Host specificity and the probability of discovering species of helminth parasites.
Poulin, R; Mouillot, D
2005-06-01
Different animal species have different probabilities of being discovered and described by scientists, and these probabilities are determined to a large extent by the biological characteristics of these species. For instance, species with broader geographical ranges are more likely to be encountered by collectors than species with restricted distributions; indeed, the size of the geographical range is often the best predictor of a species' date of description. For parasitic organisms, host specificity may be similarly linked to the probability of a species being found. Here, using data on 170 helminth species parasitic in freshwater fishes, we show that host specificity is associated with the year in which the helminths were described. Helminths that exploit more host species, and to a lesser degree those that exploit a broader taxonomic range of host species, tend to be discovered earlier than the more host-specific helminths. This pattern was observed across all helminth species, as well as within the different helminth taxa (trematodes, cestodes, nematodes and acanthocephalans). Our results demonstrate that the parasite species known at any given point in time are not a random subset of existing species, but rather a biased subset with respect to the parasites' biological properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Shubhagata, E-mail: sdas@csu.edu.au
Competing roles of coevolution, selective pressure and recombination are an emerging interest in virus evolution. We report a novel aviadenovirus from captive red-bellied parrots (Poicephalus rufiventris) that uncovers evidence of deep recombination among aviadenoviruses. The sequence identity of the virus was most closely related to Turkey adenovirus D (42% similarity) and other adenoviruses in chickens, turkeys and pigeons. Sequencing and comparative analysis showed that the genome comprised 40,930 nucleotides containing 42 predicted open reading frames (ORFs) 19 of which had strong similarity with genes from other adenovirus species. The new genome unveiled a lineage that likely participated in deep recombinationmore » events across the genus Aviadenovirus accounting for an ancient evolutionary relationship. We hypothesize frequent host switch events and recombination among adenovirus progenitors in Galloanserae hosts caused the radiation of extant aviadenoviruses and the newly assembled Poicephalus adenovirus genome points to a potentially broader host range of these viruses among birds. - Highlights: •Shows how a single new genome can change overall phylogeny. •Reveals host switch events among adenovirus progenitors in Galloanserae hosts. •Points to a potentially broader host range of adenoviruses among birds and wildlife .« less
Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars
Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica
2013-01-01
SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573
Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O
2012-01-01
Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data – the number of known hosts and the phylogenetic distance between known hosts and other species of interest – can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation. PMID:23346231
Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O
2012-12-01
Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service - Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data - the number of known hosts and the phylogenetic distance between known hosts and other species of interest - can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation.
The potential for host switching via ecological fitting in the emerald ash borer-host plant system.
Cipollini, Don; Peterson, Donnie L
2018-02-27
The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina
Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less
Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina; ...
2016-06-28
Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less
Rachel E. Linzer; David M. Rizzo; Santa Olga Cacciola; Matteo Garbelotto
2009-01-01
In California and Oregon, two recently described oomycete forest pathogens, Phytophthora nemorosa and P. pseudosyringae, overlap in their host and geographic ranges with the virulent P. ramorum, causal agent of "sudden oak death." Epidemiological observations, namely broader geographic...
Gallet, Romain; Fontaine, Colin; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Fournier, Elisabeth; Tharreau, Didier
2016-04-01
Efficient strategies for limiting the impact of pathogens on crops require a good understanding of the factors underlying the evolution of compatibility range for the pathogens and host plants, i.e., the set of host genotypes that a particular pathogen genotype can infect and the set of pathogen genotypes that can infect a particular host genotype. Until now, little is known about the evolutionary and ecological factors driving compatibility ranges in systems implicating crop plants. We studied the evolution of host and pathogen compatibility ranges for rice blast disease, which is caused by the ascomycete Magnaporthe oryzae. We challenged 61 rice varieties from three rice subspecies with 31 strains of M. oryzae collected worldwide from all major known genetic groups. We determined the compatibility range of each plant variety and pathogen genotype and the severity of each plant-pathogen interaction. Compatibility ranges differed between rice subspecies, with the most resistant subspecies selecting for pathogens with broader compatibility ranges and the least resistant subspecies selecting for pathogens with narrower compatibility ranges. These results are consistent with a nested distribution of R genes between rice subspecies.
Janz, Niklas; Schäpers, Alexander; Gamberale-Stille, Gabriella
2017-01-01
An ovipositing insect experiences many sensory challenges during her search for a suitable host plant. These sensory challenges become exceedingly pronounced when host range increases, as larger varieties of sensory inputs have to be perceived and processed in the brain. Neural capacities can be exceeded upon information overload, inflicting costs on oviposition accuracy. One presumed generalist strategy to diminish information overload is the acquisition of a focused search during its lifetime based on experiences within the current environment, a strategy opposed to a more genetically determined focus expected to be seen in relative specialists. We hypothesized that a broader host range is positively correlated with mushroom body (MB) plasticity, a brain structure related to learning and memory. To test this hypothesis, butterflies with diverging host ranges (Polygonia c-album, Aglais io and Aglais urticae) were subjected to differential environmental complexities for oviposition, after which ontogenetic MB calyx volume differences were compared among species. We found that the relative generalist species exhibited remarkable plasticity in ontogenetic MB volumes; MB growth was differentially stimulated based on the complexity of the experienced environment. For relative specialists, MB volume was more canalized. All in all, this study strongly suggests an impact of host range on brain plasticity in Nymphalid butterflies. PMID:29093221
Esposito, Lauren A; Gupta, Swati; Streiter, Fraida; Prasad, Ashley; Dennehy, John J
2016-10-01
In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis , a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis , but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species.
Esposito, Lauren A.; Gupta, Swati; Streiter, Fraida; Prasad, Ashley
2016-01-01
In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis, a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis, but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species. PMID:28348827
Determinants of host species range in plant viruses.
Moury, Benoît; Fabre, Frédéric; Hébrard, Eugénie; Froissart, Rémy
2017-04-01
Prediction of pathogen emergence is an important field of research, both in human health and in agronomy. Most studies of pathogen emergence have focused on the ecological or anthropic factors involved rather than on the role of intrinsic pathogen properties. The capacity of pathogens to infect a large set of host species, i.e. to possess a large host range breadth (HRB), is tightly linked to their emergence propensity. Using an extensive plant virus database, we found that four traits related to virus genome or transmission properties were strongly and robustly linked to virus HRB. Broader host ranges were observed for viruses with single-stranded genomes, those with three genome segments and nematode-transmitted viruses. Also, two contrasted groups of seed-transmitted viruses were evidenced. Those with a single-stranded genome had larger HRB than non-seed-transmitted viruses, whereas those with a double-stranded genome (almost exclusively RNA) had an extremely small HRB. From the plant side, the family taxonomic rank appeared as a critical threshold for virus host range, with a highly significant increase in barriers to infection between plant families. Accordingly, the plant-virus infectivity matrix shows a dual structure pattern: a modular pattern mainly due to viruses specialized to infect plants of a given family and a nested pattern due to generalist viruses. These results contribute to a better prediction of virus host jumps and emergence risks.
Agamermis (Nematoda: Mermithidae) Infection in South Carolina Agricultural Pests
Stubbins, Francesca L.; Agudelo, Paula; Reay-Jones, Francis P. F.; Greene, Jeremy K.
2016-01-01
Native and invasive stink bugs (Hemiptera: Pentatomidae) and the closely related invasive Megacopta cribraria (Hemiptera: Plataspidae) are agricultural pests in the southeastern United States. Natural enemies, from various phyla, parasitize these pests and contribute to population regulation. We specifically investigated Nematoda infections in pentatomid and plataspid pests in one soybean field in South Carolina in 2015. Nematodes were identified through molecular and morphological methods and assigned to family Mermithidae, genus Agamermis. This study reports mermithid nematode infection in immature M. cribraria for the first time and provides the first mermithid host record for the stink bugs Chinavia hilaris, Euschistus servus, and another Euschistus species, and a grasshopper (Orthoptera: Acrididae) in South Carolina. The same Agamermis species infected all hosts. The broad host range and prevalence suggests that Agamermis may be an important contributor to natural mortality of pentatomid and plataspid pests. Previous mermithid host records for the Pentatomidae and Plataspidae worldwide are summarized. Further work is needed to assess the impact of infection on populations over a broader range of agricultural fields and geographic localities. PMID:28154435
Agamermis (Nematoda: Mermithidae) Infection in South Carolina Agricultural Pests.
