidence for a temporal "other-race effect." Own-race faces elicited a larger neural response initially that attenuated rapidly. The response to other-race faces was weaker at first, but increased over time, ultimately surpassing the magnitude of the own-race response in the fusiform "face" area (FFA). A similar temporal response pattern held across a broad range of ventral temporal areas. The pattern-classification results indicate the early availability of categorical information about own- versus other-race face status in the spatial pattern of neural activity. The slower, more sustained, brain response to other-race faces may indicate the need to recruit additional neural resources to process other-race faces for identification. Copyright © 2010 Elsevier Inc. All rights reserved.
Idealized Computational Models for Auditory Receptive Fields
Lindeberg, Tony; Friberg, Anders
2015-01-01
We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973
Two stages of directed forgetting: Electrophysiological evidence from a short-term memory task.
Gao, Heming; Cao, Bihua; Qi, Mingming; Wang, Jing; Zhang, Qi; Li, Fuhong
2016-06-01
In this study, a short-term memory test was used to investigate the temporal course and neural mechanism of directed forgetting under different memory loads. Within each trial, two memory items with high or low load were presented sequentially, followed by a cue indicating whether the presented items should be remembered. After an interval, subjects were asked to respond to the probe stimuli. The ERPs locked to the cues showed that (a) the effect of cue type was initially observed during the P2 (160-240 ms) time window, with more positive ERPs for remembering relative to forgetting cues; (b) load effects were observed during the N2-P3 (250-500 ms) time window, with more positive ERPs for the high-load than low-load condition; (c) the cue effect was also observed during the N2-P3 time window, with more negative ERPs for forgetting versus remembering cues. These results demonstrated that directed forgetting involves two stages: task-relevance identification and information discarding. The cue effects during the N2 epoch supported the view that directed forgetting is an active process. © 2016 Society for Psychophysiological Research.
The Solar Shield: A Thermally Insulating, Broad-Band, Electromagnetic Window for Satellites
1986-06-02
1.2 but is difficult to machine to thicknesses less than about 1/4 in. without breakage. The one disadvantage of the quartz paper is that it is somewhat...flimsy. Additional structural S•.support was provided by fusing one side of the paper to FEP teflon-coated Kapton* in a laminat - ing press. Kapton...loose quartz fibers from escaping. .4.’ A non-outgassing, polyester netting+ was chosen to separate the composite layers from eachother. * DuPont Corp
2006-09-09
KENNEDY SPACE CENTER, FLA. - Inside the Launch Control Center, KSC officials turn from their computers to watch through the broad windows the launch of Space Shuttle Atlantis on mission STS-115. Second from left is NASA Test Director Pete Nickolenko. Mission STS-115 is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. sts-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
Archaeal Viruses Multiply: Temporal Screening in a Solar Saltern
Atanasova, Nina S.; Demina, Tatiana A.; Buivydas, Andrius; Bamford, Dennis H.; Oksanen, Hanna M.
2015-01-01
Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010). Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses) was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses) were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26). This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment. PMID:25866903
Archaeal viruses multiply: temporal screening in a solar saltern.
Atanasova, Nina S; Demina, Tatiana A; Buivydas, Andrius; Bamford, Dennis H; Oksanen, Hanna M
2015-04-10
Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010). Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses) was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses) were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26). This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment.
NASA Astrophysics Data System (ADS)
Cheng, Z.; Chen, Y.; Liu, Y.; Liu, W.; Zhang, G.
2015-12-01
Among those hydrocarbon reservoir detection techniques, the time-frequency analysis based approach is one of the most widely used approaches because of its straightforward indication of low-frequency anomalies from the time-frequency maps, that is to say, the low-frequency bright spots usually indicate the potential hydrocarbon reservoirs. The time-frequency analysis based approach is easy to implement, and more importantly, is usually of high fidelity in reservoir prediction, compared with the state-of-the-art approaches, and thus is of great interest to petroleum geologists, geophysicists, and reservoir engineers. The S transform has been frequently used in obtaining the time-frequency maps because of its better performance in controlling the compromise between the time and frequency resolutions than the alternatives, such as the short-time Fourier transform, Gabor transform, and continuous wavelet transform. The window function used in the majority of previous S transform applications is the symmetric Gaussian window. However, one problem with the symmetric Gaussian window is the degradation of time resolution in the time-frequency map due to the long front taper. In our study, a bi-Gaussian S transform that substitutes the symmetric Gaussian window with an asymmetry bi-Gaussian window is proposed to analyze the multi-channel seismic data in order to predict hydrocarbon reservoirs. The bi-Gaussian window introduces asymmetry in the resultant time-frequency spectrum, with time resolution better in the front direction, as compared with the back direction. It is the first time that the bi-Gaussian S transform is used for analyzing multi-channel post-stack seismic data in order to predict hydrocarbon reservoirs since its invention in 2003. The superiority of the bi-Gaussian S transform over traditional S transform is tested on a real land seismic data example. The performance shows that the enhanced temporal resolution can help us depict more clearly the edge of the hydrocarbon reservoir, especially when the thickness of the reservoir is small (such as the thin beds).
Multi-longitudinal-mode micro-laser model
NASA Astrophysics Data System (ADS)
Staliunas, Kestutis
2017-10-01
We derive a convenient model for broad aperture micro-lasers, such as microchip lasers, broad area semiconductor lasers, or VCSELs, taking into account several longitudinal mode families. We provide linear stability analysis, and show characteristic spatio-temporal dynamics in such multi-longitudinal mode laser models. Moreover, we derive the coupled mode model in the presence of intracavity refraction index modulation (intracavity photonic crystal). Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
Colón, Jennifer M; González, Pablo A; Cajigas, Ámbar; Maldonado, Wanda I; Torrado, Aranza I; Santiago, José M; Salgado, Iris K; Miranda, Jorge D
2018-01-01
No treatment is available for patients with spinal cord injury (SCI). Patients often arrive to the hospital hours after SCI suggesting the need of a therapy that can be used on a clinically relevant window. Previous studies showed that Tamoxifen (TAM) treatment 24h after SCI benefits locomotor recovery in female rats. Tamoxifen exerts beneficial effects in male and female rodents but a gap of knowledge exists on: the therapeutic window of TAM, the spatio-temporal mechanisms activated and if this response is sexually dimorphic. We hypothesized that TAM will favor locomotor recovery when administered up-to 24h after SCI in male Sprague-Dawley rats. Rats received a thoracic (T10) contusion using the MACSIS impactor followed by placebo or TAM (15mg/21days) pellets in a therapeutic window of 0, 6, 12, or 24h. Animals were sacrificed at 2, 7, 14, 28 or 35days post injury (DPI) to study the molecular and cellular changes in the acute and chronic stages. Immediate or delayed therapy (t=6h) improved locomotor function, increased white matter spared tissue, and neuronal survival. TAM reduced reactive gliosis during chronic stages and increased the expression of Olig-2. A significant difference was observed in estrogen receptor alpha between male and female rodents from 2 to 28 DPI suggesting a sexually dimorphic characteristic that could be related to the behavioral differences observed in the therapeutic window of TAM. This study supports the use of TAM in the SCI setting due to its neuroprotective effects but with a significant sexually dimorphic therapeutic window. Copyright © 2017 Elsevier Inc. All rights reserved.
Team Learning: New Insights Through a Temporal Lens.
Lehmann-Willenbrock, Nale
2017-04-01
Team learning is a complex social phenomenon that develops and changes over time. Hence, to promote understanding of the fine-grained dynamics of team learning, research should account for the temporal patterns of team learning behavior. Taking important steps in this direction, this special issue offers novel insights into the dynamics of team learning by advocating a temporal perspective. Based on a symposium presented at the 2016 Interdisciplinary Network for Group Research (INGRoup) Conference in Helsinki, the four empirical articles in this special issue showcase four different and innovative approaches to implementing a temporal perspective in team learning research. Specifically, the contributions highlight team learning dynamics in student teams, self-managing teams, teacher teams, and command and control teams. The articles cover a broad range of methods and designs, including both qualitative and quantitative methodologies, and longitudinal as well as micro-temporal approaches. The contributors represent four countries and five different disciplines in group research.
Egocentric Temporal Action Proposals.
Shao Huang; Weiqiang Wang; Shengfeng He; Lau, Rynson W H
2018-02-01
We present an approach to localize generic actions in egocentric videos, called temporal action proposals (TAPs), for accelerating the action recognition step. An egocentric TAP refers to a sequence of frames that may contain a generic action performed by the wearer of a head-mounted camera, e.g., taking a knife, spreading jam, pouring milk, or cutting carrots. Inspired by object proposals, this paper aims at generating a small number of TAPs, thereby replacing the popular sliding window strategy, for localizing all action events in the input video. To this end, we first propose to temporally segment the input video into action atoms, which are the smallest units that may contain an action. We then apply a hierarchical clustering algorithm with several egocentric cues to generate TAPs. Finally, we propose two actionness networks to score the likelihood of each TAP containing an action. The top ranked candidates are returned as output TAPs. Experimental results show that the proposed TAP detection framework performs significantly better than relevant approaches for egocentric action detection.
Uncovering effects of self-control and stimulus-driven action selection on the sense of agency.
Wang, Yuru; Damen, Tom G E; Aarts, Henk
2017-10-01
The sense of agency refers to feelings of causing one's own action and resulting effect. Previous research indicates that voluntary action selection is an important factor in shaping the sense of agency. Whereas the volitional nature of the sense of agency is well documented, the present study examined whether agency is modulated when action selection shifts from self-control to a more automatic stimulus-driven process. Seventy-two participants performed an auditory Simon task including congruent and incongruent trials to generate automatic stimulus-driven vs. more self-control driven action, respectively. Responses in the Simon task produced a tone and agency was assessed with the intentional binding task - an implicit measure of agency. Results showed a Simon effect and temporal binding effect. However, temporal binding was independent of congruency. These findings suggest that temporal binding, a window to the sense of agency, emerges for both automatic stimulus-driven actions and self-controlled actions. Copyright © 2017 Elsevier Inc. All rights reserved.
Using Aoristic Analysis to Link Remote and Ground-Level Phenological Observations
NASA Astrophysics Data System (ADS)
Henebry, G. M.
2013-12-01
Phenology is about observing events in time and space. With the advent of publically accessible geospatial datastreams and easy to use mapping software, specifying where an event occurs is much less of a challenge than it was just two decades ago. In contrast, specifying when an event occurs remains a nontrivial function of a population of organismal responses, sampling interval, compositing period, and reporting precision. I explore how aoristic analysis can be used to analyzing spatiotemporal events for which the location is known to acceptable levels of precision but for which temporal coordinates are poorly specified or only partially bounded. Aoristic analysis was developed in the late 1990s in the field of quantitative criminology to leverage temporally imprecise geospatial data of crime reports. Here I demonstrate how aoristic analysis can be used to link remotely sensed observations of land surface phenology to ground-level observations of organismal phenophase transitions. Explicit representation of the windows of temporal uncertainty with aoristic weights enables cross-validation exercises and forecasting efforts to avoid false precision.
NASA Astrophysics Data System (ADS)
Cornet, T.; Altobelli, N.; Sotin, C.; Le Mouelic, S.; Rodriguez, S.; Philippe, S.; Brown, R. H.; Barnes, J. W.; Buratti, B. J.; Baines, K. H.; Clark, R. N.; Nicholson, P. D.
2014-12-01
Due to the influence of methane gas and a thick aerosols haze in the atmosphere, Titan's surface is only visible in 7 spectral atmospheric windows centered at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns with the Cassini Visual and Infrared Mapping Spectrometer (VIMS). The 5 microns atmospheric window constitutes the only one being almost insensitive to the haze scattering and which presents only a reduced atmospheric absorption contribution to the signal recorded by the instrument. Despite these advantages leading to the almost direct view of the surface, the 5 microns window is also the noisiest spectral window of the entire VIMS spectrum (an effect highly dependent on the time exposure used for the observations), and it is not totally free from atmospheric contributions, enough to keep "artefacts" in mosaics of several thousands of cubes due to atmospheric and surface photometric effects amplified by the very heterogeneous viewing conditions between each Titan flyby. At first order, a lambertian surface photometry at 5 microns has been used as an initial parameter in order to estimate atmospheric opacity and surface photometry in all VIMS atmospheric windows and to determine the albedo of the surface, yet unknown, both using radiative transfer codes on single cubes or empirical techniques on global hyperspectral mosaics. Other studies suggested that Titan's surface photometry would not be uniquely lambertian but would also contain anisotropic lunar-like contributions. In the present work, we aim at constraining accurately the surface photometry of Titan and residual atmospheric absorption effects in this 5 microns window using a comprehensive study of relevant sites located at various latitudes. Those include bright and dark (dunes) terrains, 5-microns bright terrains (Hotei Regio and Tui Regio), the Huygens Landing Site and high latitudes polar lakes and seas. The VIMS 2004 to 2014 database, composed of more than 40,000 hyperspectral cubes acquired on Titan, has been decomposed into a MySQL relational database in order to perform the present study looking at both spatial and temporal (seasonal) aspects.
Spatio-temporal Granger causality: a new framework
Luo, Qiang; Lu, Wenlian; Cheng, Wei; Valdes-Sosa, Pedro A.; Wen, Xiaotong; Ding, Mingzhou; Feng, Jianfeng
2015-01-01
That physiological oscillations of various frequencies are present in fMRI signals is the rule, not the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger causality, which allows us to more reliably and precisely estimate the Granger causality from experimental datasets possessing time-varying properties caused by physiological oscillations. Within this framework, Granger causality is redefined as a global index measuring the directed information flow between two time series with time-varying properties. Both theoretical analyses and numerical examples demonstrate that Granger causality is a monotonically increasing function of the temporal resolution used in the estimation. This is consistent with the general principle of coarse graining, which causes information loss by smoothing out very fine-scale details in time and space. Our results confirm that the Granger causality at the finer spatio-temporal scales considerably outperforms the traditional approach in terms of an improved consistency between two resting-state scans of the same subject. To optimally estimate the Granger causality, the proposed theoretical framework is implemented through a combination of several approaches, such as dividing the optimal time window and estimating the parameters at the fine temporal and spatial scales. Taken together, our approach provides a novel and robust framework for estimating the Granger causality from fMRI, EEG, and other related data. PMID:23643924
Alcalá-Quintana, Rocío; García-Pérez, Miguel A
2013-12-01
Research on temporal-order perception uses temporal-order judgment (TOJ) tasks or synchrony judgment (SJ) tasks in their binary SJ2 or ternary SJ3 variants. In all cases, two stimuli are presented with some temporal delay, and observers judge the order of presentation. Arbitrary psychometric functions are typically fitted to obtain performance measures such as sensitivity or the point of subjective simultaneity, but the parameters of these functions are uninterpretable. We describe routines in MATLAB and R that fit model-based functions whose parameters are interpretable in terms of the processes underlying temporal-order and simultaneity judgments and responses. These functions arise from an independent-channels model assuming arrival latencies with exponential distributions and a trichotomous decision space. Different routines fit data separately for SJ2, SJ3, and TOJ tasks, jointly for any two tasks, or also jointly for the three tasks (for common cases in which two or even the three tasks were used with the same stimuli and participants). Additional routines provide bootstrap p-values and confidence intervals for estimated parameters. A further routine is included that obtains performance measures from the fitted functions. An R package for Windows and source code of the MATLAB and R routines are available as Supplementary Files.
Frequency modulation of neural oscillations according to visual task demands.
