Sample records for broad-spectrum bactericidal activity

  1. Preventing Ototoxic Synergy of Prior Noise Trauma during Aminoglycoside Therapy

    DTIC Science & Technology

    2017-06-01

    with aminoglycoside antibiotics that have broad-spectrum bactericidal activity for treating or preventing life-threatening infections. However...with aminoglycoside antibiotics that have broad- spectrum bactericidal activity for treating or preventing life-threatening infections. However...aminoglycoside uptake. What was accomplished under these goals? 1) Major activities Due to lab relocation, the project was interrupted in 2015, and

  2. Novel engineered cationic antimicrobial peptides display broad-spectrum activity against Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei.

    PubMed

    Abdelbaqi, Suha; Deslouches, Berthony; Steckbeck, Jonathan; Montelaro, Ronald; Reed, Douglas S

    2016-02-01

    Broad-spectrum antimicrobials are needed to effectively treat patients infected in the event of a pandemic or intentional release of a pathogen prior to confirmation of the pathogen's identity. Engineered cationic antimicrobial peptides (eCAPs) display activity against a number of bacterial pathogens including multi-drug-resistant strains. Two lead eCAPs, WLBU2 and WR12, were compared with human cathelicidin (LL-37) against three highly pathogenic bacteria: Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei. Both WLBU2 and WR12 demonstrated bactericidal activity greater than that of LL-37, particularly against F. tularensis and Y. pestis. Only WLBU2 had bactericidal activity against B. pseudomallei. WLBU2, WR12 and LL-37 were all able to inhibit the growth of the three bacteria in vitro. Because these bacteria can be facultative intracellular pathogens, preferentially infecting macrophages and dendritic cells, we evaluated the activity of WLBU2 against F. tularensis in an ex vivo infection model with J774 cells, a mouse macrophage cell line. In that model WLBU2 was able to achieve greater than 50% killing of F. tularensis at a concentration of 12.5 μM. These data show the therapeutic potential of eCAPs, particularly WLBU2, as a broad-spectrum antimicrobial for treating highly pathogenic bacterial infections.

  3. Cationic Biomimetic Particles of Polystyrene/Cationic Bilayer/Gramicidin for Optimal Bactericidal Activity.

    PubMed

    Xavier, Gabriel R S; Carmona-Ribeiro, Ana M

    2017-12-02

    Nanostructured particles of polystyrene sulfate (PSS) covered by a cationic lipid bilayer of dioctadecyldimethylammonium bromide (DODAB) incorporated gramicidin D (Gr) yielding optimal and broadened bactericidal activity against both Escherichia coli and Staphylococcus aureus . The adsorption of DODAB/Gr bilayer onto PSS nanoparticles (NPs) increased the zeta-average diameter by 8-10 nm, changed the zeta-potential of the NPs from negative to positive, and yielded a narrow size distributions for the PSS/DODAB/Gr NPs, which displayed broad and maximal microbicidal activity at very small concentrations of the antimicrobials, namely, 0.057 and 0.0057 mM DODAB and Gr, respectively. The results emphasized the advantages of highly-organized, nanostructured, and cationic particles to achieve hybrid combinations of antimicrobials with broad spectrum activity at considerably reduced DODAB and Gr concentrations.

  4. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins

    PubMed Central

    Brahma, Biswajit; Patra, Mahesh Chandra; Karri, Satyanagalakshmi; Chopra, Meenu; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Mahanty, Sourav; Thakur, Kiran; Poluri, Krishna Mohan; Datta, Tirtha Kumar; De, Sachinandan

    2015-01-01

    Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics. PMID:26675301

  5. The Effect of Long-Term Storage on the Physiochemical and Bactericidal Properties of Electrochemically Activated Solutions

    PubMed Central

    Robinson, Gareth; Thorn, Robin; Reynolds, Darren

    2013-01-01

    Electrochemically activated solutions (ECAS) are generated by electrolysis of NaCl solutions, and demonstrate broad spectrum antimicrobial activity and high environmental compatibility. The biocidal efficacy of ECAS at the point of production is widely reported in the literature, as are its credentials as a “green biocide.” Acidic ECAS are considered most effective as biocides at the point of production and ill suited for extended storage. Acidic ECAS samples were stored at 4 °C and 20 °C in glass and polystyrene containers for 398 days, and tested for free chlorine, pH, ORP and bactericidal activity throughout. ORP and free chlorine (mg/L) in stored ECAS declined over time, declining at the fastest rate when stored at 20 °C in polystyrene and at the slowest rate when stored at 4 °C in glass. Bactericidal efficacy was also affected by storage and ECAS failed to produce a 5 log10 reduction on five occasions when stored at 20 °C. pH remained stable throughout the storage period. This study represents the longest storage evaluation of the physiochemical parameters and bactericidal efficacy of acidic ECAS within the published literature and reveals that acidic ECAS retain useful bactericidal activity for in excess of 12 months, widening potential applications. PMID:23263673

  6. The effect of long-term storage on the physiochemical and bactericidal properties of electrochemically activated solutions.

    PubMed

    Robinson, Gareth; Thorn, Robin; Reynolds, Darren

    2012-12-24

    Electrochemically activated solutions (ECAS) are generated by electrolysis of NaCl solutions, and demonstrate broad spectrum antimicrobial activity and high environmental compatibility. The biocidal efficacy of ECAS at the point of production is widely reported in the literature, as are its credentials as a "green biocide." Acidic ECAS are considered most effective as biocides at the point of production and ill suited for extended storage. Acidic ECAS samples were stored at 4 °C and 20 °C in glass and polystyrene containers for 398 days, and tested for free chlorine, pH, ORP and bactericidal activity throughout. ORP and free chlorine (mg/L) in stored ECAS declined over time, declining at the fastest rate when stored at 20 °C in polystyrene and at the slowest rate when stored at 4 °C in glass. Bactericidal efficacy was also affected by storage and ECAS failed to produce a 5 log(10) reduction on five occasions when stored at 20 °C. pH remained stable throughout the storage period. This study represents the longest storage evaluation of the physiochemical parameters and bactericidal efficacy of acidic ECAS within the published literature and reveals that acidic ECAS retain useful bactericidal activity for in excess of 12 months, widening potential applications.

  7. Antimicrobial and anticancer potential of low molecular weight polypeptides extracted and characterized from leaves of Azadirachta indica.

    PubMed

    Al Saiqali, Mohammed; Tangutur, Anjana Devi; Banoth, Chandrasekhar; Bhukya, Bhima

    2018-07-15

    Low molecular weight antimicrobial polypeptides were extracted and purified from the young fresh leaves of Azadirachta indica (neem). The total protein extracted was precipitated with 15% TCA-Acetone. The total purified proteins yielded from the two extraction methods were 122.33±2.21 and 115.09±1.88mg/g of the total fresh weight. The SDS-PAGE analysis identified the presence of eight low molecular weight polypeptide bands. The antimicrobial activity of the resolved bands was detected by Polyacrylamide gel-Agar overlay diffusion assay (PAG-ADA). Their broad-spectrum bactericidal activity was confirmed using the same technique and found three low molecular weight bands from 11 to 14kDa collectively exhibiting superior bactericidal activities against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermis, Enterococcus faecalis, Pseudomonas aeruginosa and fungicidal activity against Candida tropicalis. The FTIR spectrum of the protein bands depicted the presence of hydroxyl and carbonyl groups in the protein bands. These polypeptides were characterized by MALDI-TOF/TOF analysis. Further, the purified protein extract was found to be active against HELA, BT-549 and Neuro-2a cell lines with IC 50 value of 74.03±2.31, 64.82±1.64, 238.32±2.12 and 109.94±2.96, 59.61±0.75 for 24h and 48h, respectively. The results of present study indicate that these polypeptides exhibit broad spectrum antimicrobial and anticancer activity and can therefore be explored for their therapeutic potential. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The secreted fructose 1,6-bisphosphate aldolase as a broad spectrum vaccine candidate against pathogenic bacteria in aquaculture.

    PubMed

    Sun, Zhongyang; Shen, Binbing; Wu, Haizhen; Zhou, Xiangyu; Wang, Qiyao; Xiao, Jingfan; Zhang, Yuanxing

    2015-10-01

    The development of aquaculture has been hampered by different aquatic pathogens that can cause edwardsiellosis, vibriosis, or other diseases. Therefore, developing a broad spectrum vaccine against different fish diseases is necessary. In this study, fructose 1,6-bisphosphate aldolase (FBA), a conserved enzyme in the glycolytic pathway, was demonstrated to be located in the non-cytoplasmic components of five aquatic pathogenic bacteria and exhibited remarkable protection and cross-protection against these pathogens in turbot and zebrafish. Further analysis revealed that sera sampled from vaccinated turbot had a high level of specific antibody and bactericidal activity against these pathogens. Meanwhile, the increased expressions of immune response-related genes associated with antigen recognition and presentation indicated that the adaptive immune response was effectively aroused. Taken together, our results suggest that FBA can be utilized as a broad-spectrum vaccine against various pathogenic bacteria of aquaculture in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. [Antibacterial activity of sulopenem, a new parenteral penem antibiotic].

    PubMed

    Inoue, E; Komoto, E; Taniyama, Y; Mitsuhashi, S

    1996-04-01

    Sulopenem, a new penem antibiotic, was compared with other antibiotics with regard to in vitro antibacterial and bactericidal activities, stabilization against beta-lactamases, and effect on the release of lipopolysaccharide from Gram-negative bacteria. The results are summarized as follows. 1. Sulopenem showed more potent activities than other antibiotics against both Gram-positive and Gram-negative bacteria except Pseudomonas aeruginosa. 2. Sulopenem showed potent bactericidal activities (MIC/MBC) against both Gram-positive and Gram-negative bacteria. Time kill studies against Staphylococcus aureus, Escherichia coli, Enterobacter cloacae and Citrobacter freundii showed potent bactericidal activities of sulopenem. 3. Sulopenem was found to possess a stronger activity than other antibiotics against beta-lactamase-producing strains except P. aeruginosa and Stenotrophomonas maltophilia. 4. In particular, sulopenem was found to be more stable to the hydrolysis by various beta-lactamases produced by Gram-negative bacteria than any other antibiotics tested. Vmax/Km values of sulopenem were smaller than those of cefotiam for all tested beta-lactamases, which reflected a broad antibacterial spectrum of sulopenem. 5. E. coli ML4707 exposed to sulopenem and imipenem released less endotoxin than did controls at all concentration ranges tested. In contrast, the strain exposed to ceftazidime at bacteriostatic concentrations released a large amount of endotoxin.

  10. Lactobacillus pentosus strain LPS16 produces lactic acid, inhibiting multidrug-resistant Helicobacter pylori.

    PubMed

    Zheng, Po-Xing; Fang, Hsin-Yi; Yang, Hsiao-Bai; Tien, Nai-Yueh; Wang, Ming-Cheng; Wu, Jiunn-Jong

    2016-04-01

    Helicobacter pylori is a human gastric pathogen. Antibiotic resistance of H. pylori has become a problem increasing the failure of H. pylori eradication. Therefore alternative approaches are required. The aim of this study was to evaluate the anti-H. pylori activity of Lactobacillus pentosus strain LPS16 and the mechanism of its killing effect. The anti-H. pylori activity of LPS16 was determined by the disc diffusion test and time killing assay. High-performance liquid chromatography analysis was used to analyze the secreted compounds of LPS16. Sixty H. pylori strains isolated from different gastric diseases, having different antibiotic susceptibility were collected to analyze the spectrum of anti-H. pylori activity of LPS16. Adhesion ability of LPS16 to gastric epithelial cell lines was assayed by flow cytometry. The anti-H. pylori activity of LPS16 depended on the secreted component, and lactic acid mediated bactericidal activity against H. pylori. The bactericidal activity did not vary significantly among the strains isolated from different diseases having different antibiotic susceptibility. Moreover, LPS16 can adhere on gastric epithelial cell lines AKG and MKN45. L. pentosus strain LPS16 had the broad-spectrum anti-H. pylori activity, suggesting that it can be used to prevent H. pylori infection. Copyright © 2014. Published by Elsevier B.V.

  11. A Bactericidal Guanidinomethyl Biaryl That Alters the Dynamics of Bacterial FtsZ Polymerization

    PubMed Central

    Kaul, Malvika; Parhi, Ajit K.; Zhang, Yongzheng; LaVoie, Edmond J.; Tuske, Steve; Arnold, Eddy; Kerrigan, John E.; Pilch, Daniel S.

    2014-01-01

    The prevalence of multidrug resistance among clinically significant bacterial pathogens underscores a critical need for the development of new classes of antibiotics with novel mechanisms of action. Here we describe the synthesis and evaluation of a guanidinomethyl biaryl compound {1-((4′-(tert-butyl)-[1,1′-biphenyl]-3-yl)methyl)guanidine} that targets the bacterial cell division protein FtsZ. In vitro studies with various bacterial FtsZ proteins reveal that the compound alters the dynamics of FtsZ self-polymerization via a stimulatory mechanism, while minimally impacting the polymerization of tubulin, the closest mammalian homologue of FtsZ. The FtsZ binding site of the compound is identified through a combination of computational and mutational approaches. The compound exhibits a broad spectrum of bactericidal activity, including activity against the multidrug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), while also exhibiting a minimal potential to induce resistance. Taken together, our results highlight the compound as a promising new FtsZ-targeting bactericidal agent. PMID:23050700

  12. Comprehensive bactericidal activity of an ethanol-based hand gel in 15 seconds.

    PubMed

    Kampf, Günter; Hollingsworth, Angela

    2008-01-22

    Some studies indicate that the commonly recommended 30 s application time for the post contamination treatment of hands may not be necessary as the same effect may be achieved with some formulations in a shorter application time such as 15 s. We evaluated the bactericidal activity of an ethanol-based hand gel (Sterillium Comfort Gel) within 15 s in a time-kill-test against 11 Gram-positive, 16 Gram-negative bacteria and 11 emerging bacterial pathogens. Each strain was evaluated in quadruplicate. The hand gel (85% ethanol, w/w) was found to reduce all 11 Gram-positive and all 16 Gram-negative bacteria by more than 5 log10 steps within 15 s, not only against the ATCC test strains but also against corresponding clinical isolates. In addition, a log10 reduction > 5 was observed against all tested emerging bacterial pathogens. The ethanol-based hand gel was found to have a broad spectrum of bactericidal activity in only 15 s which includes the most common species causing nosocomial infections and the relevant emerging pathogens. Future research will hopefully help to find out if a shorter application time for the post contamination treatment of hands provides more benefits or more risks.

  13. Antipneumococcal activity of ceftobiprole, a novel broad-spectrum cephalosporin.

    PubMed

    Kosowska, Klaudia; Hoellman, Dianne B; Lin, Gengrong; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bozdogan, Bülent; Shapiro, Stuart; Appelbaum, Peter C

    2005-05-01

    Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC(50) and MIC(90) values (microg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1x and 2x the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2x the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2x the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole.

  14. Antipneumococcal Activity of Ceftobiprole, a Novel Broad-Spectrum Cephalosporin

    PubMed Central

    Kosowska, Klaudia; Hoellman, Dianne B.; Lin, Gengrong; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bozdogan, Bülent; Shapiro, Stuart; Appelbaum, Peter C.

    2005-01-01

    Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC50 and MIC90 values (μg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1× and 2× the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2× the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2× the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole. PMID:15855516

  15. The Commonly Used Bactericide Bismerthiazol Promotes Rice Defenses against Herbivores

    PubMed Central

    Mo, Xiaochang; Wang, Wanwan; Chen, Xia

    2018-01-01

    Chemical elicitors that enhance plant resistance to pathogens have been extensively studied, however, chemical elicitors that induce plant defenses against insect pests have received little attention. Here, we found that the exogenous application of a commonly used bactericide, bismerthiazol, on rice induced the biosynthesis of constitutive and/or elicited jasmonic acid (JA), jasmonoyl-isoleucine conjugate (JA-Ile), ethylene and H2O2 but not salicylic acid. These activated signaling pathways altered the volatile profile of rice plants. White-backed planthopper (WBPH, Sogatella furcifera) nymphs and gravid females showed a preference for feeding and/or oviposition on control plants: survival rates were better and more eggs were laid than on bismerthiazol-treated plants. Moreover, bismerthiazol treatment also increased both the parasitism rate of WBPH eggs laid on plants in the field by Anagrus nilaparvatae, and also the resistance of rice to the brown planthopper (BPH) Nilaparvata lugens and the striped stem borer (SSB) Chilo suppressalis. These findings suggest that the bactericide bismerthiazol can induce the direct and/or indirect resistance of rice to multiple insect pests, and so can be used as a broad-spectrum chemical elicitor. PMID:29695083

  16. [In vitro and in vivo antibacterial activities of pazufloxacin mesilate, a new injectable quinolone].

    PubMed

    Nomura, Nobuhiko; Mitsuyama, Junichi; Furuta, Yousuke; Yamada, Hisashi; Nakata, Mitsunori; Fukuda, Toshiko; Yamada, Hiroshi; Takahata, Masahiro; Minami, Shinzaburo

    2002-08-01

    We investigated the in vitro and in vivo antibacterial activities of pazufloxacin mesilate (PZFX mesilate), a new injectable quinolone, and obtained the following results. 1) The MIC50 and MIC90 values of PZFX against clinically isolated Gram-positive and -negative bacteria, ranged from 0.0125 to 12.5 micrograms/ml and 0.025 to 100 micrograms/ml, respectively. PZFX showed broad spectrum activity. The antibacterial activities of PZFX against quinolone-susceptible, methicillin-resistant Staphylococcus aureus, beta-lactamase-negative, ampicillin-resistant Haemophilus influenzae, extended spectrum beta-lactamase possessing Klebsiella pneumoniae and imipenem/cilastatine (IPM/CS)-resistant Pseudomonas aeruginosa were superior to those of ceftazidime (CAZ), ceftriaxone, IPM/CS, meropenem and panipenem/betamipron. 2) PZFX showed superior bactericidal activity against S. aureus, Escherichia coli, Proteus mirabilis, Serratia marcescens and P. aeruginosa to those of CAZ and IPM/CS after treatment for 15 minutes at the drug concentration equivalent to that in human serum at clinical dose to be continued for 15 minutes. 3) CAZ and IPM/CS had no bactericidal activity at the 16 times of MIC against P. aeruginosa in human polymorphonuclear leucocytes, while PZFX exhibited potent bactericidal activity in a dose-dependent manner against such bacteria. 4) PZFX inhibited both DNA gyrase and topoisomerase IV from S. aureus at nearly the same level. PZFX showed poor inhibitory activity against topoisomerase II from human placenta and showed high selectivity to bacterial topoisomerase. 5) PZFX mesilate showed superior therapeutic activity to that of CAZ with following infection model caused by S. aureus and P. aeruginosa or each; systemic infection with cyclophosphamide-treated mice, systemic infection in mice with high challenge doses, CMC pouch infection in rat, and calculus infection in rat bladder. 6) Intravenous administration of PZFX with high plasma concentration just after administration, showed more excellent therapeutic effect against the rat intraperitoneal infection, than p.o. and s.c. administration.

  17. Bactericidal Activity of Ceragenin CSA-13 in Cell Culture and in an Animal Model of Peritoneal Infection.

    PubMed

    Bucki, Robert; Niemirowicz, Katarzyna; Wnorowska, Urszula; Byfield, Fitzroy J; Piktel, Ewelina; Wątek, Marzena; Janmey, Paul A; Savage, Paul B

    2015-10-01

    Ceragenins constitute a novel family of cationic antibiotics characterized by a broad spectrum of antimicrobial activities, which have mostly been assessed in vitro. Using a polarized human lung epithelial cell culture system, we evaluated the antibacterial activities of the ceragenin CSA-13 against two strains of Pseudomonas aeruginosa (PAO1 and Xen5). Additionally, the biodistribution and bactericidal activity of a CSA-13-IRDye 800CW derivate were assessed using an animal model of peritoneal infection after PAO1 challenge. In cell culture, CSA-13 bactericidal activities against PAO1 and Xen5 were higher than the activities of the human cathelicidin peptide LL-37. Increased CSA-13 activity was observed in polarized human lung epithelial cell cultures subjected to butyric acid treatment, which is known to increase endogenous LL-37 production. Eight hours after intravenous or intraperitoneal injection, the greatest CSA-13-IRDye 800CW accumulation was observed in mouse liver and kidneys. CSA-13-IRDye 800CW administration resulted in decreased bacterial outgrowth from abdominal fluid collected from animals subjected to intraperitoneal PAO1 infection. These observations indicate that CSA-13 may synergistically interact with antibacterial factors that are naturally present at mucosal surfaces and it maintains its antibacterial activity in the infected abdominal cavity. Cationic lipids such as CSA-13 represent excellent candidates for the development of new antibacterial compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens

    PubMed Central

    HAYDEL, SHELLEY E.; REMENIH, CHRISTINE M.; WILLIAMS, LYNDA B.

    2008-01-01

    SYNOPSIS Objectives The capacity to properly address the worldwide incidence of infectious diseases lies in the ability to detect, prevent, and effectively treat these infections. Therefore, identifying and analyzing inhibitory agents are worthwhile endeavors in an era when few new classes of effective antimicrobials have been developed. The use of geological nanomaterials to heal skin infections has been evident since the earliest recorded history, and specific clay minerals may prove valuable in the treatment of bacterial diseases, including infections for which there are no effective antibiotics, such as Buruli ulcer and multi-drug resistant infections. Methods We have subjected two iron-rich clay minerals, which have previously been used to treat Buruli ulcer patients, to broth culture testing of antibiotic-susceptible and -resistant pathogenic bacteria to assess the feasibility of using clay minerals as therapeutic agents. Results One specific mineral, CsAg02, demonstrated bactericidal activity against pathogenic Escherichia coli, extended-spectrum β-lactamase (ESBL) E. coli, S. enterica serovar Typhimurium, Pseudomonas aeruginosa, and Mycobacterium marinum and a combined bacteriostatic/bactericidal effect against Staphylococcus aureus, penicillin-resistant S. aureus (PRSA), methicillin-resistant S. aureus (MRSA), and Mycobacterium smegmatis, while another mineral with similar structure and bulk crystal chemistry, CsAr02, had no effect on or enhanced bacterial growth. The <0.2 μm fraction of CsAg02 and CsAg02 heated to 200°C or 550°C retained bactericidal activity, while cation-exchanged CsAg02 and CsAg02 heated to 900°C no longer killed E. coli. Conclusions Our results indicate that specific mineral products have intrinsic, heat-stable antibacterial properties, which could provide an inexpensive treatment against numerous human bacterial infections. PMID:18070832

  19. Biofouling-resistant ceragenin-modified materials and structures for water treatment

    DOEpatents

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D. T.; Savage, Paul B.

    2013-09-10

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  20. Polyketide family of novel antibacterial 7-O-methyl-5'-hydroxy-3'-heptenoate-macrolactin from seaweed-associated Bacillus subtilis MTCC 10403.

    PubMed

    Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna

    2014-12-17

    Seaweed-associated heterotrophic bacterial communities were screened to isolate potentially useful antimicrobial strains, which were characterized by phylogenetic analysis. The bacteria were screened for the presence of metabolite genes involved in natural product biosynthetic pathway, and the structural properties of secondary metabolites were correlated with the genes. Bioactivity-guided isolation of polyene antibiotic 7-O-methyl-5'-hydroxy-3'-heptenoate-macrolactin from Bacillus subtilis MTCC10403 associated with seaweed Anthophycus longifolius using mass spectrometry and extensive 2D-NMR studies was carried out. The newly isolated macrolactin compound is a bactericidal antibiotic with broad spectrum activity against human opportunistic clinical pathogens. The biosynthetic pathway of 7-O-methyl-5'-hydroxy-3'-heptenoate-macrolactin by means of a stepwise, decarboxylative condensation pathway established the PKS-assisted biosynthesis of the parent macrolactin and the side-chain 5-hydroxyhept-3-enoate moiety attached to the macrolactin ring system at C-7. Antimicrobial activity analysis combined with the results of amplifying genes encoding for polyketide synthetase and nonribosomal peptide synthetase showed that seaweed-associated bacteria had broad-spectrum antimicrobial activity. The present work may have an impact on the exploitation of macrolactins for pharmaceutical and biotechnological applications.

  1. Review on the Antimicrobial Properties of Carbon Nanostructures

    PubMed Central

    Al-Jumaili, Ahmed; Alancherry, Surjith; Bazaka, Kateryna

    2017-01-01

    Swift developments in nanotechnology have prominently encouraged innovative discoveries across many fields. Carbon-based nanomaterials have emerged as promising platforms for a broad range of applications due to their unique mechanical, electronic, and biological properties. Carbon nanostructures (CNSs) such as fullerene, carbon nanotubes (CNTs), graphene and diamond-like carbon (DLC) have been demonstrated to have potent broad-spectrum antibacterial activities toward pathogens. In order to ensure the safe and effective integration of these structures as antibacterial agents into biomaterials, the specific mechanisms that govern the antibacterial activity of CNSs need to be understood, yet it is challenging to decouple individual and synergistic contributions of physical, chemical and electrical effects of CNSs on cells. In this article, recent progress in this area is reviewed, with a focus on the interaction between different families of carbon nanostructures and microorganisms to evaluate their bactericidal performance. PMID:28892011

  2. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria

    PubMed Central

    McCormack, Ryan M; de Armas, Lesley R; Shiratsuchi, Motoaki; Fiorentino, Desiree G; Olsson, Melissa L; Lichtenheld, Mathias G; Morales, Alejo; Lyapichev, Kirill; Gonzalez, Louis E; Strbo, Natasa; Sukumar, Neelima; Stojadinovic, Olivera; Plano, Gregory V; Munson, George P; Tomic-Canic, Marjana; Kirsner, Robert S; Russell, David G; Podack, Eckhard R

    2015-01-01

    Perforin-2 (MPEG1) is a pore-forming, antibacterial protein with broad-spectrum activity. Perforin-2 is expressed constitutively in phagocytes and inducibly in parenchymal, tissue-forming cells. In vitro, Perforin-2 prevents the intracellular replication and proliferation of bacterial pathogens in these cells. Perforin-2 knockout mice are unable to control the systemic dissemination of methicillin-resistant Staphylococcus aureus (MRSA) or Salmonella typhimurium and perish shortly after epicutaneous or orogastric infection respectively. In contrast, Perforin-2-sufficient littermates clear the infection. Perforin-2 is a transmembrane protein of cytosolic vesicles -derived from multiple organelles- that translocate to and fuse with bacterium containing vesicles. Subsequently, Perforin-2 polymerizes and forms large clusters of 100 Å pores in the bacterial surface with Perforin-2 cleavage products present in bacteria. Perforin-2 is also required for the bactericidal activity of reactive oxygen and nitrogen species and hydrolytic enzymes. Perforin-2 constitutes a novel and apparently essential bactericidal effector molecule of the innate immune system. DOI: http://dx.doi.org/10.7554/eLife.06508.001 PMID:26402460

  3. Evaluation of robenidine analog NCL195 as a novel broad-spectrum antibacterial agent.

    PubMed

    Ogunniyi, Abiodun D; Khazandi, Manouchehr; Stevens, Andrew J; Sims, Sarah K; Page, Stephen W; Garg, Sanjay; Venter, Henrietta; Powell, Andrew; White, Karen; Petrovski, Kiro R; Laven-Law, Geraldine; Tótoli, Eliane G; Salgado, Hérida R; Pi, Hongfei; Coombs, Geoffrey W; Shinabarger, Dean L; Turnidge, John D; Paton, James C; McCluskey, Adam; Trott, Darren J

    2017-01-01

    The spread of multidrug resistance among bacterial pathogens poses a serious threat to public health worldwide. Recent approaches towards combating antimicrobial resistance include repurposing old compounds with known safety and development pathways as new antibacterial classes with novel mechanisms of action. Here we show that an analog of the anticoccidial drug robenidine (4,6-bis(2-((E)-4-methylbenzylidene)hydrazinyl)pyrimidin-2-amine; NCL195) displays potent bactericidal activity against Streptococcus pneumoniae and Staphylococcus aureus by disrupting the cell membrane potential. NCL195 was less cytotoxic to mammalian cell lines than the parent compound, showed low metabolic degradation rates by human and mouse liver microsomes, and exhibited high plasma concentration and low plasma clearance rates in mice. NCL195 was bactericidal against Acinetobacter spp and Neisseria meningitidis and also demonstrated potent activity against A. baumannii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Enterobacter spp. in the presence of sub-inhibitory concentrations of ethylenediaminetetraacetic acid (EDTA) and polymyxin B. These findings demonstrate that NCL195 represents a new chemical lead for further medicinal chemistry and pharmaceutical development to enhance potency, solubility and selectivity against serious bacterial pathogens.

  4. [Norfloxacin: a broad-spectrum quinolone for superficial eye infections].

    PubMed

    Grosset, J

    1990-09-01

    Norfloxacin is a synthetic antibiotic belonging to the fluoroquinolone class. At present, an oral formulation is available and indicated for the treatment of urinary tract infections. Because of the properties of norfloxacin, a 0.3% norfloxacin ophtalmic solution may be used by ophtalmologists. The molecular target of norfloxacin is DNA gyrase that regulates DNA replication. Norfloxacin is a broad spectrum antibiotic. A flurin atome in position 6 is responsible for the broad spectrum of activity as compared with the first generation quinolones. MICs of norfloxacin against Haemophilus influenzae, Neisseria gonorrhoeae, Staphylococcus aureus, Pseudomonas aeruginosa, and enterbacteriaceae are low or intermediate. Norfloxacin is a bactericidal drug of which MBCs are equivalent to or twice as high as MICs against the majority of organisms. The proportion of norfloxacin resistant strains is limited and, at present, no plasmid resistance has been observed. This explains the activity of norfloxacin against clinical isolates whose drug resistance is plasmid-mediated. Norfloxacin resistance is chromosomic, but the mutation rate is low. There is no cross-resistance between quinolones and other classes of drug, with the exception of drug resistance related to changes in the bacterial outer membrane proteins. A low decrease in norfloxacin susceptibility is observed in case of resistance to first generation quinolones. The above-mentioned properties make norfloxacin in ophtalmic solution a first line drug for treatment of superficial ocular infections and a second line drug for treatment of infections due to organisms resistant to other drugs.

  5. Potential applications for Annona squamosa leaf extract in the treatment and prevention of foodborne bacterial disease.

    PubMed

    Dholvitayakhun, Achara; Trachoo, Nathanon; Sakee, Uthai; Cushnie, T P Tim

    2013-03-01

    Foodborne disease is a major public health problem. The present study examined Annona squamosa leaves, which are traditionally used to treat diarrhea and other infections, for their potential to be used in modern food safety or medicine. Active constituents were partially purified by ethanol extraction and column chromatography. MICs of the extract were 62.5 to 125 microg/mL against Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus, and 250 microg/mL against Campylobacter jejuni. In time-kill assays, 500 microg/mL of the extract reduced colony forming unit numbers of C. jejuni almost 10 000-fold within 12 hours. Similar decreases were seen against B. cereus, but over a longer time-frame. LC-MS analysis indicated the presence of reticuline and oxophoebine. Assessment of stability by MIC assay showed activity was heat-labile, with loss of activity greatest following high temperature treatments. Activity was relatively stable at refrigeration temperature. These results indicate A. squamosa has broad-spectrum but heat-labile activity against foodborne bacterial pathogens, and bactericidal activity against B. cereus and C. jejuni. This bactericidal activity is not sufficiently rapid for A. squamosa to be used as a food sanitizer, but the extract could potentially be developed as an additive for refrigerated foods, or a modern treatment for foodborne illness.

  6. Fragment-Based Whole Cell Screen Delivers Hits against M. tuberculosis and Non-tuberculous Mycobacteria.

    PubMed

    Moreira, Wilfried; Lim, Jia Jie; Yeo, Si Ying; Ramanujulu, Pondy M; Dymock, Brian W; Dick, Thomas

    2016-01-01

    Reactive multi-target 'fragment drugs' represent critical components of current tuberculosis regimens. These compounds, such as pyrazinamide, are old synthetic antimycobacterials that are activated inside Mycobacterium tuberculosis bacilli and are smaller than the usual drug-like, single-target molecules. Based on the success of small 'dirty' drugs in the chemotherapy of tuberculosis, we suggested previously that fragment-based whole cell screens should be introduced in our current antimycobacterial drug discovery efforts. Here, we carried out such a screen and characterized bactericidal activity, selectivity and spectrum of hits we obtained. A library of 1725 fragments was tested at a single concentration for growth inhibitory activity against M. bovis BCG as screening strain and 38 of 116 primary hits were confirmed in dose response analyses to be active against virulent M. tuberculosis. Bacterial kill experiments showed that most hits displayed bactericidal activity at their minimal inhibitory concentration. Cytotoxicity assays established that a large proportion of hits displayed a favorable selectivity index for mammalian cells. Importantly, one third of M. tuberculosis active fragments were also active against M. abscessus and M. avium, two emerging non-tuberculous mycobacterial (NTM) pathogens, opening the opportunity to develop broad spectrum antimycobacterials. Activity determination against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa) bacteria, as well as fungi (Candida albicans, Cryptococcus neoformans) showed only a small overlap indicating a generally narrow spectrum of these novel antimicrobial hits for mycobacteria. In conclusion, we carried out the first fragment-based whole cell screen against bacteria and identified a substantial number of hits with excellent physicochemical properties and dual activity against M. tuberculosis and NTM pathogens. These hits will now be evaluated in animal models of mycobacterial infection to determine whether any of them can be moved forward as a new antimycobacterial fragment drug candidate.

  7. Methods for attaching polymerizable ceragenins to water treatment membranes using amine and amide linkages

    DOEpatents

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D.T.; Savage, Paul B.

    2013-10-15

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  8. Methods for attaching polymerizable ceragenins to water treatment membranes using silane linkages

    DOEpatents

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D. T.; Savage, Paul B.

    2013-09-10

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  9. Bactericidal Effects and Mechanism of Action of Olanexidine Gluconate, a New Antiseptic

    PubMed Central

    Iwata, Koushi; Nii, Takuya; Nakata, Hikaru; Tsubotani, Yoshie; Inoue, Yasuhide

    2015-01-01

    Olanexidine gluconate [1-(3,4-dichlorobenzyl)-5-octylbiguanide gluconate] (development code OPB-2045G) is a new monobiguanide compound with bactericidal activity. In this study, we assessed its spectrum of bactericidal activity and mechanism of action. The minimal bactericidal concentrations of the compound for 30-, 60-, and 180-s exposures were determined with the microdilution method using a neutralizer against 320 bacterial strains from culture collections and clinical isolates. Based on the results, the estimated bactericidal olanexidine concentrations with 180-s exposures were 869 μg/ml for Gram-positive cocci (155 strains), 109 μg/ml for Gram-positive bacilli (29 strains), and 434 μg/ml for Gram-negative bacteria (136 strains). Olanexidine was active against a wide range of bacteria, especially Gram-positive cocci, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and had a spectrum of bactericidal activity comparable to that of commercial antiseptics, such as chlorhexidine and povidone-iodine. In vitro experiments exploring its mechanism of action indicated that olanexidine (i) interacts with the bacterial surface molecules, such as lipopolysaccharide and lipoteichoic acid, (ii) disrupts the cell membranes of liposomes, which are artificial bacterial membrane models, (iii) enhances the membrane permeability of Escherichia coli, (iv) disrupts the membrane integrity of S. aureus, and (v) denatures proteins at relatively high concentrations (≥160 μg/ml). These results indicate that olanexidine probably binds to the cell membrane, disrupts membrane integrity, and its bacteriostatic and bactericidal effects are caused by irreversible leakage of intracellular components. At relatively high concentrations, olanexidine aggregates cells by denaturing proteins. This mechanism differs slightly from that of a similar biguanide compound, chlorhexidine. PMID:25987609

  10. Structure-activity analysis and biological studies of chensinin-1b analogues.

    PubMed

    Dong, Weibing; Dong, Zhe; Mao, Xiaoman; Sun, Yue; Li, Fei; Shang, Dejing

    2016-06-01

    Chensinin-1b shows a potent and broad-spectrum bactericidal activity and no hemolytic activity and thus is a potential therapeutic agent against bacterial infection. The NMR structure of chensinin-1b consists of a partially α-helical region (residues 8-14) in a membrane-mimic environment that is distinct from other common antimicrobial peptides. However, further analysis of the structural features of chensinin-1b is required to better understand its bactericidal activity. In this study, a series of N- and C-terminally truncated or amino acid-substituted chensinin-1b analogues were synthesized. Next, the bactericidal activity and bacterial membrane effects of the analogues were investigated. The results indicated that the N-terminal residues play a more significant role than the C-terminal residues in the antimicrobial activity of chensinin-1b. The removal of five amino acids from the C-terminus of chensinin-1b did not affect its biological properties, but helix disruption significantly decreased bactericidal activity. The substitution of positively charged residues increased the helicity and antimicrobial activity of the peptide. We also identified a novel analogue [R(4),R(10)]C1b(3-13) that exhibited similar bactericidal properties with its parent peptide chensinin-1b. Electrostatic interactions between the selected analogues and lipopolysaccharides or cells were detected using isothermal titration calorimetry or zeta potential. The thermodynamic parameters ΔH and ΔS for [R(4),R(10)]C1b(3-13) were -20.48kcalmol(-1) and -0.0408kcalmol(-1)deg(-1), respectively. Chensinin-1b yielded similar results of -26.36kcalmol(-1) and -0.0559kcalmol(-1)deg(-1) for ΔH and ΔS, respectively. These results are consistence with their antimicrobial activities. Lastly, membrane depolarization studies showed that selected analogues exerted bactericidal activity by damaging the cytoplasmic membrane. Antimicrobial peptide chensinin-1b is a candidate for the development of new drugs and a template for the design of synthetic analogues. It mainly exhibits a random coil conformation in membrane environment, and in this manuscript, we characterized the structure of chensinin-1b using NMR spectroscopy, its structure is different than the structures of magainin 2, which has an α-helical conformation and indolicidin, which has a random coil structure. The structural features of chensinin-1b that are required for its potent bactericidal activity were also elucidated. Based on these data, we can fully understand the structure-activity relationship of such peptide and identified a novel analogue with properties that make it an attractive topic for future therapeutic research. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Evaluation of the in vitro activity of levornidazole, its metabolites and comparators against clinical anaerobic bacteria.

    PubMed

    Hu, Jiali; Zhang, Jing; Wu, Shi; Zhu, Demei; Huang, Haihui; Chen, Yuancheng; Yang, Yang; Zhang, Yingyuan

    2014-12-01

    This study evaluated the in vitro anti-anaerobic activity and spectrum of levornidazole, its metabolites and comparators against 375 clinical isolates of anaerobic bacteria, including Gram-negative bacilli (181 strains), Gram-negative cocci (11 strains), Gram-positive bacilli (139 strains) and Gram-positive cocci (44 strains), covering 34 species. Minimum inhibitory concentrations (MICs) of levornidazole, its five metabolites and three comparators against these anaerobic isolates were determined by the agar dilution method. Minimum bactericidal concentrations (MBCs) of levornidazole and metronidazole were measured against 22 strains of Bacteroides fragilis. Levornidazole showed good activity against B. fragilis, other Bacteroides spp., Clostridium difficile, Clostridium perfringens and Peptostreptococcus magnus, evidenced by MIC90 values of 0.5, 1, 0.25, 2 and 1mg/L, respectively. The activity of levornidazole and the comparators was poor for Veillonella spp. Generally, levornidazole displayed activity similar to or slightly higher than that of metronidazole, ornidazole and dextrornidazole against anaerobic Gram-negative bacilli, Gram-positive bacilli and Gram-positive cocci, especially B. fragilis. Favourable anti-anaerobic activity was also seen with levornidazole metabolites M1 and M4 but not M2, M3 or M5. For the 22 clinical B. fragilis strains, MBC50 and MBC90 values of levornidazole were 2mg/L and 4mg/L, respectively. Both MBC50/MIC50 and MBC90/MIC90 ratios of levornidazole were 4, similar to those of metronidazole. Levornidazole is an important anti-anaerobic option in clinical settings in terms of its potent and broad-spectrum in vitro activity, bactericidal property, and the anti-anaerobic activity of its metabolites M1 and M4. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  12. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens.

    PubMed

    Al-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen; Wink, Michael

    2015-02-15

    The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml). Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75-1). In time-kill assays all three-drug combinations exhibited a powerful bactericidal synergistic effect against MRSA NCTC 10442, VRE ATCC 51299, and E. coli ATCC 25922 with a reduction of more than 3log10 in the colony count after 24 h. Our findings suggest that bee venom and melittin synergistically enhanced the bactericidal effect of several antimicrobial agents when applied in combination especially when the drugs affect several and differing molecular targets. These results could lead to the development of novel or complementary antibacterial drugs against MDR pathogens. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Combinatorial Libraries As a Tool for the Discovery of Novel, Broad-Spectrum Antibacterial Agents Targeting the ESKAPE Pathogens.

    PubMed

    Fleeman, Renee; LaVoi, Travis M; Santos, Radleigh G; Morales, Angela; Nefzi, Adel; Welmaker, Gregory S; Medina-Franco, José L; Giulianotti, Marc A; Houghten, Richard A; Shaw, Lindsey N

    2015-04-23

    Mixture based synthetic combinatorial libraries offer a tremendous enhancement for the rate of drug discovery, allowing the activity of millions of compounds to be assessed through the testing of exponentially fewer samples. In this study, we used a scaffold-ranking library to screen 37 different libraries for antibacterial activity against the ESKAPE pathogens. Each library contained between 10000 and 750000 structural analogues for a total of >6 million compounds. From this, we identified a bis-cyclic guanidine library that displayed strong antibacterial activity. A positional scanning library for these compounds was developed and used to identify the most effective functional groups at each variant position. Individual compounds were synthesized that were broadly active against all ESKAPE organisms at concentrations <2 μM. In addition, these compounds were bactericidal, had antibiofilm effects, showed limited potential for the development of resistance, and displayed almost no toxicity when tested against human lung cells and erythrocytes. Using a murine model of peritonitis, we also demonstrate that these agents are highly efficacious in vivo.

  14. Bactericidal and antibiofilm activity of bactenecin-derivative peptides against the food-pathogen Listeria monocytogenes: New perspectives for food processing industry.

    PubMed

    Palmieri, Gianna; Balestrieri, Marco; Capuano, Federico; Proroga, Yolande T R; Pomilio, Francesco; Centorame, Patrizia; Riccio, Alessia; Marrone, Raffaele; Anastasio, Aniello

    2018-08-20

    Antimicrobial peptides have received great attention for their potential benefits to extend the shelf-life of food-products. Innate defense regulator peptide-1018 (IDR-1018) represents a promising candidate for such applications, due to its broad-spectrum antimicrobial activity, although food-isolated pathogens have been poorly investigated. Herein, we describe the design and the structural-functional characterization of a new 1018-derivative peptide named 1018-K6, in which the alanine in position 6 was replaced with a lysine. Spectroscopic analysis revealed a noticeable switch from β-sheet to helical conformations of 1018-K6 respect to IDR-1018, with a faster folding kinetic and increased structural stability. Moreover, 1018-K6 evidenced a significant antibiofilm/bactericidal efficiency specifically against Listeria monocytogenes isolates from food-products and food-processing environments, belonging to serotype 4b involved in the majority of human-listeriosis cases, with EC 50 values two- five-fold lower than those measured for IDR-1018. Therefore, a single amino-acid substitution in IDR-1018 sequence produced severe changes in peptide conformation and antimicrobial performances. Published by Elsevier B.V.

  15. Evaluation of robenidine analog NCL195 as a novel broad-spectrum antibacterial agent

    PubMed Central

    Sims, Sarah K.; Page, Stephen W.; Garg, Sanjay; Venter, Henrietta; Powell, Andrew; White, Karen; Petrovski, Kiro R.; Laven-Law, Geraldine; Tótoli, Eliane G.; Salgado, Hérida R.; Pi, Hongfei; Coombs, Geoffrey W.; Shinabarger, Dean L.; Turnidge, John D.; Paton, James C.; McCluskey, Adam; Trott, Darren J.

    2017-01-01

    The spread of multidrug resistance among bacterial pathogens poses a serious threat to public health worldwide. Recent approaches towards combating antimicrobial resistance include repurposing old compounds with known safety and development pathways as new antibacterial classes with novel mechanisms of action. Here we show that an analog of the anticoccidial drug robenidine (4,6-bis(2-((E)-4-methylbenzylidene)hydrazinyl)pyrimidin-2-amine; NCL195) displays potent bactericidal activity against Streptococcus pneumoniae and Staphylococcus aureus by disrupting the cell membrane potential. NCL195 was less cytotoxic to mammalian cell lines than the parent compound, showed low metabolic degradation rates by human and mouse liver microsomes, and exhibited high plasma concentration and low plasma clearance rates in mice. NCL195 was bactericidal against Acinetobacter spp and Neisseria meningitidis and also demonstrated potent activity against A. baumannii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Enterobacter spp. in the presence of sub-inhibitory concentrations of ethylenediaminetetraacetic acid (EDTA) and polymyxin B. These findings demonstrate that NCL195 represents a new chemical lead for further medicinal chemistry and pharmaceutical development to enhance potency, solubility and selectivity against serious bacterial pathogens. PMID:28873428

  16. Interactions of antibiotics and extracts of Helichrysum pedunculatum against bacteria implicated in wound infections.

    PubMed

    Aiyegoro, O A; Afolayan, A J; Okoh, A I

    2010-03-01

    The effect of combinations of the crude acetone and aqueous extracts of Helichrysum pedunculatum leaves and eight antibiotics was determined by means of checkerboard and time-kill methods. In the checkerboard method, synergy of 45.8% was observed, being independent of Gram reaction, with combinations in the aqueous extract yielding largely (18.8%) antagonistic interactions. The time-kill assay detected synergy (45.8%) that was also independent of Gram reaction with a potentiation of more than 3 orders of the bactericidal activity of the test antibiotics. The crude leaf extracts of H. pedunculatum could thus be considered to be potential source of a broad-spectrum antibiotic-resistance-modifying compounds.

  17. Antibacterial activity of combination of synthetic and biopolymer non-woven structures.

    PubMed

    Bhullar, Sukhwinder K; Özsel, Burcak Kaya; Yadav, Ramesh; Kaur, Ginpreet; Chintamaneni, Meena; Buttar, Harpal S

    2015-12-01

    Fibrous structures and synthetic polymer blends offer potential usages in making biomedical devices, textiles used in medical practices, food packaging, tissue engineering, environmental applications and biomedical arena. These products are also excellent candidates for building scaffolds to grow stem cells for implantation, to make tissue engineering grafts, to make stents to open up blood vessels caused by atherosclerosis or narrowed by blood clots, for drug delivery systems for micro- to nano-medicines, for transdermal patches, and for healing of wounds and burn care. The current study was designed to evaluate the antimicrobial activity of woven and non-woven forms of nano- and macro-scale blended polymers having biocompatible and biodegradable characteristics. The antimicrobial activity of non-woven fibrous structures created with the combination of synthetic and biopolymer was assessed using Gram-negative, Gram-positive bacteria, such as Staphylococcus aureus, Proteus vulgaris, Escherichia coli and Enterobacter aerogenes using pour plate method. Structural evaluation of the fabricated samples was performed by Fourier transform infrared spectroscopy. Broad spectrum antibacterial activities were found from the tested materials consisting of polyvinyl alcohol (PVA) with chitosan and nylon-6 combined with chitosan and formic acid. The combination of PVA with chitosan was more bactericidal or bacteriostatic than that of nylon-6 combined with chitosan and formic acid. PVA combination with chitosan appears to be a broad-spectrum antimicrobial agent.

  18. Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara.

    PubMed

    Thippeswamy, Sreerangegowda; Mohana, Devihalli Chikkaiah; Abhishek, Rayasandra Umesh; Manjunath, Kiragandur

    2015-03-01

    The present investigations were aimed to evaluate the antimicrobial and antioxidant efficacies of budmunchiamine-A (BUA) of Albizia amara . The activity-guided isolation leaded to isolate the bioactive compound budmunchiamine-A from alkaloid extract of A. amara . The budmunchiamine-A showed significant broad-spectrum antimicrobial activity with zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values varied from 7.3 to 24.5 mm, 0.95 to 62.5 μg/mL, and 1.9 to 250 μg/mL, respectively. The budmunchiamine-A exhibited moderate antioxidant activity with inhibitory concentration 50% (IC 50 ) value of 400 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and percent inhibition of β-carotene/linoleic acid was 67.8%. The results suggest the possible use of budmunchiamine-A as a molecular entity for drug development in pharmaceutical industry.

  19. Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara

    PubMed Central

    Thippeswamy, Sreerangegowda; Mohana, Devihalli Chikkaiah; Abhishek, Rayasandra Umesh; Manjunath, Kiragandur

    2015-01-01

    The present investigations were aimed to evaluate the antimicrobial and antioxidant efficacies of budmunchiamine-A (BUA) of Albizia amara . The activity-guided isolation leaded to isolate the bioactive compound budmunchiamine-A from alkaloid extract of A. amara . The budmunchiamine-A showed significant broad-spectrum antimicrobial activity with zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values varied from 7.3 to 24.5 mm, 0.95 to 62.5 μg/mL, and 1.9 to 250 μg/mL, respectively. The budmunchiamine-A exhibited moderate antioxidant activity with inhibitory concentration 50% (IC 50 ) value of 400 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and percent inhibition of β-carotene/linoleic acid was 67.8%. The results suggest the possible use of budmunchiamine-A as a molecular entity for drug development in pharmaceutical industry. PMID:26221099

  20. Novel Naja atra cardiotoxin 1 (CTX-1) derived antimicrobial peptides with broad spectrum activity

    PubMed Central

    Santospirito, Davide; Polverini, Eugenia; Flisi, Sara; Cavirani, Sandro; Taddei, Simone

    2018-01-01

    Naja atra subsp. atra cardiotoxin 1 (CTX-1), produced by Chinese cobra snakes, belonging to Elapidae family, is included in the three-finger toxin family and exerts high cytotoxicity and antimicrobial activity too. Using as template mainly the tip and the subsequent β-strand of the first “finger” of this toxin, different sequences of 20 amino acids linear peptides have been designed in order to avoid toxic effects but to maintain or even strengthen the partial antimicrobial activity already seen for the complete toxin. As a result, the sequence NCP-0 (Naja Cardiotoxin Peptide-0) was designed as ancestor and subsequently 4 other variant sequences of NCP-0 were developed. These synthesized variant sequences have shown microbicidal activity towards a panel of reference and field strains of Gram-positive and Gram-negative bacteria. The sequence named NCP-3, and its variants NCP-3a and NCP-3b, have shown the best antimicrobial activity, together with low cytotoxicity against eukaryotic cells and low hemolytic activity. Bactericidal activity has been demonstrated by minimum bactericidal concentration (MBC) assay at values below 10 μg/ml for most of the tested bacterial strains. This potent antimicrobial activity was confirmed even for unicellular fungi Candida albicans, Candida glabrata and Malassezia pachydermatis (MBC 50–6.3 μg/ml), and against the fast-growing mycobacteria Mycobacterium smegmatis and Mycobacterium fortuitum. Moreover, NCP-3 has shown virucidal activity on Bovine Herpesvirus 1 (BoHV1) belonging to Herpesviridae family. The bactericidal activity is maintained even in a high salt concentration medium (125 and 250 mM NaCl) and phosphate buffer with 20% Mueller Hinton (MH) medium against E. coli, methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa reference strains. Considering these in vitro obtained data, the search for active sequences within proteins presenting an intrinsic microbicidal activity could provide a new way for discovering a large number of novel and promising antimicrobial peptides families. PMID:29364903

  1. Production, purification, and characterization of micrococcin GO5, a bacteriocin produced by Micrococcus sp. GO5 isolated from kimchi.

    PubMed

    Kim, Mi-Hee; Kong, Yoon-Jung; Baek, Hong; Hyun, Hyung-Hwan

    2005-01-01

    Strain GO5, a bacteriocin-producing bacterium, was isolated from green onion kimchi and identified as Micrococcus sp. The bacteriocin, micrococcin GO5, displayed a broad spectrum of inhibitory activity against a variety of pathogenic and nonpathogenic microorganisms, as tested by the spot-on-lawn method; its activity spectrum was almost identical to that of nisin. Micrococcin GO5 was inactivated by trypsin (whereas nisin was not) and was completely stable at 100 degrees C for 30 min and in the pH range of 2.0 to 7.0. Micrococcin GO5 exhibited a typical mode of bactericidal activity against Micrococcus flavus ATCC 10240. It was purified to homogeneity through ammonium sulfate precipitation, ultrafiltration, and CM-Sepharose column chromatography. The molecular mass of micrococcin GO5 was estimated to be about 5.0 kDa by tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and in situ activity assay with the indicator organism. The amino acid sequence of micrococcin GO5 lacks lanthionine and beta-methyllanthionine and is rich in hydrophobic amino acids and glycine, providing the basis for the high heat stability of this bacteriocin. The N-terminal amino acid sequence of micrococcin GO5 is Lys-Lys-Ser-Phe-Cys-Gln-Lys, and no homology to bacteriocins reported previously was observed in the amino acid composition or N-terminal amino acid sequence. Based on the physicochemical properties, small molecular size, and inhibition of Listeria monocytogenes, micrococcin GO5 has been placed with the class II bacteriocins, but its broad spectrum of activity differs from that of other bacteriocins in this class.

  2. Antilisterial activity of a broad-spectrum bacteriocin, enterocin LR/6 from Enterococcus faecium LR/6.

    PubMed

    Kumar, Manoj; Srivastava, Sheela

    2010-10-01

    Enterocin LR/6, a purified bacteriocin, exhibited broad inhibitory spectrum both against related as well as some food-borne pathogens such as Listeria monocytogenes, Yersinia enterocolitica, Aeromonas sp., Shigella sp., and Bacillus licheniformis. In this investigation, we have focused on L. monocytogenes as the target organism, as it is not only an important pathogen but can also survive over a wide range of environmental conditions such as refrigeration temperature, low pH, and high-salt concentration. This allows the pathogen to overcome many food preservation and safety barriers and poses a potential risk to human health. The enterocin LR/6 showed a bactericidal action against L. monocytogenes and completely inhibited the growth on agar plates, supplemented with 200 AU/ml of enterocin LR/6. The effectiveness of enterocin LR/6 in completely killing a population of acid-adapted (pH 5.2, 2 h) L. monocytogenes exposed to different temperatures (4-37 degrees C), pH (2.5-8.0), and osmotic (up to 30% NaCl) stress is reported here. This paper focuses on the key issue of killing of the acid-adapted L. monocytogenes cells under adverse environmental conditions.

  3. Antimicrobial Activity and Cell Selectivity of Synthetic and Biosynthetic Cationic Polymers

    PubMed Central

    Venkatesh, Mayandi; Barathi, Veluchamy Amutha; Goh, Eunice Tze Leng; Anggara, Raditya; Fazil, Mobashar Hussain Urf Turabe; Ng, Alice Jie Ying; Harini, Sriram; Aung, Thet Tun; Fox, Stephen John; Liu, Shouping; Barkham, Timothy Mark Sebastian; Loh, Xian Jun

    2017-01-01

    ABSTRACT The mammalian and microbial cell selectivity of synthetic and biosynthetic cationic polymers has been investigated. Among the polymers with peptide backbones, polymers containing amino side chains display greater antimicrobial activity than those with guanidine side chains, whereas ethylenimines display superior activity over allylamines. The biosynthetic polymer ε-polylysine (εPL) is noncytotoxic to primary human dermal fibroblasts at concentrations of up to 2,000 μg/ml, suggesting that the presence of an isopeptide backbone has greater cell selectivity than the presence of α-peptide backbones. Both εPL and linear polyethylenimine (LPEI) exhibit bactericidal properties by depolarizing the cytoplasmic membrane and disrupt preformed biofilms. εPL displays broad-spectrum antimicrobial properties against antibiotic-resistant Gram-negative and Gram-positive strains and fungi. εPL elicits rapid bactericidal activity against both Gram-negative and Gram-positive bacteria, and its biocompatibility index is superior to those of cationic antiseptic agents and LPEI. εPL does not interfere with the wound closure of injured rabbit corneas. In a rabbit model of bacterial keratitis, the topical application of εPL (0.3%, wt/vol) decreases the bacterial burden and severity of infections caused by Pseudomonas aeruginosa and Staphylococcus aureus strains. In vivo imaging studies confirm that εPL-treated corneas appeared transparent and nonedematous compared to untreated infected corneas. Taken together, our results highlight the potential of εPL in resolving topical microbial infections. PMID:28784676

  4. Antibacterial activity study of Attacus atlas cocoon against Staphylococcus aureus and Escherichia coli with diffusion and dilution method

    NASA Astrophysics Data System (ADS)

    Aminah; Nugraheni, E. R.; Yugatama, A.

    2018-03-01

    The aim of this study was to evaluate the antibacterial activity from Attacus atlas cocoon extract against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) with 3 diffferent solvents polar, semi-polar and non polar which was ethanol, ethyl acetate and chloroform, also to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extract. Cocoon was extracted with maceration method using 3 solvents with ratio of sample and solvent 1:10. Antibacterial activity of the Extracts obtained was evaluated with Agar disk diffusion method. The best result was then continued to determine the MIC and MBC of the extract using broth macro-dilution method. The results show that each of the extracts have antibacterial activity with broad spectrum against two different type of bacteria at concentration of 1 g/mL with different clear zone between these extracts. Clear zone from the biggest to the smallest against Escherichia coli was ethyl acetate (10.5 mm), chloroform (9 mm) and ethanol (8 mm). While against Staphylococcus aureus, was obtained by chloroform (12.5 mm), ethyl acetate (10.5 mm) and ethanol (7 mm). The MIC value of extracts can not be determine. The smallest MBC value against both bacteria was obtained by ethyl acetate with concentration of 3.125% b/v as a bactericidal.

  5. [15-year experience of moxifloxacin in the treatment of patients with bacterial rhinosinusitis].

    PubMed

    Ovchinnikov, A Y; Edzhe, M A; Miroshnichenko, N A; Hon, E M; Korostelev, S A

    2015-01-01

    The article summarizes 15 years of experience of the use of moxifloxacin (Avelox) in Russia in patients with acute bacterial rhinosinusitis. Emphasize its high bactericidal activity against a broad spectrum of microorganisms- from basic agents to the atypical and anaerobic microflora. The results of these studies suggest the continued effectiveness of the dosage of 400 mg a short course (7 days) over 15 years of practical use of the drug, which in its clinical efficacy is superior to amoxicillin/clavulanate, cefuroxime axetil and levofloxacin. The safety profile of moxifloxacin, studied at the population level is not associated with an increased risk of adverse effects in compliance with the dosing regimen, taking into account the indications and contraindications.

  6. Therapeutic potential of carbohydrates as regulators of macrophage activation.

    PubMed

    Lundahl, Mimmi L E; Scanlan, Eoin M; Lavelle, Ed C

    2017-12-15

    It is well established for a broad range of disease states, including cancer and Mycobacterium tuberculosis infection, that pathogenesis is bolstered by polarisation of macrophages towards an anti-inflammatory phenotype, known as M2. As these innate immune cells are relatively long-lived, their re-polarisation to pro-inflammatory, phagocytic and bactericidal "classically activated" M1 macrophages is an attractive therapeutic approach. On the other hand, there are scenarios where the resolving inflammation, wound healing and tissue remodelling properties of M2 macrophages are beneficial - for example the successful introduction of biomedical implants. Although there are numerous endogenous and exogenous factors that have an impact on the macrophage polarisation spectrum, this review will focus specifically on prominent macrophage-modulating carbohydrate motifs with a view towards highlighting structure-function relationships and therapeutic potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. [Tetracyclines, sulfonamides and metronidazole].

    PubMed

    Pérez-Trallero, Emilio; Iglesias, Luis

    2003-11-01

    Tetracyclines form a group of natural and semisynthetic products that acts inhibiting the bacterial protein synthesis. They are bacteriostatic agents, exhibiting activity against a wide range of organisms, but they are at the present of limited use because of their acquired resistance. Doxycycline is currently the most frequently used tetracycline in human medicine and it is included in the List of Essential Medicines of the World Health Organization. Sulfonamides are synthetic, broad-spectrum bacteriostatic antibiotics. They were the first effective systemic antimicrobial agents. Their mode of action is based on the inhibition of DNA synthesis. Due to their toxicity and high adquired resistance their use is currently very low. Metronidazole is the main compound of 5-nitroimidazole family. It is a very active bactericidal antibiotic against anaerobic and some microaerophilic bacteria and it is still very useful in the treatment of bacterian and parasitic infections.

  8. Antibacterial activity of Phyllantus emblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus.

    PubMed

    Khan, Dawood Ali; Hassan, Fouzia; Ullah, Hanif; Karim, Sabiha; Baseer, Abdul; Abid, Mobasher Ali; Ubaidi, Muhammad; Khan, Shujaat Ali; Murtaza, Ghulam

    2013-01-01

    Present study deals with the demonstration of the antibacterial activity of very common medicinal plants of Pakistani origin i.e., Phyllantus emblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus. The extracts were prepared in crude form by the use of hydro-alcoholic solution and were screened for antibacterial activity against various bacterial species by disk diffusion method. Assay was performed using clinical isolates of B. cereus, S. aureus, P. aeruginosa and E. coli. Crude extract of Phyllantus emblica fruit exhibited strong activity against standard cultures of all studied bacteria. Lawsonia alba showed good activity against standard cultures of all the used microorganisms. Coriandrum sativum was effective only against Bacillus cereus, while Cucumis sativus and Culinaris medic showed poor activity against Pseudomonas aeruginosa only. Hence, Phyllantus emblica exhibited strong antibacterial activity against a wide range of bacteria it means that Phyllantus emblica extract contains some compounds which have broad spectrum of bactericidal activity.

  9. Synthetic membrane-targeted antibiotics.

    PubMed

    Vooturi, S K; Firestine, S M

    2010-01-01

    Antimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.

  10. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae.

    PubMed

    Kalpana, Duraisamy; Lee, Yang Soo

    2013-03-05

    Silver nanoparticles were synthesized by biological method using cultural filtrate of Klebsiella pneumoniae cultured under simulated microgravity and silver nitrate solution as precursor. The nanoparticles exhibited typical plasmon absorption maximum of silver nanoparticles between 405 and 407 nm. Spherical silver nanoparticles were found to have size between 15 and 37 nm by TEM analysis. XRD pattern corresponding to planes (111), (200), (220) (311) revealed the crystalline nature of the biosynthesized silver nanoparticles. FTIR spectrum proposed stabilization of silver nanoparticles by the protein molecules present in the cultural filtrate. The silver nanoparticles exhibited high bactericidal activity against Salmonella enterica, Escherichia coli and moderate bactericidal activity against Streptococcus pyogenes. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Comparative antibacterial activity of hexachlorophane in different formulations used for skin disinfection

    PubMed Central

    Gibson, J. W.

    1969-01-01

    Two formulations of hexachlorophane have been compared for their antibacterial effects in respect of skin disinfection. It was found that the activity of hexachlorophane is dependent upon its vehicle of formulation. A 2·5% soap gel possesses broad-spectrum bactericidal activity with remarkable speed of kill, whereas a 3% detergent formulation has no bactericidal action against Gram-negative bacteria and only a very slow action against Gram-positive bacteria. In practice the rapid action of the 2·5% soap gel against both Gram-negative and Gram-positive transient skin bacteria can be achieved by correctly applying the preparation directly to the dry hands. It appears that the 2·5% soap gel does not need to rely on mechanical removal of transient organisms as does the 3% detergent. The 2·5% soap gel is more dependable in its action on the resident bacteria than the 3% detergent. It controlled the resident flora in the skin of all subjects tested whereas the latter appeared to be potentiated on the skin of certain individuals only. It has been possible to distinguish between the antibacterial effect on the resident organisms and the mere removal of transient bacteria by mechanical action of the 3% detergent as opposed to antibacterial effect on residents and rapid antibacterial effect on transients by the 2·5% soap gel. PMID:5784696

  12. Enrofloxacin: pharmacokinetics and metabolism in domestic animal species.

    PubMed

    López-Cadenas, Cristina; Sierra-Vega, Matilde; García-Vieitez, Juan J; Diez-Liébana, M José; Sahagún-Prieto, Ana; Fernández-Martínez, Nélida

    2013-12-01

    Enrofloxacin is a fluorquinolone exclusively developed for use in veterinary medicine (1980). The kinetics of enrofloxacin are characterized, in general terms, by high bioavailability in most species and rapid absorption after IM, SC or oral administration. However, several studies reported that enrofloxacin showed low bioavailability after oral administration in ruminants. This drug has a broad distribution in the organism, excellent tissue penetration and long serum half-life. Also, enrofloxacin is characterized by a low host toxicity, a broad antibacterial spectrum and high bactericidal activity against major pathogenic bacteria (both Gram-positive and Gram-negative), and intracellular organisms found in diseased animals. The kinetics vary according to the route of administration, formulation, animal species, age, body condition, and physiological status, all of which contribute to differences in drug efficacy. The pharmacokinetic properties of drugs are closely related to their pharmacological efficiency, so it is important to know their behavior in each species that is used. This article reviews the pharmacokinetics of enrofloxacin in several domestic animal species.

  13. Sensitization of Staphylococcus aureus to methicillin and other antibiotics in vitro and in vivo in the presence of HAMLET.

    PubMed

    Marks, Laura R; Clementi, Emily A; Hakansson, Anders P

    2013-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex from human milk with both tumoricidal and bactericidal activities. HAMLET exerts a rather specific bactericidal activity against some respiratory pathogens, with highest activity against Streptococcus pneumoniae, but lacks activity against most other bacterial pathogens, including Staphylococci. Still, ion transport associated with death in S. pneumoniae is also detected to a lower degree in insensitive organisms. In this study we demonstrate that HAMLET acts as an antimicrobial adjuvant that can increase the activity of a broad spectrum of antibiotics (methicillin, vancomycin, gentamicin and erythromycin) against multi-drug resistant Staphylococcus aureus, to a degree where they become sensitive to those same antibiotics, both in antimicrobial assays against planktonic and biofilm bacteria and in an in vivo model of nasopharyngeal colonization. We show that HAMLET exerts these effects specifically by dissipating the proton gradient and inducing a sodium-dependent calcium influx that partially depolarizes the plasma membrane, the same mechanism induced during pneumococcal death. These effects results in an increased cell associated binding and/or uptake of penicillin, gentamicin and vancomycin, especially in resistant stains. Finally, HAMLET inhibits the increased resistance of methicillin seen under antibiotic pressure and the bacteria do not become resistant to the adjuvant, which is a major advantageous feature of the molecule. These results highlight HAMLET as a novel antimicrobial adjuvant with the potential to increase the clinical usefulness of antibiotics against drug resistant strains of S. aureus.

  14. Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice.

    PubMed

    Martínez Viedma, Pilar; Sobrino López, Angel; Ben Omar, Nabil; Abriouel, Hikmate; Lucas López, Rosario; Valdivia, Eva; Martín Belloso, Olga; Gálvez, Antonio

    2008-12-10

    The effect of the broad spectrum cyclic antimicrobial peptide enterocin AS-48 combination with high-intensity pulsed-electric field (HIPEF) treatment (35 kV/cm, 150 Hz, 4 micros and bipolar mode) was tested on Salmonella enterica CECT 915 in apple juice. A response surface methodology was applied to study the bactericidal effects of the combined treatment. The process variables were AS-48 concentration, temperature, and HIPEF treatment time. While treatment with enterocin AS-48 alone up to 60 microg/ml had no effect on the viability of S. enterica in apple juice, an increased bactericidal activity was observed in combination with HIPEF treatments. Survival fraction was affected by treatment time, enterocin AS48 concentration and treatment temperature. The combination of 100 micros of HIPEF treatment, 30 microg/ml of AS-48, and temperature of 20 degrees C resulted in the lowest inactivation, with only a 1.2-log reduction. The maximum inactivation of 4.5-log cycles was achieved with HIPEF treatment for 1000 micros in combination with 60 microg/ml of AS-48 and a treatment temperature of 40 degrees C. Synergism between enterocin AS-48 and HIPEF treatment depended on the sequence order application, since it was observed only when HIPEF was applied in the presence of previously-added bacteriocin. The combined treatment could improve the safety of freshly-made apple juice against S. enterica transmission.

  15. Innovative biofilm inhibition and anti-microbial behavior of molybdenum sulfide nanostructures generated by microwave-assisted solvothermal route

    NASA Astrophysics Data System (ADS)

    Qureshi, Nilam; Patil, Rajendra; Shinde, Manish; Umarji, Govind; Causin, Valerio; Gade, Wasudev; Mulik, Uttam; Bhalerao, Anand; Amalnerkar, Dinesh P.

    2015-03-01

    The incessant use of antibiotics against infectious diseases has translated into a vicious circle of developing new antibiotic drug and its resistant strains in short period of time due to inherent nature of micro-organisms to alter their genes. Many researchers have been trying to formulate inorganic nanoparticles-based antiseptics that may be linked to broad-spectrum activity and far lower propensity to induce microbial resistance than antibiotics. The way-out approaches in this direction are nanomaterials based (1) bactericidal and (2) bacteriostatic activities. We, herein, present hitherto unreported observations on microbial abatement using non-cytotoxic molybdenum disulfide nanostructures (MSNs) which are synthesized using microwave assisted solvothermal route. Inhibition of biofilm formation using MSNs is a unique feature of our study. Furthermore, this study evinces antimicrobial mechanism of MSNs by reactive oxygen species (ROS) dependent generation of superoxide anion radical via disruption of cellular functions.

  16. Structure-based design of broadly protective group a streptococcal M protein-based vaccines.

    PubMed

    Dale, James B; Smeesters, Pierre R; Courtney, Harry S; Penfound, Thomas A; Hohn, Claudia M; Smith, Jeremy C; Baudry, Jerome Y

    2017-01-03

    A major obstacle to the development of broadly protective M protein-based group A streptococcal (GAS) vaccines is the variability within the N-terminal epitopes that evoke potent bactericidal antibodies. The concept of M type-specific protective immune responses has recently been challenged based on the observation that multivalent M protein vaccines elicited cross-reactive bactericidal antibodies against a number of non-vaccine M types of GAS. Additionally, a new "cluster-based" typing system of 175M proteins identified a limited number of clusters containing closely related M proteins. In the current study, we used the emm cluster typing system, in combination with computational structure-based peptide modeling, as a novel approach to the design of potentially broadly protective M protein-based vaccines. M protein sequences (AA 16-50) from the E4 cluster containing 17 emm types of GAS were analyzed using de novo 3-D structure prediction tools and the resulting structures subjected to chemical diversity analysis to identify sequences that were the most representative of the 3-D physicochemical properties of the M peptides in the cluster. Five peptides that spanned the range of physicochemical attributes of all 17 peptides were used to formulate synthetic and recombinant vaccines. Rabbit antisera were assayed for antibodies that cross-reacted with E4 peptides and whole bacteria by ELISA and for bactericidal activity against all E4GAS. The synthetic vaccine rabbit antisera reacted with all 17 E4M peptides and demonstrated bactericidal activity against 15/17 E4GAS. A recombinant hybrid vaccine containing the same E4 peptides also elicited antibodies that cross-reacted with all E4M peptides. Comprehensive studies using structure-based design may result in a broadly protective M peptide vaccine that will elicit cluster-specific and emm type-specific antibody responses against the majority of clinically relevant emm types of GAS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Genomics-Inspired Discovery of Three Antibacterial Active Metabolites, Aurantinins B, C, and D from Compost-Associated Bacillus subtilis fmb60.

    PubMed

    Yang, Jie; Zhu, Xiaoyu; Cao, Mingming; Wang, Changbao; Zhang, Chong; Lu, Zhaoxin; Lu, Fengxia

    2016-11-23

    Fmb60 is a wild-type Bacillus subtilis isolated from compost with significant broad-spectrum antimicrobial activities. Two novel PKS clusters were recognized in the genome sequence of fmb60, and then three polyene antibiotics, aurantinins B, C, and D, 1-3, were obtained by bioactivity-guided isolation from the fermentation of fmb60. The structures of aurantinins B-D were elucidated by LC-HRMS and NMR data analysis. Aurantinins C and D were identified as new antimicrobial compounds. The three aurantinins showed significant activity against multidrug-resistant Staphylococcus aureus and Clostridium sporogenes. However, aurantinins B-D did not exhibit any cytotoxicity (IC50 > 100 μg/mL) against LO2 and Caco2 cell lines by MTT assay. Furthermore, using S. aureus as a model bacterium to explore the antibacterial mechanism of aurantinins B-D, it was revealed that the bactericidal activity of aurantinins B-D was related to their ability to disrupt the cell membrane.

  18. Fluorescent Trimethoprim Conjugate Probes To Assess Drug Accumulation in Wild Type and Mutant Escherichia coli

    PubMed Central

    2016-01-01

    Reduced susceptibility to antimicrobials in Gram-negative bacteria may result from multiple resistance mechanisms, including increased efflux pump activity or reduced porin protein expression. Up-regulation of the efflux pump system is closely associated with multidrug resistance (MDR). To help investigate the role of efflux pumps on compound accumulation, a fluorescence-based assay was developed using fluorescent derivatives of trimethoprim (TMP), a broad-spectrum synthetic antibiotic that inhibits an intracellular target, dihydrofolate reductase (DHFR). Novel fluorescent TMP probes inhibited eDHFR activity with comparable potency to TMP, but did not kill or inhibit growth of wild type Escherichia coli. However, bactericidal activity was observed against an efflux pump deficient E. coli mutant strain (ΔtolC). A simple and quick fluorescence assay was developed to measure cellular accumulation of the TMP probe using either fluorescence spectroscopy or flow cytometry, with validation by LC-MS/MS. This fluorescence assay may provide a simple method to assess efflux pump activity with standard laboratory equipment. PMID:27737551

  19. Oxabicyclooctane-Linked Novel Bacterial Topoisomerase Inhibitors as Broad Spectrum Antibacterial Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Sheo B.; Kaelin, David E.; Wu, Jin

    Bacterial resistance is eroding the clinical utility of existing antibiotics necessitating the discovery of new agents. Bacterial type II topoisomerase is a clinically validated, highly effective, and proven drug target. This target is amenable to inhibition by diverse classes of inhibitors with alternative and distinct binding sites to quinolone antibiotics, thus enabling the development of agents that lack cross-resistance to quinolones. Described here are novel bacterial topoisomerase inhibitors (NBTIs), which are a new class of gyrase and topo IV inhibitors and consist of three distinct structural moieties. The substitution of the linker moiety led to discovery of potent broad-spectrum NBTIsmore » with reduced off-target activity (hERG IC50 > 18 μM) and improved physical properties. AM8191 is bactericidal and selectively inhibits DNA synthesis and Staphylococcus aureus gyrase (IC50 = 1.02 μM) and topo IV (IC50 = 10.4 μM). AM8191 showed parenteral and oral efficacy (ED50) at less than 2.5 mg/kg doses in a S. aureus murine infection model. A cocrystal structure of AM8191 bound to S. aureus DNA-gyrase showed binding interactions similar to that reported for GSK299423, displaying a key contact of Asp83 with the basic amine at position-7 of the linker.« less

  20. In Vitro and In Vivo Antibacterial Activities of DC-159a, a New Fluoroquinolone▿

    PubMed Central

    Hoshino, Kazuki; Inoue, Kazue; Murakami, Yoichi; Kurosaka, Yuichi; Namba, Kenji; Kashimoto, Yoshinori; Uoyama, Saori; Okumura, Ryo; Higuchi, Saito; Otani, Tsuyoshi

    2008-01-01

    DC-159a is a new 8-methoxy fluoroquinolone that possesses a broad spectrum of antibacterial activity, with extended activity against gram-positive pathogens, especially streptococci and staphylococci from patients with community-acquired infections. DC-159a showed activity against Streptococcus spp. (MIC90, 0.12 μg/ml) and inhibited the growth of 90% of levofloxacin-intermediate and -resistant strains at 1 μg/ml. The MIC90s of DC-159a against Staphylococcus spp. were 0.5 μg/ml or less. Against quinolone- and methicillin-resistant Staphylococcus aureus strains, however, the MIC90 of DC-159a was 8 μg/ml. DC-159a was the most active against Enterococcus spp. (MIC90, 4 to 8 μg/ml) and was more active than the marketed fluoroquinolones, such as levofloxacin, ciprofloxacin, and moxifloxacin. The MIC90s of DC-159a against Haemophilus influenzae, Moraxella catarrhalis, and Klebsiella pneumoniae were 0.015, 0.06, and 0.25 μg/ml, respectively. The activity of DC-159a against Mycoplasma pneumoniae was eightfold more potent than that of levofloxacin. The MICs of DC-159a against Chlamydophila pneumoniae were comparable to those of moxifloxacin, and DC-159a was more potent than levofloxacin. The MIC90s of DC-159a against Peptostreptococcus spp., Clostridium difficile, and Bacteroides fragilis were 0.5, 4, and 2 μg/ml, respectively; and among the quinolones tested it showed the highest level of activity against anaerobic organisms. DC-159a demonstrated rapid bactericidal activity against quinolone-resistant Streptococcus pneumoniae strains both in vitro and in vivo. In vitro, DC-159a showed faster killing than moxifloxacin and garenoxacin. The bactericidal activity of DC-159a in a murine muscle infection model was revealed to be superior to that of moxifloxacin. These activities carried over to the in vivo efficacy in the murine pneumonia model, in which treatment with DC-159a led to bactericidal activity superior to those of the other agents tested. PMID:17938194

  1. Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles.

    PubMed

    Lu, Meng-Meng; Wang, Qiu-Jing; Chang, Zhi-Min; Wang, Zheng; Zheng, Xiao; Shao, Dan; Dong, Wen-Fei; Zhou, Yan-Min

    2017-01-01

    Combination of chlorhexidine (CHX) and silver ions could engender synergistic bactericidal effect and improve the bactericidal efficacy. It is highly desired to develop an efficient carrier for the antiseptics codelivery targeting infection foci with acidic microenvironment. In this work, monodisperse mesoporous silica nanoparticle (MSN) nanospheres were successfully developed as an ideal carrier for CHX and nanosilver codelivery through a facile and environmentally friendly method. The CHX-loaded, silver-decorated mesoporous silica nanoparticles (Ag-MSNs@CHX) exhibited a pH-responsive release manner of CHX and silver ions simultaneously, leading to synergistically antibacterial effect against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli . Moreover, the effective antibacterial concentration of Ag-MSNs@CHX showed less cytotoxicity on normal cells. Given their synergistically bactericidal ability and good biocompatibility, these nanoantiseptics might have effective and broad clinical applications for bacterial infections.

  2. The synthetic human beta-defensin-3 C15 peptide exhibits antimicrobial activity against Streptococcus mutans, both alone and in combination with dental disinfectants.

    PubMed

    Ahn, Ki Bum; Kim, A Reum; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2017-10-01

    Streptococcus mutans is a major etiologic agent of human dental caries that forms biofilms on hard tissues in the human oral cavity, such as tooth and dentinal surfaces. Human β-defensin-3 (HBD3) is a 45-amino-acid natural antimicrobial peptide that has broad spectrum antimicrobial activity against bacteria and fungi. A synthetic peptide consisting of the C-terminal 15 amino acids of HBD3 (HBD3-C15) was recently shown to be sufficient for its antimicrobial activity. Thus, clinical applications of this peptide have garnered attention. In this study, we investigated whether HBD3-C15 inhibits the growth of the representative cariogenic pathogen Streptococcus mutans and its biofilm formation. HBD3-C15 inhibited bacterial growth, exhibited bactericidal activity, and attenuated bacterial biofilm formation in a dose-dependent manner. HBD3-C15 potentiated the bactericidal and anti-biofilm activity of calcium hydroxide (CH) and chlorhexidine digluconate (CHX), which are representative disinfectants used in dental clinics, against S. mutans. Moreover, HBD3-C15 showed antimicrobial activity by inhibiting biofilm formation by S. mutans and other dentinophilic bacteria such as Enterococcus faecalis and Streptococcus gordonii, which are associated with dental caries and endodontic infection, on human dentin slices. These effects were observed for HBD3-C15 alone and for HBD3-C15 in combination with CH or CHX. Therefore, we suggest that HBD3-C15 is a potential alternative or additive disinfectant that can be used for the treatment of oral infectious diseases, including dental caries and endodontic infections.