Stubbins, Francesca L; Agudelo, Paula; Reay-Jones, Francis P F; Greene, Jeremy K
2016-12-01
Native and invasive stink bugs (Hemiptera: Pentatomidae) and the closely related invasive Megacopta cribraria (Hemiptera: Plataspidae) are agricultural pests in the southeastern United States. Natural enemies, from various phyla, parasitize these pests and contribute to population regulation. We specifically investigated Nematoda infections in pentatomid and plataspid pests in one soybean field in South Carolina in 2015. Nematodes were identified through molecular and morphological methods and assigned to family Mermithidae, genus Agamermis . This study reports mermithid nematode infection in immature M. cribraria for the first time and provides the first mermithid host record for the stink bugs Chinavia hilaris , Euschistus servus , and another Euschistus species, and a grasshopper (Orthoptera: Acrididae) in South Carolina. The same Agamermis species infected all hosts. The broad host range and prevalence suggests that Agamermis may be an important contributor to natural mortality of pentatomid and plataspid pests. Previous mermithid host records for the Pentatomidae and Plataspidae worldwide are summarized. Further work is needed to assess the impact of infection on populations over a broader range of agricultural fields and geographic localities.
Hamm, J J; Styer, E L; Federici, B A
1998-09-01
Six field-collected ascovirus isolates obtained from five noctuid species in the continental United States were compared with respect to the general relatedness of their DNA, host range, and histopathology. Two isolates were from Spodoptera frugiperda, and the other four were from Autographa precationis, Heliothis virescens, Helicoverpa zea, and Trichoplusia ni. DNA-DNA hybridization studies showed that the six isolates belonged to three distinct viral species, with the isolates from S. frugiperda composing one species, those from A. precationis and H. virescens a second species, and those from H. zea and T. ni a third species. The host range and histopathology of each isolate was studied in eight noctuid species, S. frugiperda, Spodoptera ornithogalli, Spodoptera exigua, Spodoptera eridania, H. virescens, H. zea, A. precationis, and Feltia subterranea. Though some variation existed between the different isolates of each viral species, distinct patterns were apparent for each. The viral species from S. frugiperda had a host range that was limited primarily to Spodoptera species and both isolates of this virus only replicated and caused significant pathology in the fat body, whereas the viral species from A. precationis and H. virescens had a much broader host range that included most of the species tested, but also had a tissue tropism primarily restricted to the fat body. The viral species from T. ni and H. zea readily infected all the hosts tested, where the principal site of replication and significant pathology was the epidermis. In many test hosts, however, this viral species also replicated and caused significant pathology in the tracheal epithelium and to a lesser extent in the fat body. Aside from contributing to knowledge of ascovirus biology, these studies indicate that DNA hybridization profiles combined with studies of host range and tissue tropism can be used as characters for defining ascovirus species. Copyright 1998 Academic Press.
Fang Chen; Youqing Luo; Melody A. Keena; Ying Wu; Peng Wu; Juan Shi
2015-01-01
The gypsy moth from Asia (two subspecies) is considered a greater threat to North America than European gypsy moth, because of a broader host range and females being capable of flight. Variation within and among gypsy moths from China (nine locations), one of the native countries of Asian gypsy moth, were compared using DNA barcode sequences (658 bp of mtDNA cytochrome...
1988-03-15
variation among independent isolates of Human Immunodeficiency Virus Type 1 (HIV-1) is a widely recognized property of the virus ’- . The molecular...other lentiviral systems including eauine infectious anemia virus (EIAV), visna virus, and simian immunodeficiency virus (SIV)’ " 9. For EIAV, it is clear...tailed macaque that possesses altered biologic and antigenic properties leading to a broader host-range and a rapid, fatal immunodeficiency syndrome
Dynamically Reconfigurable Systolic Array Accelorators
NASA Technical Reports Server (NTRS)
Dasu, Aravind (Inventor); Barnes, Robert C. (Inventor)
2014-01-01
A polymorphic systolic array framework that works in conjunction with an embedded microprocessor on an FPGA, that allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms and extendable to more complex applications in the area of aerospace embedded systems.
A T3 and T7 Recombinant Phage Acquires Efficient Adsorption and a Broader Host Range
Lin, Tiao-Yin; Lo, Yi-Haw; Tseng, Pin-Wei; Chang, Shun-Fu; Lin, Yann-Tsyr; Chen, Ton-Seng
2012-01-01
It is usually thought that bacteriophage T7 is female specific, while phage T3 can propagate on male and female Escherichia coli. We found that the growth patterns of phages T7M and T3 do not match the above characteristics, instead showing strain dependent male exclusion. Furthermore, a T3/7 hybrid phage exhibits a broader host range relative to that of T3, T7, as well as T7M, and is able to overcome the male exclusion. The T7M sequence closely resembles that of T3. T3/7 is essentially T3 based, but a DNA fragment containing part of the tail fiber gene 17 is replaced by the T7 sequence. T3 displays inferior adsorption to strains tested herein compared to T7. The T3 and T7 recombinant phage carries altered tail fibers and acquires better adsorption efficiency than T3. How phages T3 and T7 recombine was previously unclear. This study is the first to show that recombination can occur accurately within only 8 base-pair homology, where four-way junction structures are identified. Genomic recombination models based on endonuclease I cleavages at equivalent and nonequivalent sites followed by strand annealing are proposed. Retention of pseudo-palindromes can increase recombination frequency for reviving under stress. PMID:22347414
A T3 and T7 recombinant phage acquires efficient adsorption and a broader host range.
Lin, Tiao-Yin; Lo, Yi-Haw; Tseng, Pin-Wei; Chang, Shun-Fu; Lin, Yann-Tsyr; Chen, Ton-Seng
2012-01-01
It is usually thought that bacteriophage T7 is female specific, while phage T3 can propagate on male and female Escherichia coli. We found that the growth patterns of phages T7M and T3 do not match the above characteristics, instead showing strain dependent male exclusion. Furthermore, a T3/7 hybrid phage exhibits a broader host range relative to that of T3, T7, as well as T7M, and is able to overcome the male exclusion. The T7M sequence closely resembles that of T3. T3/7 is essentially T3 based, but a DNA fragment containing part of the tail fiber gene 17 is replaced by the T7 sequence. T3 displays inferior adsorption to strains tested herein compared to T7. The T3 and T7 recombinant phage carries altered tail fibers and acquires better adsorption efficiency than T3. How phages T3 and T7 recombine was previously unclear. This study is the first to show that recombination can occur accurately within only 8 base-pair homology, where four-way junction structures are identified. Genomic recombination models based on endonuclease I cleavages at equivalent and nonequivalent sites followed by strand annealing are proposed. Retention of pseudo-palindromes can increase recombination frequency for reviving under stress.
Lakes-Harlan, Reinhard; Lehmann, Gerlind U C
2015-01-01
Two taxa of parasitoid Diptera have independently evolved tympanal hearing organs to locate sound producing host insects. Here we review and compare functional adaptations in both groups of parasitoids, Ormiini and Emblemasomatini. Tympanal organs in both groups originate from a common precursor organ and are somewhat similar in morphology and physiology. In terms of functional adaptations, the hearing thresholds are largely adapted to the frequency spectra of the calling song of the hosts. The large host ranges of some parasitoids indicate that their neuronal filter for the temporal patterns of the calling songs are broader than those found in intraspecific communication. For host localization the night active Ormia ochracea and the day active E. auditrix are able to locate a sound source precisely in space. For phonotaxis flight and walking phases are used, whereby O. ochracea approaches hosts during flight while E. auditrix employs intermediate landings and re-orientation, apparently separating azimuthal and vertical angles. The consequences of the parasitoid pressure are discussed for signal evolution and intraspecific communication of the host species. This natural selection pressure might have led to different avoidance strategies in the hosts: silent males in crickets, shorter signals in tettigoniids and fluctuating population abundances in cicadas.