Wutz, Andreas; Melcher, David; Samaha, Jason
2018-02-06
Temporal integration in visual perception is thought to occur within cycles of occipital alpha-band (8-12 Hz) oscillations. Successive stimuli may be integrated when they fall within the same alpha cycle and segregated for different alpha cycles. Consequently, the speed of alpha oscillations correlates with the temporal resolution of perception, such that lower alpha frequencies provide longer time windows for perceptual integration and higher alpha frequencies correspond to faster sampling and segregation. Can the brain's rhythmic activity be dynamically controlled to adjust its processing speed according to different visual task demands? We recorded magnetoencephalography (MEG) while participants switched between task instructions for temporal integration and segregation, holding stimuli and task difficulty constant. We found that the peak frequency of alpha oscillations decreased when visual task demands required temporal integration compared with segregation. Alpha frequency was strategically modulated immediately before and during stimulus processing, suggesting a preparatory top-down source of modulation. Its neural generators were located in occipital and inferotemporal cortex. The frequency modulation was specific to alpha oscillations and did not occur in the delta (1-3 Hz), theta (3-7 Hz), beta (15-30 Hz), or gamma (30-50 Hz) frequency range. These results show that alpha frequency is under top-down control to increase or decrease the temporal resolution of visual perception.
Statistical analysis of data and modeling of Nanodust measured by STEREO/WAVES at 1AU
NASA Astrophysics Data System (ADS)
Belheouane, S.; Zaslavsky, A.; Meyer-Vernet, N.; Issautier, K.; Czechowski, A.; Mann, I.; Le Chat, G.; Zouganelis, I.; Maksimovic, M.
2012-12-01
We study the flux of dust particles of nanometer size measured at 1AU by the S/WAVES instrument aboard the twin STEREO spacecraft. When they impact the spacecraft at very high speed, these nanodust particles, first detected by Meyer-Vernet et al. (2009), generate plasma clouds and produce voltage pulses measured by the electric antennas. The Time Domain Sampler (TDS) of the radio and plasma instrument produces temporal windows containing several pulses. We perform a statistical study of the distribution of pulse amplitudes and arrival times in the measuring window during the 2007-2012 period. We interpret the results using simulations of the dynamics of nanodust in the solar wind based on the model of Czechowski and Mann (2010). We also investigate the variations of nanodust fluxes while STEREO rotates about the sunward axis (Roll) ; this reveals that some directions are privilegied.
Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity
Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R.; Baldelli, Pietro; Benfenati, Fabio
2013-01-01
Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows. PMID:23970852
NASA TLX: software for assessing subjective mental workload.
Cao, Alex; Chintamani, Keshav K; Pandya, Abhilash K; Ellis, R Darin
2009-02-01
The NASA Task Load Index (TLX) is a popular technique for measuring subjective mental workload. It relies on a multidimensional construct to derive an overall workload score based on a weighted average of ratings on six subscales: mental demand, physical demand, temporal demand, performance, effort, and frustration level. A program for implementing a computerized version of the NASA TLX is described. The software version assists in simplifying collection, postprocessing, and storage of raw data. The program collects raw data from the subject and calculates the weighted (or unweighted) workload score, which is output to a text file. The program can also be tailored to a specific experiment using a simple input text file, if desired. The program was designed in Visual Studio 2005 and is capable of running on a Pocket PC with Windows CE or on a PC with Windows 2000 or higher. The NASA TLX program is available for free download.
A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Busse, R. S.; Carver, T.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Collin, G. H.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dave, P.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fritz, A.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Kappesser, D.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Leonard, K.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lozano Mariscal, C. J.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O’Murchadha, A.; O’Sullivan, E.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rauch, L.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Safa, I.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Sclafani, S.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tönnis, C.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijk, D.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; IceCube Collaboration
2018-04-01
We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an E ‑2 energy spectrum assumed, which is 0.0021 GeV cm‑2 per burst for emission timescales up to ∼102 s from the northern hemisphere stacking search.
Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity.
Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R; Baldelli, Pietro; Benfenati, Fabio
2013-01-01
Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows.
Jankowski, Kathryn F; Takahashi, Hidehiko
2014-05-01
Social emotions are affective states elicited during social interactions and integral for promoting socially appropriate behaviors and discouraging socially inappropriate ones. Social emotion-processing deficits significantly impair interpersonal relationships, and play distinct roles in the manifestation and maintenance of clinical symptomatology. Elucidating the neural correlates of discrete social emotions can serve as a window to better understanding and treating neuropsychiatric disorders. Moral cognition and social emotion-processing broadly recruit a fronto-temporo-subcortical network, supporting empathy, perspective-taking, self-processing, and reward-processing. The present review specifically examines the neural correlates of embarrassment, guilt, envy, and schadenfreude. Embarrassment and guilt are self-conscious emotions, evoked during negative evaluation following norm violations and supported by a fronto-temporo-posterior network. Embarrassment is evoked by social transgressions and recruits greater anterior temporal regions, representing conceptual social knowledge. Guilt is evoked by moral transgressions and recruits greater prefrontal regions, representing perspective-taking and behavioral change demands. Envy and schadenfreude are fortune-of-other emotions, evoked during social comparison and supported by a prefronto-striatal network. Envy represents displeasure in others' fortunes, and recruits increased dorsal anterior cingulate cortex, representing cognitive dissonance, and decreased reward-related striatal regions. Schadenfreude represents pleasure in others' misfortunes, and recruits reduced empathy-related insular regions and increased reward-related striatal regions. Implications for psychopathology and treatment design are discussed. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.
NASA Astrophysics Data System (ADS)
Kavic, Michael; Cregg C. Yancey, Brandon E. Bear, Bernadine Akukwe, Kevin Chen, Jayce Dowell, Jonathan D. Gough, Jonah Kanner, Kenneth Obenberger, Peter Shawhan, John H. Simonetti , Gregory B. Taylor , Jr-Wei Tsai
2016-01-01
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg(2) sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.
NASA Astrophysics Data System (ADS)
Yancey, Cregg C.; Bear, Brandon E.; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H.; -Wei Tsai, Gregory B. Taylor, Jr.
2015-10-01
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg2 sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.
An Adaptive Flow Solver for Air-Borne Vehicles Undergoing Time-Dependent Motions/Deformations
NASA Technical Reports Server (NTRS)
Singh, Jatinder; Taylor, Stephen
1997-01-01
This report describes a concurrent Euler flow solver for flows around complex 3-D bodies. The solver is based on a cell-centered finite volume methodology on 3-D unstructured tetrahedral grids. In this algorithm, spatial discretization for the inviscid convective term is accomplished using an upwind scheme. A localized reconstruction is done for flow variables which is second order accurate. Evolution in time is accomplished using an explicit three-stage Runge-Kutta method which has second order temporal accuracy. This is adapted for concurrent execution using another proven methodology based on concurrent graph abstraction. This solver operates on heterogeneous network architectures. These architectures may include a broad variety of UNIX workstations and PCs running Windows NT, symmetric multiprocessors and distributed-memory multi-computers. The unstructured grid is generated using commercial grid generation tools. The grid is automatically partitioned using a concurrent algorithm based on heat diffusion. This results in memory requirements that are inversely proportional to the number of processors. The solver uses automatic granularity control and resource management techniques both to balance load and communication requirements, and deal with differing memory constraints. These ideas are again based on heat diffusion. Results are subsequently combined for visualization and analysis using commercial CFD tools. Flow simulation results are demonstrated for a constant section wing at subsonic, transonic, and a supersonic case. These results are compared with experimental data and numerical results of other researchers. Performance results are under way for a variety of network topologies.
Estimating interevent time distributions from finite observation periods in communication networks
NASA Astrophysics Data System (ADS)
Kivelä, Mikko; Porter, Mason A.
2015-11-01
A diverse variety of processes—including recurrent disease episodes, neuron firing, and communication patterns among humans—can be described using interevent time (IET) distributions. Many such processes are ongoing, although event sequences are only available during a finite observation window. Because the observation time window is more likely to begin or end during long IETs than during short ones, the analysis of such data is susceptible to a bias induced by the finite observation period. In this paper, we illustrate how this length bias is born and how it can be corrected without assuming any particular shape for the IET distribution. To do this, we model event sequences using stationary renewal processes, and we formulate simple heuristics for determining the severity of the bias. To illustrate our results, we focus on the example of empirical communication networks, which are temporal networks that are constructed from communication events. The IET distributions of such systems guide efforts to build models of human behavior, and the variance of IETs is very important for estimating the spreading rate of information in networks of temporal interactions. We analyze several well-known data sets from the literature, and we find that the resulting bias can lead to systematic underestimates of the variance in the IET distributions and that correcting for the bias can lead to qualitatively different results for the tails of the IET distributions.
Cui, Zhuang; Wang, Qian; Gao, Yayue; Wang, Jing; Wang, Mengyang; Teng, Pengfei; Guan, Yuguang; Zhou, Jian; Li, Tianfu; Luan, Guoming; Li, Liang
2017-01-01
The arrival of sound signals in the auditory cortex (AC) triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC) and extrinsic functional connectivity (eFC) of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices). Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.
McCoy, Jessica A; Parrott, Benjamin B; Rainwater, Thomas R; Wilkinson, Phillip M; Guillette, Louis J
2015-10-01
Despite the widespread occurrence of environmental sex determination (ESD) among vertebrates, our knowledge of the temporal dynamics by which environmental factors act on this process remains limited. In many reptiles, incubation temperature determines sex during a discrete developmental window just prior to and coincident with the differentiation of the gonads. Yet, there is substantial variation in sex ratios among different clutches of eggs incubated at identical temperatures during this period. Here, we test the hypothesis that temperatures experienced prior to the reported thermosensitive period for alligators (Alligator mississippiensis) can impact how the sex determination system responds to thermal cues later in development. Temperature shift experiments on eggs collected from the field within 24 h of oviposition were employed to decouple various maternal influences from thermal effects, and results demonstrate a previously undefined window of thermosensitivity occurring by stage 15 of embryonic development, six stages earlier than previously reported. We also examine the intrasexual expression of several male- and female-biased genes and show that while male-biased genes display no intrasexual differences, ovarian CYP19A1 (aromatase) transcript abundance differs by approximately twofold depending on thermal exposures experienced at early stages of embryonic development. These findings expand our understanding of the ESD in the alligator and provide the rationale for reevaluation of the temporal dynamics of sex determination in other crocodilians. © 2015 Society for Reproduction and Fertility.
Deconvolution improves the accuracy and depth sensitivity of time-resolved measurements
NASA Astrophysics Data System (ADS)
Diop, Mamadou; St. Lawrence, Keith
2013-03-01
Time-resolved (TR) techniques have the potential to distinguish early- from late-arriving photons. Since light travelling through superficial tissue is detected earlier than photons that penetrate the deeper layers, time-windowing can in principle be used to improve the depth sensitivity of TR measurements. However, TR measurements also contain instrument contributions - referred to as the instrument-response-function (IRF) - which cause temporal broadening of the measured temporal-point-spread-function (TPSF). In this report, we investigate the influence of the IRF on pathlength-resolved absorption changes (Δμa) retrieved from TR measurements using the microscopic Beer-Lambert law (MBLL). TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved to recover the distribution of time-of-flights (DTOFs) of the detected photons. The microscopic Beer-Lambert law was applied to early and late time-windows of the TPSFs and DTOFs to access the effects of the IRF on pathlength-resolved Δμa. The analysis showed that the late part of the TPSFs contains substantial contributions from early-arriving photons, due to the smearing effects of the IRF, which reduced its sensitivity to absorption changes occurring in deep layers. We also demonstrated that the effects of the IRF can be efficiently eliminated by applying a robust deconvolution technique, thereby improving the accuracy and sensitivity of TR measurements to deep-tissue absorption changes.
UNDERSTANDING ECOSYSTEM RESPONSE TO OZONE STRESS
Ecological risk assessment of ozone impact requires consideration of many factors that, perhaps, are not of concern in human health risk assessment. The episodic nature of ozone exposure, functional complexity of species, and broad spatial and temporal scales characteristic of n...
DEVELOPMENT OF ECOLOGICAL TOOLS FOR CONTAMINATED SEDIMENTS
Contaminated sediments are of interest to a broad group of programs in the agency. OERR and the Regions are interested in monitoring contaminated sediments to characterize/assess existing conditions, determine remediation alternatives, track spatial and temporal changes, and dete...
McQuarrie, Nadine; Tobgay, Tobgay; Long, Sean P.; Reiners, Peter W.; Cosca, Michael A.
2014-01-01
We link exhumational variability in space and time to the evolving geometry of the Himalayan fold–thrust belt in western Bhutan. By combining new and published geochronologic and thermochronologic data we document the burial age, peak temperatures and complete cooling history from 20 Ma to the present over an across-strike distance of ∼125 km. These integrated cooling curves highlight windows of fast exhumation that vary spatially and temporally. We propose that pulses of fast exhumation are a result of structures that facilitate the vertical motion of material, illustrated in sequentially-restored cross sections. Due to a range of permissible geometries at depth, we explore and evaluate the impact of geometry on kinematics and rates of deformation. The linked cooling history and cross sections provide estimates of both magnitude and timing of thrust sheet displacement and highlight temporal variability in potential shortening rates. Structural and chronologic data illustrate a general north to south progression of Himalayan deformation, with emplacement of the Main Central thrust (MCT), Paro thrust and Shumar thrust by 12 to no later than 9 Ma. Two different geometries and kinematic scenarios for the Lesser Himalayan duplex are proposed. A north to south propagating duplex system requires that the southern portion of that system, south of the MCT, deformed and cooled by 9 Ma, leaving only the southernmost thrust sheets, including the Main Boundary and Main Frontal thrusts, to deform between 9 and 0 Ma. This limited post 9 Ma shortening would necessitate a marked slowdown in convergence accommodated on the Main Himalayan thrust. A two-tiered duplex system, which allows for the Paro window duplex and the southern Baxa duplex to form simultaneously, permits duplex formation and accompanying exhumation until 6 Ma. Limited cooling from ∼200 °C to the surface post 6 Ma suggests either a decrease in shortening rates from 6 to 0 Ma or that duplex formation and exhumation are temporally decoupled. Our combined cooling curves highlight that the youngest cooling ages may not mark the fastest thrusting rates or the window of fastest exhumation. Instead, temporal variations in exhumation are best viewed through identifying transients in exhumation rate. We suggest that the strongest control on exhumation magnitude and variability is fold–thrust belt geometry, particularly the locations and magnitudes of footwall ramps, which can change over 10ʼs of km distance. Balanced cross sections predict the location and magnitude of these ramps and how they vary in space and time, providing an untapped potential for testing permissible cross-section geometries and kinematics against measured cooling histories.
Evaluation of Aged Garlic Extract Neuroprotective Effect in a Focal Model of Cerebral Ischemia
NASA Astrophysics Data System (ADS)
Aguilera, Penélope; Maldonado, Perla D.; Ortiz-Plata, Alma; Barrera, Diana; Chánez-Cárdenas, María Elena
2008-02-01
The oxidant species generated in cerebral ischemia have been implicated as important mediators of neuronal injury through damage to lipids, DNA, and proteins. Since ischemia as well as reperfusion insults generate oxidative stress, the administration of antioxidants may limit oxidative damage and ameliorate disease progression. The present work shows the transitory neuroprotective effect of the aged garlic extract (AGE) administration (a proposed antioxidant compound) in a middle cerebral artery occlusion (MCAO) model in rats and established its therapeutic window. To determine the optimal time of administration, animal received AGE (1.2 mL/kg) intraperitoneally 30 min before onset of reperfusion (-0.5 R), at the beginning of reperfusion (0R), or 1 h after onset of reperfusion (1R). Additional doses were administrated after 1, 2, or 3 h after onset of reperfusion. To establish the therapeutic window of AGE, the infarct area was determined for each treatment after different times of reperfusion. Results show that the administration of AGE at the onset of reperfusion reduced the infarct area by 70% (evaluated after 2 h reperfusion). The therapeutic window of AGE was determined. Repeated doses did not extend the temporal window of protection. A significant reduction in the nitrotyrosine level was observed in the brain tissue subjected to MCAO after AGE treatment at the onset of reperfusion. Data in the present work show that AGE exerts a transitory neuroprotective effect in response to ischemia/reperfusion-induced neuronal injury.