  3. Update on bacterial pneumonia in the foal and weanling.

    PubMed

    Reuss, Sarah M; Cohen, Noah D

    2015-04-01

    Bacterial pneumonia is a common cause of disease in both neonatal and weanling foals. The causal organism or organisms differ with the age of the foal, should be identified via microbiologic culture, and will ultimately dictate appropriate treatment. Initial treatment in neonates should be broad spectrum and bactericidal, whereas weanling age foals may receive more targeted treatment. The combination of a macrolide antibiotic and rifampin remains the gold standard for treatment of Rhodococcus equi pneumonia; however, resistance to these antimicrobials is a concern. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Sensitization of Staphylococcus aureus to Methicillin and Other Antibiotics In Vitro and In Vivo in the Presence of HAMLET

    PubMed Central

    Marks, Laura R.; Clementi, Emily A.; Hakansson, Anders P.

    2013-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex from human milk with both tumoricidal and bactericidal activities. HAMLET exerts a rather specific bactericidal activity against some respiratory pathogens, with highest activity against Streptococcus pneumoniae, but lacks activity against most other bacterial pathogens, including Staphylococci. Still, ion transport associated with death in S. pneumoniae is also detected to a lower degree in insensitive organisms. In this study we demonstrate that HAMLET acts as an antimicrobial adjuvant that can increase the activity of a broad spectrum of antibiotics (methicillin, vancomycin, gentamicin and erythromycin) against multi-drug resistant Staphylococcus aureus, to a degree where they become sensitive to those same antibiotics, both in antimicrobial assays against planktonic and biofilm bacteria and in an in vivo model of nasopharyngeal colonization. We show that HAMLET exerts these effects specifically by dissipating the proton gradient and inducing a sodium-dependent calcium influx that partially depolarizes the plasma membrane, the same mechanism induced during pneumococcal death. These effects results in an increased cell associated binding and/or uptake of penicillin, gentamicin and vancomycin, especially in resistant stains. Finally, HAMLET inhibits the increased resistance of methicillin seen under antibiotic pressure and the bacteria do not become resistant to the adjuvant, which is a major advantageous feature of the molecule. These results highlight HAMLET as a novel antimicrobial adjuvant with the potential to increase the clinical usefulness of antibiotics against drug resistant strains of S. aureus. PMID:23650551

  5. Design of a potent antibiotic peptide based on the active region of human defensin 5.

    PubMed

    Wang, Cheng; Shen, Mingqiang; Gohain, Neelakshi; Tolbert, William D; Chen, Fang; Zhang, Naixin; Yang, Ke; Wang, Aiping; Su, Yongping; Cheng, Tianmin; Zhao, Jinghong; Pazgier, Marzena; Wang, Junping

    2015-04-09

    Human defensin 5 (HD5) is a broad-spectrum antibacterial peptide with a C-terminal active region. To promote the development of this peptide into an antibiotic, we initially substituted Glu21 with Arg because it is an electronegative residue located around the active region. Although detrimental to dimer formation, the E21R substitution markedly enhanced the antibacterial activity of HD5 and increased its ability to penetrate cell membranes, demonstrating that increasing the electropositive charge compensated for the effect of dimer disruption. Subsequently, a partial Arg scanning mutagenesis was performed, and Thr7 was selected for replacement with Arg to further strengthen the antibacterial activity. The newly designed peptide, T7E21R-HD5, exhibited potent antibacterial activity, even in saline and serum solutions. In contrast to monomeric E21R-HD5, T7E21R-HD5 assembled into an atypical dimer with parallel β strands, thus expanding the role of increasing electropositive charge in bactericidal activity and providing a useful guide for further defensin-derived antibiotic design.

  6. Mechanism of action and in vitro activity of short hybrid antimicrobial peptide PV3 against Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Memariani, Hamed; Shahbazzadeh, Delavar; Sabatier, Jean-Marc

    Antimicrobial peptides are attractive candidates for developing novel therapeutic agents, since they are lethal to a broad spectrum of pathogens and have a unique low tendency for resistance development. In this study, mechanism of action and in vitro anti-pseudomonal activity of previously designed short hybrid antimicrobial peptide PV3 were investigated. Compared to ceftazidime, PV3 had not only higher antibacterial activity but also faster bactericidal activity. PV3 reduced biofilm biomass and viability of biofilm embedded bacteria in a concentration-dependent manner. Although the antimicrobial activity of PV3 was reduced in Mueller-Hinton broth (MHB) containing human serum, it was still active enough to eradicationmore » of bacteria at low concentrations. Compared with standard condition (MHB only), there was no significant decrease in antibacterial activity of PV3 against P. aeruginosa strains under 150 mM NaCl (p = 0.615) and 1 mM MgCl{sub 2} (p = 0.3466). Fluorescence microscopy and field emission scanning electron microscopy further indicated that PV3 killed bacteria by disrupting the cell membrane. Since PV3 has potent anti-pseudomonal activity and has little cytotoxicity in vitro, it seems plausible that the peptide should be further investigated with animal studies to support future pharmacological formulations and potential topical applications. - Highlights: • PV3 killed Pseudomonas aeruginosa by membrane-disrupting mechanism. • PV3 reduced biofilm biomass and viability of biofilm embedded bacteria in a concentration-dependent manner. • Short hybrid antimicrobial peptide PV3 exhibited higher and faster bactericidal activity comparing to ceftazidime.« less

  7. Antibacterial activity of vegetables and juices.

    PubMed

    Lee, Yee-Lean; Cesario, Thomas; Wang, Yang; Shanbrom, Edward; Thrupp, Lauri

    2003-01-01

    We evaluated the antibacterial activities of various fruit and vegetable extracts on common potential pathogens including antibiotic-resistant strains. Standardized bacterial inocula were added to serial dilutions of sterile vegetable and fruit extracts in broth, with final bacterial concentrations of 10(4-5) cells/mL. After overnight incubation at 35 degrees C, antibacterial activity was measured by minimum inhibitory and minimum bactericidal dilutions (for raw juices) or concentrations (for tea). Among the vegetable and fruit extracts tested, all green vegetables showed no antibacterial activity on Staphylococcus epidermidis and Klebsiella pneumoniae. All purple and red vegetable and fruit juices had antibacterial activities in dilutions ranging from 1:2 to 1:16. Garlic juice had significant activity, with bactericidal action in dilutions ranging up to 1:128 of the original juice. Tea also had significant activity, with bactericidal action in concentrations ranging up to 1.6 mg/mL, against a spectrum of pathogens including resistant strains such as methicillin- and ciprofloxacin-resistant staphylococci, vancomycin-resistant enterococci, and ciprofloxacin-resistant Pseudomonas aeruginosa. Tea and garlic have the potential for exploration of broader applications as antibacterial agents.

  8. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05233e

  9. Copper and Quaternary Ammonium Cations Exert Synergistic Bactericidal and Antibiofilm Activity against Pseudomonas aeruginosa▿

    PubMed Central

    Harrison, Joe J.; Turner, Raymond J.; Joo, Daniel A.; Stan, Michelle A.; Chan, Catherine S.; Allan, Nick D.; Vrionis, Helen A.; Olson, Merle E.; Ceri, Howard

    2008-01-01

    Biofilms are slimy aggregates of microbes that are likely responsible for many chronic infections as well as for contamination of clinical and industrial environments. Pseudomonas aeruginosa is a prevalent hospital pathogen that is well known for its ability to form biofilms that are recalcitrant to many different antimicrobial treatments. We have devised a high-throughput method for testing combinations of antimicrobials for synergistic activity against biofilms, including those formed by P. aeruginosa. This approach was used to look for changes in biofilm susceptibility to various biocides when these agents were combined with metal ions. This process identified that Cu2+ works synergistically with quaternary ammonium compounds (QACs; specifically benzalkonium chloride, cetalkonium chloride, cetylpyridinium chloride, myristalkonium chloride, and Polycide) to kill P. aeruginosa biofilms. In some cases, adding Cu2+ to QACs resulted in a 128-fold decrease in the biofilm minimum bactericidal concentration compared to that for single-agent treatments. In combination, these agents retained broad-spectrum antimicrobial activity that also eradicated biofilms of Escherichia coli, Staphylococcus aureus, Salmonella enterica serovar Cholerasuis, and Pseudomonas fluorescens. To investigate the mechanism of action, isothermal titration calorimetry was used to show that Cu2+ and QACs do not interact in aqueous solutions, suggesting that each agent exerts microbiological toxicity through independent biochemical routes. Additionally, Cu2+ and QACs, both alone and in combination, reduced the activity of nitrate reductases, which are enzymes that are important for normal biofilm growth. Collectively, the results of this study indicate that Cu2+ and QACs are effective combinations of antimicrobials that may be used to kill bacterial biofilms. PMID:18519726

  10. Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications

    NASA Astrophysics Data System (ADS)

    Nirmala, R.; Sheikh, Faheem A.; Kanjwal, Muzafar A.; Lee, John Hwa; Park, Soo-Jin; Navamathavan, R.; Kim, Hak Yong

    2011-05-01

    Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N, N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA-Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA-Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus ( S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli ( E. coli) by the disc diffusion susceptibility test. The HA-Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.

  11. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond.

    PubMed

    Boldescu, Veaceslav; Behnam, Mira A M; Vasilakis, Nikos; Klein, Christian D

    2017-08-01

    Infections with flaviviruses, such as dengue, West Nile virus and the recently re-emerging Zika virus, are an increasing and probably lasting global risk. This Review summarizes and comments on the opportunities for broad-spectrum agents that are active against multiple flaviviruses. Broad-spectrum activity is particularly desirable to prepare for the next flaviviral epidemic, which could emerge from as-yet unknown or neglected viruses. Potential molecular targets for broad-spectrum antiflaviviral compounds include viral proteins, such as the viral protease or polymerase, and host targets that are exploited by these viruses during entry and replication, including α-glucosidase and proteins involved in nucleoside biosynthesis. Numerous compounds with broad-spectrum antiviral activity have already been identified by target-specific or phenotypic assays. For other compounds, broad-spectrum activity can be anticipated because of their mode of action and molecular targets.

  12. Underlying Mechanism of Antimicrobial Activity of Chitosan Microparticles and Implications for the Treatment of Infectious Diseases

    PubMed Central

    Jeon, Soo Jin; Oh, Manhwan; Yeo, Won-Sik; Galvão, Klibs N.; Jeong, Kwang Cheol

    2014-01-01

    The emergence of antibiotic resistant microorganisms is a great public health concern and has triggered an urgent need to develop alternative antibiotics. Chitosan microparticles (CM), derived from chitosan, have been shown to reduce E. coli O157:H7 shedding in a cattle model, indicating potential use as an alternative antimicrobial agent. However, the underlying mechanism of CM on reducing the shedding of this pathogen remains unclear. To understand the mode of action, we studied molecular mechanisms of antimicrobial activity of CM using in vitro and in vivo methods. We report that CM are an effective bactericidal agent with capability to disrupt cell membranes. Binding assays and genetic studies with an ompA mutant strain demonstrated that outer membrane protein OmpA of E. coli O157:H7 is critical for CM binding, and this binding activity is coupled with a bactericidal effect of CM. This activity was also demonstrated in an animal model using cows with uterine diseases. CM treatment effectively reduced shedding of intrauterine pathogenic E. coli (IUPEC) in the uterus compared to antibiotic treatment. Since Shiga-toxins encoded in the genome of bacteriophage is often overexpressed during antibiotic treatment, antibiotic therapy is generally not recommended because of high risk of hemolytic uremic syndrome. However, CM treatment did not induce bacteriophage or Shiga-toxins in E. coli O157:H7; suggesting that CM can be a potential candidate to treat infections caused by this pathogen. This work establishes an underlying mechanism whereby CM exert antimicrobial activity in vitro and in vivo, providing significant insight for the treatment of diseases caused by a broad spectrum of pathogens including antibiotic resistant microorganisms. PMID:24658463

  13. Antimicrobial and Biophysical Properties of Surfactant Supplemented with an Antimicrobial Peptide for Treatment of Bacterial Pneumonia

    PubMed Central

    Veldhuizen, Edwin J. A.; Keating, Eleonora; Haagsman, Henk P.; Zuo, Yi Y.; Yamashita, Cory M.; Veldhuizen, Ruud A. W.

    2015-01-01

    Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a “perfect storm” for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia. PMID:25753641

  14. Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia.

    PubMed

    Banaschewski, Brandon J H; Veldhuizen, Edwin J A; Keating, Eleonora; Haagsman, Henk P; Zuo, Yi Y; Yamashita, Cory M; Veldhuizen, Ruud A W

    2015-01-01

    Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Pharmacokinetics and pharmacodynamics of ceftobiprole, an anti-MRSA cephalosporin with broad-spectrum activity.

    PubMed

    Murthy, Bindu; Schmitt-Hoffmann, Anne

    2008-01-01

    Ceftobiprole, a beta-lactam, is the first of a new generation of broad-spectrum cephalosporins in late-stage development with activity against methicillin-resistant Staphylococcus aureus (MRSA) in addition to broad-spectrum bactericidal activity against other Gram-positive and Gram-negative pathogens. The prodrug, ceftobiprole medocaril, is converted rapidly and almost completely to the active drug, ceftobiprole, upon infusion by type A esterases. In humans, ceftobiprole binds minimally (16%) to plasma proteins, and binding is independent of the drug and protein concentrations. Its steady-state volume of distribution (18.4 L) approximates the extracellular fluid volume in humans. Ceftobiprole undergoes minimal hepatic metabolism, and the primary metabolite is the beta-lactam ring-opened hydrolysis product (open-ring metabolite). Systemic exposure of the open-ring metabolite accounts for 4% of ceftobiprole exposure following single-dose administration; approximately 5% of the dose is excreted in the urine as the metabolite. Ceftobiprole does not significantly induce or inhibit relevant cytochrome P450 enzymes and is neither a substrate nor an inhibitor of P-glycoprotein. Ceftobiprole is rapidly eliminated, primarily unchanged, by renal excretion, with a terminal elimination half-life of 3 hours; the predominant mechanism responsible for elimination is glomerular filtration, with approximately 89% of the dose being excreted as the prodrug, active drug (ceftobiprole) and open-ring metabolite. The pharmacokinetics of ceftobiprole are linear following single and multiple infusions of 125-1000 mg. Steady-state drug concentrations are attained on the first day of dosing, with no appreciable accumulation when administered three times daily (every 8 hours) and twice daily (every 12 hours) in subjects with normal renal function. Low intersubject variability has been seen across studies. Ceftobiprole exposure is slightly higher (~15%) in females than in males; this difference has been attributed to bodyweight. However, the pharmacodynamics of ceftobiprole are similar in males and females, and dosing adjustments are not required based on gender. In patients with moderate to severe renal impairment, systemic clearance of ceftobiprole correlated well with creatinine clearance. For these patients, dose adjustments for the treatment of infections caused by target pathogens, including MRSA, should be based on creatinine clearance. Ceftobiprole is undergoing clinical evaluation in phase III trials in patients with complicated skin and skin structure infections, patients with nosocomial pneumonia, and community-acquired pneumonia in hospitalized patients.

  16. Disinfection of wastewater with peracetic acid: a review.

    PubMed

    Kitis, Mehmet

    2004-03-01

    Peracetic acid is a strong disinfectant with a wide spectrum of antimicrobial activity. Due to its bactericidal, virucidal, fungicidal, and sporicidal effectiveness as demonstrated in various industries, the use of peracetic acid as a disinfectant for wastewater effluents has been drawing more attention in recent years. The desirable attributes of peracetic acid for wastewater disinfection are the ease of implementing treatment (without the need for expensive capital investment), broad spectrum of activity even in the presence of heterogeneous organic matter, absence of persistent toxic or mutagenic residuals or by-products, no quenching requirement (i.e., no dechlorination), small dependence on pH, short contact time, and effectiveness for primary and secondary effluents. Major disadvantages associated with peracetic acid disinfection are the increases of organic content in the effluent due to acetic acid (AA) and thus in the potential microbial regrowth (acetic acid is already present in the mixture and is also formed after peracetic acid decomposition). Another drawback to the use of peracetic acid is its high cost, which is partly due to limited production capacity worldwide. However, if the demand for peracetic acid increases, especially from the wastewater industry, the future mass production capacity might also be increased, thus lowering the cost. In such a case, in addition to having environmental advantages, peracetic acid may also become cost-competitive with chlorine.

  17. Bactericidal activities of GM flax seedcake extract on pathogenic bacteria clinical strains.

    PubMed

    Zuk, Magdalena; Dorotkiewicz-Jach, Agata; Drulis-Kawa, Zuzanna; Arendt, Malgorzata; Kulma, Anna; Szopa, Jan

    2014-07-29

    The antibiotic resistance of pathogenic microorganisms is a worldwide problem. Each year several million people across the world acquire infections with bacteria that are antibiotic-resistant, which is costly in terms of human health. New antibiotics are extremely needed to overcome the current resistance problem. Transgenic flax plants overproducing compounds from phenylpropanoid pathway accumulate phenolic derivatives of potential antioxidative, and thus, antimicrobial activity. Alkali hydrolyzed seedcake extract containing coumaric acid, ferulic acid, caffeic acid, and lignan in high quantities was used as an assayed against pathogenic bacteria (commonly used model organisms and clinical strains). It was shown that the extract components had antibacterial activity, which might be useful as a prophylactic against bacterial infection. Bacteria topoisomerase II (gyrase) inhibition and genomic DNA disintegration are suggested to be the main reason for rendering antibacterial action. The data obtained strongly suggest that the seedcake extract preparation is a suitable candidate for antimicrobial action with a broad spectrum and partial selectivity. Such preparation can be applied in cases where there is a risk of multibacterial infection and excellent answer on global increase in multidrug resistance in pathogenic bacteria.

  18. Biochemical and genotoxic effect of triclosan on earthworms (Eisenia fetida) using contact and soil tests.

    PubMed

    Lin, Dasong; Xie, Xiujie; Zhou, Qixing; Liu, Yao

    2012-07-01

    Triclosan (TCS) is a broad-spectrum bactericide that is used for a variety of antimicrobial functions. TCS is frequently detected in the terrestrial environment due to application of sewage sludge to agricultural land. In the present study, 48-h paper contact and 28-day spiked soil tests were conducted to examine the toxic effects of TCS on the antioxidative and genetic indices of earthworms (Eisenia fetida). The activity of antioxidative enzymes (superoxide dismutase, SOD; catalase, CAT) and the content of the lipid peroxidation product (malondialdehyde, MDA) were determined as biomarkers of oxidative stress in E. fetida. Moreover, single cell gel electrophoresis (SCGE) was used as a biomarker of genotoxicity. The results showed that triclosan induced a significant increase (P < 0.05) in antioxidative enzyme activities and MDA content. Of all of the biomarkers examined, CAT activity was most sensitive to TCS, and the CAT activity increased significantly (P < 0.05) at bactericidal concentrations of 7.86 ng cm⁻² in the contact test and 10 mg kg⁻¹ in the spiked soil test. The comet assay showed that TCS treatments significantly induced (P < 0.05) DNA damage in E. fetida, and that 78.6 ng cm⁻² caused significant genotoxic effects in the acute test (48 h). Clear dose-dependent DNA damage to E. fetida was observed both in contact and spiked soil tests. These results imply that TCS may have potential biochemical and genetic toxicity toward earthworms (E. fetida). A battery of biomarkers covering multiple molecular targets of acute toxicity can be combined to better understand the impacts of TCS on E. fetida. Copyright © 2010 Wiley Periodicals, Inc.

  19. Effects of antibacterial mineral leachates on the cellular ultrastructure, morphology, and membrane integrity of Escherichia coli and methicillin-resistant Staphylococcus aureus

    PubMed Central

    2010-01-01

    Background We have previously identified two mineral mixtures, CB07 and BY07, and their respective aqueous leachates that exhibit in vitro antibacterial activity against a broad spectrum of pathogens. The present study assesses cellular ultrastructure and membrane integrity of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli after exposure to CB07 and BY07 aqueous leachates. Methods We used scanning and transmission electron microscopy to evaluate E. coli and MRSA ultrastructure and morphology following exposure to antibacterial leachates. Additionally, we employed Baclight LIVE/DEAD staining and flow cytometry to investigate the cellular membrane as a possible target for antibacterial activity. Results Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging of E. coli and MRSA revealed intact cells following exposure to antibacterial mineral leachates. TEM images of MRSA showed disruption of the cytoplasmic contents, distorted cell shape, irregular membranes, and distorted septa of dividing cells. TEM images of E. coli exposed to leachates exhibited different patterns of cytoplasmic condensation with respect to the controls and no apparent change in cell envelope structure. Although bactericidal activity of the leachates occurs more rapidly in E. coli than in MRSA, LIVE/DEAD staining demonstrated that the membrane of E. coli remains intact, while the MRSA membrane is permeabilized following exposure to the leachates. Conclusions These data suggest that the leachate antibacterial mechanism of action differs for Gram-positive and Gram-negative organisms. Upon antibacterial mineral leachate exposure, structural integrity is retained, however, compromised membrane integrity accounts for bactericidal activity in Gram-positive, but not in Gram-negative cells. PMID:20846374

  20. Antibacterial applications of α-Fe2O3/Co3O4 nanocomposites and study of their structural, optical, magnetic and cytotoxic characteristics

    NASA Astrophysics Data System (ADS)

    Bhushan, Mayank; Kumar, Yogesh; Periyasamy, Latha; Viswanath, Annamraju Kasi

    2018-02-01

    Owing to their multiple mechanisms of bactericidal activity, inorganic metal oxides and hybrid metal oxide nanocomposites may serve as a new class of effective disinfectants. Among metal oxide nanoparticles, iron oxide nanoparticles exhibit minimal or no cytotoxicity to human cells with very efficient bactericidal properties over a wide spectrum of bacteria. This paper presents the very first report on antibacterial properties of novel nanocomposites of iron oxide and cobalt oxide nanoparticles against pathogenic bacterial strains B. subtilis, S. aureus, E.coli and S. typhi. The enhanced bactericidal activity of the Fe/Co oxide nanocomposite was the result of synergistic effect of iron oxide and cobalt oxide nanoparticles. The nanocomposites were synthesized using co-precipitation route with increasing cobalt content in the sample and further characterized using XRD, TEM, Raman and VSM to investigate structural, optical and magnetic properties of the prepared nanocomposites, respectively. Also, the prepared nanocomposites were highly biocompatible and found non-toxic to human cell line MCF7.

  1. Preliminary phytochemical and antibacterial screening of Sesuvium portulacastrum in the United Arab Emirates.

    PubMed

    Al-Azzawi, Amad; Alguboori, Alyaa; Hachim, Mahmoud Y; Najat, M; Al Shaimaa, A; Sad, Maryam

    2012-10-01

    The present study describes the phytochemical profile and antimicrobial activity of Sesuvium portulacastrum. Three extracts of S. portulacastrum obtained by extraction in aqueous, ethanolic and dichloromethane solvents, respectively, were compared for their antimicrobial activity and ethanolic extract further subjected to gas chromatography-mass spectrometry (GC-MS) analysis to find out the nature of the compounds responsible for the antimicrobial activity. The antibacterial activities were assessed by measuring the diameter of the inhibition zones, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. Compared to the aqueous and dichloromethane extract, the ethanolic extract showed better antimicrobial activity against Staphylococcus aureus and E. coli, indicating its potential application related to noscomial infections. GC-MS results revealed 22, 23-Dihydrostigmasterol, Benzoic acid, 3,4,5-trihydroxy-(Gallic acid), (2R,3R)-(-)-Epicatechin and Capsaicin in the ethanolic extract to be the molecules responsible for the antimicrobial activity of S. portulacastrum. To the best of our knowledge, this is the first report on analysis of antimicrobial components from S. portulacastrum in United Arab Emirates (UAE), and our results confer the utility of this plant extract in developing a novel broad spectrum antimicrobial agent.

  2. In vitro activity of AT-4140 against clinical bacterial isolates.

    PubMed

    Kojima, T; Inoue, M; Mitsuhashi, S

    1989-11-01

    The activity of AT-4140, a new fluoroquinolone, was evaluated against a wide range of clinical bacterial isolates and compared with those of existing analogs. AT-4140 had a broad spectrum and a potent activity against gram-positive and -negative bacteria, including Legionella spp. and Bacteroides fragilis. The activity of AT-4140 against gram-positive and -negative cocci, including Acinetobacter calcoaceticus, was higher than those of ciprofloxacin, ofloxacin, and norfloxacin. Its activity against gram-negative rods was generally comparable to that of ciprofloxacin. Some isolates of methicillin-resistant Staphylococcus aureus (MIC of methicillin, greater than or equal to 12.5 micrograms/ml) were resistant to existing quinolones, but many of them were still susceptible to AT-4140 at concentrations below 0.39 micrograms/ml. The MICs of AT-4140, ciprofloxacin, ofloxacin, and norfloxacin for 90% of clinical isolates of methicillin-resistant S. aureus were 0.2, 12.5, 6.25, and 100 micrograms/ml, respectively. AT-4140 was bactericidal for each of 20 clinical isolates of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, and Pseudomonas aeruginosa at concentrations near the MICs. AT-4140 inhibited the supercoiling activity of DNA gyrase from E. coli.

  3. Novel High-Molecular-Weight, R-Type Bacteriocins of Clostridium difficile

    PubMed Central

    Gebhart, Dana; Williams, Steven R.; Bishop-Lilly, Kimberly A.; Govoni, Gregory R.; Willner, Kristin M.; Butani, Amy; Sozhamannan, Shanmuga; Martin, David; Fortier, Louis-Charles

    2012-01-01

    Clostridium difficile causes one of the leading nosocomial infections in developed countries, and therapeutic choices are limited. Some strains of C. difficile produce phage tail-like particles upon induction of the SOS response. These particles have bactericidal activity against other C. difficile strains and can therefore be classified as bacteriocins, similar to the R-type pyocins of Pseudomonas aeruginosa. These R-type bacteriocin particles, which have been purified from different strains, each have a different C. difficile-killing spectrum, with no one bacteriocin killing all C. difficile isolates tested. We have identified the genetic locus of these “diffocins” (open reading frames 1359 to 1376) and have found them to be common among the species. The entire diffocin genetic locus of more than 20 kb was cloned and expressed in Bacillus subtilis, and this resulted in production of bactericidal particles. One of the interesting features of these particles is a very large structural protein of ∼200 kDa, the product of gene 1374. This large protein determines the killing spectrum of the particles and is likely the receptor-binding protein. Diffocins may provide an alternate bactericidal agent to prevent or treat infections and to decolonize individuals who are asymptomatic carriers. PMID:22984261

  4. Fungal Root Microbiome from Healthy and Brittle Leaf Diseased Date Palm Trees (Phoenix dactylifera L.) Reveals a Hidden Untapped Arsenal of Antibacterial and Broad Spectrum Antifungal Secondary Metabolites

    PubMed Central

    Mefteh, Fedia B.; Daoud, Amal; Chenari Bouket, Ali; Alenezi, Faizah N.; Luptakova, Lenka; Rateb, Mostafa E.; Kadri, Adel; Gharsallah, Neji; Belbahri, Lassaad

    2017-01-01

    In this study, we aimed to explore and compare the composition, metabolic diversity and antimicrobial potential of endophytic fungi colonizing internal tissues of healthy and brittle leaf diseased (BLD) date palm trees (Phoenix dactylifera L.) widely cultivated in arid zones of Tunisia. A total of 52 endophytic fungi were isolated from healthy and BLD roots of date palm trees, identified based on internal transcribed spacer-rDNA sequence analysis and shown to represent 13 species belonging to five genera. About 36.8% of isolates were shared between healthy and diseased root fungal microbiomes, whereas 18.4 and 44.7% of isolates were specific to healthy and BLD root fungal microbiomes, respectively. All isolates were able to produce at least two of the screened enzymes including amylase, cellulase, chitinase, pectinase, protease, laccase and lipase. A preliminary screening of the isolates using disk diffusion method for antibacterial activity against four Gram-positive and three Gram-negative bacteria and antifungal activities against three phytopathogenic fungi indicated that healthy and BLD root fungal microbiomes displayed interesting bioactivities against examined bacteria and broad spectrum bioactivity against fungal pathogens. Some of these endophytic fungi (17 isolates) were fermented and their extracts were evaluated for antimicrobial potential against bacterial and fungal isolates. Results revealed that fungal extracts exhibited antibacterial activities and were responsible for approximately half of antifungal activities against living fungi. These results suggest a strong link between fungal bioactivities and their secondary metabolite arsenal. EtOAc extracts of Geotrichum candidum and Thielaviopsis punctulata originating from BLD microbiome gave best results against Micrococcus luteus and Bacillus subtilis with minimum inhibitory concentration (MIC, 0.78 mg/mL) and minimum bactericidal concentration (6.25 mg/mL). G. candidum gave the best result against Rhizoctonia solani with MIC 0.78 mg/mL and minimum fungicidal concentration (MFC, 6.25 mg/mL). In conclusion, using plant microbiomes subjected to biotic stresses offers new endophytes with different bioactivities than those of healthy plants. Therefore, date palm endophytic fungi represent a hidden untapped arsenal of antibacterial and broad spectrum antifungal secondary metabolites and could be considered promising source of bioactive compounds with industrial and pharmaceutical applications. PMID:28293229

  5. Fungal Root Microbiome from Healthy and Brittle Leaf Diseased Date Palm Trees (Phoenix dactylifera L.) Reveals a Hidden Untapped Arsenal of Antibacterial and Broad Spectrum Antifungal Secondary Metabolites.

    PubMed

    Mefteh, Fedia B; Daoud, Amal; Chenari Bouket, Ali; Alenezi, Faizah N; Luptakova, Lenka; Rateb, Mostafa E; Kadri, Adel; Gharsallah, Neji; Belbahri, Lassaad

    2017-01-01

    In this study, we aimed to explore and compare the composition, metabolic diversity and antimicrobial potential of endophytic fungi colonizing internal tissues of healthy and brittle leaf diseased (BLD) date palm trees ( Phoenix dactylifera L.) widely cultivated in arid zones of Tunisia. A total of 52 endophytic fungi were isolated from healthy and BLD roots of date palm trees, identified based on internal transcribed spacer-rDNA sequence analysis and shown to represent 13 species belonging to five genera. About 36.8% of isolates were shared between healthy and diseased root fungal microbiomes, whereas 18.4 and 44.7% of isolates were specific to healthy and BLD root fungal microbiomes, respectively. All isolates were able to produce at least two of the screened enzymes including amylase, cellulase, chitinase, pectinase, protease, laccase and lipase. A preliminary screening of the isolates using disk diffusion method for antibacterial activity against four Gram-positive and three Gram-negative bacteria and antifungal activities against three phytopathogenic fungi indicated that healthy and BLD root fungal microbiomes displayed interesting bioactivities against examined bacteria and broad spectrum bioactivity against fungal pathogens. Some of these endophytic fungi (17 isolates) were fermented and their extracts were evaluated for antimicrobial potential against bacterial and fungal isolates. Results revealed that fungal extracts exhibited antibacterial activities and were responsible for approximately half of antifungal activities against living fungi. These results suggest a strong link between fungal bioactivities and their secondary metabolite arsenal. EtOAc extracts of Geotrichum candidum and Thielaviopsis punctulata originating from BLD microbiome gave best results against Micrococcus luteus and Bacillus subtilis with minimum inhibitory concentration (MIC, 0.78 mg/mL) and minimum bactericidal concentration (6.25 mg/mL). G. candidum gave the best result against Rhizoctonia solani with MIC 0.78 mg/mL and minimum fungicidal concentration (MFC, 6.25 mg/mL). In conclusion, using plant microbiomes subjected to biotic stresses offers new endophytes with different bioactivities than those of healthy plants. Therefore, date palm endophytic fungi represent a hidden untapped arsenal of antibacterial and broad spectrum antifungal secondary metabolites and could be considered promising source of bioactive compounds with industrial and pharmaceutical applications.

  6. Antibacterial activity of propolins from Taiwanese green propolis.

    PubMed

    Chen, Yue-Wen; Ye, Siou-Ru; Ting, Chieh; Yu, Yu-Hsiang

    2018-04-01

    Taiwanese green propolis is a prenylated flavonoid rich honeybee product and propolins isolated from Taiwanese green propolis exert a broad spectrum of biological activities, such as anti-cancer and anti-oxidant. However, the anti-bacterial effects of Taiwanese green propolis or propolins are still poorly understood. In the current study, the antibacterial effects of Taiwanese green propolis and propolins were evaluated. Results show that the maximum dry matter yields of Taiwanese green propolis were observed in the 95% and 99.5% ethanol extracts compared to other extraction methods. Consistently, the highest concentration of propolins C, D, F and G from Taiwanese green propolis was obtained in 95% and 99.5% ethanol extracts. Propolins inhibited the growth of gram-positive bacterial strains (Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes and Paenibacillus larvae). The average minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of propolins from ethanol extracts were 20 μg/ml. Among the propolins, propolin C had the highest antibacterial activity. Furthermore, Taiwanese green propolis also showed antibacterial activity against methicillin-resistant S. aureus (MRSA). In conclusion, these results demonstrate that Taiwanese green propolis and propolins have significant antibacterial activity, particularly against gram-positive bacterial strains. Copyright © 2017. Published by Elsevier B.V.

  7. An in vitro characterization of cefditoren, a new oral cephalosporin.

    PubMed

    Felmingham, D; Robbins, M J; Ghosh, G; Bhogal, H; Mehta, M D; Leakey, A; Clark, S; Dencer, C A; Ridgway, G L; Grüneberg, R N

    1994-01-01

    Cefditoren (ME 1206) is a new cephalosporin available for oral administration as the pivaloyloxymethyl ester (ME 1207). The effect of medium formulation. pH, cation concentration and inoculum on the in vitro activity of cefditoren was investigated prior to determining its comparative antibacterial potency against a wide range of clinical bacterial isolates, its bactericidal activity against susceptible strains and the duration of its post-antibiotic effect (PAE). Cefditoren was shown to possess a broad-spectrum of cidal antibacterial activity against both Gram-positive and Gram-negative species with stability to many beta-lactamases of clinical importance. Its activity against Gram-positive species was similar to augmentin and cefuroxime, but superior to that of cefaclor and cefixime, while its beta-lactamase stability was similar to that of cefixime and ceftazidine, characterizing it as a third generation cephalosporin. Investigation of the effect of laboratory variables on the in vitro activity of cefditoren indicates that it will present no special problems when tested in the clinical setting against bacterial pathogens. PAE of 0.9 h, or greater, for Staphylococcus spp, Streptococcus pneumoniae and Moraxella catarrhalis may support the use of an extended dose-interval when cefditoren is used for the treatment of respiratory tract infections.

  8. Inhibition of intracellular bacterial replication in fibroblasts is dependent on the perforin-like protein (Perforin-2) encoded by macrophage expressed gene 1

    PubMed Central

    McCormack, Ryan; de Armas, Lesley R.; Shiratsuchi, Motoaki; Ramos, Jay; Podack, Eckhard R.

    2013-01-01

    Fibroblasts are known to eliminate intracellular bacteria, but the lethal hit of the bactericidal mechanism has not been defined. We show that primary embryonic and established fibroblasts can be induced by interferons or by intracellular bacterial infection to express a perforin-like mRNA previously described as macrophage expressed gene 1 (mpeg1). The presence and level of the perforin-like mRNA correlate with the ability of primary mouse embryonic fibroblasts (MEF) to eliminate intracellular bacteria. In addition, siRNA knock-down of the perforin-like molecule abolishes bactericidal activity and allows intracellular bacterial replication. Complementation of MEF in which the endogenous perforin-like molecule has been knocked down with an RFP-tagged version restores bactericidal activity. The perforin-like molecule has broad bactericidal specificity for pathogenic and non-pathogenic bacteria including Gram positive, Gram negative and acid fast bacteria. The perforin-like molecule renders previously lysozyme-resistant bacteria sensitive to lysis by lysozyme suggesting physical damage of the outer cell wall by the perforin-like protein. MEFs damage cell walls of intracellular bacteria by insertion, polymerization and pore-formation of the perforin-like protein, analogous to pore-formers of complement and Perforin-1 of cytolytic lymphocytes. We propose the name Perforin-2. PMID:23257510

  9. Short communication: Determination of the ability of Thymox to kill or inhibit various species of microorganisms associated with infectious causes of bovine lameness in vitro.

    PubMed

    Kulow, Megan; Zibaee, Fahimeh; Allard, Marianne; Döpfer, Dörte

    2015-11-01

    Infectious claw diseases continue to plague cattle in intensively managed husbandry systems. Poor foot hygiene and constant moist environments lead to the infection and spread of diseases such as digital dermatitis (hairy heel warts), interdigital dermatitis, and interdigital phlegmon (foot rot). Currently, copper sulfate and formalin are the most widely used disinfecting agents in bovine footbaths; however, the industry could benefit from more environmentally and worker friendly substitutes. This study determined the in vitro minimum inhibitory concentrations and minimum bactericidal concentrations of Thymox (Laboratoire M2, Sherbrooke, Québec, Canada) for a selection of microorganisms related to infectious bovine foot diseases. Thymox is a broad-spectrum agricultural disinfectant that is nontoxic, noncorrosive, and readily biodegradable. The values for minimum inhibitory concentration and minimum bactericidal concentration indicated that Thymox inhibited growth and killed the various species of microorganisms under study at much lower concentrations compared with the recommended working concentration of a 1% solution. Overall, the values found in this study of minimum inhibitory concentration and minimum bactericidal concentration of Thymox show its potential as an alternative antibacterial agent used in bovine footbaths; however, field trials are needed to determine its effectiveness for the control and prevention of infectious claw diseases. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. An in vitro test of the efficacy of an anti-biofilm wound dressing.

    PubMed

    Said, Jawal; Walker, Michael; Parsons, David; Stapleton, Paul; Beezer, Anthony E; Gaisford, Simon

    2014-10-20

    Broad-spectrum antimicrobial agents, such as silver, are increasingly being formulated into medicated wound dressings in order to control colonization of wounds by opportunistic pathogens. Medicated wound dressings have been shown in-vitro to be effective against planktonic cultures, but in-vivo bacteria are likely to be present in biofilms, which makes their control and eradication more challenging. Recently, a functional wound dressing (AQUACEL(®) Ag+ Extra™ (AAg + E)) has been developed that in addition to silver contains two agents (ethylenediaminetetraacetic acid (EDTA) and benzethonium chloride (BC)) designed to disrupt biofilms. Here, the efficacy of AAg + E is demonstrated using a biofilm model developed in an isothermal microcalorimeter. The biofilm was seen to remain viable in the presence of unmedicated dressing, silver-containing dressing or silver nitrate solution. In the presence of AAg + E, however, the biofilm was eradicated. Control experiments showed that neither EDTA nor BC alone had a bactericidal effect, which means it is the synergistic action of EDTA and BC disrupting the biofilm with silver being bactericidal that leads to the product's efficacy. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Macedocin, a Food-Grade Lantibiotic Produced by Streptococcus macedonicus ACA-DC 198

    PubMed Central

    Georgalaki, Marina D.; Van den Berghe, Erika; Kritikos, Dimitrios; Devreese, Bart; Van Beeumen, Jozef; Kalantzopoulos, George; De Vuyst, Luc; Tsakalidou, Effie

    2002-01-01

    Streptococcus macedonicus ACA-DC 198, a strain isolated from Greek Kasseri cheese, produces a food-grade lantibiotic named macedocin. Macedocin has a molecular mass of 2,794.76 ± 0.42 Da, as determined by electrospray mass spectrometry. Partial N-terminal sequence analysis revealed 22 amino acid residues that correspond with the amino acid sequence of the lantibiotics SA-FF22 and SA-M49, both of which were isolated from the pathogen Streptococcus pyogenes. Macedocin inhibits a broad spectrum of lactic acid bacteria, as well as several food spoilage and pathogenic bacteria, including Clostridium tyrobutyricum. It displays a bactericidal effect towards the most sensitive indicator strain, Lactobacillus sakei subsp. sakei LMG 13558T, while the producer strain itself displays autoinhibition when it is grown under conditions that do not favor bacteriocin production. Macedocin is active at pHs between 4.0 and 9.0, and it retains activity even after incubation for 20 min at 121°C with 1 atm of overpressure. Inhibition of macedocin by proteolytic enzymes is variable. PMID:12450808

  12. In vitro activity of monoclonal and recombinant yeast killer toxin-like antibodies against antibiotic-resistant gram-positive cocci.

    PubMed Central

    Conti, S.; Magliani, W.; Arseni, S.; Dieci, E.; Frazzi, R.; Salati, A.; Varaldo, P. E.; Polonelli, L.

    2000-01-01

    BACKGROUND: Monoclonal (mAbKT) and recombinant single-chain (scFvKT) anti-idiotypic antibodies were produced to represent the internal image of a yeast killer toxin (KT) characterized by a wide spectrum of antimicrobial activity, including gram-positive cocci. Pathogenic eukaryotic and prokaryotic microorganisms, such as Candida albicans, Pneumocystis carinii, and a multidrug-resistant strain of Mycobacterium tuberculosis, presenting specific, although yet undefined, KT-cell wall receptors (KTR), have proven to be killed in vitro by mAbKT and scFvKT. mAbKT and scFvKT exert a therapeutic effect in vivo in experimental models of candidiasis and pneumocystosis by mimicking the functional activity of protective antibodies naturally produced in humans against KTR of infecting microorganisms. The swelling tide of concern over increasing bacterial resistance to antibiotic drugs gives the impetus to develop new therapeutic compounds against microbial threat. Thus, the in vitro bactericidal activity of mAbKT and scFvKT against gram-positive, drug-resistant cocci of major epidemiological interest was investigated. MATERIALS AND METHODS: mAbKT and scFvKT generated by hybridoma and DNA recombinant technology from the spleen lymphocytes of mice immunized with a KT-neutralizing monoclonal antibody (mAb KT4) were used in a conventional colony forming unit (CFU) assay to determine, from a qualitative point of view, their bactericidal activity against Staphylococcus aureus, S. haemolyticus, Enterococcus faecalis, E. faecium, and Streptococcus pneumoniae strains. These bacterial strains are characterized by different patterns of resistance to antibiotics, including methicillin, vancomycin, and penicillin. RESULTS: According to the experimental conditions adopted, no bacterial isolate proved to be resistant to the activity of mAbKT and scFvKT. CONCLUSIONS: scFvKT exerted a microbicidal activity against multidrug resistant bacteria, which may represent the basis for the drug modeling of new antibiotics with broad antibacterial spectra to tackle the emergence of microbial resistance. PMID:10997342

  13. Comparison of expression of monomeric and multimeric adenoregulin genes in Escherichia coli and Pichia pastorias.

    PubMed

    Zhou, Yuxun; Cao, Wei; Wang, Jinzhi; Ma, Yushu; Wei, Dongzhi

    2005-05-01

    Adenoregulin is a 33 amino acid antibiotic peptide who belongs to dermaseptin family which is the first vertebrate family to show lethal effects against filamentous fungi, as well as a broad spectrum of pathogenic microorganisms. Synthetic adenoregulin gene was cloned in 2, 4 and 6 tandem repeats and subcloned in pET32a and pET22b vectors. Recombinant plasmids were transformed into E. coli BL21(DE3), Fusion proteins of Trx-ADR1, Trx-ADR2 and Trx-ADR4 could be expressed after the hosts were induced by IPTG, but the expression level decreased dramatically with the number of tandem repeats increased. ADR1, ADR4 and ADR6 could not be expressed by E. coli without carrier proteins. But for Pichia pastoris GS115, ADR1 and ADR6 in the fermentation broth of the hosts could be detected by ELISA, and the bactericidal activities could also be observed.

  14. Bactericidal assessment of nano-silver on emerging and re-emerging human pathogens.

    PubMed

    Anuj, Samir A; Gajera, Harsukh P; Hirpara, Darshna G; Golakiya, Baljibhai A

    2018-04-24

    With the threat of the growing number of bacteria resistant to antibiotics, the re-emergence of previously deadly infections and the emergence of new infections, there is an urgent need for novel therapeutic agent. Silver in the nano form, which is being used increasingly as antibacterial agents, may extend its antibacterial application to emerging and re-emerging multidrug-resistant pathogens, the main cause of nosocomial diseases worldwide. In the present study, a completely bottom up method to prepare green nano-silver was used. To explore the action of nano-silver on emerging Bacillus megaterium MTCC 7192 and re-emerging Pseudomonas aeruginosa MTCC 741 pathogenic bacteria, the study includes an analysis of the bacterial membrane damage through Scanning Electron Microscope (SEM) as well as alternation of zeta potential and intracellular leakages. In this work, we observed genuine bactericidal property of nano-silver as compare to broad spectrum antibiotics against emerging and re-emerging mode. After being exposed to nano-silver, the membrane becomes scattered from their original ordered arrangement based on SEM observation. Moreover, our results also suggested that alternation of zeta potential enhanced membrane permeability, and beyond a critical point, it leads to cell death. The leakages of intracellular constituents were confirmed by Gas Chromatography-Mass Spectrometry (GC-MS). In conclusion, the combine results suggested that at a specific dose, nano-silver may destroy the structure of bacterial membrane and depress its activity, which causes bacteria to die eventually. Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. Demulsification. [branched polyalkylene polyamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, W.J.; Jenkins, F.W.

    1966-07-05

    A method of demulsification uses branched polyalkylene polyamines or their derivatives as demulsifiers for water-in-oil and oil-in-water emulsions. In addition to demulsification these products have a broad spectrum of uses. Among other uses are the following: (1) as corrosion inhibitors; (2) as fuel oil or lubricating oil additives; (3) as scale preventatives; (4) as acidizing additives; (5) as water-treating agents in waterflooding operations; (6) as mud additives; (7) as agents for the removal of mud filter cake from the walls of newly drilled wells; (8) as agents in paraffin solvents; (9) as additives in fracturing fluids; and (10) as agentsmore » in bactericides and fungicides. (8 claims)« less

  16. Identification of a broad-spectrum inhibitor of virus RNA synthesis: validation of a prototype virus-based approach

    PubMed Central

    Filone, Claire Marie; Hodges, Erin N.; Honeyman, Brian; Bushkin, G. Guy; Boyd, Karla; Platt, Andrew; Ni, Feng; Strom, Kyle; Hensley, Lisa; Snyder, John K.; Connor, John H.

    2013-01-01

    There are no approved therapeutics for the most deadly nonsegmented negative-strand (NNS) RNA viruses, including Ebola (EBOV). To identify new chemical scaffolds for development of broad-spectrum antivirals, we undertook a prototype-based lead identification screen. Using the prototype NNS virus, vesicular stomatitis virus (VSV), multiple inhibitory compounds were identified. Three compounds were investigated for broad-spectrum activity, and inhibited EBOV infection. The most potent, CMLDBU3402, was selected for further study. CMLDBU3402 did not show significant activity against segmented negative-strand RNA viruses suggesting proscribed broad-spectrum activity. Mechanistic analysis indicated that CMLDBU3402 blocked VSV viral RNA synthesis and inhibited EBOV RNA transcription, demonstrating a consistent mechanism of action against genetically distinct viruses. The identification of this chemical backbone as a broad-spectrum inhibitor of viral RNA synthesis offers significant potential for the development of new therapies for highly pathogenic viruses. PMID:23521799

  17. Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces.

    PubMed

    Hasan, Jafar; Webb, Hayden K; Truong, Vi Khanh; Pogodin, Sergey; Baulin, Vladimir A; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P

    2013-10-01

    The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on its physical surface structure. As such, they provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. Their effectiveness against a wide spectrum of bacteria, however, is yet to be established. Here, the bactericidal properties of the wings were tested against several bacterial species, possessing a range of combinations of morphology and cell wall type. The tested species were primarily pathogens, and included Bacillus subtilis, Branhamella catarrhalis, Escherichia coli, Planococcus maritimus, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Staphylococcus aureus. The wings were found to consistently kill Gram-negative cells (i.e., B. catarrhalis, E. coli, P. aeruginosa, and P. fluorescens), while Gram-positive cells (B. subtilis, P. maritimus, and S. aureus) remained resistant. The morphology of the cells did not appear to play any role in determining cell susceptibility. The bactericidal activity of the wing was also found to be quite efficient; 6.1 ± 1.5 × 10(6) P. aeruginosa cells in suspension were inactivated per square centimeter of wing surface after 30-min incubation. These findings demonstrate the potential for the development of selective bactericidal surfaces incorporating cicada wing nanopatterns into the design.

  18. Synthesis and characterization of lipophilic bismuth dimercaptopropanol nanoparticles and their effects on oral microorganisms growth and biofilm formation

    NASA Astrophysics Data System (ADS)

    Badireddy, Appala Raju; Hernandez-Delgadillo, Rene; Sánchez-Nájera, Rosa Isela; Chellam, Shankararaman; Cabral-Romero, Claudio

    2014-06-01

    The increasing prevalence of resistance among pathogenic microorganisms to common antibiotics has become one of the most significant concerns in modern medicine. Nanotechnology offers a new alternative to develop materials with interesting applications in many areas of biological sciences and medicine. While some bismuth derivatives have been employed to treat vomiting, nausea, diarrhea, and stomach pain, the antimicrobial properties of bismuth in its nanoparticulate form have not been extensively studied. The objective of this investigation was to analyze the bactericidal, fungicidal, and antibiofilm activities of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) against oral microbes. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Our results showed that stable colloidal BisBAL NPs inhibited Streptococcus mutans and Streptococcus gordonii growth by more than 70 % at 0.1 µM, showing a twelve thousand fold higher effectiveness compared with 1.2 mM chlorhexidine, the oral antiseptic most used by dentists. The minimal inhibitory concentration (MIC) of BisBAL NPs for S. mutans and S. gordonii was 5 µM. MIC of BisBAL NPs for Candida albicans was 10 µM. However, 100 µM of BisBAL NPs were required to interfere with planktonic growth of and biofilm formation by a multi-species population of bacteria. Our experiments show that bactericidal activity of BisBAL NPs was similar to antibiotics such as vancomycin and rifampicin. Based on MTT cell viability assays, we hypothesize that BisBAL NPs potentially act on key enzymes, altering their metabolism, and cause cell lysis. All together, these findings show the efficacy of BisBAL NPs as a broad spectrum antimicrobial agent which could reduce antibiotic usage.

  19. Besifloxacin ophthalmic suspension, 0.6%: a novel topical fluoroquinolone for bacterial conjunctivitis.

    PubMed

    O'Brien, Terrence P

    2012-06-01

    Acute bacterial conjunctivitis, the most common cause of conjunctivitis, is responsible for approximately 1% of all primary-care consultations. Of the topical ophthalmic antibiotics used to treat acute bacterial conjunctivitis, fluoroquinolones are especially useful because they possess a broad antibacterial spectrum, are bactericidal in action, are generally well tolerated, and have been less prone to development of bacterial resistance. Besifloxacin, the latest advanced fluoroquinolone approved for treating bacterial conjunctivitis, is the first fluoroquinolone developed specifically for topical ophthalmic use. It has a C-8 chlorine substituent and is known as a chloro-fluoroquinolone. Besifloxacin possesses relatively balanced dual-targeting activity against bacterial topoisomerase IV and DNA gyrase (topoisomerse II), two essential enzymes involved in bacterial DNA replication, leading to increased potency and decreased likelihood of bacterial resistance developing to besifloxacin. Microbiological data suggest a relatively high potency and rapid bactericidal activity for besifloxacin against common ocular pathogens, including bacteria resistant to other fluoroquinolones, especially resistant staphylococcal species. Randomized, double-masked, controlled clinical studies demonstrated the clinical efficacy of besifloxacin ophthalmic suspension 0.6% administered three-times daily for 5 days to be superior to the vehicle alone and similar to moxifloxacin ophthalmic solution 0.5% for bacterial conjunctivitis. In addition, besifloxacin ophthalmic suspension 0.6% administered two-times daily for 3 days was clinically more effective than the vehicle alone for bacterial conjunctivitis. Besifloxacin has also been shown in preclinical animal studies to be potentially effective for the "off-label" treatment of infections following ocular surgery, prophylaxis of endophthalmitis, and the treatment of bacterial keratitis. Taken together, clinical and preclinical animal studies indicate that besifloxacin is an important new option for the treatment of ocular infections.

  20. Antibacterial effect evaluation of moxalactam against extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae with in vitro pharmacokinetics/pharmacodynamics simulation

    PubMed Central

    Yu, Wei; Niu, Tianshui; Xiao, Tingting; Zhang, Jing; Xiao, Yonghong

    2018-01-01

    Objectives The aim of this study was to evaluate the bactericidal effects of moxalactam (MOX), cefotaxime (CTX), and cefoperazone/sulbactam (CFZ/SBT) against extended-spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae, using an in vitro pharmacokinetics (PK)/pharmacodynamics model. Methods Two clinical ESBL-producing strains (blaCTX-M-15 positive E. coli 3376 and blaCTX-M-14 positive K. pneumoniae 2689) and E. coli American Type Culture Collection (ATCC)25922 were used in the study. The PK Auto Simulation System 400 was used to simulate the human PK procedures after intravenous administration of different doses of MOX, CTX, and CFZ/SBT. Bacterial growth recovery time (RT) and the area between the control growth curve and bactericidal curves (IE) were employed to assess the antibacterial efficacies of all the agents. Results The minimum inhibitory concentrations of MOX, CTX, and CFZ/SBT against E. coli ATCC25922, 3376, and 2689 strains were 0.5, 0.5, 0.25; 0.06, >256, 256; and 0.5/0.5, 16/16, 32/32 mg/L. All the agents demonstrated outstanding bactericidal effects against E. coli ATCC25922 (RT >24 h and IE >120 log10 CFU/mL·h−1) with simulating PK procedures, especially in the multiple dose administration models. Against ESBL producers, CTX and CFZ/SBT displayed only weak bactericidal effects, and subsequent regrowth was evident. MOX exhibited potent antibacterial activity against all the strains tested. The values of effective parameters of MOX were much higher than those of CTX and CFZ/SBT (the bacterial RTs with the 3 agents were >24, <4, and <13 h, and the IEs were >110, <10, and <60 log10 CFU/mL·h−1, respectively). Conclusion MOX demonstrated excellent bactericidal effect, which is worthy of further exploration to serve as an alternative therapeutic agent against ESBL-producing Enterobacteriaceae. PMID:29391816

  1. Laboratory Evaluation of 3-(5-Tetrazolyl)Penam, a New Semisynthetic Beta-Lactam Antibacterial Agent with Extended Broad-Spectrum Activity

    PubMed Central

    English, Arthur R.; Retsema, James A.; Lynch, John E.

    1976-01-01

    In the new agent 3-(5-tetrazolyl)penam, hereafter referred to as CP-35,587, the carboxyl function at C3 in the penicillin nucleus has been replaced with the 5-tetrazolyl moiety. Marked changes in spectrum and resistance to gram-negative β-lactamases, particularly with regard to Klebsiella pneumoniae isolates, were conferred by this modification. The anti-Klebsiella activity clearly distinguishes the antibacterial spectrum of CP-35,587 from any known broad-spectrum penicillin. Compared to orally active cephalosporins, the spectrum advantage of CP-35,587 encompasses Enterobacter, Serratia marcescens, Citrobacter, Providencia, Haemophilus influenzae, and Streptococcus faecalis, both in vitro and in murine infections produced by many of the above-named microorganisms. Thus, CP-35,587 combines and extends the antibacterial activity of broad-spectrum penicillins and orally active cephalosporins. PMID:984745

  2. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.

    PubMed Central

    Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A

    1997-01-01

    The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of bacteria. The activity, solubility, and stability of BisBAL were strongly dependent on the pH, temperature, and molar ratio. Chelation of bismuth with certain thiol agents enhanced the solubility and lipophilicity of this cationic heavy metal, thereby significantly enhancing its potency and versatility as an antibacterial agent. PMID:9257744

  3. Evaluation of Activity and Emergence of Resistance of Polymyxin B and ZTI-01 (Fosfomycin for Injection) against KPC-Producing Klebsiella pneumoniae.

    PubMed

    Diep, John K; Sharma, Rajnikant; Ellis-Grosse, Evelyn J; Abboud, Cely S; Rao, Gauri G

    2018-02-01

    ZTI-01 (fosfomycin for injection) is a broad-spectrum antibiotic with a novel mechanism of action and is currently under development in the United States for treatment of complicated urinary tract infections. Globally, fosfomycin and polymyxin B are increasingly being used to treat multidrug-resistant Gram-negative infections. The objectives were to evaluate the pharmacodynamic activity of polymyxin B and fosfomycin alone and in combination against KPC-producing Klebsiella pneumoniae and to assess the rate and extent of emergence of resistance to different antibiotic regimens. Two clinical isolates, BRKP26 (MIC of polymyxin B[MIC PMB ], 0.5 mg/liter; MIC of fosfomycin [MIC FOF ], 32 mg/liter) and BRKP67 (MIC PMB , 8 mg/liter; MIC FOF , 32 mg/liter) at an initial inoculum of 10 7 CFU/ml, were evaluated over 168 h in a hollow-fiber infection model simulating clinically relevant polymyxin B (2.5-mg/kg loading dose as a 2 h-infusion followed by 1.5-mg/kg dose every 12 h [q12h] as a 1-h infusion) and fosfomycin (6 g q6h as a 1-h or 3-h infusion) regimens alone and in combination. Population analysis profiles (PAPs) and MIC testing were performed to assess emergence of resistance. Polymyxin B or fosfomycin monotherapy was ineffective and selected for resistance by 24 h. Polymyxin B plus a fosfomycin 1-h infusion demonstrated sustained bactericidal activity by 4 h, with undetectable colony counts beyond 144 h. Polymyxin B plus a fosfomycin 3-h infusion demonstrated bactericidal activity at 4 h, followed by regrowth similar to that of the control by 144 h. PAPs revealed resistant subpopulations by 120 h. The combination of polymyxin B and a fosfomycin 1-h infusion is a promising treatment option for KPC-producing K. pneumoniae and suppresses the emergence of resistance. Further evaluation of novel dosing strategies is warranted to optimize therapy. Copyright © 2018 Diep et al.

  4. Evaluation of Activity and Emergence of Resistance of Polymyxin B and ZTI-01 (Fosfomycin for Injection) against KPC-Producing Klebsiella pneumoniae

    PubMed Central

    Diep, John K.; Sharma, Rajnikant; Ellis-Grosse, Evelyn J.; Abboud, Cely S.

    2017-01-01

    ABSTRACT ZTI-01 (fosfomycin for injection) is a broad-spectrum antibiotic with a novel mechanism of action and is currently under development in the United States for treatment of complicated urinary tract infections. Globally, fosfomycin and polymyxin B are increasingly being used to treat multidrug-resistant Gram-negative infections. The objectives were to evaluate the pharmacodynamic activity of polymyxin B and fosfomycin alone and in combination against KPC-producing Klebsiella pneumoniae and to assess the rate and extent of emergence of resistance to different antibiotic regimens. Two clinical isolates, BRKP26 (MIC of polymyxin B[MICPMB], 0.5 mg/liter; MIC of fosfomycin [MICFOF], 32 mg/liter) and BRKP67 (MICPMB, 8 mg/liter; MICFOF, 32 mg/liter) at an initial inoculum of 107 CFU/ml, were evaluated over 168 h in a hollow-fiber infection model simulating clinically relevant polymyxin B (2.5-mg/kg loading dose as a 2 h-infusion followed by 1.5-mg/kg dose every 12 h [q12h] as a 1-h infusion) and fosfomycin (6 g q6h as a 1-h or 3-h infusion) regimens alone and in combination. Population analysis profiles (PAPs) and MIC testing were performed to assess emergence of resistance. Polymyxin B or fosfomycin monotherapy was ineffective and selected for resistance by 24 h. Polymyxin B plus a fosfomycin 1-h infusion demonstrated sustained bactericidal activity by 4 h, with undetectable colony counts beyond 144 h. Polymyxin B plus a fosfomycin 3-h infusion demonstrated bactericidal activity at 4 h, followed by regrowth similar to that of the control by 144 h. PAPs revealed resistant subpopulations by 120 h. The combination of polymyxin B and a fosfomycin 1-h infusion is a promising treatment option for KPC-producing K. pneumoniae and suppresses the emergence of resistance. Further evaluation of novel dosing strategies is warranted to optimize therapy. PMID:29203494

  5. Bactericidal activity of partially oxidized nanodiamonds.

    PubMed

    Wehling, Julia; Dringen, Ralf; Zare, Richard N; Maas, Michael; Rezwan, Kurosch

    2014-06-24

    Nanodiamonds are a class of carbon-based nanoparticles that are rapidly gaining attention, particularly for biomedical applications, i.e., as drug carriers, for bioimaging, or as implant coatings. Nanodiamonds have generally been considered biocompatible with a broad variety of eukaryotic cells. We show that, depending on their surface composition, nanodiamonds kill Gram-positive and -negative bacteria rapidly and efficiently. We investigated six different types of nanodiamonds exhibiting diverse oxygen-containing surface groups that were created using standard pretreatment methods for forming nanodiamond dispersions. Our experiments suggest that the antibacterial activity of nanodiamond is linked to the presence of partially oxidized and negatively charged surfaces, specifically those containing acid anhydride groups. Furthermore, proteins were found to control the bactericidal properties of nanodiamonds by covering these surface groups, which explains the previously reported biocompatibility of nanodiamonds. Our findings describe the discovery of an exciting property of partially oxidized nanodiamonds as a potent antibacterial agent.

  6. Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity.

    PubMed

    Chu, Wen-Chao; Bai, Peng-Yan; Yang, Zhao-Qing; Cui, De-Yun; Hua, Yong-Gang; Yang, Yi; Yang, Qian-Qian; Zhang, En; Qin, Shangshang

    2018-01-01

    There is an urgent need to identify new antibiotics with novel mechanisms that combat antibiotic resistant bacteria. Herein, a series of chalcone derivatives that mimic the essential properties of cationic antimicrobial peptides were designed and synthesized. Antibacterial activities against drug-sensitive bacteria, including Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Salmonella enterica, as well as clinical multiple drug resistant isolates of methicillin-resistant S. aureus (MRSA), KPC-2-producing and NDM-1-producing Carbapenem-resistant Enterobacteriaceae were evaluated. Representative compounds 5a (MIC: 1 μg/mL against S. aureus, 0.5 μg/mL against MRSA) and 5g (MIC: 0.5 μg/mL against S. aureus, 0.25 μg/mL against MRSA) showed good bactericidal activity against both Gram-positive and Gram-negative bacteria, including the drug-resistant species MRSA, KPC and NDM. These membrane-active antibacterial compounds were demonstrated to reduce the viable cell counts in bacterial biofilms effectively and do not induce the development of resistance in bacteria. Additionally, these representative molecules exhibited negligible toxicity toward mammalian cells at a suitable concentration. The combined results indicate that this series of cationic chalcone derivatives have potential therapeutic effects against bacterial infections. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. A heterodimer comprised of two bovine lactoferrin antimicrobial peptides exhibits powerful bactericidal activity against Burkholderia pseudomallei.

    PubMed

    Puknun, Aekkalak; Bolscher, Jan G M; Nazmi, Kamran; Veerman, Enno C I; Tungpradabkul, Sumalee; Wongratanacheewin, Surasakdi; Kanthawong, Sakawrat; Taweechaisupapong, Suwimol

    2013-07-01

    Melioidosis is a severe infectious disease that is endemic in Southeast Asia and Northern Australia. Burkholderia pseudomallei, the causative agent of this disease, has developed resistance to an increasing list of antibiotics, demanding a search for novel agents. Lactoferricin and lactoferrampin are two antimicrobial domains of lactoferrin with a broad spectrum of antimicrobial activity. A hybrid peptide (LFchimera) containing lactoferrampin (LFampin265-284) and a part of lactoferricin (LFcin17-30) has strikingly higher antimicrobial activities compared to the individual peptides. In this study, the antimicrobial activities of this chimeric construct (LFchimera1), as well as of another one containing LFcin17-30 and LFampin268-284, a shorter fragment of LFampin265-284 (LFchimera2), and the constituent peptides were tested against 7 isolates of B. pseudomallei and compared to the preferential antibiotic ceftazidime (CAZ). All isolates including B. pseudomallei 979b shown to be resistant to CAZ, at a density of 10(5) CFU/ml, could be killed by 5-10 μM of LFchimera1 within 2 h, while the other peptides as well as the antibiotic CAZ only inhibited the B. pseudomallei strains resulting in an overgrowth in 24 h. These data indicate that LFchimera1 could be considered for development of therapeutic agents against B. pseudomallei.

  8. Metal complexes of quinolone antibiotics and their applications: an update.

    PubMed

    Uivarosi, Valentina

    2013-09-11

    Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.

  9. Resurrecting Inactive Antimicrobial Peptides from the Lipopolysaccharide Trap

    PubMed Central

    Mohanram, Harini

    2014-01-01

    Host defense antimicrobial peptides (AMPs) are a promising source of antibiotics for the treatment of multiple-drug-resistant pathogens. Lipopolysaccharide (LPS), the major component of the outer leaflet of the outer membrane of Gram-negative bacteria, functions as a permeability barrier against a variety of molecules, including AMPs. Further, LPS or endotoxin is the causative agent of sepsis killing 100,000 people per year in the United States alone. LPS can restrict the activity of AMPs inducing aggregations at the outer membrane, as observed for frog AMPs, temporins, and also in model AMPs. Aggregated AMPs, “trapped” by the outer membrane, are unable to traverse the cell wall, causing their inactivation. In this work, we show that these inactive AMPs can overcome LPS-induced aggregations while conjugated with a short LPS binding β-boomerang peptide motif and become highly bactericidal. The generated hybrid peptides exhibit activity against Gram-negative and Gram-positive bacteria in high-salt conditions and detoxify endotoxin. Structural and biophysical studies establish the mechanism of action of these peptides in LPS outer membrane. Most importantly, this study provides a new concept for the development of a potent broad-spectrum antibiotic with efficient outer membrane disruption as the mode of action. PMID:24419338

  10. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses

    PubMed Central

    Zhao, Hanjun; Zhou, Jie; Zhang, Ke; Chu, Hin; Liu, Dabin; Poon, Vincent Kwok-Man; Chan, Chris Chung-Sing; Leung, Ho-Chuen; Fai, Ng; Lin, Yong-Ping; Zhang, Anna Jin-Xia; Jin, Dong-Yan; Yuen, Kwok-Yung; Zheng, Bo-Jian

    2016-01-01

    A safe, potent and broad-spectrum antiviral is urgently needed to combat emerging respiratory viruses. In light of the broad antiviral activity of β-defensins, we tested the antiviral activity of 11 peptides derived from mouse β-defensin-4 and found that a short peptide, P9, exhibited potent and broad-spectrum antiviral effects against multiple respiratory viruses in vitro and in vivo, including influenza A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV. The antiviral activity of P9 was attributed to its high-affinity binding to viral glycoproteins, as well as the abundance of basic amino acids in its composition. After binding viral particles through viral surface glycoproteins, P9 entered into cells together with the viruses via endocytosis and prevented endosomal acidification, which blocked membrane fusion and subsequent viral RNA release. This study has paved the avenue for developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities. PMID:26911565

  11. Phosphonopeptides as Antibacterial Agents: Alaphosphin and Related Phosphonopeptides

    PubMed Central

    Allen, John G.; Atherton, Frank R.; Hall, Michael J.; Hassall, Cedric H.; Holmes, Simon W.; Lambert, Robert W.; Nisbet, Louis J.; Ringrose, Peter S.

    1979-01-01

    Alaphosphin, l-alanyl-l-1-aminoethylphosphonic acid, was selected from a range of phosphonopeptides for evaluation in humans on the basis of its antibacterial activity, pharmacokinetics, and stability to intestinal and kidney peptidases. In vitro, the antibacterial action was antagonized by small peptides, resulting in low activity on peptone media. On an antagonist-free medium alaphosphin was bactericidal and rapidly lysed most susceptible gram-negative bacteria, but it was largely bacteriostatic and essentially nonlytic against gram-positive organisms. Its spectrum included most strains normally isolated from urinary tract infections, but potency was greatly reduced by very high inoculum levels and by alkaline pH. Although strains of Proteus and Pseudomonas were less susceptible to alaphosphin than were other common gram-negative bacteria, like other species they formed spheroplasts when exposed under appropriate conditions. Alaphosphin was equally effective against penicillin-susceptible and -resistant strains and showed no cross-resistance with known antibiotics. Good synergy and increased bactericidal activity were demonstrated with combinations of alaphosphin and d-cycloserine or β-lactam antibiotics. Images PMID:43113

  12. The unconventional antimicrobial peptides of the classical propionibacteria.

    PubMed

    Faye, Therese; Holo, Helge; Langsrud, Thor; Nes, Ingolf F; Brede, Dag A

    2011-02-01

    The classical propionibacteria produce genetically unique antimicrobial peptides, whose biological activities are without equivalents, and to which there are no homologous sequences in public databases. In this review, we summarize the genetics, biochemistry, biosynthesis, and biological activities of three extensively studied antimicrobial peptides from propionibacteria. The propionicin T1 peptide constitutes a bona fide example of an unmodified general secretory pathway (sec)-dependent bacteriocin, which is bactericidal towards all tested species of propionibacteria except Propionibacterium freudenreichii. The PAMP antimicrobial peptide represents a novel concept within bacterial antagonism, where an inactive precursor protein is secreted in large amounts, and which activation appears to rely on subsequent processing by proteases in its resident milieu. Propionicin F is a negatively charged bacteriocin that displays an intraspecies bactericidal inhibition spectrum. The biosynthesis of propionicin F appears to proceed through a series of unusual events requiring both N- and C-terminal processing of a precursor protein, which probably requires the radical SAM superfamily enzyme PcfB.

  13. Pentocin MQ1: A Novel, Broad-Spectrum, Pore-Forming Bacteriocin From Lactobacillus pentosus CS2 With Quorum Sensing Regulatory Mechanism and Biopreservative Potential

    PubMed Central

    Wayah, Samson B.; Philip, Koshy

    2018-01-01

    Micrococcus luteus, Listeria monocytogenes, and Bacillus cereus are major food-borne pathogenic and spoilage bacteria. Emergence of antibiotic resistance and consumer demand for foods containing less of chemical preservatives led to a search for natural antimicrobials. A study aimed at characterizing, investigating the mechanism of action and regulation of biosynthesis and evaluating the biopreservative potential of pentocin from Lactobacillus pentosus CS2 was conducted. Pentocin MQ1 is a novel bacteriocin isolated from L. pentosus CS2 of coconut shake origin. The purification strategy involved adsorption-desorption of bacteriocin followed by RP-HPLC. It has a molecular weight of 2110.672 Da as determined by MALDI-TOF mass spectrometry and a molar extinction value of 298.82 M−1 cm−1. Pentocin MQ1 is not plasmid-borne and its biosynthesis is regulated by a quorum sensing mechanism. It has a broad spectrum of antibacterial activity, exhibited high chemical, thermal and pH stability but proved sensitive to proteolytic enzymes. It is potent against M. luteus, B. cereus, and L. monocytogenes at micromolar concentrations. It is quick-acting and exhibited a bactericidal mode of action against its targets. Target killing was mediated by pore formation. We report for the first time membrane permeabilization as a mechanism of action of the pentocin from the study against Gram-positive bacteria. Pentocin MQ1 is a cell wall-associated bacteriocin. Application of pentocin MQ1 improved the microbiological quality and extended the shelf life of fresh banana. This is the first report on the biopreservation of banana using bacteriocin. These findings place pentocin MQ1 as a potential biopreservative for further evaluation in food and medical applications. PMID:29636737

  14. Design, synthesis and antibacterial evaluation of honokiol derivatives.

    PubMed

    Wu, Bo; Fu, Su-Hong; Tang, Huan; Chen, Kai; Zhang, Qiang; Peng, Ai-Hua; Ye, Hao-Yu; Cheng, Xing-Jun; Lian, Mao; Wang, Zhen-Ling; Chen, Li-Juan

    2018-02-15

    Staphylococcus aureus is a major and dangerous human pathogen that causes a range of clinical manifestations of varying severity, and is the most commonly isolated pathogen in the setting of skin and soft tissue infections, pneumonia, suppurative arthritis, endovascular infections, foreign-body associated infections, septicemia, osteomyelitis, and toxic shocksyndrome. Honokiol, a pharmacologically active natural compound derived from the bark of Magnolia officinalis, has antibacterial activity against Staphylococcus aureus which provides a great inspiration for the discovery of potential antibacterial agents. Herein, honokiol derivatives were designed, synthesized and evaluated for their antibacterial activity by determining the minimum inhibitory concentration (MIC) against S. aureus ATCC25923 and Escherichia coli ATCC25922 in vitro. 7c exhibited better antibacterial activity than other derivatives and honokiol. The structure-activity relationships indicated piperidine ring with amino group is helpful to improve antibacterial activity. Further more, 7c showed broad spectrum antibacterial efficiency against various bacterial strains including eleven gram-positive and seven gram-negative species. Time-kill kinetics against S. aureus ATCC25923 in vitro revealed that 7c displayed a concentration-dependent effect and more rapid bactericidal kinetics better than linezolid and vancomycin with the same concentration. Gram staining assays of S. aureus ATCC25923 suggested that 7c could destroy the cell walls of bacteria at 1×MIC and 4×MIC. Copyright © 2017. Published by Elsevier Ltd.

  15. Screening, identification and characterization of bacteriocins produced by wine-isolated LAB strains.

    PubMed

    Ndlovu, B; Schoeman, H; Franz, C M A P; du Toit, M

    2015-04-01

    To screen and identify wine-isolated LAB strains for bacteriocin production, and to identify and characterize bacteriocins. One hundred and fifty-five LAB strains isolated from South African red wines undergoing spontaneous malolactic fermentation were screened for bacteriocin production. Eight isolates were identified to be bacteriocin producers and were identified as Enterococcus faecium. All eight isolates had the same phenotypic and genotypic profiles. The peptides were preliminarily identified as enterocin P using mass spectrometry and further confirmed by PCR-amplifying enterocin P gene. The enterocin activity was inhibited by α-Chymotrypsin, papain and proteinase K treatments. It was heat stable at 37, 60, 80 and 100°C and showed activity over a broad pH range of 2-10. The production of the enterocin followed that of primary metabolite kinetics and, it showed bactericidal effect to some wine spoilage LAB strains. Our study identified the presence of the enterocin-producing Enterococcus in wine. The enterocin was heat stable; with broad pH range and bactericidal effects to sensitive strains. This is one of very few studies that isolated Enterococcus species from wine. It is, however, the first to report presence of bacteriocin-producing Enterococcus in wine fermentation. © 2015 The Society for Applied Microbiology.

  16. Efficient synthesis and evaluation of bis-pyridinium/bis-quinolinium metallosalophens as antibiotic and antitumor candidates

    NASA Astrophysics Data System (ADS)

    Elshaarawy, Reda F. M.; Eldeen, Ibrahim M.; Hassan, Eman M.

    2017-01-01

    Inspired with the pharmacological diversity of salophens and in our endeavor to explore a new strategy which may conflict the invasion of drug resistance, we report herein efficient synthetic routes for the synthesis of new RO-salophen(Cl), pyridinium/quinolinium-based salophens (3a-e) and metallosalophens (4a-j). These new architectures have been structurally characterized by elemental and spectral analysis as well pharmacologically evaluated for their in vitro antimicrobial, against a common panel of pathogenic bacterial and fungal strains, and anticancer activities against human colon carcinoma (HCT-116) cell lines. Antimicrobial assay results revealed that all tested compounds exhibited moderate to superb broad-spectrum efficacy in comparison to the standard antibiotic with a preferential ability to perform as a fungicides than to act as bactericides. Noteworthy, VO(II)-salophens are more effective in reduction HCT-116 cell viability than Cu(II)-salophens. For example, VO(II)-salophen3 (4f) (IC50 = 2.13 μg/mL) was ca. 10-fold more efficient than Cu(II)-salophen3 (4e) (IC50 = 20.30 μg/mL).

  17. Antimicrobial properties of honey.

    PubMed

    Israili, Zafar H

    2014-01-01

    Honey has been widely accepted as food and medicine by all generations, traditions, and civilizations, both ancient and modern. For at least 2700 years, honey has been used by humans to treat a variety of ailments through topical application, but only recently have the antiseptic and antimicrobial properties of honey been discovered. Honey has been reported to be effective in a number of human pathologies. Clinical studies have demonstrated that application of honey to severely infected cutaneous wounds rapidly clears infection from the wound and improves tissue healing. A large number of in vitro and limited clinical studies have confirmed the broad-spectrum antimicrobial (antibacterial, antifungal, antiviral, and antimycobacterial) properties of honey, which may be attributed to the acidity (low pH), osmotic effect, high sugar concentration, presence of bacteriostatic and bactericidal factors (hydrogen peroxide, antioxidants, lysozyme, polyphenols, phenolic acids, flavonoids, methylglyoxal, and bee peptides), and increase in cytokine release, and to immune modulating and anti-inflammatory properties of honey; the antimicrobial action involves several mechanisms. Despite a large amount of data confirming the antimicrobial activity of honey, there are no studies that support the systemic use of honey as an antibacterial agent.

  18. In vitro activity of carumonam (Ro 17-2301; AMA-1080) versus enteropathogenic and nonfermentative gram-negative rods and Legionella pneumophila.

    PubMed Central

    Hohl, P; von Graevenitz, A; Zollinger-Iten, J

    1988-01-01

    The in vitro activity of carumonam (Ro 17-2301; AMA-1080) was tested against 355 single-patient isolates, by and large enteropathogenic or nonfermentative rods. The new monobactam was inhibitory and bactericidal against the majority of diarrhea-causing members of the family Enterobacteriaceae at concentrations of less than and equal to 8 micrograms/ml. Although known to be active against Pseudomonas aeruginosa, it generally did not exhibit clinically useful activity against other nonfermenters or against Legionella pneumophila, thus confirming its narrow spectrum of activity. PMID:3190188

  19. Bactericidal Action of Fresh Rabbit Blood Against Brucella abortus

    PubMed Central

    Joos, Richard W.; Hall, Wendell H.

    1968-01-01

    A photometric method was used to measure the bactericidal kinetics for Brucella abortus of freshly drawn rabbit blood during the time before clotting. This antibrucellar activity varied between rabbits in different immunologic states. Nonimmunized rabbits had moderate bactericidal activity after a lag of about 2 min. The blood of some immunized rabbits gave an immediate and strong kill, but in certain other immunized rabbits, especially when hyperimmunized, the bactericidal activity was inhibited. It appeared that serum bactericidins and complement are sometimes as active in unclotted blood as they are in serum. However, this bactericidal activity can be either increased or neutralized by immunization. The prozone bactericidal inhibition phenomenon (Neisser-Wechsberg) found in immune serum may, in fact, reflect inhibition taking place in vivo. Inhibition of the bactericidal activity in blood can contribute to the persistence of chronic infections and individual variations in resistance. PMID:4971893

  20. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt.

    PubMed

    Vu, Thuy Thu; Kim, Hun; Tran, Vu Khac; Vu, Hoang Dinh; Hoang, Tien Xuan; Han, Jae Woo; Choi, Yong Ho; Jang, Kyoung Soo; Choi, Gyung Ja; Kim, Jin-Cheol

    2017-01-01

    In the search for new antibacterial agents from natural sources, we revealed that a crude methanol extract of Sapium baccatum was highly active against Ralstonia solanacearum, a causal agent of a serious disease called bacterial wilt of tomato. The bioassay-guided fractionation of this extract resulted in the isolation of seven known active compounds, including gallic acid, methyl gallate, corilagin, tercatain, chebulagic acid, chebulinic acid, and quercetin 3-O-α-L-arabinopyranoside. Their chemical structures were determined by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. An in vitro antibacterial bioassay using a broth microdilution method revealed that, except for quercetin 3-O-α-L-arabinopyranoside (MIC = 250 μg/mL), the isolated compounds exhibited strong antibacterial activity against R. solanacearum (MIC = 26-52 μg/mL). Among the seven compounds, methyl gallate exhibited the strongest broad-spectrum activity against most of the plant pathogenic bacteria tested (MIC = 26-250 μg/mL). In the in vivo experiments, the crude extract of S. baccatum at 2000 and 1000 μg/mL reduced the development of tomato bacterial wilt by 83 and 63%, respectively, under greenhouse conditions after 14 days of infection. The results suggested that the extracts of S. baccatum or isolated tannins could be used as natural bactericides for the control of bacterial wilt of tomato.

  1. Pharmacological Assessment of the Medicinal Potential of Acacia mearnsii De Wild.: Antimicrobial and Toxicity Activities

    PubMed Central

    Olajuyigbe, Olufunmiso O.; Afolayan, Anthony J.