1990-06-30
lentiviral systems including equine infectious anemia virus (EIAV), visna virus, and simian immunodeficiency virus (SIV) (119,120,154). For EIAV, it is clear...a pig-tailed macaque that possesses altered biologic and antigenic properties leading to a broader host-range and a rapid, fatal immunodeficiency ...envelope/LTR region of a replication-defective variant of feline leukemia virus (FeLV), when introduced into a replication competent construct of FeLV, was
In this issue--engineering the immune system to fight cancer and infections.
Bot, Adrian
2011-01-01
As the immune system essentially evolved to fight off or keep at bay life-threatening infectious agents rather than cancer, the question remains as to how to best redeploy it for the treatment of a broader range of diseases. This is reflected by an unprecedented diversification of platform technologies in development, facilitated by rapid progress in biotechnology. In this issue, we host several contributions outlining major efforts in developing novel immune interventions spanning antigen-specific vaccination, non-antigen-targeted immune intervention, genetically engineered lymphocytes, and ultraspecific antigen-targeted ligands. In addition, the journal is hosting in this issue, two reviews discussing the complex matter and dynamic balance between immunity and viral infections, as the concept of fine modulation of that balance still carries the promise of yielding novel therapies.
Klemm, Elizabeth J; Gkrania-Klotsas, Effrossyni; Hadfield, James; Forbester, Jessica L; Harris, Simon R; Hale, Christine; Heath, Jennifer N; Wileman, Thomas; Clare, Simon; Kane, Leanne; Goulding, David; Otto, Thomas D; Kay, Sally; Doffinger, Rainer; Cooke, Fiona J; Carmichael, Andrew; Lever, Andrew Ml; Parkhill, Julian; MacLennan, Calman A; Kumararatne, Dinakantha; Dougan, Gordon; Kingsley, Robert A
2016-03-01
Host adaptation is a key factor contributing to the emergence of new bacterial, viral and parasitic pathogens. Many pathogens are considered promiscuous because they cause disease across a range of host species, while others are host-adapted, infecting particular hosts 1 . Host adaptation can potentially progress to host restriction where the pathogen is strictly limited to a single host species and is frequently associated with more severe symptoms. Host-adapted and host-restricted bacterial clades evolve from within a broader host-promiscuous species and sometimes target different niches within their specialist hosts, such as adapting from a mucosal to a systemic lifestyle. Genome degradation, marked by gene inactivation and deletion, is a key feature of host adaptation, although the triggers initiating genome degradation are not well understood. Here, we show that a chronic systemic non-typhoidal Salmonella infection in an immunocompromised human patient resulted in genome degradation targeting genes that are expendable for a systemic lifestyle. We present a genome-based investigation of a recurrent blood-borne Salmonella enterica serotype Enteritidis ( S . Enteritidis) infection covering 15 years in an interleukin (IL)-12 β-1 receptor-deficient individual that developed into an asymptomatic chronic infection. The infecting S. Enteritidis harbored a mutation in the mismatch repair gene mutS that accelerated the genomic mutation rate. Phylogenetic analysis and phenotyping of multiple patient isolates provides evidence for a remarkable level of within-host evolution that parallels genome changes present in successful host-restricted bacterial pathogens but never before observed on this timescale. Our analysis identifies common pathways of host adaptation and demonstrates the role that immunocompromised individuals can play in this process.
The United States Antarctic Program Data Center (USAP-DC): Recent Developments
NASA Astrophysics Data System (ADS)
Nitsche, F. O.; Bauer, R.; Arko, R. A.; Shane, N.; Carbotte, S. M.; Scambos, T.
2017-12-01
Antarctic earth and environmental science data are highly valuable, often unique research assets. They are acquired with substantial and expensive logistical effort, frequently in areas that will not be re-visited for many years. The data acquired in support of Antarctic research span a wide range of disciplines. Historically, data management for the US Antarctic Program (USAP) has made use of existing disciplinary data centers, and the international Antarctic Master Directory (AMD) has served as a central metadata catalog linking to data files hosted in these external repositories. However, disciplinary repositories do not exist for all USAP-generated data types and often it is unclear what repositories are appropriate, leading to many datasets being served locally from scientist's websites or not available at all. The USAP Data Center (USAP-DC; www.usap-dc.org), operated as part of the Interdisciplinary Earth Data Alliance (IEDA), contributes to the broader preservation of research data acquired with funding from NSF's Office of Polar Programs by providing a repository for diverse data from the Antarctic region. USAP-DC hosts data that spans the range of Antarctic research from snow radar to volcano observatory imagery to penguin counts to meteorological model outputs. Data services include data documentation, long-term preservation, and web publication, as well as scientist support for registration of data descriptions into the AMD in fulfillment of US obligations under the International Antarctic Treaty. In Spring 2016, USAP-DC and the NSIDC began a new collaboration to consolidate data services for Antarctic investigators and to integrate the NSF-funded glaciology collection at NSIDC with the collection hosted by USAP-DC. Investigator submissions for NSF's Glaciology program now make use of USAP-DC's web submission tools, providing a uniform interface for Antarctic investigators. The tools have been redesigned to collect a broader range of metadata. Each data submission is reviewed and verified by a specialist from the USAP-DC/NSIDC team depending on disciplinary focus of the submission. A recently updated web search interface is available to search data by title, NSF program, award, dataset contributor, large scale project (e.g. WAIS Divide Ice Core) or by specifying an area in map view.
ERIC Educational Resources Information Center
Reitz, Jeffrey G.
2002-01-01
Introduces six papers reflecting a research emphasis on four interrelated features of host societies pre-existing ethnic and race relations; labor markets and related institutions; government policies and programs for both immigration and broader institutional regulation; and the changing nature of international boundaries, (related to…
Harbison, Christopher W.; Clayton, Dale H.
2011-01-01
Reciprocal selective effects between coevolving species are often influenced by interactions with the broader ecological community. Community-level interactions may also influence macroevolutionary patterns of coevolution, such as cospeciation, but this hypothesis has received little attention. We studied two groups of ecologically similar feather lice (Phthiraptera: Ischnocera) that differ in their patterns of association with a single group of hosts. The two groups, “body lice” and “wing lice,” are both parasites of pigeons and doves (Columbiformes). Body lice are more host-specific and show greater population genetic structure than wing lice. The macroevolutionary history of body lice also parallels that of their columbiform hosts more closely than does the evolutionary history of wing lice. The closer association of body lice with hosts, compared with wing lice, can be explained if body lice are less capable of switching hosts than wing lice. Wing lice sometimes disperse phoretically on parasitic flies (Diptera: Hippoboscidae), but body lice seldom engage in this behavior. We tested the hypothesis that wing lice switch host species more often than body lice, and that the difference is governed by phoresis. Our results show that, where flies are present, wing lice switch to novel host species in sufficient numbers to establish viable populations on the new host. Body lice do not switch hosts, even where flies are present. Thus, differences in the coevolutionary history of wing and body lice can be explained by differences in host-switching, mediated by a member of the broader parasite community. PMID:21606369
Le, Shuai; He, Xuesong; Tan, Yinling; Huang, Guangtao; Zhang, Lin; Lux, Renate; Shi, Wenyuan; Hu, Fuquan
2013-01-01
The first step in bacteriophage infection is recognition and binding to the host receptor, which is mediated by the phage receptor binding protein (RBP). Different RBPs can lead to differential host specificity. In many bacteriophages, such as Escherichia coli and Lactococcal phages, RBPs have been identified as the tail fiber or protruding baseplate proteins. However, the tail fiber-dependent host specificity in Pseudomonas aeruginosa phages has not been well studied. This study aimed to identify and investigate the binding specificity of the RBP of P. aeruginosa phages PaP1 and JG004. These two phages share high DNA sequence homology but exhibit different host specificities. A spontaneous mutant phage was isolated and exhibited broader host range compared with the parental phage JG004. Sequencing of its putative tail fiber and baseplate region indicated a single point mutation in ORF84 (a putative tail fiber gene), which resulted in the replacement of a positively charged lysine (K) by an uncharged asparagine (N). We further demonstrated that the replacement of the tail fiber gene (ORF69) of PaP1 with the corresponding gene from phage JG004 resulted in a recombinant phage that displayed altered host specificity. Our study revealed the tail fiber-dependent host specificity in P. aeruginosa phages and provided an effective tool for its alteration. These contributions may have potential value in phage therapy. PMID:23874674
Tropical insect diversity: evidence of greater host specialization in seed-feeding weevils.