Visual awareness suppression by pre-stimulus brain stimulation; a neural effect.
Jacobs, Christianne; Goebel, Rainer; Sack, Alexander T
2012-01-02
Transcranial magnetic stimulation (TMS) has established the functional relevance of early visual cortex (EVC) for visual awareness with great temporal specificity non-invasively in conscious human volunteers. Many studies have found a suppressive effect when TMS was applied over EVC 80-100 ms after the onset of the visual stimulus (post-stimulus TMS time window). Yet, few studies found task performance to also suffer when TMS was applied even before visual stimulus presentation (pre-stimulus TMS time window). This pre-stimulus TMS effect, however, remains controversially debated and its origin had mainly been ascribed to TMS-induced eye-blinking artifacts. Here, we applied chronometric TMS over EVC during the execution of a visual discrimination task, covering an exhaustive range of visual stimulus-locked TMS time windows ranging from -80 pre-stimulus to 300 ms post-stimulus onset. Electrooculographical (EoG) recordings, sham TMS stimulation, and vertex TMS stimulation controlled for different types of non-neural TMS effects. Our findings clearly reveal TMS-induced masking effects for both pre- and post-stimulus time windows, and for both objective visual discrimination performance and subjective visibility. Importantly, all effects proved to be still present after post hoc removal of eye blink trials, suggesting a neural origin for the pre-stimulus TMS suppression effect on visual awareness. We speculate based on our data that TMS exerts its pre-stimulus effect via generation of a neural state which interacts with subsequent visual input. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojeda-Gonzalez, A.; Prestes, A.; Klausner, V.
Spatio-temporal entropy (STE) analysis is used as an alternative mathematical tool to identify possible magnetic cloud (MC) candidates. We analyze Interplanetary Magnetic Field (IMF) data using a time interval of only 10 days. We select a convenient data interval of 2500 records moving forward by 200 record steps until the end of the time series. For every data segment, the STE is calculated at each step. During an MC event, the STE reaches values close to zero. This extremely low value of STE is due to MC structure features. However, not all of the magnetic components in MCs have STEmore » values close to zero at the same time. For this reason, we create a standardization index (the so-called Interplanetary Entropy, IE, index). This index is a worthwhile effort to develop new tools to help diagnose ICME structures. The IE was calculated using a time window of one year (1999), and it has a success rate of 70% over other identifiers of MCs. The unsuccessful cases (30%) are caused by small and weak MCs. The results show that the IE methodology identified 9 of 13 MCs, and emitted nine false alarm cases. In 1999, a total of 788 windows of 2500 values existed, meaning that the percentage of false alarms was 1.14%, which can be considered a good result. In addition, four time windows, each of 10 days, are studied, where the IE method was effective in finding MC candidates. As a novel result, two new MCs are identified in these time windows.« less
Quantifying drivers of wild pig movement across multiple spatial and temporal scales.
Kay, Shannon L; Fischer, Justin W; Monaghan, Andrew J; Beasley, James C; Boughton, Raoul; Campbell, Tyler A; Cooper, Susan M; Ditchkoff, Stephen S; Hartley, Steve B; Kilgo, John C; Wisely, Samantha M; Wyckoff, A Christy; VerCauteren, Kurt C; Pepin, Kim M
2017-01-01
The movement behavior of an animal is determined by extrinsic and intrinsic factors that operate at multiple spatio-temporal scales, yet much of our knowledge of animal movement comes from studies that examine only one or two scales concurrently. Understanding the drivers of animal movement across multiple scales is crucial for understanding the fundamentals of movement ecology, predicting changes in distribution, describing disease dynamics, and identifying efficient methods of wildlife conservation and management. We obtained over 400,000 GPS locations of wild pigs from 13 different studies spanning six states in southern U.S.A., and quantified movement rates and home range size within a single analytical framework. We used a generalized additive mixed model framework to quantify the effects of five broad predictor categories on movement: individual-level attributes, geographic factors, landscape attributes, meteorological conditions, and temporal variables. We examined effects of predictors across three temporal scales: daily, monthly, and using all data during the study period. We considered both local environmental factors such as daily weather data and distance to various resources on the landscape, as well as factors acting at a broader spatial scale such as ecoregion and season. We found meteorological variables (temperature and pressure), landscape features (distance to water sources), a broad-scale geographic factor (ecoregion), and individual-level characteristics (sex-age class), drove wild pig movement across all scales, but both the magnitude and shape of covariate relationships to movement differed across temporal scales. The analytical framework we present can be used to assess movement patterns arising from multiple data sources for a range of species while accounting for spatio-temporal correlations. Our analyses show the magnitude by which reaction norms can change based on the temporal scale of response data, illustrating the importance of appropriately defining temporal scales of both the movement response and covariates depending on the intended implications of research (e.g., predicting effects of movement due to climate change versus planning local-scale management). We argue that consideration of multiple spatial scales within the same framework (rather than comparing across separate studies post-hoc ) gives a more accurate quantification of cross-scale spatial effects by appropriately accounting for error correlation.
Uncertainty visualisation in the Model Web
NASA Astrophysics Data System (ADS)
Gerharz, L. E.; Autermann, C.; Hopmann, H.; Stasch, C.; Pebesma, E.
2012-04-01
Visualisation of geospatial data as maps is a common way to communicate spatially distributed information. If temporal and furthermore uncertainty information are included in the data, efficient visualisation methods are required. For uncertain spatial and spatio-temporal data, numerous visualisation methods have been developed and proposed, but only few tools for visualisation of data in a standardised way exist. Furthermore, usually they are realised as thick clients, and lack functionality of handling data coming from web services as it is envisaged in the Model Web. We present an interactive web tool for visualisation of uncertain spatio-temporal data developed in the UncertWeb project. The client is based on the OpenLayers JavaScript library. OpenLayers provides standard map windows and navigation tools, i.e. pan, zoom in/out, to allow interactive control for the user. Further interactive methods are implemented using jStat, a JavaScript library for statistics plots developed in UncertWeb, and flot. To integrate the uncertainty information into existing standards for geospatial data, the Uncertainty Markup Language (UncertML) was applied in combination with OGC Observations&Measurements 2.0 and JavaScript Object Notation (JSON) encodings for vector and NetCDF for raster data. The client offers methods to visualise uncertain vector and raster data with temporal information. Uncertainty information considered for the tool are probabilistic and quantified attribute uncertainties which can be provided as realisations or samples, full probability distributions functions and statistics. Visualisation is supported for uncertain continuous and categorical data. In the client, the visualisation is realised using a combination of different methods. Based on previously conducted usability studies, a differentiation between expert (in statistics or mapping) and non-expert users has been indicated as useful. Therefore, two different modes are realised together in the tool: (i) adjacent maps showing data and uncertainty separately, and (ii) multidimensional mapping providing different visualisation methods in combination to explore the spatial, temporal and uncertainty distribution of the data. Adjacent maps allow a simpler visualisation by separating value and uncertainty maps for non-experts and a first overview. The multidimensional approach allows a more complex exploration of the data for experts by browsing through the different dimensions. It offers the visualisation of maps, statistic plots and time series in different windows and sliders to interactively move through time, space and uncertainty (thresholds).
COMPLEXITIES IN UNDERSTANDING ECOSYSTEM RESPONSE TO OZONE
Ecological risk assessment of 03 impact requires consideration of many factors that, perhaps are not of concern in human health risk assessments. The episodic nature of 03 exposure, functional complexity of species assemblages, and the broad spatial and temporal scales character...
WATERSHED AND INSTREAM MODELING OF SEDIMENT FATE AND TRANSPORT
To effectively manage watersheds, the assessment of watershed ecological response to physicochemical stressors such as sediments over broad spatial and temporal scales is needed. Assessments at this level of complexity requires the development of sediment transport and fate model...
The impact of water loading on postglacial decay times in Hudson Bay
NASA Astrophysics Data System (ADS)
Han, Holly Kyeore; Gomez, Natalya
2018-05-01
Ongoing glacial isostatic adjustment (GIA) due to surface loading (ice and water) variations during the last glacial cycle has been contributing to sea-level changes globally throughout the Holocene, especially in regions like Canada that were heavily glaciated during the Last Glacial Maximum (LGM). The spatial and temporal distribution of GIA, as manifested in relative sea-level (RSL) change, are sensitive to the ice history and the rheological structure of the solid Earth, both of which are uncertain. It has been shown that RSL curves near the center of previously glaciated regions with no ongoing surface loading follow an exponential-like form, with the postglacial decay times associated with that form having a weak sensitivity to the details of the ice loading history. Postglacial decay time estimates thus provide a powerful datum for constraining the Earth's viscous structure and improving GIA predictions. We explore spatial patterns of postglacial decay time predictions in Hudson Bay by decomposing numerically modeled RSL changes into contributions from water and ice loading effects, and computing their relative impact on the decay times. We demonstrate that ice loading can contribute a strong geographic trend on the decay time estimates if the time window used to compute decay times includes periods that are temporally close to (i.e. contemporaneous with, or soon after) periods of active loading. This variability can be avoided by choosing a suitable starting point for the decay time window. However, more surprisingly, we show that across any adopted time window, water loading effects associated with inundation into, and postglacial flux out of, Hudson Bay and James Bay will impart significant geographic variability onto decay time estimates. We emphasize this issue by considering both maps of predicted decay times across the region and site-specific estimates, and we conclude that variability in observed decay times (whether based on existing or future data sets) may reflect this water loading signal.
NASA Astrophysics Data System (ADS)
Horton, Pascal; Jaboyedoff, Michel; Obled, Charles
2018-01-01
Analogue methods provide a statistical precipitation prediction based on synoptic predictors supplied by general circulation models or numerical weather prediction models. The method samples a selection of days in the archives that are similar to the target day to be predicted, and consider their set of corresponding observed precipitation (the predictand) as the conditional distribution for the target day. The relationship between the predictors and predictands relies on some parameters that characterize how and where the similarity between two atmospheric situations is defined. This relationship is usually established by a semi-automatic sequential procedure that has strong limitations: (i) it cannot automatically choose the pressure levels and temporal windows (hour of the day) for a given meteorological variable, (ii) it cannot handle dependencies between parameters, and (iii) it cannot easily handle new degrees of freedom. In this work, a global optimization approach relying on genetic algorithms could optimize all parameters jointly and automatically. The global optimization was applied to some variants of the analogue method for the Rhône catchment in the Swiss Alps. The performance scores increased compared to reference methods, especially for days with high precipitation totals. The resulting parameters were found to be relevant and coherent between the different subregions of the catchment. Moreover, they were obtained automatically and objectively, which reduces the effort that needs to be invested in exploration attempts when adapting the method to a new region or for a new predictand. For example, it obviates the need to assess a large number of combinations of pressure levels and temporal windows of predictor variables that were manually selected beforehand. The optimization could also take into account parameter inter-dependencies. In addition, the approach allowed for new degrees of freedom, such as a possible weighting between pressure levels, and non-overlapping spatial windows.
Emergence and temporal structure of Lead-Lag correlations in collective stock dynamics
NASA Astrophysics Data System (ADS)
Xia, Lisi; You, Daming; Jiang, Xin; Chen, Wei
2018-07-01
Understanding the correlations among stock returns is crucial for reducing the risk of investment in stock markets. As an important stylized correlation, lead-lag effect plays a major role in analyzing market volatility and deriving trading strategies. Here, we explore historical lead-lag relationships among stocks in the Chinese stock market. Strongly positive lagged correlations can be empirically observed. We demonstrate this lead-lag phenomenon is not constant but temporally emerges during certain periods. By introducing moving time window method, we transform the lead-lag dynamics into a series of asymmetric lagged correlation matrices. Dynamic lead-lag structures are uncovered in the form of temporal network structures. We find that the size of lead-lag group experienced a rapid drop during the year 2012, which signaled a re-balance of the stock market. On the daily timescale, we find the lead-lag structure exhibits several persistent patterns, which can be characterized by the Jaccard matrix. We show significant market events can be distinguished in the Jaccard matrix diagram. Taken together, we study an integration of all the temporal networks and identify several leading stock sectors, which are in accordance with the common Chinese economic fundamentals.
Temporally-aware algorithms for the classification of anuran sounds.
Luque, Amalia; Romero-Lemos, Javier; Carrasco, Alejandro; Gonzalez-Abril, Luis
2018-01-01
Several authors have shown that the sounds of anurans can be used as an indicator of climate change. Hence, the recording, storage and further processing of a huge number of anuran sounds, distributed over time and space, are required in order to obtain this indicator. Furthermore, it is desirable to have algorithms and tools for the automatic classification of the different classes of sounds. In this paper, six classification methods are proposed, all based on the data-mining domain, which strive to take advantage of the temporal character of the sounds. The definition and comparison of these classification methods is undertaken using several approaches. The main conclusions of this paper are that: (i) the sliding window method attained the best results in the experiments presented, and even outperformed the hidden Markov models usually employed in similar applications; (ii) noteworthy overall classification performance has been obtained, which is an especially striking result considering that the sounds analysed were affected by a highly noisy background; (iii) the instance selection for the determination of the sounds in the training dataset offers better results than cross-validation techniques; and (iv) the temporally-aware classifiers have revealed that they can obtain better performance than their non-temporally-aware counterparts.
Temporally-aware algorithms for the classification of anuran sounds
Gonzalez-Abril, Luis
2018-01-01
Several authors have shown that the sounds of anurans can be used as an indicator of climate change. Hence, the recording, storage and further processing of a huge number of anuran sounds, distributed over time and space, are required in order to obtain this indicator. Furthermore, it is desirable to have algorithms and tools for the automatic classification of the different classes of sounds. In this paper, six classification methods are proposed, all based on the data-mining domain, which strive to take advantage of the temporal character of the sounds. The definition and comparison of these classification methods is undertaken using several approaches. The main conclusions of this paper are that: (i) the sliding window method attained the best results in the experiments presented, and even outperformed the hidden Markov models usually employed in similar applications; (ii) noteworthy overall classification performance has been obtained, which is an especially striking result considering that the sounds analysed were affected by a highly noisy background; (iii) the instance selection for the determination of the sounds in the training dataset offers better results than cross-validation techniques; and (iv) the temporally-aware classifiers have revealed that they can obtain better performance than their non-temporally-aware counterparts. PMID:29740517
Sehi, M; Flanagan, J G
2004-01-01
Aim: To examine the influence of image alignment on the repeatability of blood flow measurements of the optic nerve. Methods: 10 normal subjects were examined. Heidelberg retina tomograph imaging was performed to establish best location and focus for the temporal neuroretinal rim. Two high quality Heidelberg retina flowmeter (HRF) images were acquired for three methods of alignment: central, nasal, and temporal. A 10×10 pixel measurement window was selected and exactly reproduced on all images. The interquartile pixel values were used to calculate capillary flow. ANOVA, intraclass correlation coefficients (ICC) and the coefficient of repeatability (CoR) were used for analysis. Results: There was no difference between methods (p = 0.47) or between visits (p = 0.51). The ICCs were 0.83 for the central, 0.34 for the nasal, and 0.42 for the temporal alignment. The CoR was 31.5 for central (mean effect 235.1), 234.6 for nasal, and 256.7 for temporal alignment. Conclusion: Central alignment was the most repeatable method for the measurement of neuroretinal rim capillary blood flow using the HRF. PMID:14736775
Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation
Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; ...