    2012-01-01

    Acacia mearnsii De Wild. (Fabaceae) is a medicinal plant used in the treatment of microbial infections in South Africa without scientific validation of its bioactivity and toxicity. The antimicrobial activity of the crude acetone extract was evaluated by both agar diffusion and macrobroth dilution methods while its cytotoxicity effect was assessed with brine shrimp lethality assay. The study showed that both bacterial and fungal isolates were highly inhibited by the crude extract. The MIC values for the gram-positive bacteria (78.1–312.5) μg/mL, gram-negative bacteria (39.1–625) μg/mL and fungal isolates (625–5000) μg/mL differ significantly. The bacteria were more susceptible than the fungal strains tested. The antibiosis determination showed that the extract was more (75%) bactericidal than bacteriostatic (25%) and more fungicidal (66.67%) than fungistatic (33.33%). The cytotoxic activity of the extract was observed between 31.25 μg/mL and 500 μg/mL and the LC50 value (112.36 μg/mL) indicates that the extract was nontoxic in the brine shrimp lethality assay (LC50 > 100 μg/mL). These results support the use of A. mearnsii in traditional medicine for treatment of microbial infections. The extract exhibiting significant broad spectrum antimicrobial activity and nontoxic effects has potential to yield active antimicrobial compounds. PMID:22605976

  2. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt

    PubMed Central

    Vu, Thuy Thu; Kim, Hun; Tran, Vu Khac; Vu, Hoang Dinh; Hoang, Tien Xuan; Han, Jae Woo; Choi, Yong Ho; Jang, Kyoung Soo; Choi, Gyung Ja

    2017-01-01

    In the search for new antibacterial agents from natural sources, we revealed that a crude methanol extract of Sapium baccatum was highly active against Ralstonia solanacearum, a causal agent of a serious disease called bacterial wilt of tomato. The bioassay-guided fractionation of this extract resulted in the isolation of seven known active compounds, including gallic acid, methyl gallate, corilagin, tercatain, chebulagic acid, chebulinic acid, and quercetin 3-O-α-L-arabinopyranoside. Their chemical structures were determined by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. An in vitro antibacterial bioassay using a broth microdilution method revealed that, except for quercetin 3-O-α-L-arabinopyranoside (MIC = 250 μg/mL), the isolated compounds exhibited strong antibacterial activity against R. solanacearum (MIC = 26–52 μg/mL). Among the seven compounds, methyl gallate exhibited the strongest broad-spectrum activity against most of the plant pathogenic bacteria tested (MIC = 26–250 μg/mL). In the in vivo experiments, the crude extract of S. baccatum at 2000 and 1000 μg/mL reduced the development of tomato bacterial wilt by 83 and 63%, respectively, under greenhouse conditions after 14 days of infection. The results suggested that the extracts of S. baccatum or isolated tannins could be used as natural bactericides for the control of bacterial wilt of tomato. PMID:28742863

  3. Small Molecule Deubiquitinase Inhibitors Promote Macrophage Anti-Infective Capacity

    PubMed Central

    Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J.; Showalter, Hollis D.; Donato, Nicholas J.; Wobus, Christiane E.; O’Riordan, Mary X. D.

    2014-01-01

    The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity. PMID:25093325

  4. Small molecule deubiquitinase inhibitors promote macrophage anti-infective capacity.

    PubMed

    Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J; Showalter, Hollis D; Donato, Nicholas J; Wobus, Christiane E; O'Riordan, Mary X D

    2014-01-01

    The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity.

  5. Correlation of transforming growth factor-β messenger RNA (TGF-β mRNA) expression with cellular immunoassays in Triamcinolone-treated captive hybrid striped bass

    USGS Publications Warehouse

    Harms, Craig A.; Ottinger, Christopher A.; Kennedy-Stoskopf, S.

    2000-01-01

    Assessing fish immune status with molecular markers has been hampered by a lack of specific reagents. A quantitative polymerase chain reaction (PCR) method (reverse transcription quantitative–competitive PCR, RT-qcPCR) for measuring transforming growth factor-β (TGF-β) transcription from a broad range of teleost fish has recently been developed. The quantitative PCR now permits monitoring production of this important immunosuppressive cytokine in response to immunomodulating agents and conditions. We examined anterior kidney and spleen mononuclear cells from hybrid striped bass (female striped bass Morone saxatilis× male white bass M. chrysops) for production of TGF-β messenger RNA (mRNA) in response to administration of the synthetic glucocorticoid triamcinolone. We also compared TGF-β transcription with anterior kidney macrophage bactericidal activity and splenic lymphocyte blastogenesis. Anterior kidney mononuclear cell TGF-β mRNA levels decreased, whereas bactericidal activity increased. Spleen TGF-β mRNA levels did not change significantly, and splenic lymphocyte pokeweed mitogen stimulation index increased in triamcinolone-treated fish. Since triamcinolone is used therapeutically as a suppressive immunomodulator, the enhanced immune functions indicated by the cellular immunoassays were unexpected; however, the inverse response of TGF-β production and macrophage bactericidal activity was consistent with the known relationship between TGF-β and macrophage activation in mammals. Induced immunomodulation in hybrid striped bass was detectable by both traditional cellular immunoassays and the new RT-qcPCR for TGF-β.

  6. TOC-39, a novel parenteral broad-spectrum cephalosporin with excellent activity against methicillin-resistant Staphylococcus aureus.

    PubMed Central

    Hanaki, H; Akagi, H; Masaru, Y; Otani, T; Hyodo, A; Hiramatsu, K

    1995-01-01

    TOC-39, a new parenteral cephalosporin, is a hydroxyimino-type cephem antibiotic with vinylthio-pyridyl moiety at the 3 position. TOC-39 was evaluated for antibacterial activity against various clinically isolated strains. TOC-39 had excellent activity, stronger than that of methicillin, oxacillin, the cephalosporins tested, imipenem, gentamicin, minocycline, tobramycin, ofloxacin, and ciprofloxacin against methicillin-resistant Staphylococcus aureus (MRSA) and had an MIC comparable to that of vancomycin (the MICs of TOC-39 and vancomycin for 90% of the strains tested were 3.13 and 1.56 micrograms/ml, respectively). Against Enterococcus faecalis strains, which are resistant to cephalosporins, TOC-39 was twice as active as ampicillin. Against methicillin-susceptible S. aureus, coagulase-negative Staphylococcus spp., and Streptococcus pneumoniae, TOC-39 was twice as active as or more active than cefotiam, ceftazidime, flomoxef, and cefpirome. Against Streptococcus pyogenes, TOC-39 was superior to cefotiam, ceftazidime, and flomoxef and was similar to cefpirome. In addition, the activity of TOC-39 was equal to or greater than that of cefotiam, ceftazidime, flomoxef, and cefpirome against Haemophilus influenzae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Morganella morganii. In terms of bactericidal effect against MRSA, TOC-39 was superior to vancomycin. No mutant resistant to TOC-39 or vancomycin was obtained from susceptible MRSA strains. In murine systemic infection models, TOC-39 showed potent activity against S. aureus and E. coli. Against highly MRSA, the activity of TOC-39 was comparable to that of vancomycin. PMID:7625799

  7. Potential Adverse Effects of Broad-Spectrum Antimicrobial Exposure in the Intensive Care Unit.

    PubMed

    Wiens, Jenna; Snyder, Graham M; Finlayson, Samuel; Mahoney, Monica V; Celi, Leo Anthony

    2018-02-01

    The potential adverse effects of empiric broad-spectrum antimicrobial use among patients with suspected but subsequently excluded infection have not been fully characterized. We sought novel methods to quantify the risk of adverse effects of broad-spectrum antimicrobial exposure among patients admitted to an intensive care unit (ICU). Among all adult patients admitted to ICUs at a single institution, we selected patients with negative blood cultures who also received ≥1 broad-spectrum antimicrobials. Broad-spectrum antimicrobials were categorized in ≥1 of 5 categories based on their spectrum of activity against potential pathogens. We performed, in serial, 5 cohort studies to measure the effect of each broad-spectrum category on patient outcomes. Exposed patients were defined as those receiving a specific category of broad-spectrum antimicrobial; nonexposed were all other patients in the cohort. The primary outcome was 30-day mortality. Secondary outcomes included length of hospital and ICU stay and nosocomial acquisition of antimicrobial-resistant bacteria (ARB) or Clostridium difficile within 30 days of admission. Among the study cohort of 1918 patients, 316 (16.5%) died within 30 days, 821 (42.8%) had either a length of hospital stay >7 days or an ICU length of stay >3 days, and 106 (5.5%) acquired either a nosocomial ARB or C. difficile . The short-term use of broad-spectrum antimicrobials in any of the defined broad-spectrum categories was not significantly associated with either primary or secondary outcomes. The prompt and brief empiric use of defined categories of broad-spectrum antimicrobials could not be associated with additional patient harm.

  8. Two Major Medicinal Honeys Have Different Mechanisms of Bactericidal Activity

    PubMed Central

    Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2011-01-01

    Honey is increasingly valued for its antibacterial activity, but knowledge regarding the mechanism of action is still incomplete. We assessed the bactericidal activity and mechanism of action of Revamil® source (RS) honey and manuka honey, the sources of two major medical-grade honeys. RS honey killed Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa within 2 hours, whereas manuka honey had such rapid activity only against B. subtilis. After 24 hours of incubation, both honeys killed all tested bacteria, including methicillin-resistant Staphylococcus aureus, but manuka honey retained activity up to higher dilutions than RS honey. Bee defensin-1 and H2O2 were the major factors involved in rapid bactericidal activity of RS honey. These factors were absent in manuka honey, but this honey contained 44-fold higher concentrations of methylglyoxal than RS honey. Methylglyoxal was a major bactericidal factor in manuka honey, but after neutralization of this compound manuka honey retained bactericidal activity due to several unknown factors. RS and manuka honey have highly distinct compositions of bactericidal factors, resulting in large differences in bactericidal activity. PMID:21394213

  9. Effects of freezing on the bactericidal activity of human milk.

    PubMed

    Takci, Sahin; Gulmez, Dolunay; Yigit, Sule; Dogan, Ozlem; Dik, Kezban; Hascelik, Gulsen

    2012-08-01

    Storage of human milk by freezing has been recommended for long-term storage. The present study analyzed the bactericidal activity of human milk on Escherichia coli and Pseudomonas aeruginosa and determined the changes in bactericidal activity following freezing at -20°C and -80°C for 1 month and 3 months. Forty-eight milk samples were collected from 48 lactating mothers. Each sample was divided into 10 aliquots. Two of the samples were processed immediately and the others were stored at both -20°C and -80°C until analysis after 1 month and 3 months of freezing. All of the fresh milk samples showed bactericidal activity against E coli and P aeruginosa. Freezing at -20°C for 1 month did not cause statistically significant alteration in bactericidal activity (P > 0.017), whereas storage for 3 months lowered the degree of bactericidal activity significantly (P < 0.017) against E coli. Bactericidal activity was protected when the samples were stored at -80°C. There was no statistically significant difference in the bactericidal activity of human milk against E coli between freezing at -20°C and -80°C for 1 month (P > 0.017); however, when milk was stored for 3 months, -80°C was significantly more protective (P < 0.017). Freezing at -20°C and -80°C for 1 month and 3 months did not cause any significant change in bactericidal activity against P aeruginosa (P > 0.05). Storage by freezing at -80°C is more appropriate to keep bactericidal capacity of stored human milk >1 month if affordable and available, especially in intensive care settings.

  10. Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications.

    PubMed

    Bastos, M C F; Ceotto, H; Coelho, M L V; Nascimento, J S

    2009-01-01

    Bacteriocins are bacterial antimicrobial peptides with bactericidal activity against other bacteria. Staphylococcins are bacteriocins produced by staphylococci, which are Gram-positive bacteria with medical and veterinary importance. Most bacteriocins produced by staphylococci are either lantibiotics (e.g., Pep5, epidermin, epilancin K7, epicidin 280, staphylococcin C55/BacR1, and nukacin ISK-1) or class II bacteriocins (e.g., aureocins A70 and 53). Only one staphylococcin belonging to class III, lysostaphin, has been described so far. Production of staphylococcins is a self-protection mechanism that helps staphylococci to survive in their natural habitats. However, since these substances generally have a broad spectrum of activity, inhibiting several human and animal pathogens, they have potential biotechnological applications either as food preservatives or therapeutic agents. Due to the increasing consumer awareness of the risks derived not only from food-borne pathogens, but also from the artificial chemical preservatives used to control them, the interest in the discovery of natural food preservatives has increased considerably. The emergence and dissemination of antibiotic resistance among human and animal pathogens and their association with the use of antibiotics constitute a serious problem worldwide requiring effective measures for controlling their spread. Staphylococcins may be used, solely or in combination with other chemical agents, to avoid food contamination or spoilage and to prevent or treat bacterial infectious diseases. The use of combinations of antimicrobials is common in the clinical setting and expands the spectrum of organisms that can be targeted, prevents the emergence of resistant organisms, decreases toxicity by allowing lower doses of both agents and can result in synergistic inhibition.

  11. Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori.

    PubMed

    Shin, Il Shik; Masuda, Hideki; Naohide, Kinae

    2004-08-01

    In this study, the bactericidal activity of Korean and Japanese wasabi roots, stems and leaves against Helicobacter pylori were examined. Allyl isothiocyanate (AIT) in roots, stems and leaves of Korean wasabi were 0.75, 0.18 and 0.32 mg/g, respectively. AIT in roots, stems and leaves of Japanese wasabi were 1.18, 0.41 and 0.38 mg/g, respectively. All parts of wasabi showed bactericidal activities against H. pylori strain NCTC 11637, YS 27 and YS 50. The leaves of both wasabi showed the highest bactericidal activities with the minimum bactericidal concentration of 1.05-1.31 mg of dry weight/ml against three strains of H. pylori. The roots showed a little lower bactericidal activity with 2.09-4.17 mg of dry weight/ml against them. The main component related to antimicrobial activity in wasabi is well known to be AIT. In this study, the bactericidal activity of leaves was higher than that of roots, although AIT amount of leaves was lower than that of roots. These results suggest that certain components besides AIT in wasabi are effective in killing H. pylori.

  12. Identification of Inonotus obliquus polysaccharide with broad-spectrum antiviral activity against multi-feline viruses.

    PubMed

    Tian, Jin; Hu, Xiaoliang; Liu, Dafei; Wu, Hongxia; Qu, Liandong

    2017-02-01

    Inonotus obliquus polysaccharides (IOPs) are a potential drug for the prevention and treatment of cancer, cardiopathy, diabetes, AIDs, pancreatitis and other diseases. In this study, we found that IOP can act as a broad-spectrum antiviral drug against feline viruses in the in vitro experiment. Using cell models of feline calicivirus (FCV), we demonstrated that IOP treatment was capable of exhibiting anti-FCV strain F9 activity in cell-based assays and also showed low cytotoxicity. Investigation of the mechanism of action of the compound revealed that IOP treatment induces its inhibitory actions directly on virus particles through blocking viral binding/absorpting. The inhibitory activity against other FCV isolates from China was also identified. More importantly, we found that IOP exhibited broad-spectrum antiviral activity against the feline herpesvirus 1, feline influenza virus H3N2 and H5N6, feline panleukopenia virus and feline infectious peritonitis virus that can contribute to respiratory and gastrointestinal diseases in cats. These findings suggest that IOP may be a potential broad-spectrum antiviral drug against feline viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Potential Adverse Effects of Broad-Spectrum Antimicrobial Exposure in the Intensive Care Unit

    PubMed Central

    Wiens, Jenna; Finlayson, Samuel; Mahoney, Monica V; Celi, Leo Anthony

    2018-01-01

    Abstract Background The potential adverse effects of empiric broad-spectrum antimicrobial use among patients with suspected but subsequently excluded infection have not been fully characterized. We sought novel methods to quantify the risk of adverse effects of broad-spectrum antimicrobial exposure among patients admitted to an intensive care unit (ICU). Methods Among all adult patients admitted to ICUs at a single institution, we selected patients with negative blood cultures who also received ≥1 broad-spectrum antimicrobials. Broad-spectrum antimicrobials were categorized in ≥1 of 5 categories based on their spectrum of activity against potential pathogens. We performed, in serial, 5 cohort studies to measure the effect of each broad-spectrum category on patient outcomes. Exposed patients were defined as those receiving a specific category of broad-spectrum antimicrobial; nonexposed were all other patients in the cohort. The primary outcome was 30-day mortality. Secondary outcomes included length of hospital and ICU stay and nosocomial acquisition of antimicrobial-resistant bacteria (ARB) or Clostridium difficile within 30 days of admission. Results Among the study cohort of 1918 patients, 316 (16.5%) died within 30 days, 821 (42.8%) had either a length of hospital stay >7 days or an ICU length of stay >3 days, and 106 (5.5%) acquired either a nosocomial ARB or C. difficile. The short-term use of broad-spectrum antimicrobials in any of the defined broad-spectrum categories was not significantly associated with either primary or secondary outcomes. Conclusions The prompt and brief empiric use of defined categories of broad-spectrum antimicrobials could not be associated with additional patient harm. PMID:29479546

  14. Immunogenicity of a meningococcal native outer membrane vesicle vaccine with attenuated endotoxin and over-expressed factor H binding protein in infant rhesus monkeys

    PubMed Central

    Koeberling, Oliver; Seubert, Anja; Santos, George; Colaprico, Annalisa; Ugozzoli, Mildred; Donnelly, John; Granoff, Dan M.

    2011-01-01

    We previously investigated immunogenicity of meningococcal native outer membrane vesicle (NOMV) vaccines prepared from recombinant strains with attenuated endotoxin (ΔLpxL1) and over-expressed factor H binding protein (fHbp) in a mouse model. The vaccines elicited broad serum bactericidal antibody responses. While human toll-like receptor 4 (TLR-4) is mainly stimulated by wildtype meningococcal endotoxin, mouse TLR-4 is stimulated by both the wildtype and mutant endotoxin. An adjuvant effect in mice of the mutant endotoxin would be expected to be much less in humans, and may have contributed to the broad mouse bactericidal responses. Here we show that as previously reported for humans, rhesus primate peripheral blood mononuclear cells incubated with a NOMV vaccine from ΔLpxL1 recombinant strains had lower proinflammatory cytokine responses than with a control wildtype NOMV vaccine. The cytokine responses to the mutant vaccine were similar to those elicited by a detergent-treated, wildtype outer membrane vesicle vaccine that had been safely administered to humans. Monkeys (N=4) were immunized beginning at ages 2 to 3 months with three doses of a NOMV vaccine prepared from ΔLpxL1 recombinant strains with over-expressed fHbp in the variant 1 and 2 groups. The mutant NOMV vaccine elicited serum bactericidal titers ≥1:4 against all 10 genetically diverse strains tested, including 9 with heterologous PorA to those in the vaccine. Negative-control animals had serum bactericidal titers <1:4. Thus, the mutant NOMV vaccine elicited broadly protective serum antibodies in a non-human infant primate model that is more relevant for predicting human antibody responses than mice. PMID:21571025

  15. The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells

    PubMed Central

    Korshed, Peri; Li, Lin; Liu, Zhu; Wang, Tao

    2016-01-01

    Silver nanoparticles (Ag NPs) are known to have antibacterial properties. They are commonly produced by chemical synthesis which involves the use of harmful reducing agents. Contras, the laser technique is able to generate high-purity Ag NPs in water with specified surface charge characteristics. In the past, the molecular mechanisms contributing to the bactericidal effects of Ag NPs have been investigated extensively, but little is known of the antibacterial and toxic effects and mechanisms involved in laser-generated Ag NPs. In the current study Ag NPs were generated by picosecond laser ablation. Their antibacterial activity was determined on the gram-negative bacteria E. coli and Pseudomonas aeruginosa, and the gram positive bacteria Staphylococcus aureus including the methicillin resistant strain MRSA. Results showed that the laser generated Ag NPs exhibited strong dose-dependent antibacterial activity against all the three bacterial strains tested. Using E.coli as a model system, the laser Ag NPs treatment induced significantly high levels of reactive oxygen species (ROS). These ROS did not include detectable hydroxyl radicals, suggesting for the first time the selective ROS induction in bacterial cells by laser generated Ag NPs. The increased ROS was accompanied by significantly reduced cellular glutathione, and increased lipid peroxidation and permeability, suggesting ROS related bacterial cell damage. The laser generated Ag NPs exhibited low toxicity (within 72 hours) to five types of human cells although a weak significant decrease in cell survival was observed for endothelial cells and the lung cells. We conclude that picosecond laser generated Ag NPs have a broad spectrum of antibacterial effects against microbes including MRSA with minimal human cell toxicity. The oxidative stress is likely the key mechanism underlying the bactericidal effect, which leads to lipid peroxidation, depletion of glutathione, DNA damages and eventual disintegration of the cell membrane. PMID:27575485

  16. The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells.

    PubMed

    Korshed, Peri; Li, Lin; Liu, Zhu; Wang, Tao

    2016-01-01

    Silver nanoparticles (Ag NPs) are known to have antibacterial properties. They are commonly produced by chemical synthesis which involves the use of harmful reducing agents. Contras, the laser technique is able to generate high-purity Ag NPs in water with specified surface charge characteristics. In the past, the molecular mechanisms contributing to the bactericidal effects of Ag NPs have been investigated extensively, but little is known of the antibacterial and toxic effects and mechanisms involved in laser-generated Ag NPs. In the current study Ag NPs were generated by picosecond laser ablation. Their antibacterial activity was determined on the gram-negative bacteria E. coli and Pseudomonas aeruginosa, and the gram positive bacteria Staphylococcus aureus including the methicillin resistant strain MRSA. Results showed that the laser generated Ag NPs exhibited strong dose-dependent antibacterial activity against all the three bacterial strains tested. Using E.coli as a model system, the laser Ag NPs treatment induced significantly high levels of reactive oxygen species (ROS). These ROS did not include detectable hydroxyl radicals, suggesting for the first time the selective ROS induction in bacterial cells by laser generated Ag NPs. The increased ROS was accompanied by significantly reduced cellular glutathione, and increased lipid peroxidation and permeability, suggesting ROS related bacterial cell damage. The laser generated Ag NPs exhibited low toxicity (within 72 hours) to five types of human cells although a weak significant decrease in cell survival was observed for endothelial cells and the lung cells. We conclude that picosecond laser generated Ag NPs have a broad spectrum of antibacterial effects against microbes including MRSA with minimal human cell toxicity. The oxidative stress is likely the key mechanism underlying the bactericidal effect, which leads to lipid peroxidation, depletion of glutathione, DNA damages and eventual disintegration of the cell membrane.

  17. Inhibition of the β-Lactamase BlaMab by Avibactam Improves the In Vitro and In Vivo Efficacy of Imipenem against Mycobacterium abscessus

    PubMed Central

    Lefebvre, Anne-Laure; Le Moigne, Vincent; Bernut, Audrey; Veckerlé, Carole; Compain, Fabrice; Herrmann, Jean-Louis; Kremer, Laurent

    2017-01-01

    ABSTRACT Mycobacterium abscessus pulmonary infections are treated with a macrolide (clarithromycin or azithromycin), an aminoglycoside (amikacin), and a β-lactam (cefoxitin or imipenem). The triple combination is used without any β-lactamase inhibitor, even though M. abscessus produces the broad-spectrum β-lactamase BlaMab. We determine whether inhibition of BlaMab by avibactam improves the activity of imipenem against M. abscessus. The bactericidal activity of drug combinations was assayed in broth and in human macrophages. The in vivo efficacy of the drugs was tested by monitoring the survival of infected zebrafish embryos. The level of BlaMab production in broth and in macrophages was compared by quantitative reverse transcription-PCR and Western blotting. The triple combination of imipenem (8 or 32 μg/ml), amikacin (32 μg/ml), and avibactam (4 μg/ml) was bactericidal in broth (<0.1% survival), with 3.2- and 4.3-log10 reductions in the number of CFU being achieved at 72 h when imipenem was used at 8 and 32 μg/ml, respectively. The triple combination achieved significant intracellular killing, with the bacterial survival rates being 54% and 7% with the low (8 μg/ml) and high (32 μg/ml) dosages of imipenem, respectively. In vivo inhibition of BlaMab by avibactam improved the survival of zebrafish embryos treated with imipenem. Expression of the gene encoding BlaMab was induced (20-fold) in the infected macrophages. Inhibition of BlaMab by avibactam improved the efficacy of imipenem against M. abscessus in vitro, in macrophages, and in zebrafish embryos, indicating that this β-lactamase inhibitor should be clinically evaluated. The in vitro evaluation of imipenem may underestimate the impact of BlaMab, since the production of the β-lactamase is inducible in macrophages. PMID:28096155

  18. Inhibition of the β-Lactamase BlaMab by Avibactam Improves the In Vitro and In Vivo Efficacy of Imipenem against Mycobacterium abscessus.

    PubMed

    Lefebvre, Anne-Laure; Le Moigne, Vincent; Bernut, Audrey; Veckerlé, Carole; Compain, Fabrice; Herrmann, Jean-Louis; Kremer, Laurent; Arthur, Michel; Mainardi, Jean-Luc

    2017-04-01

    Mycobacterium abscessus pulmonary infections are treated with a macrolide (clarithromycin or azithromycin), an aminoglycoside (amikacin), and a β-lactam (cefoxitin or imipenem). The triple combination is used without any β-lactamase inhibitor, even though M abscessus produces the broad-spectrum β-lactamase Bla Mab We determine whether inhibition of Bla Mab by avibactam improves the activity of imipenem against M. abscessus The bactericidal activity of drug combinations was assayed in broth and in human macrophages. The in vivo efficacy of the drugs was tested by monitoring the survival of infected zebrafish embryos. The level of Bla Mab production in broth and in macrophages was compared by quantitative reverse transcription-PCR and Western blotting. The triple combination of imipenem (8 or 32 μg/ml), amikacin (32 μg/ml), and avibactam (4 μg/ml) was bactericidal in broth (<0.1% survival), with 3.2- and 4.3-log 10 reductions in the number of CFU being achieved at 72 h when imipenem was used at 8 and 32 μg/ml, respectively. The triple combination achieved significant intracellular killing, with the bacterial survival rates being 54% and 7% with the low (8 μg/ml) and high (32 μg/ml) dosages of imipenem, respectively. In vivo inhibition of Bla Mab by avibactam improved the survival of zebrafish embryos treated with imipenem. Expression of the gene encoding Bla Mab was induced (20-fold) in the infected macrophages. Inhibition of Bla Mab by avibactam improved the efficacy of imipenem against M. abscessus in vitro , in macrophages, and in zebrafish embryos, indicating that this β-lactamase inhibitor should be clinically evaluated. The in vitro evaluation of imipenem may underestimate the impact of Bla Mab , since the production of the β-lactamase is inducible in macrophages. Copyright © 2017 American Society for Microbiology.

  19. Antibacterial, antifungal and cytotoxic evaluation of some new quinazolinone derivatives

    PubMed Central

    Hassanzadeh, F.; Jafari, E.; Hakimelahi, G.H.; Khajouei, M. Rahmani; Jalali, M.; Khodarahmi, G.A.

    2012-01-01

    Quinazolinone ring system is renown because of its wide spectrum of pharmacological activities due to various substitutions on this ring system. In this study, the minimum inhibitory concentration of the synthesized compounds in our laboratory was determined by micro dilution Alamar Blue® Assay against six strains of bacteria (three Gram-positive and three Gram-negative) and three strains of fungi. Following a broth micro dilution minimum inhibitory concentration (MIC) test, Minimum Bactericidal Concentration (MBC) and Minimum Fungicidal Concentration (MFC) tests were performed. Cytotoxic effects of the compounds were measured using the MTT colorimetric assay on HeLa cell line. Results of antimicrobial screening showed that compounds had better bacteriostatic activity against Gram-negative bacteria. Results from MBC revealed that these compounds had more significant bacteriostatic than bactericidal activities. Nearly all screened compounds showed good activity against C. albicans and A. niger. Results from MFC indicated that these compounds had better fungistatic rather than fungicidal activities. The synthesized target molecules were found to exhibit different cytotoxicity in the range of 10 to 100 μM on HeLa cell line. Compounds 6 and 7 exhibited acceptable cytotoxicity approximately 50% at 10 μM concentration. PMID:23181085

  20. Besifloxacin, a novel fluoroquinolone, has broad-spectrum in vitro activity against aerobic and anaerobic bacteria.

    PubMed

    Haas, Wolfgang; Pillar, Chris M; Zurenko, Gary E; Lee, Jacqueline C; Brunner, Lynne S; Morris, Timothy W

    2009-08-01

    The antibacterial spectrum of besifloxacin, a novel fluoroquinolone recently approved for treatment of ocular infections, was studied using 2,690 clinical isolates representing 40 species. Overall, besifloxacin was the most potent agent tested against gram-positive pathogens and anaerobes and was generally equivalent to comparator fluoroquinolones in activity against most gram-negative pathogens. Besifloxacin demonstrated potent, broad-spectrum activity, which was particularly notable against gram-positive and gram-negative isolates that were resistant to other fluoroquinolones and classes of antibacterial agents.

  1. Antimicrobial-Coated Granules for Disinfecting Water

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of preparing antimicrobialcoated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.

  2. Recent approaches in food bio-preservation - a review

    PubMed Central

    Singh, Veer Pal

    2018-01-01

    Bio-preservation is a technique of extending the shelf life of food by using natural or controlled microbiota or antimicrobials. The fermentation products as well as beneficial bacteria are generally selected in this process to control spoilage and render pathogen inactive. The special interest organism or central organism used for this purpose is lactic acid bacteria (LAB) and their metabolites. They are capable to exhibit antimicrobial properties and helpful in imparting unique flavour and texture to the food products. The major compounds produced by LAB are bacteriocin, organic acids and hydrogen peroxide. Bacteriocin is peptides or proteins with antimicrobial activity. On the basis of size, structure and post-translational modification, bacteriocin is divided into four different classes. Due to non-toxic, non-immunogenic, thermo-resistance characteristics and broad bactericidal activity, LAB bacteriocins are considered good bio-preservative agents. The most common LAB bactriocin is nisin which has wider applications in food industry and has been Food and Drug Administration (FDA) approved. Nisin and other bacteriocin are being used in vegetables products, dairy and meat industries. Apart from LAB metabolites, bacteriophages and endolysins has promising role in food processing, preservation and safety. Bacteriocins and endolysins are more suitable for DNA shuffling and protein engineering to generate highly potent variants with expanded activity spectrum. Genetically modified bacteriophages may also be helpful in bio-preservation, however; their safety issues must be addressed properly before selection as bio-preservative agent. PMID:29721439

  3. Isolation and characterization of large spectrum and multiple bacteriocin-producing Enterococcus faecium strain from raw bovine milk.

    PubMed

    Gaaloul, N; ben Braiek, O; Hani, K; Volski, A; Chikindas, M L; Ghrairi, T

    2015-02-01

    To assess the antimicrobial properties of lactic acid bacteria from Tunisian raw bovine milk. A bacteriocin-producing Enterococcus faecium strain was isolated from raw cow milk with activity against Gram-positive and Gram-negative bacteria. Antimicrobial substances produced by this strain were sensitive to proteolytic enzymes and were thermostable and resistant to a broad range of pH (2-10). Mode of action of antimicrobial substances was determined as bactericidal. Maximum activity was reached at the end of the exponential growth phase when checked against Listeria ivanovii BUG 496 (2366.62 AU ml(-1)). However, maximum antimicrobial activity against Pseudomonas aeruginosa 28753 was recorded at the beginning of the exponential growth phase. Enterococcus faecium GGN7 was characterized as free from virulence factors and was susceptible to tested antibiotics. PCR analysis of the micro-organism's genome revealed the presence of genes coding for enterocins A and B. Mass spectrometry analysis of RP-HPLC active fractions showed molecular masses corresponding to enterocins A (4835.77 Da) and B (5471.56 Da), and a peptide with a molecular mass of 3215.5 Da active only against Gram-negative indicator strains. The latter was unique in the databases. Enterococcus faecium GGN7 produces three bacteriocins with different inhibitory spectra. Based on its antimicrobial properties and safety, Ent. faecium GGN7 is potentially useful for food biopreservation. The results suggest the bacteriocins from GGN7 strain could be useful for food biopreservation. © 2014 The Society for Applied Microbiology.

  4. New treatment options for lower respiratory tract infections.

    PubMed

    Kocsis, Bela; Szabo, Dora

    2017-09-01

    Community-acquired pneumonia (CAP) and acute exacerbation of chronic obstructive pulmonary disease (AECOPD) are among the most frequent lower respiratory tract infections (LRTIs). They represent an increased morbidity and mortality rate in adults. Areas covered: This review describes recent advances regarding solithromycin, zabofloxacin and delafoxacin antibacterial agents that have been recently developed for treatment of CAP and in AECOPD. All of them have been introduced into phase III clinical trials. We will be summarising chemical structures, pharmacokinetics, antibacterial efficacy and toxicity of these agents. The manuscript has been prepared based on available scientific publications. Expert opinion: Novel agents of known antimicrobial classes have been developed that demonstrate treatment options in CAP and in AECOPD. Antimicrobials discussed in this review showed bactericide effect against major respiratory tract pathogens. Each has multiple targets in bacteria, thus enabling them for more potency, even against strains exhibiting resistance to commonly used antibiotics. Solithromycin, delafloxacin and zabofloxcian demonstrate broad-spectrum antibacterial activity together with other beneficial features like intracellular accumulation, anti-inflammatory effect and inhibition of biofilm production. These agents showed moderately severe or mild adverse events and demonstrated favourable tissue penetration. These features can make solithromycin, zabofloxacin and delafloxacin treatment options in LRTIs.

  5. In Vitro Activity of DC-159a, a New Broad-Spectrum Fluoroquinolone, Compared with That of Other Agents against Drug-Susceptible and -Resistant Pneumococci▿

    PubMed Central

    Clark, Catherine; Smith, Kathy; Ednie, Lois; Bogdanovich, Tatiana; Dewasse, Bonifacio; McGhee, Pamela; Appelbaum, Peter C.

    2008-01-01

    DC-159a yielded MICs of ≤1 μg/ml against 316 strains of both quinolone-susceptible and -resistant pneumococci (resistance was defined as a levofloxacin MIC ≥4 μg/ml). Although the MICs for DC-159a against quinolone-susceptible pneumococci were a few dilutions higher than those of gemifloxacin, the MICs of these two compounds against 28 quinolone-resistant pneumococci were identical. The DC-159a MICs against quinolone-resistant strains did not appear to depend on the number or the type of mutations in the quinolone resistance-determining region. DC-159a, as well as the other quinolones tested, was bactericidal after 24 h at 2× MIC against 11 of 12 strains tested. Two of the strains were additionally tested at 1 and 2 h, and DC-159a at 4× MIC showed significant killing as early as 2 h. Multistep resistance selection studies showed that even after 50 consecutive subcultures of 10 strains in the presence of sub-MICs, DC-159a produced only two mutants with maximum MICs of 1 μg/ml. PMID:17938189

  6. New Isoflavonoids from the extract of Rhynchosia precatoria (Humb. & Bonpl. ex Willd.) DC. and their antimycobacterial activity.

    PubMed

    Coronado-Aceves, Enrique Wenceslao; Gigliarelli, Giulia; Garibay-Escobar, Adriana; Zepeda, Ramón Enrique Robles; Curini, Massimo; López Cervantes, Jaime; Inés Espitia-Pinzón, Clara Inés; Superchi, Stefano; Vergura, Stefania; Marcotullio, Maria Carla

    2017-07-12

    The evaluation of the antimycobacterial activity of extracts of medicinal plants used by Mayos against tuberculosis and respiratory problems, allowed the identification of Rhynchosia precatoria (Humb. & Bonpl. ex Willd.) DC (Fabaceae) as the best candidate to find new antimycobacterial compounds. To isolate and characterize the compounds of R. precatoria responsible for the inhibitory and bactericidal activity against Mycobacterium tuberculosis H37Rv and Mycobacterium smegmatis ATCC 700084. To determine antimycobacterial synergistic effect of pure compounds and their selectivity index towards Vero cells. A total of six flavonoids were purified by silica gel column chromatography. Structural elucidation of the isolated compounds was achieved by using 1D and 2D NMR spectroscopy techniques. The configuration at the C-3 chiral center was established by quantum mechanical calculation of the electronic circular dichroism (ECD) spectrum. In vitro inhibitory and bactericidal activity against M. tuberculosis and M. smegmatis were determined with the redox indicator Alamar Blue (resazurin). Synergy was determined by X/Y quotient. Cytotoxicity was measured by MTT assay. The isolated compounds were identified as precatorin A (1), precatorin B (2), precatorin C (3), lupinifolin (4), cajanone (5) and lupinifolinol (6). Compounds 1-3 are new. Compounds 1 to 5 inhibited the growth of M. tuberculosis (MIC ≥31.25µg/mL); compounds 1, 2, 4 and 5 killed the bacteria (MBC ≥31.25µg/mL) and also inhibited M. smegmatis (MIC ≥125µg/mL), while 1 and 4 also resulted bactericidal (MBC ≥125µg/mL). Compounds 4 and 5 presented synergistic effect (X/Y quotient value <0.5) at a concentration of 1/2 MIC of each compound in the combination. Cytotoxicity in murine macrophages (RAW 264.7 cells) gave IC 50 values of 13.3-46.98µM, for compounds 1-5. In this work we isolated two new isoflavanones (1 and 2), and one new isoflavone (3) with a weak antimycobacterial activity. The (3R) absolute configuration was assigned to 1 by computational analysis of its ECD spectrum and to 2 and 5 by similarity of their ECD spectra with that of 1. We are also reporting by first time, activity against virulent strain of M. tuberculosis for compounds 4 and 5 and their antimycobacterial synergistic effect. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  7. THE BACTERICIDAL ACTIVITY OF NORMAL GUINEA PIG SERUM AGAINST LISTERIA MONOCYTOGENES AND ITS INHIBITION BY A LISTERIAL CELL EXTRACT,

    DTIC Science & Technology

    Normal guinea pig serum contains bactericidins active against Listeria monocytogenes. The listeriocidal activity of the serum did not increase after...factor. Lysozyme was not implicated in the bactericidal system. It was suggested that the bactericidal activity of guinea pig serum might be due either to

  8. MRJP1-containing glycoproteins isolated from honey, a novel antibacterial drug candidate with broad spectrum activity against multi-drug resistant clinical isolates

    PubMed Central

    Brudzynski, Katrina; Sjaarda, Calvin; Lannigan, Robert

    2015-01-01

    The emergence of extended- spectrum β-lactamase (ESBL) is the underlying cause of growing antibiotic resistance among Gram-negative bacteria to β-lactam antibiotics. We recently reported the discovery of honey glycoproteins (glps) that exhibited a rapid, concentration-dependent antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli that resembled action of cell wall-active β-lactam drugs. Glps showed sequence identity with the Major Royal Jelly Protein 1 (MRJP1) precursor that harbors three antimicrobial peptides: Jelleins 1, 2, and 4. Here, we used semi-quantitative radial diffusion assay and broth microdilution assay to evaluate susceptibility of a number of multi-drug resistant (MDR) clinical isolates to the MRJP1-contaning honey glycoproteins. The MDR bacterial strains comprised three methicillin-resistant Staphylococcus aureus (MRSA), four Pseudomonas aeruginosa, two Klebsiella pneumoniae, two vancomycin-resistant Enterococci (VRE), and five ESBL identified as one Proteus mirabilis, three E. coli, and one E. coli NDM. Their resistance to different classes of antibiotics was confirmed using automated system Vitek 2. MDR isolates differed in their susceptibility to glps with MIC90 values ranging from 4.8 μg/ml against B. subtilis to 14.4 μg/ml against ESBL K. pneumoniae, Klebsiella spp. ESBL and E. coli and up to 33 μg/ml against highly resistant strains of P. aeruginosa. Glps isolated from different honeys showed a similar ability to overcome bacterial resistance to β-lactams suggesting that (a) their mode of action is distinct from other classes of β-lactams and that (b) the common glps structure was the lead structure responsible for the activity. The results of the current study together with our previous evidence of a rapid bactericidal activity of glps demonstrate that glps possess suitable characteristics to be considered a novel antibacterial drug candidate. PMID:26217333

  9. Evaluation of Carbohydrate-Derived Fulvic Acid (CHD-FA) as a Topical Broad-Spectrum Antimicrobial for Drug-Resistant Wound Infections

    DTIC Science & Technology

    2016-10-01

    restored from day 3 till day 6 in the cutaneous wound infection model. Although we have previously confirmed the broad-spectrum activity of CHD-FA in...vitro, CHD-FA may be less active against Gram-positive pathogens in vivo. The exact molecular mechanisms of the antibiotic activity of CHD-FA are still...not clear, and will be further investigated to address the discrepancy in its activity against Gram-positive and Gram-negative pathogens in our

  10. Biological activity of sedaxane---a novel broad-spectrum fungicide for seed treatment.

    PubMed

    Zeun, Ronald; Scalliet, Gabriel; Oostendorp, Michael

    2013-04-01

    Sedaxane is a new broad-spectrum seed treatment fungicide developed by Syngenta Crop Protection for control of seed- and soil-borne diseases in a broad range of crops. Its physicochemical properties and activity spectrum have been optimised for use as a seed treatment providing both local and systemic protection of the seed and roots of target crops. Sedaxane inhibits respiration by binding to the succinate dehydrogenase complex in the fungal mitochondrium. Its activity spectrum covers seed-borne fungi such as Ustilago nuda, Tilletia caries, Monographella nivalis and Pyrenophora graminea, as well as the soil-borne fungi Rhizoctonia solani, R. cerealis and Typhula incarnata. Under greenhouse conditions, sedaxane showed high levels and consistent protection against U. nuda, P. graminea and Rhizoctonia spp. Under field conditions, efficacy against Rhizoctonia spp. resulted in increased yield compared with the untreated check. Efficacy against snow mould has been shown under very high disease pressure conditions. The combination of sedaxane plus fludioxonil against snow mould can provide resistance management for sustainable use. The broad spectrum and high level of activity in combination with excellent crop tolerance allow the use of sedaxane as a seed treatment in a wide variety of crops. It is a potential tool for precautionary resistance management when combined with other fungicides, especially against pathogens showing a potential for resistance development, such as M. nivalis. © 2012 Society of Chemical Industry.

  11. Review article: the antimicrobial effects of rifaximin on the gut microbiota.

    PubMed

    DuPont, H L

    2016-01-01

    Disruption of the gut microbiota through use of systemic antimicrobials or activation of the mucosal inflammatory response by pathogens can cause dysregulation of the intestinal mucosa. To explore the mechanisms of action of rifaximin that may underlie its clinical benefits in travellers' diarrhoea (TD). A literature search was performed using the terms 'rifaximin' and 'L/105' in combination with the terms 'in vitro activity', 'diarrhea', 'microbiota' and 'gut flora'. Rifaximin has been traditionally identified as a nonsystemic, broad-spectrum, bactericidal antibiotic. Evidence shows that the activity of rifaximin against enteropathogens in this setting is likely enhanced by its increased solubility in the presence of bile acids in the small intestine. Results of clinical studies show that although rifaximin is efficacious in TD, a clinical cure often occurs without apparent bacterial eradication and with minimal effect on the gut microbiota, suggesting an effect of rifaximin other than direct antibiotic activity. Although definitive studies on the effect of rifaximin on the gut microbiota in large cohorts of healthy volunteers or patients have not been published, pre-clinical studies provide some insight. These studies have shown that rifaximin may have effects on both the pathogen and host, including direct effects on pathogenic bacteria (such as reducing the expression of bacterial virulence factors) and indirect effects on the host (such as inhibiting bacterial attachment and internalisation at the intestinal mucosa and reducing mucosal inflammation). © 2015 John Wiley & Sons Ltd.

  12. Antimicrobial Synthetic Polymers: An Update on Structure-Activity Relationships.

    PubMed

    Ergene, Cansu; Palermo, Edmund F

    2018-01-01

    The rising incidence of antibiotic-resistant infections, combined with a declining number of new antibiotic drug approvals, has generated an alarming therapeutic gap that critically undermines public health. Host Defense Peptides (HDPs), sometimes referred to as "Nature's Antibiotics", are short chain, amphiphilic and cationic peptide sequences found in all multicellular organisms as part of their innate immunity. While there is a vast diversity in terms of HDP sequence and secondary structure, they all seem to share physiochemical characteristics that can be appropriated for macromolecular design by the synthetic polymer chemist. Over the past decade, remarkable progress has been made in the design and synthesis of polymer-based materials that effectively mimic HDP action - broad-spectrum antibacterial potency, rapid bactericidal kinetics, and minimal toxicity to human cells - while offering the additional benefits of low cost, high scalability, and lower propensity to induce resistance, relative to their peptide-based counterparts. A broad range of different macromolecular structures and architectures have been explored in this design space, including polynorbornenes, poly(meth)acrylates, poly(meth)acrylamides, nylon-2 polymers, and polycarbonates, to name a just few. Across all of these diverse chemical categories, the key determinants of antibacterial and hemolytic activity are the same as in HDPs: net cationic charge at neutral pH, well-balanced facial amphiphilicity, and the molecular weight of the compounds. In this review, we focus in particular on recent progress in the polymethacrylate category first pioneered by Kuroda and DeGrado and later modified, expanded upon and rigorously optimized by Kuroda's and many other groups. Key findings and future challenges will be highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Bactericidal activity of antibiotics against Legionella micdadei (Pittsburgh pneumonia agent).

    PubMed Central

    Dowling, J N; Weyant, R S; Pasculle, A W

    1982-01-01

    The bactericidal activity of five antibiotics for Legionella micdadei was determined by the construction of time-kill curves. Erythromycin, rifampin, penicillin G, cephalothin, and gentamicin were bactericidal for L. micdadei at readily achievable concentrations. The minimal bactericidal concentrations, defined as those producing 99.9% killing within 24 h, were: erythromycin, 4.6; rifampin, 0.13; penicillin G, 0.25; cephalothin, 2.5; and gentamicin, 0.25 micrograms/ml. The ratios of the minimal bactericidal to minimal inhibitory concentrations for these antibiotics ranged from 1 to 8. Thus, the poor in vivo activity of beta-lactam and aminoglycoside antibiotics against L. micdadei cannot be ascribed to a lack of killing by these agents. PMID:6927637

  14. Assessment of immune response to meningococcal disease: comparison of a whole-blood assay and the serum bactericidal assay.

    PubMed

    Ison, C A; Anwar, N; Cole, M J; Galassini, R; Heyderman, R S; Klein, N J; West, J; Pollard, A J; Morley, S; Levin and the Meningococcal, R e

    1999-10-01

    A whole-blood assay (WBA), which assesses the complete bactericidal activity of blood, was compared with the serum bactericidal assay (SBA), which measures antibody and complement mediated cell lysis. Twenty children infected with serogroup B strains and 25 infected with serogroup C strains were studied 8-12 weeks after disease, and 29 healthy children were used as controls. The infecting strain (convalescent children only) and two reference strains, MC58 (B:15:P1.7, 16) and NCTC 8554 (C:NT:P1.5) were used. In children previously infected with a serogroup B strain, bactericidal activity was detected in 95% and 85% to their infecting strain by the WBA (>50% killing) and the SBA (s), respectively. Bactericidal activity to the reference serogroup B and C strain was detected by WBA in 70 and 75% of children, respectively, and the SBA in 45% and 20%. In contrast bactericidal activity was detected to both serogroup C strains in >80% of children previously infected with a serogroup C strain using either assay and in 48% (WBA) and 20% (SBA) to the reference serogroup B strain. Levels of bactericidal activity were detectable in fewer control children. Children convalescing from meningococcal disease develop an immune response to their infecting strain, detectable by both the WBA and SBA, which is independent of age. However, the WBA appears to be a more sensitive measure of bactericidal activity to heterologous strains than the SBA. Copyright 1999 Academic Press.

  15. Multistep Resistance Development Studies of Ceftaroline in Gram-Positive and -Negative Bacteria▿

    PubMed Central

    Clark, Catherine; McGhee, Pamela; Appelbaum, Peter C.; Kosowska-Shick, Klaudia

    2011-01-01

    Ceftaroline, the active component of the prodrug ceftaroline fosamil, is a novel broad-spectrum cephalosporin with bactericidal activity against Gram-positive and -negative isolates. This study evaluated the potential for ceftaroline and comparator antibiotics to select for clones of Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenzae, Moraxella catarrhalis, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis with elevated MICs. S. pneumoniae and S. pyogenes isolates in the present study were highly susceptible to ceftaroline (MIC range, 0.004 to 0.25 μg/ml). No streptococcal strains yielded ceftaroline clones with increased MICs (defined as an increase in MIC of >4-fold) after 50 daily passages. Ceftaroline MICs for H. influenzae and M. catarrhalis were 0.06 to 2 μg/ml for four strains and 8 μg/ml for a β-lactamase-positive, efflux-positive H. influenzae with a mutation in L22. One H. influenzae clone with an increased ceftaroline MIC (quinolone-resistant, β-lactamase-positive) was recovered after 20 days. The ceftaroline MIC for this isolate increased 16-fold, from 0.06 to 1 μg/ml. MICs for S. aureus ranged from 0.25 to 1 μg/ml. No S. aureus isolates tested with ceftaroline had clones with increased MIC (>4-fold) after 50 passages. Two E. faecalis isolates tested had ceftaroline MICs increased from 1 to 8 μg/ml after 38 days and from 4 to 32 μg/ml after 41 days, respectively. The parental ceftaroline MIC for the one K. pneumoniae extended-spectrum β-lactamase-negative isolate tested was 0.5 μg/ml and did not change after 50 daily passages. PMID:21343467

  16. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.

    PubMed Central

    Starliper, Clifford E.; Ketola, Henry G.; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc A.; Dittman, Dawn E.

    2014-01-01

    Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments of captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine whether selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBCs (0.02–0.04%) were obtained with three different sources of cinnamon oil. MBCs for three sources of oregano and lemongrass oils ranged from 0.14% to 0.30% and 0.10% to 0.65%, respectively, and for two thyme oils were 2.11% and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBCs to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBCs for all but one isolate. PMID:25685547

  17. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.

    USGS Publications Warehouse

    Starliper, Clifford E.; Ketola, H. George; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc; Dittman, Dawn E.

    2015-01-01

    Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments of captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine whether selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBCs (0.02–0.04%) were obtained with three different sources of cinnamon oil. MBCs for three sources of oregano and lemongrass oils ranged from 0.14% to 0.30% and 0.10% to 0.65%, respectively, and for two thyme oils were 2.11% and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBCs to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBCs for all but one isolate.

  18. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.

    USGS Publications Warehouse

    Starliper, Clifford E.; Ketolab, Henry G.; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc A.; Dittman, Dawn E.

    2015-01-01

    Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments for captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine if selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBC’s (0.02 to 0.04%) were obtained with three different sources of cinnamon oil. MBC’s for three sources of oregano and lemongrass oils ranged from 0.14 to 0.30% and 0.10 to 0.65%, respectively, and for two thyme oils were 2.11 and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBC’s to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBC’s for all but one isolate

  19. In vitro activity of ceftaroline against 623 diverse strains of anaerobic bacteria.

    PubMed

    Citron, D M; Tyrrell, K L; Merriam, C V; Goldstein, E J C

    2010-04-01

    The in vitro activities of ceftaroline, a novel, parenteral, broad-spectrum cephalosporin, and four comparator antimicrobials were determined against anaerobic bacteria. Against Gram-positive strains, the activity of ceftaroline was similar to that of amoxicillin-clavulanate and four to eight times greater than that of ceftriaxone. Against Gram-negative organisms, ceftaroline showed good activity against beta-lactamase-negative strains but not against the members of the Bacteroides fragilis group. Ceftaroline showed potent activity against a broad spectrum of anaerobes encountered in respiratory, skin, and soft tissue infections.

  20. The Siderophore Product Ornibactin Is Required for the Bactericidal Activity of Burkholderia contaminans MS14.

    PubMed

    Deng, Peng; Foxfire, Adam; Xu, Jianhong; Baird, Sonya M; Jia, Jiayuan; Delgado, Keren H; Shin, Ronald; Smith, Leif; Lu, Shi-En

    2017-04-15

    Burkholderia contaminans MS14 was isolated from soil in Mississippi. When it is cultivated on nutrient broth-yeast extract agar, the colonies exhibit bactericidal activity against a wide range of plant-pathogenic bacteria. A bacteriostatic compound with siderophore activity was successfully purified and was determined by nuclear magnetic resonance spectroscopy to be ornibactin. Isolation of the bactericidal compound has not yet been achieved; therefore, the exact nature of the bactericidal compound is still unknown. During an attempt to isolate the bactericidal compound, an interesting relationship between the production of ornibactin and the bactericidal activity of MS14 was characterized. Transposon mutagenesis resulted in two strains that lost bactericidal activity, with insertional mutations in a nonribosomal peptide synthetase (NRPS) gene for ornibactin biosynthesis and a luxR family transcriptional regulatory gene. Coculture of these two mutant strains resulted in restoration of the bactericidal activity. Furthermore, the addition of ornibactin to the NRPS mutant restored the bactericidal phenotype. It has been demonstrated that, in MS14, ornibactin has an alternative function, aside from iron sequestration. Comparison of the ornibactin biosynthesis genes in Burkholderia species shows diversity among the regulatory elements, while the gene products for ornibactin synthesis are conserved. This is an interesting observation, given that ornibactin is thought to have the same defined function within Burkholderia species. Ornibactin is produced by most Burkholderia species, and its role in regulating the production of secondary metabolites should be investigated. IMPORTANCE Identification of the antibacterial product from strain MS14 is not the key feature of this study. We present a series of experiments that demonstrate that ornibactin is directly involved in the bactericidal phenotype of MS14. This observation provides evidence for an alternative function for ornibactin, aside from iron sequestration. Ornibactin should be further evaluated for its role in regulating the biosynthesis of secondary metabolites in other Burkholderia species. Copyright © 2017 American Society for Microbiology.

  1. The Siderophore Product Ornibactin Is Required for the Bactericidal Activity of Burkholderia contaminans MS14

    PubMed Central

    Deng, Peng; Foxfire, Adam; Xu, Jianhong; Baird, Sonya M.; Jia, Jiayuan; Delgado, Keren H.; Shin, Ronald

    2017-01-01

    ABSTRACT Burkholderia contaminans MS14 was isolated from soil in Mississippi. When it is cultivated on nutrient broth-yeast extract agar, the colonies exhibit bactericidal activity against a wide range of plant-pathogenic bacteria. A bacteriostatic compound with siderophore activity was successfully purified and was determined by nuclear magnetic resonance spectroscopy to be ornibactin. Isolation of the bactericidal compound has not yet been achieved; therefore, the exact nature of the bactericidal compound is still unknown. During an attempt to isolate the bactericidal compound, an interesting relationship between the production of ornibactin and the bactericidal activity of MS14 was characterized. Transposon mutagenesis resulted in two strains that lost bactericidal activity, with insertional mutations in a nonribosomal peptide synthetase (NRPS) gene for ornibactin biosynthesis and a luxR family transcriptional regulatory gene. Coculture of these two mutant strains resulted in restoration of the bactericidal activity. Furthermore, the addition of ornibactin to the NRPS mutant restored the bactericidal phenotype. It has been demonstrated that, in MS14, ornibactin has an alternative function, aside from iron sequestration. Comparison of the ornibactin biosynthesis genes in Burkholderia species shows diversity among the regulatory elements, while the gene products for ornibactin synthesis are conserved. This is an interesting observation, given that ornibactin is thought to have the same defined function within Burkholderia species. Ornibactin is produced by most Burkholderia species, and its role in regulating the production of secondary metabolites should be investigated. IMPORTANCE Identification of the antibacterial product from strain MS14 is not the key feature of this study. We present a series of experiments that demonstrate that ornibactin is directly involved in the bactericidal phenotype of MS14. This observation provides evidence for an alternative function for ornibactin, aside from iron sequestration. Ornibactin should be further evaluated for its role in regulating the biosynthesis of secondary metabolites in other Burkholderia species. PMID:28188204

  2. [Bactericidal activity of serum and chemotherapy in sensitive and resistant exciter (author's transl)].

    PubMed

    Eyer, H; Metz, H; Preac-Mursic, V

    1975-11-21

    Comparing examinations with Ampicillin sensitive and resistant bacteria-strains show that the bactericidal activity of serum is dependent on the bacteria-strains, on the Ampicillin sensitivity of the particular exciter and on the number of bacteria/ml (germ count). Bactericide effect could always be obtained with sensitive strains as a result of additional chemotherapy. With several resistant strains a bactericide effect could not be obtained in this case the continuous optimal Ampicillin addition was the decisive factor. Because of the extremely complicated process of the bactericide one should not make general conclusions from the individual experimental results.

  3. The Celecoxib Derivative AR-12 Has Broad-Spectrum Antifungal Activity In Vitro and Improves the Activity of Fluconazole in a Murine Model of Cryptococcosis

    PubMed Central

    Koselny, Kristy; Green, Julianne; DiDone, Louis; Halterman, Justin P.; Fothergill, Annette W.; Wiederhold, Nathan P.; Patterson, Thomas F.; Cushion, Melanie T.; Rappelye, Chad; Wellington, Melanie

    2016-01-01

    Only one new class of antifungal drugs has been introduced into clinical practice in the last 30 years, and thus the identification of small molecules with novel mechanisms of action is an important goal of current anti-infective research. Here, we describe the characterization of the spectrum of in vitro activity and in vivo activity of AR-12, a celecoxib derivative which has been tested in a phase I clinical trial as an anticancer agent. AR-12 inhibits fungal acetyl coenzyme A (acetyl-CoA) synthetase in vitro and is fungicidal at concentrations similar to those achieved in human plasma. AR-12 has a broad spectrum of activity, including activity against yeasts (e.g., Candida albicans, non-albicans Candida spp., Cryptococcus neoformans), molds (e.g., Fusarium, Mucor), and dimorphic fungi (Blastomyces, Histoplasma, and Coccidioides) with MICs of 2 to 4 μg/ml. AR-12 is also active against azole- and echinocandin-resistant Candida isolates, and subinhibitory AR-12 concentrations increase the susceptibility of fluconazole- and echinocandin-resistant Candida isolates. Finally, AR-12 also increases the activity of fluconazole in a murine model of cryptococcosis. Taken together, these data indicate that AR-12 represents a promising class of small molecules with broad-spectrum antifungal activity. PMID:27645246

  4. Discovery of a Broad-Spectrum Antiviral Compound That Inhibits Pyrimidine Biosynthesis and Establishes a Type 1 Interferon-Independent Antiviral State

    PubMed Central

    Adcock, Robert S.; Schroeder, Chad E.; Chu, Yong-Kyu; Sotsky, Julie B.; Cramer, Daniel E.; Chilton, Paula M.; Song, Chisu; Anantpadma, Manu; Davey, Robert A.; Prodhan, Aminul I.; Yin, Xinmin; Zhang, Xiang

    2016-01-01

    Viral emergence and reemergence underscore the importance of developing efficacious, broad-spectrum antivirals. Here, we report the discovery of tetrahydrobenzothiazole-based compound 1, a novel, broad-spectrum antiviral lead that was optimized from a hit compound derived from a cytopathic effect (CPE)-based antiviral screen using Venezuelan equine encephalitis virus. Compound 1 showed antiviral activity against a broad range of RNA viruses, including alphaviruses, flaviviruses, influenza virus, and ebolavirus. Mechanism-of-action studies with metabolomics and molecular approaches revealed that the compound inhibits host pyrimidine synthesis and establishes an antiviral state by inducing a variety of interferon-stimulated genes (ISGs). Notably, the induction of the ISGs by compound 1 was independent of the production of type 1 interferons. The antiviral activity of compound 1 was cell type dependent with a robust effect observed in human cell lines and no observed antiviral effect in mouse cell lines. Herein, we disclose tetrahydrobenzothiazole compound 1 as a novel lead for the development of a broad-spectrum, antiviral therapeutic and as a molecular probe to study the mechanism of the induction of ISGs that are independent of type 1 interferons. PMID:27185801

  5. Defense from the Group A Streptococcus by active and passive vaccination with the streptococcal hemoprotein receptor.

    PubMed

    Huang, Ya-Shu; Fisher, Morly; Nasrawi, Ziyad; Eichenbaum, Zehava

    2011-06-01

    The worldwide burden of the Group A Streptococcus (GAS) primary infection and sequelae is considerable, although immunization programs with broad coverage of the hyper variable GAS are still missing. We evaluate the streptococcal hemoprotein receptor (Shr), a conserved streptococcal protein, as a vaccine candidate against GAS infection. Mice were immunized intraperitoneally with purified Shr or intranasally with Shr-expressing Lactococcus lactis. The resulting humoral response in serum and secretions was determined. We evaluated protection from GAS infection in mice after active or passive vaccination with Shr, and Shr antiserum was tested for bactericidal activity. A robust Shr-specific immunoglobulin (Ig) G response was observed in mouse serum after intraperitoneal vaccination with Shr. Intranasal immunization elicited both a strong IgG reaction in the serum and a specific IgA reaction in secretions. Shr immunization in both models allowed enhanced protection from systemic GAS challenge. Rabbit Shr antiserum was opsonizing, and mice that were administrated with Shr antiserum prior to the infection demonstrated a significantly higher survival rate than did mice treated with normal rabbit serum. Shr is a promising vaccine candidate that is capable of eliciting bactericidal antibody response and conferring immunity against systemic GAS infection in both passive and active vaccination models.

  6. Human milk bactericidal properties: effect of lyophilization and relation to maternal factors and milk components.

    PubMed

    Salcedo, Jaime; Gormaz, Maria; López-Mendoza, Maria C; Nogarotto, Elisabetta; Silvestre, Dolores

    2015-04-01

    Lyophilization appears to be a viable method for storing human milk, assuring no microbiological contamination and preserving its health benefits and antibacterial properties. The aim of the study is to evaluate and compare the effects of different storage methods (lyophilization and freezing at -20°C and -80°C) and maternal factors (gestational length or time postpartum) upon the microbiological contents and bactericidal activity of human milk. The possible relation between bactericidal activity and the content of certain nutrients and functional components is also investigated. Microbiological content, bactericidal activity, sialic acid, and ganglioside contents, as well as protein, fat, and lactose concentrations were assessed in 125 human milk samples from 65 healthy donors in the Human Milk Bank of La Fe (Valencia, Spain). Lyophilization and storage at -80°C significantly reduced the content of mesophilic aerobic microorganisms and Staphylococcus epidermidis when compared with storage at -20°C. Bactericidal activity was not significantly modified by lyophilization when compared with freezing at either -20°C or -80°C. Bactericidal activity was not correlated with fat, protein, or lactose content, but was significantly correlated to ganglioside content. The bactericidal activity was significantly greater (P < 0.05) in mature milk and in milk from women with term delivery than in milk from early lactation (days 1-7 postpartum) and milk from women with preterm delivery, respectively. Lyophilization and storage at -80°C of human milk yields similar results and are superior to storage at -20C with regard to microbial and bactericidal capacities, being a feasible alternative for human milk banks.

  7. In Vitro Antibacterial Activities of AF 3013, the Active Metabolite of Prulifloxacin, against Nosocomial and Community Italian Isolates

    PubMed Central

    Montanari, Maria Pia; Mingoia, Marina; Varaldo, Pietro Emanuele

    2001-01-01

    AF 3013, the active metabolite of prulifloxacin, was tested to determine its inhibitory and bactericidal activities against 396 nosocomial and 258 community Italian isolates. Compared with that of ciprofloxacin, its activity (assessed in MIC and minimal bactericidal concentration tests) was generally similar or greater against gram-positive bacteria and greater against gram-negative bacteria. In time-kill assays using selected isolates, its bactericidal activity was comparable to that of ciprofloxacin. PMID:11709353

  8. In vitro synergism of magnolol and honokiol in combination with antibacterial agents against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Zuo, Guo-Ying; Zhang, Xin-Juan; Han, Jun; Li, Yu-Qing; Wang, Gen-Chun

    2015-12-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a problematic pathogen posing a serious therapeutic challenge in the clinic. It is often multidrug-resistant (MDR) to conventional classes of antibacterial agents and there is an urgent need to develop new agents or strategies for treatment. Magnolol (ML) and honokiol (HL) are two naturally occurring diallylbiphenols which have been reported to show inhibition of MRSA. In this study their synergistic effects with antibacterial agents were further evaluated via checkerboard and time-kill assays. The susceptibility spectrum of clinical MRSA strains was tested by the disk diffusion method. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of ML and HL were assayed by broth microdilution. The synergy was evaluated through checkerboard microdilution and time-killing experiments. ML and HL showed similar activity against both MSSA and MRSA with MIC/MBC at 16 ~ 64 mg/L, with potency similar to amikacin (AMK) and gentamicin (GEN). When they were used in combination with conventional antibacterial agents, they showed bacteriostatic synergy with FICIs between 0.25 ~ 0.5, leading to the combined MICs decreasing to as low as 1 ~ 2 and 1 ~ 16 mg/L for ML (HL) and the agents, respectively. MIC50 of the combinations decreased from 16 mg/L to 1 ~ 4 mg/L for ML (HL) and 8 ~ 128 mg/L to 2 ~ 64 mg/L for the antibacterial agents, which exhibited a broad spectrum of synergistic action with aminoglycosides (AMK, etilmicin (ETM) and GEN), floroquinolones (levofloxacin (LEV), ciprofloxacin and norfloxacin), fosfomycin (FOS) and piperacillin. The times of dilution (TOD, the extent of decreasing in MIC value) were determined up to 16 for the combined MIC. A more significant synergy after combining was determined as ML (HL) with AMK, ETM, GEN and FOS. ML (HL) combined with antibacterial agents did not show antagonistic effects on any of the ten MRSA strains. Reversal effects of MRSA resistance to AMK and GEN by ML and HL were also observed, respectively. All the combinations also showed better dynamic bactericidal activity against MRSA than any of single ML (HL) or the agents at 24 h incubation. The more significant synergy of combinations were determined as HL (ML) + ETM, HL + LEV and HL + AMK (GEN or FOS), with △LC24 of 2.02 ~ 2.25. ML and HL showed synergistic potentiation of antibacterial agents against clinical isolates of MRSA and warrant further pharmacological investigation.

  9. Antipneumococcal activity of DW-224a, a new quinolone, compared to those of eight other agents.

    PubMed

    Kosowska-Shick, Klaudia; Credito, Kim; Pankuch, Glenn A; Lin, Gengrong; Bozdogan, Bülent; McGhee, Pamela; Dewasse, Bonifacio; Choi, Dong-Rack; Ryu, Jei Man; Appelbaum, Peter C

    2006-06-01

    DW-224a is a new broad-spectrum quinolone with excellent antipneumococcal activity. Agar dilution MIC was used to test the activity of DW-224a compared to those of penicillin, ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin against 353 quinolone-susceptible pneumococci. The MICs of 29 quinolone-resistant pneumococci with defined quinolone resistance mechanisms against seven quinolones and an efflux mechanism were also tested. DW-224a was the most potent quinolone against quinolone-susceptible pneumococci (MIC(50), 0.016 microg/ml; MIC(90), 0.03 microg/ml), followed by gemifloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. beta-Lactam MICs rose with those of penicillin G, and azithromycin resistance was seen mainly in strains with raised penicillin G MICs. Against the 29 quinolone-resistant strains, DW-224a had the lowest MICs (0.06 to 1 microg/ml) compared to those of gemifloxacin, clinafloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. DW-224a at 2x MIC was bactericidal after 24 h against eight of nine strains tested. Other quinolones gave similar kill kinetics relative to higher MICs. Serial passages of nine strains in the presence of sub-MIC concentrations of DW-224a, moxifloxacin, levofloxacin, ciprofloxacin, gatifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin were performed. DW-224a yielded resistant clones similar to moxifloxacin and gemifloxacin but also yielded lower MICs. Azithromycin selected resistant clones in three of the five parents tested. Amoxicillin-clavulanate and cefuroxime did not yield resistant clones after 50 days.

  10. Fosfomycin: Uses and potentialities in veterinary medicine

    PubMed Central

    Pérez, D.S.; Tapia, M.O.; Soraci, A.L.

    2014-01-01

    Fosfomycin (FOS) is a natural bactericidal broad-spectrum antibiotic which acts on proliferating bacteria by inhibiting cell wall and early murein/peptidoglycan synthesis. Bactericidal activity is evident against Gram positive and Gram negative bacteria and can also act synergistically with other antibiotics. Bacterial resistance to FOS may be natural or acquired. Other properties of this drug include inhibition of bacterial adhesion to epithelial cells, exopolysaccharide biofilm penetration, immunomodulatory effect, phagocytosis promotion and protection against the nephrotoxicity caused by other drugs. FOS has chemical characteristics not typically observed in organic phosphoric compounds and its molecular weight is almost the lowest of all the antimicrobials. It tends to form salts easily due to its acidic nature (disodium salt, for intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration; calcium and trometamol salt: for oral (PO) administration). FOS has a very low protein binding (<0.5%) which, along with its low molecular weight and water solubility, contributes to its good diffusion into fluids (cerebrospinal fluid, aqueous and vitreous humor, interstitial fluid) and tissues (placenta, bone, muscle, liver, kidney and skin/fat). In all species, important differences in the bioavailability have been found after administration in relation to the various derivatives of FOS salts. Pharmacokinetic profiles have been described in humans, chickens, rabbits, cows, dogs, horses and weaning piglets. The low toxicity and potential efficacy of FOS are the main factors that contribute to its use in humans and animals. Thus, it has been used to treat a broad variety of bacterial infections in humans, such as localized peritonitis, brain abscesses, severe soft tissue infections, cystitis and other conditions. In veterinary medicine, FOS is used to treat infectious diseases of broiler chickens and pigs. In broilers, it is administered for the treatment of E. coli and Salmonella spp. infections. In piglets, the drug is prescribed to treat a wide variety of bacterial infections. FOS penetration is demonstrated in phagocytic, respiratory (HEP-2) and intestinal (IPEC-J2) cells. Although not widely used in animals, the drug has shown good results in human medicine. The potentialities of FOS suggest that this drug is a promising candidate for the treatment of infections in veterinary medicine. For these reasons, the aim of this work is to provide animal health practitioners with information on a drug that is not extensively recognized. PMID:26623336

  11. Bactericidal activity of glutaraldehyde-like compounds from olive products.

    PubMed

    Medina, Eduardo; Brenes, Manuel; García, Aranzazu; Romero, Concepción; de Castro, Antonio

    2009-12-01

    The bactericidal effects of several olive compounds (nonenal, oleuropein, tyrosol, the dialdehydic form of decarboxymethyl elenolic acid either free [EDA] or linked to tyrosol [TyEDA] or to hydroxytyrosol [HyEDA]), other food phenolic compounds (catechin, epicatechin, eugenol, thymol, carvacrol, and carnosic acid), and commercial disinfectants (glutaraldehyde [GTA] and ortho-phthalaldehyde [OPA]), were tested against strains of Pseudomonas fluorescens, Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli. It was found that the bactericidal activities of olive GTA-like compounds (EDA, HyEDA, and TyEDA) were greater than those exerted by several food phenolic substances. Surprisingly, these olive antimicrobials were as active as the synthetic biocides GTA and OPA against the four bacteria studied. Thus, it has been proposed that the bactericidal activity of the main olive antimicrobials is primarily due to their dialdehydic structure, which is similar to that of the commercial biocides GTA and OPA. Our results clearly reveal that olive GTA-like compounds possess a strong bactericidal activity even greater than that of other food phenolic compounds or synthetic biocides.

  12. Immunity to Escherichia coli in pigs: Serum Gamma Globulin Levels, Indirect Hemagglutinating Antibody Titres and Bactericidal Activity Against E. coli in pigs up to five Weeks of Age

    PubMed Central

    Wilson, M. R.; Svendsen, J.

    1972-01-01

    Serum gamma globulin levels, indirect hemagglutinating antibody titres and bactericidal activity against the 0149:K91;K88ac:H10 Serotype of Escherichia coli were determined in pigs up to five weeks of age from vaccinated and non-vaccinated sows. Gamma globulin levels at two days of age were approximately twice adult levels, by three weeks of age they were one quarter of adult levels and remained so until five weeks of age. Indirect hemagglutinating antibody activity was highest at two days of age, fell until three weeks of age and then rose. Little or no indirect hemagglutinating antibody activity was detected in sera taken at two days of age from pigs from non-vaccinated sows. Only three of 26 two day old pigs had demonstrable bactericidal activity; by three weeks of age 16 of 26 had bactericidal activity. Serum from piglets of vaccinated sows had no more bactericidal activity than did sera from non-vaccinated sows. PMID:4110608

  13. Antibiotic efficacy is linked to bacterial cellular respiration

    PubMed Central

    Lobritz, Michael A.; Belenky, Peter; Porter, Caroline B. M.; Gutierrez, Arnaud; Yang, Jason H.; Schwarz, Eric G.; Dwyer, Daniel J.; Khalil, Ahmad S.; Collins, James J.

    2015-01-01

    Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes—the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy. PMID:26100898

  14. Bactericidal Activity of Octenidine to Various Genospecies of Borrelia burgdorferi, Sensu Lato Spirochetes in Vitro and in Vivo.

    PubMed

    Tylewska-Wierzbanowska, Stanisława; Rogulska, Urszula; Lewandowska, Grażyna; Chmielewski, Tomasz

    2017-07-06

    The aim of our studies was to invent a reliable method for detection of the bactericidal activity of disinfectants against Borrelia burgdorferi in suspension (in vitro) and in cell line cultures (in vivo). In the suspension method, 0.01% octenidine at 20°C and 35°C was bactericidal to Borrelia afzeli; Borrelia garini, B. burgdorferi sensu stricto after 5 minutes treatment. Increase of the temperature to 35°C speed up the bactericidal effect to 1 minute. The bactericidal action of octenidine towards B. burgdorferi spirochetes growing in fibroblasts was less effective and needed a longer time to kill them than in the suspension.

  15. Bactericidal Activity and Postantibiotic Effect of Levofloxacin against Anaerobes

    PubMed Central

    Pendland, Susan L.; Diaz-Linares, Mariela; Garey, Kevin W.; Woodward, Jennifer G.; Ryu, Seonyoung; Danziger, Larry H.

    1999-01-01

    The bactericidal activity and postantibiotic effect (PAE) of levofloxacin against nine anaerobes were determined. Levofloxacin at concentrations of the MIC and twice the MIC was bactericidal at 24 h to five of nine and nine of nine strains, respectively. The PAE of levofloxacin following a 2-h exposure ranged from 0.06 to 2.88 h. PMID:10508042

  16. In Vitro and In Vivo Antibacterial Activities of OPC-20011, a Novel Parenteral Broad-Spectrum 2-Oxaisocephem Antibiotic

    PubMed Central

    Matsumoto, Makoto; Tamaoka, Hisashi; Ishikawa, Hiroshi; Kikuchi, Mikio

    1998-01-01

    OPC-20011, a new parenteral 2-oxaisocephem antibiotic, has an oxygen atom at the 2- position of the cephalosporin frame. OPC-20011 had the best antibacterial activities against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, and penicillin-resistant Streptococcus pneumoniae: MICs at which 90% of the isolates were inhibited were 6.25, 6.25, and 0.05 μg/ml, respectively. Its activity is due to a high affinity of the penicillin-binding protein 2′ in MRSA, an affinity which was approximately 1,050 times as high as that for flomoxef. Against gram-negative bacteria, OPC-20011 also showed antibacterial activities similar to those of ceftazidime. The in vivo activities of OPC-20011 were comparable to or greater than those of reference compounds in murine models of systemic infection caused by gram-positive and -negative pathogens. OPC-20011 was up to 10 times as effective as vancomycin against MRSA infections in mice. This better in vivo efficacy is probably due to the bactericidal activity of OPC-20011, while vancomycin showed bacteriostatic activity against MRSA. OPC-20011 produced a significant decrease of viable counts in lung tissue at a dose of 2.5 mg/kg of body weight, an efficacy similar to that of ampicillin at a dose of 10 to 20 mg/kg on an experimental murine model of respiratory tract infection caused by non-ampicillin-susceptible S. pneumoniae T-0005. The better therapeutic efficacy of OPC-20011 was considered to be due to its potent antibacterial activity and low affinity for serum proteins of experimental animals (29% in mice and 6.4% in rats). PMID:9797230

  17. Susceptibility of Meningococcal Strains Responsible for Two Serogroup B Outbreaks on U.S. University Campuses to Serum Bactericidal Activity Elicited by the MenB-4C Vaccine.

    PubMed

    Rossi, Raffaella; Beernink, Peter T; Giuntini, Serena; Granoff, Dan M

    2015-12-01

    In 2013 and 2014, two U.S. universities had meningococcal serogroup B outbreaks (a total of 14 cases) caused by strains from two different clonal complexes. To control the outbreaks, students were immunized with a serogroup B meningococcal vaccine (Novartis) that was not yet licensed in the United States. The vaccine (referred to as MenB-4C) contains four components capable of eliciting bactericidal activity. Both outbreak strains had high expression levels of two of the vaccine antigens (subfamily B factor H binding protein [FHbp] and neisserial heparin binding antigen [NHba]); the university B outbreak strain also had moderate expression of a third antigen, NadA. We investigated the bactericidal activity of sera from mice immunized with FHbp, NHba, or NadA and sera from MenB-4C-immunized infant macaques and an adult human. The postimmunization bactericidal activity of the macaque or human serum against isolates from university B with FHbp identification (ID) 1 that exactly matched the vaccine FHbp sequence variant was 8- to 21-fold higher than that against isolates from university A with FHbp ID 276 (96% identity to the vaccine antigen). Based on the bactericidal activity of mouse antisera to FHbp, NadA, or NHba and macaque or human postimmunization serum that had been depleted of anti-FHbp antibody, the bactericidal activity against both outbreak strains largely or entirely resulted from antibodies to FHbp. Thus, despite the high level of strain expression of FHbp from a subfamily that matched the vaccine antigen, there can be large differences in anti-FHbp bactericidal activity induced by MenB-4C vaccination. Further, strains with moderate to high NadA and/or NHba expression can be resistant to anti-NadA or anti-NHba bactericidal activity elicited by MenB-4C vaccination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

    NASA Astrophysics Data System (ADS)

    Bourke, Michael F.; Marriott, Philip J.; Glud, Ronnie N.; Hasler-Sheetal, Harald; Kamalanathan, Manoj; Beardall, John; Greening, Chris; Cook, Perran L. M.

    2017-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to bacteria and archaea. Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H2 production rates, suggesting the presence of fermentation. The production of both dissolved inorganic carbon and H2 persisted following administration of broad spectrum bactericidal antibiotics, but ceased following treatment with metronidazole. Metronidazole inhibits the ferredoxin/hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae. Cell counts revealed a predominance of microalgae in the sediments. H2 production was observed in dark anoxic cultures of diatoms (Fragilariopsis sp.) and a chlorophyte (Pyramimonas) isolated from the study site, substantiating the hypothesis that microalgae undertake fermentation. We conclude that microalgal dark fermentation could be an important energy-conserving pathway in permeable sediments.

  19. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

    PubMed Central

    Bourke, Michael F; Marriott, Philip J.; Glud, Ronnie N.; Hasler-Sheetal, Harald; Kamalanathan, Manoj; Beardall, John; Greening, Chris; Cook, Perran L.M.

    2016-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to prokaryotes such as bacteria and archaea. Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H2 production rates, suggesting the presence of fermentation. The production of both dissolved inorganic carbon and H2 persisted following administration of broad spectrum bactericidal antibiotics, but ceased following treatment with metronidazole. Metronidazole inhibits the ferredoxin/hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae. Cell counts revealed a predominance of microalgae in the sediments. H2 production was observed in dark anoxic cultures of diatoms (Fragilariopsis sp.) and a chlorophyte (Pyramimonas) isolated from the study site, substantiating the hypothesis that microalgae undertake fermentation. We conclude that microalgal dark fermentation could be an important energy-conserving pathway in permeable sediments. PMID:28070216

  20. Antibacterial potential of Calotropis procera (flower) extract against various pathogens.

    PubMed

    Ali, Abid; Ansari, Asma; Qader, Shah Ali Ul; Mumtaz, Majid; Saied, Sumayya; Mahboob, Tabassum

    2014-09-01

    Increased bacterial resistance towards commonly used antibiotics has become a debated issue all over the world in a last few decades. Due to this, consumer demand towards natural anti-microbial agents is increasing day by day. Natural anti-microbial agents have gained enormous attention as an alternative therapeutic agent in pharmaceutical industry. Current study is an effort to explore and identify a bactericidal potential of various solvent extracts of Calotropis procera flower. Flowers of C. procera were extracted with hexane, butanol, ethyl acetate and aqua to evaluate the antibacterial activity by agar well diffusion method against the various human pathogens. The microorganisms used in this study includes Salmonella typhi, Escherichia coli (O157:H7), Micrococcus luteus KIBGE-IB20 (Gen Bank accession: JQ250612) and methicillin resistant Staphylococcus aureus (MRSA) KIBGE-IB23 (Gen Bank accession: KC465400). Zones of inhibition were observed against all four pathogenic strains. Fraction soluble in hexane showed broad spectrum of inhibition against all the studied pathogens. However, fractions soluble in ethyl acetate inhibited the growth of E. coli, MRSA, and M. luteus. In case of butanol and aqueous extracts only growth of M. luteus was inhibited. Results revealed that the flower extracts of C. procera have a potential to be used as an antibacterial agent against these pathogenic organisms.