Peguero, Guille; Bonal, Raúl; Sol, Daniel; Muñoz, Alberto; Sork, Victoria L; Espelta, Josep M
2017-08-01
Host specialization has long been hypothesized to explain the extraordinary diversity of phytophagous insects in the tropics. However, addressing this hypothesis has proved challenging because of the risk of over-looking rare interactions, and hence biasing specialization estimations, and the difficulties to separate the diversity component attributable to insect specialization from that related to host diversity. As a result, the host specialization hypothesis lacks empirical support for important phytophagous insect clades. Here, we test the hypothesis in a radiation of seed-feeding insects, acorn weevils (Curculio spp.), sampled in temperate and tropical regions (California and Nicaragua, respectively) with an equivalent pool of oak host species. Using DNA sequences from three low-copy genes, we delimited to species level 778 weevil larvae extracted from host seeds and assessed their phylogenetic relationships by Maximum Likelihood and Bayesian inference. We then reconstructed the oak-weevil food webs and examined differences in alpha, beta and gamma diversity using Hill numbers of effective species. We found a higher alpha, beta and gamma diversity of weevils in Nicaragua compared to California despite similar richness of host species at both local and regional level. By means of Bayesian mixed models, we also found that tropical weevil species were highly specialized both in terms of host range and interaction strength, whereas their temperate congeners had a broader taxonomic and phylogenetic host spectrum. Finally, in Nicaraguan species, larval body size was highly correlated with the size of the acorns infested, as would be expected by a greater host specialization, whereas in California this relationship was absent. Altogether, these lines of evidence support the host specialization hypothesis and suggest contrasting eco-evolutionary dynamics in tropical and temperate regions even in absence of differences in host diversity. © 2017 by the Ecological Society of America.
Chávez-Moreno, C K; Tecante, A; Casas, A; Claps, L E
2011-01-01
The distribution pattern of species of the genus Dactylopius Costa in Mexico was analyzed in relation to the distribution of their host plants (subfamily Opuntioideae) to evaluate the specificity of the insect-host association. The distribution of Dactylopius currently recognized is narrower than that of its hosts and probably is not representative. Therefore, a broader distribution of the Dactylopius species in correspondence with those of their hosts was hypothesized. Insects and their hosts were collected and georeferenced in 14 states of Mexico from 2005 to 2007. The distribution areas, maps, and habitat characteristics of Dactylopius, Opuntia sensu stricto, Nopalea and Cylindropuntia were determined on the basis of field collections and examination of museum collections. This information was complemented with information from the exhaustive examination of microscope slides from a local insect collection, plants from local herbaria, and literature reviews. The current distribution of the genus Dactylopius and its hosts included 22 and 25 states of Mexico, respectively, and Dactylopius had a continuous distribution according to its hosts, broader than recognized hitherto. The new georeferenced records of the five Mexican Dactylopius species are reported. Insects with morphological characteristics of D. confusus combined with those of D. salmianus were identified, as well as insects with characteristics of D. opuntiae combined with those of D. salmianus. These records suggest that the number of local Dactylopius species could be higher than previously thought or that possible new processes of hybridization between native and introduced species may be occurring.
2018-04-01
Creation, curation and hosting of datasets for cybersecurity researchers; • Serving as a “host of convenience” for datasets from PREDICT and IMPACT non...assumptions and preferences, as cybersecurity investigators and proxies for the broader current and potential user communities. No attempt was made to...understand what would have been of use, i.e., cybersecurity researcher needs were known more anecdotally than systematically.[1] We believe that
Argôlo-Filho, Ronaldo Costa; Loguercio, Leandro Lopes
2013-01-01
Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt’s pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains. PMID:26462580
NASA Astrophysics Data System (ADS)
Druken, K. A.; Trenham, C. E.; Wang, J.; Bastrakova, I.; Evans, B. J. K.; Wyborn, L. A.; Ip, A. I.; Poudjom Djomani, Y.
2016-12-01
The National Computational Infrastructure (NCI) hosts one of Australia's largest repositories (10+ PBytes) of research data, colocated with a petascale High Performance Computer and a highly integrated research cloud. Key to maximizing benefit of NCI's collections and computational capabilities is ensuring seamless interoperable access to these datasets. This presents considerable data management challenges across the diverse range of geoscience data; spanning disciplines where netCDF-CF is commonly utilized (e.g., climate, weather, remote-sensing), through to the geophysics and seismology fields that employ more traditional domain- and study-specific data formats. These data are stored in a variety of gridded, irregularly spaced (i.e., trajectories, point clouds, profiles), and raster image structures. They often have diverse coordinate projections and resolutions, thus complicating the task of comparison and inter-discipline analysis. Nevertheless, much can be learned from the netCDF-CF model that has long served the climate community, providing a common data structure for the atmospheric, ocean and cryospheric sciences. We are extending the application of the existing Climate and Forecast (CF) metadata conventions to NCI's broader geoscience data collections. We present simple implementations that can significantly improve interoperability of the research collections, particularly in the case of line survey data. NCI has developed a compliance checker to assist with the data quality across all hosted netCDF-CF collections. The tool is an extension to one of the main existing CF Convention checkers, that we have modified to incorporate the Attribute Convention for Data Discovery (ACDD) and ISO19115 standards, and to perform parallelised checks over collections of files, ensuring compliance and consistency across the NCI data collections as a whole. It is complemented by a checker that also verifies functionality against a range of scientific analysis, programming, and data visualisation tools. By design, these tests are not necessarily domain-specific, and demonstrate that verified data is accessible to end-users, thus allowing for seamless interoperability with other datasets across a wide range of fields.
Elliott, Geoffrey N; Chen, Wen-Ming; Chou, Jui-Hsing; Wang, Hui-Chun; Sheu, Shih-Yi; Perin, Liamara; Reis, Veronica M; Moulin, Lionel; Simon, Marcelo F; Bontemps, Cyril; Sutherland, Joan M; Bessi, Rosana; de Faria, Sergio M; Trinick, Michael J; Prescott, Alan R; Sprent, Janet I; James, Euan K
2007-01-01
* The ability of Burkholderia phymatum STM815 to effectively nodulate Mimosa spp., and to fix nitrogen ex planta, was compared with that of the known Mimosa symbiont Cupriavidus taiwanensis LMG19424. * Both strains were equally effective symbionts of M. pudica, but nodules formed by STM815 had greater nitrogenase activity. STM815 was shown to have a broader host range across the genus Mimosa than LMG19424, nodulating 30 out of 31 species, 21 of these effectively. LMG19424 effectively nodulated only nine species. GFP-marked variants were used to visualise symbiont presence within nodules. * STM815 gave significant acetylene reduction assay (ARA) activity in semisolid JMV medium ex planta, but no ARA activity was detected with LMG19424. 16S rDNA sequences of two isolates originally from Mimosa nodules in Papua New Guinea (NGR114 and NGR195A) identified them as Burkholderia phymatum also, with nodA, nodC and nifH genes of NGR195A identical to those of STM815. * B. phymatum is therefore an effective Mimosa symbiont with a broad host range, and is the first reported beta-rhizobial strain to fix nitrogen in free-living culture.
NASA Technical Reports Server (NTRS)
Cao, T.; Nakamura-Messenger, K.; Berger, E. L.; Burton, A. S.; Messenger, S.; Clemett, S. J.