2016-02-10
Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less
Temporal identity in axonal target layer recognition.
Petrovic, Milan; Hummel, Thomas
2008-12-11
The segregation of axon and dendrite projections into distinct synaptic layers is a fundamental principle of nervous system organization and the structural basis for information processing in the brain. Layer-specific recognition molecules that allow projecting neurons to stabilize transient contacts and initiate synaptogenesis have been identified. However, most of the neuronal cell-surface molecules critical for layer organization are expressed broadly in the developing nervous system, raising the question of how these so-called permissive adhesion molecules support synaptic specificity. Here we show that the temporal expression dynamics of the zinc-finger protein sequoia is the major determinant of Drosophila photoreceptor connectivity into distinct synaptic layers. Neighbouring R8 and R7 photoreceptors show consecutive peaks of elevated sequoia expression, which correspond to their sequential target-layer innervation. Loss of sequoia in R7 leads to a projection switch into the R8 recipient layer, whereas a prolonged expression in R8 induces a redirection of their axons into the R7 layer. The sequoia-induced axon targeting is mediated through the ubiquitously expressed Cadherin-N cell adhesion molecule. Our data support a model in which recognition specificity during synaptic layer formation is generated through a temporally restricted axonal competence to respond to broadly expressed adhesion molecules. Because developing neurons innervating the same target area often project in a distinct, birth-order-dependent sequence, temporal identity seems to contain crucial information in generating not only cell type diversity during neuronal division but also connection diversity of projecting neurons.
Acoustic Observation of the Time Dependence of the Roughness of Sandy Seafloors
2009-11-25
relations between acoustic and roughness temporal correlations are developed and applied. Manuscript received April 23, 2007; revised June 04. 2008 and...Fourier transform of the relief function as follows: (F(K2, t2)F*(Klt h)) = W(KU tu t2)6{Ki - K2) . (6) The presence of the Dirac delta function is only...appropriate if /(R, t) is stationary with infinite extent in the spatial coordi- nates. As a result of the windowing assumed here, the delta func
Fyrdahl, Alexander; Vargas Paris, Roberto; Nyrén, Sven; Holst, Karen; Ugander, Martin; Lindholm, Peter; Sigfridsson, Andreas
2018-03-14
To evaluate the feasibility of an improved motion and flow robust methodology for imaging the pulmonary vasculature using non-contrast-enhanced, free-breathing, golden-angle radial MRI. Healthy volunteers (n = 10, age 46 ± 11 years, 50% female) and patients (n = 2, ages 27 and 84, both female) were imaged at 1.5 T using a Cartesian and golden-angle radial 2D balanced SSFP pulse sequence. The acquisitions were made under free breathing without contrast agent enhancement. The radial acquisitions were reconstructed at 3 temporal footprints. All series were scored from 1 to 5 for perceived diagnostic quality, artifact level, and vessel sharpness in multiple anatomical locations. In addition, vessel sharpness and blood-to-blood clot contrast were measured. Quantitative measurements showed higher vessel sharpness for golden-angle radial (n = 76, 0.79 ± 0.11 versus 0.71 ± 0.16, p < .05). Blood-to-blood clot contrast was found to be 23% higher in golden-angle radial in the 2 patients. At comparable temporal footprints, golden-angle radial was scored higher for diagnostic quality (mean ± SD, 2.3 ± 0.7 versus 2.2 ± 0.6, p < .01) and vessel sharpness (2.2 ± 0.8 versus 2.1 ± 0.5, p < .01), whereas the artifact level did not differ (3.0 ± 0.9 versus 3.0 ± 1.0, p = .80). The ability to retrospectively choose a temporal resolution and perform sliding-window reconstructions was demonstrated in patients. In pulmonary artery imaging, the motion and flow robustness of a radial trajectory does both improve image quality over Cartesian trajectory in healthy volunteers, and allows for flexible selection of temporal footprints and the ability to perform real-time sliding window reconstructions, which could potentially provide further diagnostic insight. © 2018 International Society for Magnetic Resonance in Medicine.
Streak camera based SLR receiver for two color atmospheric measurements
NASA Technical Reports Server (NTRS)
Varghese, Thomas K.; Clarke, Christopher; Oldham, Thomas; Selden, Michael
1993-01-01
To realize accurate two-color differential measurements, an image digitizing system with variable spatial resolution was designed, built, and integrated to a photon-counting picosecond streak camera, yielding a temporal scan resolution better than 300 femtosecond/pixel. The streak camera is configured to operate with 3 spatial channels; two of these support green (532 nm) and uv (355 nm) while the third accommodates reference pulses (764 nm) for real-time calibration. Critical parameters affecting differential timing accuracy such as pulse width and shape, number of received photons, streak camera/imaging system nonlinearities, dynamic range, and noise characteristics were investigated to optimize the system for accurate differential delay measurements. The streak camera output image consists of three image fields, each field is 1024 pixels along the time axis and 16 pixels across the spatial axis. Each of the image fields may be independently positioned across the spatial axis. Two of the image fields are used for the two wavelengths used in the experiment; the third window measures the temporal separation of a pair of diode laser pulses which verify the streak camera sweep speed for each data frame. The sum of the 16 pixel intensities across each of the 1024 temporal positions for the three data windows is used to extract the three waveforms. The waveform data is processed using an iterative three-point running average filter (10 to 30 iterations are used) to remove high-frequency structure. The pulse pair separations are determined using the half-max and centroid type analysis. Rigorous experimental verification has demonstrated that this simplified process provides the best measurement accuracy. To calibrate the receiver system sweep, two laser pulses with precisely known temporal separation are scanned along the full length of the sweep axis. The experimental measurements are then modeled using polynomial regression to obtain a best fit to the data. Data aggregation using normal point approach has provided accurate data fitting techniques and is found to be much more convenient than using the full rate single shot data. The systematic errors from this model have been found to be less than 3 ps for normal points.
Experiencing simultanagnosia through windowed viewing of complex social scenes.
Dalrymple, Kirsten A; Birmingham, Elina; Bischof, Walter F; Barton, Jason J S; Kingstone, Alan
2011-01-07
Simultanagnosia is a disorder of visual attention, defined as an inability to see more than one object at once. It has been conceived as being due to a constriction of the visual "window" of attention, a metaphor that we examine in the present article. A simultanagnosic patient (SL) and two non-simultanagnosic control patients (KC and ES) described social scenes while their eye movements were monitored. These data were compared to a group of healthy subjects who described the same scenes under the same conditions as the patients, or through an aperture that restricted their vision to a small portion of the scene. Experiment 1 demonstrated that SL showed unusually low proportions of fixations to the eyes in social scenes, which contrasted with all other participants who demonstrated the standard preferential bias toward eyes. Experiments 2 and 3 revealed that when healthy participants viewed scenes through a window that was contingent on where they looked (Experiment 2) or where they moved a computer mouse (Experiment 3), their behavior closely mirrored that of patient SL. These findings suggest that a constricted window of visual processing has important consequences for how simultanagnosic patients explore their world. Our paradigm's capacity to mimic simultanagnosic behaviors while viewing complex scenes implies that it may be a valid way of modeling simultanagnosia in healthy individuals, providing a useful tool for future research. More broadly, our results support the thesis that people fixate the eyes in social scenes because they are informative to the meaning of the scene. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zielke, O.; Arrowsmith, R. J.
2005-12-01
The nonlinear dynamics of fault behavior are dominated by complex interactions among the multiple processes controlling the system. For example, temporal and spatial variations in pore pressure, healing effects, and stress transfer cause significant heterogeneities in fault properties and the stress-field at the sub-fault level. Numerical and laboratory fault models show that the interaction of large systems of fault elements causes the entire system to develop into a state of self-organized criticality. Once in this state, small perturbations of the system may result in chain reactions (i.e., earthquakes) which can affect any number of fault segments. This sensitivity to small perturbations is strong evidence for chaotic fault behavior, which implies that exact event prediction is not possible. However, earthquake prediction with a useful accuracy is nevertheless possible. Studies of other natural chaotic systems have shown that they may enter states of metastability, in which the system's behavior is predictable. Applying this concept to earthquake faults, these windows of metastable behavior should be characterized by periodic earthquake recurrence. The observed periodicity of the Parkfield, CA (M= 6) events may resemble such a window of metastability. I am statistically analyzing numerically generated seismic records to study these phases of periodic behavior. In this preliminary study, seismic records were generated using a model introduced by Nakanishi [Phys. Rev. A, 43, 6613-6621, 1991]. It consists of a one-dimensional chain of blocks (interconnected by springs) with a relaxation function that mimics velocity-weakened frictional behavior. The earthquakes occurring in this model show generally a power-law frequency-size distribution. However, for large events the distribution has a shoulder where the frequency of events is higher than expected from the power law. I have analyzed time-series of single block motions within the system. These time-series include noticeable periodicity during certain intervals in an otherwise aperiodic record. The observed periodic signal is not equally distributed over the range of offsets but shows a multi-modal distribution with increased periodicity for the smallest events and for large events that show a specific offset. These large events also form a shoulder in the frequency-size distribution. Apparently, the model exhibits characteristic earthquakes (defined by similar coseismic slip) that occur more frequently than expected from a power law distribution, and also are significantly more periodic. The wavelength of the periodic signal generally equals the minimum loading time, which is related to the loading velocity and the amount of coseismic slip (i.e., stress drop). No significant event occurs between the characteristic events as long as the system stays in a window of periodic behavior. Within the windows of periodic behavior, earthquake prediction is straightforward. Therefore, recognition of these windows not only in synthetic data but also in real seismic records, may improve the intra-window forecast of earthquakes. Further studies will attempt to determine the characteristics of onset, duration, and end of these windows of periodic earthquake recurrence. Only the motion of a single block within a bigger system was analyzed so far. Going from a zero dimensional scenario to a two dimensional case where the offsets not only of a single block but the displacement patterns caused by a certain event are analyzed will increase the verisimilitude of the detection of periodic earthquake recurrence within an otherwise chaotic seismic record.
Radiative Energy Budget Studies Using Observations from the Earth Radiation Budget Experiment (ERBE)
NASA Technical Reports Server (NTRS)
Ackerman, Steven A.; Frey, R.; Shie, M.; Olson, R.; Collimore, C.; Friedman, M.
1997-01-01
Our research activities under this NASA grant have focused on two broad topics associated with the Earth Radiation Budget Experiment (ERBE): (1) the role of clouds and the surface in modifying the radiative balance; and (2) the spatial and temporal variability of the earth's radiation budget. Each of these broad topics is discussed separately in the text that follows. The major points of the thesis are summarized in section 3 of this report. Other dissertation focuses on deriving the radiation budget over the TOGA COARE region.
Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying
2018-01-01
The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial heterogeneity under the three vegetation types. According to the temporal and spatial heterogeneity of the optimal values, the parameters of the BIOME-BGC model could be classified in order to adopt different parameter strategies in practical application. The conclusion could help to deeply understand the parameters and the optimal values of the ecological process models, and provide a way or reference for obtaining the reasonable values of parameters in models application.
Vatakis, Argiro; Maragos, Petros; Rodomagoulakis, Isidoros; Spence, Charles
2012-01-01
We investigated how the physical differences associated with the articulation of speech affect the temporal aspects of audiovisual speech perception. Video clips of consonants and vowels uttered by three different speakers were presented. The video clips were analyzed using an auditory-visual signal saliency model in order to compare signal saliency and behavioral data. Participants made temporal order judgments (TOJs) regarding which speech-stream (auditory or visual) had been presented first. The sensitivity of participants' TOJs and the point of subjective simultaneity (PSS) were analyzed as a function of the place, manner of articulation, and voicing for consonants, and the height/backness of the tongue and lip-roundedness for vowels. We expected that in the case of the place of articulation and roundedness, where the visual-speech signal is more salient, temporal perception of speech would be modulated by the visual-speech signal. No such effect was expected for the manner of articulation or height. The results demonstrate that for place and manner of articulation, participants' temporal percept was affected (although not always significantly) by highly-salient speech-signals with the visual-signals requiring smaller visual-leads at the PSS. This was not the case when height was evaluated. These findings suggest that in the case of audiovisual speech perception, a highly salient visual-speech signal may lead to higher probabilities regarding the identity of the auditory-signal that modulate the temporal window of multisensory integration of the speech-stimulus. PMID:23060756
TEMPORAL SELF-ORGANIZATION IN GALAXY FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cen, Renyue, E-mail: cen@astro.princeton.edu
We report on the discovery of a relation between the number of star formation (SF) peaks per unit time, ν{sub peak}, and the size of the temporal smoothing window function, Δt, used to define the peaks: ν{sub peak}∝Δt {sup 1} {sup –} {sup φ} (φ ∼ 1.618). This relation holds over the range of Δt = 10-1000 Myr that can be reliably computed here, using a large sample of galaxies obtained from a state-of-the-art cosmological hydrodynamic simulation. This means that the temporal distribution of SF peaks in galaxies as a population is fractal with a Hausdorff fractal dimension equal to φmore » – 1. This finding reveals, for the first time, that the superficially chaotic process of galaxy formation is underlined by temporal self-organization up to at least one gigayear. It is tempting to suggest that, given the known existence of spatial fractals (such as the power-law two-point function of galaxies), there is a joint spatio-temporal self-organization in galaxy formation. From an observational perspective, it will be urgent to devise diagnostics to probe the SF histories of galaxies with good temporal resolution to facilitate a test of this prediction. If confirmed, it would provide unambiguous evidence for a new picture of galaxy formation that is interaction driven, cooperative, and coherent in and between time and space. Unravelling its origin may hold the key to understanding galaxy formation.« less
ZEUS-2: a second generation submillimeter grating spectrometer for exploring distant galaxies
NASA Astrophysics Data System (ADS)
Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Irwin, Kent D.; Cho, Hsiao-Mei; Halpern, Mark
2010-07-01
ZEUS-2, the second generation (z)Redshift and Early Universe Spectrometer, like its predecessor is a moderate resolution (R~1000) long-slit, echelle grating spectrometer optimized for the detection of faint, broad lines from distant galaxies. It is designed for studying star-formation across cosmic time. ZEUS-2 employs three TES bolometer arrays (555 pixels total) to deliver simultaneous, multi-beam spectra in up to 4 submillimeter windows. The NIST Boulder-built arrays operate at ~100mK and are readout via SQUID multiplexers and the Multi-Channel Electronics from the University of British Columbia. The instrument is cooled via a pulse-tube cooler and two-stage ADR. Various filter configurations give ZEUS-2 access to 7 different telluric windows from 200 to 850 micron enabling the simultaneous mapping of lines from extended sources or the simultaneous detection of the 158 micron [CII] line and the [NII] 122 or 205 micron lines from z = 1-2 galaxies. ZEUS-2 is designed for use on the CSO, APEX and possibly JCMT.