  1. Myxobacterium-Produced Antibiotic TA (Myxovirescin) Inhibits Type II Signal Peptidase

    PubMed Central

    Xiao, Yao; Gerth, Klaus; Müller, Rolf

    2012-01-01

    Antibiotic TA is a macrocyclic secondary metabolite produced by myxobacteria that has broad-spectrum bactericidal activity. The structure of TA is unique, and its molecular target is unknown. Here, we sought to elucidate TA's mode of action (MOA) through two parallel genetic approaches. First, chromosomal Escherichia coli TA-resistant mutants were isolated. One mutant that showed specific resistance toward TA was mapped and resulted from an IS4 insertion in the lpp gene, which encodes an abundant outer membrane (Braun's) lipoprotein. In a second approach, the comprehensive E. coli ASKA plasmid library was screened for overexpressing clones that conferred TAr. This effort resulted in the isolation of the lspA gene, which encodes the type II signal peptidase that cleaves signal sequences from prolipoproteins. In whole cells, TA was shown to inhibit Lpp prolipoprotein processing, similar to the known LspA inhibitor globomycin. Based on genetic evidence and prior globomycin studies, a block in Lpp expression or prevention of Lpp covalent cell wall attachment confers TAr by alleviating a toxic buildup of mislocalized pro-Lpp. Taken together, these data argue that LspA is the molecular target of TA. Strikingly, the giant ta biosynthetic gene cluster encodes two lspA paralogs that we hypothesize play a role in producer strain resistance. PMID:22232277

  2. Combined roles of human IgG subclass, alternative complement pathway activation, and epitope density in the bactericidal activity of antibodies to meningococcal factor h binding protein.

    PubMed

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal vaccines containing factor H binding protein (fHbp) are in clinical development. fHbp binds human fH, which enables the meningococcus to resist complement-mediated bacteriolysis. Previously, we found that chimeric human IgG1 mouse anti-fHbp monoclonal antibodies (MAbs) had human complement-mediated bactericidal activity only if the MAb inhibited fH binding. Since IgG subclasses differ in their ability to activate complement, we investigated the role of human IgG subclasses on antibody functional activity. We constructed chimeric MAbs in which three different murine fHbp-specific binding domains were each paired with human IgG1, IgG2, or IgG3. Against a wild-type group B isolate, all three IgG3 MAbs, irrespective of their ability to inhibit fH binding, had bactericidal activity that was >5-fold higher than the respective IgG1 MAbs, while the IgG2 MAbs had the least activity. Against a mutant with increased fHbp expression, the anti-fHbp MAbs elicited greater C4b deposition (classical pathway) and greater bactericidal activity than against the wild-type strain, and the IgG1 MAbs had similar or greater activity than the respective IgG3 MAbs. The bactericidal activity against both wild-type and mutant strains also was dependent, in part, on activation of the alternative complement pathway. Thus, at lower epitope density in the wild-type strain, the IgG3 anti-fHbp MAbs had the greatest bactericidal activity. At a higher epitope density in the mutant, the IgG1 MAbs had similar or greater bactericidal activity than the IgG3 MAbs, and the activity was less dependent on the inhibition of fH binding than at a lower epitope density.

  3. In Vivo Pharmacokinetics and Pharmacodynamics of ZTI-01 (Fosfomycin for Injection) in the Neutropenic Murine Thigh Infection Model against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa.

    PubMed

    Lepak, Alexander J; Zhao, Miao; VanScoy, Brian; Taylor, Daniel S; Ellis-Grosse, Evelyn; Ambrose, Paul G; Andes, David R

    2017-06-01

    Fosfomycin is a broad-spectrum agent with activity against Gram-positive and Gram-negative bacteria, including drug-resistant strains, such as extended-spectrum-beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Gram-negative rods. In the present study, the pharmacokinetic/pharmacodynamic (PK/PD) activity of ZTI-01 (fosfomycin for injection) was evaluated in the neutropenic murine thigh infection model against 5 Escherichia coli , 3 Klebsiella pneumoniae , and 2 Pseudomonas aeruginosa strains, including a subset with ESBL and CR phenotypes. The pharmacokinetics of ZTI-01 were examined in mice after subcutaneous administration of 3.125, 12.5, 50, 200, 400, and 800 mg/kg of body weight. The half-life ranged from 0.51 to 1.1 h, area under the concentration-time curve (AUC 0-∞ ) ranged from 1.4 to 87 mg · h/liter, and maximum concentrations ranged from 0.6 to 42.4 mg/liter. Dose fractionation demonstrated the AUC/MIC ratio to be the PK/PD index most closely linked to efficacy ( R 2 = 0.70). Net stasis and bactericidal activity were observed against all strains. Net stasis was observed at 24-h AUC/MIC ratio values of 24, 21, and 15 for E. coli , K. , pneumoniae and P. aeruginosa , respectively. For the Enterobacteriaceae group, stasis was noted at mean 24-h AUC/MIC ratio targets of 23 and 1-log kill at 83. Survival in mice infected with E. coli 145 was maximal at 24-h AUC/MIC ratio exposures of 9 to 43, which is comparable to the stasis exposures identified in the PK/PD studies. These results should prove useful for the design of clinical dosing regimens for ZTI-01 in the treatment of serious infections due to Enterobacteriaceae and Pseudomonas . Copyright © 2017 American Society for Microbiology.

  4. Effect of tilmicosin on chemotactic, phagocytic, and bactericidal activities of bovine and porcine alveolar macrophages.

    PubMed

    Brumbaugh, Gordon W; Herman, James D; Clancy, Julianne S; Burden, Kyland I; Barry, Tracie; Simpson, R B; López, Hector Sumano

    2002-01-01

    To evaluate chemotactic, phagocytic, and bactericidal activities of bovine and porcine alveolar macrophages (AM) exposed to tilmicosin. 12 healthy calves and 12 healthy pigs. Lungs were obtained immediately after euthanasia; AM were collected by means of bronchoalveolar lavage and density gradient centrifugation. Chemotactic activity was evaluated by exposing AM to lipopolysaccharide or macrophage inhibitory peptide during incubation with tilmicosin. Phagocytic activity was evaluated by incubating AM with tilmicosin for 24 hours and then with tilmicosin-resistant Salmonella serotype Typhimurium. Bactericidal activity was evaluated by incubating AM with tilmicosin (0, 10, or 20 microg/ml for bovine AM; 0 or 10 microg/ml or 10 microg/ml but washed free of tilmicosin for porcine AM) and then with Mannheimia haemolytica (bovine AM) or with Actinobacillus pleuropneumoniae or Pasteurella multocida (porcine AM). Tilmicosin had no significant effects on chemotactic or phagocytic activities of bovine or porcine AM. The time-course of bactericidal activity was best described by polynomial equations. Time to cessation of bacterial growth and area under the time versus bacterial number curve were significantly affected by incubation of AM with tilmicosin. Results show that bactericidal activity of bovine and porcine AM was enhanced by tilmicosin, but not in proportion to the reported ability of AM to concentrate tilmicosin intracellularly. With or without exposure to tilmicosin, the time-course of bactericidal activity of bovine AM against M haemolytica and of porcine AM against A pleuropneumoniae or P multocida was too complex to be reduced to a simple linear equation.

  5. Nucleic acid polymers: Broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection.

    PubMed

    Vaillant, Andrew

    2016-09-01

    Antiviral polymers are a well-studied class of broad spectrum viral attachment/entry inhibitors whose activity increases with polymer length and with increased amphipathic (hydrophobic) character. The newest members of this class of compounds are nucleic acid polymers whose activity is derived from the sequence independent properties of phosphorothioated oligonucleotides as amphipathic polymers. Although the antiviral mechanisms and broad spectrum antiviral activity of nucleic acid polymers mirror the functionality of other members of this class, they exert in addition a unique post entry activity in hepatitis B infection which inhibits the release of HBsAg from infected hepatocytes. This review provides a general overview of the antiviral polymer class with a focus on nucleic acid polymers and their development as therapeutic agents for the treatment of hepatitis B/hepatitis D. This article forms part of a symposium in Antiviral Research on ''An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B.''. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.

  6. Discovery of BMS-955176, a Second Generation HIV-1 Maturation Inhibitor with Broad Spectrum Antiviral Activity.

    PubMed

    Regueiro-Ren, Alicia; Liu, Zheng; Chen, Yan; Sin, Ny; Sit, Sing-Yuen; Swidorski, Jacob J; Chen, Jie; Venables, Brian L; Zhu, Juliang; Nowicka-Sans, Beata; Protack, Tricia; Lin, Zeyu; Terry, Brian; Samanta, Himadri; Zhang, Sharon; Li, Zhufang; Beno, Brett R; Huang, Xiaohua S; Rahematpura, Sandhya; Parker, Dawn D; Haskell, Roy; Jenkins, Susan; Santone, Kenneth S; Cockett, Mark I; Krystal, Mark; Meanwell, Nicholas A; Hanumegowda, Umesh; Dicker, Ira B

    2016-06-09

    HIV-1 maturation inhibition (MI) has been clinically validated as an approach to the control of HIV-1 infection. However, identifying an MI with both broad polymorphic spectrum coverage and good oral exposure has been challenging. Herein, we describe the design, synthesis, and preclinical characterization of a potent, orally active, second generation HIV-1 MI, BMS-955176 (2), which is currently in Phase IIb clinical trials as part of a combination antiretroviral regimen.

  7. In vitro antibody-enzyme conjugates with specific bactericidal activity.

    PubMed

    Knowles, D M; Sulivan, T J; Parker, C W; Williams, R C

    1973-06-01

    IgG with antibacterial antibody opsonic activity was isolated from rabbit antisera produced by intravenous hyperimmunization with several test strains of pneumococci, Group A beta-hemolytic streptococci, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and Escherichia coli. Antibody-enzyme conjugates were prepared, using diethylmalonimidate to couple glucose oxidase to IgG antibacterial antibody preparations. Opsonic human IgG obtained from serum of patients with subacute bacterial endocarditis was also conjugated to glucose oxidase. Antibody-enzyme conjugates retained combining specificity for test bacteria as demonstrated by indirect immunofluorescence. In vitro test for bactericidal activity of antibody-enzyme conjugates utilized potassium iodide, lactoperoxidase, and glucose as cofactors. Under these conditions glucose oxidase conjugated to antibody generates hydrogen peroxide, and lactoperoxidase enzyme catalyzes the reduction of hydrogen peroxide with simultaneous oxidation of I(-) and halogenation and killing of test bacteria. Potent in vitro bactericidal activity of this system was repeatedly demonstrated for antibody-enzyme conjugates against pneumococci, streptococci, S. aureus, P. mirabilis, and E. coli. However, no bactericidal effect was demonstrable with antibody-enzyme conjugates and two test strains of P. aeruginosa. Bactericidal activity of antibody-enzyme conjugates appeared to parallel original opsonic potency of unconjugated IgG preparations. Antibody-enzyme conjugates at concentrations as low as 0.01 mg/ml were capable of intense bactericidal activity producing substantial drops in surviving bacterial counts within 30-60 min after initiation of assay. These in vitro bactericidal systems indicate that the concept of antibacterial antibody-enzyme conjugates may possibly be adaptable as a mechanism for treatment of patients with leukocyte dysfunction or fulminant bacteremia.

  8. Monoclonal antibodies to meningococcal factor H binding protein with overlapping epitopes and discordant functional activity.

    PubMed

    Giuntini, Serena; Beernink, Peter T; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, which inhibited fH binding, had human complement-mediated bactericidal activity. The lack of human complement-mediated bactericidal activity by anti-fHbp mAb502 appeared to result from an inability to inhibit binding of fH. These results underscore the importance of inhibition of fH binding for anti-fHbp mAb bactericidal activity.

  9. Understanding bactericidal performance on ambient light activated TiO2-InVO4 nanostructured films.

    PubMed

    He, Ziming; Xu, Qingchi; Tan, Timothy Thatt Yang

    2011-12-01

    TiO(2)-InVO(4) nanostructured films were coated onto glass substrates and systematically investigated for their bactericidal activities using Escherichia coli (E. coli) as the model bacterium under ambient light illumination. The uniform TiO(2)-InVO(4) nanostructured films were prepared using titanium isopropoxide (TTIP) as the precursor via a simple sol-gel approach. Polyethylenimine (PEI) was used as a surfactant to ensure uniform dispersion of InVO(4) and a sacrificial pore-inducing agent, generating nanostructured films. Compared to unmodified TiO(2) film, the current TiO(2)-InVO(4) films exhibited enhanced bactericidal activities under ambient light illumination. Bacterial cell "photo-fixation" was demonstrated to be crucial in enhancing the bactericidal activity. A bacterial-nanostructured surface interaction mechanism was proposed for the current ambient-light activated nanostructured film.

  10. Spectrum of antimicrobial activity associated with ionic colloidal silver.

    PubMed

    Morrill, Kira; May, Kathleen; Leek, Daniel; Langland, Nicole; Jeane, La Deana; Ventura, Jose; Skubisz, Corey; Scherer, Sean; Lopez, Eric; Crocker, Ephraim; Peters, Rachel; Oertle, John; Nguyen, Krystine; Just, Scott; Orian, Michael; Humphrey, Meaghan; Payne, David; Jacobs, Bertram; Waters, Robert; Langland, Jeffrey

    2013-03-01

    Silver has historically and extensively been used as a broad-spectrum antimicrobial agent. However, the Food and Drug Administration currently does not recognize colloidal silver as a safe and effective antimicrobial agent. The goal of this study was to further evaluate the antimicrobial efficacy of colloidal silver. Several strains of bacteria, fungi, and viruses were grown under multicycle growth conditions in the presence or absence of ionic colloidal silver in order to assess the antimicrobial activity. For bacteria grown under aerobic or anaerobic conditions, significant growth inhibition was observed, although multiple treatments were typically required. For fungal cultures, the effects of ionic colloidal silver varied significantly between different genera. No viral growth inhibition was observed with any strains tested. The study data support ionic colloidal silver as a broad-spectrum antimicrobial agent against aerobic and anaerobic bacteria, while having a more limited and specific spectrum of activity against fungi.

  11. Discovery of Multitarget Agents Active as Broad-Spectrum Antivirals and Correctors of Cystic Fibrosis Transmembrane Conductance Regulator for Associated Pulmonary Diseases.

    PubMed

    Tassini, Sabrina; Sun, Liang; Lanko, Kristina; Crespan, Emmanuele; Langron, Emily; Falchi, Federico; Kissova, Miroslava; Armijos-Rivera, Jorge I; Delang, Leen; Mirabelli, Carmen; Neyts, Johan; Pieroni, Marco; Cavalli, Andrea; Costantino, Gabriele; Maga, Giovanni; Vergani, Paola; Leyssen, Pieter; Radi, Marco

    2017-02-23

    Enteroviruses (EVs) are among the most frequent infectious agents in humans worldwide and represent the leading cause of upper respiratory tract infections. No drugs for the treatment of EV infections are currently available. Recent studies have also linked EV infection with pulmonary exacerbations, especially in cystic fibrosis (CF) patients, and the importance of this link is probably underestimated. The aim of this work was to develop a new class of multitarget agents active both as broad-spectrum antivirals and as correctors of the F508del-cystic fibrosis transmembrane conductance regulator (CFTR) folding defect responsible for >90% of CF cases. We report herein the discovery of the first small molecules able to simultaneously act as correctors of the F508del-CFTR folding defect and as broad-spectrum antivirals against a panel of EVs representative of all major species.

  12. NXL-103, a combination of flopristin and linopristin, for the potential treatment of bacterial infections including community-acquired pneumonia and MRSA

    PubMed Central

    Politano, Amani D; Sawyer, Robert G

    2011-01-01

    Novexel is developing a new, orally active, semisynthetic streptogramin, NXL103, with potential therapeutic application in the treatment of community-acquired pneumonia, community-acquired or nosocomial MRSA and VRE, and complicated skin and soft tissue infections. NXL103 is a 70/30 mixture of streptogramin A/streptogramin B components [1]. The spectrum of activity for NXL103 includes GPCs, fastidious GNRs, and anaerobes, and it has been shown to have bactericidal activity against S. aureus in a biofilm model [2–4]. In multiple in vitro experiments, NXL103 showed potent activity against many bacteria, such as S. aureus, including CA- and HA-MRSA, S. pneumoniae, S. pyogenes, E. faecium, E. faecalis, H. influenzae, and H. parainfluenzae [1–3, 5–10]. NXL103 was not affected by the resistance profiles of bacteria against other commonly used antibiotics [1, 3, 5–9, 11, 12]. In phase I trials, NXL103 achieved bactericidal levels in plasma and was generally well-tolerated, with primary side effects on the gastrointestinal system [13–19]. The first phase II trial performed for the evaluation of community-acquired pneumonia showed non-inferiority of NXL103 to amoxicillin [20]. NXL103 shows promise to become an important agent in the treatment of community-acquired pneumonia and complex skin and soft tissue infections, pending further development. PMID:20112172

  13. Pyridones as NNRTIs against HIV-1 mutants: 3D-QSAR and protein informatics

    NASA Astrophysics Data System (ADS)

    Debnath, Utsab; Verma, Saroj; Jain, Surabhi; Katti, Setu B.; Prabhakar, Yenamandra S.

    2013-07-01

    CoMFA and CoMSIA based 3D-QSAR of HIV-1 RT wild and mutant (K103, Y181C, and Y188L) inhibitory activities of 4-benzyl/benzoyl pyridin-2-ones followed by protein informatics of corresponding non-nucleoside inhibitors' binding pockets from pdbs 2BAN, 3MED, 1JKH, and 2YNF were analysed to discover consensus features of the compounds for broad-spectrum activity. The CoMFA/CoMSIA models indicated that compounds with groups which lend steric-cum-electropositive fields in the vicinity of C5, hydrophobic field in the vicinity of C3 of pyridone region and steric field in aryl region produce broad-spectrum anti-HIV-1 RT activity. Also, a linker rendering electronegative field between pyridone and aryl moieties is common requirement for the activities. The protein informatics showed considerable alteration in residues 181 and 188 characteristics on mutation. Also, mutants' isoelectric points shifted in acidic direction. The study offered fresh avenues for broad-spectrum anti-HIV-1 agents through designing new molecules seeded with groups satisfying common molecular fields and concerns of mutating residues.

  14. Evaluation of bactericidal efficacy of silver ions on Escherichia coli for drinking water disinfection.

    PubMed

    Pathak, Satya P; Gopal, K

    2012-07-01

    The purpose of this study is the development of a suitable process for the disinfection of drinking water by evaluating bactericidal efficacy of silver ions from silver electrodes. A prototype of a silver ioniser with silver electrodes and control unit has been fabricated. Silver ions from silver electrodes in water samples were estimated with an atomic absorption spectrophotometer. A fresh culture of Escherichia coli (1.75 × 10(3) c.f.u./ml) was exposed to 1, 2, 5, 10 and 20 ppb of silver ions in 100 ml of autoclaved tap water for 60 min. The effect of different pH and temperatures on bactericidal efficacy was observed at constant silver ion concentration (5 ppb) and contact time of 30 min. The maximum bactericidal activity (100%) was observed at 20 ppb of silver ion concentration indicating total disinfection after 20 min while minimum bactericidal activity (25%) was observed after 10 min at 01 ppb of silver ions. Likewise, 100% bactericidal activity was noticed with 2, 5 and 10 ppb of silver ions after 60, 50 and 40 min, respectively. Bactericidal activity at pH 5, 6, 7, 8 and 9 was observed at 79.9%, 79.8%, 80.5%, 100% and 100%, respectively, whereas it was 80.4%, 88.3%, 100%, 100% and 100% at 10°C, 20°C, 30°C, 40°C and 50°C, respectively. The findings of this study revealed that very low concentrations of silver ions at pH 8-9 and temperature >20°C have bactericidal efficacy for total disinfection of drinking water. Silver ionisation is suitable for water disinfection and an appropriate alternative to chlorination which forms carcinogenic disinfection by-products.

  15. Draft Genome Sequence of Streptomyces sp. Strain Wb2n-11, a Desert Isolate with Broad-Spectrum Antagonism against Soilborne Phytopathogens

    DOE PAGES

    Köberl, Martina; White, Richard A.; Erschen, Sabine; ...

    2015-08-06

    Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria, and nematodes. The 8.2-Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants.

  16. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm.

    PubMed

    Okuda, Ken-ichi; Zendo, Takeshi; Sugimoto, Shinya; Iwase, Tadayuki; Tajima, Akiko; Yamada, Satomi; Sonomoto, Kenji; Mizunoe, Yoshimitsu

    2013-11-01

    Control of biofilms formed by microbial pathogens is an important subject for medical researchers, since the development of biofilms on foreign-body surfaces often causes biofilm-associated infections in patients with indwelling medical devices. The present study examined the effects of different kinds of bacteriocins, which are ribosomally synthesized antimicrobial peptides produced by certain bacteria, on biofilms formed by a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA). The activities and modes of action of three bacteriocins with different structures (nisin A, lacticin Q, and nukacin ISK-1) were evaluated. Vancomycin, a glycopeptide antibiotic used in the treatment of MRSA infections, showed bactericidal activity against planktonic cells but not against biofilm cells. Among the tested bacteriocins, nisin A showed the highest bactericidal activity against both planktonic cells and biofilm cells. Lacticin Q also showed bactericidal activity against both planktonic cells and biofilm cells, but its activity against biofilm cells was significantly lower than that of nisin A. Nukacin ISK-1 showed bacteriostatic activity against planktonic cells and did not show bactericidal activity against biofilm cells. Mode-of-action studies indicated that pore formation leading to ATP efflux is important for the bactericidal activity against biofilm cells. Our results suggest that bacteriocins that form stable pores on biofilm cells are highly potent for the treatment of MRSA biofilm infections.

  17. Effects of Bacteriocins on Methicillin-Resistant Staphylococcus aureus Biofilm

    PubMed Central

    Zendo, Takeshi; Sugimoto, Shinya; Iwase, Tadayuki; Tajima, Akiko; Yamada, Satomi; Sonomoto, Kenji

    2013-01-01

    Control of biofilms formed by microbial pathogens is an important subject for medical researchers, since the development of biofilms on foreign-body surfaces often causes biofilm-associated infections in patients with indwelling medical devices. The present study examined the effects of different kinds of bacteriocins, which are ribosomally synthesized antimicrobial peptides produced by certain bacteria, on biofilms formed by a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA). The activities and modes of action of three bacteriocins with different structures (nisin A, lacticin Q, and nukacin ISK-1) were evaluated. Vancomycin, a glycopeptide antibiotic used in the treatment of MRSA infections, showed bactericidal activity against planktonic cells but not against biofilm cells. Among the tested bacteriocins, nisin A showed the highest bactericidal activity against both planktonic cells and biofilm cells. Lacticin Q also showed bactericidal activity against both planktonic cells and biofilm cells, but its activity against biofilm cells was significantly lower than that of nisin A. Nukacin ISK-1 showed bacteriostatic activity against planktonic cells and did not show bactericidal activity against biofilm cells. Mode-of-action studies indicated that pore formation leading to ATP efflux is important for the bactericidal activity against biofilm cells. Our results suggest that bacteriocins that form stable pores on biofilm cells are highly potent for the treatment of MRSA biofilm infections. PMID:23979748

  18. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds

    PubMed Central

    2011-01-01

    The advance in nanotechnology has enabled us to utilize particles in the size of the nanoscale. This has created new therapeutic horizons, and in the case of silver, the currently available data only reveals the surface of the potential benefits and the wide range of applications. Interactions between viral biomolecules and silver nanoparticles suggest that the use of nanosystems may contribute importantly for the enhancement of current prevention of infection and antiviral therapies. Recently, it has been suggested that silver nanoparticles (AgNPs) bind with external membrane of lipid enveloped virus to prevent the infection. Nevertheless, the interaction of AgNPs with viruses is a largely unexplored field. AgNPs has been studied particularly on HIV where it was demonstrated the mechanism of antiviral action of the nanoparticles as well as the inhibition the transmission of HIV-1 infection in human cervix organ culture. This review discusses recent advances in the understanding of the biocidal mechanisms of action of silver Nanoparticles. PMID:21812950

  19. Proteomic Analysis to Elucidate the Antibacterial Action of Silver Ions Against Bovine Mastitis Pathogens.

    PubMed

    Kang, Seog Jin; Cho, Yong Il; Kim, Ki Hyun; Cho, Eun Seok

    2016-05-01

    Silver ions act as a powerful, broad-spectrum antimicrobial agent and are known to kill over 650 different kinds of pathogens. We investigated the protein expression pattern and identity after silver ion treatment in Escherichia coli and Staphylococcus aureus, which are primarily responsible for the majority of bovine mastitis cases using proteomics. Two-dimensional electrophoresis showed that silver ion treatment significantly reduced 5 spot's density in E. coli and S. aureus, respectively. We identified 10 proteins (alkyl hydroperoxide reductase C22 subunit, phosphoglucomutase, fructose-1-phosphate kinase, putative carbamoyl transferase, alpha-galactosidase, carbamate kinase, ornithine transcarbamoylase, fumarate hydratase class II, alcohol dehydrogenase, and conserved hypothetical protein) by matrix-assisted laser desorption ionization time of flight (MALDI-TOF). These results demonstrated that silver ions have bactericidal effects through energy deprivation, inhibition of DNA replication, and accumulation of oxidants in bovine mastitis pathogens and suggested that silver ions can be applied for the treatment of bovine mastitis.

  20. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance

    PubMed Central

    Valle, Demetrio L.; Cabrera, Esperanza C.; Puzon, Juliana Janet M.; Rivera, Windell L.

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID:26741962

  1. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    PubMed

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  2. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures.

    PubMed

    Hendry, E R; Worthington, T; Conway, B R; Lambert, P A

    2009-12-01

    Effective disinfection and antisepsis is pivotal in preventing infections within the healthcare setting. Chlorhexidine digluconate (CHG) is a widely used disinfectant/antiseptic possessing broad-spectrum antimicrobial activity; however, its penetration into bacterial biofilms and human skin is poor. The aim of this study was to investigate the antimicrobial efficacy of crude eucalyptus oil (EO) and its main component 1,8-cineole (a recognized permeation enhancer), alone and in combination with CHG, against a panel of clinically relevant microorganisms grown in planktonic and biofilm cultures. MICs and minimum bactericidal/fungicidal concentrations were determined for each microorganism grown in suspension and biofilm using microbroth dilution and ATP bioluminescence, respectively. Chequerboard assays were used to determine synergistic, indifferent or antagonistic interactions between CHG and EO or 1,8-cineole. Antimicrobial activity was demonstrated by CHG, EO and 1,8-cineole; however, CHG was significantly more active against microorganisms in both planktonic and biofilm modes of growth (P < 0.05). Crude EO was significantly more efficacious against microorganisms grown in suspension compared with 1,8-cineole (P < 0.05). Synergistic activity was demonstrated between CHG and both EO and 1,8-cineole against suspensions of Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli and Candida albicans, and biofilm cultures of MRSA and Pseudomonas aeruginosa. In conclusion, CHG may be combined with either crude EO or its major component 1,8-cineole for enhanced, synergistic antimicrobial activity against a wide range of microorganisms in planktonic and biofilm modes of growth; however, the superior antimicrobial efficacy associated with crude EO alone, compared with 1,8-cineole, favours its combination with CHG.

  3. KINETICS OF THE ACTION OF AMPICILLIN ON ESCHERICHIA COLI

    PubMed Central

    Seligman, Stephen J.; Hewitt, William L.

    1963-01-01

    Seligman, Stephen J. (University of California, Los Angeles) and William L. Hewitt. Kinetics of the action of ampicillin on Escherichia coli. J. Bacteriol. 85:1160–1164. 1963.—The curve of the number of viable Escherichia coli after exposure to ampicillin can be divided into three phases: a lag phase, a rapid bactericidal phase, and a slow bactericidal phase. Some of the variables affecting the magnitude of the first two of these phases were investigated. Progressive lowering of drug concentration resulted in prolongation of the lag phase and decrease in slope and extent of the rapid bactericidal phase. The production of elongated gram-negative forms and the emergence of a mutant with increased penicillinase activity complicated interpretation of the lower dose curves. With sufficient drug concentration, the length of the lag phase and the slope of the rapid bactericidal curve were independent of the size of inoculum up to 108 organisms. Varying pH revealed that maximal activity, as measured by the shortest lag phase and steepest slope of the rapid bactericidal phase, was present at slightly acid pH levels. Increasing pH resulted principally in prolongation of lag phase. With greater acidity, decrease in slope of the rapid bactericidal phase was more prominent. Cultures studied under conditions of lessened metabolic activity exhibited prolonged lag phase and decreased slope and extent of rapid bactericidal phase. PMID:14044010

  4. Antipneumococcal Activity of DW-224a, a New Quinolone, Compared to Those of Eight Other Agents

    PubMed Central

    Kosowska-Shick, Klaudia; Credito, Kim; Pankuch, Glenn A.; Lin, Gengrong; Bozdogan, Bülent; McGhee, Pamela; Dewasse, Bonifacio; Choi, Dong-Rack; Ryu, Jei Man; Appelbaum, Peter C.

    2006-01-01

    DW-224a is a new broad-spectrum quinolone with excellent antipneumococcal activity. Agar dilution MIC was used to test the activity of DW-224a compared to those of penicillin, ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin against 353 quinolone-susceptible pneumococci. The MICs of 29 quinolone-resistant pneumococci with defined quinolone resistance mechanisms against seven quinolones and an efflux mechanism were also tested. DW-224a was the most potent quinolone against quinolone-susceptible pneumococci (MIC50, 0.016 μg/ml; MIC90, 0.03 μg/ml), followed by gemifloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. β-Lactam MICs rose with those of penicillin G, and azithromycin resistance was seen mainly in strains with raised penicillin G MICs. Against the 29 quinolone-resistant strains, DW-224a had the lowest MICs (0.06 to 1 μg/ml) compared to those of gemifloxacin, clinafloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. DW-224a at 2× MIC was bactericidal after 24 h against eight of nine strains tested. Other quinolones gave similar kill kinetics relative to higher MICs. Serial passages of nine strains in the presence of sub-MIC concentrations of DW-224a, moxifloxacin, levofloxacin, ciprofloxacin, gatifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin were performed. DW-224a yielded resistant clones similar to moxifloxacin and gemifloxacin but also yielded lower MICs. Azithromycin selected resistant clones in three of the five parents tested. Amoxicillin-clavulanate and cefuroxime did not yield resistant clones after 50 days. PMID:16723567

  5. Human Lysozyme Synergistically Enhances Bactericidal Dynamics and Lowers the Resistant Mutant Prevention Concentration for Metronidazole to Helicobacter pylori by Increasing Cell Permeability.

    PubMed

    Zhang, Xiaolin; Jiang, Anmin; Yu, Hao; Xiong, Youyi; Zhou, Guoliang; Qin, Meisong; Dou, Jinfeng; Wang, Jianfei

    2016-10-28

    Metronidazole (MNZ) is an effective agent that has been employed to eradicate Helicobacter pylori ( H. pylori ). The emergence of broad MNZ resistance in H. pylori has affected the efficacy of this therapeutic agent. The concentration of MNZ, especially the mutant prevention concentration (MPC), plays an important role in selecting or enriching resistant mutants and regulating therapeutic effects. A strategy to reduce the MPC that can not only effectively treat H. pylori but also prevent resistance mutations is needed. H. pylori is highly resistant to lysozyme. Lysozyme possesses a hydrolytic bacterial cell wall peptidoglycan and a cationic dependent mode. These effects can increase the permeability of bacterial cells and promote antibiotic absorption into bacterial cells. In this study, human lysozyme (hLYS) was used to probe its effects on the integrity of the H. pylori outer and inner membranes using as fluorescent probe hydrophobic 1- N -phenyl-naphthylamine (NPN) and the release of aspartate aminotransferase. Further studies using a propidium iodide staining method assessed whether hLYS could increase cell permeability and promote cell absorption. Finally, we determined the effects of hLYS on the bactericidal dynamics and MPC of MNZ in H. pylori . Our findings indicate that hLYS could dramatically increase cell permeability, reduce the MPC of MNZ for H. pylori , and enhance its bactericidal dynamic activity, demonstrating that hLYS could reduce the probability of MNZ inducing resistance mutations.

  6. Effects of oakmoss and its components on biofilm formation of Legionella pneumophila.

    PubMed

    Nomura, Harue; Isshiki, Yasunori; Sakuda, Keisuke; Sakuma, Katsuya; Kondo, Seiichi

    2013-01-01

    Oakmoss and its components are known as antibacterial agents, specifically against Legionella pneumophila. In the present study, we investigated the effects of oakmoss and its components (phenol, didepside and isochromen derivatives) on L. pneumophila biofilm formation, with particular reference to the bactericidal activity (minimum bactericidal concentration; MBC) of these components against the bacterial cells in the biofilm. Of the 20 compounds tested, two didepside derivatives and four phenol derivatives reduced biofilm formation by more than 50% of that observed for the control at their respective minimum inhibitory concentrations (1/2×MIC). The inhibitory activities of these compounds were either equivalent to or greater than that of the clarithromycin reference. Isochromen derivatives had no effect on biofilm formation. Analysis of bactericidal activity of didepside and isochromen derivatives revealed that three of four didepside derivatives and one of four isochromen derivatives exhibited high bactericidal activity (MBC: 32.0-74.7 µg/mL) against the L. pneumophila in the biofilm after 24 h or 48 h of co-incubation; the antibacterial activities of these compounds were almost equivalent to clarithromycin and chlorhexidine gluconate (MBC: 42.7-64.0 µg/mL) that were used as references. Thus, based on their anti-biofilm forming and bactericidal activities, didepside derivatives are considered to be good candidates for disinfectants against L. pneumophila.

  7. [Bactericidal activity of colloidal silver against grampositive and gramnegative bacteria].

    PubMed

    Afonina, I A; Kraeva, L A; Tseneva, G Ia

    2010-01-01

    It was shown that colloidal silver solution prepared in cooperation with the A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, had significant bactericidal activity. Stable bactericidal effect on gramnegative microorganisms was observed after their 2-hour exposition in the solution of colloidal silver at a concentration of 10 ppm. Grampositive capsule-forming microorganisms were less susceptible to the colloidal silver solution: their death was observed after the 4-hour exposition in the solution.

  8. In vitro antimicrobial activity of Pistacia lentiscus L. edible oil and phenolic extract.

    PubMed

    Mezni, F; Aouadhi, C; Khouja, M L; Khaldi, A; Maaroufi, A

    2015-01-01

    Pistacia lentiscus L. is known in some Tunisian forest area by its fixed oil used in traditional medicine as an antiseptic product. This investigation is the first to study the antimicrobial activity of P.lentiscus edible oil and its phenolic extract. Oil was extracted from fruits harvested from six provenances located in Tunisia. The antimicrobial activity was tested using disc diffusion assay and the broth dilution method. Kbouch and Sidi Zid oils were most efficient (p < 0.003) against, respectively, Staphylococcus aureus and Aspergillus niger with an inhibition zone of 9.33 mm. The phenolic extract had the largest spectrum of sensitive microorganisms. The minimum inhibitory concentration and minimum bactericidal concentration results showed that all strains were inhibited by both oil and extract.

  9. Low Temperature Atmospheric Argon Plasma: Diagnostics and Medical Applications

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Svetlana; Petrov, Oleg; Zigangirova, Nailya; Vasiliev, Mikhail; Sysolyatina, Elena; Antipov, Sergei; Alyapyshev, Maxim; Kolkova, Natalia; Mukhachev, Andrei; Naroditsky, Boris; Shimizu, Tetsuji; Grigoriev, Anatoly; Morfill, Gregor; Fortov, Vladimir; Gintsburg, Alexander

    This study was devoted to diagnostic of low temperature plasma produced by microwave generator and investigation of its bactericidal effect against bacteria in biofilms and within eukaryotic cells. The profile of gas temperature near the torch outlet was measured. The spectrum in a wide range of wavelengths was derived by the method of optical emission spec-troscopy. Probe measurements of the floating potential of plasma were car-ried out. The estimation and adaptation of parameters of plasma flow (tem-perature, velocity, ion number density) according to medico-technical requirements were produced. The model of immersed surface-associated biofilms formed by Gram-negative bacteria, Pseudomonas aeruginosa and Burkholderia cenocepacia, and Gram-positive bacteria, Staphylococcus aureus, was used to assess bactericidal effects of plasma treatment. Reduction in the concentration of live bacteria in biofilms treated with plasma for 5 min was demonstrated by measuring Live/Dead fluorescent labeling and using direct plating. The intracellular infection model with the pathogenic bacterium, Chlamydia trachomatis, was used to study the efficacy of microwave argon plasma against intracellular parasites. A 2 min plasma treatment of mouse cells infected with C. trachomatis reduced infectious bacteria by a factor of 2×106. Plasma treatment diminished the number of viable host cells by about 20%. When the samples were covered with MgF2 glass to obstruct active particles and UV alone was applied, the bactericidal effect was re-duced by 5×104 fold compared to the whole plasma.

  10. Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy.

    PubMed

    Zhang, Yi; Mu, Jun; Feng, Yan; Kang, Yue; Zhang, Jia; Gu, Peng-Juan; Wang, Yu; Ma, Li-Fang; Zhu, Yan-Hua

    2009-04-17

    In the search for new marine derived antibiotics, 43 epi- and endophytic fungal strains were isolated from the surface or the inner tissue of different marine plants and invertebrates. Through preliminary and secondary screening, 10 of them were found to be able to produce broad-spectrum antimicrobial metabolites. By morphological and molecular biological methods, three active strains were characterized to be Penicillium glabrum, Fusarium oxysporum, and Alternaria alternata.

  11. Polyhexamethylene guanidine hydrochloride shows bactericidal advantages over chlorhexidine digluconate against ESKAPE bacteria.

    PubMed

    Zhou, Zhongxin; Wei, Dafu; Lu, Yanhua

    2015-01-01

    More information regarding the bactericidal properties of polyhexamethylene guanidine hydrochloride (PHMG) against clinically important antibiotic-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens needs to be provided for its uses in infection control. The bactericidal properties of PHMG and chlorhexidine digluconate (CHG) were compared based on their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations, and time-course-killing curves against clinically important antibiotic-susceptible and antibiotic-resistant ESKAPE pathogens. Results showed that PHMG exhibited significantly higher bactericidal activities against methicillin-resistant Staphylococcus aureus, carbapenem-resistant Klebsiella pneumoniae, and ceftazidime-resistant Enterobacter spp. than CHG. A slight bactericidal advantage over CHG was obtained against vancomycin-resistant Enterococcus faecium, ciprofloxacin- and levofloxacin-resistant Acinetobacter spp., and multidrug-resistant Pseudomonas aeruginosa. In previous reports, PHMG had higher antimicrobial activity against almost all tested Gram-negative bacteria and several Gram-positive bacteria than CHG using MIC test. These studies support the further development of covalently bound PHMG in sterile-surface materials and the incorporation of PHMG in novel disinfectant formulas. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  12. Diversity of Endophytic Bacteria in a Fern Species Dryopteris uniformis (Makino) Makino and Evaluation of Their Antibacterial Potential Against Five Foodborne Pathogenic Bacteria.

    PubMed

    Das, Gitishree; Park, Seonjoo; Baek, Kwang-Hyun

    2017-05-01

    The fern plant Dryopteris uniformis has traditionally been used in herbal medicine and possesses many biological activities. This study was conducted to explore the endophytic bacterial diversity associated with D. uniformis and evaluate their antibacterial potential against foodborne pathogenic bacteria (FPB). Among 51 isolated endophytic bacteria (EB), 26 EB were selected based on their morphological characteristics and identified by 16S rRNA gene analysis. The distribution of EB was diverse in the leaf and the stem/root tissues. When the EB were screened for antibacterial activity against five FPB, Listeria monocytogenes, Salmonella Typhimurium, Bacillus cereus, Staphylococcus aureus, and Escherichia coli O157:H7, four EB Bacillus sp. cryopeg, Paenibacillus sp. rif200865, Staphylococcus warneri, and Bacillus psychrodurans had a broad spectrum of antibacterial activity (9.58 ± 0.66 to 21.47 ± 0.27 mm inhibition zone). The butanol solvent extract of B. sp. cryopeg and P. sp. rif200865 displayed effective antibacterial activity against the five FPB, which was evident from the scanning electron microscopy with irregular or burst cell morphology in the EB-treated bacteria compared to smooth and regular cells in case of the control bacteria. The minimum inhibitory concentration and minimum bactericidal concentration values ranged between 250-500 μg/mL and 500-100 μg/mL, respectively. The above outcomes signify the huge prospective of the selected EB in the food industry. Overall, the above results suggested that D. uniformis contains several culturable EB that possess effective antibacterial compounds, and that EB can be utilized as a source of natural antibacterial agents for their practical application in food industry to control the spread of FPB as a natural antibacterial agent.

  13. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against Gram-negative bacteria including multi-drug resistant phenotypes.

    PubMed

    Fankam, Aimé G; Kuiate, Jules R; Kuete, Victor

    2015-06-30

    Bacterial resistance to antibiotics is becoming a serious problem worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to tackle the spread of resistance or to reverse the multi-drug resistance. We investigated the antibacterial and antibiotic-resistance modifying activities of the methanol extracts from Allanblackia gabonensis, Gladiolus quartinianus and Combretum molle against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the samples meanwhile the standard phytochemical methods were used for the preliminary phytochemical screening of the plant extracts. Phytochemical analysis showed the presence of alkaloids, flavonoids, phenols and tannins in all studied extracts. Other chemical classes of secondary metabolites were selectively presents. Extracts from A. gabonensis and C. molle displayed a broad spectrum of activity with MICs varying from 16 to 1024 μg/mL against about 72.41% of the tested bacteria. The extract from the fruits of A. gabonensis had the best activity, with MIC values below 100 μg/mL on 37.9% of tested bacteria. Percentages of antibiotic-modulating effects ranging from 67 to 100% were observed against tested MDR bacteria when combining the leaves extract from C. molle (at MIC/2 and MIC/4) with chloramphenicol, kanamycin, streptomycin and tetracycline. The overall results of the present study provide information for the possible use of the studied plant, especially Allanblackia gabonensis and Combretum molle in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.

  14. In vitro bactericidal and bacteriolytic activity of ceragenin CSA-13 against planktonic cultures and biofilms of Streptococcus pneumoniae and other pathogenic streptococci.

    PubMed

    Moscoso, Miriam; Esteban-Torres, María; Menéndez, Margarita; García, Ernesto

    2014-01-01

    Ceragenin CSA-13, a cationic steroid, is here reported to show a concentration-dependent bactericidal/bacteriolytic activity against pathogenic streptococci, including multidrug-resistant Streptococcus pneumoniae. The autolysis promoted by CSA-13 in pneumococcal cultures appears to be due to the triggering of the major S. pneumoniae autolysin LytA, an N-acetylmuramoyl-L-alanine amidase. CSA-13 also disintegrated pneumococcal biofilms in a very efficient manner, although at concentrations slightly higher than those required for bactericidal activity on planktonic bacteria. CSA-13 has little hemolytic activity which should allow testing its antibacterial efficacy in animal models.

  15. The activity of several newer antimicrobials against logarithmically multiplying M. leprae in mice.

    PubMed

    Burgos, Jasmin; de la Cruz, Eduardo; Paredes, Rose; Andaya, Cora Revelyn; Gelber, Robert H

    2011-09-01

    Moxifloxacin, rifampicin, rifapentine, linezolid, and PA 824, alone and in combination, have been previously administered, as single doses and five times daily doses, to M. leprae infected mice during lag phase multiplication and were each found to have some bactericidal activity. The fluroquinolones, ofloxacin, moxifloxacin and gatifloxacin, (50 mg/kg, 150 mg/kg and 300 mg/kg) and the rifamycins (5 mg/kg, 10 mg/kg, and 20 mg/kg), rifampicin and rifapentine, were evaluated alone and in combination for bactericidal activity against M. leprae using the mouse footpad model during logarithmic multiplication. Linezolid and PA 824 were similarly evaluated alone and linezolid in combination with rifampicin, minocycline and ofloxacin. The three fluroquinolones and rifamycins were found alone and in combination to be bactericidal at all dosage schedules. PA 824 had no activity against M. leprae, while linezolid at a dose of 25 mg/kg was bacteriostatic, and progressively more bactericidal at doses of 50 mg/kg and 100 mg/kg. No antagonisms were detected between any of these drugs when used in combinations. Moxifloxacin, gatifloxacin, rifapentine and linezolid were found bactericidal against rapidly multiplying M. leprae.

  16. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7.

    PubMed

    Burt, S A; Reinders, R D

    2003-01-01

    To quantify the antibacterial properties of five essential oils (EO) on a non-toxigenic strain of Escherichia coli O157:H7 in the presence and absence of a stabilizer and an emulsifier and at three different temperatures. Five EOs known to exhibit antibacterial properties were screened by disc diffusion assay and the most active were selected for further study in microdilution colorimetric assays. Oregano (Origanum vulgare) and thyme (Thymus vulgaris; light and red varieties) EO had the strongest bacteriostatic and bactericidal properties, followed by bay (Pimenta racemosa) and clove bud (Eugenia caryophyllata synonym: Syzygium aromaticum) EO. Oregano oil was colicidal at 625 microl l(-1) at 10, 20 and 37 degrees C. The addition of 0.05% (w/v) agar as stabilizer reinforced the antibacterial properties, particularly at 10 degrees C, whereas 0.25% (w/v) lecithin reduced antibacterial activity. Scanning electron micrographs showed extensive morphological changes to treated cells. Oregano and thyme EO possess significant in vitro colicidal and colistatic properties, which are exhibited in a broad temperature range and substantially improved by the addition of agar as stabilizer. Bay and clove bud EO are less active. Lecithin diminished antibacterial properties. The bactericidal concentration of oregano EO irreversibly damaged E. coli O157:H7 cells within 1 min. Oregano and light thyme EO, particularly when enhanced by agar stabilizer, may be effective in reducing the number or preventing the growth of E. coli O157:H7 in foods.

  17. Antagonistic intestinal microflora produces antimicrobial substance inhibitory to Pseudomonas species and other spoilage organisms.

    PubMed

    Hatew, Bayissa; Delessa, Tenagne; Zakin, Vered; Gollop, Natan

    2011-10-01

    Chicken intestine harbors a vast number of bacterial strains. In the present study, antimicrobial substance produced by lactic acid bacteria (LAB) isolated from the gastrointestinal tract of healthy chicken was detected, characterized, and purified. Based on 16S rRNA sequencing, the bacteria were identified as Lactobacillus plantarum vN. The antimicrobial substance produced by this bacterium was designated vN-1 and exhibited a broad-spectrum of activity against many important pathogenic and spoilage microorganisms, including Pseudomonas aeruginosa, Staphylococcus aureus, Micrococcus luteus, Salmonella Typhimurium, and Erwinia amylovova. vN-1 was determined to be thermostable, insensitive to pH values ranging from 2.0 to 8.0, resistant to various organic solvents and to enzymatic inactivation. The inhibition kinetics displayed a bactericidal mode of action. This study revealed an antimicrobial substance with low molecular mass of less than 1 kDa as determined by ultrafiltration and having features not previously reported for LAB isolated from chicken intestines. The detection of this antimicrobial substance addresses an important aspect of biotechnological control agents of spoilage caused by Pseudomonas spp. and promises the possibility for preservation of refrigerated poultry meat. Practical Application:  The newly characterized antimicrobial substance and designated as vN-1 may have the potential to be used in food preservation. © 2011 Institute of Food Technologists®

  18. Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin.

    PubMed

    Blandón, Lina M; Islan, German A; Castro, Guillermo R; Noseda, Miguel D; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2016-09-01

    Ciprofloxacin is a broad-spectrum antibiotic associated with gastric and intestinal side effects after extended oral administration. Alginate is a biopolymer commonly employed in gel synthesis by ionotropic gelation, but unstable in the presence of biological metal-chelating compounds and/or under dried conditions. Kefiran is a microbial biopolymer able to form gels with the advantage of displaying antimicrobial activity. In the present study, kefiran-alginate gel microspheres were developed to encapsulate ciprofloxacin for antimicrobial controlled release and enhanced bactericidal effect against common pathogens. Scanning electron microscopy (SEM) analysis of the hybrid gel microspheres showed a spherical structure with a smoother surface compared to alginate gel matrices. In vitro release of ciprofloxacin from kefiran-alginate microspheres was less than 3.0% and 5.0% at pH 1.2 (stomach), and 5.0% and 25.0% at pH 7.4 (intestine) in 3 and 21h, respectively. Fourier transform infrared spectroscopy (FTIR) of ciprofloxacin-kefiran showed the displacement of typical bands of ciprofloxacin and kefiran, suggesting a cooperative interaction by hydrogen bridges between both molecules. Additionally, the thermal analysis of ciprofloxacin-kefiran showed a protective effect of the biopolymer against ciprofloxacin degradation at high temperatures. Finally, antimicrobial assays of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhymurium, and Staphylococcus aureus demonstrated the synergic effect between ciprofloxacin and kefiran against the tested microorganisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Multivalent Antimicrobial Polymer Nanoparticles Target Mycobacteria and Gram-Negative Bacteria by Distinct Mechanisms

    PubMed Central

    2017-01-01

    Because of the emergence of antimicrobial resistance to traditional small-molecule drugs, cationic antimicrobial polymers are appealing targets. Mycobacterium tuberculosis is a particular problem, with multi- and total drug resistance spreading and more than a billion latent infections globally. This study reports nanoparticles bearing variable densities of poly(dimethylaminoethyl methacrylate) and the unexpected and distinct mechanisms of action this multivalent presentation imparts against Escherichia coli versus Mycobacterium smegmatis (model of M. tuberculosis), leading to killing or growth inhibition, respectively. A convergent “grafting to” synthetic strategy was used to assemble a 50-member nanoparticle library, and using a high-throughput screen identified that only the smallest (2 nm) particles were stable in both saline and complex cell media. Compared with the linear polymers, the nanoparticles displayed two- and eight-fold enhancements in antimicrobial activity against M. smegmatis and E. coli, respectively. Mechanistic studies demonstrated that the antimicrobial particles were bactericidal against E. coli due to rapid disruption of the cell membranes. Conversely, against M. smegmatis the particles did not lyse the cell membrane but rather had a bacteriostatic effect. These results demonstrate that to develop new polymeric antituberculars the widely assumed, broad spectrum, membrane-disrupting mechanism of polycations must be re-evaluated. It is clear that synthetic nanomaterials can engage in more complex interactions with mycobacteria, which we hypothesize is due to the unique cell envelope at the surface of these bacteria. PMID:29195272

  20. Lyophilised wafers as vehicles for the topical release of chlorhexidine digluconate--release kinetics and efficacy against Pseudomonas aeruginosa.

    PubMed

    Labovitiadi, Olga; Lamb, Andrew J; Matthews, Kerr H

    2012-12-15

    There is a requirement to deliver accurate amounts of broad spectrum antimicrobial compounds locally to exuding wounds. Varying amounts of exudate complicates this process by limiting the residence and therefore efficacy of active substances. Minimum bactericidal concentrations (MBC) of antimicrobials are necessary to suppress infection and lessen the chances of resistant strains of potentially pathogenic bacteria from prevailing. Polysaccharide wafers can adhere to exudating wound beds, absorbing fluids and forming highly viscous gels that remain in situ for prolonged periods of time to release sustained amounts of antimicrobial. In this study, five different formulations were produced containing the antimicrobial, chlorhexidine digluconate (CHD). Absorption of simulated wound fluid, resultant rheological properties of gels and efficacy against plated cultures of Pseudomonas aeruginosa were measured and compared. CHD reduced the 'water uptake' of wafers by 11-50% (w/w) and decreased the rheological consistency of non-SA containing gels by 10-65%. Release studies indicated that karaya wafers gave the highest sustained release of CHD, >60 μg/mL in 24 h, well in excess of the MBC for P. aeruginosa. Release kinetics indicated an anomalous diffusion mechanism according to Korsmeyer-Peppas, with diffusion exponents varying from 0.31 to 0.41 for most wafers except xanthan (0.65). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. In vitro bactericidal activity of enrofloxacin against gyrA mutant and qnr-containing Escherichia coli isolates from animals.

    PubMed

    Cengiz, M; Sahinturk, P; Sonal, S; Buyukcangaz, E; Sen, A; Arslan, E

    2013-05-04

    The objective of this work was to investigate the bactericidal activity of enrofloxacin against gyrA mutant and qnr-containing Escherichia coli isolates from animals. The minimum inhibitory concentrations (MICs) of gyrA mutant and qnr-containing E coli isolates ranged from 1 µg/ml to 32 µg/ml for enrofloxacin. Time-kill experiments were performed using selected E coli isolates. For the time-kill experiments, the colony counts were determined by plating each diluted sample onto plate count agar and an integrated pharmacokinetic/pharmacodynamics area measure (log ratio area) was applied to the colony-forming units (cfu) data. In general, enrofloxacin exhibited bactericidal activity against all the gyrA mutant E coli isolates at all concentrations greater than four times the MIC. However, the bactericidal activity of enrofloxacin for all the qnr-containing E coli isolates was less dependent on concentration. The results of the present study indicated that the genetic mechanism of resistance might account for the different bactericidal activities of enrofloxacin observed for the gyrA mutant and the qnr-containing E coli isolates. Therefore, in addition to MIC assays, genetic mechanism-based pharmacodynamic models should be used to provide accurate predictions of the effects of drugs on resistant bacteria.

  2. Suppression of bactericidal activity of human polymorphonuclear leukocytes by Bacteroides gingivalis.

    PubMed Central

    Yoneda, M; Maeda, K; Aono, M

    1990-01-01

    The direct effects of the culture supernatant of oral microorganisms on the bactericidal activity of human polymorphonuclear leukocytes (PMNs) were investigated. The bactericidal activity of PMNs, which were preincubated with the supernatant of Bacteroides gingivalis, Bacteroides intermedius, Bacteroides melaninogenicus or phosphate-buffered saline, was examined by counting the surviving bacteria. B. gingivalis-treated PMNs were found to have a diminished ability for killing bacteria in the presence or absence of serum. The chemiluminescence response of PMNs, which were preincubated with the culture supernatant of B. gingivalis, was strikingly reduced compared with that of PMNs preincubated with phosphate-buffered saline or other bacterial culture supernatants. The production of superoxide anion (O2-) by PMNs stimulated with either formyl-methionyl-leucyl-phenylalanine or phorbol myristate acetate was reduced in both cases after the PMNs were preincubated with the culture supernatant of B. gingivalis. However, it was observed that there was more reduction in superoxide anion (O2-) production stimulated with formyl-methionyl-leucyl-phenylalanine compared with that stimulated with phorbol myristate acetate. These results suggest that B. gingivalis releases a factor which interferes with the bactericidal activity of PMNs by modulating the generation of reactive oxygen species. These suppressive effects on bactericidal activity may be important in the pathogenesis of this microorganism. PMID:2153632

  3. The β-Defensin Gallinacin-6 Is Expressed in the Chicken Digestive Tract and Has Antimicrobial Activity against Food-Borne Pathogens▿

    PubMed Central

    van Dijk, Albert; Veldhuizen, Edwin J. A.; Kalkhove, Stefanie I. C.; Tjeerdsma-van Bokhoven, Johanna L. M.; Romijn, Roland A.; Haagsman, Henk P.

    2007-01-01

    Food-borne pathogens are responsible for most cases of food poisoning in developed countries and are often associated with poultry products, including chicken. Little is known about the role of β-defensins in the chicken digestive tract and their efficacy. In this study, the expression of chicken β-defensin gallinacin-6 (Gal-6) and its antimicrobial activity against food-borne pathogens were investigated. Reverse transcription-PCR analysis showed high expression of Gal-6 mRNA in the esophagus and crop, moderate expression in the glandular stomach, and low expression throughout the intestinal tract. Putative transcription factor binding sites for nuclear factor kappa beta, activator protein 1, and nuclear factor interleukin-6 were found in the Gal-6 gene upstream region, which suggests a possible inducible nature of the Gal-6 gene. In colony-counting assays, strong bactericidal and fungicidal activity was observed, including bactericidal activity against food-borne pathogens Campylobacter jejuni, Salmonella enterica serovar Typhimurium, Clostridium perfringens, and Escherichia coli. Treatment with 16 μg/ml synthetic Gal-6 resulted in a 3 log unit reduction in Clostridium perfringens survival within 60 min, indicating fast killing kinetics. Transmission electron microscopy examination of synthetic-Gal-6-treated Clostridium perfringens cells showed dose-dependent changes in morphology after 30 min, including intracellular granulation, cytoplasm retraction, irregular septum formation in dividing cells, and cell lysis. The high expression in the proximal digestive tract and broad antimicrobial activity suggest that chicken β-defensin gallinacin-6 plays an important role in chicken innate host defense. PMID:17194828

  4. [Antibacterial actin of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7 (Part 2). Effect of sodium chloride and temperature on bactericidal activity].

    PubMed

    Entani, E; Asai, M; Tsujihata, S; Tsukamoto, Y; Ohta, M

    1997-05-01

    Bactericidal effects of various kinds of AWASEZU (processed vinegar, 2.5% acidity) on food-borne pathogenic bacteria including Escherichia coli O157:H7 and other bacteria were examined. the order of bactericidal activities was NIHAIZU (3.5% NaCl was added) > SANBA-IZU (3.5% NaCl and 10% sucrose were added) > plain vinegar (spirit vinegar) > AMAZU (10% sucrose was added). This indicates that their activities were enhanced by the addition of sodium chloride and suppressed by the addition of sugar. On the other hand, when soy sauce was used instead of sodium chloride, the order of bactericidal activities was plain vinegar > AMAZU > NIHAIZU > SANBAIZU. This is mainly because their activities were suppressed by the increase in the pH value. The effect of sodium chloride (0.01-15%) and temperature (10-50 degrees C) on bactericidal activities against E. coli O157:H7 in spirit vinegar (0.5-2.5% acidity) was further examined. When vinegar was used in combination with sodium chloride, predominant synergism on the bactericidal activity was observed. Their activities were markedly enhanced by the addition of sodium chloride in proportion to the concentration. In addition to this, at higher temperatures spirit vinegar killed bacteria much more rapidly. It should be noted that the bactericidal activity of spirit vinegar was extremely enhanced by the combined use of the addition of sodium chloride and the rise of temperature. For example, in 2.5% acidity vinegar, the time required for 3 log decrease in viable cell numbers at 20 degrees C was shortened to 1/140-fold by the addition of 5% sodium chloride, shortened to 1/51-fold by the rise of the reaction temperature at 40 degrees C, and shortened to 1/830-fold; 0.89 minutes by both the addition of 5% sodium chloride and the rise of temperature at 40 degrees C. In order to propose the methods to prevent food poisoning by bacterial infection, bactericidal activities of vinegar solution containing sodium chloride on cooking tools and raw vegetables were examined. Vinegar solution (1-2% acidity, 3-7% NaCl) produced more than 3 log decrease in viable cell numbers of E. coli O157:H7 on the surface of cutting board, and cabbage and cucumber at 20-50 degrees C. These results suggested that the treatment with vinegar solution containing sodium chloride may be one of the useful methods to prevent food poisoning.

  5. Bactericidal activity of tracheal antimicrobial peptide against respiratory pathogens of cattle.

    PubMed

    Taha-Abdelaziz, Khaled; Perez-Casal, José; Schott, Courtney; Hsiao, Jason; Attah-Poku, Samuel; Slavić, Durđa; Caswell, Jeff L

    2013-04-15

    Tracheal antimicrobial peptide (TAP) is a β-defensin produced by mucosal epithelial cells of cattle. Although effective against several human pathogens, the activity of this bovine peptide against the bacterial pathogens that cause bovine respiratory disease have not been reported. This study compared the antibacterial effects of synthetic TAP against Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, and Mycoplasma bovis. Bactericidal activity against M. bovis was not detected. In contrast, the Pasteurellaceae bacteria showed similar levels of susceptibility to that of Escherichia coli, with 0.125μg TAP inhibiting growth in a radial diffusion assay and minimum inhibitory concentrations of 1.56-6.25μg/ml in a bactericidal assay. Significant differences among isolates were not observed. Sequencing of exon 2 of the TAP gene from 23 cattle revealed a prevalent non-synonymous single nucleotide polymorphism (SNP) A137G, encoding either serine or asparagine at residue 20 of the mature peptide. The functional effect of this SNP was tested against M. haemolytica using synthetic peptides. The bactericidal effect of the asparagine-containing peptide was consistently higher than the serine-containing peptide. Bactericidal activities were similar for an acapsular mutant of M. haemolytica compared to the wild type. These findings indicate that the Pasteurellaceae bacteria that cause bovine respiratory disease are susceptible to killing by bovine TAP and appear not to have evolved resistance, whereas M. bovis appears to be resistant. A non-synonymous SNP was identified in the coding region of the TAP gene, and the corresponding peptides vary in their bactericidal activity against M. haemolytica. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses.

    PubMed

    Schandock, Franziska; Riber, Camilla Frich; Röcker, Annika; Müller, Janis A; Harms, Mirja; Gajda, Paulina; Zuwala, Kaja; Andersen, Anna H F; Løvschall, Kaja Borup; Tolstrup, Martin; Kreppel, Florian; Münch, Jan; Zelikin, Alexander N

    2017-12-01

    Viral pathogens continue to constitute a heavy burden on healthcare and socioeconomic systems. Efforts to create antiviral drugs repeatedly lag behind the advent of pathogens and growing understanding is that broad-spectrum antiviral agents will make strongest impact in future antiviral efforts. This work performs selection of synthetic polymers as novel broadly active agents and demonstrates activity of these polymers against Zika, Ebola, Lassa, Lyssa, Rabies, Marburg, Ebola, influenza, herpes simplex, and human immunodeficiency viruses. Results presented herein offer structure-activity relationships for these pathogens in terms of their susceptibility to inhibition by polymers, and for polymers in terms of their anionic charge and hydrophobicity that make up broad-spectrum antiviral agents. The identified leads cannot be predicted based on prior data on polymer-based antivirals and represent promising candidates for further development as preventive microbicides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evaluation of Streptococcus pneumoniae Type XIV Opsonins by Phagocytosis-Associated Chemiluminescence and a Bactericidal Assay

    PubMed Central

    Gardner, Susan E.; Anderson, Donald C.; Webb, Bette J.; Stitzel, Ann E.; Edwards, Morven S.; Spitzer, Roger E.; Baker, Carol J.

    1982-01-01

    The relative roles of serum factors required for opsonization of type XIV Streptococcus pneumoniae were investigated by means of luminol-enhanced chemiluminescence (CL), bactericidal, and immunofluorescence assays employing adult sera containing high (>1,000 ng of antibody nitrogen per ml) or low (<200 ng of antibody nitrogen per ml) antibody concentrations as determined by radioimmunoassay. Specific antibody concentration correlated directly with both total and heat-labile CL activity (P < 0.005) and with the bactericidal index (P < 0.05) at a serum concentration of 10%. The importance of specific antibody as an opsonin was confirmed by the abolition of CL activity and immunoglobulin immunofluorescence observed after absorption of heated sera with type XIV pneumococcal cells and by the dose response in CL and bactericidal activity observed with the addition of immunoglobulin G to hypogammaglobulinemic serum. A role for the classical complement pathway in opsonization was indicated by significantly greater CL integrals for high-antibody sera than for low-antibody sera depleted of factor D and by the bactericidal activity noted for untreated, but not magnesium ethylene glycol-bis(β-aminoethyl ether)-N,N-tetraacetic acid-chelated low-antibody sera. The alternative pathway contributed more than half of the CL activity of both high- and low-antibody sera. However, after magnesium ethylene glycol-bis(β-aminoethyl ether)-N,N-tetraacetic acid chelation, only sera with high antibody concentrations or agammaglobulinemic serum reconstituted with immunoglobulin G with high specific antibody levels supported significant bactericidal activity. Therefore, type-specific antibody and complement promote opsonization of type XIV S. pneumoniae, and this may occur via either complement pathway. These results suggest that CL is a suitable tool to delineate serum factors and their contribution to opsonization, but results must be related to other functional assays. PMID:6802760

  8. Association of Broad- vs Narrow-Spectrum Antibiotics With Treatment Failure, Adverse Events, and Quality of Life in Children With Acute Respiratory Tract Infections.

    PubMed

    Gerber, Jeffrey S; Ross, Rachael K; Bryan, Matthew; Localio, A Russell; Szymczak, Julia E; Wasserman, Richard; Barkman, Darlene; Odeniyi, Folasade; Conaboy, Kathryn; Bell, Louis; Zaoutis, Theoklis E; Fiks, Alexander G

    2017-12-19

    Acute respiratory tract infections account for the majority of antibiotic exposure in children, and broad-spectrum antibiotic prescribing for acute respiratory tract infections is increasing. It is not clear whether broad-spectrum treatment is associated with improved outcomes compared with narrow-spectrum treatment. To compare the effectiveness of broad-spectrum and narrow-spectrum antibiotic treatment for acute respiratory tract infections in children. A retrospective cohort study assessing clinical outcomes and a prospective cohort study assessing patient-centered outcomes of children between the ages of 6 months and 12 years diagnosed with an acute respiratory tract infection and prescribed an oral antibiotic between January 2015 and April 2016 in a network of 31 pediatric primary care practices in Pennsylvania and New Jersey. Stratified and propensity score-matched analyses to account for confounding by clinician and by patient-level characteristics, respectively, were implemented for both cohorts. Broad-spectrum antibiotics vs narrow-spectrum antibiotics. In the retrospective cohort, the primary outcomes were treatment failure and adverse events 14 days after diagnosis. In the prospective cohort, the primary outcomes were quality of life, other patient-centered outcomes, and patient-reported adverse events. Of 30 159 children in the retrospective cohort (19 179 with acute otitis media; 6746, group A streptococcal pharyngitis; and 4234, acute sinusitis), 4307 (14%) were prescribed broad-spectrum antibiotics including amoxicillin-clavulanate, cephalosporins, and macrolides. Broad-spectrum treatment was not associated with a lower rate of treatment failure (3.4% for broad-spectrum antibiotics vs 3.1% for narrow-spectrum antibiotics; risk difference for full matched analysis, 0.3% [95% CI, -0.4% to 0.9%]). Of 2472 children enrolled in the prospective cohort (1100 with acute otitis media; 705, group A streptococcal pharyngitis; and 667, acute sinusitis), 868 (35%) were prescribed broad-spectrum antibiotics. Broad-spectrum antibiotics were associated with a slightly worse child quality of life (score of 90.2 for broad-spectrum antibiotics vs 91.5 for narrow-spectrum antibiotics; score difference for full matched analysis, -1.4% [95% CI, -2.4% to -0.4%]) but not with other patient-centered outcomes. Broad-spectrum treatment was associated with a higher risk of adverse events documented by the clinician (3.7% for broad-spectrum antibiotics vs 2.7% for narrow-spectrum antibiotics; risk difference for full matched analysis, 1.1% [95% CI, 0.4% to 1.8%]) and reported by the patient (35.6% for broad-spectrum antibiotics vs 25.1% for narrow-spectrum antibiotics; risk difference for full matched analysis, 12.2% [95% CI, 7.3% to 17.2%]). Among children with acute respiratory tract infections, broad-spectrum antibiotics were not associated with better clinical or patient-centered outcomes compared with narrow-spectrum antibiotics, and were associated with higher rates of adverse events. These data support the use of narrow-spectrum antibiotics for most children with acute respiratory tract infections.

  9. Evaluation of the Bactericidal Activity of Plazomicin and Comparators against Multidrug-resistant Enterobacteriaceae.

    PubMed

    Thwaites, M; Hall, D; Shinabarger, D; Serio, A W; Krause, K M; Marra, A; Pillar, C

    2018-06-04

    The next-generation aminoglycoside plazomicin, in development for infections due to multi-drug resistant (MDR) Enterobacteriaceae, was evaluated alongside comparators for bactericidal activity in minimum bactericidal concentration (MBC) and time-kill (TK) assays against MDR Enterobacteriaceae isolates with characterized aminoglycoside and β-lactam resistance mechanisms. Overall, plazomicin and colistin were the most potent, with plazomicin demonstrating an MBC 50/90 of 0.5/4 μg/mL and sustained 3-log 10 kill against MDR Escherichia coli , Klebsiella pneumoniae and Enterobacter spp. Copyright © 2018 Thwaites et al.

  10. Bactericidal activity of biomimetic diamond nanocone surfaces.

    PubMed

    Fisher, Leanne E; Yang, Yang; Yuen, Muk-Fung; Zhang, Wenjun; Nobbs, Angela H; Su, Bo

    2016-03-17

    The formation of biofilms on implant surfaces and the subsequent development of medical device-associated infections are difficult to resolve and can cause considerable morbidity to the patient. Over the past decade, there has been growing recognition that physical cues, such as surface topography, can regulate biological responses and possess bactericidal activity. In this study, diamond nanocone-patterned surfaces, representing biomimetic analogs of the naturally bactericidal cicada fly wing, were fabricated using microwave plasma chemical vapor deposition, followed by bias-assisted reactive ion etching. Two structurally distinct nanocone surfaces were produced, characterized, and the bactericidal ability examined. The sharp diamond nanocone features were found to have bactericidal capabilities with the surface possessing the more varying cone dimension, nonuniform array, and decreased density, showing enhanced bactericidal ability over the more uniform, highly dense nanocone surface. Future research will focus on using the fabrication process to tailor surface nanotopographies on clinically relevant materials that promote both effective killing of a broader range of microorganisms and the desired mammalian cell response. This study serves to introduce a technology that may launch a new and innovative direction in the design of biomaterials with capacity to reduce the risk of medical device-associated infections.

  11. Tricyclic GyrB/ParE (TriBE) Inhibitors: A New Class of Broad-Spectrum Dual-Targeting Antibacterial Agents

    PubMed Central

    Tari, Leslie W.; Li, Xiaoming; Trzoss, Michael; Bensen, Daniel C.; Chen, Zhiyong; Lam, Thanh; Zhang, Junhu; Lee, Suk Joong; Hough, Grayson; Phillipson, Doug; Akers-Rodriguez, Suzanne; Cunningham, Mark L.; Kwan, Bryan P.; Nelson, Kirk J.; Castellano, Amanda; Locke, Jeff B.; Brown-Driver, Vickie; Murphy, Timothy M.; Ong, Voon S.; Pillar, Chris M.; Shinabarger, Dean L.; Nix, Jay; Lightstone, Felice C.; Wong, Sergio E.; Nguyen, Toan B.; Shaw, Karen J.; Finn, John

    2013-01-01

    Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. However, growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highly conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models. PMID:24386374

  12. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology.

    PubMed

    Polívková, Markéta; Hubáček, Tomáš; Staszek, Marek; Švorčík, Václav; Siegel, Jakub

    2017-02-15

    Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed.

  13. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly

    NASA Astrophysics Data System (ADS)

    Mainwaring, David E.; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N.; Wu, Alex H.-F.; Marchant, Richard; Crawford, Russell J.; Ivanova, Elena P.

    2016-03-01

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces.While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08542j

  14. Broad-Spectrum Inhibition of HIV-1 by a Monoclonal Antibody Directed against a gp120-Induced Epitope of CD4

    PubMed Central

    Burastero, Samuele E.; Frigerio, Barbara; Lopalco, Lucia; Sironi, Francesca; Breda, Daniela; Longhi, Renato; Scarlatti, Gabriella; Canevari, Silvana; Figini, Mariangela; Lusso, Paolo

    2011-01-01

    To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1. PMID:21818294

  15. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    PubMed

    Burastero, Samuele E; Frigerio, Barbara; Lopalco, Lucia; Sironi, Francesca; Breda, Daniela; Longhi, Renato; Scarlatti, Gabriella; Canevari, Silvana; Figini, Mariangela; Lusso, Paolo

    2011-01-01

    To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  16. Broad spectrum antibiotic compounds and use thereof

    DOEpatents

    Koglin, Alexander; Strieker, Matthias

    2016-07-05

    The discovery of a non-ribosomal peptide synthetase (NRPS) gene cluster in the genome of Clostridium thermocellum that produces a secondary metabolite that is assembled outside of the host membrane is described. Also described is the identification of homologous NRPS gene clusters from several additional microorganisms. The secondary metabolites produced by the NRPS gene clusters exhibit broad spectrum antibiotic activity. Thus, antibiotic compounds produced by the NRPS gene clusters, and analogs thereof, their use for inhibiting bacterial growth, and methods of making the antibiotic compounds are described.

  17. Polybrominated diphenyl ethers with potent and broad spectrum antimicrobial activity from the marine sponge Dysidea.

    PubMed

    Sun, Shi; Canning, Corene B; Bhargava, Kanika; Sun, Xiuxiu; Zhu, Wenjun; Zhou, Ninghui; Zhang, Yifan; Zhou, Kequan

    2015-01-01

    Three polybrominated diphenyl ethers, 2-(2',4'-dibromophenoxy)-3,5-dibromophenol (1) and 2-(2',4'-dibromophenoxy)-3,4,5-tribromophenol (2) were isolated from the marine sponge Dysidea granulosa; and 2-(2',4'-dibromophenoxy)-4,6-dibromophenol (3) from Dysidea spp. They exhibited potent and broad spectrum in vitro antibacterial activity, especially against methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Escherichia coli O157:H7, and Salmonella. Minimal inhibitory concentration (MIC) was evaluated against 12 clinical and standard strains of Gram positive and negative bacteria. The observed MIC range was 0.1-4.0mg/L against all the Gram positive bacteria and 0.1-16.0mg/L against Gram negative bacteria. 2-(2',4″-Dibromophenoxy)-3,5-dibromophenol showed stronger broad spectrum antibacterial activity than other two compounds. 2-(2',4″-Dibromophenoxy)-3,5-dibromophenol and 2-(2',4'-dibromophenoxy)-4,6-dibromophenol are thermo-stable. The results suggest that 2-(2',4'-dibromophenoxy)-3,5-dibromophenol could be used as a potential lead molecule for anti-MRSA, anti-E. coli O157:H7, and anti-Salmonella for drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species

    PubMed Central

    Ruiu, Luca

    2013-01-01

    Brevibacillus laterosporus, a bacterium characterized by the production of a unique canoe-shaped lamellar body attached to one side of the spore, is a natural inhabitant of water, soil and insects. Its biopesticidal potential has been reported against insects in different orders including Coleoptera, Lepidoptera, Diptera and against nematodes and mollusks. In addition to its pathogenicity against invertebrates, different B. laterosporus strains show a broad-spectrum antimicrobial activity including activity against phytopathogenic bacteria and fungi. A wide variety of molecules, including proteins and antibiotics, have been associated with the observed pathogenicity and mode of action. Before being considered as a biological control agent against plant pathogens, the antifungal and antibacterial properties of certain B. laterosporus strains have found medical interest, associated with the production of antibiotics with therapeutic effects. The recent whole genome sequencing of this species revealed its potential to produce polyketides, nonribosomal peptides, and toxins. Another field of growing interest is the use of this bacterium for bioremediation of contaminated sites by exploiting its biodegradation properties. The aim of the present review is to gather and discuss all recent findings on this emerging entomopathogen, giving a wider picture of its complex and broad-spectrum biocontrol activity. PMID:26462431

  19. Endophytic Paraconiothyrium sp. from Zingiber officinale Rosc. Displays Broad-Spectrum Antimicrobial Activity by Production of Danthron.

    PubMed

    Anisha, C; Sachidanandan, P; Radhakrishnan, E K

    2018-03-01

    The bioactivity spectrum of fungal endophytes isolated from Zingiber officinale was analyzed against clinical pathogens and against the phytopathogen Pythium myriotylum, which causes Pythium rot in ginger. One of the isolates GFM13 showed broad bioactivity against various pathogens tested including P. myriotylum. The spore suspension as well as the culture filtrate of the endophytic fungal isolate was found to effectively protect ginger rhizomes from Pythium rot. By molecular identification, the fungal endophyte was identified as Paraconiothyrium sp. The bioactive compound produced by the isolate was separated by bioactivity-guided fractionation and was identified by GC-MS as danthron, an anthraquinone derivative. PCR amplification showed the presence of non-reducing polyketide synthase gene (NR-PKS) in the endophyte GFM13, which is reported to be responsible for the synthesis of anthraquinones in fungi. This is the first report of danthron being produced as the biologically active component of Paraconiothyrium sp. Danthron is reported to have wide pharmaceutical and agronomic applications which include its use as a fungicide in agriculture. The broad-spectrum antimicrobial activity of danthron and the endophytic origin of Paraconiothyrium sp. offer immense applications of the study.

  20. Food-grade antimicrobials potentiate the antibacterial activity of 1,2-hexanediol.

    PubMed

    Yogiara; Hwang, S J; Park, S; Hwang, J-K; Pan, J-G

    2015-05-01

    Preservative agents determining the shelf life of cosmetic products must have effective antimicrobial activity while meeting safety requirements for topical use. In this study, we determined the antimicrobial activity of 1,2-hexanediol against several Gram-positive and Gram-negative bacteria. Antimicrobial susceptibility tests have shown that 1,2-hexanediol exhibits broad-spectrum activity against Gram-positive and Gram-negative bacteria with MICs of 0·5-2% (v/v). The bactericidal concentration of 1,2-hexanediol was ranging from 1 to 2 × MIC as demonstrated by time-kill curve assay. A membrane depolarization assay showed that 1,2-hexanediol disrupted the cytoplasmic membrane potential. A checkerboard assay indicated that the effective concentration of 1,2-hexanediol was reduced up to 0·25-0·5 × MIC when combined with macelignan and octyl gallate against Gram-positive bacteria. However, this combination was not effective against Gram-negative bacteria. A turbidity reduction assay demonstrated that the combination of a high concentration of 1,2-hexanediol with food-grade antimicrobial compounds could trigger lytic activity towards Bacillus cereus cells. The remaining cell turbidity was 24·6 and 22·2% when 2% of 1,2-hexanediol was combined with 8 mg l(-1) octyl gallate or with 32 mg l(-1) macelignan respectively. This study showed that food-grade antimicrobial compounds may be used in combination with 1,2-hexanediol to increase its efficacy as a preservative agent in cosmetics. The antimicrobial activity of 1,2-hexanediol against Gram-positive and Gram-negative bacteria was potentiated with food-grade antimicrobials including xanthorrhizol, macelignan, panduratin A and octyl gallate, which have already been reported to display anti-inflammatory and other beneficial activities related to cosmetics. Therefore, the combination of 1,2-hexanediol and these food-grade antimicrobial agents would have benefits not only for increasing the antimicrobial activity but also in cosmetics use. © 2015 The Society for Applied Microbiology.

  1. The synergistic antimicrobial effects of novel bombinin and bombinin H peptides from the skin secretion of Bombina orientalis.

    PubMed

    Xiang, Jie; Zhou, Mei; Wu, Yuxin; Chen, Tianbao; Shaw, Chris; Wang, Lei

    2017-10-31

    Bombinin and bombinin H are two antimicrobial peptide (AMP) families initially discovered from the skin secretion of Bombina that share the same biosynthetic precursor-encoding cDNAs, but have different structures and physicochemical properties. Insight into their possible existing relationship lead us to perform the combination investigations into their anti-infectious activities. In this work, we report the molecular cloning and functional characterization of two novel AMPs belonging to bombinin and bombinin H families from secretions of Bombina orientalis Their mature peptides (BHL-bombinin and bombinin HL), coded by single ORF, were chemically synthesized along with an analogue peptide that replaced L-leucine with D-leucine from the second position of the N-terminus (bombinin HD). CD analysis revealed that all of them displayed well-defined α-helical structures in membrane mimicking environments. Furthermore, BHL-bombinin displayed broad-spectrum bactericidal activities on a wide range of microorganisms, while bombinin H only exhibited a mildly bacteriostatic effect on the Gram-positive bacteria Staphylococcus aureus The combination potency of BHL-bombinin with either bombinin HL or bombinin HD showed the synergistic inhibition activities against S. aureus (fractional inhibitory concentration index (FICI): 0.375). A synergistic effect has also been observed between bombinin H and ampicillin, which was further systematically evaluated and confirmed by in vitro time-killing investigations. Haemolytic and cytotoxic examinations exhibited a highly synergistic selectivity and low cytotoxicity on mammalian cells of these three peptides. Taken together, the discovery of the potent synergistic effect of AMPs in a single biosynthetic precursor with superior functional selectivity provides a promising strategy to combat multidrug-resistant pathogens in clinical therapy. © 2017 The Author(s).