2016-01-01
Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble unstructured kerogen-like component as well as structured nano-globules of macromolecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Due to the differences in extractability of soluble and insoluble organic materials, the analysis methods for each differ and are often performed independently. The combination of soluble and insoluble analyses, when performed concurrently, can provide a wider understanding on spatial distribution, and elemental, structural and isotopic composition of organic material in primitive meteorites. Furthermore, they can provide broader perspective on how extraterrestrial organic ma-terials potentially contributed to the synthesis of life's essential compounds such as amino acids, sugar acids, activated phosphates and nucleobases.
Room temperature triplet state spectroscopy of organic semiconductors.
Reineke, Sebastian; Baldo, Marc A
2014-01-21
Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.
Hodo, Carolyn L; Whitley, Derick B; Hamer, Sarah A; Corapi, Wayne V; Snowden, Karen; Heatley, J Jill; Hoffmann, Aline Rodrigues
2016-04-28
Sarcocystis calchasi is a recently described apicomplexan parasite that causes encephalitis in avian hosts. We diagnosed one White-winged Dove ( Zenaida asiatica ) and two Eurasian Collared Doves ( Streptopelia decaocto ) in Texas, US, with a history of neurologic signs with protozoal encephalitis. On histologic examination, all three doves had moderate to severe meningoencephalitis characterized by large numbers of plasma cells, lymphocytes, and macrophages with gliosis and astrocytosis. Brain sections from two doves also contained numerous Mott cells. Protozoal schizonts with rosettes or clusters of individual merozoites consistent with Sarcocystis spp. were seen within areas of inflammation. Sarcocysts were also identified in the skeletal muscle of one dove. The PCR and sequencing of brain and skeletal muscle from two doves revealed 99% identity with S. calchasi. The presence of S. calchasi in fatal cases of encephalitis in doves in Texas suggests that the geographic and host ranges of S. calchasi are broader than previously reported.
Macroevolutionary Immunology: A Role for Immunity in the Diversification of Animal life
Loker, Eric S.
2012-01-01
An emerging picture of the nature of immune systems across animal phyla reveals both conservatism of some features and the appearance among and within phyla of novel, lineage-specific defense solutions. The latter collectively represent a major and underappreciated form of animal diversity. Factors influencing this macroevolutionary (above the species level) pattern of novelty are considered and include adoption of different life styles, life histories, and body plans; a general advantage of being distinctive with respect to immune defenses; and the responses required to cope with parasites, many of which afflict hosts in a lineage-specific manner. This large-scale pattern of novelty implies that immunological phenomena can affect microevolutionary processes (at the population level within species) that can eventually lead to macroevolutionary events such as speciation, radiations, or extinctions. Immunologically based phenomena play a role in favoring intraspecific diversification, specialization and host specificity of parasites, and mechanisms are discussed whereby this could lead to parasite speciation. Host switching – the acquisition of new host species by parasites – is a major mechanism that drives parasite diversity and is frequently involved in disease emergence. It is also one that can be favored by reductions in immune competence of new hosts. Mechanisms involving immune phenomena favoring intraspecific diversification and speciation of host species are also discussed. A macroevolutionary perspective on immunology is invaluable in today’s world, including the need to study a broader range of species with distinctive immune systems. Many of these species are faced with extinction, another macroevolutionary process influenced by immune phenomena. PMID:22566909
NASA Astrophysics Data System (ADS)
Daniels, M. D.; Kerkez, B.; Chandrasekar, V.; Graves, S. J.; Stamps, D. S.; Dye, M. J.; Keiser, K.; Martin, C. L.; Gooch, S. R.
2016-12-01
Cloud-Hosted Real-time Data Services for the Geosciences, or CHORDS, addresses the ever-increasing importance of real-time scientific data, particularly in mission critical scenarios, where informed decisions must be made rapidly. Part of the broader EarthCube initiative, CHORDS seeks to investigate the role of real-time data in the geosciences. Many of the phenomenon occurring within the geosciences, ranging from hurricanes and severe weather, to earthquakes, volcanoes and floods, can benefit from better handling of real-time data. The National Science Foundation funds many small teams of researchers residing at Universities whose currently inaccessible measurements could contribute to a better understanding of these phenomenon in order to ultimately improve forecasts and predictions. This lack of easy accessibility prohibits advanced algorithm and workflow development that could be initiated or enhanced by these data streams. Often the development of tools for the broad dissemination of their valuable real-time data is a large IT overhead from a pure scientific perspective, and could benefit from an easy to use, scalable, cloud-based solution to facilitate access. CHORDS proposes to make a very diverse suite of real-time data available to the broader geosciences community in order to allow innovative new science in these areas to thrive. We highlight the recently developed CHORDS portal tools and processing systems aimed at addressing some of the gaps in handling real-time data, particularly in the provisioning of data from the "long-tail" scientific community through a simple interface deployed in the cloud. Examples shown include hydrology, atmosphere and solid earth sensors. Broad use of the CHORDS framework will expand the role of real-time data within the geosciences, and enhance the potential of streaming data sources to enable adaptive experimentation and real-time hypothesis testing. CHORDS enables real-time data to be discovered and accessed using existing standards for straightforward integration into analysis, visualization and modeling tools.
Chlamydial infections in wildlife-conservation threats and/or reservoirs of 'spill-over' infections?
Burnard, Delaney; Polkinghorne, Adam
2016-11-30
Members of the order Chlamydiales are biphasic intracellular pathogens known to cause disease in both humans and animals. As we learn more about the genetic diversity of this group of pathogens, evidence is growing that these bacteria infect a broader range of animal hosts than previously thought. Over 400 host species are now documented globally with the majority of these being wild animals. Given the impact of chlamydial infections on humans and domesticated animals, the identification of members of the order Chlamydiales in wildlife raises significant questions over a) their impact on animal health and b) the relationships to those strains also found in humans and domestic animals. In some species such as the iconic marsupial, the koala, the conservation impact is known with chlamydial infections associated with debilitating disease, however, in general, little is known about the pathogenic potential of Chlamydiae infecting most wildlife hosts. Accumulating evidence suggests contact with wild animals is a risk factor for infections in domestic animals and/or humans. Beyond the well-recognised zoonotic pathogen, Chlamydia psittaci, a range of studies have now reported traditional pathogens in the family Chlamydiaceae such as Chlamydia pecorum, Chlamydia suis, Chlamydia pneumoniae and Chlamydia abortus in wild animals. The spectre of cross-host transmission 'spill-over' and 'spill-back' in the epidemiology of infections is of potential concern, however, comprehensive epidemiological studies are lacking for most of these. Accurate evaluation of the significance of chlamydial infections in wildlife is otherwise hampered by i) the cross-sectional nature of most impact studies, ii) a lack of standardised diagnostic approaches, iii) limited study sizes, and iv) biases associated with opportunistic sampling. Copyright © 2016 Elsevier B.V. All rights reserved.
Miller, Eric S.; Heidelberg, John F.; Eisen, Jonathan A.; Nelson, William C.; Durkin, A. Scott; Ciecko, Ann; Feldblyum, Tamara V.; White, Owen; Paulsen, Ian T.; Nierman, William C.; Lee, Jong; Szczypinski, Bridget; Fraser, Claire M.