Li, Ang; Li, Xiang; Yu, Xujiang; Li, Wei; Zhao, Ruyi; An, Xiao; Cui, Daxiang; Chen, Xiaoyuan; Li, Wanwan
2017-01-01
In this work, we report a successful synthesis of copper bismuth sulfide nanorods (NRs) with broad and strong photoabsorption ranging from ultraviolet (UV) to near-infrared (NIR) wavelengths, which can be used as a 1064 nm-laser-driven photothermal agent with the photothermal conversion efficiency of 40.7%, noticeably higher than most of the reported PTT agents working in NIR-II window. The as-prepared PEGylated Cu 3 BiS 3 NRs were used as photoacoustic imaging (PAI) and CT imaging agents due to their strong NIR absorption and large X-ray attenuation coefficient of bismuth. We are the first to demonstrate that a small quantity of PEGylated Cu 3 BiS 3 NRs in tumors can concentrate radiation energy and trigger mild PTT under NIR-II irradiation and thus, these particles could be used as a novel, synergistic thermoradiotheraputic agent that enhances the efficacy of radiotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Speed-of-light limitations in passive linear media
NASA Astrophysics Data System (ADS)
Welters, Aaron; Avniel, Yehuda; Johnson, Steven G.
2014-08-01
We prove that well-known speed-of-light restrictions on electromagnetic energy velocity can be extended to a new level of generality, encompassing even nonlocal chiral media in periodic geometries, while at the same time weakening the underlying assumptions to only passivity and linearity of the medium (either with a transparency window or with dissipation). As was also shown by other authors under more limiting assumptions, passivity alone is sufficient to guarantee causality and positivity of the energy density (with no thermodynamic assumptions). Our proof is general enough to include a very broad range of material properties, including anisotropy, bianisotropy (chirality), nonlocality, dispersion, periodicity, and even delta functions or similar generalized functions. We also show that the "dynamical energy density" used by some previous authors in dissipative media reduces to the standard Brillouin formula for dispersive energy density in a transparency window. The results in this paper are proved by exploiting deep results from linear-response theory, harmonic analysis, and functional analysis that had previously not been brought together in the context of electrodynamics.
Information content of IRIS spectra. [from Nimbus 4 satellite
NASA Technical Reports Server (NTRS)
Price, J. C.
1974-01-01
Spectra from the satellite instrument IRIS (infra red interferometer spectrometer) were examined to find the number of independent variables needed to describe these broadband high spectral resolution data. The radiated power in the atmospheric window from 771 to 981/cm was the first parameter chosen for fitting observed spectra. At succeeding levels of analysis the residual variability (observed spectrum - best fit spectrum) in an ensemble of observations was partioned into spectral eigenvectors. The eigenvector describing the largest fraction of this variability was examined for a strong spectral signature; the power in the corresponding spectral band was then used as the next fitting parameter. The measured power in nine spectral intervals, when inserted in the spectral fitting functions, was adequate to describe most spectra to within the noise level of IRIS. Considerations of relative signal strength and scales of atmospheric variability suggest a combination sounder (multichannel-broad field of view) scanner (window channel-small field of view) as an efficient observing instrument.
NASA Astrophysics Data System (ADS)
Hossain, Md. Nazmul; Alam, M. Shah; Mohsin, K. M.; Hasan, Dihan Md. Nuruddin
2011-08-01
A liquid crystal infiltrated spiral photonic crystal fiber (LCSPCF) is presented here for electrical tuning of two zero dispersion wavelengths (ZDWs) in the present communication window. The proposed LCSPCF shows tunability of the ZDWs from 1433 nm to 2136 nm due to the rotation of the infiltrated LC mesogen induced by the external electric field. Therefore, the ZDW can easily be shifted towards the available pump wavelength for effective supercontinuum generation (SCG) over a broad wavelength region. By tuning the bandwidth (BW) in between the two ZDWs the extension of the generated supercontinuum (SC) spectrum can also be electrically controlled. This will help the SCG in our desired band with optimum power budget. Moreover, the index guiding mechanism of the proposed soft glass LCSPCF shows improvement over the narrow operational bandwidth and the low nonlinearity of the band-gap guided silica LCPCF. Additionally, the solid core of the proposed LCSPCF is less lossy than the previously proposed liquid crystal core PCF.
War's enduring effects on the development of egalitarian motivations and in-group biases.
Bauer, Michal; Cassar, Alessandra; Chytilová, Julie; Henrich, Joseph
2014-01-01
In suggesting that new nations often coalesce in the decades following war, historians have posed an important psychological question: Does the experience of war generate an enduring elevation in people's egalitarian motivations toward their in-group? We administered social-choice tasks to more than 1,000 children and adults differentially affected by wars in the Republic of Georgia and Sierra Leone. We found that greater exposure to war created a lasting increase in people's egalitarian motivations toward their in-group, but not their out-groups, during a developmental window starting in middle childhood (around 7 years of age) and ending in early adulthood (around 20 years of age). Outside this window, war had no measurable impact on social motivations in young children and had only muted effects on the motivations of older adults. These "war effects" are broadly consistent with predictions from evolutionary approaches that emphasize the importance of group cooperation in defending against external threats, though they also highlight key areas in need of greater theoretical development.
NASA Astrophysics Data System (ADS)
Favaro, Silvia; Schuster, Ralf; Scharf, Andrea; Handy, Mark R.
2013-04-01
Neogene orogen-parallel extensional in the Tauern and Rechnitz Windows and eastward lateral extrusion of the Eastern Alps are manifested, respectively, by exhumation and cooling and by subsidence of pull-apart basins. These events overlap in time, giving rise to the question of their relationship. The Tauern Window exposes relics of the European continental margin (Subpenninic units) and Alpine Tethys Ocean (Penninic units) beneath units derived from the Adriatic microplate (Austroalpine nappes). In the eastern part of the Tauern Window, the Subpenninic and Penninic nappes are deformed by two domes (Sonnblick and Hochalm domes) and the intervening tight Mallnitz synform. Reddy et al. (1996) proposed that the Sonnblick dome cooled first based on a trend of decreasing Rb-Sr and Ar-Ar white mica and biotite ages from the northwestern part of the Sonnblick Dome to the southeastern part of the Hochalm dome. When combined with this existing dataset, new Rb/Sr biotite ages point to simultaneous cooling of the domes to below the closure temperature of this isotopic system. Rb-Sr muscovite ages decrease from 26-30 Ma in the northwest to 20-25 Ma in the southeast. Rb-Sr biotite ages young in the same direction from 20-23 Ma to 16-19 Ma. The biotite ages do not vary in a transect of the Mallnitz synform and are therefore inferred to post-date this structure. Apatite fission track data follow this same NW to SE trend. A SE increase in intensity of mylinitic shearing along strike of the Mallnitz synform is interpreted to be a manifestation of stretch faulting related to normal faulting along the central part of the Katschberg Shear Zone system at the eastern end of the Tauern Window (Scharf et al., submitted). We attribute the SE decrease of the biotite cooling ages to an increased component of tectonic unroofing towards the eastern margin of the Tauern Window. Three new Rb-Sr biotite ages in the range of 16-26 Ma from the lowermost Austroalpine units (Wechsel and Semmering nappes) immediately above the Rechnitz Window are also interpreted to reflect cooling during extensional exhumation. This age range overlaps with that of rapid subsidence and sedimentation in pull-apart basins of the Eastern Alps (17-12 Ma) and opening of the Pannonian Basin (21-15 Ma) behind the retreating Carpathian subduction orogen. This suggests that exhumation in the Rechnitz Window and lateral escape of the Eastern Alps were broadly coeval with both Adriatic indentation and Carpathian rollback subduction.
Reliability study on high power 638-nm triple emitter broad area laser diode
NASA Astrophysics Data System (ADS)
Yagi, T.; Kuramoto, K.; Kadoiwa, K.; Wakamatsu, R.; Miyashita, M.
2016-03-01
Reliabilities of the 638-nm triple emitter broad area laser diode (BA-LD) with the window-mirror structure were studied. Methodology to estimate mean time to failure (MTTF) due to catastrophic optical mirror degradation (COMD) in reasonable aging duration was newly proposed. Power at which the LD failed due to COMD (PCOMD) was measured for the aged LDs under the several aging conditions. It was revealed that the PCOMD was proportional to logarithm of aging duration, and MTTF due to COMD (MTTF(COMD)) could be estimated by using this relation. MTTF(COMD) estimated by the methodology with the aging duration of approximately 2,000 hours was consistent with that estimated by the long term aging. By using this methodology, the MTTF of the BA-LD was estimated exceeding 100,000 hours under the output of 2.5 W, duty cycles of 30% .
Automatic Multi-sensor Data Quality Checking and Event Detection for Environmental Sensing
NASA Astrophysics Data System (ADS)
LIU, Q.; Zhang, Y.; Zhao, Y.; Gao, D.; Gallaher, D. W.; Lv, Q.; Shang, L.
2017-12-01
With the advances in sensing technologies, large-scale environmental sensing infrastructures are pervasively deployed to continuously collect data for various research and application fields, such as air quality study and weather condition monitoring. In such infrastructures, many sensor nodes are distributed in a specific area and each individual sensor node is capable of measuring several parameters (e.g., humidity, temperature, and pressure), providing massive data for natural event detection and analysis. However, due to the dynamics of the ambient environment, sensor data can be contaminated by errors or noise. Thus, data quality is still a primary concern for scientists before drawing any reliable scientific conclusions. To help researchers identify potential data quality issues and detect meaningful natural events, this work proposes a novel algorithm to automatically identify and rank anomalous time windows from multiple sensor data streams. More specifically, (1) the algorithm adaptively learns the characteristics of normal evolving time series and (2) models the spatial-temporal relationship among multiple sensor nodes to infer the anomaly likelihood of a time series window for a particular parameter in a sensor node. Case studies using different data sets are presented and the experimental results demonstrate that the proposed algorithm can effectively identify anomalous time windows, which may resulted from data quality issues and natural events.
Shock initiation of nitromethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, C.S.; Holmes, N.C.
1993-12-31
The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. a broad, but strong emission has been observed in a spectral range between 350 and 700 nm from shocked nitromethane above 9 GPa. The temporal profile suggests that shocked nitromethane detonates through three characteristic periods, namely an induction period, a hock initiation period, and a thermal explosion period. This paper discusses temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15 GPa.
Industrial uses and applications of ionic liquids
NASA Astrophysics Data System (ADS)
Gutowski, Keith E.
2018-02-01
Ionic liquids are salts that melt at low temperatures (usually defined as less than 100 °C) and have a number of interesting properties that make them useful for industrial applications. Typical ionic liquid properties include high thermal stabilities, negligible vapor pressures, wide liquidus ranges, broad electrochemical windows, and unique solvation properties. Furthermore, the potential combinations of cations and anions provide nearly unlimited chemical tunability. This article will describe the diverse industrial uses of ionic liquids and how their unique properties are leveraged, with examples ranging from chemical processing to consumer packaged goods.
Wesolowski, Amy; Stresman, Gillian; Eagle, Nathan; Stevenson, Jennifer; Owaga, Chrispin; Marube, Elizabeth; Bousema, Teun; Drakeley, Christopher; Cox, Jonathan; Buckee, Caroline O.
2014-01-01
Human travel impacts the spread of infectious diseases across spatial and temporal scales, with broad implications for the biological and social sciences. Individual data on travel patterns have been difficult to obtain, particularly in low-income countries. Travel survey data provide detailed demographic information, but sample sizes are often small and travel histories are hard to validate. Mobile phone records can provide vast quantities of spatio-temporal travel data but vary in spatial resolution and explicitly do not include individual information in order to protect the privacy of subscribers. Here we compare and contrast both sources of data over the same time period in a rural area of Kenya. Although both data sets are able to quantify broad travel patterns and distinguish regional differences in travel, each provides different insights that can be combined to form a more detailed picture of travel in low-income settings to understand the spread of infectious diseases. PMID:25022440
Wesolowski, Amy; Stresman, Gillian; Eagle, Nathan; Stevenson, Jennifer; Owaga, Chrispin; Marube, Elizabeth; Bousema, Teun; Drakeley, Christopher; Cox, Jonathan; Buckee, Caroline O
2014-07-14
Human travel impacts the spread of infectious diseases across spatial and temporal scales, with broad implications for the biological and social sciences. Individual data on travel patterns have been difficult to obtain, particularly in low-income countries. Travel survey data provide detailed demographic information, but sample sizes are often small and travel histories are hard to validate. Mobile phone records can provide vast quantities of spatio-temporal travel data but vary in spatial resolution and explicitly do not include individual information in order to protect the privacy of subscribers. Here we compare and contrast both sources of data over the same time period in a rural area of Kenya. Although both data sets are able to quantify broad travel patterns and distinguish regional differences in travel, each provides different insights that can be combined to form a more detailed picture of travel in low-income settings to understand the spread of infectious diseases.
Birgiolas, Justas; Jernigan, Christopher M.; Smith, Brian H.; Crook, Sharon M.
2016-01-01
We describe SwarmSight (available at: https://github.com/justasb/SwarmSight), a novel, open-source, Microsoft Windows software tool for quantitative assessment of the temporal progression of animal group activity levels from recorded videos. The tool utilizes a background subtraction machine vision algorithm and provides an activity metric that can be used to quantitatively assess and compare animal group behavior. Here we demonstrate the tool utility by analyzing defensive bee behavior as modulated by alarm pheromones, wild bird feeding onset and interruption, and cockroach nest finding activity. While more sophisticated, commercial software packages are available, SwarmSight provides a low-cost, open-source, and easy-to-use alternative that is suitable for a wide range of users, including minimally trained research technicians and behavioral science undergraduate students in classroom laboratory settings. PMID:27130170
Extracting heading and temporal range from optic flow: Human performance issues
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Perrone, John A.; Stone, Leland; Banks, Martin S.; Crowell, James A.
1993-01-01
Pilots are able to extract information about their vehicle motion and environmental structure from dynamic transformations in the out-the-window scene. In this presentation, we focus on the information in the optic flow which specifies vehicle heading and distance to objects in the environment, scaled to a temporal metric. In particular, we are concerned with modeling how the human operators extract the necessary information, and what factors impact their ability to utilize the critical information. In general, the psychophysical data suggest that the human visual system is fairly robust to degradations in the visual display, e.g., reduced contrast and resolution or restricted field of view. However, extraneous motion flow, i.e., introduced by sensor rotation, greatly compromises human performance. The implications of these models and data for enhanced/synthetic vision systems are discussed.
Event-Based Tone Mapping for Asynchronous Time-Based Image Sensor
Simon Chane, Camille; Ieng, Sio-Hoi; Posch, Christoph; Benosman, Ryad B.
2016-01-01
The asynchronous time-based neuromorphic image sensor ATIS is an array of autonomously operating pixels able to encode luminance information with an exceptionally high dynamic range (>143 dB). This paper introduces an event-based methodology to display data from this type of event-based imagers, taking into account the large dynamic range and high temporal accuracy that go beyond available mainstream display technologies. We introduce an event-based tone mapping methodology for asynchronously acquired time encoded gray-level data. A global and a local tone mapping operator are proposed. Both are designed to operate on a stream of incoming events rather than on time frame windows. Experimental results on real outdoor scenes are presented to evaluate the performance of the tone mapping operators in terms of quality, temporal stability, adaptation capability, and computational time. PMID:27642275
Two-step phase-shifting SPIDER
NASA Astrophysics Data System (ADS)
Zheng, Shuiqin; Cai, Yi; Pan, Xinjian; Zeng, Xuanke; Li, Jingzhen; Li, Ying; Zhu, Tianlong; Lin, Qinggang; Xu, Shixiang
2016-09-01
Comprehensive characterization of ultrafast optical field is critical for ultrashort pulse generation and its application. This paper combines two-step phase-shifting (TSPS) into the spectral phase interferometry for direct electric-field reconstruction (SPIDER) to improve the reconstruction of ultrafast optical-fields. This novel SPIDER can remove experimentally the dc portion occurring in traditional SPIDER method by recording two spectral interferograms with π phase-shifting. As a result, the reconstructed results are much less disturbed by the time delay between the test pulse replicas and the temporal widths of the filter window, thus more reliable. What is more, this SPIDER can work efficiently even the time delay is so small or the measured bandwidth is so narrow that strong overlap happens between the dc and ac portions, which allows it to be able to characterize the test pulses with complicated temporal/spectral structures or narrow bandwidths.