  2. Phytochemical profiles and antimicrobial activity of aromatic Malaysian herb extracts against food-borne pathogenic and food spoilage microorganisms.

    PubMed

    Aziman, Nurain; Abdullah, Noriham; Noor, Zainon Mohd; Kamarudin, Wan Saidatul Syida Wan; Zulkifli, Khairusy Syakirah

    2014-04-01

    Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products. © 2014 Institute of Food Technologists®

  3. In vitro and bactericidal activities of ABT-492, a novel fluoroquinolone, against Gram-positive and Gram-negative organisms.

    PubMed

    Almer, Laurel S; Hoffrage, Jennifer B; Keller, Erika L; Flamm, Robert K; Shortridge, Virginia D

    2004-07-01

    In vitro activities of ABT-492, ciprofloxacin, levofloxacin, trovafloxacin, moxifloxacin, gatifloxacin, and gemifloxacin were compared. ABT-492 was more potent against quinolone-susceptible and -resistant gram-positive organisms, had activity similar to that of ciprofloxacin against certain members of the family Enterobacteriaceae, and had comparable activity against quinolone-susceptible, nonfermentative, gram-negative organisms. Bactericidal activity of ABT-492 was also evaluated.

  4. Evaluation of antimicrobial peptides as novel bactericidal agents for room temperature-stored platelets.

    PubMed

    Mohan, Ketha V K; Rao, Shilpakala Sainath; Atreya, Chintamani D

    2010-01-01

    A single cost-effective pathogen inactivation approach would help to improve the safety of our nation's blood supply. Several methods and technologies are currently being studied to help reduce bacterial contamination of blood components. There is clearly need for simple and easy-to-use pathogen inactivation techniques specific to plasma, platelets (PLTs), and red blood cells. In this report, we introduce a novel proof of concept: using known therapeutic antimicrobial peptides (AMPs) as bactericidal agents for room temperature-stored PLT concentrates (PCs). Nine synthetic AMPs, four from PLT microbicidal protein-derived peptides (PD1-4) and five Arg-Trp (RW) repeat peptides containing one to five repeats, were tested for bactericidal activity in plasma and PC samples spiked with Staphylococcus aureus, S. epidermidis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Bacillus cereus. A 3-log reduction of viable bacteria was considered as the bactericidal activity of a given peptide. In both plasma alone and PCs, RW3 peptide demonstrated bactericidal activity against S. aureus, S. epidermidis, E. coli, P. aeruginosa, and K. pneumoniae; PD4 and RW2 against P. aeruginosa; and RW4 against K. pneumoniae. The activity of each of these four peptides against the remaining bacterial species in the test panel resulted in less than a 3-log reduction in the number of viable bacteria and hence considered ineffective. These findings suggest a new approach to improving the safety of blood components, demonstrating the potential usefulness of screening therapeutic AMPs against selected bacteria to identify suitable bactericidal agents for stored plasma, PCs, and other blood products.

  5. Broad-spectrum antibiotics in Norwegian hospitals.

    PubMed

    Holen, Øyunn; Alberg, Torunn; Blix, Hege Salvesen; Smith, Ingrid; Neteland, Marion Iren; Eriksen, Hanne Merete

    2017-03-01

    BACKGROUND One of the objectives in the action plan to reduce antimicrobial resistance in the health services in Norway is to reduce the use of broad-spectrum antibiotics in Norwegian hospitals. This study describes the use of certain broad-spectrum antibiotics mentioned in the action plan in Norwegian hospitals, and assesses prescribing practices in relation to the Norwegian guidelines for antibiotic use in hospitals.MATERIAL AND METHOD Data were analysed from a nationwide non-identifiable point prevalence survey in May 2016 where all systemic use of antibiotics was recorded.RESULTS Broad-spectrum antibiotics accounted for 33 % of all antibiotics prescribed. Altogether 84 % of all broad-spectrum antibiotics were prescribed as treatment, 8 % were for prophylactic use, and 8 % were classified as other/unknown. Lower respiratory tract infections were the most frequent indication for treatment with broad-spectrum antibiotics, involving 30 % of all broad-spectrum treatment.INTERPRETATION This point prevalence survey in Norwegian hospitals in spring 2016 indicates a possibility for reducing the use of broad-spectrum antibiotics in the treatment of lower respiratory tract infections and for prophylactic use. Reduction of healthcare-associated infections may also contribute.

  6. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms

    PubMed Central

    Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H. P.

    2015-01-01

    Aim: The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Materials and Methods: Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. Results: All vehicles exhibited bactericidal activity at 100% concentration. Conclusion: Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only. PMID:25992336

  7. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms.

    PubMed

    Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H P

    2015-01-01

    The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. All vehicles exhibited bactericidal activity at 100% concentration. Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only.

  8. Novel Broad Spectrum Inhibitors Targeting the Flavivirus Methyltransferase

    PubMed Central

    Liu, Binbin; Banavali, Nilesh K.; Jones, Susan A.; Zhang, Jing; Li, Zhong; Kramer, Laura D.; Li, Hongmin

    2015-01-01

    The flavivirus methyltransferase (MTase) is an essential enzyme that sequentially methylates the N7 and 2’-O positions of the viral RNA cap, using S-adenosyl-L-methionine (SAM) as a methyl donor. We report here that small molecule compounds, which putatively bind to the SAM-binding site of flavivirus MTase and inhibit its function, were identified by using virtual screening. In vitro methylation experiments demonstrated significant MTase inhibition by 13 of these compounds, with the most potent compound displaying sub-micromolar inhibitory activity. The most active compounds showed broad spectrum activity against the MTase proteins of multiple flaviviruses. Two of these compounds also exhibited low cytotoxicity and effectively inhibited viral replication in cell-based assays, providing further structural insight into flavivirus MTase inhibition. PMID:26098995

  9. Metronidazole-triazole conjugates: Activity against Clostridium difficile and parasites

    PubMed Central

    Jarrad, Angie M.; Karoli, Tomislav; Debnath, Anjan; Tay, Chin Yen; Huang, Johnny X.; Kaeslin, Geraldine; Elliott, Alysha G.; Miyamoto, Yukiko; Ramu, Soumya; Kavanagh, Angela M.; Zuegg, Johannes; Eckmann, Lars; Blaskovich, Mark A.T.; Cooper, Matthew A.

    2015-01-01

    Metronidazole has been used clinically for over 50 years as an antiparasitic and broad-spectrum antibacterial agent effective against anaerobic bacteria. However resistance to metronidazole in parasites and bacteria has been reported, and improved second-generation metronidazole analogues are needed. The copper catalysed Huigsen azide-alkyne 1,3-dipolar cycloaddition offers a way to efficiently assemble new libraries of metronidazole analogues. Several new metronidazole-triazole conjugates (Mtz-triazoles) have been identified with excellent broad spectrum antimicrobial and antiparasitic activity targeting Clostridium difficile, Entamoeba histolytica and Giardia lamblia. Cross resistance to metronidazole was observed against stable metronidazole resistant C. difficile and G. lamblia strains. However for the most potent Mtz-triazoles, the activity remained in a therapeutically relevant window. PMID:26117821

  10. Understanding the Mechanism of the Broad-Spectrum Antiviral Activity of Favipiravir (T-705): Key Role of the F1 Motif of the Viral Polymerase.

    PubMed

    Abdelnabi, Rana; Morais, Ana Theresa Silveira de; Leyssen, Pieter; Imbert, Isabelle; Beaucourt, Stéphanie; Blanc, Hervé; Froeyen, Mathy; Vignuzzi, Marco; Canard, Bruno; Neyts, Johan; Delang, Leen

    2017-06-15

    Favipiravir (T-705) is a broad-spectrum antiviral agent that has been approved in Japan for the treatment of influenza virus infections. T-705 also inhibits the replication of various RNA viruses, including chikungunya virus (CHIKV). We demonstrated earlier that the K291R mutation in the F1 motif of the RNA-dependent RNA polymerase (RdRp) of CHIKV is responsible for low-level resistance to T-705. Interestingly, this lysine is highly conserved in the RdRp of positive-sense single-stranded RNA (+ssRNA) viruses. To obtain insights into the unique broad-spectrum antiviral activity of T-705, we explored the role of this lysine using another +ssRNA virus, namely, coxsackievirus B3 (CVB3). Introduction of the corresponding K-to-R substitution in the CVB3 RdRp (K159R) resulted in a nonviable virus. Replication competence of the K159R variant was restored by spontaneous acquisition of an A239G substitution in the RdRp. A mutagenesis analysis at position K159 identified the K159M variant as the only other viable variant which had also acquired the A239G substitution. The K159 substitutions markedly decreased the processivity of the purified viral RdRp, which was restored by the introduction of the A239G mutation. The K159R A239G and K159M A239G variants proved, surprisingly, more susceptible than the wild-type virus to T-705 and exhibited lower fidelity in polymerase assays. Furthermore, the K159R A239G variant was found to be highly attenuated in mice. We thus demonstrate that the conserved lysine in the F1 motif of the RdRp of +ssRNA viruses is involved in the broad-spectrum antiviral activity of T-705 and that it is a key amino acid for the proper functioning of the enzyme. IMPORTANCE In this study, we report the key role of a highly conserved lysine residue of the viral polymerase in the broad-spectrum antiviral activity of favipiravir (T-705) against positive-sense single-stranded RNA viruses. Substitutions of this conserved lysine have a major negative impact on the functionality of the RdRp. Furthermore, we show that this lysine is involved in the fidelity of the RdRp and that the RdRp fidelity influences the sensitivity of the virus for the antiviral efficacy of T-705. Consequently, these results provide insights into the mechanism of the antiviral activity of T-705 and may lay the basis for the design of novel chemical scaffolds that may be endowed with a more potent broad-spectrum antiviral activity than that of T-705. Copyright © 2017 American Society for Microbiology.

  11. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy and beyond

    PubMed Central

    Vatansever, Fatma; de Melo, Wanessa C.M.A.; Avci, Pinar; Vecchio, Daniela; Sadasivam, Magesh; Gupta, Asheesh; Chandran, Rakkiyappan; Karimi, Mahdi; Parizotto, Nivaldo A; Yin, Rui; Tegos, George P; Hamblin, Michael R

    2013-01-01

    Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction of molecular oxygen. Four major ROS are recognized comprising: superoxide (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2), but they display very different kinetics and levels of activity. The effects of O2•− and H2O2 are less acute than those of •OH and 1O2, since the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and non-enzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or 1O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics, and non-pharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma and medicinal honey. A brief final section covers, reactive nitrogen species, and related therapeutics, such as acidified nitrite and nitric oxide releasing nanoparticles. PMID:23802986

  12. A Novel RNase 3/ECP Peptide for Pseudomonas aeruginosa Biofilm Eradication That Combines Antimicrobial, Lipopolysaccharide Binding, and Cell-Agglutinating Activities

    PubMed Central

    Prats-Ejarque, Guillem; Villalba, Clara; Albacar, Marcel; González-López, Juan J.; Torrent, Marc; Moussaoui, Mohammed

    2016-01-01

    Eradication of established biofilm communities of pathogenic Gram-negative species is one of the pending challenges for the development of new antimicrobial agents. In particular, Pseudomonas aeruginosa is one of the main dreaded nosocomial species, with a tendency to form organized microbial communities that offer an enhanced resistance to conventional antibiotics. We describe here an engineered antimicrobial peptide (AMP) which combines bactericidal activity with a high bacterial cell agglutination and lipopolysaccharide (LPS) affinity. The RN3(5-17P22-36) peptide is a 30-mer derived from the eosinophil cationic protein (ECP), a host defense RNase secreted by eosinophils upon infection, with a wide spectrum of antipathogen activity. The protein displays high biofilm eradication activity that is not dependent on its RNase catalytic activity, as evaluated by using an active site-defective mutant. On the other hand, the peptide encompasses both the LPS-binding and aggregation-prone regions from the parental protein, which provide the appropriate structural features for the peptide's attachment to the bacterial exopolysaccharide layer and further improved removal of established biofilms. Moreover, the peptide's high cationicity and amphipathicity promote the cell membrane destabilization action. The results are also compared side by side with other reported AMPs effective against either planktonic and/or biofilm forms of Pseudomonas aeruginosa strain PAO1. The ECP and its derived peptide are unique in combining high bactericidal potency and cell agglutination activity, achieving effective biofilm eradication at a low micromolar range. We conclude that the designed RN3(5-17P22-36) peptide is a promising lead candidate against Gram-negative biofilms. PMID:27527084

  13. Shape and size engineered cellulosic nanomaterials as broad spectrum anti-microbial compounds.

    PubMed

    Sharma, Priyanka R; Kamble, Sunil; Sarkar, Dhiman; Anand, Amitesh; Varma, Anjani J

    2016-06-01

    Oxidized celluloses have been used for decades as antimicrobial wound gauzes and surgical cotton. We now report the successful synthesis of a next generation narrow size range (25-35nm) spherical shaped nanoparticles of 2,3,6-tricarboxycellulose based on cellulose I structural features, for applications as new antimicrobial materials. This study adds to our previous study of 6-carboxycellulose. A wide range of bacteria such as Escherichia coli, Staphloccocus aureus, Bacillus subtilis and Mycobacterium tuberculosis (non-pathogenic as well as pathogenic strains) were affected by these polymers in in vitro studies. Activity against Mycobacteria were noted at high concentrations (MIC99 values 250-1000μg/ml, as compared to anti-TB drug Isoniazid 0.3μg/ml). However, the broad spectrum activity of oxidized celluloses and their nanoparticles against a wide range of bacteria, including Mycobacteria, show that these materials are promising new biocompatible and biodegradable drug delivery vehicles wherein they can play the dual role of being a drug encapsulant as well as a broad spectrum anti-microbial and anti-TB drug. Copyright © 2016. Published by Elsevier B.V.

  14. In Vitro Antibacterial Activities of JNJ-Q2, a New Broad-Spectrum Fluoroquinolone ▿ ‡

    PubMed Central

    Morrow, Brian J.; He, Wenping; Amsler, Karen M.; Foleno, Barbara D.; Macielag, Mark J.; Lynch, A. Simon; Bush, Karen

    2010-01-01

    JNJ-Q2, a novel fluorinated 4-quinolone, was evaluated for its antibacterial potency by broth and agar microdilution MIC methods in studies focused on skin and respiratory tract pathogens, including strains exhibiting contemporary fluoroquinolone resistance phenotypes. Against a set of 118 recent clinical isolates of Streptococcus pneumoniae, including fluoroquinolone-resistant variants bearing multiple DNA topoisomerase target mutations, an MIC90 value for JNJ-Q2 of 0.12 μg/ml was determined, indicating that it was 32-fold more potent than moxifloxacin. Against a collection of 345 recently collected methicillin-resistant Staphylococcus aureus (MRSA) isolates, including 256 ciprofloxacin-resistant strains, the JNJ-Q2 MIC90 value was 0.25 μg/ml, similarly indicating that it was 32-fold more potent than moxifloxacin. The activities of JNJ-Q2 against Gram-negative pathogens were generally comparable to those of moxifloxacin. In further studies, JNJ-Q2 exhibited bactericidal activities at 2× and 4× MIC levels against clinical isolates of S. pneumoniae and MRSA with various fluoroquinolone susceptibilities, and its activities were enhanced over those of moxifloxacin. In these studies, the activity exhibited against strains bearing gyrA, parC, or gyrA plus parC mutations was indicative of the relatively balanced (equipotent) activity of JNJ-Q2 against the DNA topoisomerase target enzymes. Finally, determination of the relative rates or frequencies of the spontaneous development of resistance to JNJ-Q2 at 2× and 4× MICs in S. pneumoniae, MRSA, and Escherichia coli were indicative of a lower potential for resistance development than that for current fluoroquinolones. In conclusion, JNJ-Q2 exhibits a range of antibacterial activities in vitro that is supportive of its further evaluation as a potential new agent for the treatment of skin and respiratory tract infections. PMID:20176911

  15. What Makes a Natural Clay Antibacterial?

    PubMed Central

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (<200 nm), illite-smectite and reduced iron phases. The role of clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758

  16. Mycosynthesis of silver nanoparticles using Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.:Fr.) P. Karst. and their role as antimicrobials and antibiotic activity enhancers.

    PubMed

    Karwa, A; Gaikwad, Swapnil; Rai, Mahendra K

    2011-01-01

    Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum, has been used over the ages as highly medicinal herb in the Orient. Many useful properties of this fungus are still being studied; we report here a new facet of this "elixir of life" as a mycosource for synthesis of metal nanoparticles. Treating the extracellular suspension filtrate of the mycelia of G. lucidum with silver nitrate reduces the metal ions to nanoparticles. Optical detection followed by confirmation through spectroscopic analysis suggests that this fungus can be used for the purpose of safe and sure synthesis of silver nanoparticles, demand for which is growing day by day in all fields of human life. LM-20 analysis of these G. lucidum-synthesised nanoparticles reveals the polydispersity and distribution of silver nanoparticles in the range of 10-70 nm with an average size of 45 nm and a concentration of 0.37 x 108 particles/mL. FT-IR spectrum confirms the stability of these nanoparticles due to presence of amide linkages and protein capping. These nanoparticles have shown strong bactericidal activity against test pathogens Staphylococcus aureus and Escherichia coli, and also exhibited their efficiency in enhancing the activity of the synthetic antibiotic tetracycline. The method of synthesising silver nanoparticles and its bactericidal effect discussed here can be used for environment-friendly and economically feasible production for different applications where chemically synthesized nanoparticles cause undesirable effects.

  17. Bactericidal Activity of Usnic Acid-Loaded Electrospun Fibers.

    PubMed

    Araújo, Evando S; Pereira, Eugênia C; da Costa, Mateus M; da Silva, Nicácio H; de Oliveira, Helinando P

    2016-01-01

    Usnic acid has been progressively reported in the literature as one of the most important lichen metabolites characterized by a rich diversity of applications such as antifungal, antimicrobial, antiprotozoal and antiviral agent. Particularly, antimicrobial activity of usnic acid can be improved by encapsulation of active molecules in enteric electrospun fibers, allowing the controlled release of active molecule at specific pH. Few relevant patents to the topic have been reviewed and cited. Bactericidal activity of usnic acid-loaded electrospun fibers of Eudragit L-100 and polyvinylpyrrolidone was examined against Staphylococcus aureus using inhibition hales methodology. The controlled release of active material at high pH is established after 10 minutes of interaction with media and results in reasonable activity against S. aureus, as detected by inhibition hales. The strong biological activity of usnic acid-loaded electrospun fibers provides a promising application for corresponding material as a bactericidal agent for wound healing treatment.

  18. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs.

    PubMed

    Cherkasov, Artem; Hilpert, Kai; Jenssen, Håvard; Fjell, Christopher D; Waldbrook, Matt; Mullaly, Sarah C; Volkmer, Rudolf; Hancock, Robert E W

    2009-01-16

    Increased multiple antibiotic resistance in the face of declining antibiotic discovery is one of society's most pressing health issues. Antimicrobial peptides represent a promising new class of antibiotics. Here we ask whether it is possible to make small broad spectrum peptides employing minimal assumptions, by capitalizing on accumulating chemical biology information. Using peptide array technology, two large random 9-amino-acid peptide libraries were iteratively created using the amino acid composition of the most active peptides. The resultant data was used together with Artificial Neural Networks, a powerful machine learning technique, to create quantitative in silico models of antibiotic activity. On the basis of random testing, these models proved remarkably effective in predicting the activity of 100,000 virtual peptides. The best peptides, representing the top quartile of predicted activities, were effective against a broad array of multidrug-resistant "Superbugs" with activities that were equal to or better than four highly used conventional antibiotics, more effective than the most advanced clinical candidate antimicrobial peptide, and protective against Staphylococcus aureus infections in animal models.

  19. In Vitro and Bactericidal Activities of ABT-492, a Novel Fluoroquinolone, against Gram-Positive and Gram-Negative Organisms

    PubMed Central

    Almer, Laurel S.; Hoffrage, Jennifer B.; Keller, Erika L.; Flamm, Robert K.; Shortridge, Virginia D.

    2004-01-01

    In vitro activities of ABT-492, ciprofloxacin, levofloxacin, trovafloxacin, moxifloxacin, gatifloxacin, and gemifloxacin were compared. ABT-492 was more potent against quinolone-susceptible and -resistant gram-positive organisms, had activity similar to that of ciprofloxacin against certain members of the family Enterobacteriaceae, and had comparable activity against quinolone-susceptible, nonfermentative, gram-negative organisms. Bactericidal activity of ABT-492 was also evaluated. PMID:15215148

  20. Delamanid Kills Dormant Mycobacteria In Vitro and in a Guinea Pig Model of Tuberculosis.

    PubMed

    Chen, Xiuhao; Hashizume, Hiroyuki; Tomishige, Tatsuo; Nakamura, Izuru; Matsuba, Miki; Fujiwara, Mamoru; Kitamoto, Ryuki; Hanaki, Erina; Ohba, Yoshio; Matsumoto, Makoto

    2017-06-01

    Tuberculosis (TB) treatment is long and requires multiple drugs, likely due to various phenotypes of TB bacilli with variable drug susceptibilities. Drugs with broad activity are urgently needed. This study aimed to evaluate delamanid's activity against growing or dormant bacilli in vitro as well as in vivo Cultures of Mycobacterium bovis BCG Tokyo under aerobic and anaerobic conditions were used to study the activity of delamanid against growing and dormant bacilli, respectively. Delamanid exhibited significant bactericidal activity against replicating and dormant bacilli at or above concentrations of 0.016 and 0.4 mg/liter, respectively. To evaluate delamanid's antituberculosis activity in vivo , we used a guinea pig model of chronic TB infection in which the lung lesions were similar to those in human TB disease. In the guinea pig TB model, a daily dose of 100 mg delamanid/kg of body weight for 4 or 8 weeks demonstrated strong bactericidal activity against Mycobacterium tuberculosis Importantly, histological examination revealed that delamanid killed TB bacilli within hypoxic lesions of the lung. The combination regimens containing delamanid with rifampin and pyrazinamide or delamanid with levofloxacin, ethionamide, pyrazinamide, and amikacin were more effective than the standard regimen (rifampin, isoniazid, and pyrazinamide). Our data show that delamanid is effective in killing both growing and dormant bacilli in vitro and in the guinea pig TB model. Adding delamanid to current TB regimens may improve treatment outcomes, as demonstrated in recent clinical trials with pulmonary multidrug-resistant (MDR) TB patients. Delamanid may be an important drug for consideration in the construction of new regimens to shorten TB treatment duration. Copyright © 2017 American Society for Microbiology.

  1. Comparative assessment of inoculum effects on the antimicrobial activity of amoxycillin-clavulanate and piperacillin-tazobactam with extended-spectrum beta-lactamase-producing and extended-spectrum beta-lactamase-non-producing Escherichia coli isolates.

    PubMed

    López-Cerero, L; Picón, E; Morillo, C; Hernández, J R; Docobo, F; Pachón, J; Rodríguez-Baño, J; Pascual, A

    2010-02-01

    A significant inoculum-size effect has been observed with piperacillin-tazobactam, and has been associated with beta-lactamase production in extended-spectrum beta-lactamase (ESBL) producers. This association has not been previously studied in the case of amoxycillin-clavulanate. Piperacillin-tazobactam and amoxycillin-clavulanate were compared, using high inocula of susceptible strains either harbouring ESBLs or not. Two non-ESBL-producing and 15 amoxycillin-clavulanate-susceptible and piperacillin-tazobactam-susceptible ESBL-producing Escherichia coli isolates, and their respective transconjugants, were tested in dilution susceptibility tests using standard and 100-fold higher inocula. Three ESBL-producing strains and E. coli ATCC 25922 were selected for time-kill studies using standard and high initial inocula. At high inocula, MICs of piperacillin increased >eight-fold for non-ESBL-producing strains, and MICs of piperacillin-tazobactam (8:1 ratio or with tazobactam fixed at 4 mg/L) increased>eight-fold for all ESBL-producing strains. However, amoxycillin MICs were not affected by a high inoculum with non-ESBL-producing strains, whereas the MICs of amoxycillin-clavulanate (2:1 and 4:1) increased

  2. Plasmid-mediated AmpC-type beta-lactamase isolated from Klebsiella pneumoniae confers resistance to broad-spectrum beta-lactams, including moxalactam.

    PubMed Central

    Horii, T; Arakawa, Y; Ohta, M; Ichiyama, S; Wacharotayankun, R; Kato, N

    1993-01-01

    Klebsiella pneumoniae NU2936 was isolated from a patient and was found to produce a plasmid-encoded beta-lactamase (MOX-1) which conferred resistance to broad spectrum beta-lactams, including moxalactam, flomoxef, ceftizoxime, cefotaxime, and ceftazidime. Resistance could be transferred from K. pneumoniae NU2936 to Escherichia coli CSH2 by conjugation with a transfer frequency of 5 x 10(-7). The structural gene of MOX-1 (blaMOX-1) was cloned and expressed in E. coli HB101. The MIC of moxalactam for E. coli HB101 producing MOX-1 was > 512 micrograms/ml. The apparent molecular mass and pI of this enzyme were calculated to be 38 kDa and 8.9, respectively. Hg2+ and Cu2+ failed to block enzyme activity, and the presence of EDTA in the reaction buffer did not reduce the enzyme activity. However, clavulanate and cloxacillin, serine beta-lactamase inhibitors, inhibited the enzyme activity competitively (Kis = 5.60 and 0.35 microM, respectively). The kinetic study of MOX-1 suggested that it effectively hydrolyzed broad-spectrum beta-lactams. A hybridization study confirmed that blaMOX-1 is encoded on a large resident plasmid (pRMOX1; 180 kb) of strain NU2936. By deletion analysis, the functional region was localized within a 1.2-kb region of the plasmid. By amino acid sequencing, 18 of 33 amino acid residues at the N terminus of MOX-1 were found to be identical to those of Pseudomonas aeruginosa AmpC. These findings suggest that MOX-1 is a plasmid-mediated AmpC-type beta-lactamase that provides enteric bacteria resistance to broad-spectrum beta-lactams, including moxalactam. Images PMID:8517725

  3. Disclosure of the quackery: testing of the bactericidal action of products based on the "hydronic" technology ("informed glass") on ATCC strains of Enterococcus faecalis, Salmonella enteritidis and Candida albicans.

    PubMed

    Aleksandar, Racz; Josip, Cipriš; Olivera, Petrak

    2011-01-01

    To disclose a quackery called "revitalisation of tired water by hydronic technology", scientific experiments have been conducted with drinking water kept in "ordinary, everyday-use" drinking glasses and so-called 'informed' glasses, a patent-protected product supposed to have an effect on the "structure, vitality and memory of water". Drinking "informed" water is claimed to have a wide range of positive revitalising health effects (blue informed glass), to facilitate weight loss (red informed glass) and to have a stress-relieving action (green informed glass). Allegedly, by the use of the "orgon methodology", information is coded into the glass, which action is additionally enforced by the addition of the "magic life" symbol - a specially designed energy condenser which, together with the selected information, is permanently introduced into the liquid contained in the glass. Since the manufacturer claimed the products to have a broad bactericidal action, regardless of the external conditions and completely independent from additional factor that would lead to the activation of the system, the efficacy of the informed drinking glass was tested using standardised, microbiological tests. Respecting the principle of a single-blind test for each of 5 samples of each type of the informed glass, growth reduction factor (RF) (difference log cfu/ml - colony per unit/ml of control glass and log cfu/ml of each informed glass) was determined after 0,2,4,6 and 8 h in spring water experimentally contaminated with standardised ATCC strains of two types of bacteria and one yeast. The results showed a statistically significant bactericidal action of the blue informed glass with all strains-Enterococcus faecalis (RF 0.62/0.76), Salmonella enteritidis (RF 0.87/0.97), and Candida albicans (RF 0.5/0.60) - as opposed to the red and green glasses where this effect was negligible (RF < 0.1). However, when the tests were repeated in complete darkness, none of the three informed glasses showed any bactericidal action. The obtained results indicate a fraud: bactericidal effect is rather a result of photocatalytic action of a hidden component used on purpose in the production of glass or subsequently applied by the use of nanotechnology (possibly antimony trioxide or titanium oxide) than of the so-called "orgon and hydronic technology".

  4. [In vitro and in vivo antibacterial activities of sulopenem, a new penem antibiotic].

    PubMed

    Komoto, A; Otsuki, M; Nishino, T

    1996-04-01

    The in vitro and in vivo antibacterial activities of sulopenem, a new penem, were evaluated in comparison with imipenem (IPM), meropenem (MEPM), ceftazidime (CAZ) and flomoxef (FMOX). Sulopenem had broad and potent antibacterial spectra against Gram-positive and Gram-negative bacteria, including Enterococcus faecalis, Proteus vulgaris, Morganella morganii, Enterobacter spp. and Citrobacter freundii. Sulopenem showed concentration-dependent bactericidal activities against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Acinetobacter calcoaceticus. Morphological observation using phase-contrast microscope revealed that sulopenem induced spherical cell formation with E. coli and K. pneumoniae at lower concentrations and bacteriolysis at higher concentrations. Therapeutic efficacies of sulopenem against systemic infections in mice were almost equal to those of imipenem against Streptococcus pneumoniae. While its therapeutic efficacies were superior to those of meropenem, ceftazidime and flomoxef against S. aureus and S. pneumoniae, they were inferior to those of imipenem/cilastatin against S. aureus, K. pneumoniae and A. calcoaceticus.

  5. Effectiveness of disinfectants used in cooling towers against Legionella pneumophila.

    PubMed

    García, M T; Pelaz, C

    2008-01-01

    Legionella persists in man-made aquatic installations despite preventive treatments. More information about disinfectants could improve the effectiveness of treatments. This study tests the susceptibility of Legionella pneumophila serogroup (sg) 1 against 8 disinfectants used in cooling tower treatments. We determined the minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and bactericidal effect of sodium hypochlorite (A), hydrogen peroxide with silver nitrate (B), didecyldimethylammonium chloride (C), benzalkonium chloride (D), tributyltetradecylphosphonium chloride (E), tetrahydroxymethylphosphonium sulfide (F), 2,2-dibromonitropropionamide (G) and chloromethylisothiazolone (H) against 28 L. pneumophila sg 1 isolates. MIC and MBC values were equivalent. Bacteria are less susceptible to disinfectants F, B, D and A than to H, E, C and G. All disinfectants induced a bactericidal effect. The effect rate is dose dependent for G, H, F and B; the effect is fast for the rest of disinfectants at any concentration. The bactericidal activity of disinfectants A, G and F depends on the susceptibility test used. All disinfectants have bactericidal activity against L. pneumophila sg 1 at concentrations used in cooling tower treatments. Results depend on the assay for some products.

  6. Tricyclic GyrB/ParE (TriBE) Inhibitors. A new class of broad-spectrum dual-targeting antibacterial agents

    DOE PAGES

    Tari, Leslie W.; Li, Xiaoming; Trzoss, Michael; ...

    2013-12-26

    Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. Growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highlymore » conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Moreover, lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models.« less

  7. Tricyclic GyrB/ParE (TriBE) Inhibitors. A new class of broad-spectrum dual-targeting antibacterial agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tari, Leslie W.; Li, Xiaoming; Trzoss, Michael

    Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. Growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highlymore » conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Moreover, lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models.« less

  8. Bactericidal catechins damage the lipid bilayer.

    PubMed

    Ikigai, H; Nakae, T; Hara, Y; Shimamura, T

    1993-04-08

    The mode of antibacterial action of, the green tea (Camellia sinensis) extracts, (-)-epigallocatechin gallate (EGCg) and (-)-epicatechin (EC) was investigated. Strong bactericidal EGCg caused leakage of 5,6-carboxyfluorescein from phosphatidylcholine liposomes (PC), but EC with very weak bactericidal activity caused little damage to the membrane. Phosphatidylserine and dicetyl phosphate partially protected the membrane from EGCg-mediated damage when reconstituted into the liposome membrane with PC. EGCg, but not EC, caused strong aggregation and NPN-fluorescence quenching of PC-liposomes and these actions were markedly lowered in the presence of negatively charged lipids. These results show that bactericidal catechins primarily act on and damage bacterial membranes. The observation that Gram-negative bacteria are more resistant to bactericidal catechins than Gram-positive bacteria can be explained to some extent by the presence of negatively charged lipopolysaccharide.

  9. Effect of Shufeng Jiedu capsules as a broad-spectrum antibacterial.

    PubMed

    Bao, Yanyan; Gao, Yingjie; Cui, Xiaolan

    2016-02-01

    This study sought to investigate the broad-spectrum antibacterial action of an alternative medicine, Shufeng Jiedu capsules (SFJDC). Antibacterial testing was performed to determine whether SFJDC had broad-spectrum antibacterial action in vitro, and testing was performed to verify whether SFJDC prevented death due to a Streptococcus or Staphylococcus aureus infection in mice. Results of antibacterial testing suggested that SFJDC are a broad-spectrum antibacterial and that SFJDC are superior to Lianhua Qingwen capsules as a broad-spectrum antibacterial. Results of testing revealed that SFJDC lowered the mortality rate, it reduced mortality, it increased average survival time, and it increased the lifespan of mice dying due to a Staphylococcus aureus or Streptococcus infection. Thus, SFJDC could become a complement to broad-spectrum antimicrobials in clinical settings.

  10. Appropriate use of the carbapenems.

    PubMed

    Brink, A J; Feldman, C; Grolman, D C; Muckart, D; Pretorius, J; Richards, G A; Senekal, M; Sieling, W

    2004-10-01

    The carbapenems are a group of broad-spectrum beta-lactam antibiotic agents of which there are three parenteral preparations currently available in South Africa, namely imimpenem/cilastatin, meropenem and ertapenem. Owing to the fact that imipenem/cilastatin and meropenem have a broad spectrum of activity that includes Pseudomonas and Acinetobacter species, they are ideal antibiotics for treatment of severe nosocomial infections. In contrast, ertapenem has limited in vitro activity against the latter non-fermentative gram-negative bacteria and is therefore more suitable for the treatment of certain severe community-acquired infections. This statement arises out of concerns about the general abuse of antibiotics such as the carbapenems, with the primary intention of highlighting the appropriate use of these agents.

  11. In vitro activity of RP 59500, a semisynthetic injectable pristinamycin, against staphylococci, streptococci, and enterococci.

    PubMed Central

    Fass, R J

    1991-01-01

    The in vitro activity of RP 59500, a semisynthetic pristinamycin, was compared with the activities of vancomycin, oxacillin, ampicillin, gentamicin, ciprofloxacin, and rifampin against five Staphylococcus species, five Streptococcus species, and four Enterococcus species. For staphylococci, MICs were 0.13 to 1 microgram/ml and the MICs for 90% of the strains tested (MIC90s) were 0.13 to 0.5 microgram/ml; there were no differences between oxacillin-susceptible and -resistant strains. For streptococci, MICs were 0.03 to 4 micrograms/ml and MIC90s were 0.25 to 2 micrograms/ml; viridans group streptococci were the least susceptible streptococci. For enterococci, MICs were 0.25 to 32 micrograms/ml and MIC90s were 2 to 4 micrograms/ml; Enterococcus faecalis was the least susceptible. Vancomycin was the only comparative drug with consistent activity against all species of gram-positive cocci. With RP 59500, raising the inoculum 100-fold, lowering the pH of cation-adjusted Mueller-Hinton broth to 5.5, or omitting cation supplementation had little effect on MICs, but 50% serum increased MICs 2 to 4 dilution steps. The differences between MBCs and MICs were greater for staphylococci and enterococci than for streptococci. Time-kill studies with 24 strains indicated that RP 59500 concentrations 2-, 4-, and 16-fold greater than the MICs usually killed bacteria of each species at similar rates; reductions in CFU per milliliter were less than those observed with oxacillin or vancomycin against staphylococci and less than those observed with ampicillin against enterococci. RP 59500 antagonized the bactericidal activities of oxacillin and gentamicin against Staphylococcus aureus ATCC 29213 and that of ampicillin against E. faecalis ATCC 29212. Against the latter, combination with gentamicin was indifferent. RP 59500 has a broad spectrum of in vitro activity against gram-positive cocci; combining it with other drugs is not advantageous. PMID:1903912

  12. Antimicrobial potential of Dialium guineense (Wild.) stem bark on some clinical isolates in Nigeria.

    PubMed

    Olajubu, Fa; Akpan, I; Ojo, DA; Oluwalana, Sa

    2012-01-01

    The persistent increase in the number of antibiotic-resistant strains of microorganisms has led to the development of more potent but also more expensive antibiotics. In most developing countries of the world these antibiotics are not readily affordable, thus making compliance difficult. This calls for research into alternative sources of antimicrobials. Dialium guineense is a shrub of the family Leguminosae. Its stem bark is used for the treatment of cough, toothache, and bronchitis. Despite the acclaimed efficacy of D guineense, there is no scientific evidence in its support. This work was carried out to assess the antimicrobial activity of D guineense in vitro against some clinical isolates. D guineense stem bark was collected and 50 gm of air-dried and powdered stem bark of the plant was soaked for 72 hours in 1 l of each of the six solvents used in this study. Each mixture was refluxed, agitated at 200 rpm for 1 hour, filtered using Whatman No. 1 filter paper and, finally, freeze dried. The extracts were then tested for antimicrobial activity using the agar diffusion method. The highest percentage yield of 23.2% was obtained with ethanol. Phytochemical screening showed that D guineense contains anthraquinone, alkaloids, flavonoids, tannins, and saponins. The antimicrobial activity of the extracts revealed a broad spectrum of activity, with Salmonella typhi and Staphylococcus aureusa showing the greatest zones of inhibition (18.0 mm). Only Candida albicans among the fungi tested was inhibited by the extract. The greatest zone of inhibition among the fractions was 16.0 mm. D guineense exhibited bactericidal activity at the 7th and 9th hours against Streptococcus pneumoniae and S. aureus 25923 while the 10th hour against S. typhi and C. albicans. The greatest activity was noted against S pneumoniae, where there was reduced viable cell count after 6 hours of exposure. Stem bark extract of D guineense (Wild.) has the potential to be developed into an antimicrobial agent.

  13. N-Heterocyclic molecule-capped gold nanoparticles as effective antibiotics against multi-drug resistant bacteria

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Chen, Wenwen; Jia, Yuexiao; Tian, Yue; Zhao, Yuyun; Long, Fei; Rui, Yukui; Jiang, Xingyu

    2016-07-01

    We demonstrate that N-heterocyclic molecule-capped gold nanoparticles (Au NPs) have broad-spectrum antibacterial activity. Optimized antibacterial activity can be achieved by using different initial molar ratios (1 : 1 and 10 : 1) of N-heterocyclic prodrugs and the precursor of Au NPs (HAuCl4). This work opens up new avenues for antibiotics based on Au NPs.We demonstrate that N-heterocyclic molecule-capped gold nanoparticles (Au NPs) have broad-spectrum antibacterial activity. Optimized antibacterial activity can be achieved by using different initial molar ratios (1 : 1 and 10 : 1) of N-heterocyclic prodrugs and the precursor of Au NPs (HAuCl4). This work opens up new avenues for antibiotics based on Au NPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03317b

  14. .pi.-conjugated heavy-metal polymers for organic white-light-emitting diodes

    DOEpatents

    Vardeny, Zeev Valentine; Wojcik, Leonard; Drori, Tomer

    2016-09-13

    A polymer mixture emits a broad spectrum of visible light that appears white or near-white in the aggregate. The polymer mixture comprises two (or more) components in the active layer. A heavy atom, such as platinum and/or iridium, present in the backbone of the mixture acts via a spin-orbit coupling mechanism to cause the ratio of fluorescent to phosphorescent light emission bands to be of approximately equal strength. These two broad emissions overlap, resulting in an emission spectrum that appears to the eye to be white.

  15. Oral Administration of the Broad-Spectrum Antibiofilm Compound Toremifene Inhibits Candida albicans and Staphylococcus aureus Biofilm Formation In Vivo

    PubMed Central

    De Cremer, Kaat; Delattin, Nicolas; De Brucker, Katrijn; Peeters, Annelies; Kucharíková, Soña; Gerits, Evelien; Verstraeten, Natalie; Michiels, Jan; Van Dijck, Patrick; Thevissen, Karin

    2014-01-01

    We here report on the in vitro activity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, including Candida albicans, Candida glabrata, Candida dubliniensis, Candida krusei, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We validated the in vivo efficacy of orally administered toremifene against C. albicans and S. aureus biofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound. PMID:25288093

  16. European Surveillance of Antimicrobial Consumption (ESAC): outpatient penicillin use in Europe.

    PubMed

    Ferech, Matus; Coenen, Samuel; Dvorakova, Katerina; Hendrickx, Erik; Suetens, Carl; Goossens, Herman

    2006-08-01

    Data on outpatient penicillin use in Europe were collected from 25 countries within the ESAC project, funded by DG SANCO of the European Commission, using the WHO ATC/DDD methodology. For the period 1997-2003, data on outpatient use of systemic penicillins aggregated at the level of the active substance were collected and expressed in DDD (WHO, version 2004) per 1000 inhabitants per day (DID). Of the 'Penicillins' (J01C), outpatient use of narrow-spectrum penicillins (J01CE), broad-spectrum penicillins (J01CA), penicillinase-resistant penicillins (J01CF) and combinations with beta-lactamase inhibitors (J01CR) in 25 European countries was analysed in detail. Total outpatient penicillin use in 2003 varied by a factor of 4 between the country with the highest (15.27 DID in Slovakia) and lowest use (3.86 DID in the Netherlands). Narrow-spectrum penicillins, broad-spectrum penicillins and combinations with beta-lactamase inhibitors were used most in 4, 12 and 9 countries, respectively. Penicillin use increased by more than 1 DID in nine countries, whereas it decreased by more than 1 DID in two countries (Czech Republic, France). An increase of the use of combinations with beta-lactamase inhibitors by more than 10% in 10 countries coincided with an equal decrease of broad-spectrum penicillins in seven countries and narrow-spectrum penicillins in three countries. Penicillins represent the most widely used antibiotic class in all 25 participating countries; albeit with considerable variation of their use patterns. A distinct shift from narrow-spectrum penicillins to broad-spectrum penicillins, and specifically their combinations with beta-lactamase inhibitors, was observed during the period 1997-2003.

  17. A whole blood bactericidal assay for tuberculosis.

    PubMed

    Wallis, R S; Palaci, M; Vinhas, S; Hise, A G; Ribeiro, F C; Landen, K; Cheon, S H; Song, H Y; Phillips, M; Dietze, R; Ellner, J J

    2001-04-15

    The bactericidal activity of orally administered antituberculosis (anti-TB) drugs was determined in a whole blood culture model of intracellular infection in which microbial killing reflects the combined effects of drug and immune mechanisms. Rifampin (Rif) was the most active compound studied and reduced the number of viable bacilli by >4 logs. Isoniazid (INH), 2 quinolones, and pyrazinamide (PZA) showed intermediate levels of activity. Ethambutol exerted only a bacteristatic effect; amoxicillin/clavulanate was inactive. The combination of INH-Rif-PZA showed strong activity against 11 drug-sensitive isolates (mean, -3.8 log) but no activity against 12 multidrug-resistant (MDR) strains. The combination of levofloxacin-PZA-ethambutol had intermediate bactericidal activity against MDR isolates (mean, -1.2 log) but failed to equal that of INH-Rif-PZA against sensitive isolates (P<.001). The whole blood BACTEC method (Becton Dickinson) may be useful for the early clinical evaluation of new anti-TB drugs and in the management of individual patients.

  18. UTILITY OF A WIDE SPECTRUM LIGHT METER AS AN UNDERWATER SENSOR OF PHOTOSYNTHETICALLY ACTIVE RADIATION (PAR)

    EPA Science Inventory

    The strong attenuation of infra red wavelengths (>700 nm) in coastal waters is suggestive that some instruments with broad spectral responses might be useful, inexpensive substitutes for PAR sensors in studies of estuarine plant dynamics. Wide spectrum (350-1100 nm) light intensi...

  19. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology

    PubMed Central

    Polívková, Markéta; Hubáček, Tomáš; Staszek, Marek; Švorčík, Václav; Siegel, Jakub

    2017-01-01

    Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed. PMID:28212308

  20. Structure-function characterization and optimization of a plant-derived antibacterial peptide.

    PubMed

    Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas

    2005-09-01

    Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.

  1. Structure-Function Characterization and Optimization of a Plant-Derived Antibacterial Peptide

    PubMed Central

    Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas

    2005-01-01

    Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop. PMID:16127062

  2. The interfacial properties of the peptide Polybia-MP1 and its interaction with DPPC are modulated by lateral electrostatic attractions.

    PubMed

    Alvares, Dayane S; Fanani, Maria Laura; Ruggiero Neto, João; Wilke, Natalia

    2016-02-01

    Polybia-MP1 (IDWKKLLDAAKQIL-NH2), extracted from the Brazilian wasp Polybia paulista, exhibits a broad-spectrum bactericidal activity without being hemolytic and cytotoxic. In the present study, we analyzed the surface properties of the peptide and its interaction with DPPC in Langmuir monolayers. Polybia-MP1 formed stable monolayers, with lateral areas and surface potential values suggesting a mostly α-helical structure oriented near perpendicular to the membrane plane. In DPPC-peptide mixed monolayers, MP1 co-crystallized with the lipid forming branched domains only when the subphase was pure water. On subphases with high salt concentrations or at acidic or basic conditions, the peptide formed less densely packed films and was excluded from the domains, indicating the presence of attractive electrostatic interactions between peptides, which allow them to get closer to each other and to interact with DPPC probably as a consequence of a particular peptide arrangement. The residues responsible of the peptide-peptide attraction are suggested to be the anionic aspartic acids and the cationic lysines, which form a salt bridge, leading to oriented interactions in the crystal and thereby to branched domains. For this peptide, the balance between total attractive and repulsive interactions may be finely tuned by the aqueous ionic strength and pH, and since this effect is related with lysines and aspartic acids, similar effects may also occur in other peptides containing these residues in their sequences. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Antimicrobial Traits of Tea- and Cranberry-Derived Polyphenols against Streptococcus mutans

    PubMed Central

    Yoo, S.; Murata, R.M.; Duarte, S.

    2011-01-01

    There are over 750 species of bacteria that inhabit the human oral cavity, but only a small fraction of those are attributed to causing plaque-related diseases such as caries. Streptococcus mutans is accepted as the main cariogenic agent and there is substantial knowledge regarding the specific virulence factors that render the organism a pathogen. There has been rising interest in alternative, target-specific treatment options as opposed to nonspecific mechanical plaque removal or application of broad-spectrum antibacterials that are currently in use. The impact of diet on oral health is undeniable, and this is directly observable in populations that consume high quantities of polyphenol-rich foods or beverages. Such populations have low caries incidence and better overall oral health. Camellia sinensis, the plant from which various forms of tea are derived, and Vaccinium macrocarpon (American cranberry fruit) have received notable attention both for their prevalence in the human diet as well as for their unique composition of polyphenols. The biologically active constituents of these plants have demonstrated potent enzyme-inhibitory properties without being bactericidal, a key quality that is important in developing therapies that will not cause microorganisms to develop resistance. The aim of this review is to consider studies that have investigated the feasibility of tea, cranberry, and other select plant derivatives as a potential basis for alternative therapeutic agents against Streptococcus mutans and to evaluate their current and future clinical relevance. PMID:21720161

  4. Green-Tea and Epigallocatechin-3-Gallate are Bactericidal against Bacillus anthracis

    DTIC Science & Technology

    2017-06-13

    EGCG, catechins such 245 as epigallocatechin and epicatechin gallate are also antibacterial agents. Moreover, the 246 bactericidal activity of green...Sharma A, Gupta S, Sarethy IP, Dang S, Gabrani R. 2012. Green tea extract: possible mechanism 285 and antibacterial activity on skin pathogens. Food...was shown to be responsible for this activity , against 30 both the attenuated B. anthracis ANR and the virulent, encapsulated strain B. anthracis

  5. Crystal Structure of the New Investigational Drug Candidate VT-1598 in Complex with Aspergillus fumigatus Sterol 14α-Demethylase Provides Insights into Its Broad-Spectrum Antifungal Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargrove, Tatiana Y.; Garvey, Edward P.; Hoekstra, William J.

    ABSTRACT Within the past few decades, the incidence and complexity of human fungal infections have increased, and therefore, the need for safer and more efficient, broad-spectrum antifungal agents is high. In the study described here, we characterized the new tetrazole-based drug candidate VT-1598 as an inhibitor of sterol 14α-demethylase (CYP51B) from the filamentous fungusAspergillus fumigatus. VT-1598 displayed a high affinity of binding to the enzyme in solution (dissociation constant, 13 ± 1 nM) and in the reconstituted enzymatic reaction was revealed to have an inhibitory potency stronger than the potencies of all other simultaneously tested antifungal drugs, including fluconazole, voriconazole,more » ketoconazole, and posaconazole. The X-ray structure of the VT-1598/A. fumigatusCYP51 complex was determined and depicts the distinctive binding mode of the inhibitor in the enzyme active site, suggesting the molecular basis of the improved drug potency and broad-spectrum antifungal activity. These data show the formation of an optimized hydrogen bond between the phenoxymethyl oxygen of VT-1598 and the imidazole ring nitrogen of His374, the CYP51 residue that is highly conserved across fungal pathogens and fungus specific. Comparative structural analysis ofA. fumigatusCYP51/voriconazole andCandida albicansCYP51/VT-1161 complexes supports the role of H bonding in fungal CYP51/inhibitor complexes and emphasizes the importance of an optimal distance between this interaction and the inhibitor-heme iron interaction. Cellular experiments using twoA. fumigatusstrains (strains 32820 and 1022) displayed a direct correlation between the effects of the drugs on CYP51B activity and fungal growth inhibition, indicating the noteworthy anti-A. fumigatuspotency of VT-1598 and confirming its promise as a broad-spectrum antifungal agent.« less

  6. Crystal Structure of the New Investigational Drug Candidate VT-1598 in Complex with Aspergillus fumigatus Sterol 14α-Demethylase Provides Insights into Its Broad-Spectrum Antifungal Activity

    PubMed Central

    Hargrove, Tatiana Y.; Garvey, Edward P.; Hoekstra, William J.; Yates, Christopher M.; Wawrzak, Zdzislaw; Rachakonda, Girish; Villalta, Fernando

    2017-01-01

    ABSTRACT Within the past few decades, the incidence and complexity of human fungal infections have increased, and therefore, the need for safer and more efficient, broad-spectrum antifungal agents is high. In the study described here, we characterized the new tetrazole-based drug candidate VT-1598 as an inhibitor of sterol 14α-demethylase (CYP51B) from the filamentous fungus Aspergillus fumigatus. VT-1598 displayed a high affinity of binding to the enzyme in solution (dissociation constant, 13 ± 1 nM) and in the reconstituted enzymatic reaction was revealed to have an inhibitory potency stronger than the potencies of all other simultaneously tested antifungal drugs, including fluconazole, voriconazole, ketoconazole, and posaconazole. The X-ray structure of the VT-1598/A. fumigatus CYP51 complex was determined and depicts the distinctive binding mode of the inhibitor in the enzyme active site, suggesting the molecular basis of the improved drug potency and broad-spectrum antifungal activity. These data show the formation of an optimized hydrogen bond between the phenoxymethyl oxygen of VT-1598 and the imidazole ring nitrogen of His374, the CYP51 residue that is highly conserved across fungal pathogens and fungus specific. Comparative structural analysis of A. fumigatus CYP51/voriconazole and Candida albicans CYP51/VT-1161 complexes supports the role of H bonding in fungal CYP51/inhibitor complexes and emphasizes the importance of an optimal distance between this interaction and the inhibitor-heme iron interaction. Cellular experiments using two A. fumigatus strains (strains 32820 and 1022) displayed a direct correlation between the effects of the drugs on CYP51B activity and fungal growth inhibition, indicating the noteworthy anti-A. fumigatus potency of VT-1598 and confirming its promise as a broad-spectrum antifungal agent. PMID:28461309

  7. Activities of fosfomycin, tigecycline, colistin, and gentamicin against extended-spectrum-β-lactamase-producing Escherichia coli in a foreign-body infection model.

    PubMed

    Corvec, Stéphane; Furustrand Tafin, Ulrika; Betrisey, Bertrand; Borens, Olivier; Trampuz, Andrej

    2013-03-01

    Limited antimicrobial agents are available for the treatment of implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli. We compared the activities of fosfomycin, tigecycline, colistin, and gentamicin (alone and in combination) against a CTX-M15-producing strain of Escherichia coli (Bj HDE-1) in vitro and in a foreign-body infection model. The MIC and the minimal bactericidal concentration in logarithmic phase (MBC(log)) and stationary phase (MBC(stat)) were 0.12, 0.12, and 8 μg/ml for fosfomycin, 0.25, 32, and 32 μg/ml for tigecycline, 0.25, 0.5, and 2 μg/ml for colistin, and 2, 8, and 16 μg/ml for gentamicin, respectively. In time-kill studies, colistin showed concentration-dependent activity, but regrowth occurred after 24 h. Fosfomycin demonstrated rapid bactericidal activity at the MIC, and no regrowth occurred. Synergistic activity between fosfomycin and colistin in vitro was observed, with no detectable bacterial counts after 6 h. In animal studies, fosfomycin reduced planktonic counts by 4 log(10) CFU/ml, whereas in combination with colistin, tigecycline, or gentamicin, it reduced counts by >6 log(10) CFU/ml. Fosfomycin was the only single agent which was able to eradicate E. coli biofilms (cure rate, 17% of implanted, infected cages). In combination, colistin plus tigecycline (50%) and fosfomycin plus gentamicin (42%) cured significantly more infected cages than colistin plus gentamicin (33%) or fosfomycin plus tigecycline (25%) (P < 0.05). The combination of fosfomycin plus colistin showed the highest cure rate (67%), which was significantly better than that of fosfomycin alone (P < 0.05). In conclusion, the combination of fosfomycin plus colistin is a promising treatment option for implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli.

  8. Bactericidal activity and post-antibiotic effect of ozenoxacin against Propionibacterium acnes.

    PubMed

    Kanayama, Shoji; Okamoto, Kazuaki; Ikeda, Fumiaki; Ishii, Ritsuko; Matsumoto, Tatsumi; Hayashi, Naoki; Gotoh, Naomasa

    2017-06-01

    Ozenoxacin, a novel non-fluorinated topical quinolone, is used for the treatment of acne vulgaris in Japan. We investigated bactericidal activity and post-antibiotic effect (PAE) of ozenoxacin against Propionibacterium acnes, a major causative bacterium of acne vulgaris. The minimum inhibitory concentrations (MICs) of ozenoxacin against 3 levofloxacin-susceptible strains (MIC of levofloxacin; ≤4 μg/mL) and 3 levofloxacin-resistant strains (MIC of levofloxacin; ≥8 μg/mL) ranged from 0.03 to 0.06 μg/mL and from 0.25 to 0.5 μg/mL, respectively. These MICs of ozenoxacin were almost the same or lower than nadifloxacin and clindamycin. The minimum bactericidal concentrations (MBCs) of ozenoxacin against the levofloxacin-susceptible and -resistant strains were from 0.06 to 8 μg/mL and from 0.5 to 4 μg/mL, respectively. These MBCs were lower than those of nadifloxacin and clindamycin. In time-kill assay, ozenoxacin at 1/4, 1 and 4 times the respective MIC against both levofloxacin-susceptible and -resistant strains showed a concentration-dependent bactericidal activity. Ozenoxacin at 4 times the MICs against the levofloxacin-susceptible strains showed more potent and more rapid onset of bactericidal activity compared to nadifloxacin and clindamycin at 4 times the respective MICs. The PAEs of ozenoxacin at 4 times the MICs against the levofloxacin-susceptible strains were from 3.3 to 17.1 h, which were almost the same or longer than nadifloxacin and clindamycin. In contrast, the PAEs were hardly induced by any antimicrobial agents against the levofloxacin-resistant strains. The present findings suggest that ozenoxacin has a potent bactericidal activity against both levofloxacin-susceptible and -resistant P. acnes, and a long-lasting PAE against levofloxacin-susceptible P. acnes. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. BACTERICIDAL COATINGS ON TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT

    DTIC Science & Technology

    2017-07-07

    Activity by Bacillus sp. P11” Food Bioprocess Technol. 4:822- 828. (2011) Levy, S.B and Marshal,l B.; “ Antibacterial resistance worldwide: causes...TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT by Tobyn A. Branck Courtney M. Cowell Jennifer M. Rego and...October 2011 – September 2015 4. TITLE AND SUBTITLE BACTERICIDAL COATINGS ON TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT

  10. Bactericidal and anti-adhesive properties of culinary and medicinal plants against Helicobacter pylori.

    PubMed

    O'Mahony, Rachel; Al-Khtheeri, Huda; Weerasekera, Deepaka; Fernando, Neluka; Vaira, Dino; Holton, John; Basset, Christelle

    2005-12-21

    To investigate the bactericidal and anti-adhesive properties of 25 plants against Helicobacter pylori (H. pylori). Twenty-five plants were boiled in water to produce aqueous extracts that simulate the effect of cooking. The bactericidal activity of the extracts was assessed by a standard kill-curve with seven strains of H. pylori. The anti-adhesive property was assessed by the inhibition of binding of four strains of FITC-labeled H. pylori to stomach sections. Of all the plants tested, eight plants, including Bengal quince, nightshade, garlic, dill, black pepper, coriander, fenugreek and black tea, were found to have no bactericidal effect on any of the isolates. Columbo weed, long pepper, parsley, tarragon, nutmeg, yellow-berried nightshade, threadstem carpetweed, sage and cinnamon had bactericidal activities against H. pylori, but total inhibition of growth was not achieved in this study. Among the plants that killed H. pylori, turmeric was the most efficient, followed by cumin, ginger, chilli, borage, black caraway, oregano and liquorice. Moreover, extracts of turmeric, borage and parsley were able to inhibit the adhesion of H. pylori strains to the stomach sections. Several plants that were tested in our study had bactericidal and/or anti-adhesive effects on H. pylori. Ingestion of the plants with anti-adhesive properties could therefore provide a potent alternative therapy for H. pylori infection, which overcomes the problem of resistance associated with current antibiotic treatment.

  11. 75 FR 31445 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... broad spectrum of antibacterial activity) and cannot be treated by the most commonly prescribed... Information Collection Activities: Proposed Collection; Comment Request AGENCY: Agency for Healthcare Research... support research on healthcare and on systems for the delivery of such care, including activities with...

  12. Effect of amino acid substitution in the staphylococcal peptides warnericin RK and PSMα on their anti-Legionella and hemolytic activities.

    PubMed

    Marchand, Adrienne; Augenstreich, Jacques; Loiseau, Clémence; Verdon, Julien; Lecomte, Sophie; Berjeaud, Jean-Marc

    2015-07-01

    Warnericin RK from Staphylococcus warneri and PSMα from Staphylococcus epidermidis are anti-Legionella peptides which were differently classified in a previous study according to their mode of action. Indeed, warnericin RK is highly hemolytic with a bactericidal mode of action, whereas PSMα is poorly hemolytic with a bacteriostatic mode of action toward L. pneumophila. In order to find anti-Legionella peptides which are not hemolytic, a collection of peptides varying in sequence from warnericin RK to PSMα were designed and synthesized, and their anti-Legionella activities, in terms of growth inhibition, permeabilization, and bactericidal effect, as well as their hemolytic activities, were measured and compared. The results showed that some residues, at position 14 for both peptides for instance, were of major importance for bactericidal and hemolytic activities.

  13. [Influence of corynebacteria metabolites on antagonistic activity of H2O2 producing lactobacilli].

    PubMed

    Bukharin, O V; Sgibnev, A V

    2012-01-01

    Study combined influence of Corynebacterium genus bacteria metabolites and H2O2 producing lactobacilli on survival rate of Staphylococcus aureus, Escherichia coli and Lactobacillus acidophilus. The ability to inhibit catalase of the test strains used and to reduce bactericidal effect of hydroxyl radical were determined in corynebacteria. H2O2 containing metabolites were obtained by cultivating lactobacilli in mineral medium, the amount of H2O2 was determined by oxidation of TMB by peroxidase. Bactericidal effect of lactobacilli metabolites for test strains treated by corynebacteria metabolites was evaluated by seeding results. Results. Inhibitio by corynebacteria metabolites of S. aureus catalase activity by 30-40% and E. coli catalase activ ity by 40-70% was shown. A reduction of bactericidal effect of hydroxyl radicals by corynebacteria metabolites by 30-35% for S. aureus, 38-42% for E. coli and 70-73% for L. acidophilus was noted. The enchantment of bactericidal effect of lactobacilli after treatment of the test strain by corynebacteria metabolites against S. aureus and E. coli manifested by reduction of the numbe of viable cells by 2-3 lg CFU. For L. acidophilus the bactericidal effect oflactobacilli metabolite in the same conditions reduced, and that led to the increase ofviability by 2-4 lg PFU. A conclusion on the possibility of regulation by associative bacteria the manifestations of antagonistic activity of H2O2 producing dominant microorganisms is made based on the data obtained.

  14. Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features.

    PubMed

    Kelleher, S M; Habimana, O; Lawler, J; O' Reilly, B; Daniels, S; Casey, E; Cowley, A

    2016-06-22

    Recently, the surface of the wings of the Psaltoda claripennis cicada species has been shown to possess bactericidal properties and it has been suggested that the nanostructure present on the wings was responsible for the bacterial death. We have studied the surface-based nanostructure and bactericidal activity of the wings of three different cicadas (Megapomponia intermedia, Ayuthia spectabile and Cryptotympana aguila) in order to correlate the relationship between the observed surface topographical features and their bactericidal properties. Atomic force microscopy and scanning electron microscopy performed in this study revealed that the tested wing species contained a highly uniform, nanopillar structure on the surface. The bactericidal properties of the cicada wings were investigated by assessing the viability of autofluorescent Pseudomonas fluorescens cells following static adhesion assays and targeted dead/live fluorescence staining through direct microscopic counting methods. These experiments revealed a 20-25% bacterial surface coverage on all tested wing species; however, significant bactericidal properties were observed in the M. intermedia and C. aguila species as revealed by the high dead:live cell ratio on their surfaces. The combined results suggest a strong correlation between the bactericidal properties of the wings and the scale of the nanotopography present on the different wing surfaces.

  15. Saccharomyces boulardii for the prevention of hospital onset Clostridium difficile infection.

    PubMed

    Flatley, Elizabeth A; Wilde, Ashley M; Nailor, Michael D

    2015-03-01

    Probiotics, including Saccharomyces boulardii, have been advocated for the prevention of Clostridium difficile infection. The aim of this project was to evaluate the effects of the removal of S. boulardii from an automatic antibiotic order set and hospital formulary on hospital onset C. difficile infection rates. A retrospective chart review was performed on all patients with hospital onset C. difficile infection during the 13 months prior (control group) and the 13 months after (study group) removal of an automatic order set linking S. boulardii capsules to certain broad spectrum antibiotics. A large 800+ bed tertiary hospital. Among all hospitalized patients, the rate of hospital onset C. difficile infection was 0.99 per 1000 patient days while the S. boulardii protocol was active compared with 1.04 per 1000 patient days (p=0.10) after S. boulardii was removed from the formulary. No difference in the rate of hospital onset C. difficile infection was detected in patients receiving the linked broad spectrum antibiotics during and after the removal of the protocol (1.25% vs. 1.51%, respectively; p=0.70). Removal of S. boulardii administration to patients receiving broad spectrum antibiotics and the hospital formulary did not impact the rate of hospital onset C. difficile infection in either the hospital population or patients receiving broad spectrum antibiotics.

  16. Contribution of the autolysin AtlA to the bactericidal activity of amoxicillin against Enterococcus faecalis JH2-2.

    PubMed

    Bravetti, Anne-Lise; Mesnage, Stéphane; Lefort, Agnès; Chau, Françoise; Eckert, Catherine; Garry, Louis; Arthur, Michel; Fantin, Bruno

    2009-04-01

    The bactericidal activity of amoxicillin was investigated against Enterococcus faecalis JH2-2 and against an isogenic mutant deficient in the production of the N-acetylglucosaminidase AtlA. Comparison of the two strains indicated that this autolysin contributes to killing by amoxicillin both in vitro and in a rabbit model of experimental endocarditis.

  17. Structural effect of quaternary ammonium chitin derivatives on their bactericidal activity and specificity.

    PubMed

    Morkaew, Tirut; Pinyakong, Onruthai; Tachaboonyakiat, Wanpen

    2017-08-01

    The effect of the quaternary ammonium chitin structure on the bactericidal activity and specificity against Escherichia coli and Staphylococcus aureus was investigated. Quaternary ammonium chitins were synthesized by the separate acylation of chitin (CT) with carboxymethyl trimethylammonium chloride (CMA), 3-carboxypropyl trimethylammonium chloride (CPA) and N-dodecyl-N,N-(dimethylammonio)butyrate (DDMAB). The successful acylation was confirmed by newly formed ester linkage. All three derivatives had a higher surface charge than chitin due to the additional positively charged quaternary ammonium groups. The N-short alkyl substituent (methyl) of CTCMA and CTCPA increased the hydrophilicity whilst the N-long alkyl substituent (dodecyl) of CTDDMAB increased the hydrophobicity compared to chitin. Chitin did not exhibit any bactericidal activity, while CTCMA and CTCPA completely killed E. coli and S. aureus in 30 and 60min, respectively, and CTDDMAB completely killed S. aureus in 10min but did not kill E. coli after a 2-h exposure. Therefore, the N-short alkyl substituent was more effective for killing E. coli and the N-long alkyl substituent conferred specific bactericidal activity against S. aureus. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Nonspecific bactericidal activity of the lactoperoxidases-thiocyanate-hydrogen peroxide system of milk against Escherichia coli and some gram-negative pathogens.

    PubMed Central

    Reiter, B; Marshall, V M; BjörckL; Rosén, C G

    1976-01-01

    Two strains of Escherichia coli and one strain each of Salmonella typhimurium and Pseudomonas aeruginosa were killed by the bactericidal activity of the lactoperoxidase-thiocyanate-hydrogen peroxide system in milk and in a synthetic medium. H2O2 was supplied exogenously by glucose oxidase, and glucose was produced at a level which was itself noninhibitory. Two phases were distinguished: the first phase was dependent on the oxidation of SCN(-) by lactoperoxidase and H2O2, which was reversed by reducing agent, and the second phase was dependent on the presence of accumulated H2O2, which was reversed by catalase. The latter enzyme could also reverse the first phase, but only when present in excessive and unphysiological levels. The bactericidal activity was greatest at pH 5 and below, and it depended on the SCN(-)concentration and on the number of organisms. Since raw or heated milk neutralizes the acid barrier against infection in the stomach, the bactericidal system discussed may contribute to the prevention of enteric infections in neonates. PMID:5374

  19. Discovery of dapivirine, a nonnucleoside HIV-1 reverse transcriptase inhibitor, as a broad-spectrum antiviral against both influenza A and B viruses.

    PubMed

    Hu, Yanmei; Zhang, Jiantao; Musharrafieh, Rami Ghassan; Ma, Chunlong; Hau, Raymond; Wang, Jun

    2017-09-01

    The emergence of multidrug-resistant influenza viruses poses a persistent threat to public health. The current prophylaxis and therapeutic interventions for influenza virus infection have limited efficacy due to the continuous antigenic drift and antigenic shift of influenza viruses. As part of our ongoing effort to develop the next generation of influenza antivirals with broad-spectrum antiviral activity and a high genetic barrier to drug resistance, in this study we report the discovery of dapivirine, an FDA-approved HIV nonnucleoside reverse transcriptase inhibitor, as a broad-spectrum antiviral against multiple strains of influenza A and B viruses with low micromolar efficacy. Mechanistic studies revealed that dapivirine inhibits the nuclear entry of viral ribonucleoproteins at the early stage of viral replication. As a result, viral RNA and protein synthesis were inhibited. Furthermore, dapivirine has a high in vitro genetic barrier to drug resistance, and its antiviral activity is synergistic with oseltamivir carboxylate. In summary, the in vitro antiviral results of dapivirine suggest it is a promising candidate for the development of the next generation of dual influenza and HIV antivirals. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Development of a broad-spectrum antiviral with activity against Ebola virus.

    PubMed

    Aman, M Javad; Kinch, Michael S; Warfield, Kelly; Warren, Travis; Yunus, Abdul; Enterlein, Sven; Stavale, Eric; Wang, Peifang; Chang, Shaojing; Tang, Qingsong; Porter, Kevin; Goldblatt, Michael; Bavari, Sina

    2009-09-01

    We report herein the identification of a small molecule therapeutic, FGI-106, which displays potent and broad-spectrum inhibition of lethal viral hemorrhagic fevers pathogens, including Ebola, Rift Valley and Dengue Fever viruses, in cell-based assays. Using mouse models of Ebola virus, we further demonstrate that FGI-106 can protect animals from an otherwise lethal infection when used either in a prophylactic or therapeutic setting. A single treatment, administered 1 day after infection, is sufficient to protect animals from lethal Ebola virus challenge. Cell-based assays also identified inhibitory activity against divergent virus families, which supports a hypothesis that FGI-106 interferes with a common pathway utilized by different viruses. These findings suggest FGI-106 may provide an opportunity for targeting viral diseases.

  1. The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes.

    PubMed

    Walczak, Maciej; Richert, Agnieszka; Burkowska-But, Aleksandra

    2014-11-01

    The present study was aimed at investigating bactericidal properties of polylactide (PLA) films containing three different polyhexamethylene guanidine hydrochloride (PHMG) derivatives and effect of the derivatives on extracellular hydrolytic enzymes and intracellular dehydrogenases. All PHMG derivatives had a slightly stronger bactericidal effect on Staphylococcus aureus than on E. coli but only PHMG granular polyethylene wax (at the concentration of at least 0.6 %) has a bactericidal effect. PHMG derivatives introduced into PLA affected the activity of microbial hydrolases to a small extent. This means that the introduction of PHMG derivatives into PLA will not reduce its enzymatic biodegradation significantly. On the other hand, PHMG derivatives introduced into PLA strongly affected dehydrogenases activity in S. aureus than in E. coli.

  2. PHAGOCYTIN: A BACTERICIDAL SUBSTANCE FROM POLYMORPHONUCLEAR LEUCOCYTES

    PubMed Central

    Hirsch, James G.

    1956-01-01

    A technique has been developed for collecting large numbers of polymorphonuclear leucocytes from peritoneal exudates in rabbits. These cells are obtained essentially free from other cell types and from debris. When microphages so procured are disrupted by physical methods and extracted with aqueous salt solutions, the soluble fraction manifests striking bactericidal activity, especially on Gram-negative enteric bacilli. The susceptible microorganisms are not lysed. This bactericidal substance, which has been called phagocytin, appears to be limited in distribution mainly to the polymorphonuclear leucocyte. No phagocytin is present in extracts of rabbit heart, kidney, or skeletal muscle, and rabbit liver and spleen contain much less than do packed leucocytes. Extracts of human and of guinea pig microphages show less bactericidal activity than rabbit cell preparations. Similar extracts of rat and mouse polymorphonuclear leucocytes contain no demonstrable phagocytin. As indicated by its behavior on dialysis, on exposure to proteolytic enzymes, and on salt fractionation, phagocytin appears to be a protein with general properties characteristic of a globulin. It is clearly different from lysozyme and from properdin. Although phagocytin is reasonably stable at temperatures of 65°C. and lower for several hours, solutions of it gradually lose bactericidal activity on standing for prolonged periods at 4°C. This instability, and also the ease with which phagocytin is inactivated, presumably by adsorption, on exposure to a variety of materials, have thus far rendered fruitless efforts to isolate it. PMID:13319580

  3. Risk Factors for Emergence of Resistance to Broad-Spectrum Cephalosporins among Enterobacter spp.

    PubMed Central

    Kaye, Keith S.; Cosgrove, Sara; Harris, Anthony; Eliopoulos, George M.; Carmeli, Yehuda

    2001-01-01

    Among 477 patients with susceptible Enterobacter spp., 49 subsequently harbored third-generation cephalosporin-resistant Enterobacter spp. Broad-spectrum cephalosporins were independent risk factors for resistance (relative risk [OR] = 2.3, P = 0.01); quinolone therapy was protective (OR = 0.4, P = 0.03). There were trends toward decreased risk for resistance among patients receiving broad-spectrum cephalosporins and either aminoglycosides or imipenem. Of the patients receiving broad-spectrum cephalosporins, 19% developed resistance. PMID:11502540

  4. Bactericidal active ingredient in cryopreserved plasma-treated water with the reduced-pH method for plasma disinfection

    NASA Astrophysics Data System (ADS)

    Kitano, Katsuhisa; Ikawa, Satoshi; Nakashima, Yoichi; Tani, Atsushi; Yokoyama, Takashi; Ohshima, Tomoko

    2016-09-01

    For the plasma disinfection of human body, plasma sterilization in liquid is crucial. We found that the plasma-treated water (PTW) has strong bactericidal activity under low pH condition. Physicochemical properties of PTW is discussed based on chemical kinetics. Lower temperature brings longer half-life and the bactericidal activity of PTW can be kept by cryopreservation. High performance PTW, corresponding to the disinfection power of 22 log reduction (B. subtilis spore), can be obtained by special plasma system equipped with cooling device. This is equivalent to 65% H2O2, 14% sodium hypochlorite and 0.33% peracetic acid, which are deadly poison for human. But, it is deactivated soon at higher temperature (4 sec. at body temperature), and toxicity to human body seems low. For dental application, PTW was effective on infected models of human extracted tooth. Although PTW has many chemical components, respective chemical components in PTW were isolated by ion chromatography. In addition to peaks of H2O2, NO2- and NO3-, a specific peak was detected. and only this fraction had bactericidal activity. Purified active ingredient of PTW is the precursor of HOO, and further details will be discussed in the presentation. MEXT (15H03583, 23340176, 25108505). NCCE (23-A-15).

  5. Phagocytosis, bacterial killing, and cytokine activation of circulating blood neutrophils in horses with severe equine asthma and control horses.

    PubMed

    Vanderstock, Johanne M; Lecours, Marie-Pier; Lavoie-Lamoureux, Annouck; Gottschalk, Marcelo; Segura, Mariela; Lavoie, Jean-Pierre; Jean, Daniel

    2018-04-01

    OBJECTIVE To evaluate in vitro phagocytosis and bactericidal activity of circulating blood neutrophils in horses with severe equine asthma and control horses and to determine whether circulating blood neutrophils in horses with severe equine asthma have an increase in expression of the proinflammatory cytokine tumor necrosis factor (TNF)-α and the chemokine interleukin (IL)-8 and a decrease in expression of the anti-inflammatory cytokine IL-10 in response to bacteria. ANIMALS 6 horses with severe equine asthma and 6 control horses. PROCEDURES Circulating blood neutrophils were isolated from horses with severe equine asthma and control horses. Phagocytosis was evaluated by use of flow cytometry. Bactericidal activity of circulating blood neutrophils was assessed by use of Streptococcus equi and Streptococcus zooepidemicus as targets, whereas the cytokine mRNA response was assessed by use of a quantitative PCR assay. RESULTS Circulating blood neutrophils from horses with severe equine asthma had significantly lower bactericidal activity toward S zooepidemicus but not toward S equi, compared with results for control horses. Phagocytosis and mRNA expression of TNF-α, IL-8, and IL-10 were not different between groups. CONCLUSIONS AND CLINCAL RELEVANCE Impairment of bactericidal activity of circulating blood neutrophils in horses with severe equine asthma could contribute to an increased susceptibility to infections.

  6. Bactericidal activity of herbal volatile oil extracts against multidrug-resistant Acinetobacter baumannii.

    PubMed

    Intorasoot, Amornrat; Chornchoem, Piyaorn; Sookkhee, Siriwoot; Intorasoot, Sorasak

    2017-01-01

    The aim of the study is to investigate the antibacterial activity of 10 volatile oils extracted from medicinal plants, including galangal ( Alpinia galanga Linn.), ginger ( Zingiber officinale ), plai ( Zingiber cassumunar Roxb.), lime ( Citrus aurantifolia ), kaffir lime ( Citrus hystrix DC.), sweet basil ( Ocimum basilicum Linn.), tree basil ( Ocimum gratissimum ), lemongrass ( Cymbopogon citratus DC.), clove ( Syzygium aromaticum ), and cinnamon ( Cinnamomum verum ) against four standard strains of Staphylococcus aureus , Escherichia coli , Pseudomonas aeruginosa , Acinetobacter baumannii , and 30 clinical isolates of multidrug-resistant A. baumannii (MDR- A. baumannii ). Agar diffusion, minimum inhibitory concentration, and minimum bactericidal concentration (MBC) were employed for the determination of bactericidal activity of water distilled medicinal plants. Tea tree oil ( Melaleuca alternifolia ) was used as positive control in this study. The results indicated the volatile oil extracted from cinnamon exhibited potent antibacterial activity against the most common human pathogens, S. aureus , E. coli , P. aeruginosa , and A. baumannii . Most of volatile oil extracts were less effective against non-fermentative bacteria, P. aeruginosa . In addition, volatile oil extracted from cinnamon, clove, and tree basil possessed potent bactericidal activity against MDR- A. baumannii with MBC 90 of 0.5, 1, and 2 mg/mL, respectively. The volatile oil extracts would be useful as alternative natural product for the treatment of the most common human pathogens and MDR- A. baumannii infections.

  7. An investigation of the bactericidal activity of chlorhexidine digluconateagainst multidrug-resistant hospital isolates.

    PubMed

    Ekizoğlu, Melike; Sağiroğlu, Meral; Kiliç, Ekrem; Hasçelik, Ayşe Gülşen

    2016-04-19

    Hospital infections are among the most prominent medical problems around the world. Using proper biocides in an appropriate way is critically important in overcoming this problem. Several reports have suggested that microorganisms may develop resistance or reduce their susceptibility to biocides, similar to the case with antibiotics. In this study we aimed to determine the antimicrobial activity of chlorhexidine digluconate against clinical isolates. The susceptibility of 120 hospital isolated strains of 7 bacterial genera against chlorhexidine digluconate was determined by agar dilution test, using minimum inhibitory concentration (MIC) values and the EN 1040 Basic Bactericidal Activity Test to determine the bactericidal activity. According to MIC values, Pseudomonas aeruginosa and Stenotrophomonas maltophilia were found to be less susceptible to chlorhexidine digluconate. Quantitative suspension test results showed that 4% chlorhexidine digluconate was effective against antibiotic resistant and susceptible bacteria after 5 min of contact time and can be safely used in our hospital. However, concentrations below 4% chlorhexidine digluconate caused a decrease in bactericidal activity, especially for Staphylococcus aureus and P. aeruginosa. It is crucial to use biocides at appropriate concentrations and to perform surveillance studies to trace resistance or low susceptibility patterns of S. aureus, P. aeruginosa, and other hospital isolates.

  8. Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration.

    PubMed

    Kiura, Hiromasa; Sano, Kouichi; Morimatsu, Shinichi; Nakano, Takashi; Morita, Chizuko; Yamaguchi, Masaki; Maeda, Toyoyuki; Katsuoka, Yoji

    2002-05-01

    Electrolyzed strong acid water (ESW) containing free chlorine at various concentrations is becoming to be available in clinical settings as a disinfectant. ESW is prepared by electrolysis of a NaCl solution, and has a corrosive activity against medical instruments. Although lower concentrations of NaCl and free chlorine are desired to eliminate corrosion, the germicidal effect of ESW with low NaCl and free-chlorine concentrations (ESW-L) has not been fully clarified. In this study, we demonstrated that ESW-L possesses bactericidal activity against Mycobacteria and spores of Bacillus subtilis. The effect was slightly weaker than that of ESW containing higher NaCl and free-chlorine concentrations (ESW-H), but acceptable as a disinfectant. To clarify the mechanism of the bactericidal activity, we investigated ESW-L-treated Pseudomonas aeruginosa by transmission electron microscopy, a bacterial enzyme assay and restriction fragment length polymorphism pattern (RFLP) assay. Since the bacterium, whose growth was completely inhibited by ESW-L, revealed the inactivation of cytoplasmic enzyme, blebs and breaks in its outer membrane and remained complete RFLP of DNA, damage of the outer membrane and inactivation of cytoplasmic enzyme are the important determinants of the bactericidal activity.