2003-01-01
The complete genome sequence of the T4-like, broad-host-range vibriophage KVP40 has been determined. The genome sequence is 244,835 bp, with an overall G+C content of 42.6%. It encodes 386 putative protein-encoding open reading frames (CDSs), 30 tRNAs, 33 T4-like late promoters, and 57 potential rho-independent terminators. Overall, 92.1% of the KVP40 genome is coding, with an average CDS size of 587 bp. While 65% of the CDSs were unique to KVP40 and had no known function, the genome sequence and organization show specific regions of extensive conservation with phage T4. At least 99 KVP40 CDSs have homologs in the T4 genome (Blast alignments of 45 to 68% amino acid similarity). The shared CDSs represent 36% of all T4 CDSs but only 26% of those from KVP40. There is extensive representation of the DNA replication, recombination, and repair enzymes as well as the viral capsid and tail structural genes. KVP40 lacks several T4 enzymes involved in host DNA degradation, appears not to synthesize the modified cytosine (hydroxymethyl glucose) present in T-even phages, and lacks group I introns. KVP40 likely utilizes the T4-type sigma-55 late transcription apparatus, but features of early- or middle-mode transcription were not identified. There are 26 CDSs that have no viral homolog, and many did not necessarily originate from Vibrio spp., suggesting an even broader host range for KVP40. From these latter CDSs, an NAD salvage pathway was inferred that appears to be unique among bacteriophages. Features of the KVP40 genome that distinguish it from T4 are presented, as well as those, such as the replication and virion gene clusters, that are substantially conserved. PMID:12923095
Morales-Ávila, José Raúl; Gómez-Gutiérrez, Jaime; del Carmen Gómez del Prado-Rosas, María; Robinson, Carlos J
2015-09-17
During 4 quantitative-systematic oceanographic cruises at 99 sampling stations in the Gulf of California (January and July 2007, August 2012, and June 2013), we found 2 trematode species (non-encysted mesocercaria stage) parasitizing the hemocoel of 2 krill species at near-shore locations. Copiatestes sp. parasitized Nematoscelis difficilis in January 2007, and Paronatrema mantae parasitized Nyctiphanes simplex in July 2007. Both trematode species had an intensity of 1 parasite per host. This is the first endoparasite known for N. difficilis, the first record of P. mantae infecting zooplankton, and the first confirmed trematode parasitizing krill species in the Gulf of California. We provide quantitative evidence that these 2 trematode species infect krill with considerably low station prevalence (0.03-0.16%) and low population abundances (<1.2 trematodes 1000 m(-3)). A review of trematodes parasitizing krill indicates that syncoeliid trematodes also have (with few exceptions) low population densities and prevalence and lower species diversity than previously thought (suggesting a broader zoogeographic distribution range of these parasites). Due to the low host specificity of syncoeliid trematodes that typically infect more than 1 secondary intermediate host species in their complex life cycle, we propose that N. simplex and N. difficilis are intermediate hosts (although non-conspicuous) for the transmission of syncoeliid trematodes in the Gulf of California.
Winkler, Isaac S.; Mitter, Charles; Scheffer, Sonja J.
2009-01-01
A central but little-tested prediction of “escape and radiation” coevolution is that colonization of novel, chemically defended host plant clades accelerates insect herbivore diversification. That theory, in turn, exemplifies one side of a broader debate about the relative influence on clade dynamics of intrinsic (biotic) vs. extrinsic (physical-environmental) forces. Here, we use a fossil-calibrated molecular chronogram to compare the effects of a major biotic factor (repeated shift to a chemically divergent host plant clade) and a major abiotic factor (global climate change) on the macroevolutionary dynamics of a large Cenozoic radiation of phytophagous insects, the leaf-mining fly genus Phytomyza (Diptera: Agromyzidae). We find one of the first statistically supported examples of consistently elevated net diversification accompanying shift to new plant clades. In contrast, we detect no significant direct effect on diversification of major global climate events in the early and late Oligocene. The broader paleoclimatic context strongly suggests, however, that climate change has at times had a strong indirect influence through its effect on the biotic environment. Repeated rapid Miocene radiation of these flies on temperate herbaceous asterids closely corresponds to the dramatic, climate-driven expansion of seasonal, open habitats. PMID:19805134
Li, Boqiang; Zong, Yuanyuan; Du, Zhenglin; Chen, Yong; Zhang, Zhanquan; Qin, Guozheng; Zhao, Wenming; Tian, Shiping
2015-06-01
Penicillium species are fungal pathogens that infect crop plants worldwide. P. expansum differs from P. italicum and P. digitatum, all major postharvest pathogens of pome and citrus, in that the former is able to produce the mycotoxin patulin and has a broader host range. The molecular basis of host-specificity of fungal pathogens has now become the focus of recent research. The present report provides the whole genome sequence of P. expansum (33.52 Mb) and P. italicum (28.99 Mb) and identifies differences in genome structure, important pathogenic characters, and secondary metabolite (SM) gene clusters in Penicillium species. We identified a total of 55 gene clusters potentially related to secondary metabolism, including a cluster of 15 genes (named PePatA to PePatO), that may be involved in patulin biosynthesis in P. expansum. Functional studies confirmed that PePatL and PePatK play crucial roles in the biosynthesis of patulin and that patulin production is not related to virulence of P. expansum. Collectively, P. expansum contains more pathogenic genes and SM gene clusters, in particular, an intact patulin cluster, than P. italicum or P. digitatum. These findings provide important information relevant to understanding the molecular network of patulin biosynthesis and mechanisms of host-specificity in Penicillium species.
Major, Peter; Embley, T. Martin
2017-01-01
Plasma membrane-located nucleotide transport proteins (NTTs) underpin the lifestyle of important obligate intracellular bacterial and eukaryotic pathogens by importing energy and nucleotides from infected host cells that the pathogens can no longer make for themselves. As such their presence is often seen as a hallmark of an intracellular lifestyle associated with reductive genome evolution and loss of primary biosynthetic pathways. Here, we investigate the phylogenetic distribution of NTT sequences across the domains of cellular life. Our analysis reveals an unexpectedly broad distribution of NTT genes in both host-associated and free-living prokaryotes and eukaryotes. We also identify cases of within-bacteria and bacteria-to-eukaryote horizontal NTT transfer, including into the base of the oomycetes, a major clade of parasitic eukaryotes. In addition to identifying sequences that retain the canonical NTT structure, we detected NTT gene fusions with HEAT-repeat and cyclic nucleotide binding domains in Cyanobacteria, pathogenic Chlamydiae and Oomycetes. Our results suggest that NTTs are versatile functional modules with a much wider distribution and a broader range of potential roles than has previously been appreciated. PMID:28164241
Valente, Romina; Robles, Maria del Rosario; Navone, Graciela T; Diaz, Julia I
2018-01-01
BACKGROUND Angiostrongyliasis is an infection caused by nematode worms of the genus Angiostrongylus. The adult worms inhabit the pulmonary arteries, heart, bronchioles of the lung, or mesenteric arteries of the caecum of definitive host. Of a total of 23 species of Angiostrongylus cited worldwide, only nine were registered in the American Continent. Two species, A. cantonensis and A. costaricensis, are considered zoonoses when the larvae accidentally parasitise man. OBJECTIVES In the present study, geographical and chronological distribution of definitive hosts of Angiostrongylus in the Americas is analysed in order to observe their relationship with disease reports. Moreover, the role of different definitive hosts as sentinels and dispersers of infective stages is discussed. METHODS The study area includes the Americas. First records of Angiostrongylus spp. in definitive or accidental hosts were compiled from the literature. Data were included in tables and figures and were matched to geographic information systems (GIS). FINDINGS Most geographical records of Angiostrongylus spp. both for definitive and accidental hosts belong to tropical areas, mainly equatorial zone. In relation to those species of human health importance, as A. cantonensis and A. costaricensis, most disease cases indicate a coincidence between the finding of definitive host and disease record. However, in some geographic site there are gaps between report of definitive host and disease record. In many areas, human populations have invaded natural environments and their socioeconomic conditions do not allow adequate medical care. MAIN CONCLUSIONS Consequently, many cases for angiostrongyliasis could have gone unreported or unrecognised throughout history and in the nowadays. Moreover, the population expansion and the climatic changes invite to make broader and more complete range of observation on the species that involve possible epidemiological risks. This paper integrates and shows the current distribution of Angiostrongylus species in America, being this information very relevant for establishing prevention, monitoring and contingency strategies in the region. PMID:29412352
Valente, Romina; Robles, Maria Del Rosario; Navone, Graciela T; Diaz, Julia I
2018-03-01
Angiostrongyliasis is an infection caused by nematode worms of the genus Angiostrongylus. The adult worms inhabit the pulmonary arteries, heart, bronchioles of the lung, or mesenteric arteries of the caecum of definitive host. Of a total of 23 species of Angiostrongylus cited worldwide, only nine were registered in the American Continent. Two species, A. cantonensis and A. costaricensis, are considered zoonoses when the larvae accidentally parasitise man. In the present study, geographical and chronological distribution of definitive hosts of Angiostrongylus in the Americas is analysed in order to observe their relationship with disease reports. Moreover, the role of different definitive hosts as sentinels and dispersers of infective stages is discussed. The study area includes the Americas. First records of Angiostrongylus spp. in definitive or accidental hosts were compiled from the literature. Data were included in tables and figures and were matched to geographic information systems (GIS). Most geographical records of Angiostrongylus spp. both for definitive and accidental hosts belong to tropical areas, mainly equatorial zone. In relation to those species of human health importance, as A. cantonensis and A. costaricensis, most disease cases indicate a coincidence between the finding of definitive host and disease record. However, in some geographic site there are gaps between report of definitive host and disease record. In many areas, human populations have invaded natural environments and their socioeconomic conditions do not allow adequate medical care. Consequently, many cases for angiostrongyliasis could have gone unreported or unrecognised throughout history and in the nowadays. Moreover, the population expansion and the climatic changes invite to make broader and more complete range of observation on the species that involve possible epidemiological risks. This paper integrates and shows the current distribution of Angiostrongylus species in America, being this information very relevant for establishing prevention, monitoring and contingency strategies in the region.