Paige, Sharon L.; Thomas, Sean; Stoick-Cooper, Cristi L.; Wang, Hao; Maves, Lisa; Sandstrom, Richard; Pabon, Lil; Reinecke, Hans; Pratt, Gabriel; Keller, Gordon; Moon, Randall T.; Stamatoyannopoulos, John; Murry, Charles E.
2012-01-01
Summary Directed differentiation of human embryonic stem cells (ESCs) into cardiovascular cells provides a model for studying molecular mechanisms of human cardiovascular development. Though it is known that chromatin modification patterns in ESCs differ markedly from those in lineage-committed progenitors and differentiated cells, the temporal dynamics of chromatin alterations during differentiation along a defined lineage have not been studied. We show that differentiation of human ESCs into cardiovascular cells is accompanied by programmed temporal alterations in chromatin structure that distinguish key regulators of cardiovascular development from other genes. We used this temporal chromatin signature to identify regulators of cardiac development, including the homeobox gene MEIS2. We demonstrate using the zebrafish model that MEIS2 is critical for proper heart tube formation and subsequent cardiac looping. Temporal chromatin signatures should be broadly applicable to other models of stem cell differentiation to identify regulators and provide key insights into major developmental decisions. PMID:22981225
Decoding visual object categories from temporal correlations of ECoG signals.
Majima, Kei; Matsuo, Takeshi; Kawasaki, Keisuke; Kawai, Kensuke; Saito, Nobuhito; Hasegawa, Isao; Kamitani, Yukiyasu
2014-04-15
How visual object categories are represented in the brain is one of the key questions in neuroscience. Studies on low-level visual features have shown that relative timings or phases of neural activity between multiple brain locations encode information. However, whether such temporal patterns of neural activity are used in the representation of visual objects is unknown. Here, we examined whether and how visual object categories could be predicted (or decoded) from temporal patterns of electrocorticographic (ECoG) signals from the temporal cortex in five patients with epilepsy. We used temporal correlations between electrodes as input features, and compared the decoding performance with features defined by spectral power and phase from individual electrodes. While using power or phase alone, the decoding accuracy was significantly better than chance, correlations alone or those combined with power outperformed other features. Decoding performance with correlations was degraded by shuffling the order of trials of the same category in each electrode, indicating that the relative time series between electrodes in each trial is critical. Analysis using a sliding time window revealed that decoding performance with correlations began to rise earlier than that with power. This earlier increase in performance was replicated by a model using phase differences to encode categories. These results suggest that activity patterns arising from interactions between multiple neuronal units carry additional information on visual object categories. Copyright © 2013 Elsevier Inc. All rights reserved.
Effects of temporal correlations in social multiplex networks.
Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo
2017-08-17
Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.
Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew; ...
2015-05-29
Here, as rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the US model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shadingmore » products, and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24-66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30-80% reductions in perimeter zone HVAC electricity use in Beijing and 18-38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew
Here, as rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the US model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shadingmore » products, and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24-66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30-80% reductions in perimeter zone HVAC electricity use in Beijing and 18-38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.« less
The route to chaos for the Kuramoto-Sivashinsky equation
NASA Technical Reports Server (NTRS)
Papageorgiou, Demetrios T.; Smyrlis, Yiorgos
1990-01-01
The results of extensive numerical experiments of the spatially periodic initial value problem for the Kuramoto-Sivashinsky equation. This paper is concerned with the asymptotic nonlinear dynamics at the dissipation parameter decreases and spatio-temporal chaos sets in. To this end the initial condition is taken to be the same for all numerical experiments (a single sine wave is used) and the large time evolution of the system is followed numerically. Numerous computations were performed to establish the existence of windows, in parameter space, in which the solution has the following characteristics as the viscosity is decreased: a steady fully modal attractor to a steady bimodal attractor to another steady fully modal attractor to a steady trimodal attractor to a periodic attractor, to another steady fully modal attractor, to another periodic attractor, to a steady tetramodal attractor, to another periodic attractor having a full sequence of period-doublings (in parameter space) to chaos. Numerous solutions are presented which provide conclusive evidence of the period-doubling cascades which precede chaos for this infinite-dimensional dynamical system. These results permit a computation of the length of subwindows which in turn provide an estimate for their successive ratios as the cascade develops. A calculation based on the numerical results is also presented to show that the period doubling sequences found here for the Kuramoto-Sivashinsky equation, are in complete agreement with Feigenbaum's universal constant of 4,669201609... . Some preliminary work shows several other windows following the first chaotic one including periodic, chaotic, and a steady octamodal window; however, the windows shrink significantly in size to enable concrete quantitative conclusions to be made.
Galinsky, Vitaly L; Martinez, Antigona; Paulus, Martin P; Frank, Lawrence R
2018-04-13
In this letter, we present a new method for integration of sensor-based multifrequency bands of electroencephalography and magnetoencephalography data sets into a voxel-based structural-temporal magnetic resonance imaging analysis by utilizing the general joint estimation using entropy regularization (JESTER) framework. This allows enhancement of the spatial-temporal localization of brain function and the ability to relate it to morphological features and structural connectivity. This method has broad implications for both basic neuroscience research and clinical neuroscience focused on identifying disease-relevant biomarkers by enhancing the spatial-temporal resolution of the estimates derived from current neuroimaging modalities, thereby providing a better picture of the normal human brain in basic neuroimaging experiments and variations associated with disease states.
Halftoning method for the generation of motion stimuli
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.; Stone, Leland S.
1989-01-01
This paper describes a novel computer-graphic technique for the generation of a broad class of motion stimuli for vision research, which uses color table animation in conjunction with a single base image. Using this technique, contrast and temporal frequency can be varied with a negligible amount of computation, once a single-base image is produced. Since only two-bit planes are needed to display a single drifting grating, an eight-bit/pixel display can be used to generate four-component plaids, in which each component of the plaid has independently programmable contrast and temporal frequency. Because the contrast and temporal frequencies of the various components are mutually independent, a large number of two-dimensional stimulus motions can be produced from a single image file.
Rapid, experience-dependent translation of neurogranin enables memory encoding.
Jones, Kendrick J; Templet, Sebastian; Zemoura, Khaled; Kuzniewska, Bozena; Pena, Franciso X; Hwang, Hongik; Lei, Ding J; Haensgen, Henny; Nguyen, Shannon; Saenz, Christopher; Lewis, Michael; Dziembowska, Magdalena; Xu, Weifeng
2018-06-19
Experience induces de novo protein synthesis in the brain and protein synthesis is required for long-term memory. It is important to define the critical temporal window of protein synthesis and identify newly synthesized proteins required for memory formation. Using a behavioral paradigm that temporally separates the contextual exposure from the association with fear, we found that protein synthesis during the transient window of context exposure is required for contextual memory formation. Among an array of putative activity-dependent translational neuronal targets tested, we identified one candidate, a schizophrenia-associated candidate mRNA, neurogranin (Ng, encoded by the Nrgn gene) responding to novel-context exposure. The Ng mRNA was recruited to the actively translating mRNA pool upon novel-context exposure, and its protein levels were rapidly increased in the hippocampus. By specifically blocking activity-dependent translation of Ng using virus-mediated molecular perturbation, we show that experience-dependent translation of Ng in the hippocampus is required for contextual memory formation. We further interrogated the molecular mechanism underlying the experience-dependent translation of Ng, and found that fragile-X mental retardation protein (FMRP) interacts with the 3'UTR of the Nrgn mRNA and is required for activity-dependent translation of Ng in the synaptic compartment and contextual memory formation. Our results reveal that FMRP-mediated, experience-dependent, rapid enhancement of Ng translation in the hippocampus during the memory acquisition enables durable context memory encoding. Copyright © 2018 the Author(s). Published by PNAS.
Rapid, experience-dependent translation of neurogranin enables memory encoding
Jones, Kendrick J.; Templet, Sebastian; Zemoura, Khaled; Pena, Franciso X.; Hwang, Hongik; Lei, Ding J.; Haensgen, Henny; Nguyen, Shannon; Saenz, Christopher; Lewis, Michael; Dziembowska, Magdalena
2018-01-01
Experience induces de novo protein synthesis in the brain and protein synthesis is required for long-term memory. It is important to define the critical temporal window of protein synthesis and identify newly synthesized proteins required for memory formation. Using a behavioral paradigm that temporally separates the contextual exposure from the association with fear, we found that protein synthesis during the transient window of context exposure is required for contextual memory formation. Among an array of putative activity-dependent translational neuronal targets tested, we identified one candidate, a schizophrenia-associated candidate mRNA, neurogranin (Ng, encoded by the Nrgn gene) responding to novel-context exposure. The Ng mRNA was recruited to the actively translating mRNA pool upon novel-context exposure, and its protein levels were rapidly increased in the hippocampus. By specifically blocking activity-dependent translation of Ng using virus-mediated molecular perturbation, we show that experience-dependent translation of Ng in the hippocampus is required for contextual memory formation. We further interrogated the molecular mechanism underlying the experience-dependent translation of Ng, and found that fragile-X mental retardation protein (FMRP) interacts with the 3′UTR of the Nrgn mRNA and is required for activity-dependent translation of Ng in the synaptic compartment and contextual memory formation. Our results reveal that FMRP-mediated, experience-dependent, rapid enhancement of Ng translation in the hippocampus during the memory acquisition enables durable context memory encoding. PMID:29880715
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandage, Revati S.; McAteer, R. T. James, E-mail: mcateer@nmsu.edu
A magnetic power spectral analysis is performed on 53 solar active regions, observed from 2011 August to 2012 July. Magnetic field data obtained from the Helioseismic and Magnetic Imager, inverted as Active Region Patches, are used to study the evolution of the magnetic power index as each region rotates across the solar disk. Active regions are classified based on the numbers and sizes of solar flares they produce in order to study the relationship between flare productivity and the magnetic power index. The choice of window size and inertial range plays a key role in determining the correct magnetic powermore » index. The overall distribution of magnetic power indices has a range of 1.0–2.5. Flare-quiet regions peak at a value of 1.6. However, flare-productive regions peak at a value of 2.2. Overall, the histogram of the distribution of power indices of flare-productive active regions is well separated from flare-quiet active regions. Only 12% of flare-quiet regions exhibit an index greater than 2, whereas 90% of flare-productive regions exhibit an index greater than 2. Flare-quiet regions exhibit a high temporal variance (i.e., the index fluctuates between high and low values), whereas flare-productive regions maintain an index greater than 2 for several days. This shows the importance of including the temporal evolution of active regions in flare prediction studies, and highlights the potential of a 2–3 day prediction window for space weather applications.« less
Filbrich, Lieve; Alamia, Andrea; Burns, Soline; Legrain, Valéry
2017-07-01
Despite their high relevance for defending the integrity of the body, crossmodal links between nociception, the neural system specifically coding potentially painful information, and vision are still poorly studied, especially the effects of nociception on visual perception. This study investigated if, and in which time window, a nociceptive stimulus can attract attention to its location on the body, independently of voluntary control, to facilitate the processing of visual stimuli occurring in the same side of space as the limb on which the visual stimulus was applied. In a temporal order judgment task based on an adaptive procedure, participants judged which of two visual stimuli, one presented next to either hand in either side of space, had been perceived first. Each pair of visual stimuli was preceded (by 200, 400, or 600 ms) by a nociceptive stimulus applied either unilaterally on one single hand, or bilaterally, on both hands simultaneously. Results show that, as compared to the bilateral condition, participants' judgments were biased to the advantage of the visual stimuli that occurred in the same side of space as the hand on which a unilateral, nociceptive stimulus was applied. This effect was present in a time window ranging from 200 to 600 ms, but importantly, biases increased with decreasing time interval. These results suggest that nociceptive stimuli can affect the perceptual processing of spatially congruent visual inputs.
Terhune, Claire E; Kimbel, William H; Lockwood, Charles A
2013-08-01
Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three-dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non-human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three-dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Copyright © 2013 Wiley Periodicals, Inc.
Gunn, W J; Shigehisa, T; Shepherd, W T
1979-10-01
The conditions were examined under which more valid and reliable estimates could be made of the effects of aircraft noise on people. In Exper. 1, 12 Ss in 2 different houses directly under the flight path of a major airport (JFK) indicated 1 of 12 possible flight paths (4 directly overhead and 8 to one side) for each of 3 jet aircraft flyovers: 3% of cases in House A and 56% in House B (which had open windows) were correctly identified. Despite judgment inaccuracy, Ss were more than moderately certain of the correctness of their judgments. In Exper. II. Ss either inside or outside of 2 houses in Wallops Station, Virginia, indicated on diagrams the direction of flyovers. Each of 4 aircraft (Boeing 737, C-54, UE-1 helicopter, Queenaire) made 8 flyovers directly over the houses and 8 to one side. Windows were either open or closed. All flyovers and conditions were counterbalanced. All sound sources under all conditions were usually judged to be overhead and moving, but for Ss indoors with windows closed the to-the-side flyovers were judged to be off to the side in 24% of cases. Outdoor Ss reported correct direction in 75% of cases while indoor Ss were correct in only 25% (windows open) or 18% (windows closed). Judgments "to the side" were significantly better (p = less than .02) with windows open vs closed, while with windows closed judgments were significantly better (p = less than .05) for flyovers overhead vs to the side. In Exper. III, Ss localized in azimuth and in the vertical plane recorded noises (10 1-oct noise bands of CF = 28.12 c/s - 14.4kc/s, spoken voice, and jet aircraft takeoffs and landings), presented through 1, 2, or 4 floor-level loudspeakers at each corner of a simulated living room (4.2 x 5.4m)built inside an IAC soundproof room. Aircraft noises presented by 4 loudspeakers were localized as "directly" overhead 80% of the time and "generally overhead" about 90% of the time; other sounds were so localized about 50% and 75% of the time respectively. Through only 2 loudspeakers, aircraft noises were localized 25-36 degrees above horizontal. Implications are that acoustic realism can be achieved in simulated aircraft overflights and that future laboratory noise-effects research should incorporate the required conditions.