  9. Subtle Variations in Surface Properties of Black Silicon Surfaces Influence the Degree of Bactericidal Efficiency

    NASA Astrophysics Data System (ADS)

    Bhadra, Chris M.; Werner, Marco; Baulin, Vladimir A.; Truong Khanh, Vi; Kobaisi, Mohammad Al; Nguyen, Song Ha; Balcytis, Armandas; Juodkazis, Saulius; Wang, James Y.; Mainwaring, David E.; Crawford, Russell J.; Ivanova, Elena P.

    2018-06-01

    One of the major challenges faced by the biomedical industry is the development of robust synthetic surfaces that can resist bacterial colonization. Much inspiration has been drawn recently from naturally occurring mechano-bactericidal surfaces such as the wings of cicada ( Psaltoda claripennis) and dragonfly ( Diplacodes bipunctata) species in fabricating their synthetic analogs. However, the bactericidal activity of nanostructured surfaces is observed in a particular range of parameters reflecting the geometry of nanostructures and surface wettability. Here, several of the nanometer-scale characteristics of black silicon (bSi) surfaces including the density and height of the nanopillars that have the potential to influence the bactericidal efficiency of these nanostructured surfaces have been investigated. The results provide important evidence that minor variations in the nanoarchitecture of substrata can substantially alter their performance as bactericidal surfaces.[Figure not available: see fulltext.

  10. What Is Old Is New Again: Delafloxacin, a Modern Fluoroquinolone.

    PubMed

    Cho, Jonathan C; Crotty, Matthew P; White, Bryan P; Worley, Marylee V

    2018-01-01

    Delafloxacin is a new fluoroquinolone antimicrobial approved for the treatment of acute bacterial skin and skin structure infections (ABSSSIs) in adults using dosage regimens of 300 mg intravenously every 12 hours, 450 mg orally every 12 hours, or switching from intravenous to oral regimens for a 5- to 14-day treatment duration. Dosage adjustments in patients with severe renal dysfunction (estimated glomerular filtration rate [eGFR] = 15-29 ml/min/1.73 m 2 ) are not required for oral doses but should be decreased to 200 mg intravenously every 12 hours in patients requiring parenteral therapy. Due to insufficient data, use of delafloxacin is not recommended for patients on hemodialysis or with end-stage renal disease (eGFR < 15 ml/min/1.73 m 2 ). Delafloxacin works through inhibition of DNA gyrase (topoisomerase II) and topoisomerase IV, which are essential enzymes for bacterial DNA transcription, replication, repair, and recombination and exhibits bactericidal activity against gram-positive and gram-negative organisms through a concentration-dependent matter. Delafloxacin has a very broad spectrum of activity against atypical, anaerobic, and resistant gram-negative and gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. During phase 3 trials, the most common side effects associated with delafloxacin were gastrointestinal (nausea, diarrhea). Unlike other fluoroquinolones, there does not seem to be a risk of QTc prolongation or phototoxicity with delafloxacin. The availability of both parenteral and oral formulations for delafloxacin distinguishes it from many of the currently available agents approved for ABSSSIs. Phase 3 studies for the treatment of respiratory infections are currently under way, and future results of these studies will further help delineate the role of delafloxacin. © 2017 Pharmacotherapy Publications, Inc.

  11. Potent and broad-spectrum antibacterial activity of indole-based bisamidine antibiotics: synthesis and SAR of novel analogs of MBX 1066 and MBX 1090

    PubMed Central

    Williams, John D.; Nguyen, Son T.; Gu, Shen; Ding, Xiaoyuan; Butler, Michelle M.; Tashjian, Tommy F.; Opperman, Timothy J.; Panchal, Rekha G.; Bavari, Sina; Peet, Norton P.; Moir, Donald T.; Bowlin, Terry L.

    2013-01-01

    The prevalence of drug-resistant bacteria in the clinic has propelled a concerted effort to find new classes of antibiotics that will circumvent current modes of resistance. We have previously described a set of bisamidine antibiotics that contains a core composed of two indoles and a central linker. The first compounds of the series, MBX 1066 and MBX 1090, have potent antibacterial properties against a wide range of Gram-positive and Gram-negative bacteria. We have conducted a systematic exploration of the amidine functionalities, the central linker, and substituents at the indole 3-position to determine the factors involved in potent antibacterial activity. Some of the newly synthesized compounds have even more potent and broad-spectrum activity than MBX 1066 and MBX 1090. PMID:24239389

  12. Evaluating the microbicidal, antiparasitic and antitumor effects of CR-LAAO from Calloselasma rhodostoma venom.

    PubMed

    Costa, Tássia R; Menaldo, Danilo L; Prinholato da Silva, Cássio; Sorrechia, Rodrigo; de Albuquerque, Sérgio; Pietro, Rosemeire C L R; Ghisla, Sandro; Antunes, Lusânia M Greggi; Sampaio, Suely V

    2015-09-01

    CR-LAAO is an L-amino acid oxidase from Calloselasma rhodostoma snake venom that has been broadly studied regarding its structural and biochemical characteristics, however, few studies have investigated its pharmacological effects. The present study aimed at the evaluation of the biotechnological potential of CR-LAAO by determining its bactericidal, antifungal, leishmanicidal and trypanocidal activity, as well as its cytotoxicity on human tumor and non-tumor cell lines. After 24 h of preincubation, CR-LAAO showed bactericidal effects against both Staphylococcus aureus (MIC 0.78 μg/mL) and Escherichia coli (MIC 31.25 μg/mL) strains, inducing dismantle of bacterial cell walls. After 6 h of preincubation with Candida albicans, CR-LAAO was able to inhibit 80% of the yeast growth, and it also showed cytotoxic activity on Leishmania species and Trypanosoma cruzi. Additionally, CR-LAAO showed high cytotoxicity on HepG2 and HL-60 tumor cells (IC50 10.78 and 1.7 μg/mL), with lower effects on human mononuclear cells (PBMC). The cytotoxic effects of CR-LAAO were significantly inhibited in the presence of catalase, which suggests the involvement of hydrogen peroxide in its mechanisms of toxicity. Therefore, CR-LAAO showed promising pharmacological effects, and these results provide important information for the development of therapeutic strategies with directed action, such as more effective antimicrobial agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A rapid microtiter plate serum bactericidal assay method for determining serum complement-mediated killing of Mannheimia haemolytica.

    PubMed

    Ayalew, Sahlu; Confer, Anthony W; Shrestha, Binu; Payton, Mark E

    2012-05-01

    In this study, we describe a rapid microtiter serum bactericidal assay (RMSBA) that can be used to measure the functionality of immune sera. It quantifies bactericidal activity of immune sera in the presence of complement against a homologous bacterium, M. haemolytica in this case. There is high correlation between data from RMSBA and standard complement-mediated bacterial killing assay (r=0.756; p<0.0001). The RMSBA activity of sera can be generated in less than 5 h instead of overnight incubation. RMSBA costs substantially less in terms of time, labor, and resources and is highly reproducible. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. 207-nm UV light - a promising tool for safe low-cost reduction of surgical site infections. I: in vitro studies.

    PubMed

    Buonanno, Manuela; Randers-Pehrson, Gerhard; Bigelow, Alan W; Trivedi, Sheetal; Lowy, Franklin D; Spotnitz, Henry M; Hammer, Scott M; Brenner, David J

    2013-01-01

    0.5% to 10% of clean surgeries result in surgical-site infections, and attempts to reduce this rate have had limited success. Germicidal UV lamps, with a broad wavelength spectrum from 200 to 400 nm are an effective bactericidal option against drug-resistant and drug-sensitive bacteria, but represent a health hazard to patient and staff. By contrast, because of its limited penetration, ~200 nm far-UVC light is predicted to be effective in killing bacteria, but without the human health hazards to skin and eyes associated with conventional germicidal UV exposure. The aim of this work was to test the biophysically-based hypothesis that ~200 nm UV light is significantly cytotoxic to bacteria, but minimally cytotoxic or mutagenic to human cells either isolated or within tissues. A Kr-Br excimer lamp was used, which produces 207-nm UV light, with a filter to remove higher-wavelength components. Comparisons were made with results from a conventional broad spectrum 254-nm UV germicidal lamp. First, cell inactivation vs. UV fluence data were generated for methicillin-resistant S. aureus (MRSA) bacteria and also for normal human fibroblasts. Second, yields of the main UV-associated pre-mutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) were measured, for both UV radiations incident on 3-D human skin tissue. We found that 207-nm UV light kills MRSA efficiently but, unlike conventional germicidal UV lamps, produces little cell killing in human cells. In a 3-D human skin model, 207-nm UV light produced almost no pre-mutagenic UV-associated DNA lesions, in contrast to significant yields induced by a conventional germicidal UV lamp. As predicted based on biophysical considerations, 207-nm light kills bacteria efficiently but does not appear to be significantly cytotoxic or mutagenic to human cells. Used appropriately, 207-nm light may have the potential for safely and inexpensively reducing surgical-site infection rates, including those of drug-resistant origin.

  15. Anaerobic bacteria growth in the presence of cathelicidin LL-37 and selected ceragenins delivered as magnetic nanoparticles cargo.

    PubMed

    Durnaś, Bonita; Piktel, Ewelina; Wątek, Marzena; Wollny, Tomasz; Góźdź, Stanisław; Smok-Kalwat, Jolanta; Niemirowicz, Katarzyna; Savage, Paul B; Bucki, Robert

    2017-07-26

    Cationic antibacterial peptides (CAPs) and synthetic molecules mimicking the amphiphilic structure of CAPs, such as ceragenins, are promising compounds for the development of new antimicrobials. We tested the in vitro activity of ceragenins CSA-13 and CSA-131 against several anaerobic bacteria including Bacteroides spp. and Clostridium difficile. We compared results to the activity of cathelicidin LL-37, metronidazole and nanosystems developed by attachment of CSA-13 and CSA-131 to magnetic nanoparticles (MNPs). The antibacterial effect was tested using killing assay and modified CLSI broth microdilution assay. Ceragenins CSA-13 and CSA-131 displayed stronger bactericidal activity than LL-37 or metronidazole against all of the tested bacterial strains. Additionally CSA-131 revealed an enhanced ability to prevent the formation of Bacteroides fragilis and Propionibacterium acnes biofilms. These data confirmed that ceragenins display antimicrobial activity against a broad range of microorganisms including anaerobic bacteria and deserve further investigations as compounds serving to develop new treatment against anaerobic and mixed infections.

  16. Synthesis of Novel Cellulose Carbamates Possessing Terminal Amino Groups and Their Bioactivity.

    PubMed

    Ganske, Kristin; Wiegand, Cornelia; Hipler, Uta-Christina; Heinze, Thomas

    2016-03-01

    Cellulose phenyl carbonates are an excellent platform to synthesize a broad variety of soluble and functional cellulose carbamates. In this study, the synthesis of cellulose carbamates with terminal amino groups, namely ω-aminoethylcellulose- and ω-aminoethyl-p-aminobenzyl-cellulose carbamate, is discussed. The products are well soluble and their structures can be clearly described by NMR spectroscopy. The cellulose carbamates exhibit a bactericide and fungicide activity in vitro. The ω-aminoethylcellulose carbamate possesses a strong activity against Candida albicans and Staphylococcus aureus (IC50 of 0.02 mg mL(-1) and 0.05 mg mL(-1)). The antimicrobial activity and cytotoxicity can be improved by p-amino-benzylamine (ABA) as an additional substituent. The mixed cellulose carbamate exhibits a high biocompatibility (LC50 of 3.18 mg mL(-1)) and forms films on cotton and PES, which exhibit a strong activity against S. aureus and Klebsiella pneumoniae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation.

    PubMed

    Sheng, Hong; Nakamura, Keisuke; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2015-01-01

    The bactericidal effect of hydroxyl radical (·OH) generated by combination of photolysis of hydrogen peroxide (H2O2) and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2) and ultrasound (power: 30 w, frequency: 1.65 MHz) at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

  18. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Campillo Gloria, E.; Ederley, Vélez; Gladis, Morales; César, Hincapié; Jaime, Osorio; Oscar, Arnache; Uribe José, Ignacio; Franklin, Jaramillo

    2017-06-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ~ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated.

  19. Antibacterial Activity of Cinoxacin In Vitro

    PubMed Central

    Giamarellou, Helen; Jackson, George G.

    1975-01-01

    Cinoxacin is a new synthetic compound similar chemically and in antimicrobial activity to oxolonic acid and nalidixic acid. It is most effective against Escherichia coli and Proteus mirabilis, but at concentrations expected in the urine it is inhibitory for all species of Enterobacteriaceae. Relative to nalidixic acid, cinoxacin has slightly greater inhibitory and bactericidal activity, less inoculum effect probably due to less heterogeneity in the susceptibility of bacterial cells, and less inhibition by high concentrations of serum protein. Both drugs are more active in an acid than an alkaline medium. Glucose can specifically antagonize the inhibitory effect against P. mirabilis. In urine the bactericidal rate and effect are decreased. Resistance to cinoxacin can be developed quickly by serial transfers in vitro. Some nonresistant organisms remained viable in bactericidal drug concentrations. The in vivo importance of the favorable features of cinoxacin must be determined by clinical trials. PMID:1096811

  20. Evaluation of bactericidal effects of low-temperature nitrogen gas plasma towards application to short-time sterilization.

    PubMed

    Kawamura, Kumiko; Sakuma, Ayaka; Nakamura, Yuka; Oguri, Tomoko; Sato, Natsumi; Kido, Nobuo

    2012-07-01

    To develop a novel low-temperature plasma sterilizer using pure N(2) gas as a plasma source, we evaluated bactericidal ability of a prototype apparatus provided by NGK Insulators. After determination of the sterilizing conditions without the cold spots, the D value of the BI of Geobacillus stearothermophilus endospores on the filter paper was determined as 1.9 min. However, the inactivation efficiency of BI carrying the same endospores on SUS varied to some extent, suggesting that the bactericidal effect might vary by materials of sterilized instruments. Staphylococcus aureus and Escherichia coli were also exposed to the N(2) gas plasma and confirmed to be inactivated within 30 min. Through the evaluation of bactericidal efficiency in a sterilization bag, we concluded that the UV photons in the plasma and the high-voltage pulse to generate the gas plasma were not concerned with the bactericidal effect of the N(2) gas plasma. Bactericidal effect might be exhibited by activated nitrogen atoms or molecular radicals. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.

  1. Conjugation Approach To Produce a Staphylococcus aureus Synbody with Activity in Serum.

    PubMed

    Lainson, John C; Fuenmayor, Mariana Ferrer; Johnston, Stephen Albert; Diehnelt, Chris W

    2015-10-21

    Synbodies show promise as a new class of synthetic antibiotics. Here, we explore improvements in their activity and production through conjugation chemistry. Maleimide conjugation is a widely used conjugation strategy due to its high yield, selectivity, and low cost. We used this strategy to conjugate two antibacterial peptides to produce a bivalent antibacterial peptide, called a synbody that has bactericidal activity against methicillin resistant Staphylococcus aureus (MRSA). The synbody was prepared by conjugation of a partially d-amino acid substituted synthetic antibacterial peptide to a bis-maleimide scaffold. The synbody slowly degrades in serum, but also undergoes exchange reactions with other serum proteins, such as albumin. Therefore, we hydrolyzed the thiosuccinimide ring using a mild hydrolysis protocol to produce a new synbody with similar bactericidal activity. The synbody was now resistant to exchange reactions and maintained bactericidal activity in serum for 2 h. This work demonstrates that low-cost maleimide coupling can be used to produce antibacterial peptide conjugates with activity in serum.

  2. Evaluation of empiric antibiotic de-escalation in febrile neutropenia.

    PubMed

    Kroll, Amanda L; Corrigan, Patricia A; Patel, Shejal; Hawks, Kelly G

    2016-10-01

    Up until 2010, the recommended duration of empiric broad-spectrum antibiotics for febrile neutropenia was until absolute neutrophil count (ANC) recovery. An updated guideline on the use of antimicrobial agents in neutropenic patients with cancer indicates that patients who have completed an appropriate treatment course of broad-spectrum antibiotics, with resolution of signs and symptoms of infection but persistent neutropenia, can be de-escalated to oral fluoroquinolone prophylaxis until ANC recovery. The primary objective of this retrospective investigation was to evaluate the safety and efficacy of de-escalating broad-spectrum antibiotics in patients remaining neutropenic after at least 14 days of empiric broadspectrum antibiotics for febrile neutropenia compared to patients continuing broad-spectrum antibiotics until ANC recovery. There were 16 patients (61.5%) in the comparator group who met the primary endpoint of remaining afebrile and without escalation of antibiotics for at least 72 hours after 14 days of broad-spectrum antibiotics and 21 patients (80.7%) in the de-escalation group who met the primary endpoint of remaining afebrile and without reinitiation of broad-spectrum antibiotics for at least 72 hours after de-escalation to levofloxacin therapy (p = 0.11). Mean total duration of broad-spectrum antibiotic therapy was 23.5 ± 1.5 days in the comparator group versus 22.2 ± 1.43 days in the de-escalation group (p = 0.39). Results of this investigation indicate that broad-spectrum antibiotics can be safely de-escalated to levofloxacin prophylaxis prior to ANC recovery in select patients. This practice may decrease the duration of broad-spectrum antibiotic exposure and associated complications. © The Author(s) 2015.

  3. Antimicrobial activity of tiger's betel (Piper porphyrophyllum N.E. Br., Piperaceae).

    PubMed

    Wiart, C; Hannah, N A; Yassim, M; Hamimah, H; Sulaiman, M

    2004-09-01

    The ethanol extract of leaves of Piper porphyrophyllum N.E. Br. showed a broad spectrum of antibacterial activity. The activity was increased on fractionation (hexane, dichloromethane and aqueous), particularly in the aqueous fraction. No activity was shown against tested Candida albicans. Copyright (c) 2004 John Wiley & Sons, Ltd.

  4. Purification and characteristics of a novel bacteriocin produced by Enterococcus faecalis L11 isolated from Chinese traditional fermented cucumber.

    PubMed

    Gao, Yurong; Li, Benling; Li, Dapeng; Zhang, Liyuan

    2016-05-01

    To purify and characterize a novel bacteriocin with broad inhibitory spectrum produced by an isolate of Enterococcus faecalis from Chinese fermented cucumber. E. faecalis L11 produced a bacteriocin with antimicrobial activity against both Escherichia coli and Staphylococcus aureus. The amino acid sequence of the purified bacteriocin, enterocin L11, was assayed by Edman degradation method. It differs from other class II bacteriocins and exhibited a broad antimicrobial activity against not only Gram-positive bacteria, including Bacillus subtilis, S. aureus, Listeria monocytogenes, Sarcina flava, Lactobacillus acidophilus, L. plantarum, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus and Streptococcus thermophilus, but also some Gram-negative bacteria including Salmonella typhimurium, E. coli and Shigella flexneri. Enterocin L11 retained 91 % of its activity after holding at 121 °C for 30 min. It was also resistant to acids and alkalis. Enterocin L11 is a novel broad-spectrum Class II bacteriocin produced by E. faecalis L11, and may have potential as a food biopreservative.

  5. Characterization of the extracellular bactericidal factors of rat alveolar lining material.

    PubMed Central

    Coonrod, J D; Lester, R L; Hsu, L C

    1984-01-01

    The surfactant fraction (55,000-g pellet) of leukocyte-free rat bronchoalveolar lavage fluid contains factors that rapidly kill and lyse pneumococci. These factors were purified and identified biochemically by using a quantitative bactericidal test to monitor fractionation procedures. 91% of the antipneumococcal activity of rat surfactant was recovered in chloroform after extraction of rat surfactant with chloroform-methanol (Bligh-Dyer procedure). After chromatography on silicic acid with chloroform, acetone, and methanol, all detectable antibacterial activity (approximately 80% of the initial activity) eluted with the neutral lipids in chloroform. When rechromatographed on silicic acid with hexane, hexane-chloroform, and chloroform, the antibacterial activity eluted with FFA. Thin-layer chromatography (TLC) established that the antibacterial activity was confined to the FFA fraction. Gas-liquid chromatography showed that the fatty acid fraction contained a mixture of long-chain FFA (C12 to C22) of which 66.7% were saturated and 32.4% were unsaturated. The quantity of TLC-purified FFA needed to kill 50% of 10(8) pneumococci under standardized conditions (one bactericidal unit) was 10.6 +/- 0.5 micrograms. Purified FFA acted as detergents, causing release of [3H]choline from pneumococcal cell walls and increased bacterial cell membrane permeability, evidenced by rapid unloading of 3-O-[3H]methyl-D-glucose. FFA acting as detergents appear to account for the bactericidal and bacteriolytic activity of rat pulmonary surfactant for pneumococci. PMID:6548228

  6. Preliminary flight prototype potable water bactericide system

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1973-01-01

    The development, design, and testing of a preliminary flight prototype potable water bactericide system are described. The system is an assembly of upgraded canisters composed of: (1) A biological filter; (2) an activated charcoal and ion exchange resin canister; (3) a silver chloride canister, (4) a deionizer, (5) a silver bromide canister with a partial bypass, and (6) mock-up instrumentation and circuitry. The system exhibited bactericidal activity against 10 to the 9th power Pseudomonas aeruginosa and/or Type IIIa, and reduced Bacillus subtilis by up to 5 orders of magnitude in 24 hours at ambient temperatures with a 1 ppm silver ion dose. Four efficacy tests were performed with a AgBr canister dosing anticipated fuel cell water. Tests show that a 0.05 ppm silver ion dose was bactericidal against 3 plus or minus 1 x 10 to the 9th power (5 plus or minus 1 x 10,000/ml Pseudomonas aeruginosa and/or Type IIIa in 15 minutes or less.

  7. Susceptibility of Escherichia coli to Bactericidal Action of Lactoperoxidase, Peroxide, and Iodide or Thiocyanate

    PubMed Central

    Thomas, Edwin L.; Aune, Thomas M.

    1978-01-01

    The bactericidal action that results from lactoperoxidase-catalyzed oxidation of iodide or thiocyanate was studied, using Escherichia coli as the test organism. The susceptibility of intact cells to bactericidal action was compared with that of cells with altered cell envelopes. Exposure to ethylenediaminetetraacetic acid, to lysozyme and ethylenediaminetetraacetic acid, or to osmotic shock were used to alter the cell envelope. Bactericidal action was greatly increased when the cells were exposed to the lactoperoxidase-peroxide-iodide system at low temperatures, low cell density, or after alteration of the cell envelope. When thiocyanate was substituted for iodide, bactericidal activity was observed only at low cell density or after osmotic shock. Low temperature and low cell density lowered the rate of destruction of peroxide by the bacteria. Therefore, competition for peroxide between the bacteria and lactoperoxidase may influence the extent of bactericidal action. Alteration of the cell envelope had only a small effect on the rate of destruction of peroxide. Instead, the increased susceptibility of these altered cells suggested that bactericidal action required permeation of a reagent through the cell envelope. In addition to altering the cell envelope, these procedures partly depleted cells of oxidizable substrates and sulfhydryl components. Adding an oxidizable substrate did not decrease the susceptibility of the altered cells. On the other hand, mild reducing agents such as sulfhydryl compounds did partly reverse bactericidal action when added after exposure of cells to the peroxidase systems. These studies indicate that alteration of the metabolism, structure, or composition of bacterial cells can greatly increase their susceptibility to peroxidase bactericidal action. PMID:348097

  8. In vitro characterization of the antibacterial spectrum of novel bacterial type II topoisomerase inhibitors of the aminobenzimidazole class.

    PubMed

    Mani, Nagraj; Gross, Christian H; Parsons, Jonathan D; Hanzelka, Brian; Müh, Ute; Mullin, Steve; Liao, Yusheng; Grillot, Anne-Laure; Stamos, Dean; Charifson, Paul S; Grossman, Trudy H

    2006-04-01

    Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities.

  9. In Vitro Characterization of the Antibacterial Spectrum of Novel Bacterial Type II Topoisomerase Inhibitors of the Aminobenzimidazole Class

    PubMed Central

    Mani, Nagraj; Gross, Christian H.; Parsons, Jonathan D.; Hanzelka, Brian; Müh, Ute; Mullin, Steve; Liao, Yusheng; Grillot, Anne-Laure; Stamos, Dean; Charifson, Paul S.; Grossman, Trudy H.

    2006-01-01

    Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities. PMID:16569833

  10. Antibacterial activity of DLC films containing TiO2 nanoparticles.

    PubMed

    Marciano, F R; Lima-Oliveira, D A; Da-Silva, N S; Diniz, A V; Corat, E J; Trava-Airoldi, V J

    2009-12-01

    Diamond-like carbon (DLC) films have been the focus of extensive research in recent years due to their potential applications as surface coatings on biomedical devices. Titanium dioxide (TiO2) in the anatase crystalline form is a strong bactericidal agent when exposed to near-UV light. In this work we investigate the bactericidal activity of DLC films containing TiO2 nanoparticles. The films were grown on 316L stainless-steel substrates from a dispersion of TiO2 in hexane using plasma-enhanced chemical vapor deposition. The composition, bonding structure, surface energy, stress, and surface roughness of these films were also evaluated. The antibacterial tests were performed against Escherichia coli (E. coli) and the results were compared to the bacterial adhesion force to the studied surfaces. The presence of TiO2 in DLC bulk was confirmed by Raman spectroscopy. As TiO2 content increased, I(D)/I(G) ratio, hydrogen content, and roughness also increased; the films became more hydrophilic, with higher surface free energy and the interfacial energy of bacteria adhesion decreased. Experimental results show that TiO2 increased DLC bactericidal activity. Pure DLC films were thermodynamically unfavorable to bacterial adhesion. However, the chemical interaction between the E. coli and the studied films increased for the films with higher TiO2 concentration. As TiO2 bactericidal activity starts its action by oxidative damage to the bacteria wall, a decrease in the interfacial energy of bacteria adhesion causes an increase in the chemical interaction between E. coli and the films, which is an additional factor for the increasing bactericidal activity. From these results, DLC with TiO2 nanoparticles can be useful for producing coatings with antibacterial properties.

  11. Peptide fragments of a beta-defensin derivative with potent bactericidal activity.

    PubMed

    Reynolds, Natalie L; De Cecco, Martin; Taylor, Karen; Stanton, Chloe; Kilanowski, Fiona; Kalapothakis, Jason; Seo, Emily; Uhrin, Dusan; Campopiano, Dominic; Govan, John; Macmillan, Derek; Barran, Perdita; Dorin, Julia R

    2010-05-01

    Beta-defensins are known to be both antimicrobial and able to chemoattract various immune cells. Although the sequences of paralogous genes are not highly conserved, the core defensin structure is retained. Defb14-1C(V) has bactericidal activity similar to that of its parent peptide (murine beta-defensin Defb14) despite all but one of the canonical six cysteines being replaced with alanines. The 23-amino-acid N-terminal half of Defb14-1C(V) is a potent antimicrobial while the C-terminal half is not. Here, we use a library of peptide derivatives to demonstrate that the antimicrobial activity can be localized to a particular region. Overlapping fragments of the N-terminal region were tested for their ability to kill Gram-positive and Gram-negative bacteria. We demonstrate that the most N-terminal fragments (amino acids 1 to 10 and 6 to 17) are potent antimicrobials against Gram-negative bacteria whereas fragments based on sequence more C terminal than amino acid 13 have very poor activity against both Gram-positive and -negative types. We further test a series of N-terminal deletion peptides in both their monomeric and dimeric forms. We find that bactericidal activity is lost against both Gram types as the deletion region increases, with the point at which this occurs varying between bacterial strains. The dimeric form of the peptides is more resistant to the peptide deletions, but this is not due just to increased charge. Our results indicate that the primary sequence, together with structure, is essential in the bactericidal action of this beta-defensin derivative peptide and importantly identifies a short fragment from the peptide that is a potent bactericide.

  12. Peptide Fragments of a β-Defensin Derivative with Potent Bactericidal Activity ▿

    PubMed Central

    Reynolds, Natalie L.; De Cecco, Martin; Taylor, Karen; Stanton, Chloe; Kilanowski, Fiona; Kalapothakis, Jason; Seo, Emily; Uhrin, Dusan; Campopiano, Dominic; Govan, John; Macmillan, Derek; Barran, Perdita; Dorin, Julia R.

    2010-01-01

    β-Defensins are known to be both antimicrobial and able to chemoattract various immune cells. Although the sequences of paralogous genes are not highly conserved, the core defensin structure is retained. Defb14-1CV has bactericidal activity similar to that of its parent peptide (murine β-defensin Defb14) despite all but one of the canonical six cysteines being replaced with alanines. The 23-amino-acid N-terminal half of Defb14-1CV is a potent antimicrobial while the C-terminal half is not. Here, we use a library of peptide derivatives to demonstrate that the antimicrobial activity can be localized to a particular region. Overlapping fragments of the N-terminal region were tested for their ability to kill Gram-positive and Gram-negative bacteria. We demonstrate that the most N-terminal fragments (amino acids 1 to 10 and 6 to 17) are potent antimicrobials against Gram-negative bacteria whereas fragments based on sequence more C terminal than amino acid 13 have very poor activity against both Gram-positive and -negative types. We further test a series of N-terminal deletion peptides in both their monomeric and dimeric forms. We find that bactericidal activity is lost against both Gram types as the deletion region increases, with the point at which this occurs varying between bacterial strains. The dimeric form of the peptides is more resistant to the peptide deletions, but this is not due just to increased charge. Our results indicate that the primary sequence, together with structure, is essential in the bactericidal action of this β-defensin derivative peptide and importantly identifies a short fragment from the peptide that is a potent bactericide. PMID:20176896

  13. Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health.

    PubMed

    Smet, Annemieke; Martel, An; Persoons, Davy; Dewulf, Jeroen; Heyndrickx, Marc; Herman, Lieve; Haesebrouck, Freddy; Butaye, Patrick

    2010-05-01

    Broad-spectrum β-lactamase genes (coding for extended-spectrum β-lactamases and AmpC β-lactamases) have been frequently demonstrated in the microbiota of food-producing animals. This may pose a human health hazard as these genes may be present in zoonotic bacteria, which would cause a direct problem. They can also be present in commensals, which may act as a reservoir of resistance genes for pathogens causing disease both in humans and in animals. Broad-spectrum β-lactamase genes are frequently located on mobile genetic elements, such as plasmids, transposons and integrons, which often also carry additional resistance genes. This could limit treatment options for infections caused by broad-spectrum β-lactam-resistant microorganisms. This review addresses the growing burden of broad-spectrum β-lactam resistance among Enterobacteriaceae isolated from food, companion and wild animals worldwide. To explore the human health hazard, the diversity of broad-spectrum β-lactamases among Enterobacteriaceae derived from animals is compared with respect to their presence in human bacteria. Furthermore, the possibilities of the exchange of genes encoding broad-spectrum β-lactamases - including the exchange of the transposons and plasmids that serve as vehicles for these genes - between different ecosystems (human and animal) are discussed. © 2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases.

    PubMed

    Dinarello, Charles A; Simon, Anna; van der Meer, Jos W M

    2012-08-01

    Interleukin-1 (IL-1) is a highly active pro-inflammatory cytokine that lowers pain thresholds and damages tissues. Monotherapy blocking IL-1 activity in autoinflammatory syndromes results in a rapid and sustained reduction in disease severity, including reversal of inflammation-mediated loss of sight, hearing and organ function. This approach can therefore be effective in treating common conditions such as post-infarction heart failure, and trials targeting a broad spectrum of new indications are underway. So far, three IL-1-targeted agents have been approved: the IL-1 receptor antagonist anakinra, the soluble decoy receptor rilonacept and the neutralizing monoclonal anti-IL-1β antibody canakinumab. In addition, a monoclonal antibody directed against the IL-1 receptor and a neutralizing anti-IL-1α antibody are in clinical trials.

  15. EFFECT OF INORGANIC CATIONS ON BACTERICIDAL ACTIVITY OF ANIONIC SURFACTANTS

    PubMed Central

    Voss, J. G.

    1963-01-01

    Voss, J. G. (Procter & Gamble Co., Cincinnati, Ohio). Effect of inorganic cations on bactericidal activity of anionic surfactants. J. Bacteriol. 86:207–211. 1963.—The bactericidal effectiveness of two alkyl benzene sulfonates and of three other types of anionic surfactants against Staphylococcus aureus is increased in the presence of low concentrations of divalent cations, especially alkaline earths and metals of group IIB of the periodic table. The cations may act by decreasing the negative charge at the cell surface and increasing adsorption of the surfactant anions, leading to damage to the cytoplasmic membrane and death of the cell. Increased adsorption of surfactant is also found with Escherichia coli, but does not lead to death of the cell. PMID:14058942

  16. Antimicrobial activity of wild mushroom extracts against clinical isolates resistant to different antibiotics.

    PubMed

    Alves, M J; Ferreira, I C F R; Martins, A; Pintado, M

    2012-08-01

    This work aimed to screen the antimicrobial activity of aqueous methanolic extracts of 13 mushroom species, collected in Bragança, against several clinical isolates obtained in Hospital Center of Trás-os-Montes and Alto Douro, Portugal. Microdilution method was used to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). MIC results showed that Russula delica and Fistulina hepatica extracts inhibited the growth of gram-negative (Escherichia coli, Morganella morganni and Pasteurella multocida) and gram-positive (Staphylococcus aureus, MRSA, Enterococcus faecalis, Listeria monocytogenes, Streptococcus agalactiae and Streptococcus pyogenes) bacteria. A bactericide effect of both extracts was observed in Past. multocida, Strep. agalactiae and Strep. pyogenes with MBC of 20, 10 and 5 mg ml⁻¹, respectively. Lepista nuda extract exhibited a bactericide effect upon Past. multocida at 5 mg ml⁻¹ and inhibited Proteus mirabilis at 20 mg ml⁻¹. Ramaria botrytis extract showed activity against Enterococcus faecalis and L. monocytogenes, being bactericide for Past. multocida, Strep. agalactiae (MBCs 20 mg ml⁻¹) and Strep. pyogenes (MBC 10 mg ml⁻¹). Leucopaxillus giganteus extract inhibited the growth of E. coli and Pr. mirabilis, being bactericide for Past. multocida, Strep. pyogenes and Strep. agalactiae. Fistulina hepatica, R. botrytis and R. delica are the most promising species as antimicrobial agents. Mushroom extracts could be an alternative as antimicrobials against pathogenic micro-organisms resistant to conventional treatments. © 2012The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  17. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates

    PubMed Central

    Fahey, Jed W.; Stephenson, Katherine K.; Wade, Kristina L.; Talalay, Paul

    2013-01-01

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 280–340 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  18. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon

    PubMed Central

    Rea, Mary C.; Dobson, Alleson; O'Sullivan, Orla; Crispie, Fiona; Fouhy, Fiona; Cotter, Paul D.; Shanahan, Fergus; Kiely, Barry; Hill, Colin; Ross, R. Paul

    2011-01-01

    Vancomycin, metronidazole, and the bacteriocin lacticin 3147 are active against a wide range of bacterial species, including Clostridium difficile. We demonstrate that, in a human distal colon model, the addition of each of the three antimicrobials resulted in a significant decrease in numbers of C. difficile. However, their therapeutic use in the gastrointestinal tract may be compromised by their broad spectrum of activity, which would be expected to significantly impact on other members of the human gut microbiota. We used high-throughput pyrosequencing to compare the effect of each antimicrobial on the composition of the microbiota. All three treatments resulted in a decrease in the proportion of sequences assigned to the phyla Firmicutes and Bacteroidetes, with a corresponding increase in those assigned to members of the Proteobacteria. One possible means of avoiding such “collateral damage” would involve the application of a narrow-spectrum antimicrobial with specific anti-C. difficile activity. We tested this hypothesis using thuricin CD, a narrow-spectrum bacteriocin produced by Bacillus thuringiensis, which is active against C. difficile. The results demonstrated that this bacteriocin was equally effective at killing C. difficile in the distal colon model but had no significant impact on the composition of the microbiota. This offers the possibility of developing a targeted approach to eliminating C. difficile in the colon, without collateral damage. PMID:20616009

  19. Broad spectrum anthelmintic resistance of Haemonchus contortus in Northern NSW of Australia.

    PubMed

    Lamb, Jane; Elliott, Tim; Chambers, Michael; Chick, Bruce

    2017-07-15

    On a sheep farm in Northern New South Wales (NSW) of Australia a degree of anthelmintic resistance was suspected. With noticeable clinical signs of infection and sheep not responding to treatment, a faecal egg count reduction test was conducted to ascertain the broad spectrum of anthelmintic resistance at this farm. A number of classes of anthelmintics were assessed including organophosphate, macrocyclic lactone (ML) and in combination an ML, benzimidazole, levamisole and salicylanilide. In addition, the more recently registered classes of anthelmintics, monepantel (amino-acetonitrile derivative) and derquantel/abamectin combination (spiroindole+ML) were included. Ninety merino sheep naturally infected with a field strain of Haemonchus contortus were randomly allocated to 6 treatment groups (15 animals/group). Sheep were subsequently treated based on label recommendations and individual bodyweight. Faecal samples were collected post-treatment on Days 7, 14 and 21 to conduct faecal egg counts and group bulk larval cultures. Broad spectrum anthelmintic resistance was confirmed at this site with treatment efficacies ranging from 21.3% (monepantel) to 93.8% (derquantel/abamectin combination) against the H. contortus strain. Furthermore, resistance to the multi-combination anthelmintic containing 4 active ingredients was evident (52.5%). This broad spectrum of resistance highlights the need for integration of alternative sustainable methods in parasite control in order to slow development of resistance and increase the life time effectiveness of anthelmintics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Availability of the basal planes of graphene oxide determines whether it is antibacterial.

    PubMed

    Hui, Liwei; Piao, Ji-Gang; Auletta, Jeffrey; Hu, Kan; Zhu, Yanwu; Meyer, Tara; Liu, Haitao; Yang, Lihua

    2014-08-13

    There are significant controversies on the antibacterial properties of graphene oxide (GO): GO was reported to be bactericidal in saline, whereas its activity in nutrient broth was controversial. To unveil the mechanisms underlying these contradictions, we performed antibacterial assays under comparable conditions. In saline, bare GO sheets were intrinsically bactericidal, yielding a bacterial survival percentage of <1% at 200 μg/mL. Supplementing saline with ≤10% Luria-Bertani (LB) broth, however, progressively deactivated its bactericidal activity depending on LB-supplementation ratio. Supplementation of 10% LB made GO completely inactive; instead, ∼100-fold bacterial growth was observed. Atomic force microscopy images showed that certain LB components were adsorbed on GO basal planes. Using bovine serum albumin and tryptophan as well-defined model adsorbates, we found that noncovalent adsorption on GO basal planes may account for the deactivation of GO's bactericidal activity. Moreover, this deactivation mechanism was shown to be extrapolatable to GO's cytotoxicity against mammalian cells. Taken together, our observations suggest that bare GO intrinsically kills both bacteria and mammalian cells and noncovalent adsorption on its basal planes may be a global deactivation mechanism for GO's cytotoxicity.

  1. Naturally occurring anti-Salmonella agents.

    PubMed

    Kubo, I; Fujita, K

    2001-12-01

    Polygodial and (2E)-hexenal were found to possess antibacterial activity against Salmonella choleraesuis with the minimum bactericidal concentrations (MBC) of 50 microg/mL (0.17 mM) and 100 microg/mL (0.98 mM), respectively. The time kill curve study showed that these two alpha,beta-unsaturated aldehydes were bactericidal against this food-borne bacterium at any stage of growth. However, they showed different effects on the growth of S. choleraesuis. The combination of polygodial and anethole exhibited strong synergism on their bacteriostatic action but only marginal synergism on their bactericidal action.

  2. In vitro and in vivo activities of E-101 solution against Acinetobacter baumannii isolates from U.S. military personnel.

    PubMed

    Denys, G A; Davis, J C; O'Hanley, P D; Stephens, J T

    2011-07-01

    We evaluated the in vitro and in vivo activity of a novel topical myeloperoxidase-mediated antimicrobial, E-101 solution, against 5 multidrug-resistant Acinetobacter baumannii isolates recovered from wounded American soldiers. Time-kill studies demonstrated rapid bactericidal activity against all A. baumannii strains tested in the presence of 3% blood. The in vitro bactericidal activity of E-101 solution against A. baumannii strains was confirmed in a full-thickness excision rat model. Additional in vivo studies appear warranted.

  3. Structural Analysis of the Tobramycin and Gentamicin Clinical Resistome Reveals Limitations for Next-generation Aminoglycoside Design.

    PubMed

    Bassenden, Angelia V; Rodionov, Dmitry; Shi, Kun; Berghuis, Albert M

    2016-05-20

    Widespread use and misuse of antibiotics has allowed for the selection of resistant bacteria capable of avoiding the effects of antibiotics. The primary mechanism for resistance to aminoglycosides, a broad-spectrum class of antibiotics, is through covalent enzymatic modification of the drug, waning their bactericidal effect. Tobramycin and gentamicin are two medically important aminoglycosides targeted by several different resistance factors, including aminoglycoside 2″-nucleotidyltransferase [ANT(2″)], the primary cause of aminoglycoside resistance in North America. We describe here two crystal structures of ANT(2″), each in complex with AMPCPP, Mn(2+), and either tobramycin or gentamicin. Together these structures outline ANT(2″)'s specificity for clinically used substrates. Importantly, these structures complete our structural knowledge for the set of enzymes that most frequently confer clinically observed resistance to tobramycin and gentamicin. Comparison of tobramycin and gentamicin binding to enzymes in this resistome, as well as to the intended target, the bacterial ribosome, reveals surprising diversity in observed drug-target interactions. Analysis of the diverse binding modes informs that there are limited opportunities for developing aminoglycoside analogs capable of evading resistance.

  4. Bactericidal activity of herbal volatile oil extracts against multidrug-resistant Acinetobacter baumannii

    PubMed Central

    Intorasoot, Amornrat; Chornchoem, Piyaorn; Sookkhee, Siriwoot; Intorasoot, Sorasak

    2017-01-01

    Aim: The aim of the study is to investigate the antibacterial activity of 10 volatile oils extracted from medicinal plants, including galangal (Alpinia galanga Linn.), ginger (Zingiber officinale), plai (Zingiber cassumunar Roxb.), lime (Citrus aurantifolia), kaffir lime (Citrus hystrix DC.), sweet basil (Ocimum basilicum Linn.), tree basil (Ocimum gratissimum), lemongrass (Cymbopogon citratus DC.), clove (Syzygium aromaticum), and cinnamon (Cinnamomum verum) against four standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and 30 clinical isolates of multidrug-resistant A. baumannii (MDR-A. baumannii). Materials and Methods: Agar diffusion, minimum inhibitory concentration, and minimum bactericidal concentration (MBC) were employed for the determination of bactericidal activity of water distilled medicinal plants. Tea tree oil (Melaleuca alternifolia) was used as positive control in this study. Results: The results indicated the volatile oil extracted from cinnamon exhibited potent antibacterial activity against the most common human pathogens, S. aureus, E. coli, P. aeruginosa, and A. baumannii. Most of volatile oil extracts were less effective against non-fermentative bacteria, P. aeruginosa. In addition, volatile oil extracted from cinnamon, clove, and tree basil possessed potent bactericidal activity against MDR-A. baumannii with MBC90 of 0.5, 1, and 2 mg/mL, respectively. Conclusions: The volatile oil extracts would be useful as alternative natural product for the treatment of the most common human pathogens and MDR-A. baumannii infections. PMID:28512603

  5. Neutralization of bactericidal activity related to antimicrobial carry-over in broiler carcass rinse samples

    USDA-ARS?s Scientific Manuscript database

    Chemical antimicrobial interventions used as poultry processing aids may have potential for carry-over into whole poultry carcass buffered peptone water (BPW) rinses collected for the recovery of viable Salmonella. Such carry-over may lead to false negative indications due to continuing bactericidal...

  6. Antagonistic effects of lipids against the bactericidal activity of thymol-beta-D-glucopyranoside

    USDA-ARS?s Scientific Manuscript database

    The gut of food-producing animals is a reservoir for zoonotic pathogens. Thymol is bactericidal against Salmonella, E. coli, and Campylobacter, but its rapid absorption from the proximal gut reveals a need for protective technologies to deliver effective concentrations to the lower gut where the pa...

  7. Trends in broad-spectrum antibiotic prescribing for children with acute otitis media in the United States, 1998–2004

    PubMed Central

    Coco, Andrew S; Horst, Michael A; Gambler, Angela S

    2009-01-01

    Background Overuse of broad-spectrum antibiotics is associated with antibiotic resistance. Acute otitis media (AOM) is responsible for a large proportion of antibiotics prescribed for US children. Rates of broad-spectrum antibiotic prescribing for AOM are unknown. Methods Analysis of the National Ambulatory Medical Care Survey and National Hospital Ambulatory Medical Care Survey, 1998 to 2004 (N = 6,878). Setting is office-based physicians, hospital outpatient departments, and emergency departments. Patients are children aged 12 years and younger prescribed antibiotics for acute otitis media. Main outcome measure is percentage of broad-spectrum antibiotics, defined as amoxicillin/clavulanate, macrolides, cephalosporins and quinolones. Results Broad-spectrum prescribing for acute otitis media increased from 34% of visits in 1998 to 45% of visits in 2004 (P < .001 for trend). The trend was primarily attributable to an increase in prescribing of amoxicillin/clavulanate (8% to 15%; P < .001 for trend) and macrolides (9% to 15%; P < .001 for trend). Prescribing remained stable for amoxicillin and cephalosporins while decreasing for narrow-spectrum agents (12% to 3%; P < .001 for trend) over the study period. Independent predictors of broad-spectrum antibiotic prescribing were ear pain, non-white race, public and other insurance (compared to private), hospital outpatient department setting, emergency department setting, and West region (compared to South and Midwest regions), each of which was associated with lower rates of broad-spectrum prescribing. Age and fever were not associated with prescribing choice. Conclusion Prescribing of broad-spectrum antibiotics for acute otitis media has steadily increased from 1998 to 2004. Associations with non-clinical factors suggest potential for improvement in prescribing practice. PMID:19552819

  8. Antimicrobial activity of Caesalpinia pulcherrima, Euphorbia hirta and Asystasia gangeticum.

    PubMed

    Sudhakar, M; Rao, Ch V; Rao, P M; Raju, D B; Venkateswarlu, Y

    2006-07-01

    The ethanolic extracts of the dry fruits of Caesalpinia pulcherrima, aerial parts of Euphorbia hirta and flowers of Asystasia gangeticum were tested for antimicrobial activity. The three plants exhibited a broad spectrum of antimicrobial activity, particularly against Escherichia coli (enteropathogen), Proteus vulgaris, Pseudomonas aeruginosa and Staphylococcus aureus.

  9. Targeting and tailoring physical activity information using print and information technologies.

    PubMed

    Napolitano, Melissa A; Marcus, Bess H

    2002-07-01

    With the large numbers of physically inactive individuals, it is important that interventions reach a broad spectrum of the population. This paper focuses on targeting and tailoring physical activity information, and the use of mediated interventions, specifically those using print, and other information technologies for promoting physical activity.

  10. Antifungal activity of some Himalayan medicinal plants and cultivated ornamental species.

    PubMed

    Sharma, Radhey Shyam; Mishra, Vandana; Singh, Ram; Seth, Nidhi; Babu, C R

    2008-12-01

    Extracts of roots of Rumex nepalensis, Berberis aristata, Arnebia benthamii, bark of Taxus wallichiana, Juglans regia and petals of Jacquinia ruscifolia were tested for their antifungal activity against twelve different fungal pathogens. Ethanolic extracts of R. nepalensis and J. ruscifolia extracts showed a broad spectrum of activity.

  11. Influence of nanoscale topology on bactericidal efficiency of black silicon surfaces

    NASA Astrophysics Data System (ADS)

    Linklater, Denver P.; Khuong Duy Nguyen, Huu; Bhadra, Chris M.; Juodkazis, Saulius; Ivanova, Elena P.

    2017-06-01

    The nanostructuring of materials to create bactericidal and antibiofouling surfaces presents an exciting alternative to common methods of preventing bacterial adhesion. The fabrication of synthetic bactericidal surfaces has been inspired by the anti-wetting and anti-biofouling properties of insect wings, and other topologies found in nature. Black silicon is one such synthetic surfaces which has established bactericidal properties. In this study we show that time-dependent plasma etching of silicon wafers using 15, 30, and 45 min etching intervals, is able to produce different surface geometries with linearly increasing heights of approximately 280, 430, and 610 nm, respectively. After incubation on these surfaces with Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacterial cells it was established that smaller, more densely packed pillars exhibited the greatest bactericidal activity with 85% and 89% inactivation of bacterial cells, respectively. The decrease in the pillar heights, pillar cap diameter and inter-pillar spacing corresponded to a subsequent decrease in the number of attached cells for both bacterial species.

  12. Bactericidal activity of self-assembled palmitic and stearic fatty acid crystals on highly ordered pyrolytic graphite.

    PubMed

    Ivanova, Elena P; Nguyen, Song Ha; Guo, Yachong; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Wandiyanto, Jason V; Garvey, Christopher J; Mahon, Peter J; Mainwaring, David E; Crawford, Russell J

    2017-09-01

    The wings of insects such as cicadas and dragonflies have been found to possess nanostructure arrays that are assembled from fatty acids. These arrays can physically interact with the bacterial cell membranes, leading to the death of the cell. Such mechanobactericidal surfaces are of significant interest, as they can kill bacteria without the need for antibacterial chemicals. Here, we report on the bactericidal effect of two of the main lipid components of the insect wing epicuticle, palmitic (C16) and stearic (C18) fatty acids. Films of these fatty acids were re-crystallised on the surface of highly ordered pyrolytic graphite. It appeared that the presence of two additional CH 2 groups in the alkyl chain resulted in the formation of different surface structures. Scanning electron microscopy and atomic force microscopy showed that the palmitic acid microcrystallites were more asymmetric than those of the stearic acid, where the palmitic acid microcrystallites were observed to be an angular abutment in the scanning electron micrographs. The principal differences between the two types of long-chain saturated fatty acid crystallites were the larger density of peaks in the upper contact plane of the palmitic acid crystallites, as well as their greater proportion of asymmetrical shapes, in comparison to that of the stearic acid film. These two parameters might contribute to higher bactericidal activity on surfaces derived from palmitic acid. Both the palmitic and stearic acid crystallite surfaces displayed activity against Gram-negative, rod-shaped Pseudomonas aeruginosa and Gram-positive, spherical Staphylococcus aureus cells. These microcrystallite interfaces might be a useful tool in the fabrication of effective bactericidal nanocoatings. Nanostructured cicada and dragonfly wing surfaces have been discovered to be able physically kill bacterial cells. Here, we report on the successful fabrication of bactericidal three-dimensional structures of two main lipid components of the epicuticle of insect wings, palmitic (C16) and stearic (C18) acids. After crystallisation onto highly ordered pyrolytic graphite, both the palmitic and stearic acid films displayed bactericidal activity against both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus cells. The simplicity of the production of these microcrystallite interfaces suggests that a fabrication technique, based on solution deposition, could be an effective technique for the application of bactericidal nanocoatings. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy.

    PubMed

    Bernatová, Silvie; Samek, Ota; Pilát, Zdeněk; Serý, Mojmír; Ježek, Jan; Jákl, Petr; Siler, Martin; Krzyžánek, Vladislav; Zemánek, Pavel; Holá, Veronika; Dvořáčková, Milada; Růžička, Filip

    2013-10-24

    Antibiotics cure infections by influencing bacterial growth or viability. Antibiotics can be divided to two groups on the basis of their effect on microbial cells through two main mechanisms, which are either bactericidal or bacteriostatic. Bactericidal antibiotics kill the bacteria and bacteriostatic antibiotics suppress the growth of bacteria (keep them in the stationary phase of growth). One of many factors to predict a favorable clinical outcome of the potential action of antimicrobial chemicals may be provided using in vitro bactericidal/bacteriostatic data (e.g., minimum inhibitory concentrations-MICs). Consequently, MICs are used in clinical situations mainly to confirm resistance, and to determine the in vitro activities of new antimicrobials. We report on the combination of data obtained from MICs with information on microorganisms' "fingerprint" (e.g., DNA/RNA, and proteins) provided by Raman spectroscopy. Thus, we could follow mechanisms of the bacteriostatic versus bactericidal action simply by detecting the Raman bands corresponding to DNA. The Raman spectra of Staphylococcus epidermidis treated with clindamycin (a bacteriostatic agent) indeed show little effect on DNA which is in contrast with the action of ciprofloxacin (a bactericidal agent), where the Raman spectra show a decrease in strength of the signal assigned to DNA, suggesting DNA fragmentation.

  14. Bactericidal activity of culture fluid components of Lactobacillus fermentum strain 90 TS-4 (21) clone 3, and their capacity to modulate adhesion of Candida albicans yeast-like fungi to vaginal epithelial cells.

    PubMed

    Anokhina, I V; Kravtsov, E G; Protsenko, A V; Yashina, N V; Yermolaev, A V; Chesnokova, V L; Dalin, M V

    2007-03-01

    Antagonistic activities of L. fermentum strain 90 TS-4 (21), L. casei ATCC 27216, and L. acidophilus ATCC 4356 and bactericidal activity of lactobacillus culture fluid towards E. coli strain K12, S. aureus, and S. epidermidis test cultures were studied. The bactericidal effect of L. fermentum strain 90 TS-4 (21) clone 3 culture fluid preparation (pH 6.0) on the test cultures was dose-dependent. Adhesion of C. albicans yeast-like fungi to vaginal epitheliocytes was more pronounced for strains isolated from women with asymptomatic infection than for strains isolated from women with manifest forms. L. fermentum strain 90 TS-4 (21) clone 3 culture fluid preparation modulated adhesion of yeast-like fungi only if the fungal strain was initially highly adherent.

  15. An empirical broad spectrum antibiotic therapy in health-care-associated infections improves survival in patients with cirrhosis: A randomized trial.

    PubMed

    Merli, Manuela; Lucidi, Cristina; Di Gregorio, Vincenza; Lattanzi, Barbara; Giannelli, Valerio; Giusto, Michela; Farcomeni, Alessio; Ceccarelli, Giancarlo; Falcone, Marco; Riggio, Oliviero; Venditti, Mario

    2016-05-01

    Early diagnosis and appropriate treatment of infections in cirrhosis are crucial because of their high morbidity and mortality. Multidrug-resistant (MDR) infections are on the increase in health care settings. Health-care-associated (HCA) infections are still frequently treated as community-acquired with a detrimental effect on survival. We aimed to prospectively evaluate in a randomized trial the effectiveness of a broad spectrum antibiotic treatment in patients with cirrhosis with HCA infections. Consecutive patients with cirrhosis hospitalized with HCA infections were enrolled. After culture sampling, patients were promptly randomized to receive a standard or a broad spectrum antibiotic treatment (NCT01820026). The primary endpoint was in-hospital mortality. Efficacy, side effects, and the length of hospitalization were considered. Treatment failure was followed by a change in antibiotic therapy. Ninety-six patients were randomized and 94 were included. The two groups were similar for demographic, clinical, and microbiological characteristics. The prevalence of MDR pathogens was 40% in the standard versus 46% in the broad spectrum group. In-hospital mortality showed a substantial reduction in the broad spectrum versus standard group (6% vs. 25%; P = 0.01). In a post-hoc analysis, reduction of mortality was more evident in patients with sepsis. The broad spectrum showed a lower rate of treatment failure than the standard therapy (18% vs. 51%; P = 0.001). Length of hospitalization was shorter in the broad spectrum (12.3 ± 7 days) versus standard group (18 ± 15 days; P = 0.03). Five patients in each group developed a second infection during hospitalization with a similar prevalence of MDR (50% broad spectrum vs. 60% standard). A broad spectrum antibiotic therapy as empirical treatment in HCA infections improves survival in cirrhosis. This treatment was significantly effective, safe, and cost saving. © 2015 by the American Association for the Study of Liver Diseases.

  16. Urinary bactericidal activity of single doses (250, 500, 750 and 1000 mg) of levofloxacin against fluoroquinolone-resistant strains of Escherichia coli.

    PubMed

    Stein, Gary E; Schooley, Sharon L; Nicolau, David P

    2008-10-01

    Increasing resistance to fluoroquinolones in uropathogens has become a clinical concern. The purpose of this study was to analyse the urinary bactericidal activity (UBA) of levofloxacin against fluoroquinolone-resistant strains of Escherichia coli. Ten healthy adult subjects (aged 23-60 years) received single doses of levofloxacin (250, 500, 750 and 1000 mg) and then blood and urine samples were collected in intervals (0-1.5, 1.5-4, 4-8, 8-12 and 12-24h) over 24h. Both serum and urine concentrations were measured by a validated high-performance liquid chromatography assay. Bactericidal titres in urine were determined against E. coli isolates with minimum inhibitory concentrations of 0.125, 4, 8, 16, 32 and 64microg/mL for levofloxacin. The mean serum pharmacokinetic parameters for these doses of levofloxacin were similar to previously published values. The mean peak urinary concentrations (0-1.5h) were 210, 347, 620 and 536microg/mL for the 250, 500, 750 and 1000 mg dose, respectively. Each dose of levofloxacin exhibited early (0-1.5h time period) bactericidal activity in urine in virtually all subjects against E. coli strains with MICs

  17. Antibacterial properties of traditionally used Indian medicinal plants.

    PubMed

    Aqil, F; Ahmad, I

    2007-03-01

    In search of broad-spectrum antibacterial activity from traditionally used Indian medicinal plants, 66 ethanolic plant extracts were screened against nine different bacteria. Of these, 39 extracts demonstrated activity against six or more test bacteria. Twelve extracts showing broad-spectrum activity were tested against specific multidrug-resistant (MDR) bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and extended spectrum beta-lactamases (ESbetaL)-producing enteric bacteria. In vitro efficacy was expressed in terms of minimum inhibitory concentration (MIC) values of plant extracts. MIC values ranged from 0.32-7.5 mg/ml against MRSA and 0.31-6.25 mg/ml against ESbetaL-producing enteric bacteria. The overall activity against all groups of bacteria was found in order of Plumbago zeylanica > Hemidesmus indicus > Acorus calamus > Camellia sinensis > Terminalia chebula > Terminalia bellerica > Holarrhena antidysenterica > Lawsonia inermis > Mangifera indica > Punica granatum > Cichorium intybus and Delonix regia. In addition, these extracts showed synergistic interaction with tetracycline, chloramphenicol and ciprofloxacin against S. aureus and/or Escherichia coli. The ethanolic extracts of more than 12 plants were found nontoxic to sheep erythrocytes and nonmutagenic, determined by Ames test using Salmonella typhimurium test strains (TA 97a, TA 100, TA 102 and TA 104). Based on above properties, six plants-Plumbago zeylanica, Hemidesmus indicus, Acorus calamus, Punica granatum, Holarrhena antidysenterica and Delonix regia-were further subjected to fractionation-based study. Ethyl acetate, acetone and methanol fractions of more than six plants indicated that the active phytocompounds were distributed mainly into acetone and ethyl acetate fractions, whereas they were least prevalent in methanol fractions as evident from their antibacterial activity against MDR bacteria. Gram-positive and Gram-negative MDR bacteria are almost equally sensitive to these extracts/fractions, indicating their broad-spectrum nature. However, strain- and plant extract-dependent variations in the antibacterial activity were also evident. Time-kill assay with the most promising plant fraction Plumbago zeylanica (ethyl acetate fraction) demonstrated killing of test bacteria at the level lower than its MIC. Further, identification of active constituents in each fraction and their additive and synergistic interactions are needed to exploit them in evaluating efficacy and safety in vivo against MDR bacteria. Copyright 2007 Prous Science.

  18. Visible-Light-Induced Bactericidal Activity of a Nitrogen-Doped Titanium Photocatalyst against Human Pathogens

    PubMed Central

    Wong, Ming-Show; Chu, Wen-Chen; Sun, Der-Shan; Huang, Hsuan-Shun; Chen, Jiann-Hwa; Tsai, Pei-Jane; Lin, Nien-Tsung; Yu, Mei-Shiuan; Hsu, Shang-Feng; Wang, Shih-Lien; Chang, Hsin-Hou

    2006-01-01

    The antibacterial activity of photocatalytic titanium dioxide (TiO2) substrates is induced primarily by UV light irradiation. Recently, nitrogen- and carbon-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination. Their antibacterial activity, however, remains to be quantified. In this study, we demonstrated that nitrogen-doped TiO2 substrates have superior visible-light-induced bactericidal activity against Escherichia coli compared to pure TiO2 and carbon-doped TiO2 substrates. We also found that protein- and light-absorbing contaminants partially reduce the bactericidal activity of nitrogen-doped TiO2 substrates due to their light-shielding effects. In the pathogen-killing experiment, a significantly higher proportion of all tested pathogens, including Shigella flexneri, Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, Streptococcus pyogenes, and Acinetobacter baumannii, were killed by visible-light-illuminated nitrogen-doped TiO2 substrates than by pure TiO2 substrates. These findings suggest that nitrogen-doped TiO2 has potential application in the development of alternative disinfectants for environmental and medical usages. PMID:16957236

  19. Shell thickness-dependent antibacterial activity and biocompatibility of gold@silver core–shell nanoparticles

    USDA-ARS?s Scientific Manuscript database

    Antimicrobial activity of silver is highly effective and broad-spectrum; however, poor long-term antibacterial efficiency and cytotoxicity toward mammalian cells have restricted their applications. Here, we fabricated Au@Ag NPs with tailored shell thickness, and investigated their antibacterial acti...

  20. 5-Carboxy-8-hydroxyquinoline is a Broad Spectrum 2-Oxoglutarate Oxygenase Inhibitor which Causes Iron Translocation

    PubMed Central

    Aik, WeiShen; Che, Ka Hing; Li, Xuan Shirley; Kristensen, Jan B. L.; King, Oliver N. F.; Chan, Mun Chiang; Yeoh, Kar Kheng; Choi, Hwanho; Walport, Louise J.; Thinnes, Cyrille C.; Bush, Jacob T.; Lejeune, Clarisse; Rydzik, Anna M.; Rose, Nathan R.; Bagg, Eleanor A.; McDonough, Michael A.; Krojer, Tobias; Yue, Wyatt W.; Ng, Stanley S.; Olsen, Lars; Brennan, Paul E.; Oppermann, Udo; Muller-Knapp, Susanne; Klose, Robert J.; Ratcliffe, Peter J.; Schofield, Christopher J.; Kawamura, Akane

    2015-01-01

    2-Oxoglutarate and iron dependent oxygenases are therapeutic targets for human diseases. Using a representative 2OG oxygenase panel, we compare the inhibitory activities of 5-carboxy-8-hydroxyquinoline (IOX1) and 4-carboxy-8-hydroxyquinoline (4C8HQ) with that of two other commonly used 2OG oxygenase inhibitors, N-oxalylglycine (NOG) and 2,4-pyridinedicarboxylic acid (2,4-PDCA). The results reveal that IOX1 has a broad spectrum of activity, as demonstrated by the inhibition of transcription factor hydroxylases, representatives of all 2OG dependent histone demethylase subfamilies, nucleic acid demethylases and γ-butyrobetaine hydroxylase. Cellular assays show that, unlike NOG and 2,4-PDCA, IOX1 is active against both cytosolic and nuclear 2OG oxygenases without ester derivatisation. Unexpectedly, crystallographic studies on these oxygenases demonstrate that IOX1, but not 4C8HQ, can cause translocation of the active site metal, revealing a rare example of protein ligand-induced metal movement PMID:26682036

  1. Axinellamines as Broad-Spectrum Antibacterial Agents: Scalable Synthesis and Biology

    PubMed Central

    2015-01-01

    Antibiotic-resistant bacteria present an ongoing challenge to both chemists and biologists as they seek novel compounds and modes of action to out-maneuver continually evolving resistance pathways, especially against Gram-negative strains. The dimeric pyrrole–imidazole alkaloids represent a unique marine natural product class with diverse primary biological activity and chemical architecture. This full account traces the strategy used to develop a second-generation route to key spirocycle 9, culminating in a practical synthesis of the axinellamines and enabling their discovery as broad-spectrum antibacterial agents, with promising activity against both Gram-positive and Gram-negative bacteria. While their detailed mode of antibacterial action remains unclear, the axinellamines appear to cause secondary membrane destabilization and impart an aberrant cellular morphology consistent with the inhibition of normal septum formation. This study serves as a rare example of a natural product initially reported to be devoid of biological activity surfacing as an active antibacterial agent with an intriguing mode of action. PMID:25328977

  2. Foetal Ureaplasma parvum bacteraemia as a function of gestation-dependent complement insufficiency: Evidence from a sheep model of pregnancy.

    PubMed

    Kemp, Matthew W; Ahmed, Shatha; Beeton, Michael L; Payne, Matthew S; Saito, Masatoshi; Miura, Yuichiro; Usuda, Haruo; Kallapur, Suhas G; Kramer, Boris W; Stock, Sarah J; Jobe, Alan H; Newnham, John P; Spiller, Owen B

    2017-01-01

    Complement is a central defence against sepsis, and increasing complement insufficiency in neonates of greater prematurity may predispose to increased sepsis. Ureaplasma spp. are the most frequently cultured bacteria from preterm blood samples. A sheep model of intrauterine Ureaplasma parvum infection was used to examine in vivo Ureaplasma bacteraemia at early and late gestational ages. Complement function and Ureaplasma killing assays were used to determine the correlation between complement potency and bactericidal activity of sera ex vivo. Ureaplasma was cultured from 50% of 95-day gestation lamb cord blood samples compared to 10% of 125-day gestation lambs. Bactericidal activity increased with increased gestational age, and a direct correlation between functional complement activity and bactericidal activity (R 2 =.86; P<.001) was found for 95-day gestational lambs. Ureaplasma bacteraemia in vivo was confined to early preterm lambs with low complement function, but Ureaplasma infection itself did not diminish complement levels. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens.

    PubMed

    Hu, Fengjiao; Wu, Qiaoxing; Song, Shuang; She, Ruiping; Zhao, Yue; Yang, Yifei; Zhang, Meikun; Du, Fang; Soomro, Majid Hussain; Shi, Ruihan

    2016-12-05

    Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.

  4. Determination of the bactericidal activity of different calcium hydroxide presentations on a dentin model.

    PubMed

    Sinan, A; Adou, A J; Rochd, T; Calas, P

    2007-03-01

    Calcium hydroxide placed as a temporary dressing in the root canal helps sterilize infected canals. Hycal and Roeko calcium hydroxide points are two delayed-action medications containing Ca(OH)2 recommended for root canal treatment. The purpose of this study was to test their bactericidal activity in comparison with that of C-PMCP on Streptococcus sanguins strain NCTC 7823. Artificially infected 4-mm high blocks of dentin obtained from bovine incisors were used as an experimental model (n = 192). After three days of treatment with the two antiseptics, intracanal dentin powder was collected by serial drillings and used to inoculate a culture broth. The turbidity of this broth after 24 hours showed if the bacteria were eliminated or not and was used as criterion of antiseptic efficacy. No bacterial growth was observed in the samples treated with C-PMCP. Hycal had a considerable bactericidal activity with 94% of negative cultures whereas first-generation Roeko points had no activity on the strain of S. sanguis tested.

  5. Quantitative evaluation of dermatological antiseptics.

    PubMed

    Leitch, C S; Leitch, A E; Tidman, M J

    2015-12-01

    Topical antiseptics are frequently used in dermatological management, yet evidence for the efficacy of traditional generic formulations is often largely anecdotal. We tested the in vitro bactericidal activity of four commonly used topical antiseptics against Staphylococcus aureus, using a modified version of the European Standard EN 1276, a quantitative suspension test for evaluation of the bactericidal activity of chemical disinfectants and antiseptics. To meet the standard for antiseptic effectiveness of EN 1276, at least a 5 log10 reduction in bacterial count within 5 minutes of exposure is required. While 1% benzalkonium chloride and 6% hydrogen peroxide both achieved a 5 log10 reduction in S. aureus count, neither 2% aqueous eosin nor 1 : 10 000 potassium permanganate showed significant bactericidal activity compared with control at exposure periods of up to 1 h. Aqueous eosin and potassium permanganate may have desirable astringent properties, but these results suggest they lack effective antiseptic activity, at least against S. aureus. © 2015 British Association of Dermatologists.

  6. National ambulatory antibiotic prescribing patterns for pediatric urinary tract infection, 1998-2007.

    PubMed

    Copp, Hillary L; Shapiro, Daniel J; Hersh, Adam L

    2011-06-01

    The goal of this study was to investigate patterns of ambulatory antibiotic use and to identify factors associated with broad-spectrum antibiotic prescribing for pediatric urinary tract infections (UTIs). We examined antibiotics prescribed for UTIs for children aged younger than 18 years from 1998 to 2007 using the National Ambulatory Medical Care Survey and National Hospital Ambulatory Medical Care Survey. Amoxicillin-clavulanate, quinolones, macrolides, and second- and third-generation cephalosporins were classified as broad-spectrum antibiotics. We evaluated trends in broad-spectrum antibiotic prescribing patterns and performed multivariable logistic regression to identify factors associated with broad-spectrum antibiotic use. Antibiotics were prescribed for 70% of pediatric UTI visits. Trimethoprim-sulfamethoxazole was the most commonly prescribed antibiotic (49% of visits). Broad-spectrum antibiotics were prescribed one third of the time. There was no increase in overall use of broad-spectrum antibiotics (P = .67); however, third-generation cephalosporin use doubled from 12% to 25% (P = .02). Children younger than 2 years old (odds ratio: 6.4 [95% confidence interval: 2.2-18.7, compared with children 13-17 years old]), females (odds ratio: 3.6 [95% confidence interval: 1.6-8.5]), and temperature ≥ 100.4°F (odds ratio: 2.9 [95% confidence interval: 1.0-8.6]) were independent predictors of broad-spectrum antibiotic prescribing. Race, physician specialty, region, and insurance status were not associated with antibiotic selection. Ambulatory care physicians commonly prescribe broad-spectrum antibiotics for the treatment of pediatric UTIs, especially for febrile infants in whom complicated infections are more likely. The doubling in use of third-generation cephalosporins suggests that opportunities exist to promote more judicious antibiotic prescribing because most pediatric UTIs are susceptible to narrower alternatives.

  7. National Ambulatory Antibiotic Prescribing Patterns for Pediatric Urinary Tract Infection, 1998–2007

    PubMed Central

    Shapiro, Daniel J.; Hersh, Adam L.

    2011-01-01

    OBJECTIVE: The goal of this study was to investigate patterns of ambulatory antibiotic use and to identify factors associated with broad-spectrum antibiotic prescribing for pediatric urinary tract infections (UTIs). METHODS: We examined antibiotics prescribed for UTIs for children aged younger than 18 years from 1998 to 2007 using the National Ambulatory Medical Care Survey and National Hospital Ambulatory Medical Care Survey. Amoxicillin-clavulanate, quinolones, macrolides, and second- and third-generation cephalosporins were classified as broad-spectrum antibiotics. We evaluated trends in broad-spectrum antibiotic prescribing patterns and performed multivariable logistic regression to identify factors associated with broad-spectrum antibiotic use. RESULTS: Antibiotics were prescribed for 70% of pediatric UTI visits. Trimethoprim-sulfamethoxazole was the most commonly prescribed antibiotic (49% of visits). Broad-spectrum antibiotics were prescribed one third of the time. There was no increase in overall use of broad-spectrum antibiotics (P = .67); however, third-generation cephalosporin use doubled from 12% to 25% (P = .02). Children younger than 2 years old (odds ratio: 6.4 [95% confidence interval: 2.2–18.7, compared with children 13–17 years old]), females (odds ratio: 3.6 [95% confidence interval: 1.6–8.5]), and temperature ≥100.4°F (odds ratio: 2.9 [95% confidence interval: 1.0–8.6]) were independent predictors of broad-spectrum antibiotic prescribing. Race, physician specialty, region, and insurance status were not associated with antibiotic selection. CONCLUSIONS: Ambulatory care physicians commonly prescribe broad-spectrum antibiotics for the treatment of pediatric UTIs, especially for febrile infants in whom complicated infections are more likely. The doubling in use of third-generation cephalosporins suggests that opportunities exist to promote more judicious antibiotic prescribing because most pediatric UTIs are susceptible to narrower alternatives. PMID:21555502

  8. Isolation of a new broad spectrum antifungal polyene from Streptomyces sp. MTCC 5680.

    PubMed

    Vartak, A; Mutalik, V; Parab, R R; Shanbhag, P; Bhave, S; Mishra, P D; Mahajan, G B

    2014-06-01

    A new polyene macrolide antibiotic PN00053 was isolated from the fermentation broth of Streptomyces sp. wild-type strain MTCC-5680. The producer strain was isolated from fertile mountain soil of Naldehra region, Himachal Pradesh, India. The compound PN00053 was purified through various steps of chromatographic techniques and bio-activity guided fractionation followed by its characterization using physiochemical properties, spectral data ((1) H-NMR, (13) C-NMR, HMBC, HSQC, and COSY) and MS analysis. PN00053 exhibited broad spectrum in vitro antifungal activity against strains of Aspergillus fumigatus (HMR), A. fumigatus ATCC 16424, Candida albicans (I.V.), C. albicans ATCC 14503, C. krusei GO6, C. glabrata HO4, Cryptococcus neoformans, Trichophyton sp. as well as fluconazole resistant strains C. krusei GO3 and C. glabrata HO5. It did not inhibit growth of gram positive and gram-negative bacteria, displaying its specificity against fungi. PN00053 is a novel polyene macrolide isolated from a wild strain of Streptomyces sp. PM0727240 (MTCC5680), an isolate from the mountainous rocky regions of Himachal Pradesh, India. The compound is a new derivative of the antibiotic Roflamycoin [32, 33-didehydroroflamycoin (DDHR)]. It displayed broad spectrum antifungal activity against yeast and filamentous fungi. However, it did not show any antibacterial activity. The in vitro study revealed that PN00053 has better potency as compared to clinical gold standard fluconazole. The development of pathogenic resistance against the polyenes has been seldom reported. Hence, we envisage PN00053 could be a potential antifungal lead. © 2014 The Society for Applied Microbiology.

  9. The characterization of the distant blazar GB6 J1239+0443 from flaring and low activity periods

    DOE PAGES

    Pacciani, L.; Donnarumma, I.; Denney, K. D.; ...

    2012-08-27

    In 2008, AGILE and Fermi detected gamma-ray flaring activity from the unidentified EGRET source 3EG J1236+0457, recently associated with a flat spectrum radio quasar (GB6 J1239+0443) at z = 1.762. The optical counterpart of the gamma-ray source underwent a flux enhancement of a factor of 15–30 in six years, and of ~10 in six months. Here, we interpret this flare-up in terms of a transition from an accretion-disc-dominated emission to a synchrotron-jet-dominated one. We analysed a Sloan Digital Sky Survey (SDSS) archival optical spectrum taken during a period of low radio and optical activity of the source. We estimated themore » mass of the central black hole using the width of the C iv emission line. In our work, we have also investigated SDSS archival optical photometric data and ultraviolet GALEX observations to estimate the thermal disc emission contribution of GB6 J1239+0443. This analysis of the gamma-ray data taken during the flaring episodes indicates a flat gamma-ray spectrum, with an extension of up to 15 GeV, with no statistically relevant sign of absorption from the broad-line region, suggesting that the blazar zone is located beyond the broad-line region. Our result is confirmed by the modelling of the broad-band spectral energy distribution (well constrained by the available multiwavelength data) of the flaring activity periods and by the accretion disc luminosity and black hole mass estimated by us using archival data.« less

  10. Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa.

    PubMed

    Naraginti, Saraschandra; Li, Yi

    2017-05-01

    Herein we report a rapid low cost one step green synthetic method using Actinidia deliciosa fruit extract for preparation of stable and multifunctional silver and gold nanoparticles. The synthesized nanoparticles were successfully used as green catalysts for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB). The enhanced biological activity of the prepared nanoparticles was investigated based on its highly stable antioxidant, anticancer and bactericidal effects. TEM micrographs showed that the silver nanoparticles (AgNPs) formed were predominantly spherical in shape having diameters ranging from 25 to 40nm, while gold nanoparticles (AuNPs) shown particle size ranges from 7 to 20nm. EDAX (energy-dispersive X-ray spectroscopy) and XPS (X-ray photoelectron spectroscopy) results confirmed the presence of elemental silver and gold. X-ray diffraction (XRD) pattern revealed the formation of face-centered cubic structure for AgNPs and AuNPs. The Fourier-transform infrared (FTIR) spectrum indicated the presence of possible functional groups in the biomolecule responsible for capping the nanoparticles. The AgNPs treated HCT116 cells showed 78% viability at highest concentration (350μg/mL), while AuNPs showed 71% viability at highest concentration (350μg/mL) using MTT assay, which provides promising approach for alternative nano-drug development. The antimicrobial activity of the nanoparticles was investigated using Pseudomonas aeruginosa (P.aeruginosa) in which damaging the cell membrane was observed by TEM images. Our results revealed that the green synthesis method is easy, rapid, inexpensive, eco-friendly and efficient in developing multifunctional nanoparticles in near future in the field of biomedicine, water treatment and nanobiotechnology. Copyright © 2017. Published by Elsevier B.V.

  11. Nanosilver Biocidal Properties and Their Application in Disinfection of Hatchers in Poultry Processing Plants

    PubMed Central

    Banach, Marcin; Tymczyna, Leszek; Chmielowiec-Korzeniowska, Anna; Pulit-Prociak, Jolanta

    2016-01-01

    The aim of this study was to use aqueous suspensions of silver nanoparticles with a wide spectrum of particle sizes, variable morphology, high stability, and appropriate physicochemical properties to examine their bactericidal and fungicidal properties against microorganisms present in poultry processing plants. At the same time, the particles were tested for preventing the production of odorogenous pollutants during incubation and thereby reducing the emission of harmful gases from such types of facilities. The results show that the use of nanosilver preparations in order to disinfect eggs and hatchers reduced microbiological contamination. The bactericidal and fungicidal efficacy of the applied preparation was comparable to UV radiation and its effectiveness increasing during the incubation. Good results were achieved in terms of the level of organic gaseous contaminants, which decreased by 86% after the application of the nanosilver preparation. PMID:26903785

  12. Antimicrobial activity and self-assembly behavior of antimicrobial peptide chensinin-1b with lipophilic alkyl tails.

    PubMed

    Dong, Weibing; Liu, Ziang; Sun, Liying; Wang, Cui; Guan, Yue; Mao, Xiaoman; Shang, Dejing

    2018-04-25

    The threshold hydrophobicity and amphipathic structure of the peptidic chain are important for the biological function of antimicrobial peptides. Chensinin-1b exhibits broad-spectrum bactericidal activity with no hemolytic activity but has almost no anticancer ability against the selected cancer cell lines. In this study, the conjugation of aliphatic acid was designed with different lengths of N-terminal of chensinin-1b, the antimicrobial activity of the resulting lipo-chensinin-1b was examined, in which OA-C1b showed much stronger activity than those of cheninin-1b and the other two lipopeptides. The membrane interaction between the lipo-chensinin-1b and real/mimetic bacterial cell membrane was investigated. Electrostatic interactions between the lipo-chensinin-1b and lipopolysaccharides were detected by isothermal titration calorimetry and the binding affinities were 10.83 μM, 8.77 μM and 7.35 μM for OA-C1b, LA-C1b and PA-C1b, respectively. The antimicrobial activity and membrane interaction ability of the lipo-chensinin-1b followed this order: OA-C1b > chensinin-1b > LA-C1b > PA-C1b. In addition, the lipo-chensinin-1b also exhibited lytic activity against various cancer cells and demonstrated the ability to inhibit LPS-stimulated cytokine release from human U937 cells. The CD spectra indicated that the helical or β-strands contents were existed as the main components in TFE or LPS solution, respectively. The self-assembly behavior was trigged by the solution pH and affected by the length of carbon chain, in which chensinin-1b, OA-C1b, LA-C1b and PA-C1b formed micelles at neutral pH and the micelle size increased for chensinin-1b, OA-C1b and LA-C1b. PA-C1b formed nanofibers in an acidic environment indicated by TEM experiments, and the peptides formed aggregates in an acidic environment and re-dissociated when the pH was adjusted to neutral. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Cyanide, Peroxide and Nitric Oxide Formation in Solutions of Hydroxyurea Causes Cellular Toxicity and May Contribute to its Therapeutic Potency

    PubMed Central

    Kuong, Kawai J.; Kuzminov, Andrei

    2009-01-01

    Hydroxyurea is a potent remedy against a variety of ailments and an efficient inhibitor of DNA synthesis, yet its pharmacology is unclear. Hydroxyurea acts in Escherichia coli by the same mechanism as it does in eukaryotes, via inhibition of ribonucleotide reductase. When examining a controversy about concentrations of hydroxyurea that prevent thymineless death in E. coli, we found instability in hydroxyurea solutions which avoided prior detection due to its peculiar nature. In contrast to freshly dissolved hydroxyurea, which did not affect respiration and was bacteriostatic, one-day-old hydroxyurea solutions inhibited respiration and were immediately bactericidal. Respiration was inhibited by two gasses, hydrogen cyanide (HCN) and nitric oxide (NO), whose appearance we detected in “aged” hydroxyurea stocks by GC-MS; however, neither gas was bactericidal. While determining the cause of toxicity, we found that hydroxyurea damages DNA directly. We also demonstrated accumulation of peroxides in hydroxyurea solutions by enzymatic assays, which explains the toxicity, as both NO and HCN are known to kill bacteria when combined with hydrogen peroxide. Remarkably, we found that bactericidal effects of NO + H2O2 and HCN + H2O2 mixtures were further synergistic. Accumulation of decomposition products in solutions of hydroxyurea may explain the broad therapeutic effects of this drug. PMID:19467244

  14. Production and Characterization of Antifungal Compounds Produced by Lactobacillus plantarum IMAU10014

    PubMed Central

    Wang, HaiKuan; Yan, YanHua; Wang, JiaMing; Zhang, HePing; Qi, Wei

    2012-01-01

    Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis. It is the first report that lactic acid bacteria produce antifungal Benzeneacetic acid, 2-propenyl ester. Of these, the antifungal products also have a broad spectrum of antifungal activity, namely against Botrytis cinerea, Glomerella cingulate, Phytophthora drechsleri Tucker, Penicillium citrinum, Penicillium digitatum and Fusarium oxysporum, which was identified by the overlay and well-diffusion assay. F. oxysporum, P. citrinum and P. drechsleri Tucker were the most sensitive among molds. PMID:22276116

  15. Towards isozyme-selective HDAC inhibitors for interrogating disease.

    PubMed

    Gupta, Praveer; Reid, Robert C; Iyer, Abishek; Sweet, Matthew J; Fairlie, David P

    2012-01-01

    Histone deacetylase (HDAC) enzymes have emerged as promising targets for the treatment of a wide range of human diseases, including cancers, inflammatory and metabolic disorders, immunological, cardiovascular, and infectious diseases. At present, such applications are limited by the lack of selective inhibitors available for each of the eighteen HDAC enzymes, with most currently available HDAC inhibitors having broad-spectrum activity against multiple HDAC enzymes. Such broad-spectrum activity maybe useful in treating some diseases like cancers, but can be detrimental due to cytotoxic side effects that accompany prolonged treatment of chronic diseased states. Here we summarize progress towards the design and discovery of HDAC inhibitors that are selective for some of the eleven zinc-containing classical HDAC enzymes, and identify opportunities to use such isozyme-selective inhibitors as chemical probes for interrogating the biological roles of individual HDAC enzymes in diseases.