Cellular and Physiological Effects of Anthrax Exotoxin and Its Relevance to Disease
Lowe, David E.; Glomski, Ian J.
2012-01-01
Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host. PMID:22919667
From endosymbiosis to holobionts: Evaluating a conceptual legacy.
O'Malley, Maureen A
2017-12-07
In her influential 1967 paper, Lynn Margulis synthesized a range of data to support the idea of endosymbiosis. Building on the success of this work, she applied the same methodology to promote the role of symbiosis more generally in evolution. As part of this broader project, she coined the term 'holobiont' to refer to a unified entity of symbiont and host. This concept is now applied with great gusto in microbiome research, and often implies not just a physiological unit but also various senses of an evolving system. My analysis will track how Margulis came to propose the term, its current use in microbiome research, and how those applications link back to Margulis. I then evaluate what contemporary use says about Margulis's legacy for microbiome research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamically Reconfigurable Systolic Array Accelerator
NASA Technical Reports Server (NTRS)
Dasu, Aravind; Barnes, Robert
2012-01-01
A polymorphic systolic array framework has been developed that works in conjunction with an embedded microprocessor on a field-programmable gate array (FPGA), which allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and a hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms, and is extendable to more complex applications in the area of aerospace embedded systems. FPGA chips can be responsive to realtime demands for changing applications needs, but only if the electronic fabric can respond fast enough. This systolic array framework allows for rapid partial and dynamic reconfiguration of the chip in response to the real-time needs of scalability, and adaptability of executables.
BioModels: expanding horizons to include more modelling approaches and formats
Nguyen, Tung V N; Graesslin, Martin; Hälke, Robert; Ali, Raza; Schramm, Jochen; Wimalaratne, Sarala M; Kothamachu, Varun B; Rodriguez, Nicolas; Swat, Maciej J; Eils, Jurgen; Eils, Roland; Laibe, Camille; Chelliah, Vijayalakshmi
2018-01-01
Abstract BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.ebi.ac.uk/biomodels. This new system allows submitting and sharing of a wide range of models with improved support for formats other than SBML. It also offers a version-control backed environment in which authors and curators can work collaboratively to curate models. This article summarises the features available in the current system and discusses the potential benefit they offer to the users over the previous system. In summary, the new portal broadens the scope of models accepted in BioModels and supports collaborative model curation which is crucial for model reproducibility and sharing. PMID:29106614
Rhainds, Marc; Heard, Stephen B; Sweeney, Jon D; Silk, Peter; Flaherty, Leah
2010-12-01
The co-existence of two closely related Tetropium species in eastern Canada, invasive T. fuscum and native T. cinnamopterum (TF and TC, respectively), provides a model system to investigate seasonal and spatial demographic parameters of biological invasions at the interspecific level. In this study, we take advantage of the similar semiochemical communication of TF and TC to evaluate the abundance of adults of the two species concurrently using grids of traps baited with pheromone and host volatiles in stands of spruce. Adult TF emerged on average 2 wk before TC both in the field and under controlled laboratory conditions. This observation, combined with the early reproduction of emergent females, implies that the smaller (younger) larvae of native TC may be at increased risk of intra-guild predation by TF. The high spatial association between male and female TF in dense, aggregated populations suggests that the rate of mate encounter is depressed in sparse populations toward the edge of the invasive range. The higher level of spatial aggregation for TF than TC, particularly at high population density, suggests a higher propensity of adult TF to congregate at "landmarks." Considering the broader range of host conditions, earlier seasonal emergence, and presumably more effective mate encounter for TF than TC, the exotic TF may be a superior competitor with the potential to displace or reduce the abundance of TC. © 2010 Entomological Society of America
Protein prenylation: a new mode of host-pathogen interaction.
Amaya, Moushimi; Baranova, Ancha; van Hoek, Monique L
2011-12-09
Post translational modifications are required for proteins to be fully functional. The three step process, prenylation, leads to farnesylation or geranylgeranylation, which increase the hydrophobicity of the prenylated protein for efficient anchoring into plasma membranes and/or organellar membranes. Prenylated proteins function in a number of signaling and regulatory pathways that are responsible for basic cell operations. Well characterized prenylated proteins include Ras, Rac and Rho. Recently, pathogenic prokaryotic proteins, such as SifA and AnkB, have been shown to be prenylated by eukaryotic host cell machinery, but their functions remain elusive. The identification of other bacterial proteins undergoing this type of host-directed post-translational modification shows promise in elucidating host-pathogen interactions to develop new therapeutics. This review incorporates new advances in the study of protein prenylation into a broader aspect of biology with a focus on host-pathogen interaction. Copyright © 2011 Elsevier Inc. All rights reserved.
Host choice in a bivoltine bee: how sensory constraints shape innate foraging behaviors.
Milet-Pinheiro, Paulo; Herz, Kerstin; Dötterl, Stefan; Ayasse, Manfred
2016-04-11
Many insects have multiple generations per year and cohorts emerging in different seasons may evolve their own phenotypes if they are subjected to different selection regimes. The bivoltine bee Andrena bicolor is reported to be polylectic and oligolectic (on Campanula) in the spring and summer generations, respectively. Neurological constraints are assumed to govern pollen diet in bees. However, evidence comes predominantly from studies with oligolectic bees. We have investigated how sensory constraints influence the innate foraging behavior of A. bicolor and have tested whether bees of different generations evolved behavioral and sensory polyphenism to cope better with the host flowers available in nature when they are active. Behavioral and sensory polyphenisms were tested in choice assays and electroantennographic analyses, respectively. In the bioassays, we found that females of both generations (1) displayed a similar innate relative reliance on visual and olfactory floral cues irrespective of the host plants tested; (2) did not prefer floral cues of Campanula to those of Taraxacum (or vice versa) and (3) did not display an innate preference for yellow and lilac colors. In the electroantennographic analyses, we found that bees of both generations responded to the same set of compounds. Overall, we did not detect seasonal polyphenism in any trait examined. The finding that bees of both generations are not sensory constrained to visit a specific host flower, which is in strict contrast to results from studies with oligolectic bees, suggest that also bees of the second generation have a flexibility in innate foraging behavior and that this is an adaptive trait in A. bicolor. We discuss the significance of our findings in context of the natural history of A. bicolor and in the broader context of host-range evolution in bees.
Mycoplasmas and their host: emerging and re-emerging minimal pathogens.
Citti, Christine; Blanchard, Alain
2013-04-01
Commonly known as mycoplasmas, bacteria of the class Mollicutes include the smallest and simplest life forms capable of self replication outside of a host. Yet, this minimalism hides major human and animal pathogens whose prevalence and occurrence have long been underestimated. Owing to advances in sequencing methods, large data sets have become available for a number of mycoplasma species and strains, providing new diagnostic approaches, typing strategies, and means for comprehensive studies. A broader picture is thus emerging in which mycoplasmas are successful pathogens having evolved a number of mechanisms and strategies for surviving hostile environments and adapting to new niches or hosts. Copyright © 2013 Elsevier Ltd. All rights reserved.