Köcher, Paul; Horna, Viviana; Leuschner, Christoph
2013-08-01
The functional role of internal water storage is increasingly well understood in tropical trees and conifers, while temperate broad-leaved trees have only rarely been studied. We examined the magnitude and dynamics of the use of stem water reserves for transpiration in five coexisting temperate broad-leaved trees with largely different morphology and physiology (genera Fagus, Fraxinus, Tilia, Carpinus and Acer). We expected that differences in water storage patterns would mostly reflect species differences in wood anatomy (ring vs. diffuse-porous) and wood density. Sap flux density was recorded synchronously at five positions along the root-to-branch flow path of mature trees (roots, three stem positions and branches) with high temporal resolution (2 min) and related to stem radius changes recorded with electronic point dendrometers. The daily amount of stored stem water withdrawn for transpiration was estimated by comparing the integrated flow at stem base and stem top. The temporal coincidence of flows at different positions and apparent time lags were examined by cross-correlation analysis. Our results confirm that internal water stores play an important role in the four diffuse-porous species with estimated 5-12 kg day(-1) being withdrawn on average in 25-28 m tall trees representing 10-22% of daily transpiration; in contrast, only 0.5-2.0 kg day(-1) was withdrawn in ring-porous Fraxinus. Wood density had a large influence on storage; sapwood area (diffuse- vs. ring-porous) may be another influential factor but its effect was not significant. Across the five species, the length of the time lag in flow at stem top and stem base was positively related to the size of stem storage. The stem stores were mostly exhausted when the soil matrix potential dropped below -0.1 MPa and daily mean vapor pressure deficit exceeded 3-5 hPa. We conclude that stem storage is an important factor improving the water balance of diffuse-porous temperate broad-leaved trees in moist periods, while it may be of low relevance in dry periods and in ring-porous species.
Temporally flexible feedback signal to foveal cortex for peripheral object recognition
Fan, Xiaoxu; Wang, Lan; Shao, Hanyu; Kersten, Daniel; He, Sheng
2016-01-01
Recent studies have shown that information from peripherally presented images is present in the human foveal retinotopic cortex, presumably because of feedback signals. We investigated this potential feedback signal by presenting noise in fovea at different object–noise stimulus onset asynchronies (SOAs), whereas subjects performed a discrimination task on peripheral objects. Results revealed a selective impairment of performance when foveal noise was presented at 250-ms SOA, but only for tasks that required comparing objects’ spatial details, suggesting a task- and stimulus-dependent foveal processing mechanism. Critically, the temporal window of foveal processing was shifted when mental rotation was required for the peripheral objects, indicating that the foveal retinotopic processing is not automatically engaged at a fixed time following peripheral stimulation; rather, it occurs at a stage when detailed information is required. Moreover, fMRI measurements using multivoxel pattern analysis showed that both image and object category-relevant information of peripheral objects was represented in the foveal cortex. Taken together, our results support the hypothesis of a temporally flexible feedback signal to the foveal retinotopic cortex when discriminating objects in the visual periphery. PMID:27671651
Adherent Raindrop Modeling, Detectionand Removal in Video.
You, Shaodi; Tan, Robby T; Kawakami, Rei; Mukaigawa, Yasuhiro; Ikeuchi, Katsushi
2016-09-01
Raindrops adhered to a windscreen or window glass can significantly degrade the visibility of a scene. Modeling, detecting and removing raindrops will, therefore, benefit many computer vision applications, particularly outdoor surveillance systems and intelligent vehicle systems. In this paper, a method that automatically detects and removes adherent raindrops is introduced. The core idea is to exploit the local spatio-temporal derivatives of raindrops. To accomplish the idea, we first model adherent raindrops using law of physics, and detect raindrops based on these models in combination with motion and intensity temporal derivatives of the input video. Having detected the raindrops, we remove them and restore the images based on an analysis that some areas of raindrops completely occludes the scene, and some other areas occlude only partially. For partially occluding areas, we restore them by retrieving as much as possible information of the scene, namely, by solving a blending function on the detected partially occluding areas using the temporal intensity derivative. For completely occluding areas, we recover them by using a video completion technique. Experimental results using various real videos show the effectiveness of our method.
USDA-ARS?s Scientific Manuscript database
Apparent soil electrical conductivity (ECa) is an efficient technique for understanding within-field variability of physical and chemical soil characteristics. Commercial devices are readily available for collecting ECa on whole fields and used broadly for crop management in precision agriculture; h...
Spatial and Temporal Water Quality Patterns in Open-Water Lake Michigan from the 2015 CSMI
Water quality patterns in the Laurentian Great Lakes broadly reflect climate, surficial geography, and landuse but are also shaped by limnological and biological processes. Open-water sampling conducted as part of the 2015 Lake Michigan interagency coordinated science and monito...
APPLICATION OF THE HSPF MODEL TO THE SOUTH FORK OF THE BROAD RIVER WATERSHED IN NORTHEASTERN GEORGIA
The Hydrological Simulation Program-Fortran (HSPF) is a comprehensive watershed model which simulates hydrology and water quality at user-specified temporal and spatial scales. Well-established model calibration and validation procedures are followed when adjusting model paramete...
Onisawa, Naomi; Manabe, Hiroyuki; Mori, Kensaku
2017-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. Copyright © 2017 the American Physiological Society.
Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds
Ashida, Go; Kretzberg, Jutta; Tollin, Daniel J.
2016-01-01
Many sensory neurons encode temporal information by detecting coincident arrivals of synaptic inputs. In the mammalian auditory brainstem, binaural neurons of the medial superior olive (MSO) are known to act as coincidence detectors, whereas in the lateral superior olive (LSO) roles of coincidence detection have remained unclear. LSO neurons receive excitatory and inhibitory inputs driven by ipsilateral and contralateral acoustic stimuli, respectively, and vary their output spike rates according to interaural level differences. In addition, LSO neurons are also sensitive to binaural phase differences of low-frequency tones and envelopes of amplitude-modulated (AM) sounds. Previous physiological recordings in vivo found considerable variations in monaural AM-tuning across neurons. To investigate the underlying mechanisms of the observed temporal tuning properties of LSO and their sources of variability, we used a simple coincidence counting model and examined how specific parameters of coincidence detection affect monaural and binaural AM coding. Spike rates and phase-locking of evoked excitatory and spontaneous inhibitory inputs had only minor effects on LSO output to monaural AM inputs. In contrast, the coincidence threshold of the model neuron affected both the overall spike rates and the half-peak positions of the AM-tuning curve, whereas the width of the coincidence window merely influenced the output spike rates. The duration of the refractory period affected only the low-frequency portion of the monaural AM-tuning curve. Unlike monaural AM coding, temporal factors, such as the coincidence window and the effective duration of inhibition, played a major role in determining the trough positions of simulated binaural phase-response curves. In addition, empirically-observed level-dependence of binaural phase-coding was reproduced in the framework of our minimalistic coincidence counting model. These modeling results suggest that coincidence detection of excitatory and inhibitory synaptic inputs is essential for LSO neurons to encode both monaural and binaural AM sounds. PMID:27322612
Onisawa, Naomi; Mori, Kensaku
2016-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. NEW & NOTEWORTHY Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. PMID:27733591
Zhu, Xuehua; Wang, Yulei; Lu, Zhiwei; Zhang, Hengkang
2015-09-07
A new technique for generating high energy sub-400 picosecond laser pulses is presented in this paper. The temporally super-Gaussian-shaped laser pulses are used as light source. When the forward pump is reflected by the rear window of SBS cell, the frequency component that fulfills Brillouin frequency shift in its sideband spectrum works as a seed and excites SBS, which results in efficient compression of the incident pump pulse. First the pulse compression characteristics of 20th-order super-Gaussian temporally shaped pulses with 5 ns duration are analyzed theoretically. Then experiment is carried out with a narrow-band high power Nd:glass laser system at the double-frequency and wavelength of 527 nm which delivers 5 ns super-Gaussian temporally shaped pulses with single pulse energy over 10 J. FC-40 is used as the active SBS medium for its brief phonon lifetime and high power capacity. In the experiment, the results agree well with the numerical calculations. With pump energy of 5.36J, the compression of pulse duration from 5 ns to 360 ps is obtained. The output energy is 3.02 J and the peak-power is magnified 8.3 times. Moreover, the compressed pulse shows a high stability because it is initiated by the feedback of rear window rather than the thermal noise distributing inside the medium. This technique of generating high energy hundred picosecond laser pulses has simple structure and is easy to operate, and it also can be scaled to higher energy pulse compression in the future. Meanwhile, it should also be taken into consideration that in such a nonfocusing scheme, the noise-initiated SBS would increase the distortion on the wavefront of Stokes beam to some extent, and the pump energy should be controlled below the threshold of noise-initiated SBS.
Mitigating Uncertainty from Vegetation Spatial Complexity with Highly Portable Lidar
NASA Astrophysics Data System (ADS)
Paynter, I.; Schaaf, C.; Peri, F.; Saenz, E. J.; Genest, D.; Strahler, A. H.; Li, Z.
2015-12-01
To fully utilize the excellent spatial coverage and temporal resolution offered by satellite resources for estimating ecological variables, fine-scale observations are required for comparison, calibration and validation. Lidar instruments have proved effective in estimating the properties of vegetation components of ecosystems, but they are often challenged by occlusion, especially in structurally complex and spatially fragmented ecosystems such as tropical forests. Increasing the range of view angles, both horizontally and vertically, by increasing the number of scans, can mitigate occlusion. However these scans must occur within the window of temporal stability for the ecosystem and vegetation property being measured. The Compact Biomass Lidar (CBL) is a TLS optimized for portability and scanning speed, developed and operated by University of Massachusetts Boston. This 905nm wavelength scanner achieves an angular resolution of 0.25 degrees at a rate of 33 seconds per scan. The ability to acquire many scans within narrow windows of temporal stability for ecological variables has facilitated the more complete investigation of ecosystem structural characteristics, and their expression as a function of view angle. The lightweight CBL has facilitated the use of alternative deployment platforms including towers, trams and masts, allowing analysis of the vertical structure of ecosystems, even in highly enclosed environments such as the sub-canopy of tropical forests where aerial vehicles cannot currently operate. We will present results from view angle analyses of lidar surveys of tropical rainforest in La Selva, Costa Rica where the CBL was deployed at heights up to 10m in Carbono long-term research plots utilizing a portable mast, and on a 25m stationary tower; and temperate forest at Harvard Forest, Massachusetts, USA, where the CBL has been deployed biannually at long-term research plots of hardwood and hemlock, as well as at heights of up to 25m utilizing a stationary tower.
NASA Astrophysics Data System (ADS)
Al-Ghraibah, Amani
Solar flares release stored magnetic energy in the form of radiation and can have significant detrimental effects on earth including damage to technological infrastructure. Recent work has considered methods to predict future flare activity on the basis of quantitative measures of the solar magnetic field. Accurate advanced warning of solar flare occurrence is an area of increasing concern and much research is ongoing in this area. Our previous work 111] utilized standard pattern recognition and classification techniques to determine (classify) whether a region is expected to flare within a predictive time window, using a Relevance Vector Machine (RVM) classification method. We extracted 38 features which describing the complexity of the photospheric magnetic field, the result classification metrics will provide the baseline against which we compare our new work. We find a true positive rate (TPR) of 0.8, true negative rate (TNR) of 0.7, and true skill score (TSS) of 0.49. This dissertation proposes three basic topics; the first topic is an extension to our previous work [111, where we consider a feature selection method to determine an appropriate feature subset with cross validation classification based on a histogram analysis of selected features. Classification using the top five features resulting from this analysis yield better classification accuracies across a large unbalanced dataset. In particular, the feature subsets provide better discrimination of the many regions that flare where we find a TPR of 0.85, a TNR of 0.65 sightly lower than our previous work, and a TSS of 0.5 which has an improvement comparing with our previous work. In the second topic, we study the prediction of solar flare size and time-to-flare using support vector regression (SVR). When we consider flaring regions only, we find an average error in estimating flare size of approximately half a GOES class. When we additionally consider non-flaring regions, we find an increased average error of approximately 3/4 a GOES class. We also consider thresholding the regressed flare size for the experiment containing both flaring and non-flaring regions and find a TPR. of 0.69 and a TNR of 0.86 for flare prediction, consistent with our previous studies of flare prediction using the same magnetic complexity features. The results for both of these size regression experiments are consistent across a wide range of predictive time windows, indicating that the magnetic complexity features may be persistent in appearance long before flare activity. This conjecture is supported by our larger error rates of some 40 hours in the time-to-flare regression problem. The magnetic complexity features considered here appear to have discriminative potential for flare size, but their persistence in time makes them less discriminative for the time-to-flare problem. We also study the prediction of solar flare size and time-to-flare using two temporal features, namely the ▵- and ▵-▵-features, the same average size and time-to-flare regression error are found when these temporal features are used in size and time-to-flare prediction. In the third topic, we study the temporal evolution of active region magnetic fields using Hidden Markov Models (HMMs) which is one of the efficient temporal analyses found in literature. We extracted 38 features which describing the complexity of the photospheric magnetic field. These features are converted into a sequence of symbols using k-nearest neighbor search method. We study many parameters before prediction; like the length of the training window Wtrain which denotes to the number of history images use to train the flare and non-flare HMMs, and number of hidden states Q. In training phase, the model parameters of the HMM of each category are optimized so as to best describe the training symbol sequences. In testing phase, we use the best flare and non-flare models to predict/classify active regions as a flaring or non-flaring region using a sliding window method. The best prediction result is found where the length of the history training images are 15 images (i.e., Wtrain= 15) and the length of the sliding testing window is less than or equal to W train, the best result give a TPR of 0.79 consistent with previous flare prediction work, TNR of 0.87 arid TSS of 0.66, where both are higher than our previous flare prediction work. We find that the best number of hidden states which can describe the temporal evolution of the solar ARs is equal to five states, at the same time, a close resultant metrics are found using different number of states.
Tibon, Roni; Levy, Daniel A
2014-03-01
Little is known about the time course of processes supporting episodic cued recall. To examine these processes, we recorded event-related scalp electrical potentials during episodic cued recall following pair-associate learning of unimodal object-picture pairs and crossmodal object-picture and sound pairs. Successful cued recall of unimodal associates was characterized by markedly early scalp potential differences over frontal areas, while cued recall of both unimodal and crossmodal associates were reflected by subsequent differences recorded over frontal and parietal areas. Notably, unimodal cued recall success divergences over frontal areas were apparent in a time window generally assumed to reflect the operation of familiarity but not recollection processes, raising the possibility that retrieval success effects in that temporal window may reflect additional mnemonic processes beyond familiarity. Furthermore, parietal scalp potential recall success differences, which did not distinguish between crossmodal and unimodal tasks, seemingly support attentional or buffer accounts of posterior parietal mnemonic function but appear to constrain signal accumulation, expectation, or representational accounts.
Mechanochemistry for shock wave energy dissipation
NASA Astrophysics Data System (ADS)
Shaw, William L.; Ren, Yi; Moore, Jeffrey S.; Dlott, Dana D.
2017-01-01
Using a laser-driven flyer-plate apparatus to launch 75 μm thick Al flyers up to 2.8 km/s, we developed a technique for detecting the attenuation of shock waves by mechanically-driven chemical reactions. The attenuating sample was spread on an ultrathin Au mirror deposited onto a glass window having a known Hugoniot. As shock energy exited the sample and passed through the mirror, into the glass, photonic Doppler velocimetry monitored the velocity profile of the ultrathin mirror. Knowing the window Hugoniot, the velocity profile could be quantitatively converted into a shock energy flux or fluence. The flux gave the temporal profile of the shock front, and showed how the shock front was reshaped by passing through the dissipative medium. The fluence, the time-integrated flux, showed how much shock energy was transmitted through the sample. Samples consisted of microgram quantities of carefully engineered organic compounds selected for their potential to undergo negative-volume chemistry. Post mortem analytical methods were used to confirm that shock dissipation was associated with shock-induced chemical reactions.