  16. CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming

    PubMed Central

    Woo, Joo Yong; Jeong, Kwang Ju; Kim, Young Jin; Paek, Kyung-Hee

    2016-01-01

    In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reactive oxygen species burst, secondary metabolite production, mitogen-activated protein kinase activation, and defense-related gene expression in response to Tobacco mosaic virus pathotype P0 (TMV-P0) infection. Suppression of CaLecRK-S.5 expression significantly enhanced the susceptibility to Pepper mild mottle virus pathotype P1,2,3, Xanthomonas campestris pv. vesicatoria, Phytophthora capsici, as well as TMV-P0. Additionally, β-aminobutyric acid treatment and a systemic acquired resistance assay revealed that CaLecRK-S.5 is involved in priming of plant immunity. Pre-treatment with β-aminobutyric acid before viral infection restored the reduced disease resistance phenotypes shown in CaLecRK-S.5-silenced plants. Systemic acquired resistance was also abolished in CaLecRK-S.5-silenced plants. Finally, RNA sequencing analysis indicated that CaLecRK-S.5 positively regulates plant immunity at the transcriptional level. Altogether, these results suggest that CaLecRK-S.5-mediated broad-spectrum resistance is associated with the regulation of priming. PMID:27647723

  17. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates.

    PubMed

    Fahey, Jed W; Stephenson, Katherine K; Wade, Kristina L; Talalay, Paul

    2013-05-24

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 260-320 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Photobactericidal activity of methylene blue derivatives against vancomycin-resistant Enterococcus spp.

    PubMed

    Wainwright, M; Phoenix, D A; Gaskell, M; Marshall, B

    1999-12-01

    The toxicities and phototoxicities of methylene blue and its two methylated derivatives were measured against one standard and three vancomycin-resistant pathogenic strains of Enterococcus spp. Each of the compounds was bactericidal and the derivatives exhibited photobactericidal activity on illumination at a 'light' dose of 6.3 J/cm(2) against one or more of the strains. Increased bactericidal and photobactericidal activity in the methylated derivatives is thought to be due to their higher hydrophobicities allowing greater interaction with the bacterial cell wall. In addition, the derivatives exhibited higher inherent photosensitizing efficacies.

  19. Antibacterial and antifungal activities of Dracontomelon dao.

    PubMed

    Khan, M R; Omoloso, A D

    2002-07-01

    The crude methanolic extracts of the leaves, stem and root barks of Drancantomelon dao and their subsequent partitioning (petrol, dichloromethane, ethyl acetate, butanol) gave fractions which demonstrated a very good level of broad spectrum antibacterial activity. The dichloromethane and butanol fractions of the leaf were the most active. Only the leaf fractions had antifungal activity, particularly the dichloromethane and butanol.

  20. Discovery and characterization of Coturnix chinensis avian β-defensin 10, with broad antibacterial activity.

    PubMed

    Ma, Deying; Lin, Lijuan; Zhang, Kexin; Han, Zongxi; Shao, Yuhao; Wang, Ruiqin; Liu, Shengwang

    2012-04-01

    A novel avian β-defensin (AvBD), AvBD10, was discovered in the liver and bone marrow tissues from Chinese painted quail (Coturnix chinensis) in the present study. The complete nucleotide sequence of quail AvBD10 contains a 207-bp open reading frame that encodes 68 amino acids. The quail AvBD10 was expressed widely in all the tissues from quails except the tongue, crop, breast muscle, and thymus and was highly expressed in the bone marrow. In contrast to the expression pattern of AvBD10 in tissues from quail, the chicken AvBD10 was expressed in all 21 tissues from the layer hens investigated, with a high level of expression in the kidney, lung, liver, bone marrow, and Harderian glands. Recombinant glutathione S-transferase (GST)-tagged AvBD10s of both quail and chicken were produced and purified by expression of the two cDNAs in Escherichia coli, respectively. In addition, peptide according to the respective AvBD10s sequence was synthesized, named synthetic AvBD10s. As expected, both recombinant GST-tagged AvBD10s and synthetic AvBD10s of quail and chicken exhibited similar bactericidal properties against most bacteria, including Gram-positive and Gram-negative forms. However, no significant bactericidal activity was found for quail recombinant GST-tagged AvBD10 against Salmonella choleraesuis or for chicken recombinant GST-tagged AvBD10 against Proteus mirabilis. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  1. Role of Bactericidal Peptidoglycan Recognition Proteins in Regulating Gut Microbiota and Obesity

    DTIC Science & Technology

    2018-03-01

    s) Pglyrps have an established role in innate immunity, bactericidal activity , and inflammatory diseases. Our new data suggest that in addition...genetic cause remains unknown. We report that deletion of the innate immunity antibacterial gene Nod2 abolishes this resistance, as Nod2−/− BALB/c mice...stimula- tion of Nod2 results in the activation of NF-κB and MAP kinase-signaling cascades and production of inflam- matory molecules and anti-microbial

  2. Insights into the functionality of the putative residues involved in enterocin AS-48 maturation.

    PubMed

    Cebrián, Rubén; Maqueda, Mercedes; Neira, José Luis; Valdivia, Eva; Martínez-Bueno, Manuel; Montalbán-López, Manuel

    2010-11-01

    AS-48 is a 70-residue, α-helical, cationic bacteriocin produced by Enterococcus faecalis and is very singular in its circular structure and its broad antibacterial spectrum. The AS-48 preprotein consists of an N-terminal signal peptide (SP) (35 residues) followed by a proprotein moiety that undergoes posttranslational modifications to yield the mature and active circular protein. For the study of the specificity of the region of AS-48 that is responsible for maturation, three single mutants have been generated by site-directed mutagenesis in the as-48A structural gene. The substitutions were made just in the residues that are thought to constitute a recognition site for the SP cleavage enzyme (His-1, Met1) and in those involved in circularization (Met1, Trp70). Each derivative was expressed in the enterococcal JH2-2 strain containing the necessary native biosynthetic machinery for enterocin production. The importance of these derivatives in AS-48 processing has been evaluated on the basis of the production and structural characterization of the corresponding derivatives. Notably, only two of them (Trp70Ala and Met1Ala derivatives) could be purified in different forms and amounts and are characterized for their bactericidal activity and secondary structure. We could not detect any production of AS-48 in JH2-2(pAM401-81(His-1Ile)) by using the conventional chromatographic techniques, despite the high efficiency of the culture conditions applied to produce this enterocin. Our results underline the different important roles of the mutated residues in (i) the elimination of the SP, (ii) the production levels and antibacterial activity of the mature proteins, and (iii) protein circularization. Moreover, our findings suggest that His-1 is critically involved in cleavage site recognition, its substitution being responsible for the blockage of processing, thereby hampering the production of the specific protein in the cellular culture supernatant.

  3. Tilmicosin reduces lipopolysaccharide-stimulated bovine alveolar macrophage prostaglandin E(2) production via a mechanism involving phospholipases.

    PubMed

    Lakritz, Jeffrey; Tyler, Jeff W; Marsh, Antoinette E; Romesburg-Cockrell, Mary; Smith, Kathy; Holle, Julie M

    2002-01-01

    Tilmicosin is a potent antimicrobial with broad-spectrum activity against the bacterial agents involved in the bovine respiratory disease complex. Recent studies indicate that in addition to being bactericidal, tilmicosin is capable of modulating inflammation in the lung. A series of experiments were designed to determine whether tilmicosin alters alveolar macrophage-prostaglandin E(2) (PGE(2)) production induced by Escherichia coli (O55:B5) lipopolysaccharide (LPS). Twenty-two healthy Holstein bull calves were used to study the effects of LPS-induced PGE(2) production of alveolar macrophages after in vivo or in vitro treatment with tilmicosin. In Experiment 1, tilmicosin was given by subcutaneous injection (15 mg/kg) twice, 48 hours apart, to four calves; four control calves received no treatment. Twenty-four hours after the second treatment, alveolar macrophages were stimulated with LPS in vitro. In Experiment 2, alveolar macrophages from five untreated calves were harvested and treated in vitro with tilmicosin, followed by LPS stimulation. In Experiment 3, the ability of in vitro tilmicosin treatment to alter the expression of LPS-induced cyclooxygenase-2 (COX-2) mRNA was evaluated. In Experiments 4 and 5, secretory phospholipase A(2) activity was examined in untreated calves. Treatment of calves with tilmicosin resulted in reduced LPS-induced alveolar macrophage PGE(2) production. Similar reductions in PGE(2) by LPS-stimulated alveolar macrophages after in vitro tilmicosin treatment were noted. This in vitro tilmicosin treatment was not associated with reduction of the expression of LPS-induced COX-2. Alveolar macrophage phospholipase A(2) activity induced by LPS was significantly reduced by prior tilmicosin treatment in vitro. Tilmicosin (in vivo and in vitro) appears to reduce the PGE(2) eicosanoid response of LPS-stimulated alveolar macrophages by reducing the in vitro substrate availability without altering in vitro COX-2 mRNA expression.

  4. Antimicrobial effect of the Tunisian Nana variety Punica granatum L. extracts against Salmonella enterica (serovars Kentucky and Enteritidis) isolated from chicken meat and phenolic composition of its peel extract.

    PubMed

    Wafa, Ben Ajmia; Makni, Mohamed; Ammar, Sonda; Khannous, Lamia; Hassana, Amal Ben; Bouaziz, Mohamed; Es-Safi, Nour Eddine; Gdoura, Radhouane

    2017-01-16

    Punica granatum L. is widely recognized for its potency against a broad spectrum of bacterial pathogens. The purpose of this study was to explore the inhibitory and the bactericidal activities of Punica granatum against Salmonella strains. The effect of extracts obtained from different parts (peels, seeds, juice and flowers) of pomegranate and using different solvents against Salmonella enterica serovars Kentucky and Enteritidis isolated from chicken meat was thus investigated. Salmonella strains were identified with the standard API-20E system and confirmed by real time PCR. The obtained results showed that the highest antibacterial activity against Salmonella strains was observed with the peels ethanolic extract giving MIC values ranging from 10.75 to 12.5mg/mL. The ethanolic extract of P. granatum Nana peels at 0.8 and 1.6mg/g significantly inhibited the growth of Salmonella Kentucky in chicken meat stored at 4°C. The phenolic composition of the ethanolic peel extract was explored by HPLC coupled to both DAD and ESI/TOF-MS detections. The obtained results allowed the detection of 21 phytochemical compounds among which various phenolic compounds have been identified on the basis of their UV and MS spectra as well as with literature data. Among the detected compounds, anthocyanins, ellagitannins, ellagic acid derivatives and flavanols were further characterized through MS-MS analysis. Our results showed thus that the Tunisian variety Nana pomegranate constitutes a good source of bioactive compounds with potent antimicrobial activity on the growth of Salmonella strains suggesting that the studied pomegranate cultivar could be a natural remedy to minimize the emergence of Salmonella enterica strains which is often involved in food borne illness. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Superior bactericidal activity of N-bromine compounds compared to their N-chlorine analogues can be reversed under protein load.

    PubMed

    Gottardi, W; Klotz, S; Nagl, M

    2014-06-01

    To investigate and compare the bactericidal activity (BA) of active bromine and chlorine compounds in the absence and presence of protein load. Quantitative killing tests against Escherichia coli and Staphylococcus aureus were performed both in the absence and in the presence of peptone with pairs of isosteric active chlorine and bromine compounds: hypochlorous and hypobromous acid (HOCl and HOBr), dichloro- and dibromoisocyanuric acid, chlorantine and bromantine (1,3-dibromo- and 1,3 dichloro-5,5-dimethylhydantoine), chloramine T and bromamine T (N-chloro- and N-bromo-4-methylbenzenesulphonamide sodium), and N-chloro- and N-bromotaurine sodium. To classify the bactericidal activities on a quantitative basis, an empirical coefficient named specific bactericidal activity (SBA), founded on the parameters of killing curves, was defined: SBA= mean log reductions/(mean exposure times x concentration) [mmol 1(-1) min (-1)]. In the absence of peptone, tests with washed micro-organisms revealed a throughout higher BA of bromine compounds with only slight differences between single substances. This was in contrast to chlorine compounds, whose killing times differed by a factor of more than four decimal powers. As a consequence, also the isosteric pairs showed according differences. In the presence of peptone, however, bromine compounds showed an increased loss of BA, which partly caused a reversal of efficacy within isosteric pairs. In medical practice, weakly oxidizing active chlorine compounds like chloramines have the highest potential as topical anti-infectives in the presence of proteinaceous material (mucous membranes, open wounds). Active bromine compounds, on the other hand, have their chance at insensitive body regions with low organic matter, for example skin surfaces. The expected protein load is one of the most important parameters for selection of a suited active halogen compound. © 2014 The Society for Applied Microbiology.

  6. In vitro activity of pirodavir (R 77975), a substituted phenoxy-pyridazinamine with broad-spectrum antipicornaviral activity.

    PubMed Central

    Andries, K; Dewindt, B; Snoeks, J; Willebrords, R; van Eemeren, K; Stokbroekx, R; Janssen, P A

    1992-01-01

    Pirodavir (R 77975) is the prototype of a novel class of broad-spectrum antipicornavirus compounds. Although its predecessor, R 61837, a substituted phenyl-pyridazinamine, was effective in inhibiting 80% of 100 serotypes tested (EC80) at concentrations above 32 micrograms/ml, pirodavir inhibits the same percentage of viruses at 0.064 micrograms/ml. Whereas R 61837 was active almost exclusively against rhinovirus serotypes of antiviral group B, pirodavir is broad spectrum in that it is highly active against both group A and group B rhinovirus serotypes. Pirodavir is also effective in inhibiting 16 enteroviruses, with an EC80 of 1.3 micrograms/ml. Susceptible rhinovirus serotypes were rendered noninfectious by direct contact with the antiviral compound. Their infectivity was not restored by dilution of virus-drug complexes, but was regained by organic solvent extraction of the compound for most serotypes. Neutralized viruses became stabilized to acid and heat, strongly suggesting a direct interaction of the compounds with viral capsid proteins. Mutants resistant to R 61837 (up to 85 times the MIC) were shown to bear some cross-resistance (up to 23 times the MIC) to the new compound, indicating that pirodavir also binds into the hydrophobic pocket beneath the canyon floor of rhinoviruses. Pirodavir acts at an early stage of the viral replication cycle (up to 40 min after infection) and reduces the yield of selected rhinoviruses 1,000- to 100,000-fold in a single round of replication. The mode of action appears to be serotype specific, since pirodavir was able to inhibit the adsorption of human rhinovirus 9 but not that of human rhinovirus 1A. Pirodavir is a novel capsid-binding antipicornavirus agent with potent in vitro activity against both group A and group B rhinovirus serotypes. PMID:1317142

  7. Secretory phospholipase A2 in dromedary tears: a host defense against staphylococci and other gram-positive bacteria.

    PubMed

    Ben Bacha, Abir; Abid, Islem

    2013-03-01

    The best known physiologic function of secreted phospholipase A2 (sPLA2) group IIA (sPLA2-IIA) is defense against bacterial infection through hydrolytic degradation of bacterial membrane phospholipids. In fact, sPLA2-IIA effectively kills Gram-positive bacteria and to a lesser extent Gram-negative bacteria and is considered a major component of the eye's innate immune defense system. The antibacterial properties of sPLA2 have been demonstrated in rabbit and human tears. In this report, we have analyzed the bactericidal activity of dromedary tears and the subsequently purified sPLA2 on several Gram-positive bacteria. Our results showed that the sPLA2 displays a potent bactericidal activity against all the tested bacteria particularly against the Staphylococcus strains when tested in the ionic environment of tears. There is a synergic action of the sPLA2 with lysozyme when added to the bacteria culture prior to sPLA2. Interestingly, lysozyme purified from dromedary tears showed a significant bactericidal activity against Listeria monocytogene and Staphylococcus epidermidis, whereas the one purified from human tears displayed no activity against these two strains. We have also demonstrated that Ca(2+) is crucial for the activity of dromedary tear sPLA2 and to a less extent Mg(2+) ions. Given the presence of sPLA2 in tears and intestinal secretions, this enzyme may play a substantial role in innate mucosal and systemic bactericidal defenses against Gram-positive bacteria.

  8. Construction and Characterization of Broad-Spectrum Promoters for Synthetic Biology.

    PubMed

    Yang, Sen; Liu, Qingtao; Zhang, Yunfeng; Du, Guocheng; Chen, Jian; Kang, Zhen

    2018-01-19

    Characterization of genetic circuits and biosynthetic pathways in different hosts always requires promoter substitution and redesigning. Here, a strong, broad-spectrum promoter, P bs , for Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae was constructed, and it was incorporated into the minimal E. coli-B. subtilis-S. cerevisiae shuttle plasmid pEBS (5.8 kb). By applying a random mutation strategy, three broad-spectrum promoters P bs1 , P bs2 , and P bs3 , with different strengths were generated and characterized. These broad-spectrum promoters will expand the synthetic biology toolbox for E. coli, B. subtilis, and S. cerevisiae.

  9. Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes

    NASA Astrophysics Data System (ADS)

    Karasenkov, Y.; Frolov, G.; Pogorelsky, I.; Latuta, N.; Gusev, A.; Kuznetsov, D.; Leont'ev, V.

    2015-11-01

    New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse - condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO2), iron oxide (Fe2O3), tantalum oxide (TaO), vanadium oxide (VO2), cobalt oxide (CoO), tantalum dioxide TaO2, zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe2O3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity.

  10. Membrane-acting bacteriocin purified from a soil isolate Pediococcus pentosaceus LB44 shows broad host-range.

    PubMed

    Kaur, Ramanjeet; Tiwari, Santosh Kumar

    2018-04-15

    Bacteriocin LB44 was purified from cell-free supernatant (CFS) of Pediococcus pentosaceus LB44 using activity-guided chromatography techniques. It was stable up to 121 °C, pH 2.0-6.0, sensitive to proteinase K, papain and trypsin, and retained complete activity in the presence of organic solvents tested. The molecular weight of bacteriocin was ∼6 kDa and initial ten amino acid residues (GECGMCXECG) suggested a new compound. The loss in viable cell count and K + ion efflux of target cells of Micrococcus luteus suggested bactericidal activity. The cell membrane of bacteriocin-treated cells was found to be ruptured which was further confirmed by Fourier Transform Infrared (FTIR) analysis suggesting interaction of bacteriocin with phospholipids in cell membrane. It showed broad host-range and inhibited the growth of Lactobacillus delbrueckii NRRL B-4525, L. plantarum NRRL B-4496, L. acidophilus NRRL B-4495, Enterococcus hirae LD3, Weissella confusa LM85, Staphylococcus aureus, Salmonella typhi ATCC 13311, Serratia marcescens ATCC 27137, Pseudomonas aeruginosa ATCC 27853, Proteus vulgaris ATCC 29905, Haloferax larsenii HA1, HA3, HA8, HA9 and HA10. These properties suggested a new bacteriocin from soil isolate P. pentosaceus LB44 which may offers possible applications in food-safety and therapeutics. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Rational Design of Broad Spectrum Antibacterial Activity Based on a Clinically Relevant Enoyl-Acyl Carrier Protein (ACP) Reductase Inhibitor*

    PubMed Central

    Schiebel, Johannes; Chang, Andrew; Shah, Sonam; Lu, Yang; Liu, Li; Pan, Pan; Hirschbeck, Maria W.; Tareilus, Mona; Eltschkner, Sandra; Yu, Weixuan; Cummings, Jason E.; Knudson, Susan E.; Bommineni, Gopal R.; Walker, Stephen G.; Slayden, Richard A.; Sotriffer, Christoph A.; Tonge, Peter J.; Kisker, Caroline

    2014-01-01

    Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms. PMID:24739388

  12. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor.

    PubMed

    Schiebel, Johannes; Chang, Andrew; Shah, Sonam; Lu, Yang; Liu, Li; Pan, Pan; Hirschbeck, Maria W; Tareilus, Mona; Eltschkner, Sandra; Yu, Weixuan; Cummings, Jason E; Knudson, Susan E; Bommineni, Gopal R; Walker, Stephen G; Slayden, Richard A; Sotriffer, Christoph A; Tonge, Peter J; Kisker, Caroline

    2014-06-06

    Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The therapeutic applications of antimicrobial peptides (AMPs): a patent review.

    PubMed

    Kang, Hee-Kyoung; Kim, Cheolmin; Seo, Chang Ho; Park, Yoonkyung

    2017-01-01

    Antimicrobial peptides (AMPs) are small molecules with a broad spectrum of antibiotic activities against bacteria, yeasts, fungi, and viruses and cytotoxic activity on cancer cells, in addition to anti-inflammatory and immunomodulatory activities. Therefore, AMPs have garnered interest as novel therapeutic agents. Because of the rapid increase in drug-resistant pathogenic microorganisms, AMPs from synthetic and natural sources have been developed using alternative antimicrobial strategies. This article presents a broad analysis of patents referring to the therapeutic applications of AMPs since 2009. The review focuses on the universal trends in the effective design, mechanism, and biological evolution of AMPs.

  14. Antagonism between Bacteriostatic and Bactericidal Antibiotics Is Prevalent

    PubMed Central

    Lázár, Viktória; Papp, Balázs; Arnoldini, Markus; Abel zur Wiesch, Pia; Busa-Fekete, Róbert; Fekete, Gergely; Pál, Csaba; Ackermann, Martin; Bonhoeffer, Sebastian

    2014-01-01

    Combination therapy is rarely used to counter the evolution of resistance in bacterial infections. Expansion of the use of combination therapy requires knowledge of how drugs interact at inhibitory concentrations. More than 50 years ago, it was noted that, if bactericidal drugs are most potent with actively dividing cells, then the inhibition of growth induced by a bacteriostatic drug should result in an overall reduction of efficacy when the drug is used in combination with a bactericidal drug. Our goal here was to investigate this hypothesis systematically. We first constructed time-kill curves using five different antibiotics at clinically relevant concentrations, and we observed antagonism between bactericidal and bacteriostatic drugs. We extended our investigation by performing a screen of pairwise combinations of 21 different antibiotics at subinhibitory concentrations, and we found that strong antagonistic interactions were enriched significantly among combinations of bacteriostatic and bactericidal drugs. Finally, since our hypothesis relies on phenotypic effects produced by different drug classes, we recreated these experiments in a microfluidic device and performed time-lapse microscopy to directly observe and quantify the growth and division of individual cells with controlled antibiotic concentrations. While our single-cell observations supported the antagonism between bacteriostatic and bactericidal drugs, they revealed an unexpected variety of cellular responses to antagonistic drug combinations, suggesting that multiple mechanisms underlie the interactions. PMID:24867991

  15. Algerian propolis extracts: Chemical composition, bactericidal activity and in vitro effects on gilthead seabream innate immune responses.

    PubMed

    Soltani, El-Khamsa; Cerezuela, Rebeca; Charef, Noureddine; Mezaache-Aichour, Samia; Esteban, Maria Angeles; Zerroug, Mohamed Mihoub

    2017-03-01

    Propolis has been used as a medicinal agent for centuries. The chemical composition of four propolis samples collected from four locations of the Sétif region, Algeria, using gas chromatography-mass spectrometry was determined. More than 20 compounds and from 30 to 35 compounds were identified in the aqueous and ethanolic extracts, respectively. Furthermore, the antimicrobial activity of the propolis extracts against two marine pathogenic bacteria was evaluated. Finally, the in vitro effects of propolis on gilthead seabream (Sparus aurata L.) leucocyte activities were measured. The bactericidal activity of ethanolic extracts was very high against Shewanella putrefaciens, average against Photobacterium damselae and very low against Vibrio harveyi. The lowest bactericidal activity was always that found for the aqueous extracts. When the viability of gilthead seabream head-kidney leucocytes was measured after 30 min' incubation with the different extracts, both the ethanolic and aqueous extracts of one of the propolis samples (from Babor) and the aqueous extract of another (from Ain-Abbassa) provoked a significant decrease in cell viability when used at concentrations of 100 and 200 μg ml -1 . Furthermore, significant inhibitory effects were recorded on leucocyte respiratory burst activity when isolated leucocytes where preincubated with the extracts. This effect was dose-dependent in all cases except when extracts from a third propolis sample (from Boutaleb) were used. Our findings suggest that some of Algerian propolis extracts have bactericidal activity against important bacterial pathogens in seabream and significantly modulate in vitro leucocyte activities, confirming their potential as a source of new natural biocides and/or immunomodulators in aquaculture practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Synthesis, anti-inflammatory, bactericidal activities and docking studies of novel 1,2,3-triazoles derived from ibuprofen using click chemistry.

    PubMed

    Angajala, Kishore Kumar; Vianala, Sunitha; Macha, Ramesh; Raghavender, M; Thupurani, Murali Krishna; Pathi, P J

    2016-01-01

    Nonsteroidal anti-inflammatory drugs are of vast therapeutic benefit in the treatment of different types of inflammatory conditions. 1,2,3-Triazoles and their derivatives have a wide range of applications as anti-bacterial, anti-fungal, anti-tubercular, cytostatic, anti-HIV, anti-allergic, anti-neoplastic and anti-inflammatory (AI) agents. Considering the individual biological and medicinal importance of ibuprofen and 1,2,3-triazoles, we wanted to explore novel chemical entities based on ibuprofen and triazole moieties towards their biological significance. Click chemistry has utilized as an ideal strategy to prepare novel ibuprofen-based 1,4-disubstituted 1,2,3-triazole containing molecules. These compounds were screened for their in vivo AI activity, among all the synthesized analogues 13o was shown potent effect than the reference AI drug ibuprofen at the same concentration (10 mg/kg body weight). Compounds 13l, 13g, 13c, 13k, 13i, 13n, 13m and 13j were shown significant AI activity. These triazole analogues were also screened for their bactericidal profile. Compounds 13c, 13i, 13l and 13o exhibited considerable bactericidal activity against gram positive and gram negative strains. In addition to this, molecular docking studies were also carried out into cyclooxygenase-2 active site to predict the affinity and orientation of these novel compounds (13a-q). In summary, we have designed and synthesized 1,2,3-triazole analogues of ibuprofen in good yields using Click chemistry approach. AI and bactericidal activities of these compounds were evaluated and shown remarkable results.

  17. Antimicrobial potential of Dialium guineense (Wild.) stem bark on some clinical isolates in Nigeria

    PubMed Central

    Olajubu, FA; Akpan, I; Ojo, DA; Oluwalana, SA

    2012-01-01

    Context: The persistent increase in the number of antibiotic-resistant strains of microorganisms has led to the development of more potent but also more expensive antibiotics. In most developing countries of the world these antibiotics are not readily affordable, thus making compliance difficult. This calls for research into alternative sources of antimicrobials. Dialium guineense is a shrub of the family Leguminosae. Its stem bark is used for the treatment of cough, toothache, and bronchitis. Aims: Despite the acclaimed efficacy of D guineense, there is no scientific evidence in its support. This work was carried out to assess the antimicrobial activity of D guineense in vitro against some clinical isolates. Materials and Methods: D guineense stem bark was collected and 50 gm of air-dried and powdered stem bark of the plant was soaked for 72 hours in 1 l of each of the six solvents used in this study. Each mixture was refluxed, agitated at 200 rpm for 1 hour, filtered using Whatman No. 1 filter paper and, finally, freeze dried. The extracts were then tested for antimicrobial activity using the agar diffusion method. Results: The highest percentage yield of 23.2% was obtained with ethanol. Phytochemical screening showed that D guineense contains anthraquinone, alkaloids, flavonoids, tannins, and saponins. The antimicrobial activity of the extracts revealed a broad spectrum of activity, with Salmonella typhi and Staphylococcus aureusa showing the greatest zones of inhibition (18.0 mm). Only Candida albicans among the fungi tested was inhibited by the extract. The greatest zone of inhibition among the fractions was 16.0 mm. D guineense exhibited bactericidal activity at the 7th and 9th hours against Streptococcus pneumoniae and S. aureus 25923 while the 10th hour against S. typhi and C. albicans. The greatest activity was noted against S pneumoniae, where there was reduced viable cell count after 6 hours of exposure. Conclusion: Stem bark extract of D guineense (Wild.) has the potential to be developed into an antimicrobial agent PMID:23776811

  18. Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite

    PubMed Central

    Vasquez-Peña, M.; Raymond-Herrera, O.; Villavicencio-García, H.; Petranovskii, V.; Vazquez-Duhalt, R.; Huerta-Saquero, A.

    2016-01-01

    The antimicrobial activity of silver nanoparticles (AgNPs) is currently used as an alternative disinfectant with diverse applications, ranging from decontamination of aquatic environments to disinfection of medical devices and instrumentation. However, incorporation of AgNPs to the environment causes collateral damage that should be avoided. In this work, a novel Ag-based nanocomposite (CEOBACTER) was successfully synthetized. It showed excellent antimicrobial properties without the spread of AgNPs into the environment. The complete CEOBACTER antimicrobial characterization protocol is presented herein. It is straightforward and reproducible and could be considered for the systematic characterization of antimicrobial nanomaterials. CEOBACTER showed minimal bactericidal concentration of 3 μg/ml, bactericidal action time of 2 hours and re-use capacity of at least five times against E. coli cultures. The bactericidal mechanism is the release of Ag ions. CEOBACTER displays potent bactericidal properties, long lifetime, high stability and re-use capacity, and it does not dissolve in the solution. These characteristics point to its potential use as a bactericidal agent for decontamination of aqueous environments. PMID:27824932

  19. In vitro evaluation of broad-spectrum beta-lactams in the philippines medical centers: role of fourth-generation cephalosporins. The Philippines Antimicrobial Resistance Study Group.

    PubMed

    Johnson, D M; Biedenbach, D J; Jones, R N

    1999-12-01

    Cefepime is a potent broad-spectrum "fourth-generation" cephalosporin. The in vitro activity of cefepime was compared to that of cefpirome, ceftazidime, ceftriaxone, imipenem, and piperacillin/tazobactam in a multilaboratory (nine medical centers) Philippine surveillance project from March through October 1998. A total of 626 Gram-positive and Gram-negative organisms (10 species groups) were tested by the Etest method (AB BIODISK, Solna, Sweden) with results validated by current quality control strain analysis. The overall rank order of usable spectrum of activity was imipenem (4.2% resistance), cefepime (4.5%), cefpirome (5.0%), piperacillin/tazobactam (5.8%) > ceftriaxone (11.2%) > ceftazidime (15.3%), and results did not differ significantly between medical centers. Ceftazidime-resistant Escherichia coli and Klebsiella spp. occurred at rates of 13.3% and 31.1%, respectively, indicating extended-spectrum beta-lactamase (ESBL) activity. Imipenem (100% susceptible), cefepime, and cefpirome (both > or = 97.8% susceptible) were active in vitro against these ESBL phenotypes. Organisms with ceftazidime and/or ceftriaxone-resistant profiles consistent for hyper-production of Amp C cephalosporinases were detected at high rates among the Citrobacter spp. (29.2%) and Enterobacter spp. (45.8%); however, imipenem (100.0% susceptible) and cefepime (98.9%) remained active. Cefepime and imipenem (both 87.5% susceptible) were the most active agents tested against Acinetobacter spp. whereas piperacillin/tazobactam was most effective against P. aeruginosa (80.0% susceptible). Most tested beta-lactams (except ceftazidime) were active versus oxacillin-susceptible staphylococci. These data should be used as a guide for treatment selection with beta-lactam compounds in the Philippines and to serve as a resistance benchmark in comparisons with future studies in this nation.

  20. Defining Antimicrobial Textile Requirements for Military Applications - A Gap Analysis

    DTIC Science & Technology

    2016-05-09

    biocide that has broad spectrum antibacterial , antiviral, and antifungal activity . Copper behaves similarly to silver by binding and inactivating...urogenital health conditions in active duty Soldiers from 2002-2011...personnel in order to generate and update requirements and standards for incorporating anti-odor, antibacterial , and antifungal properties into CIE

  1. Antagonistic activity of Bacillus subtilis SB1 and its biocontrol effect on tomato bacterial wilt

    USDA-ARS?s Scientific Manuscript database

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, isolated from tomato roots, showed a broad-spectrum of antimicrobial activity in in vitro experiments. It inhibited the growth of many plant pathogens, including Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, Fusarium ox...

  2. Indaziflam: A new cellulose biosynthesis inhibiting herbicide provides long-term control of invasive winter annual grasses

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Indaziflam (Esplanade™, Bayer CropScience) is a cellulose biosynthesis inhibiting (CBI) herbicide that is a unique mode of action for resistance management and has broad spectrum activity at low application rates. This research further explores indaziflam’s activity on monocotyledons and...

  3. Phytochemicals attenuating aberrant activation of ß-catenin in cancer cells

    USDA-ARS?s Scientific Manuscript database

    Phytochemicals are a rich source of chemoprevention agents but their effects on modulating the Wnt/ß-catenin signaling pathway have remained largely uninvestigated. Aberrantly activated Wnt signaling can result in the abnormal stabilization of ß-catenin, a key causative step in a broad spectrum of c...

  4. Ten Projects to Involve Your Students Directly in French.

    ERIC Educational Resources Information Center

    van Lent, Peter C.

    1981-01-01

    Proposes 10 activities to provide French classes of all levels with a broad spectrum of language projects involving direct and active use of French including students polling each other, skits based on television commercials, geographical "show and tell," cooking French dishes, writing a monthly newspaper, and field trips. (BK)

  5. A cost analysis of a broad-spectrum antibiotic therapy in the empirical treatment of health care-associated infections in cirrhotic patients

    PubMed Central

    Lucidi, Cristina; Di Gregorio, Vincenza; Ceccarelli, Giancarlo; Venditti, Mario; Riggio, Oliviero; Merli, Manuela

    2017-01-01

    Background Early diagnosis and appropriate treatment of infections in cirrhosis are crucial. As new guidelines in this context, particularly for health care-associated (HCA) infections, would be needed, we performed a trial documenting whether an empirical broad-spectrum antibiotic therapy is more effective than the standard one for these infections. Because of the higher daily cost of broad-spectrum than standard antibiotics, we performed a cost analysis to compare: 1) total drug costs, 2) profitability of hospital admissions. Methods This retrospective observational analysis was performed on patients enrolled in the trial NCT01820026, in which consecutive cirrhotic patients with HCA infections were randomly assigned to a standard vs a broad-spectrum treatment. Antibiotic daily doses, days of treatment, length of hospital stay, and DRG (diagnosis-related group) were recorded from the clinical trial medical records. The profitability of hospitalizations was calculated considering DRG tariffs divided by length of hospital stay. Results We considered 84 patients (42 for each group). The standard therapy allowed to obtain a first-line treatment cost lower than in the broad-spectrum therapy. Anyway, the latter, being related to a lower failure rate (19% vs 57.1%), resulted in cost saving in terms of cumulative antibiotic costs (first- and second-line treatments). The mean cost saving per patient for the broad-spectrum arm was €44.18 (−37.6%), with a total cost saving of about €2,000. Compared to standard group, we observed a statistically significant reduction in hospital stay from 17.8 to 11.8 days (p<0.002) for patients treated with broad-spectrum antibiotics. The distribution of DRG tariffs was similar in the two groups. According to DRG, the shorter length of hospital stay of the broad-spectrum group involved a higher mean profitable daily cost than standard group (€345.61 vs €252.23; +37%). Conclusion Our study supports the idea that the use of a broad-spectrum empirical treatment for HCA infections in cirrhosis would be cost-saving and that hospitals need to be aware of the clinical and economic consequences of a wrong antibiotic treatment in this setting. PMID:28721080

  6. A cost analysis of a broad-spectrum antibiotic therapy in the empirical treatment of health care-associated infections in cirrhotic patients.

    PubMed

    Lucidi, Cristina; Di Gregorio, Vincenza; Ceccarelli, Giancarlo; Venditti, Mario; Riggio, Oliviero; Merli, Manuela

    2017-01-01

    Early diagnosis and appropriate treatment of infections in cirrhosis are crucial. As new guidelines in this context, particularly for health care-associated (HCA) infections, would be needed, we performed a trial documenting whether an empirical broad-spectrum antibiotic therapy is more effective than the standard one for these infections. Because of the higher daily cost of broad-spectrum than standard antibiotics, we performed a cost analysis to compare: 1) total drug costs, 2) profitability of hospital admissions. This retrospective observational analysis was performed on patients enrolled in the trial NCT01820026, in which consecutive cirrhotic patients with HCA infections were randomly assigned to a standard vs a broad-spectrum treatment. Antibiotic daily doses, days of treatment, length of hospital stay, and DRG (diagnosis-related group) were recorded from the clinical trial medical records. The profitability of hospitalizations was calculated considering DRG tariffs divided by length of hospital stay. We considered 84 patients (42 for each group). The standard therapy allowed to obtain a first-line treatment cost lower than in the broad-spectrum therapy. Anyway, the latter, being related to a lower failure rate (19% vs 57.1%), resulted in cost saving in terms of cumulative antibiotic costs (first- and second-line treatments). The mean cost saving per patient for the broad-spectrum arm was €44.18 (-37.6%), with a total cost saving of about €2,000. Compared to standard group, we observed a statistically significant reduction in hospital stay from 17.8 to 11.8 days ( p <0.002) for patients treated with broad-spectrum antibiotics. The distribution of DRG tariffs was similar in the two groups. According to DRG, the shorter length of hospital stay of the broad-spectrum group involved a higher mean profitable daily cost than standard group (€345.61 vs €252.23; +37%). Our study supports the idea that the use of a broad-spectrum empirical treatment for HCA infections in cirrhosis would be cost-saving and that hospitals need to be aware of the clinical and economic consequences of a wrong antibiotic treatment in this setting.

  7. YODA MAP3K kinase regulates plant immune responses conferring broad-spectrum disease resistance.

    PubMed

    Sopeña-Torres, Sara; Jordá, Lucía; Sánchez-Rodríguez, Clara; Miedes, Eva; Escudero, Viviana; Swami, Sanjay; López, Gemma; Piślewska-Bednarek, Mariola; Lassowskat, Ines; Lee, Justin; Gu, Yangnan; Haigis, Sabine; Alexander, Danny; Pattathil, Sivakumar; Muñoz-Barrios, Antonio; Bednarek, Pawel; Somerville, Shauna; Schulze-Lefert, Paul; Hahn, Michael G; Scheel, Dierk; Molina, Antonio

    2018-04-01

    Mitogen-activated protein kinases (MAPKs) cascades play essential roles in plants by transducing developmental cues and environmental signals into cellular responses. Among the latter are microbe-associated molecular patterns perceived by pattern recognition receptors (PRRs), which trigger immunity. We found that YODA (YDA) - a MAPK kinase kinase regulating several Arabidopsis developmental processes, like stomatal patterning - also modulates immune responses. Resistance to pathogens is compromised in yda alleles, whereas plants expressing the constitutively active YDA (CA-YDA) protein show broad-spectrum resistance to fungi, bacteria, and oomycetes with different colonization modes. YDA functions in the same pathway as ERECTA (ER) Receptor-Like Kinase, regulating both immunity and stomatal patterning. ER-YDA-mediated immune responses act in parallel to canonical disease resistance pathways regulated by phytohormones and PRRs. CA-YDA plants exhibit altered cell-wall integrity and constitutively express defense-associated genes, including some encoding putative small secreted peptides and PRRs whose impairment resulted in enhanced susceptibility phenotypes. CA-YDA plants show strong reprogramming of their phosphoproteome, which contains protein targets distinct from described MAPKs substrates. Our results suggest that, in addition to stomata development, the ER-YDA pathway regulates an immune surveillance system conferring broad-spectrum disease resistance that is distinct from the canonical pathways mediated by described PRRs and defense hormones. © 2018 Universidad Politécnica de Madrid (UPM) New Phytologist © 2018 New Phytologist Trust.

  8. In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis.

    PubMed

    Upton, A M; Cho, S; Yang, T J; Kim, Y; Wang, Y; Lu, Y; Wang, B; Xu, J; Mdluli, K; Ma, Z; Franzblau, S G

    2015-01-01

    Nitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 against Mycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidal in vitro against replicating and nonreplicating Mycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity against Mycobacterium tuberculosis H37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10(-7). In vitro studies and in vivo studies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life. In vitro studies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependent in vivo bactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. In Vitro and In Vivo Activities of the Nitroimidazole TBA-354 against Mycobacterium tuberculosis

    PubMed Central

    Cho, S.; Yang, T. J.; Kim, Y.; Wang, Y.; Lu, Y.; Wang, B.; Xu, J.; Mdluli, K.; Ma, Z.; Franzblau, S. G.

    2014-01-01

    Nitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 against Mycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidal in vitro against replicating and nonreplicating Mycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity against Mycobacterium tuberculosis H37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10−7. In vitro studies and in vivo studies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life. In vitro studies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependent in vivo bactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole. PMID:25331696

  10. Hydrolyzable tannins, the active constituents of three Greek Cytinus taxa against several tumor cell lines.

    PubMed

    Magiatis, P; Pratsinis, H; Kalpoutzakis, E; Konstantinidou, A; Davaris, P; Skaltsounis, A L

    2001-06-01

    Hydrolyzable tannins were found to be the active cytotoxic constituents of three Greek Cytinus taxa: Cytinus ruber, Cytinus hypocistis subsp. hypocistis and Cytinus hypocistis subsp. orientalis. The cytotoxic activity was evaluated against a broad spectrum of cancer cell lines. The structure of the active compounds was investigated with NMR and electrospray-MS/MS techniques.

  11. The RNA template channel of the RNA-dependent RNA polymerase as a target for development of antiviral therapy of multiple genera within a virus family.

    PubMed

    van der Linden, Lonneke; Vives-Adrián, Laia; Selisko, Barbara; Ferrer-Orta, Cristina; Liu, Xinran; Lanke, Kjerstin; Ulferts, Rachel; De Palma, Armando M; Tanchis, Federica; Goris, Nesya; Lefebvre, David; De Clercq, Kris; Leyssen, Pieter; Lacroix, Céline; Pürstinger, Gerhard; Coutard, Bruno; Canard, Bruno; Boehr, David D; Arnold, Jamie J; Cameron, Craig E; Verdaguer, Nuria; Neyts, Johan; van Kuppeveld, Frank J M

    2015-03-01

    The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs) target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylene)bis(oxy)]bis(5-nitro-benzonitrile)) with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family). Surprisingly, coxsackievirus B3 (CVB3) and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i) inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii) had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii) was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight into the plasticity of picornavirus polymerases at the template binding site.

  12. The RNA Template Channel of the RNA-Dependent RNA Polymerase as a Target for Development of Antiviral Therapy of Multiple Genera within a Virus Family

    PubMed Central

    van der Linden, Lonneke; Vives-Adrián, Laia; Selisko, Barbara; Ferrer-Orta, Cristina; Liu, Xinran; Lanke, Kjerstin; Ulferts, Rachel; De Palma, Armando M.; Tanchis, Federica; Goris, Nesya; Lefebvre, David; De Clercq, Kris; Leyssen, Pieter; Lacroix, Céline; Pürstinger, Gerhard; Coutard, Bruno; Canard, Bruno; Boehr, David D.; Arnold, Jamie J.; Cameron, Craig E.; Verdaguer, Nuria

    2015-01-01

    The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs) target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylene)bis(oxy)]bis(5-nitro-benzonitrile)) with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family). Surprisingly, coxsackievirus B3 (CVB3) and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i) inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii) had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii) was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight into the plasticity of picornavirus polymerases at the template binding site. PMID:25799064

  13. Loss of glyphosate efficacy: a changing weed spectrum in Georgia cotton

    USDA-ARS?s Scientific Manuscript database

    Introduction of glyphosate resistance into crops through genetic modification has revolutionized crop protection. Glyphosate, the proverbial silver bullet, is a broad spectrum herbicide with favorable environmental characteristics and effective broad-spectrum weed control that has greatly improved ...

  14. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells

    PubMed Central

    Brunati, Cristina; Thomsen, Thomas T; Gaspari, Eleonora; Maffioli, Sonia; Sosio, Margherita; Jabes, Daniela; Løbner-Olesen, Anders; Donadio, Stefano

    2018-01-01

    Abstract Objectives To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. Methods We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time–kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. Results The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Conclusions Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance. PMID:29092042

  15. Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens

    PubMed Central

    Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L.; Russo, Thomas; Edgerton, Mira

    2017-01-01

    ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60–70% killing) and A. baumannii (85–90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa, 60–80% E. cloacae and 20–60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa, but had reduced activity against biofilms of S. aureus and A. baumannii. Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae, and A. baumannii. Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections. PMID:28261570

  16. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells.

    PubMed

    Brunati, Cristina; Thomsen, Thomas T; Gaspari, Eleonora; Maffioli, Sonia; Sosio, Margherita; Jabes, Daniela; Løbner-Olesen, Anders; Donadio, Stefano

    2018-02-01

    To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time-kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  17. Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens.

    PubMed

    Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L; Russo, Thomas; Edgerton, Mira

    2017-01-01

    ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumanni , Pseudomonas aeruginosa , and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60-70% killing) and A. baumannii (85-90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa , 60-80% E. cloacae and 20-60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa , but had reduced activity against biofilms of S. aureus and A. baumannii . Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae , and A. baumannii . Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections.

  18. Antimicrobial activity of polyhexamethylene guanidine phosphate in comparison to chlorhexidine using the quantitative suspension method.

    PubMed

    Vitt, A; Sofrata, A; Slizen, V; Sugars, R V; Gustafsson, A; Gudkova, E I; Kazeko, L A; Ramberg, P; Buhlin, K

    2015-07-17

    Polyhexamethylene guanidine phosphate (PHMG-P) belongs to the polymeric guanidine family of biocides and contains a phosphate group, which may confer better solubility, a detoxifying effect and may change the kinetics and dynamics of PHMG-P interactions with microorganisms. Limited data regarding PHMG-P activity against periodontopathogenic and cariogenic microorganisms necessitates studies in this area. Aim is to evaluate polyhexamethylene guanidine phosphate antimicrobial activity in comparison to chlorhexidine. Quantitative suspension method was used enrolling Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Streptococcus mutans and Lactobacillus acidophilus. Both tested antiseptics at their clinically-used concentrations, of 0.2% (w/v) and 1% (w/v), correspondingly provided swift bactericidal effects against S. aureus, P. aeruginosa, E. coli and C. albicans, A. actinomycetemcomitans and P. gingivalis with reduction factors higher than 6.0. Diluted polyhexamethylene guanidine phosphate and chlorhexidine to 0.05% continued to display anti-bacterial activity and decreased titers of standard quality control, periopathogens to below 1.0 × 10(3) colony forming units/ml, albeit requiring prolonged exposure time. To achieve a bactericidal effect against S. mutans, both antiseptics at all concentrations required a longer exposure time. We found that a clinically-used 1% of polyhexamethylene guanidine phosphate concentration did not have activity against L. acidophilus. High RF of polyhexamethylene guanidine phosphate and retention of bactericidal effects, even at 0.05%, support the use of polyhexamethylene guanidine phosphate as a biocide with sufficient anti-microbial activity against periopathogens. Polyhexamethylene guanidine phosphate displayed bactericidal activity against periopathogens and S. mutans and could potentially be applied in the management of oral diseases.

  19. Azoxystrobin (a new evaluation)

    USDA-ARS?s Scientific Manuscript database

    Azoxystrobin is a systemic, broad-spectrum fungicide belonging to the class of methoxyacrylates, which are derived from the naturally-occurring strobilurins. It exerts its fungicidal activity by inhibiting mitochondrial respiration in fungi. This monograph provides a new evaluation of azoxystrobin...

  20. Insights into an evolutionary strategy leading to antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Hou, Chun-Feng D.; Liu, Jian-Wei; Collyer, Charles; Mitić, Nataša; Pedroso, Marcelo Monteiro; Schenk, Gerhard; Ollis, David L.

    2017-01-01

    Metallo-β-lactamases (MBLs) with activity towards a broad-spectrum of β-lactam antibiotics have become a major threat to public health, not least due to their ability to rapidly adapt their substrate preference. In this study, the capability of the MBL AIM-1 to evade antibiotic pressure by introducing specific mutations was probed by two alternative methods, i.e. site-saturation mutagenesis (SSM) of active site residues and in vitro evolution. Both approaches demonstrated that a single mutation in AIM-1 can greatly enhance a pathogen’s resistance towards broad spectrum antibiotics without significantly compromising the catalytic efficiency of the enzyme. Importantly, the evolution experiments demonstrated that relevant amino acids are not necessarily in close proximity to the catalytic centre of the enzyme. This observation is a powerful demonstration that MBLs have a diverse array of possibilities to adapt to new selection pressures, avenues that cannot easily be predicted from a crystal structure alone.

  1. Broad-spectrum non-nucleoside inhibitors for caliciviruses.

    PubMed

    Netzler, Natalie E; Enosi Tuipulotu, Daniel; Eltahla, Auda A; Lun, Jennifer H; Ferla, Salvatore; Brancale, Andrea; Urakova, Nadya; Frese, Michael; Strive, Tanja; Mackenzie, Jason M; White, Peter A

    2017-10-01

    Viruses of the Caliciviridae cause significant and sometimes lethal diseases, however despite substantial research efforts, specific antivirals are lacking. Broad-spectrum antivirals could combat multiple viral pathogens, offering a rapid solution when no therapies exist. The RNA-dependent RNA polymerase (RdRp) is an attractive antiviral target as it is essential for viral replication and lacks mammalian homologs. To focus the search for pan-Caliciviridae antivirals, the RdRp was probed with non-nucleoside inhibitors (NNIs) developed against hepatitis C virus (HCV) to reveal both allosteric ligands for structure-activity relationship enhancement, and highly-conserved RdRp pockets for antiviral targeting. The ability of HCV NNIs to inhibit calicivirus RdRp activities was assessed using in vitro enzyme and murine norovirus cell culture assays. Results revealed that three NNIs which bound the HCV RdRp Thumb I (TI) site also inhibited transcriptional activities of six RdRps spanning the Norovirus, Sapovirus and Lagovirus genera of the Caliciviridae. These NNIs included JTK-109 (RdRp inhibition range: IC 50 4.3-16.6 μM), TMC-647055 (IC 50 range: 18.8-45.4 μM) and Beclabuvir (IC 50 range: 23.8->100 μM). In silico studies and site-directed mutagenesis indicated the JTK-109 binding site was within the calicivirus RdRp thumb domain, in a pocket termed Site-B, which is highly-conserved within all calicivirus RdRps. Additionally, RdRp inhibition assays revealed that JTK-109 was antagonistic with the previously reported RdRp inhibitor pyridoxal-5'-phosphate-6-(2'-naphthylazo-6'-nitro-4',8'-disulfonate) tetrasodium salt (PPNDS), that also binds to Site-B. Moreover, like JTK-109, PPNDS was also a potent inhibitor of polymerases from six viruses spanning the three Caliciviridae genera tested (IC 50 range: 0.1-2.3 μM). Together, this study demonstrates the potential for de novo development of broad-spectrum antivirals that target the highly-conserved RdRp thumb pocket, Site-B. We also revealed three broad-spectrum HCV NNIs that could be used as antiviral scaffolds for further development against caliciviruses and other viruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Phytosynthesis of Silver Nanoparticles Using Myrtus communis L. Leaf Extract and Investigation of Bactericidal Activity

    NASA Astrophysics Data System (ADS)

    Ajdari, M. R.; Tondro, G. H.; Sattarahmady, N.; Parsa, A.; Heli, H.

    2017-12-01

    Silver nanoparticles have been synthesized using only Myrtus communis L. leaf extract by a facile procedure without other reagents. The extract played the roles of both reducing and capping agent. The nanoparticles were characterized using field-emission scanning microscopy, and remained stable for at least 3 weeks. Antibacterial activity of the nanoparticles was evaluated toward Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Enterococcus faecalis based on inhibition zone disk diffusion assays. The minimum inhibitory and bactericidal concentrations of the nanoparticles were obtained. Mechanisms for the antibacterial activity were proposed.

  3. Phenylthiazole Antibacterial Agents Targeting Cell Wall Synthesis Exhibit Potent Activity in Vitro and in Vivo against Vancomycin-Resistant Enterococci.

    PubMed

    Mohammad, Haroon; Younis, Waleed; Chen, Lu; Peters, Christine E; Pogliano, Joe; Pogliano, Kit; Cooper, Bruce; Zhang, Jianan; Mayhoub, Abdelrahman; Oldfield, Eric; Cushman, Mark; Seleem, Mohamed N

    2017-03-23

    The emergence of antibiotic-resistant bacterial species, such as vancomycin-resistant enterococci (VRE), necessitates the development of new antimicrobials. Here, we investigate the spectrum of antibacterial activity of three phenylthiazole-substituted aminoguanidines. These compounds possess potent activity against VRE, inhibiting growth of clinical isolates at concentrations as low as 0.5 μg/mL. The compounds exerted a rapid bactericidal effect, targeting cell wall synthesis. Transposon mutagenesis suggested three possible targets: YubA, YubB (undecaprenyl diphosphate phosphatase (UPPP)), and YubD. Both UPPP as well as undecaprenyl diphosphate synthase were inhibited by compound 1. YubA and YubD are annotated as transporters and may also be targets because 1 collapsed the proton motive force in membrane vesicles. Using Caenorhabditis elegans, we demonstrate that two compounds (1, 3, at 20 μg/mL) retain potent activity in vivo, significantly reducing the burden of VRE in infected worms. Taken altogether, the results indicate that compounds 1 and 3 warrant further investigation as novel antibacterial agents against drug-resistant enterococci.

  4. Relationship between the Broad Autism Phenotype, Social Relationships and Mental Health for Mothers of Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Pruitt, Megan M.; Rhoden, Madeline; Ekas, Naomi V.

    2018-01-01

    This study aimed to examine the mechanisms responsible for the association between the broad autism phenotype and depressive symptoms in mothers of a child with autism spectrum disorder. A total of 98 mothers who had a child with autism spectrum disorder between the ages of 2 and 16 years completed assessments of maternal broad autism phenotype,…

  5. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance.

    PubMed

    Zhou, Xiaogang; Liao, Haicheng; Chern, Mawsheng; Yin, Junjie; Chen, Yufei; Wang, Jianping; Zhu, Xiaobo; Chen, Zhixiong; Yuan, Can; Zhao, Wen; Wang, Jing; Li, Weitao; He, Min; Ma, Bingtian; Wang, Jichun; Qin, Peng; Chen, Weilan; Wang, Yuping; Liu, Jiali; Qian, Yangwen; Wang, Wenming; Wu, Xianjun; Li, Ping; Zhu, Lihuang; Li, Shigui; Ronald, Pamela C; Chen, Xuewei

    2018-03-20

    Crops carrying broad-spectrum resistance loci provide an effective strategy for controlling infectious disease because these loci typically confer resistance to diverse races of a pathogen or even multiple species of pathogens. Despite their importance, only a few crop broad-spectrum resistance loci have been reported. Here, we report the identification and characterization of the rice bsr-k1 (broad-spectrum resistance Kitaake-1) mutant, which confers broad-spectrum resistance against Magnaporthe oryzae and Xanthomonas oryzae pv oryzae with no major penalty on key agronomic traits. Map-based cloning reveals that Bsr-k1 encodes a tetratricopeptide repeats (TPRs)-containing protein, which binds to mRNAs of multiple OsPAL ( OsPAL1-7 ) genes and promotes their turnover. Loss of function of the Bsr-k1 gene leads to accumulation of OsPAL1-7 mRNAs in the bsr-k1 mutant. Furthermore, overexpression of OsPAL1 in wild-type rice TP309 confers resistance to M. oryzae , supporting the role of OsPAL1 Our discovery of the bsr-k1 allele constitutes a significant conceptual advancement and provides a valuable tool for breeding broad-spectrum resistant rice. Copyright © 2018 the Author(s). Published by PNAS.

  6. Effect of primycin on growth-arrested cultures and cell integrity of Staphylococcus aureus.

    PubMed

    Feiszt, Péter; Schneider, György; Emődy, Levente

    2017-06-01

    Bactericidal effect against non-dividing bacteria is a very advantageous, but rare characteristic among antimicrobial agents, mostly possessed by those affecting the cell membrane. These kinds of agents can kill bacterial cells without lysis. We assessed these characteristics on primycin, a topical anti-staphylococcal agent highly effective against prevalent multiresistant strains, as it also acts on the cell membrane. In time-kill studies, primycin preserved its bactericidal activity against growth-arrested Staphylococcus aureus cultures. The bactericidal action was slower against growth-arrested cultures compared to the exponentially growing ones to different extents depending on the manner of arrest. The bactericidal effect was less influenced by stringent response and by protein synthesis inhibition, proving that it does not depend on metabolic activity. In contrast, uncoupling of the membrane potential predominantly slowed, and low temperature almost stopped killing of bacteria. In consideration of published data, these facts suggest that the antibacterial action of primycin involves disrupting of the membrane potential, and is predominantly influenced by the membrane fluidity. Optical density measurements and transmission electron microscopy verified that primycin kills bacterial cells without lysis. These results reveal favorable characteristics of primycin and point to, and broaden the knowledge on its membrane-targeted effect.

  7. Impact of Bacterial Membrane Fatty Acid Composition on the Failure of Daptomycin To Kill Staphylococcus aureus.

    PubMed

    Boudjemaa, Rym; Cabriel, Clément; Dubois-Brissonnet, Florence; Bourg, Nicolas; Dupuis, Guillaume; Gruss, Alexandra; Lévêque-Fort, Sandrine; Briandet, Romain; Fontaine-Aupart, Marie-Pierre; Steenkeste, Karine

    2018-07-01

    Daptomycin is a last-resort membrane-targeting lipopeptide approved for the treatment of drug-resistant staphylococcal infections, such as bacteremia and implant-related infections. Although cases of resistance to this antibiotic are rare, increasing numbers of clinical, in vitro , and animal studies report treatment failure, notably against Staphylococcus aureus The aim of this study was to identify the features of daptomycin and its target bacteria that lead to daptomycin treatment failure. We show that daptomycin bactericidal activity against S. aureus varies significantly with the growth state and strain, according to the membrane fatty acid composition. Daptomycin efficacy as an antibiotic relies on its ability to oligomerize within membranes and form pores that subsequently lead to cell death. Our findings ascertain that daptomycin interacts with tolerant bacteria and reaches its membrane target, regardless of its bactericidal activity. However, the final step of pore formation does not occur in cells that are daptomycin tolerant, strongly suggesting that it is incapable of oligomerization. Importantly, membrane fatty acid contents correlated with poor daptomycin bactericidal activity, which could be manipulated by fatty acid addition. In conclusion, daptomycin failure to treat S. aureus is not due to a lack of antibiotic-target interaction, but is driven by its capacity to form pores, which depends on membrane composition. Manipulation of membrane fluidity to restore S. aureus daptomycin bactericidal activity in vivo could open the way to novel antibiotic treatment strategies. Copyright © 2018 American Society for Microbiology.

  8. Ex vivo 12 h bactericidal activity of oral co-amoxiclav (1.125 g) against beta-lactamase-producing Haemophilus influenzae.

    PubMed

    Bronner, S; Pompei, D; Elkhaïli, H; Dhoyen, N; Monteil, H; Jehl, F

    2001-10-01

    The aim of the study was to evaluate the in vitro/ex vivo bactericidal activity of a new coamoxiclav single-dose sachet formulation (1 g amoxicillin + 0.125 g clavulanic acid) against a beta-lactamase-producing strain of Haemophilus influenzae. The evaluation covered the 12 h period after antibiotic administration. Serum specimens from the 12 healthy volunteers included in the pharmacokinetic study were pooled by time point and in equal volumes. Eight of 12 pharmacokinetic sampling time points were included in the study. At time points 0.5, 0.75, 1, 1.5, 2.5, 5, 8 and 12 h post-dosing, the kinetics of bactericidal activity were determined for each of the serial dilutions. Each specimen was serially diluted from 1:2 to 1:256. The index of surviving bacteria (ISB) was subsequently determined for each pharmacokinetic time point. For all the serum samples, bactericidal activity was fast (3-6 h), marked (3-6 log(10) reduction in the initial inoculum) and sustained over the 12 h between-dosing interval. The results obtained also confirmed that the potency of the amoxicillin plus clavulanic acid combination was time dependent against the species under study and that the time interval over which the concentrations were greater than the MIC (t > MIC) was 100% for the strain under study. The data thus generated constitute an interesting prerequisite with a view to using co-amoxiclav 1.125 g in a bd oral regimen.

  9. Effectiveness analyses may underestimate protection of infants after group C meningococcal immunization.

    PubMed

    Vu, David M; Kelly, Dominic; Heath, Paul T; McCarthy, Noel D; Pollard, Andrew J; Granoff, Dan M

    2006-07-15

    Group C meningococcal conjugate-vaccine effectiveness in the United Kingdom declines from ~90% in the first year to 0% between 1 and 4 years after immunization in infants immunized at 2, 3, and 4 months of age and to 61% in toddlers given a single dose. Confidence intervals are wide, and the extent of protection is uncertain. Serum samples were obtained from children 3-5 years of age who were participants in a preschool booster-vaccine trial. Serum bactericidal activity was measured with human complement. Group C anticapsular antibody concentrations were measured by a radioantigen binding assay. Passive protection was analyzed in an infant rat bacteremia model. Serum samples from UK children who had been immunized 2-3 years earlier as infants or toddlers had higher levels of radioantigen binding, bactericidal activity, and passive protection than did historical control serum samples from unimmunized children (P<.05). A higher proportion of children immunized as infants had serum bactericidal activity titers > or =1 : 4 (considered to be protective) than those immunized as toddlers (61% vs. 24%; P<.01), but there were no significant differences in the proportion of serum samples conferring passive protection (50% and 41%, respectively; P=.4). We found no evidence of lower immunity in children immunized as infants than as toddlers. On the basis of serum bactericidal activity and/or passive protection, 40%-50% of both age groups are protected at 2-3 years after immunization, which was significantly greater than in unimmunized historical controls (<5%).

  10. Whole blood bactericidal activity during treatment of pulmonary tuberculosis.

    PubMed

    Wallis, Robert S; Vinhas, Solange A; Johnson, John L; Ribeiro, Fabíola C; Palaci, Moisés; Peres, Renata L; Sá, Ricardo T; Dietze, Reynaldo; Chiunda, Allan; Eisenach, Kathleen; Ellner, Jerrold J

    2003-01-15

    The timely evaluation of new drugs that can be used to shorten tuberculosis (TB) treatment will require surrogate markers for relapse. This study examined bactericidal activity against intracellular Mycobacterium tuberculosis in whole blood culture (whole blood bactericidal activity; WBA) during TB treatment. In the absence of chemotherapy, immune mechanisms in patient blood resulted in bacteriostasis, whereas administration of oral chemotherapy resulted in bacillary killing. Total WBA per dose was greater during the intensive phase of treatment than during the continuation phase (mean, -2.32 vs. -1.67 log(10) cfu-days, respectively; P<.001). Cumulative WBA throughout treatment was greater in subjects whose sputum cultures converted to negative by the eighth week of treatment than in those for whom conversion was delayed (mean, -365 vs. -250 log(10) cfu-days; P=.04) and correlated with the rate of decrease of sputum colony-forming unit counts during the first 4 weeks of treatment (P=.018), both of which are indicative of prognosis. These findings indicate that measurement of WBA may have a role in assessing the sterilizing activity of new anti-TB drugs.

  11. [Current animal feeds with antimicrobial activity].

    PubMed

    Drumev, D

    1981-01-01

    Among the growth-promoting substances and factors contributing to fodder utilization in growing farm animals, also called nutritive, ergotropic means, the antibiotics and some synthetic chemotherapeutics have acquired special importance. To avoid the hazardous effect in humans consuming products of animal origin there should be no residual amounts of these stimulating agents in such products. That is why it has been assumed in a number of countries to use for the same purpose only nutritive means that are not applied as therapeutic agents. Such means should neither induce resistence to antibiotics and chemotherapeutics in microorganism nor should they be resorbed by the alimentary tract (or resorption should be negligible) or they are rapidly eliminated from the animal body, leaving no residual amounts. They should likewise act chiefly against gram-positive organisms, inducing no allergic reactions in the animals. Described are the following nutritive antibiotics: flavophospholipol (bambermycin, menomycin--flavomycin, producing a nutritive effect also in ruminants with a developed forestomach, and rebuilds sensitivity in antibiotic-resistant organisms belonging to Enterobacteriaceae), avoparcin (avotan--also active in ruminants with a developed forestomach), virginiamycin (staphylomycin--escalin, stafac), zincbacitracin (bacipharmin, baciferm), grisin (kormogrisin, of a road spectrum, with an antimycotic effect, raising the fertilization rate and activating phagocitosis), vitamycin-A (vitamycin--active also at retinol deficiency, lambdamycin, nosiheptide (primofax), efrotomycin. Due consideration is given to such chemotherapeutics as nitrovin (payson, paison), carbadox (mecadox, fortigro, of a broad spectrum retained for a longer period in the body of pigs), olaquindox (bio-N-celbar--of a broad spectrum, particularly with regard to gram-negative organisms, applied at present as a therapeutic and prophylactic preparation), cyadox (with a broad sprectrum). The following polyether ionophoric antibiotics are mentioned: monensine (rumensine, elancoban), lassalocide (avatek, lasotek), slinomycin(eustin, ustin, coxistac), lonomycin (emercide), harasine. Dosage rates and other data are given characterising the respective preparations.

  12. In Vitro and In Vivo studies of monoclonal antibodies with prominent bactericidal activity against Burkholderia pseudomallei and Burkholderia mallei.

    PubMed

    Zhang, Shimin; Feng, Shaw-Huey; Li, Bingjie; Kim, Hyung-Yong; Rodriguez, Joe; Tsai, Shien; Lo, Shyh-Ching

    2011-05-01

    Our laboratory has developed more than a hundred mouse monoclonal antibodies (MAbs) against Burkholderia pseudomallei and Burkholderia mallei. These antibodies have been categorized into different groups based on their specificities and the biochemical natures of their target antigens. The current study first examined the bactericidal activities of a number of these MAbs by an in vitro opsonic assay. Then, the in vivo protective efficacy of selected MAbs was evaluated using BALB/c mice challenged intranasally with a lethal dose of the bacteria. The opsonic assay using dimethyl sulfoxide-treated human HL-60 cells as phagocytes revealed that 19 out of 47 tested MAbs (40%) have prominent bactericidal activities against B. pseudomallei and/or B. mallei. Interestingly, all MAbs with strong opsonic activities are those with specificity against either the capsular polysaccharides (PS) or the lipopolysaccharides (LPS) of the bacteria. On the other hand, none of the MAbs reacting to bacterial proteins or glycoproteins showed prominent bactericidal activity. Further study revealed that the antigenic epitopes on either the capsular PS or LPS molecules were readily available for binding in intact bacteria, while the epitopes on proteins/glycoproteins were less accessible to the MAbs. Our in vivo study showed that four MAbs reactive to either the capsular PS or LPS were highly effective in protecting mice against lethal bacterial challenge. The result is compatible with that of our in vitro study. The MAbs with the highest protective efficacy are those reactive to either the capsular PS or LPS of the Burkholderia bacteria.

  13. In Vitro and In Vivo Studies of Monoclonal Antibodies with Prominent Bactericidal Activity against Burkholderia pseudomallei and Burkholderia mallei▿

    PubMed Central

    Zhang, Shimin; Feng, Shaw-Huey; Li, Bingjie; Kim, Hyung-Yong; Rodriguez, Joe; Tsai, Shien; Lo, Shyh-Ching

    2011-01-01

    Our laboratory has developed more than a hundred mouse monoclonal antibodies (MAbs) against Burkholderia pseudomallei and Burkholderia mallei. These antibodies have been categorized into different groups based on their specificities and the biochemical natures of their target antigens. The current study first examined the bactericidal activities of a number of these MAbs by an in vitro opsonic assay. Then, the in vivo protective efficacy of selected MAbs was evaluated using BALB/c mice challenged intranasally with a lethal dose of the bacteria. The opsonic assay using dimethyl sulfoxide-treated human HL-60 cells as phagocytes revealed that 19 out of 47 tested MAbs (40%) have prominent bactericidal activities against B. pseudomallei and/or B. mallei. Interestingly, all MAbs with strong opsonic activities are those with specificity against either the capsular polysaccharides (PS) or the lipopolysaccharides (LPS) of the bacteria. On the other hand, none of the MAbs reacting to bacterial proteins or glycoproteins showed prominent bactericidal activity. Further study revealed that the antigenic epitopes on either the capsular PS or LPS molecules were readily available for binding in intact bacteria, while the epitopes on proteins/glycoproteins were less accessible to the MAbs. Our in vivo study showed that four MAbs reactive to either the capsular PS or LPS were highly effective in protecting mice against lethal bacterial challenge. The result is compatible with that of our in vitro study. The MAbs with the highest protective efficacy are those reactive to either the capsular PS or LPS of the Burkholderia bacteria. PMID:21450976

  14. Interdigital athlete's foot: new concepts in pathogenesis.

    PubMed

    Leyden, J J; Kligman, A M

    1977-06-01

    In our view, interdigital athlete's foot usually begins with invasion of the horny layer by dermatophytes. Because of hot weather, sweating, exercise, or tight shoes, enough moisture accumulates to stimulate an overgrowth of bacteria. Large numbers of normally resident aerobic diphtheroids cause the common wet, macerated type of athlete's foot, while an overgrowth of Gram-negative organisms, such as Pseudomonas and Proteus, is responsible for the more serious cases. The dry, scaly type (dermatophytosis simplex) often alternates with the wet, macerated type (dermatophytosis complex). Flare-ups are common in summer and can be experimentally induced by occlusion of fungus-infected feet. Suppression of bacteria is essential in treating symptomatic athlete's foot. This can be accomplished by exposing the feet to air (eg, wearing sandals) to enhance evaporation of water and prevent the accumulation of excess moisture that stimulates bacterial overgrowth. Topical antibiotics are another approach, with the ideal perhaps being an agent with both broad-spectrum antibacterial and antifungal activity. The newer imidazoles are broad-spectrum compounds but have limited activity against Gram-negative organisms. Our agent of choice, aluminum chloride, combines broad-spectrum antimicrobial activity with chemical drying, a two-pronged attack. We view drying as the decisive element. We doubt that any local treatment can permanently eradicate athlete's foot. Potent antifungal agents can virtually exterminate interdigital dermatophytes, but the inevitable presence of infection in the nails or on the soles assures reinfection. In shoe-wearing populations living in temperate climates, interdigital athlete's foot is mainly a seasonal disease. The various therapies discussed provide a variety of approaches to prevent or ameliorate hot-weather exacerbations.

  15. Antibacterial and Antibiofilm Activities of Makaluvamine Analogs

    PubMed Central

    Nijampatnam, Bhavitavya; Nadkarni, Dwayaja H.; Wu, Hui; Velu, Sadanandan E.

    2014-01-01

    Streptococcus mutans is a key etiological agent in the formation of dental caries. The major virulence factor is its ability to form biofilms. Inhibition of S. mutans biofilms offers therapeutic prospects for the treatment and the prevention of dental caries. In this study, 14 analogs of makaluvamine, a marine alkaloid, were evaluated for their antibacterial activity against S. mutans and for their ability to inhibit S. mutans biofilm formation. All analogs contained the tricyclic pyrroloiminoquinone core of makaluvamines. The structural variations of the analogs are on the amino substituents at the 7-position of the ring and the inclusion of a tosyl group on the pyrrole ring N of the makaluvamine core. The makaluvamine analogs displayed biofilm inhibition with IC50 values ranging from 0.4 μM to 88 μM. Further, the observed bactericidal activity of the majority of the analogs was found to be consistent with the anti-biofilm activity, leading to the conclusion that the anti-biofilm activity of these analogs stems from their ability to kill S. mutans. However, three of the most potent N-tosyl analogs showed biofilm IC50 values at least an order of magnitude lower than that of bactericidal activity, indicating that the biofilm activity of these analogs is more selective and perhaps independent of bactericidal activity. PMID:25767719

  16. An in vitro time-kill assessment of linezolid and anaerobic bacteria.

    PubMed

    Yagi, Betty H; Zurenko, Gary E

    2003-02-01

    Linezolid is a novel oxazolidinone antibacterial agent active against staphylococci (including methicillin-resistant strains), enterococci (including vancomycin-resistant strains), streptococci (including penicillin-intermediate and -resistant Streptococcus pneumoniae), and other aerobic and facultative bacteria. The agent has also demonstrated activity against a broad spectrum of Gram-positive and Gram-negative anaerobic bacteria. Previous time-kill assessments have shown linezolid to be generally bacteriostatic against staphylococci and enterococci, and bactericidal against streptococci. In this study, an anaerobic glovebox technique was employed to conduct time-kill assessments for four strains of anaerobic Gram-positive, and seven strains of anaerobic Gram-negative bacteria. The time-kill experiment was performed using Anaerobe Broth medium. The drugs were tested at four-fold the minimum inhibitory concentration (MIC), or at the higher concentration of 8mg/L for linezolid, 2mg/L for clindamycin, and 8mg/L for metronidazole. Samples for viable count were taken at 0, 6, and 24h, and plated using the Bioscience International Autospiral DW. Exposure of samples to the aerobic environment during plating was held to less than 30min. Plates were counted after a 48h anaerobic incubation (37 degrees C). The species tested included Bacteroides fragilis (2), B. distasonis, B. thetaiotaomicron, Fusobacterium nucleatum, F. varium, Prevotella melaninogenica, Clostridium perfringens, Eubacterium lentum and Peptostreptococcus anaerobius (2). The activity of linezolid was compared to that of metronidazole and clindamycin, two standard anti-anaerobe agents. As expected, the control agents were very active in these assays. Metronidazole yielded log(10)CFU/mL reductions of 3.0 or greater for nine of ten strains; clindamycin yielded log(10)CFU/mL reductions of 2.0 or greater for six of 11 strains, and 3.0 or greater for three strains. Linezolid also produced significant in vitro killing in this model achieving log(10)CFU/mL reductions of 2.0 or greater for six of 11 strains, and 3.0 or greater for four strains. The profile of activity was similar to that of clindamycin indicating that additional developmental studies of linezolid with anaerobic bacteria are warranted.

  17. Bactericidal, virucidal, and mycobactericidal activities of reused alkaline glutaraldehyde in an endoscopy unit.

    PubMed Central

    Mbithi, J N; Springthorpe, V S; Sattar, S A; Pacquette, M

    1993-01-01

    Baths with 2% alkaline glutaraldehyde are often reused for 14 days to decontaminate flexible fiberoptic endoscopes (FFEs) between patients, but the effect of such reuse on the disinfectant's activity has not been known. Many busy endoscopy units also disinfect FFEs with contact times shorter than those recommended by the disinfectant manufacturer. We therefore collected samples of the disinfectant over the 14-day reuse period from two manual and one automatic bath used for bronchoscopes and gastroscopes at a local hospital. Control samples were also collected from a manual bath of 2% alkaline glutaraldehyde which did not receive any endoscopes. The germicidal activities of the samples were assessed in a carrier test against a mixture of hepatitis A virus, poliovirus 1 (Sabin), and Pseudomonas aeruginosa; the mixture also contained either Mycobacterium bovis or Mycobacterium gordonae. Bovine serum (5%) was the organic load. The criterion of efficacy was a minimum of a 3-log10-unit reduction in the infectivity titers of the organisms tested. The initial disinfectant concentration in all the baths was nearly 2.25%; it became about 1.8% in the control bath and fell to approximately 1% in the three test baths after 14 days. No protein was detected in the control bath, while its concentration rose gradually in the test baths to a maximum of 1,267 micrograms/ml after 14 days. With a contact time of 10 min at 20 +/- 2 degrees C, all the samples from the control bath were effective against all the test organisms and all the samples from all the test baths were also effective against P. aeruginosa. With a contact time of 10 or 20 min at 20+/-2 degrees C, the virucidal and mycobactericidal activities of the samples from the test baths showed broad-spectrum germicidal activity when the contact time was increased to 45 min and the temperature was raised to 25 degrees C. These findings emphasize the care needed in the disinfection of FFEs, especially in view of the increasing threat of AIDS and the resurgence of tuberculosis. PMID:8263184

  18. In-vitro screening of Malaysian honey from different floral sources for antibacterial activity on human pathogenic bacteria.

    PubMed

    Ng, Wen-Jie; Ken, Khai-Wei; Kumar, Roshani-Vijaya; Gunasagaran, Hemamalani; Chandramogan, Vanaysha; Lee, Ying-Yee

    2014-01-01

    Different researches on therapeutic effects of honey have been conducted in different regions; however the study on the potential antibacterial activity of Malaysian honey is still limited. In this study, antibacterial activities of different monofloral honey samples were tested against several common human pathogenic bacteria. The well-diffusion method, minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) techniques were employed to investigate the putative antibacterial activity of Malaysian monofloral honey from Koompassia excelsa (Becc.) Taub (Tualang), Melaleuca cajuputi Powell (Gelam) and Durio zibethinus Murr. (Durian). Honey samples were tested against Staphylococcus aureus ATCC6518 and ATCC25923, Staphylococcus epidermidis ATCC12228, Enterococcus faecium LMG16192, Enterococcus faecalis LMG16216 and ATCC29212, Escherichia coli ATCC25922, Salmonella enterica serovar Typhimurium ATCC14028 and Klebsiella pneumoniae ATCC13883. Marked variations were observed in the antibacterial activity of these honey samples. Durian honey failed to produce substantial antibacterial activity, whereas Tualang and Gelam honey showed a spectrum of antibacterial activity with their growth inhibitory effects against all of the tested bacterial species including vancomycin-resistant enterococci (VRE). Present findings suggested Gelam honey possesses highest antibacterial effect among the tested Malaysian honey samples.

  19. Cross-over assessment of serum bactericidal activity of moxifloxacin and levofloxacin versus penicillin-susceptible and penicillin-resistant Streptococcus pneumoniae in healthy volunteers.