Laser vibrometer measurements and middle ear prostheses
NASA Astrophysics Data System (ADS)
Flock, Stephen T.; Dornhoffer, John; Ferguson, Scott
1997-05-01
One of us has developed an improved partial ossicular replacement prosthesis that is easier to implant and, based on pilot clinical measurements, results in better high-frequency hearing as compared to patients receiving one of the alternative prostheses. It is hypothesized that the primary reason for this is because of the relatively light weight (about 25 mg) and low compliance of the prosthesis, which could conceivably result in better high frequency vibrational characteristics. The purpose of our initial work was to develop an instrument suitable for objectively testing the vibrational characteristics of prostheses. We have developed a laser based device suitable for measuring the vibrational characteristics of the oval window or other structures of the middle ear. We have tested this device using a piezoelectric transducer excited at audio frequencies, as well as on the oval window in human temporal bones harvested from cadavers. The results illustrate that it is possible to non-invasively monitor the vibrational characteristics of anatomic structures with a very inexpensive photonic device.
Effect of excitation direction on cochlear macro-mechanics during bone conduction stimulation
NASA Astrophysics Data System (ADS)
Kamieniecki, Konrad; Tudruj, Sylwester; Piechna, Janusz; Borkowski, Paweł
2018-05-01
In many instances of hearing loss, audiological improvement can be made via direct excitation of a temporal bone (i.e., bone conduction). In order to design better and more efficient devices, the macro-mechanics of the bone conduction hearing pathway must be better understood. Based on previous empirical work, numerical models are useful. In this work, we present results of a time-domain Fluid Structure Interaction model that describes stimulation of the bone conduction pathway. The cochlea was modelled as uncoiled and consisted of an oval window, a round window, a basilar membrane and a helicotrema. In order to monitor pressure waves in the perilymph, the fluid was considered compressible. The excitation, in form of sinusoidal velocity, was applied to the cochlea bony walls. The system was excited in three perpendicular directions: along the basilar membrane, perpendicularly to the membrane and transversely to the membrane. The numerical simulation examined which stimulation direction maximally excited the basilar membrane, the pressure distributions for each excitation direction, and the associated mechanics.
NASA Technical Reports Server (NTRS)
Chesters, D.; Uccellini, L.; Robinson, W.
1982-01-01
A series of high-resolution water vapor fields were derived from the 11 and 12 micron channels of the VISSR Atmospheric Sounder (VAS) on GOES-5. The low-level tropospheric moisture content was separated from the surface and atmospheric radiances by using the differential adsorption across the 'split window' along with the average air temperature from imbedded radiosondes. Fields of precipitable water are presented in a time sequence of five false color images taken over the United States at 3-hour intervals. Vivid subsynoptic and mesoscale patterns evolve at 15 km horizontal resolution over the 12-hour observing period. Convective cloud formations develop from several areas of enhanced low-level water vapor, especially where the vertical water vapor gradient relatively strong. Independent verification at radiosonde sites indicates fairly good absolute accuracy, and the spatial and temporal continuity of the water vapor features indicates very good relative accuracy. Residual errors are dominated by radiometer noise and unresolved clouds.
Davis, Ronald L.
2012-01-01
Summary Studies using functional cellullar imaging of living flies have identified six memory traces that form in the olfactory nervous system after conditioning with odors. These traces occur in distinct nodes of the olfactory nervous system, form and disappear across different windows of time, and are detected in the imaged neurons as increased calcium influx or synaptic release in response to the conditioned odor. Three traces form at, or near acquisition and co-exist with short-term behavioral memory. One trace forms with a delay after learning and co-exists with intermediate-term behavioral memory. Two traces form many hours after acquisition and co-exist with long-term behavioral memory. The transient memory traces may support behavior across the time-windows of their existence. The experimental approaches for dissecting memory formation in the fly, ranging from the molecular to the systems, make it an ideal system for dissecting the logic by which the nervous system organizes and stores different temporal forms of memory. PMID:21482352
Development of an EMCCD for LIDAR applications
NASA Astrophysics Data System (ADS)
De Monte, B.; Bell, R. T.
2017-11-01
A novel detector, incorporating e2v's EMCCD (L3VisionTM) [1] technology for use in LIDAR (Light Detection And Ranging) applications has been designed, manufactured and characterised. The most critical performance aspect was the requirement to collect charge from a 120μm square detection area for a 667ns temporal sampling window, with low crosstalk between successive samples, followed by signal readout with sub-electron effective noise. Additional requirements included low dark signal, high quantum efficiency at the 355nm laser wavelength and the ability to handle bright laser echoes, without corruption of the much fainter useful signals. The detector architecture used high speed charge binning to combine signal from each sampling window into a single charge packet. This was then passed through a multiplication register (EMCCD) operating with a typical gain of 100X to a conventional charge detection circuit. The detector achieved a typical quantum efficiency of 80% and a total noise in darkness of < 0.5 electrons rms. Development of the detector was supported by ESA.
James, S. R.; Knox, H. A.; Abbott, R. E.; ...
2017-04-13
Cross correlations of seismic noise can potentially record large changes in subsurface velocity due to permafrost dynamics and be valuable for long-term Arctic monitoring. We applied seismic interferometry, using moving window cross-spectral analysis (MWCS), to 2 years of ambient noise data recorded in central Alaska to investigate whether seismic noise could be used to quantify relative velocity changes due to seasonal active-layer dynamics. The large velocity changes (>75%) between frozen and thawed soil caused prevalent cycle-skipping which made the method unusable in this setting. We developed an improved MWCS procedure which uses a moving reference to measure daily velocity variationsmore » that are then accumulated to recover the full seasonal change. This approach reduced cycle-skipping and recovered a seasonal trend that corresponded well with the timing of active-layer freeze and thaw. Lastly, this improvement opens the possibility of measuring large velocity changes by using MWCS and permafrost monitoring by using ambient noise.« less
Effects of temporal variability in ground data collection on classification accuracy
Hoch, G.A.; Cully, J.F.
1999-01-01
This research tested whether the timing of ground data collection can significantly impact the accuracy of land cover classification. Ft. Riley Military Reservation, Kansas, USA was used to test this hypothesis. The U.S. Army's Land Condition Trend Analysis (LCTA) data annually collected at military bases was used to ground truth disturbance patterns. Ground data collected over an entire growing season and data collected one year after the imagery had a kappa statistic of 0.33. When using ground data from only within two weeks of image acquisition the kappa statistic improved to 0.55. Potential sources of this discrepancy are identified. These data demonstrate that there can be significant amounts of land cover change within a narrow time window on military reservations. To accurately conduct land cover classification at military reservations, ground data need to be collected in as narrow a window of time as possible and be closely synchronized with the date of the satellite imagery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zang, L., E-mail: l-zang@center.iae.kyoto-u.ac.jp; Kasajima, K.; Hashimoto, K.
Edge fluctuation in a supersonic molecular-beam injection (SMBI) fueled plasma has been measured using an electrostatic probe array. After SMBI, the plasma stored energy (W{sub p}) temporarily decreased then started to increase. The local plasma fluctuation and fluctuation induced particle transport before and after SMBI have been analyzed. In a short duration (∼4 ms) just after SMBI, the density fluctuation of broad-band low frequency increased, and the probability density function (PDF) changed from a nearly Gaussian to a positively skewed non-Gaussian one. This suggests that intermittent structures were produced due to SMBI. Also the fluctuation induced particle transport was greatly enhancedmore » during this short duration. About 4 ms after SMBI, the low frequency broad-band density fluctuation decreased, and the PDF returned to a nearly Gaussian shape. Also the fluctuation induced particle transport was reduced. Compared with conventional gas puff, W{sub p} degradation window is very short due to the short injection period of SMBI. After this short degradation window, fluctuation induced particle transport was reduced and W{sub p} started the climbing phase. Therefore, the short period of the influence to the edge fluctuation might be an advantage of this novel fueling technique. On the other hand, although their roles are not identified at present, coherent MHD modes are also suppressed as well by the application of SMBI. These MHD modes are thought to be de-exited due to a sudden change of the edge density and/or excitation conditions.« less
Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F
2012-01-01
Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.
Temporal bone dissection simulator for training pediatric otolaryngology surgeons
NASA Astrophysics Data System (ADS)
Tabrizi, Pooneh R.; Sang, Hongqiang; Talari, Hadi F.; Preciado, Diego; Monfaredi, Reza; Reilly, Brian; Arikatla, Sreekanth; Enquobahrie, Andinet; Cleary, Kevin
2017-03-01
Cochlear implantation is the standard of care for infants born with severe hearing loss. Current guidelines approve the surgical placement of implants as early as 12 months of age. Implantation at a younger age poses a greater surgical challenge since the underdeveloped mastoid tip, along with thin calvarial bone, creates less room for surgical navigation and can result in increased surgical risk. We have been developing a temporal bone dissection simulator based on actual clinical cases for training otolaryngology fellows in this delicate procedure. The simulator system is based on pre-procedure CT (Computed Tomography) images from pediatric infant cases (<12 months old) at our hospital. The simulator includes: (1) simulation engine to provide the virtual reality of the temporal bone surgery environment, (2) a newly developed haptic interface for holding the surgical drill, (3) an Oculus Rift to provide a microscopic-like view of the temporal bone surgery, and (4) user interface to interact with the simulator through the Oculus Rift and the haptic device. To evaluate the system, we have collected 10 representative CT data sets and segmented the key structures: cochlea, round window, facial nerve, and ossicles. The simulator will present these key structures to the user and warn the user if needed by continuously calculating the distances between the tip of surgical drill and the key structures.
Increased biomagnetic activity in the ventral pathway in mild cognitive impairment.
Maestú, F; Campo, P; Del Río, D; Moratti, S; Gil-Gregorio, P; Fernández, A; Capilla, A; Ortiz, T
2008-06-01
Mild cognitive impairment (MCI) patients represent an intermediary state between healthy aging and dementia. MCI activation profiles, recorded during a memory task, have been studied either through high spatial resolution or high temporal resolution techniques. However, little is known about the benefit of combining both dimensions. Here, we investigate, by means of magnetoencephalography (MEG), whether spatio-temporal profiles of neuromagnetic activity could differentiate between MCI and age-matched elderly participants. Taking the advantage of the high temporal resolution and good spatial resolution of MEG, neuromagnetic activity from 15 elderly MCI patients and 20 age-matched controls was recorded during the performance of a modified version of the Sternberg paradigm. Behavioral performance was similar in both groups. A between group analysis revealed that MCI patients showed bilateral higher activity in the ventral pathway, in both the target and the non-target stimuli. A within-group analysis of the target stimuli, indicates a lack of asymmetry through all late latency windows in both groups. MCI patients showed a compensatory mechanism represented by an increased bilateral activity of the ventral pathway in order to achieve a behavioral performance similar to the control group. This spatio-temporal pattern of activity could be another tool to differentiate between healthy aging and MCI patients.
Bao, Yan; Pöppel, Ernst; Wang, Lingyan; Lin, Xiaoxiong; Yang, Taoxi; Avram, Mihai; Blautzik, Janusch; Paolini, Marco; Silveira, Sarita; Vedder, Aline; Zaytseva, Yuliya; Zhou, Bin
2015-12-01
Synchronizing neural processes, mental activities, and social interactions is considered to be fundamental for the creation of temporal order on the personal and interpersonal level. Several different types of synchronization are distinguished, and for each of them examples are given: self-organized synchronizations on the neural level giving rise to pre-semantically defined time windows of some tens of milliseconds and of approximately 3 s; time windows that are created by synchronizing different neural representations, as for instance in aesthetic appreciations or moral judgments; and synchronization of biological rhythms with geophysical cycles, like the circadian clock with the 24-hr rhythm of day and night. For the latter type of synchronization, an experiment is described that shows the importance of social interactions for sharing or avoiding common time. In a group study with four subjects being completely isolated together for 3 weeks from the external world, social interactions resulted both in intra- and interindividual circadian synchronization and desynchronization. A unique phenomenon in circadian regulation is described, the "beat phenomenon," which has been made visible by the interaction of two circadian rhythms with different frequencies in one body. The separation of the two physiological rhythms was the consequence of social interactions, that is, by the desire of a subject to share and to escape common time during different phases of the long-term experiment. The theoretical arguments on synchronization are summarized with the general statement: "Nothing in cognitive science makes sense except in the light of time windows." The hypothesis is forwarded that time windows that express discrete timing mechanisms in behavioral control and on the level of conscious experiences are the necessary bases to create cognitive order, and it is suggested that time windows are implemented by neural oscillations in different frequency domains. © 2015 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Singla, Anjali; Gupta, Tulika; Sahni, Daisy; Gupta, Ashok Kumar; Aggarwal, Anjali
2017-12-01
The purpose of this investigation was to evaluate the distances and angles on basal turn of cochlea in relation to round window at which the jugular bulb, internal carotid artery and facial nerve are at maximal risk and their implications in cochlear implantation (CI). Fifty-four cadaveric temporal bones were microdissected to expose the basal turn of cochlea, the carotid canal, the facial canal and the jugular fossa. The points were marked on the basal turn of cochlea, where there was minimum distance of basal turn of cochlea from the roof of the jugular fossa (point a), carotid canal (point b) and facial canal (point c). The distances and angles of these points from the round window were measured. The points a, b and c were at mean (range) distances of 2.8 mm (1.3-4.1 mm), 8.4 mm (6.5-10.4 mm) and 16.4 mm (12.5-20.5 mm) and at mean angles of 30° (15°-45°), 111° (71°-136°) and 284° (255°-315°), respectively, from the round window. This study highlights that 2.8 ± 0.5 mm (30 ± 5.40), 8.4 ± 1 mm (111 ± 12.70) and 16.4 ± 1.7 mm (284 ± 13.5) from the round window are the high-risk points on the basal turn of the cochlea for the jugular bulb, internal carotid artery and facial nerve, respectively. A wide range found for each parameter indicates that it is mandatory to evaluate these distances in each CI patient on preoperative radiographs to avoid intraoperative injury to these vital structures.
A sentence sliding window approach to extract protein annotations from biomedical articles
Krallinger, Martin; Padron, Maria; Valencia, Alfonso
2005-01-01
Background Within the emerging field of text mining and statistical natural language processing (NLP) applied to biomedical articles, a broad variety of techniques have been developed during the past years. Nevertheless, there is still a great ned of comparative assessment of the performance of the proposed methods and the development of common evaluation criteria. This issue was addressed by the Critical Assessment of Text Mining Methods in Molecular Biology (BioCreative) contest. The aim of this contest was to assess the performance of text mining systems applied to biomedical texts including tools which recognize named entities such as genes and proteins, and tools which automatically extract protein annotations. Results The "sentence sliding window" approach proposed here was found to efficiently extract text fragments from full text articles containing annotations on proteins, providing the highest number of correctly predicted annotations. Moreover, the number of correct extractions of individual entities (i.e. proteins and GO terms) involved in the relationships used for the annotations was significantly higher than the correct extractions of the complete annotations (protein-function relations). Conclusion We explored the use of averaging sentence sliding windows for information extraction, especially in a context where conventional training data is unavailable. The combination of our approach with more refined statistical estimators and machine learning techniques might be a way to improve annotation extraction for future biomedical text mining applications. PMID:15960831
Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function
Quarta, Giulio; Sin, Ken; Schlick, Tamar
2012-01-01
Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way in which sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we compute energy landscapes, which describe the accessible secondary structures for a range of sequence lengths, to analyze the transcriptional process as a given sequence elongates to full length. In line with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: low-barrier landscape with an ensemble of different conformations in equilibrium before encountering a substrate; barrier-free landscape in which a direct, dominant “downhill” pathway to the minimum free energy structure is apparent; and a barrier-dominated landscape with two isolated conformational states, each associated with a different biological function. Sharing concepts with the “new view” of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved in various riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design. PMID:22359488