    PubMed

    Hart, Daniel; Weinstein, Melvin P

    2007-07-01

    We compared the serum bactericidal activity (SBA) of moxifloxacin and levofloxacin against penicillin-susceptible and penicillin-resistant Streptococcus pneumoniae in 12 healthy volunteers. Each subject received 3 days of oral moxifloxacin 400 mg daily and levofloxacin 750 mg daily, respectively, with a 2- to 4-week washout period between regimens. Blood was drawn at 6 time points after the third dose of each antibiotic. Mean serum bactericidal titers (MSBTRs) for moxifloxacin were 4-fold higher than the mean titers for levofloxacin at each time point. For each drug, MSBTRs at each time point were the same or within one 2-fold dilution when analyzed according to the penicillin susceptibility of the strains or the sex of the subjects. The difference in SBA of the 2 drugs may have implications for the emergence of resistance and clinical outcome.

  20. The Integral Method, a new approach to quantify bactericidal activity.

    PubMed

    Gottardi, Waldemar; Pfleiderer, Jörg; Nagl, Markus

    2015-08-01

    The bactericidal activity (BA) of antimicrobial agents is generally derived from the results of killing assays. A reliable quantitative characterization and particularly a comparison of these substances, however, are impossible with this information. We here propose a new method that takes into account the course of the complete killing curve for assaying BA and that allows a clear-cut quantitative comparison of antimicrobial agents with only one number. The new Integral Method, based on the reciprocal area below the killing curve, reliably calculates an average BA [log10 CFU/min] and, by implementation of the agent's concentration C, the average specific bactericidal activity SBA=BA/C [log10 CFU/min/mM]. Based on experimental killing data, the pertaining BA and SBA values of exemplary active halogen compounds were established, allowing quantitative assertions. N-chlorotaurine (NCT), chloramine T (CAT), monochloramine (NH2Cl), and iodine (I2) showed extremely diverging SBA values of 0.0020±0.0005, 1.11±0.15, 3.49±0.22, and 291±137log10 CFU/min/mM, respectively, against Staphylococcus aureus. This immediately demonstrates an approximately 550-fold stronger activity of CAT, 1730-fold of NH2Cl, and 150,000-fold of I2 compared to NCT. The inferred quantitative assertions and conclusions prove the new method suitable for characterizing bactericidal activity. Its application comprises the effect of defined agents on various bacteria, the consequence of temperature shifts, the influence of varying drug structure, dose-effect relationships, ranking of isosteric agents, comparison of competing commercial antimicrobial formulations, and the effect of additives. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Antibacterial activity of Artocarpus heterophyllus.

    PubMed

    Khan, M R; Omoloso, A D; Kihara, M

    2003-07-01

    The crude methanolic extracts of the stem and root barks, stem and root heart-wood, leaves, fruits and seeds of Artocarpus heterophyllus and their subsequent partitioning with petrol, dichloromethane, ethyl acetate and butanol gave fractions that exhibited a broad spectrum of antibacterial activity. The butanol fractions of the root bark and fruits were found to be the most active. None of the fractions were active against the fungi tested.

  2. In vitro observations on the suitability of new rifamycins for the intermittent chemotherapy of tuberculosis.

    PubMed

    Dickinson, J M; Mitchison, D A

    1987-09-01

    The bactericidal activity of six new rifamycin derivatives--rifabutin (RBU), FCE 22250 (F22), rifapentine (RPE), CGP 29861 (C29), CGP 7040 (C70) and CGP 27557 (C27) and rifampicin (RMP)--have been measured against log phase and, as a better test of sterilising activity, against stationary phase cultures of Mycobacterium tuberculosis, H37Rv. The order of activity of 1.0 and 0.2 mg/l rifamycin against log phase cultures was RMP greater than RPE & C27 greater than RBU & C29 greater than C70. The order of activity of 1.0 and 0.4 mg/l, adjusted for stability of the rifamycin, against stationary phase cultures was F22 & RMP greater than RBU greater than RPE greater than C27 & C29 greater than C70. Viable counts were done during and after pulsed exposures of 6, 24 or 96 h to C29 and RMP. The curves were similar though C29 was less bactericidal and the lag period before recovery was 1-2 days longer. F22, having high bactericidal activity against stationary organisms and a long half-life, was considered likely to be the most effective sterilising drug.

  3. Powerful bacterial killing by buckwheat honeys is concentration-dependent, involves complete DNA degradation and requires hydrogen peroxide.

    PubMed

    Brudzynski, Katrina; Abubaker, Kamal; Wang, Tony

    2012-01-01

    Exposure of bacterial cells to honey inhibits their growth and may cause cell death. Our previous studies showed a cause-effect relationship between hydroxyl radical generated from honey hydrogen peroxide and growth arrest. Here we explored the role of hydroxyl radicals as inducers of bacterial cells death. The bactericidal effect of ·OH on antibiotic-resistant clinical isolates of MRSA and VRE and standard bacterial strains of E. coli and B. subtiles was examined using a broth microdilution assay supplemented with 3'-(p-aminophenyl) fluorescein (APF) as the ·OH trap, followed by colony enumeration. Bactericidal activities of eight honeys (six varieties of buckwheat, blueberry and manuka honeys) were analyzed. The MBC/MIC ratio ≤4 and the killing curves indicated that honeys exhibited powerful, concentration-dependent bactericidal effect. The extent of killing depended on the ratio of honey concentration to bacterial load, indicating that honey dose was critical for its bactericidal efficacy. The killing rate and potency varied between honeys and ranged from over a 6-log(10) to 4-log(10) CFU/ml reduction of viable cells, equivalent to complete bacterial eradication. The maximal killing was associated with the extensive degradation of bacterial DNA. Honey concentration at which DNA degradation occurred correlated with cell death observed in the concentration-dependent cell-kill on agar plates. There was no quantitative relationship between the ·OH generation by honey and bactericidal effect. At the MBC, where there was no surviving cells and no DNA was visible on agarose gels, the ·OH levels were on average 2-3x lower than at Minimum Inhibitory Concentration (MICs) (p < 0.0001). Pre-treatment of honey with catalase, abolished the bactericidal effect. This raised possibilities that either the abrupt killing prevented accumulation of ·OH (dead cells did not generate ·OH) or that DNA degradation and killing is the actual footprint of ·OH action. In conclusion, honeys of buckwheat origin exhibited powerful, concentration-dependent bactericidal effect. The killing and DNA degradation showed a cause-effect relationship. Hydrogen peroxide was an active part of honey killing mechanism.

  4. Bactericidal activity of cerumen.

    PubMed Central

    Chai, T J; Chai, T C

    1980-01-01

    Freshly collected cerumen (dry form) suspended at a concentration of 3% in glycerol-sodium bicarbonate buffer showed bactericidal activity against some strains of bacteria tested. This suspension reduced the viability of Haemophilus influenzae, Escherichia coli K-12, and Serratia marcescens by more than 99%, whereas the viability of two Pseudomonas aeruginosa isolates, E. coli K-1, Streptococcus, and two Staphylococcus aureus isolates of human origin was reduced by 30 to 80%. The results support the hypothesis that cerumen functions to kill certain foreign organisms which enter the ear canal. Images PMID:7447422

  5. 207-nm UV Light - A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. I: In Vitro Studies

    PubMed Central

    Buonanno, Manuela; Randers-Pehrson, Gerhard; Bigelow, Alan W.; Trivedi, Sheetal; Lowy, Franklin D.; Spotnitz, Henry M.; Hammer, Scott M.; Brenner, David J.

    2013-01-01

    Background 0.5% to 10% of clean surgeries result in surgical-site infections, and attempts to reduce this rate have had limited success. Germicidal UV lamps, with a broad wavelength spectrum from 200 to 400 nm are an effective bactericidal option against drug-resistant and drug-sensitive bacteria, but represent a health hazard to patient and staff. By contrast, because of its limited penetration, ∼200 nm far-UVC light is predicted to be effective in killing bacteria, but without the human health hazards to skin and eyes associated with conventional germicidal UV exposure. Aims The aim of this work was to test the biophysically-based hypothesis that ∼200 nm UV light is significantly cytotoxic to bacteria, but minimally cytotoxic or mutagenic to human cells either isolated or within tissues. Methods A Kr-Br excimer lamp was used, which produces 207-nm UV light, with a filter to remove higher-wavelength components. Comparisons were made with results from a conventional broad spectrum 254-nm UV germicidal lamp. First, cell inactivation vs. UV fluence data were generated for methicillin-resistant S. aureus (MRSA) bacteria and also for normal human fibroblasts. Second, yields of the main UV-associated pre-mutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) were measured, for both UV radiations incident on 3-D human skin tissue. Results We found that 207-nm UV light kills MRSA efficiently but, unlike conventional germicidal UV lamps, produces little cell killing in human cells. In a 3-D human skin model, 207-nm UV light produced almost no pre-mutagenic UV-associated DNA lesions, in contrast to significant yields induced by a conventional germicidal UV lamp. Conclusions As predicted based on biophysical considerations, 207-nm light kills bacteria efficiently but does not appear to be significantly cytotoxic or mutagenic to human cells. Used appropriately, 207-nm light may have the potential for safely and inexpensively reducing surgical-site infection rates, including those of drug-resistant origin. PMID:24146947

  6. A comprehensive multi-institutional study of empiric therapy with flomoxef in surgical infections of the digestive organs. The Kyushu Research Group for Surgical Infection.

    PubMed

    Shimada, M; Takenaka, K; Sugimachi, K

    1994-08-01

    The effect of flomoxef as empiric therapy for surgical infections of the digestive organs was analyzed in 103 patients, most of whom (94.2%) had intra-abdominal infections. Surgical procedures were performed on 73 patients contemporaneously with the flomoxef therapy. Flomoxef is an oxacephem and has a potent and broad bactericidal spectrum against aerobes and anaerobes. It provokes fewer adverse reactions than latamoxef such as vitamin K deficiency and platelet dysfunction. Flomoxef was administered intravenously at a dose 1-4g/day for more than 3 days without any other antimicrobial agent. The clinical response was classified into 3 groups; cured, improved and failed, and both the cured and improved responses were defined as satisfactory. A satisfactory response was obtained in 99 patients (96.1%). Regarding bacteriological response, the overall eradication rate was 81.3%. Adverse reactions including abnormal laboratory data occurred in only two patients. One had abdominal pain, and the other had a mild elevation of transaminases, and both were mild and easily reversible. Therefore, flomoxef is considered to have the potential of becoming one of the most effective agents in empiric therapy for surgical infections of the digestive organs.

  7. In vitro activities of ciprofloxacin and rifampin alone and in combination against growing and nongrowing strains of methicillin-susceptible and methicillin-resistant Staphylococcus aureus.

    PubMed Central

    Bahl, D; Miller, D A; Leviton, I; Gialanella, P; Wolin, M J; Liu, W; Perkins, R; Miller, M H

    1997-01-01

    We characterized the effects of ciprofloxacin and rifampin alone and in combination on Staphylococcus aureus in vitro. The effects of drug combinations (e.g., indifferent, antagonistic, or additive interactions) on growth inhibition were compared by disk approximation studies and by determining the fractional inhibitory concentrations. Bactericidal effects in log-phase bacteria and in nongrowing isolates were characterized by time-kill methods. The effect of drug combinations was dependent upon whether or not cells were growing and whether killing or growth inhibition was the endpoint used to measure drug interaction. Despite bactericidal antagonism in time-kill experiments, our in vitro studies suggest several possible explanations for the observed benefits in patients treated with a combination of ciprofloxacin and rifampin for deep-seated staphylococcal infections. Notably, when growth inhibition rather than killing was used to characterize drug interaction, indifference rather than antagonism was observed. An additive bactericidal effect was observed in nongrowing bacteria suspended in phosphate-buffered saline. While rifampin antagonized the bactericidal effects of ciprofloxacin, ciprofloxacin did not antagonize the bactericidal effects of rifampin. Each antimicrobial prevented the emergence of subpopulations that were resistant to the other. PMID:9174186

  8. Immunization with recombinant truncated Neisseria meningitidis-Macrophage Infectivity Potentiator (rT-Nm-MIP) protein induces murine antibodies that are cross-reactive and bactericidal for Neisseria gonorrhoeae.

    PubMed

    Humbert, María Victoria; Christodoulides, Myron

    2018-05-23

    Neisseria meningitidis (Nm) and N. gonorrhoeae (Ng) express a Macrophage Infectivity Potentiator (MIP, NMB1567/NEIS1487) protein in their outer membrane (OM). In this study, we prepared independent batches of liposomes (n = 3) and liposomes + MonoPhosphoryl Lipid A (MPLA) (n = 3) containing recombinant truncated Nm-MIP protein encoded by Allele 2 (rT-Nm-MIP, amino acids 22-142), and used these to immunize mice. We tested the hypothesis that independent vaccine batches showed similar antigenicity, and that antisera could recognise both meningococcal and gonococcal MIP and induce cross-species bactericidal activity. The different batches of M2 rT-Nm-MIP-liposomes ± MPLA showed no significant (P > 0.05) batch-to-batch variation in antigenicity. Anti-rT-Nm-MIP sera reacted equally and specifically with Nm-MIP and Ng-MIP in OM and on live bacterial cell surfaces. Specificity was shown by no antiserum reactivity with Δmip bacteria. Using human complement/serum bactericidal assays, anti-M2 rT-Nm-MIP sera killed homologous meningococcal serogroup B (MenB) strains (median titres of 32-64 for anti-rT-Nm-MIP-liposome sera; 128-256 for anti-rT-Nm-MIP-liposome + MPLA sera) and heterologous M1 protein-expressing MenB strains (titres of 64 for anti rT-Nm-MIP-liposome sera; 128-256 for anti-rT-Nm-MIP-liposome + MPLA sera). Low-level killing (P < 0.05) was observed for a MenB isolate expressing M7 protein (titres 4-8), but MenB strains expressing M6 protein were not killed (titre < 4-8). Killing (P < 0.05) was observed against MenC and MenW bacteria expressing homologous M2 protein (titres of 8-16) but not against MenA or MenY bacteria (titres < 4-8). Antisera to M2 rT-Nm-MIP showed significant (P < 0.05) cross-bactericidal activity against gonococcal strain P9-17 (expressing M35 Ng-MIP, titres of 64-512) and strain 12CFX_T_003 (expressing M10 Ng-MIP, titres 8-16) but not against FA1090 (expressing M8 Ng-MIP). As an alternative to producing recombinant protein, we engineered successfully the Nm-OM to express M2 Truncated-Nm-MIP, but lipooligosaccharide-extraction with Na-DOC was contra-indicated. Our data suggest that a multi-component vaccine containing a select number of Nm- and Ng-MIP type proteins would be required to provide broad coverage of both pathogens. Copyright © 2018. Published by Elsevier Ltd.

  9. Delafloxacin for the treatment of respiratory and skin infections.

    PubMed

    Bassetti, Matteo; Della Siega, Paola; Pecori, Davide; Scarparo, Claudio; Righi, Elda

    2015-03-01

    There has been a striking increase in the emergence of multidrug-resistant pathogens in recent times. Delafloxacin is a novel, broad-spectrum fluoroquinolone with antimicrobial activity against resistant Gram-positive, Gram-negative and anaerobic organisms. It has the potential to treat a variety of infections including complicated skin and skin structure infections and respiratory tract infections. In this review, the authors report the microbiological spectrum of activity of delafloxacin as well as its pharmacokinetic characteristics. They also report the results of recent studies investigating its safety and efficacy. The profile of delafloxacin offers several advantages. Delafloxacin presents a broad spectrum of activity against pathogens involved in respiratory infections and complicated skin and skin structure infections (SSSIs), including methicillin-resistant Staphylococcus aureus. It has also shown activity against Gram-negative pathogens, such as quinolone-susceptible and -resistant strains of Escherichia coli and Klebsiella pneumoniae and quinolone-susceptible Pseudomonas aeruginosa. The availability of an oral formulation supports its use in sequential therapy. The efficacy and tolerability of delafloxacin have been demonstrated in Phase II clinical trials in comparison with moxifloxacin for respiratory infections and linezolid and vancomycin in SSSIs. Compared with other quinolones such as moxifloxacin, delafloxacin showed comparable efficacy and a lower rate of adverse effects. The results of new Phase III studies are awaited to confirm delafloxacin's future applications in the treatment of SSSIs.

  10. Uses of inorganic hypochlorite (bleach) in health-care facilities.

    PubMed Central

    Rutala, W A; Weber, D J

    1997-01-01

    Hypochlorite has been used as a disinfectant for more than 100 years. It has many of the properties of an ideal disinfectant, including a broad antimicrobial activity, rapid bactericidal action, reasonable persistence in treated potable water, ease of use, solubility in water, relative stability, relative nontoxicity at use concentrations, no poisonous residuals, no color, no staining, and low cost. The active species is undissociated hypochlorous acid (HOCl). Hypochlorites are lethal to most microbes, although viruses and vegetative bacteria are more susceptible than endospore-forming bacteria, fungi, and protozoa. Activity is reduced by the presence of heavy metal ions, a biofilm, organic material, low temperature, low pH, or UV radiation. Clinical uses in health-care facilities include hyperchlorination of potable water to prevent Legionella colonization, chlorination of water distribution systems used in hemodialysis centers, cleaning of environmental surfaces, disinfection of laundry, local use to decontaminate blood spills, disinfection of equipment, decontamination of medical waste prior to disposal, and dental therapy. Despite the increasing availability of other disinfectants, hypochlorites continue to find wide use in hospitals. PMID:9336664

  11. Structure activity relationship of C-2 ether substituted 1,5-naphthyridine analogs of oxabicyclooctane-linked novel bacterial topoisomerase inhibitors as broad-spectrum antibacterial agents (Part-5).

    PubMed

    Singh, Sheo B; Kaelin, David E; Meinke, Peter T; Wu, Jin; Miesel, Lynn; Tan, Christopher M; Olsen, David B; Lagrutta, Armando; Fukuda, Hideyuki; Kishii, Ryuta; Takei, Masaya; Takeuchi, Tomoko; Takano, Hisashi; Ohata, Kohei; Kurasaki, Haruaki; Nishimura, Akinori; Shibata, Takeshi; Fukuda, Yasumichi

    2015-09-01

    Oxabicyclooctane linked novel bacterial topoisomerase inhibitors (NBTIs) are new class of recently reported broad-spectrum antibacterial agents. They target bacterial DNA gyrase and topoisomerase IV and bind to a site different than quinolones. They show no cross-resistance to known antibiotics and provide opportunity to combat drug-resistant bacteria. A structure activity relationship of the C-2 substituted ether analogs of 1,5-naphthyridine oxabicyclooctane-linked NBTIs are described. Synthesis and antibacterial activities of a total of 63 analogs have been summarized representing alkyl, cyclo alkyl, fluoro alkyl, hydroxy alkyl, amino alkyl, and carboxyl alkyl ethers. All compounds were tested against three key strains each of Gram-positive and Gram-negative bacteria as well as for hERG binding activities. Many key compounds were also tested for the functional hERG activity. Six compounds were evaluated for efficacy in a murine bacteremia model of Staphylococcus aureus infection. Significant tolerance for the ether substitution (including polar groups such as amino and carboxyl) at C-2 was observed for S. aureus activity however the same was not true for Enterococcus faecium and Gram-negative strains. Reduced clogD generally showed reduced hERG activity and improved in vivo efficacy but was generally associated with decreased overall potency. One of the best compounds was hydroxy propyl ether (16), which mainly retained the potency, spectrum and in vivo efficacy of AM8085 associated with the decreased hERG activity and improved physical property. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Gut microbiota and graft-versus-host disease: broad-spectrum antibiotic use increases post-allogeneic hematopoietic stem cell transplant graft-versus-host disease-related mortality.

    PubMed

    Shono, Yusuke

    2017-01-01

    Intestinal bacteria can modulate the risk of infection and graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Allo-HSCT recipients often develop neutropenic fever, which is treated with antibiotics that may target anaerobic bacteria in the gut. We retrospectively examined 857 allo-HSCT recipients and found that treatment using broad-spectrum antibiotics was associated with increased GVHD-related mortality at 5 years. Analysis of stool specimens from allo-HSCT recipients showed that broad-spectrum antibiotic administration was associated with perturbation of gut microbial composition. Studies in mice also demonstrated aggravated GVHD mortality with broad-spectrum antibiotics use. Broad-spectrum antibiotics treatment of mice with GVHD led to a loss of the protective mucus lining of the colon, compromised intestinal barrier function, as well as increased a commensal bacterium with mucus-degrading capabilities, raising the possibility that mucus degradation may contribute to murine GVHD. We demonstrate an underappreciated risk of antibiotics in allo-HSCT recipients that may exacerbate GVHD in the colon.

  13. Synthesis and antifungal activities of miltefosine analogs

    USDA-ARS?s Scientific Manuscript database

    Nine alkylphosphocholine derivatives (3a-3i) were prepared by modifying the choline structural moiety and the alkyl chain length of miltefosine (hexadecylphosphocholine), a broad-spectrum antifungal compound that has shown modest therapeutic efficacy in a mouse model of cryptococcosis. The synthetic...

  14. Molecular and chemical dialogues in bacteria-protozoa interactions

    USDA-ARS?s Scientific Manuscript database

    Soil-dwelling Pseudomonas fluorescens produce lipopeptide surfactants (LPs) with broad-spectrum antimicrobial activities. Recent studies suggested that LPs provide protection to P. fluorescens strain SS101 against grazing by the predatory protozoa Naegleria americana, both in vitro and in rhizospher...

  15. Antimicrobial efficacy and wound-healing property of a topical ointment containing nitric-oxide-loaded zeolites

    PubMed Central

    Ercan, Utku K.; Bhattacharyya, Aparna; Samuels, Joshua; Sedlak, Jason; Trikha, Ritika; Barbee, Kenneth A.; Weingarten, Michael S.

    2014-01-01

    Topical delivery of nitric oxide (NO) through a wound dressing has the potential to reduce wound infections and improve healing of acute and chronic wounds. This study characterized the antibacterial efficacy of an ointment containing NO-loaded, zinc-exchanged zeolite A that releases NO upon contact with water. The release rate of NO from the ointment was measured using a chemiluminescence detection system. Minimum bactericidal concentration assays were performed using five common wound pathogens, including Gram-negative bacteria (Escherichia coli and Acinetobacter baumannii), Gram-positive bacteria (Staphylococcus epidermidis and meticillin-resistant Staphylococcus aureus) and a fungus (Candida albicans). The time dependence of antimicrobial activity was characterized by performing log-reduction assays at four time points after 1–8 h ointment exposure. The cytotoxicity of the ointment after 24 h was assessed using cultured 3T3 fibroblast cells. Minimum microbicidal concentrations (MMCs) for bacterial organisms (5×107 c.f.u.) ranged from 50 to 100 mg ointment (ml media)−1; the MMC for C. albicans (5×104 c.f.u.) was 50 mg ointment (ml media)−1. Five to eight log reductions in bacterial viability and three log reductions in fungal viability were observed after 8 h exposure to NO–zeolite ointment compared with untreated organisms. Fibroblasts remained viable after 24 h exposure to the same concentration of NO–zeolite ointment as was used in antimicrobial tests. In parallel studies, full-thickness cutaneous wounds on Zucker obese rats healed faster than wounds treated with a control ointment. These data indicate that ointment containing NO-loaded zeolites could potentially be used as a broad-spectrum antimicrobial wound-healing dressing. PMID:24196133

  16. Chemical Characterization and Biological Properties of NVC-422, a Novel, Stable N-Chlorotaurine Analog▿†

    PubMed Central

    Wang, Lu; Belisle, Barbara; Bassiri, Mansour; Xu, Ping; Debabov, Dmitri; Celeri, Chris; Alvarez, Nichole; Robson, Martin C.; Payne, Wyatt G.; Najafi, Ramin; Khosrovi, Behzad

    2011-01-01

    During oxidative burst, neutrophils selectively generate HOCl to destroy invading microbial pathogens. Excess HOCl reacts with taurine, a semi-essential amino acid, resulting in the formation of the longer-lived biogenerated broad-spectrum antimicrobial agent, N-chlorotaurine (NCT). In the presence of an excess of HOCl or under moderately acidic conditions, NCT can be further chlorinated, or it can disproportionate to produce N,N-dichlorotaurine (NNDCT). In the present study, 2,2-dimethyltaurine was used to prepare a more stable N-chlorotaurine, namely, N,N-dichloro-2,2-dimethyltaurine (NVC-422). In addition, we report on the chemical characterization, in vitro antimicrobial properties, and cytotoxicity of this compound. NVC-422 was shown effectively to kill all 17 microbial strains tested, including antibiotic-resistant Staphylococcus aureus and Enterococcus faecium. The minimum bactericidal concentration of NVC-422 against Gram-negative and Gram-positive bacteria ranged from 0.12 to 4 μg/ml. The minimum fungicidal concentrations against Candida albicans and Candida glabrata were 32 and 16 μg/ml, respectively. NVC-422 has an in vitro cytotoxicity (50% cytotoxicity = 1,440 μg/ml) similar to that of NNDCT. Moreover, our data showed that this agent possesses rapid, pH-dependent antimicrobial activity. At pH 4, NVC-422 completely killed both Escherichia coli and S. aureus within 5 min at a concentration of 32 μg/ml. Finally, the effect of NVC-422 in the treatment of an E. coli-infected granulating wound rat model was evaluated. Treatment of the infected granulating wound with NVC-422 resulted in significant reduction of the bacterial tissue burden and faster wound healing compared to a saline-treated control. These findings suggest that NVC-422 could have potential application as a topical antimicrobial. PMID:21422212

  17. In vitro evaluation of tigemonam, a novel oral monobactam.

    PubMed Central

    Tanaka, S K; Summerill, R A; Minassian, B F; Bush, K; Visnic, D A; Bonner, D P; Sykes, R B

    1987-01-01

    Tigemonam, a novel, orally administered monobactam, exhibited potent and specific activity in vitro against members of the family Enterobacteriaceae, Haemophilus influenzae, and Neisseria gonorrhoeae. Its activity was variable to poor against gram-positive bacteria, Acinetobacter spp., Pseudomonas aeruginosa, and anaerobes. Within its spectrum of activity, tigemonam was far superior to oral antibiotics currently available, including amoxicillin-clavulanic acid, cefaclor, and trimethoprim-sulfamethoxazole. In addition, tigemonam was superior to cefuroxime, which is under development as an oral pro-drug, and more active than cefixime against several genera of the Enterobacteriaceae. The activity of tigemonam against the enteric bacteria, Haemophilus species, and Neisseria species was, in general, comparable to that of the quinolone norfloxacin. The excellent activity of tigemonam against beta-lactamase-producing bacteria reflected its marked stability to hydrolysis by isolated enzymes. The expanded spectrum of activity against gram-negative bacteria observed with tigemonam thus extends oral beta-lactam coverage to include members of the Enterobacteriaceae that are intrinsically or enzymatically resistant to broad-spectrum penicillins and cephalosporins. PMID:3105448

  18. Enhanced bactericidal activity against Escherichia coli in calves fed Morinda citrifolia (Noni) puree.

    PubMed

    Schäfer, M; Sharp, P; Brooks, V J; Xu, J; Cai, J; Keuler, N S; Peek, S F; Godbee, R G; Schultz, R D; Darien, B J

    2008-01-01

    Although adequate colostrum intake and properly used antibiotics can provide much protection for the bovine neonate, increased antibiotic scrutiny and consumer demand for organic products have prompted investigations of natural immunomodulators for enhancing calf health. One plant-based immunomodulator, Morinda citrifolia (noni) fruit, is a well-recognized natural product that has a broad range of immunomodulatory effects. Neonatal calves fed noni puree would demonstrate whole blood phagocytic capacity in Gram-negative and Gram-positive in vitro assays. Blood samples from 18 neonatal Holstein bull calves. Calves were divided into 2 groups: Group 1 comprised control calves, whereas Group 2 received 30 mL of noni puree twice a day in milk replacer. Day 0 blood samples were obtained between 36 and 48 hours of age before the first feeding of puree. Ethylenediaminetetraacetic acid anticoagulated blood was collected from each calf on days 0, 3, 7, and 14. Bactericidal assays were performed to estimate the percentage killing of Escherichia coli and Staphylococcus epidermidis. Blood samples from noni puree-fed calves displayed significantly more E. coli bacterial killing than did controls on day 14, and although differences were not significant on days 0, 3, and 7, bacterial killing progressively increased over time. There was no significant difference between the groups for S. epidermidis killing. The immunomodulatory effect of noni puree may prove valuable in the future as production animal antibiotic use becomes more restricted. Additional clinical trials are warranted to investigate the clinical application of noni puree in promoting calf health.

  19. Infrared spectrum of Io, 2.8-5.2 microns

    NASA Astrophysics Data System (ADS)

    Cruikshank, D. P.

    1980-02-01

    The reflectance spectrum of Io is presented from 2.8 to 5.2 microns demonstrating the full extent of the broad and deep spectral absorption between 3.5 and 4.8 microns. Laboratory spectra of nitrates and carbonates diluted with sulfur do not satisfactorily reproduce the Io spectrum, but new information based on recently discovered volcanic activity on the satellite lead to consideration of other classes of compounds reported by Fanale et al. (1979). It is concluded that the variability of the supply of condensible SO2 gas to the surface of Io, its removal by sublimination, and the temporal variations in the strength of the SO2 band may provide an index of volcanic activity on Io that can be monitored from the earth.

  20. Infrared spectrum of Io, 2.8-5.2 microns

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.

    1980-01-01

    The reflectance spectrum of Io is presented from 2.8 to 5.2 microns demonstrating the full extent of the broad and deep spectral absorption between 3.5 and 4.8 microns. Laboratory spectra of nitrates and carbonates diluted with sulfur do not satisfactorily reproduce the Io spectrum, but new information based on recently discovered volcanic activity on the satellite lead to consideration of other classes of compounds reported by Fanale et al. (1979). It is concluded that the variability of the supply of condensible SO2 gas to the surface of Io, its removal by sublimination, and the temporal variations in the strength of the SO2 band may provide an index of volcanic activity on Io that can be monitored from the earth.

  1. Intervention to Reduce Broad-Spectrum Antibiotics and Treatment Durations Prescribed at the Time of Hospital Discharge: A Novel Stewardship Approach

    PubMed Central

    Yogo, Norihiro; Shihadeh, Katherine; Young, Heather; Calcaterra, Susan; Knepper, Bryan C; Burman, William J; Mehler, Philip S; Jenkins, Timothy C

    2017-01-01

    Objective For most common infections requiring hospitalization, antibiotic treatment is completed after hospital discharge. Post-discharge therapy is often unnecessarily broad-spectrum and prolonged. We developed an intervention to improve antibiotic selection and shorten treatment durations. Design Single center, quasi-experimental retrospective cohort study. Methods Patients prescribed oral antibiotics at hospital discharge before (July 2012 – June 2013) and after (October 2014 – February 2015) an intervention consisting of: 1) institutional guidance for oral step-down antibiotic selection and duration of therapy, and 2) pharmacy audit of discharge prescriptions with real-time prescribing recommendations to providers. The primary outcomes were total prescribed duration of therapy and use of antibiotics with broad gram-negative activity (fluoroquinolones or amoxicillin-clavulanate). Results 300 cases from the pre-intervention period and 200 from the intervention period were included. Compared with the pre-intervention period, use of antibiotics with broad gramnegative activity decreased during the intervention (51% vs 40%, p = 0.02), particularly fluoroquinolones (38% vs 25%, p = 0.002). The difference in total duration of therapy did not reach statistical significance (10 days [interquartile range (IQR) 7–13] vs 9 [IQR 6–13], p = 0.13); however, the duration prescribed at discharge declined from 6 days (IQR 4–10) to 5 (IQR 3–7) (p = 0.003). During the intervention, there was a non-significant increase in the overall appropriateness of discharge prescriptions (52% vs 66%, p = 0.15). Conclusions A multifaceted intervention to optimize antibiotic prescribing at hospital discharge was associated with less frequent use of antibiotics with broad gram-negative activity and shorter post-hospital treatment durations. PMID:28260538

  2. Broad-Spectrum Antibiotic Treatment and Subsequent Childhood Type 1 Diabetes: A Nationwide Danish Cohort Study.

    PubMed

    Clausen, Tine D; Bergholt, Thomas; Bouaziz, Olivier; Arpi, Magnus; Eriksson, Frank; Rasmussen, Steen; Keiding, Niels; Løkkegaard, Ellen C

    2016-01-01

    Studies link antibiotic treatment and delivery by cesarean section with increased risk of chronic diseases through changes of the gut-microbiota. We aimed to evaluate the association of broad-spectrum antibiotic treatment during the first two years of life with subsequent onset of childhood type 1 diabetes and the potential effect-modification by mode of delivery. A Danish nationwide cohort study including all singletons born during 1997-2010. End of follow-up by December 2012. Four national registers provided information on antibiotic redemptions, outcome and confounders. Redemptions of antibiotic prescriptions during the first two years of life was classified into narrow-spectrum or broad-spectrum antibiotics. Children were followed from age two to fourteen, both inclusive. The risk of type 1 diabetes with onset before the age of 15 years was assessed by Cox regression. A total of 858,201 singletons contributed 5,906,069 person-years, during which 1,503 children developed type 1 diabetes. Redemption of broad-spectrum antibiotics during the first two years of life was associated with an increased rate of type 1 diabetes during the following 13 years of life (HR 1.13; 95% CI 1.02 to 1.25), however, the rate was modified by mode of delivery. Broad-spectrum antibiotics were associated with an increased rate of type 1 diabetes in children delivered by either intrapartum cesarean section (HR 1.70; 95% CI 1.15 to 2.51) or prelabor cesarean section (HR 1.63; 95% CI 1.11 to 2.39), but not in vaginally delivered children. Number needed to harm was 433 and 562, respectively. The association with broad-spectrum antibiotics was not modified by parity, genetic predisposition or maternal redemption of antibiotics during pregnancy or lactation. Redemption of broad-spectrum antibiotics during infancy is associated with an increased risk of childhood type 1 diabetes in children delivered by cesarean section.

  3. Metabolism of the broad-spectrum neuropeptide growth factor antagonist: [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-substance P.

    PubMed Central

    Jones, D. A.; Cummings, J.; Langdon, S. P.; Maclellan, A. J.; Higgins, T.; Rozengurt, E.; Smyth, J. F.

    1996-01-01

    Broad-spectrum neuropeptide growth factor antagonists, such as [D-Arg1, D-Phe5, D-Trp7,9, Leu11]substance P (antagonist D) and [Arg6, D-Trp7,9, NmePhe8]substance P(6-11) (antagonist G), are currently being investigated as possible anti-tumour agents. These compounds are hoped to be effective against neuropeptide-driven cancers such as small-cell lung cancer. Antagonist D possesses a broader antagonistic spectrum than antagonist G and hence may be of greater therapeutic use. The in vitro metabolism of antagonist D has been characterised and the structures of two major metabolites have been elucidated by amino acid analysis and mass spectrometry. Metabolism was confined to the C-terminus where serine carboxypeptidase action produced [deamidated]-antagonist D (metabolite 1) and [des-Leu11]-antagonist D (metabolite 2) as the major metabolites. Biological characterisation of the metabolites demonstrated that these relatively minor changes in structure resulted in a loss of antagonist activity. These results provide some of the first structure-activity information on the factors that determine which neuropeptides these compounds inhibit and on the relative potency of that inhibition. PMID:8611370

  4. Comparative antimicrobial activity, in vitro and in vivo, of soft N-chloramine systems and chlorhexidine.

    PubMed Central

    Selk, S H; Pogány, S A; Higuchi, T

    1982-01-01

    Antimicrobial activity of the following four new N-chloramine compounds was evaluated: two chlorinated simple amino acids, a chlorinated half-ester of succinic acid, and a chlorinated half-ester of glutaric acid. For comparison, the known bactericidal agents 3-chloro-4,4-dimethyl-2-oxazolidinone and chlorhexidine were evaluated by the same procedure. The contact germicidal efficiency screen was used to examine the in vitro bactericidal activity of all six compounds in the absence and presence of 5% horse serum or 5% Triton X-100. The four new compounds were found to have greater germicidal activity than the other compounds tested and to exhibit low toxicity and skin irritation values. The in vivo bactericidal activity was evaluated in two studies. In the occlusion test, three of the four new compounds plus chlorhexidine diacetate were tested. The N-chloramines were significantly superior to chlorhexidine in preventing the expansion of the normal flora under occlusion. In the scrub test, a gloved-hand wash method was used to compare the antimicrobial effect of a 1% solution of the chlorinated half-ester of succinic acid in triacetin with that of a commercial germicidal hand wash containing 4% chlorhexidine gluconate. The two preparations exhibited essentially the same hand-degerming activity. PMID:6805433

  5. Soya bean tempe extracts show antibacterial activity against Bacillus cereus cells and spores.

    PubMed

    Roubos-van den Hil, P J; Dalmas, E; Nout, M J R; Abee, T

    2010-07-01

    Tempe, a Rhizopus ssp.-fermented soya bean food product, was investigated for bacteriostatic and/or bactericidal effects against cells and spores of the food-borne pathogen Bacillus cereus. Tempe extract showed a high antibacterial activity against B. cereus ATCC 14579 based on optical density and viable count measurements. This growth inhibition was manifested by a 4 log CFU ml(-1) reduction, within the first 15 min of exposure. Tempe extracts also rapidly inactivated B. cereus spores upon germination. Viability and membrane permeability assessments using fluorescence probes showed rapid inactivation and permeabilization of the cytoplasmic membrane confirming the bactericidal mode of action. Cooked beans and Rhizopus grown on different media did not show antibacterial activity, indicating the unique association of the antibacterial activity with tempe. Subsequent characterization of the antibacterial activity revealed that heat treatment and protease addition nullified the bactericidal effect, indicating the proteinaceous nature of the bioactive compound. During fermentation of soya beans with Rhizopus, compounds are released with extensive antibacterial activity against B. cereus cells and spores. The results show the potential of producing natural antibacterial compounds that could be used as ingredients in food preservation and pathogen control. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  6. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    PubMed

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.

  7. A novel chimeric phage lysin with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae.

    PubMed

    Díez-Martínez, Roberto; De Paz, Héctor D; García-Fernández, Esther; Bustamante, Noemí; Euler, Chad W; Fischetti, Vincent A; Menendez, Margarita; García, Pedro

    2015-01-01

    Streptococcus pneumoniae is becoming increasingly antibiotic resistant worldwide and new antimicrobials are urgently needed. Our aim was new chimeric phage endolysins, or lysins, with improved bactericidal activity by swapping the structural components of two pneumococcal phage lysozymes: Cpl-1 (the best lysin tested to date) and Cpl-7S. The bactericidal effects of four new chimeric lysins were checked against several bacteria. The purified enzymes were added at different concentrations to resuspended bacteria and viable cells were measured after 1 h. Killing capacity of the most active lysin, Cpl-711, was tested in a mouse bacteraemia model, following mouse survival after injecting different amounts (25-500 μg) of enzyme. The capacity of Cpl-711 to reduce pneumococcal biofilm formation was also studied. The chimera Cpl-711 substantially improved the killing activity of the parental phage lysozymes, Cpl-1 and Cpl-7S, against pneumococcal bacteria, including multiresistant strains. Specifically, 5 μg/mL Cpl-711 killed ≥7.5 log of pneumococcal R6 strain. Cpl-711 also reduced pneumococcal biofilm formation and killed 4 log of the bacterial population at 1 μg/mL. Mice challenged intraperitoneally with D39_IU pneumococcal strain were protected by treatment with a single intraperitoneal injection of Cpl-711 1 h later, resulting in about 50% greater protection than with Cpl-1. Domain swapping among phage lysins allows the construction of new chimeric enzymes with high bactericidal activity and a different substrate range. Cpl-711, the most powerful endolysin against pneumococci, offers a promising therapeutic perspective for the treatment of multiresistant pneumococcal infections. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Bactericidal efficacy of molybdenum oxide nanoparticles against antimicrobial-resistant pathogens.

    PubMed

    Lopes, E; Piçarra, S; Almeida, P L; de Lencastre, H; Aires-de-Sousa, M

    2018-06-25

    Multidrug-resistant bacteria pose a major threat to effective antibiotics and alternatives to fight multidrug-resistant pathogens are needed. We synthetized molybdenum oxide (MoO3) nanoparticles (NP) and determined their antibacterial activity against 39 isolates: (i) eight Staphylococcus aureus, including representatives of methicillin-resistant S. aureus epidemic clones; (ii) six enterococci, including vancomycin-resistant isolates; and (iii) 25 Gram-negative isolates (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae), including extended spectrum beta-lactamases and carbapenemases producers. All isolates showed a MoO3 NP MIC of 700-800 mg l -1 . MoO3 NP produced a clear inhibition zone for S. aureus and all Gram-negative isolates at concentrations ≥25 mg ml -1 and ≥50 mg ml -1 for enterococci. When the NP solutions were adjusted to pH ~7, the biocidal activity was completely abolished. MoO3 NP create an acidic pH and show a universal antimicrobial activity against susceptible and resistant isolates belonging to the most relevant bacterial species responsible for hospital-acquired infections.

  9. Morphological bactericidal fast-acting effects of peracetic acid, a high-level disinfectant, against Staphylococcus aureus and Pseudomonas aeruginosa biofilms in tubing.

    PubMed

    Chino, T; Nukui, Y; Morishita, Y; Moriya, K

    2017-01-01

    The bactericidal effect of disinfectants against biofilms is essential to reduce potential endoscopy-related infections caused by contamination. Here, we investigated the bactericidal effect of a high-level disinfectant, peracetic acid (PAA), against Staphylococcus aureus and Pseudomonas aeruginosa biofilm models in vitro. S. aureus and P. aeruginosa biofilms were cultured at 35 °C for 7 days with catheter tubes. The following high-level disinfectants (HLDs) were tested: 0.3% PAA, 0.55% ortho-phthalaldehyde (OPA), and 2.0% alkaline-buffered glutaraldehyde (GA). Biofilms were exposed to these agents for 1-60 min and observed after 5 min and 30 min by transmission and scanning electron microscopy. A Student's t test was performed to compare the exposure time required for bactericidal effectiveness of the disinfectants. PAA and GA were active within 1 min and 5 min, respectively, against S. aureus and P. aeruginosa biofilms. OPA took longer than 10 min and 30 min to act against S. aureus and P. aeruginosa biofilms, respectively ( p  < 0.01). Treatment with PAA elicited changes in cell shape after 5 min and structural damage after 30 min. Amongst the HLDs investigated, PAA elicited the most rapid bactericidal effects against both biofilms. Additionally, treatment with PAA induced morphological alterations in the in vitro biofilm models, suggesting that PAA exerts fast-acting bactericidal effects against biofilms associated with endoscopy-related infections. These findings indicate that the exposure time for bactericidal effectiveness of HLDs for endoscope reprocessing in healthcare settings should be reconsidered.

  10. A Nanocomposite Hydrogel with Potent and Broad-Spectrum Antibacterial Activity.

    PubMed

    Dai, Tianjiao; Wang, Changping; Wang, Yuqing; Xu, Wei; Hu, Jingjing; Cheng, Yiyun

    2018-05-02

    Local bacterial infection is a challenging task and still remains a serious threat to human health in clinics. Systemic administration of antibiotics has only short-term antibacterial activity and usually causes adverse effects and bacterial resistance. A bioadhesive hydrogel with broad-spectrum and on-demand antibiotic activity is highly desirable. Here, we designed a pH-responsive nanocomposite hydrogel via a Schiff base linkage between oxidized polysaccharides and cationic dendrimers encapsulated with silver nanoparticles. The antibacterial components, both the cationic dendrimers and silver species, could be released in response to the acidity generated by growing bacteria. The released cationic polymer and silver exhibited a synergistic effect in antibacterial activity, and thus, the nanocomposite hydrogel showed potent antibacterial activity against both Gram-negative ( Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria ( Staphylococcus epidermidis and Staphylococcus aureus). The gel showed superior in vivo antibacterial efficacy against S. aureus infection compared with a commercial silver hydrogel at the same silver concentration. In addition, no obvious hemolytic toxicity, cytotoxicity, and tissue and biochemical toxicity were observed for the antibacterial hydrogel after incubation with cells or implantation. This study provides a facile and promising strategy to develop smart hydrogels to treat local bacterial infections.

  11. Antistaphylococcal activity of DX-619, a new des-F(6)-quinolone, compared to those of other agents.

    PubMed

    Bogdanovich, Tatiana; Esel, Duygu; Kelly, Linda M; Bozdogan, Bülent; Credito, Kim; Lin, Gengrong; Smith, Kathy; Ednie, Lois M; Hoellman, Dianne B; Appelbaum, Peter C

    2005-08-01

    The in vitro activity of DX-619, a new des-F(6)-quinolone, was tested against staphylococci and compared to those of other antimicrobials. DX-619 had the lowest MIC ranges/MIC(50)s/MIC(90)s (microg/ml) against 131 Staphylococcus aureus strains (32), and ciprofloxacin (>32/>32). Raised quinolone MICs were associated with mutations in GyrA (S84L) and single or double mutations in GrlA (S80F or Y; E84K, G, or V) in all S. aureus strains tested. A recent vancomycin-resistant S. aureus (VRSA) strain (Hershey) was resistant to available quinolones and was inhibited by DX-619 at 0.25 microg/ml and sitafloxacin at 1.0 microg/ml. Vancomycin (except VRSA), linezolid, ranbezolid, tigecycline, and quinupristin-dalfopristin were active against all strains, and teicoplanin was active against S. aureus but less active against coagulase-negative staphylococci. DX-619 produced resistant mutants with MICs of 1 to >32 microg/ml after <50 days of selection compared to 16 to >32 microg/ml for ciprofloxacin, sitafloxacin, moxifloxacin, and gatifloxacin. DX-619 and sitafloxacin were also more active than other tested drugs against selected mutants and had the lowest mutation frequencies in single-step resistance selection. DX-619 and sitafloxacin were bactericidal against six quinolone-resistant (including the VRSA) and seven quinolone-susceptible strains tested, whereas gatifloxacin, moxifloxacin, levofloxacin, and ciprofloxacin were bactericidal against 11, 10, 7, and 5 strains at 4x MIC after 24 h, respectively. DX-619 was also bactericidal against one other VRSA strain, five vancomycin-intermediate S. aureus strains, and four vancomycin-intermediate coagulase-negative staphylococci. Linezolid, ranbezolid, and tigecycline were bacteriostatic and quinupristin-dalfopristin, teicoplanin, and vancomycin were bactericidal against two, eight, and nine strains, and daptomycin and oritavancin were rapidly bactericidal against all strains, including the VRSA. DX-619 has potent in vitro activity against staphylococci, including methicillin-, ciprofloxacin-, and vancomycin-resistant strains.

  12. Comparative in vitro susceptibilities and bactericidal activities of investigational fluoroquinolone ABT-492 and other antimicrobial agents against human mycoplasmas and ureaplasmas.

    PubMed

    Waites, Ken B; Crabb, Donna M; Duffy, Lynn B

    2003-12-01

    We determined in vitro susceptibilities for ABT-492 and other antimicrobials against Mycoplasma pneumoniae, Mycoplasma fermentans, Mycoplasma hominis, and Ureaplasma species. ABT-492 MICs were < or =1 microg/ml, and the agent was bactericidal against selected isolates of M. pneumoniae and M. hominis. ABT-492 has potential for treatment of infections due to these microorganisms.

  13. Comparative In Vitro Susceptibilities and Bactericidal Activities of Investigational Fluoroquinolone ABT-492 and Other Antimicrobial Agents against Human Mycoplasmas and Ureaplasmas

    PubMed Central

    Waites, Ken B.; Crabb, Donna M.; Duffy, Lynn B.

    2003-01-01

    We determined in vitro susceptibilities for ABT-492 and other antimicrobials against Mycoplasma pneumoniae, Mycoplasma fermentans, Mycoplasma hominis, and Ureaplasma species. ABT-492 MICs were ≤1 μg/ml, and the agent was bactericidal against selected isolates of M. pneumoniae and M. hominis. ABT-492 has potential for treatment of infections due to these microorganisms. PMID:14638513

  14. Antibacterial activity of Hygrophila stricta and Peperomia pellucida.

    PubMed

    Khan, M R; Omoloso, A D

    2002-06-01

    The crude methanolic extracts of Hygrophila scricta and Peperomia pellucida were fractionated into petrol, dichloromethane, ethyl acetate and butanol. All the crude extracts and the fractions exhibited a very good level of broad spectrum antibacterial activity. The fractions were more active than the crude extracts. The petrol fraction of H. stricta and the butanol fraction of P. pellucida were particularly good. No activity was noticed for the moulds tested.

  15. Bactericidal activities of woven cotton and nonwoven polypropylene fabrics coated with hydroxyapatite-binding silver/titanium dioxide ceramic nanocomposite “Earth-plus”

    PubMed Central

    Kasuga, Eriko; Kawakami, Yoshiyuki; Matsumoto, Takehisa; Hidaka, Eiko; Oana, Kozue; Ogiwara, Naoko; Yamaki, Dai; Sakurada, Tsukasa; Honda, Takayuki

    2011-01-01

    Background Bacteria from the hospital environment, including linens and curtains, are often responsible for hospital-associated infections. The aim of the present study was to evaluate the bactericidal effects of fabrics coated with the hydroxyapatite-binding silver/titanium dioxide ceramic nanocomposite “Earth-plus”. Methods Bactericidal activities of woven and nonwoven fabrics coated with Earth-plus were investigated by the time-kill curve method using nine bacterial strains, including three Staphylococcus aureus, three Escherichia coli, and three Pseudomonas aeruginosa strains. Results The numbers of viable S. aureus and E. coli cells on both fabrics coated with Earth-plus decreased to below 2 log10 colony-forming units/mL in six hours and reached the detection limit in 18 hours. Viable cell counts of P. aeruginosa on both fabrics coated with Earth-plus could not be detected after 3–6 hours. Viable cells on woven fabrics showed a more rapid decline than those on nonwoven fabrics. Bacterial cell counts of the nine strains on fabrics without Earth-plus failed to decrease even after 18 hours. Conclusion Woven cotton and nonwoven polypropylene fabrics were shown to have excellent antibacterial potential. The woven fabric was more bactericidal than the nonwoven fabric. PMID:21931489

  16. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties

    PubMed Central

    Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy

    2015-01-01

    The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50–250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity. PMID:26288570

  17. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties.

    PubMed

    Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy

    2015-09-01

    The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50-250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity.

  18. Evaluation of Novel Antimicrobial Peptides as Topical Anti-Infectives with Broad Spectrum Activity Against Combat-Related Bacterial and Fungal Wound Infections

    DTIC Science & Technology

    2016-10-01

    absence of topical antibiotics, are immediately colonized by gram -positive skin flora, such as Staphylococcus aureus. Gram -negative bacteria such as...complications. Silver sulfadiazine is not active against fungal infections,4 and its side effects include staining of the treated burn wound, allergic

  19. 2-(Decylthio)ethanamine hydrochloride: A new multifunctional biocide which enhances corrosion inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, R.W.; Cooke, L.M.

    1997-12-01

    2-(Decylthio)ethanamine hydrochloride is a new multifunctional biocide that is registered for use in a variety of recirculating cooling water systems. This biocide has broad spectrum activity against bacteria, fungi and algae. It also has biofilm and corrosion inhibition properties. Data on these various activities will be presented for both laboratory and field evaluations.

  20. Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide Releasing Silica Nanoparticles

    PubMed Central

    Carpenter, Alexis W.; Slomberg, Danielle L.; Rao, Kavitha S.; Schoenfisch, Mark H.

    2011-01-01

    A reverse microemulsion synthesis was used to prepare amine functionalized silica nanoparticles of three distinct sizes (i.e., 50, 100, and 200 nm) with identical amine concentrations. The resulting hybrid nanoparticles, consisting of N-(6 aminohexyl) aminopropyltrimethoxysilane and tetraethoxysilane, were highly monodisperse in size. N-diazeniumdiolate nitric oxide (NO) donors were subsequently formed on secondary amines while controlling reaction conditions to keep the total amount of nitric oxide (NO) released constant for each particle size. The bactericidal efficacy of the NO releasing nanoparticles against Pseudomonas aeruginosa increased with decreasing particle size. Additionally, smaller diameter nanoparticles were found to associate with the bacteria at a faster rate and to a greater extent than larger particles. Neither control (non-NO-releasing) nor NO releasing particles exhibited toxicity towards L929 mouse fibroblasts at concentrations above their respective minimum bactericidal concentrations. This study represents the first investigation of the bactericidal efficacy of NO-releasing silica nanoparticles as a function of particle size. PMID:21842899

  1. Reduction of Broad-Spectrum Antimicrobial Use in a Tertiary Children's Hospital Post Antimicrobial Stewardship Program Guideline Implementation.

    PubMed

    Lee, Kelley R; Bagga, Bindiya; Arnold, Sandra R

    2016-03-01

    The core strategies recommended for antimicrobial stewardship programs, formulary restriction with preauthorization and prospective audit and feedback, can be difficult to implement with limited resources; therefore, we took an approach of guideline development and education with the goal of reducing overall antibiotic use and unwarranted use of broad-spectrum antimicrobials. Retrospective chart review before and after intervention. Le Bonheur Children's Hospital pediatric, neonatal, and cardiac ICUs. All patients in our pediatric, neonatal, and cardiac ICUs within the time frame of the study. Baseline review in our ICUs revealed excessive use of broad-spectrum antibiotics and inconsistency in managing common pediatric infections. Guidelines were developed and implemented using cycles of education, retrospective review, and feedback. Purchasing and antibiotic use data were obtained to assess changes before and after guideline implementation. Unit-specific days of therapy were measured using periodic chart audit. Segmented regression analysis was used to assess changes in purchasing and broad-spectrum antibiotic days of therapy. The change in median monthly purchases was assessed using 2-tail Student t test. Hospital-wide targeted broad-spectrum antibiotic days of therapy/1,000 patient-days during the preimplementation year averaged 105 per month and decreased 33% to 70 per month during the postimplementation year. The overall antibiotic days of therapy decreased 41%, 21%, and 18%, and targeted broad-spectrum antibiotic days of therapy decreased by 99%, 75%, and 61% in the cardiac, pediatric, and neonatal ICUs, respectively, after guideline implementation. Yearly purchases of our most common broad-spectrum antibiotics decreased 62% from $230,059 to $86,887 after guideline implementation. Median monthly purchases of these drugs before implementation were $19,389 and $11,043 after implementation (p < 0.001). Guideline implementation was successful in reducing targeted broad-spectrum antibiotic use and acquisition cost. Programs with very limited resources may find similar implementation of guidelines effective to provide initial success, so that putting into practice one of the more resource intensive core strategies, such as prospective audit and feedback, may be feasible.

  2. Anti-Helicobacter pylori Potential of Artemisinin and Its Derivatives

    PubMed Central

    Goswami, Suchandra; Chinniah, Annalakshmi; Pal, Anirban; Kar, Sudip K.

    2012-01-01

    The antimalarial drug artemisinin from Artemisia annua demonstrated remarkably strong activity against Helicobacter pylori, the pathogen responsible for peptic ulcer diseases. In an effort to develop a novel antimicrobial chemotherapeutic agent containing such a sesquiterpene lactone endoperoxide, a series of analogues (2 natural and 15 semisynthetic molecules), including eight newly synthesized compounds, were investigated against clinical and standard strains of H. pylori. The antimicrobial spectrum against 10 H. pylori strains and a few other bacterial and fungal strains indicated specificity against the ulcer causing organism. Of five promising molecules, a newly synthesized ether derivative β-artecyclopropylmether was found to be the most potent compound, which exhibited MIC range, MIC90, and minimum bactericidal concentration range values of 0.25 to 1.0 μg/ml, 1.0 μg/ml, and 1 to 16 μg/ml, respectively, against both resistant and sensitive strains of H. pylori. The molecule demonstrated strong bactericidal kinetics with extensive morphological degeneration, retained functional efficacy at stomach acidic pH unlike clarithromycin, did not elicit drug resistance unlike metronidazole, and imparted sensitivity to resistant strains. It is not cytotoxic and exhibits in vivo potentiality to reduce the H. pylori burden in a chronic infection model. Thus, β-artecyclopropylmether could be a lead candidate for anti-H. pylori therapeutics. Since the recurrence of gastroduodenal ulcers is believed to be mainly due to antibiotic resistance of the commensal organism H. pylori, development of a candidate drug from this finding is warranted. PMID:22687518

  3. The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity.

    PubMed

    Naeem, Abdul; Badshah, Syed Lal; Muska, Mairman; Ahmad, Nasir; Khan, Khalid

    2016-03-28

    Quinolones are broad-spectrum synthetic antibacterial drugs first obtained during the synthesis of chloroquine. Nalidixic acid, the prototype of quinolones, first became available for clinical consumption in 1962 and was used mainly for urinary tract infections caused by Escherichia coli and other pathogenic Gram-negative bacteria. Recently, significant work has been carried out to synthesize novel quinolone analogues with enhanced activity and potential usage for the treatment of different bacterial diseases. These novel analogues are made by substitution at different sites--the variation at the C-6 and C-8 positions gives more effective drugs. Substitution of a fluorine atom at the C-6 position produces fluroquinolones, which account for a large proportion of the quinolones in clinical use. Among others, substitution of piperazine or methylpiperazine, pyrrolidinyl and piperidinyl rings also yields effective analogues. A total of twenty six analogues are reported in this review. The targets of quinolones are two bacterial enzymes of the class II topoisomerase family, namely gyrase and topoisomerase IV. Quinolones increase the concentration of drug-enzyme-DNA cleavage complexes and convert them into cellular toxins; as a result they are bactericidal. High bioavailability, relative low toxicity and favorable pharmacokinetics have resulted in the clinical success of fluoroquinolones and quinolones. Due to these superior properties, quinolones have been extensively utilized and this increased usage has resulted in some quinolone-resistant bacterial strains. Bacteria become resistant to quinolones by three mechanisms: (1) mutation in the target site (gyrase and/or topoisomerase IV) of quinolones; (2) plasmid-mediated resistance; and (3) chromosome-mediated quinolone resistance. In plasmid-mediated resistance, the efflux of quinolones is increased along with a decrease in the interaction of the drug with gyrase (topoisomerase IV). In the case of chromosome-mediated quinolone resistance, there is a decrease in the influx of the drug into the cell.

  4. RX-P873, a Novel Protein Synthesis Inhibitor, Accumulates in Human THP-1 Monocytes and Is Active against Intracellular Infections by Gram-Positive (Staphylococcus aureus) and Gram-Negative (Pseudomonas aeruginosa) Bacteria

    PubMed Central

    Buyck, Julien M.; Peyrusson, Frédéric

    2015-01-01

    The pyrrolocytosine RX-P873, a new broad-spectrum antibiotic in preclinical development, inhibits protein synthesis at the translation step. The aims of this work were to study RX-P873's ability to accumulate in eukaryotic cells, together with its activity against extracellular and intracellular forms of infection by Staphylococcus aureus and Pseudomonas aeruginosa, using a pharmacodynamic approach allowing the determination of maximal relative efficacies (Emax values) and bacteriostatic concentrations (Cs values) on the basis of Hill equations of the concentration-response curves. RX-P873's apparent concentration in human THP-1 monocytes was about 6-fold higher than the extracellular one. In broth, MICs ranged from 0.125 to 0.5 mg/liter (S. aureus) and 2 to 8 mg/liter (P. aeruginosa), with no significant shift in these values against strains resistant to currently used antibiotics being noted. In concentration-dependent experiments, the pharmacodynamic profile of RX-P873 was not influenced by the resistance phenotype of the strains. Emax values (expressed as the decrease in the number of CFU from that in the initial inoculum) against S. aureus and P. aeruginosa reached more than 4 log units and 5 log units in broth, respectively, and 0.7 log unit and 2.7 log units in infected THP-1 cells, respectively, after 24 h. Cs values remained close to the MIC in all cases, making RX-P873 more potent than antibiotics to which the strains were resistant (moxifloxacin, vancomycin, and daptomycin for S. aureus; ciprofloxacin and ceftazidime for P. aeruginosa). Kill curves in broth showed that RX-P873 was more rapidly bactericidal against P. aeruginosa than against S. aureus. Taken together, these data suggest that RX-P873 may constitute a useful alternative for infections involving intracellular bacteria, especially Gram-negative species. PMID:26014952

  5. An enhancer peptide for membrane-disrupting antimicrobial peptides

    PubMed Central

    2010-01-01

    Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4) by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn). Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin) killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus), whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin) were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane. PMID:20152058

  6. Subinhibitory quinupristin/dalfopristin attenuates virulence of Staphylococcus aureus.

    PubMed

    Koszczol, Carmen; Bernardo, Katussevani; Krönke, Martin; Krut, Oleg

    2006-09-01

    The semi-synthetic streptogramin quinupristin/dalfopristin antibiotic exerts potent bactericidal activity against Staphylococcus aureus. We investigated whether, like other bactericidal antibiotics used at subinhibitory concentrations, quinupristin/dalfopristin enhances release of toxins by Gram-positive cocci. The activity of quinupristin/dalfopristin on exotoxin release by S. aureus was investigated by 2D SDS-PAGE combined with MALDI-TOF/MS analysis and by western blotting. We show that quinupristin/dalfopristin at subinhibitory concentrations reduces the release of S. aureus factors that induce tumour necrosis factor secretion in macrophages. Furthermore, quinupristin/dalfopristin but not linezolid attenuated S. aureus-mediated killing of infected host cells. When added to S. aureus cultures at different stages of bacterial growth, quinupristin/dalfopristin reduced in a dose-dependent manner the release of specific virulence factors (e.g. autolysin, protein A, alpha- and beta-haemolysins, lipases). In contrast, other presumably non-toxic exoproteins remained unchanged. The results of the present study suggest that subinhibitory quinupristin/dalfopristin inhibits virulence factor release by S. aureus, which might be especially helpful for the treatment of S. aureus infections, where both bactericidal as well as anti-toxin activity may be advantageous.

  7. Bactericidal Effects of HVOF-Sprayed Nanostructured TiO2 on Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Jeffery, B.; Peppler, M.; Lima, R. S.; McDonald, A.

    2010-01-01

    Titanium dioxide (TiO2) has been shown to exhibit photocatalytic bactericidal activity. This preliminary study focused on examining the photocatalytic activity of high-velocity oxy-fuel (HVOF) sprayed nanostructured TiO2 coatings to kill Pseudomonas aeruginosa. The surfaces of the nanostructured TiO2 coatings were lightly polished before addition of the bacterial solution. Plates of P. aeruginosa were grown, and then suspended in a phosphate buffer saline (PBS) solution. The concentration of bacteria used was determined by a photo-spectrometer, which measured the amount of light absorbed by the bacteria-filled solution. This solution was diluted and pipetted onto the coating, which was exposed to white light in 30-min intervals, up to 120 min. It was found that on polished HVOF-sprayed coatings exposed to white light, 24% of the bacteria were killed after exposure for 120 min. On stainless steel controls, approximately 6% of the bacteria were not recovered. These preliminary results show that thermal-sprayed nanostructured TiO2 coatings exhibited photocatalytic bactericidal activity with P. aeruginosa.

  8. Naturally Acquired Antibodies against Haemophilus influenzae Type a in Aboriginal Adults, Canada

    PubMed Central

    Nix, Eli B.; Williams, Kylie; Cox, Andrew D.; St. Michael, Frank; Romero-Steiner, Sandra; Schmidt, Daniel S.; McCready, William G.

    2015-01-01

    In the post-Haemophilus influenzae type b (Hib) vaccine era that began in the 1980's, H. influenzae type a (Hia) emerged as a prominent cause of invasive disease in North American Aboriginal populations. To test whether a lack of naturally acquired antibodies may underlie increased rates of invasive Hia disease, we compared serum bactericidal activity against Hia and Hib and IgG and IgM against capsular polysaccharide between Canadian Aboriginal and non-Aboriginal healthy and immunocompromised adults. Both healthy and immunocompromised Aboriginal adults exhibited significantly higher bactericidal antibody titers against Hia than did non-Aboriginal adults (p = 0.042 and 0.045 respectively), with no difference in functional antibody activity against Hib. IgM concentrations against Hia were higher than IgG in most study groups; the inverse was true for antibody concentrations against Hib. Our results indicate that Aboriginal adults possess substantial serum bactericidal activity against Hia that is mostly due to IgM antibodies. The presence of sustained IgM against Hia suggests recent Hia exposure. PMID:25626129

  9. Bactericidal Activity of Micromolar N-Chlorotaurine: Evidence for Its Antimicrobial Function in the Human Defense System

    PubMed Central

    Nagl, Markus; Hess, Michael W.; Pfaller, Kristian; Hengster, Paul; Gottardi, Waldemar

    2000-01-01

    N-Chlorotaurine, the main representative of long-lived oxidants found in the supernatant of stimulated granulocytes, has been investigated systematically with regard to its antibacterial activity at different physiological concentrations for the first time. N-Chlorotaurine (12.5 to 50 μM) demonstrated a bactericidal effect i.e., a 2 to 4 log10 reduction in viable counts, after incubation at 37°C for 6 to 9 h at pH 7.0, which effect was significantly enhanced in an acidic milieu (at pH 5.0), with a 3 to 4 log10 reduction after 2 to 3 h. Moreover, bacteria were attenuated after being incubated in N-chlorotaurine for a sublethal time, as demonstrated with the mouse peritonitis model. The supernatant of stimulated granulocytes exhibited similar activity. Transmission electron microscopy revealed changes in the bacterial cell membrane and cytoplasmic disintegration with both reacting systems, even in the case of a mere attenuation. The results of this study suggest a significant bactericidal function of N-chlorotaurine and other chloramines during inflammation. PMID:10952603

  10. Effects of ozone nano-bubble water on periodontopathic bacteria and oral cells - in vitro studies

    NASA Astrophysics Data System (ADS)

    Hayakumo, Sae; Arakawa, Shinichi; Takahashi, Masayoshi; Kondo, Keiko; Mano, Yoshihiro; Izumi, Yuichi

    2014-10-01

    The aims of the present study were to evaluate the bactericidal activity of a new antiseptic agent, ozone nano-bubble water (NBW3), against periodontopathogenic bacteria and to assess the cytotoxicity of NBW3 against human oral cells. The bactericidal activities of NBW3 against representative periodontopathogenic bacteria, Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) were evaluated using in vitro time-kill assays. The cytotoxicity of NBW3 was evaluated using three-dimensional human buccal and gingival tissue models. The numbers of colony forming units (CFUs)/mL of P. gingivalis and A. actinomycetemcomitans exposed to NBW3 dropped to below the lower limit of detection (<10 CFUs mL-1) after only 0.5 min of exposure. There were only minor decreases in the viability of oral tissue cells after 24 h of exposure to NBW3. These results suggest that NBW3 possesses potent bactericidal activity against representative periodontopathogenic bacteria and is not cytotoxic to cells of human oral tissues. The use of NBW3 as an adjunct to periodontal therapy would be promising.

  11. Antioxidant Effect of Melatonin on the Functional Activity of Colostral Phagocytes in Diabetic Women

    PubMed Central

    Fagundes, Danny L. G.; Calderon, Iracema M. P.; França, Eduardo L.

    2013-01-01

    Melatonin is involved in a number of physiological and oxidative processes, including functional regulation in human milk. The present study investigated the mechanisms of action of melatonin and its effects on the functional activity of colostral phagocytes in diabetic women. Colostrum samples were collected from normoglycemic (N = 38) and diabetic (N = 38) women. We determined melatonin concentration, superoxide release, bactericidal activity and intracellular Ca2+ release by colostral phagocytes treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and incubated with melatonin and its precursor (N-acetyl-serotonin-NAS), antagonist (luzindole) and agonist (chloromelatonin-CMLT). Melatonin concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers. Melatonin stimulated superoxide release by colostral phagocytes from normoglycemic but not hyperglycemic women. NAS increased superoxide, irrespective of glycemic status, whereas CMTL increased superoxide only in cells from the normoglycemic group. Phagocytic activity in colostrum increased significantly in the presence of melatonin, NAS and CMLT, irrespective of glycemic status. The bactericidal activity of colostral phagocytes against enterophatogenic Escherichia coli (EPEC) increased in the presence of melatonin or NAS in the normoglycemic group, but not in the hyperglycemic group. Luzindole blocked melatonin action on colostrum phagocytes. Phagocytes from the normoglycemic group treated with melatonin exhibited an increase in intracellular Ca2+ release. Phagocytes treated with TMB-8 (intracellular Ca2+ inhibitor) decreased superoxide, bactericidal activity and intracellular Ca2+ release in both groups. The results obtained suggest an interactive effect of glucose metabolism and melatonin on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, melatonin likely increases the ability of colostrum to protect against EPEC and other infections. In diabetic mothers, because maternal hyperglycemia modifies the functional activity of colostrum phagocytes, melatonin effects are likely limited to anti-inflammatory processes, with low superoxide release and bactericidal activity. PMID:23437270

  12. Synthetic pesticides in agro-ecosystems: are they as detrimental to nontarget invertebrate fauna as we suspect?

    PubMed

    Jenkins, Sommer; Hoffmann, Ary A; Mccoll, Stuart; Tsitsilas, Angelos; Umina, Paul A

    2013-04-01

    Broad-spectrum pesticides used to protect field crops and pastures from invertebrate pests are frequently reported to reduce populations of nontarget fauna, but there is often little relevant field data. Nonetheless, this notion is used to promote the adoption of more selective pesticides with less impact on nontarget invertebrates, including beneficial insects. Selective pesticides are not widely available for broad-acre grain crops and pastures in southern Australia; however, several options available in other industries could be compatible with these agricultural systems. In this study, the impact of broad-spectrum pesticides and several selective pesticides on nontarget invertebrate fauna was assessed in five field trials in wheat and canola fields. Despite extensive sampling over short and medium timeframes, few treatment effects on nontarget groups were detected. In cases where broad-spectrum pesticides were detrimental, patterns were often inconsistent among nontarget groups and between field trials. In contrast, the pest species, Halotydeus destructor Tucker and Penthaleus spp., were effectively controlled by the broad-spectrum treatments and less effectively by the selective pesticides. The inconsistent and relatively small impact of broad-spectrum pesticides on some nontarget invertebrates demonstrates that caution is required when extrapolating from laboratory-based assessments routinely used to assess the impacts of pesticides to field conditions in agriculture.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köberl, Martina; White, Richard A.; Erschen, Sabine

    Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria and nematodes. The 8.2 Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeberl, Martina; White, Richard A.; Erschen, Sabine

    The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activities against plant pathogenic fungi, bacteria and nematodes, consists of a single 3.9 Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties.

  15. Naval Medical Research and Development News. Volume 8, Issue 7, July 2016

    DTIC Science & Technology

    2016-07-01

    potent, broad-spectrum activity against microbial infections. AMPs display various antibacterial action mechanisms including membrane permeabilization...optimize the operational health and readiness of the nation’s armed forces. In proximity to more than 95,000 active duty service members, world-class...asymptomatic cases that go undetected by current surveillance activities . A recent collaboration between Navy Medicine researchers and partners in

  16. The antimicrobial effect of CEN1HC-Br against Propionibacterium acnes and its therapeutic and anti-inflammatory effects on acne vulgaris.

    PubMed

    Han, Rui; Blencke, Hans-Matti; Cheng, Hao; Li, Chun

    2018-01-01

    Propionibacterium acnes is a commensal bacterium, which is involved in acne inflammation. An antimicrobial peptide named CEN1HC-Br, which was isolated and characterized form the green sea urchin, has been shown to possess broad-spectrum antibacterial activity. Little is known concerning the potential effects of its antibacterial and anti-inflammatory properties against P. acnes. To examine the potency of CEN1HC-Br in acne treatment, we conducted experiments to analyze the antibacterial and anti-inflammatory activities of CEN1HC-Br both in vitro and in vivo. The antimicrobial activity of CEN1HC-Br was evaluated by minimal inhibitory concentration (MIC) assays using the broth dilution method. To elucidate the in vitro anti-inflammatory effect, HaCaT cells and human monocytes were treated with different concentration of CEN1HC-Br after stimulation by P. acnes. The expression of TLR2 and the secretion of the pro-inflammatory cytokines IL-6, IL-8, IL-1β, TNF-α, IL-12, respectively, were measured by enzyme immunoassays. An evaluation of P. acnes-induced ear edema in rat ear was conducted to compare the in vivo antibacterial and anti-inflammatory effect of CEN1HC-Br, the expression of IL-8, TNF-α, MMP-2 and TLR2 was evaluated by immunohistochemistry and real time-PCR. CEN1HC-Br showed stronger antimicrobial activity against P. acnes than clindamycin. CEN1HC-Br significantly reduced the expression of interleukin IL-12p40, IL-6, IL-1β, TNF-α and TLR2 in monocytes, but they were not influenced by clindamycin. Both CEN1HC-Br and Clindamycin attenuated P. acnes-induced ear swelling in rat along with pro-inflammatory cytokines IL-8, TNF-α, MMP-2 and TLR2. Our data demonstrates that CEN1HC-Br is bactericidal against P. acnes and that it has an anti-inflammatory effect on monocytes. The anti-inflammatory effect may partially occur through TLR2 down-regulation, triggering an innate immune response and the inhibition of pro-inflammatory cytokines. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Prevalence of factor H-binding protein variants and NadA among meningococcal group B isolates from the United States: implications for the development of a multicomponent group B vaccine.

    PubMed

    Beernink, Peter T; Welsch, Jo Anne; Harrison, Lee H; Leipus, Arunas; Kaplan, Sheldon L; Granoff, Dan M

    2007-05-15

    Two promising recombinant meningococcal protein vaccines are in development. One contains factor H-binding protein (fHBP) variants (v.) 1 and 2, whereas the other contains v.1 and 4 other antigens discovered by genome mining (5 component [5C]). Antibodies against fHBP are bactericidal against strains within a variant group. There are limited data on the prevalence of strains expressing different fHBP variants in the United States. A total of 143 group B isolates from patients hospitalized in the United States were tested for fHBP variant by quantitative polymerase chain reaction, for reactivity with 6 anti-fHBP monoclonal antibodies (MAb) by dot immunoblotting, and for susceptibility to bactericidal activity of mouse antisera. fHBP v.1 isolates predominated in California (83%), whereas isolates expressing v.1 (53%) or v.2 (42%) were common in 9 other states. Isolates representative of 5 anti-fHBP MAb-binding phenotypes (70% of isolates) were highly susceptible to anti-fHBP v.1 or v.2 bactericidal activity, whereas 3 phenotypes were approximately 50% susceptible. Collectively, antibodies against the fHBP v.1 and v.2 vaccine and the 5C vaccine killed 76% and 83% of isolates, respectively. Susceptibility to bactericidal activity can be predicted, in part, on the basis of fHBP phenotypes. Both vaccines have the potential to prevent most group B disease in the United States.

  18. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study.

    PubMed

    Ferrer, Ricard; Artigas, Antonio; Suarez, David; Palencia, Eduardo; Levy, Mitchell M; Arenzana, Angel; Pérez, Xose Luis; Sirvent, Josep-Maria

    2009-11-01

    Several Surviving Sepsis Campaign Guidelines recommendations are reevaluated. To analyze the effectiveness of treatments recommended in the sepsis guidelines. In a prospective observational study, we studied all adult patients with severe sepsis from 77 intensive care units. We recorded compliance with four therapeutic goals (central venous pressure 8 mm Hg or greater for persistent hypotension despite fluid resuscitation and/or lactate greater than 36 mg/dl, central venous oxygen saturation 70% or greater for persistent hypotension despite fluid resuscitation and/or lactate greater than 36 mg/dl, blood glucose greater than or equal to the lower limit of normal but less than 150 mg/dl, and inspiratory plateau pressure less than 30 cm H(2)O for mechanically ventilated patients) and four treatments (early broad-spectrum antibiotics, fluid challenge in the event of hypotension and/or lactate greater than 36 mg/dl, low-dose steroids for septic shock, drotrecogin alfa [activated] for multiorgan failure). The primary outcome measure was hospital mortality. The effectiveness of each treatment was estimated using propensity scores. Of 2,796 patients, 41.6% died before hospital discharge. Treatments associated with lower hospital mortality were early broad-spectrum antibiotic treatment (treatment within 1 hour vs. no treatment within first 6 hours of diagnosis; odds ratio, 0.67; 95% confidence interval, 0.50-0.90; P = 0.008) and drotrecogin alfa (activated) (odds ratio, 0.59; 95% confidence interval, 0.41-0.84; P = 0.004). Fluid challenge and low-dose steroids showed no benefits. In severe sepsis, early administration of broad-spectrum antibiotics in all patients and administration of drotrecogin alfa (activated) in the most severe patients reduce mortality.

  19. Recent advances in the chemistry and biology of carbapenem antibiotics.

    PubMed

    Coulton, S; Hunt, E

    1996-01-01

    The discovery of the olivanic acids and thienamycin aroused considerable interest amongst medicinal chemists and microbiologists around the world. The susceptibility of these agents to metabolic degradation has, however, been a major obstacle in their development. For many years the only notable success from such intensive research was the combination of imipenem with cilastatin, an inhibitor of the renal dipeptidase enzyme DHP-1. The enormous success of Primaxin for the treatment of a range of life-threatening bacterial infections provided the impetus for the discovery of totally synthetic, non-natural carbapenem derivatives that combine the broad spectrum of antimicrobial activity with stability to enzymatic degradation. This has indeed been realised in the development of meropenem; it possesses the broad spectrum of activity and resistance to beta-lactamases that are embodied in imipenem as well as displaying increased stability to human dehydropeptidases. Most recent research has focused upon the development of carbapenem antibiotics which combine broad spectrum antimicrobial activity and metabolic stability with oral absorption, for the treatment of community-acquired infections. Indeed, the pro-drug esters of the tricyclic carbapenems represent the first significant advance in this respect. However, the increased use of carbapenem antibiotics would undoubtedly accelerate the emergence of carbapenem-hydrolysing enzymes. The ultimate challenge could therefore be the design and synthesis of carbapenem derivatives that are resistant to these metallo-beta-lactamases. Due to the enormous problems encountered in the development of the carbapenem antibiotics, this area of research has, in the past, been described as a battlefield that did not bode well for the future [181]. Primaxin and meropenem proved however that these problems were not insurmountable, and are therefore a testimony to the persistence and dedication of those scientists in their war against bacterial infection.

  20. Novel Bacterial Topoisomerase Inhibitors with Potent Broad-Spectrum Activity against Drug-Resistant Bacteria.

    PubMed

    Charrier, Cédric; Salisbury, Anne-Marie; Savage, Victoria J; Duffy, Thomas; Moyo, Emmanuel; Chaffer-Malam, Nathan; Ooi, Nicola; Newman, Rebecca; Cheung, Jonathan; Metzger, Richard; McGarry, David; Pichowicz, Mark; Sigerson, Ralph; Cooper, Ian R; Nelson, Gary; Butler, Hayley S; Craighead, Mark; Ratcliffe, Andrew J; Best, Stuart A; Stokes, Neil R

    2017-05-01

    The novel bacterial topoisomerase inhibitor class is an investigational type of antibacterial inhibitor of DNA gyrase and topoisomerase IV that does not have cross-resistance with the quinolones. Here, we report the evaluation of the in vitro properties of a new series of this type of small molecule. Exemplar compounds selectively and potently inhibited the catalytic activities of Escherichia coli DNA gyrase and topoisomerase IV but did not block the DNA breakage-reunion step. Compounds showed broad-spectrum inhibitory activity against a wide range of Gram-positive and Gram-negative pathogens, including biodefence microorganisms and Mycobacterium tuberculosis No cross-resistance with fluoroquinolone-resistant Staphylococcus aureus and E. coli isolates was observed. Measured MIC 90 values were 4 and 8 μg/ml against a panel of contemporary multidrug-resistant isolates of Acinetobacter baumannii and E. coli , respectively. In addition, representative compounds exhibited greater antibacterial potency than the quinolones against obligate anaerobic species. Spontaneous mutation rates were low, with frequencies of resistance typically <10 -8 against E. coli and A. baumannii at concentrations equivalent to 4-fold the MIC. Compound-resistant E. coli mutants that were isolated following serial passage were characterized by whole-genome sequencing and carried a single Arg38Leu amino acid substitution in the GyrA subunit of DNA gyrase. Preliminary in vitro safety data indicate that the series shows a promising therapeutic index and potential for low human ether-a-go-go-related gene (hERG) inhibition (50% inhibitory concentration [IC 50 ], >100 μM). In summary, the compounds' distinct mechanism of action relative to the fluoroquinolones, whole-cell potency, low potential for resistance development, and favorable in vitro safety profile warrant their continued investigation as potential broad-spectrum antibacterial agents. Copyright © 2017 American Society for Microbiology.

Top