Assessing the Social and Environmental Costs of Institutional Nitrogen Footprints.
Background/Question/Methods: Release of N to air, land and water has a host of effects on human health, ecosystems and the economy, many of which scientists and economists are just beginning to develop methods to quantify. In order to understand the broader connections to sustai...
Obesity: A Bibliographic Review
ERIC Educational Resources Information Center
McGowan, Beth
2012-01-01
The study of obesity is a relatively new interdisciplinary academic field. The community college library shelves should contain two types of resources. First, several kinds of reference materials, and second, a host of broader materials that place the discussion of obesity within a cultural framework. This overview is divided into two major…
Zhang, Jing; Malo, Danielle; Mott, Richard; Panthier, Jean-Jacques; Montagutelli, Xavier; Jaubert, Jean
2018-04-27
Salmonella is a Gram-negative bacterium causing a wide range of clinical syndromes ranging from typhoid fever to diarrheic disease. Non-typhoidal Salmonella (NTS) serovars infect humans and animals, causing important health burden in the world. Susceptibility to salmonellosis varies between individuals under the control of host genes, as demonstrated by the identification of over 20 genetic loci in various mouse crosses. We have investigated the host response to S. Typhimurium infection in 35 Collaborative Cross (CC) strains, a genetic population which involves wild-derived strains that had not been previously assessed. One hundred and forty-eight mice from 35 CC strains were challenged intravenously with 1000 colony-forming units (CFUs) of S. Typhimurium. Bacterial load was measured in spleen and liver at day 4 post-infection. CC strains differed significantly (P < 0.0001) in spleen and liver bacterial loads, while sex and age had no effect. Two significant quantitative trait loci (QTLs) on chromosomes 8 and 10 and one suggestive QTL on chromosome 1 were found for spleen bacterial load, while two suggestive QTLs on chromosomes 6 and 17 were found for liver bacterial load. These QTLs are caused by distinct allelic patterns, principally involving alleles originating from the wild-derived founders. Using sequence variations between the eight CC founder strains combined with database mining for expression in target organs and known immune phenotypes, we were able to refine the QTLs intervals and establish a list of the most promising candidate genes. Furthermore, we identified one strain, CC042/GeniUnc (CC042), as highly susceptible to S. Typhimurium infection. By exploring a broader genetic variation, the Collaborative Cross population has revealed novel loci of resistance to Salmonella Typhimurium. It also led to the identification of CC042 as an extremely susceptible strain.
Bacterial Lipopolysaccharide Destabilizes Influenza Viruses.
Bandoro, Christopher; Runstadler, Jonathan A
2017-01-01
Depending on the specific viral pathogen, commensal bacteria can promote or reduce the severity of viral infection and disease progression in their hosts. Influenza A virus (IAV) has a broad host range, comprises many subtypes, and utilizes different routes of transmission, including the fecal-oral route in wild birds. It has been previously demonstrated that commensal bacteria can interact with the host's immune system to protect against IAV pathogenesis. However, it is unclear whether bacteria and their products may be interacting directly with IAV to impact virion stability. Herein we show that gastrointestinal (GI) tract bacterial isolates in an in vitro system significantly reduce the stability of IAV. Moreover, bacterial lipopolysaccharide (LPS), found on the exterior surfaces of bacteria, was sufficient to significantly decrease the stability of both human and avian viral strains in a temperature-dependent manner, including at the relevant temperatures of their respective hosts and the external aquatic habitat. The subtype and host origin of the viruses were shown to affect the extent to which IAV was susceptible to LPS. Furthermore, using a receptor binding assay and transmission electron microscopy, we observed that LPS binds to and alters the morphology of influenza virions, suggesting that direct interaction with the viral surface contributes to the observed antiviral effect of LPS on influenza. IMPORTANCE Influenza A virus (IAV), transmitted primarily via the fecal-oral route in wild birds, encounters high concentrations of bacteria and their products. Understanding the extent to which bacteria affect the infectivity of IAV will lead to a broader understanding of viral ecology in reservoir hosts and may lead to insights for the development of therapeutics in respiratory infection. Herein we show that bacteria and lipopolysaccharide (LPS) interact with and destabilize influenza virions. Moreover, we show that LPS reduces the long-term persistence and freeze-thaw stability of IAV, which is important information for modeling the movement and emergence of novel strains from animal hosts. Our results, demonstrating that the subtype and host origin of a virus also influence its susceptibility to LPS, raise key questions about the fitness of viruses in reservoir hosts, their potential to transmit to humans, and the importance of bacterial-viral interactions in viral ecology.
Saxena, Kapil; Blutt, Sarah E.; Ettayebi, Khalil; Zeng, Xi-Lei; Broughman, James R.; Crawford, Sue E.; Karandikar, Umesh C.; Sastri, Narayan P.; Conner, Margaret E.; Opekun, Antone R.; Graham, David Y.; Qureshi, Waqar; Sherman, Vadim; Foulke-Abel, Jennifer; In, Julie; Kovbasnjuk, Olga; Zachos, Nicholas C.; Donowitz, Mark
2015-01-01
ABSTRACT Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of gastrointestinal infections such as HRV infection. HRVs remain a major worldwide cause of diarrhea-associated morbidity and mortality in children ≤5 years of age. Current in vitro models of rotavirus infection rely primarily on the use of animal rotaviruses because HRV growth is limited in most transformed cell lines and animal models. We demonstrate that HIEs are novel, cellularly diverse, and physiologically relevant epithelial cell cultures that recapitulate in vivo properties of HRV infection. HIEs will allow the study of HRV biology, including human host-pathogen and live, attenuated vaccine interactions; host and cell type restriction; virus-induced fluid secretion; cell-cell communication within the epithelium; and the epithelial response to infection in cultures from genetically diverse individuals. Finally, drug therapies to prevent/treat diarrheal disease can be tested in these physiologically active cultures. PMID:26446608
Mimivirus inaugurated in the 21st century the beginning of a reclassification of viruses.
Sharma, Vikas; Colson, Philippe; Pontarotti, Pierre; Raoult, Didier
2016-06-01
Mimivirus and other giant viruses are visible by light microscopy and bona fide microbes that differ from other viruses and from cells that have a ribosome. They can be defined by: giant virion and genome sizes; their complexity, with the presence of DNA and mRNAs and dozens or hundreds of proteins in virions; the presence of translation-associated components; a mobilome including (pro)virophages (and a defence mechanism, named MIMIVIRE, against them) and transpovirons; their monophyly; the presence of the most archaic protein motifs they share with cellular organisms but not other viruses; a broader host range than other viruses. These features show that giant viruses are specific, autonomous, biological entities that warrant the creation of a new branch of microbes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Broader prevalence of Wolbachia in insects including potential human disease vectors.
de Oliveira, C D; Gonçalves, D S; Baton, L A; Shimabukuro, P H F; Carvalho, F D; Moreira, L A
2015-06-01
Wolbachia are intracellular, maternally transmitted bacteria considered the most abundant endosymbionts found in arthropods. They reproductively manipulate their host in order to increase their chances of being transmitted to the offspring, and currently are being used as a tool to control vector-borne diseases. Studies on distribution of Wolbachia among its arthropod hosts are important both for better understanding why this bacterium is so common, as well as for its potential use as a biological control agent. Here, we studied the incidence of Wolbachia in a broad range of insect species, collected from different regions of Brazil, using three genetic markers (16S rRNA, wsp and ftsZ), which varied in terms of their sensitivity to detect this bacterium. The overall incidence of Wolbachia among species belonging to 58 families and 14 orders was 61.9%. The most common positive insect orders were Coleoptera, Diptera, Hemiptera and Hymenoptera, with Diptera and Hemiptera having the highest numbers of Wolbachia-positive families. They included potential human disease vectors whose infection status has never been reported before. Our study further shows the importance of using quantitative polymerase chain reaction for high-throughput and sensitive Wolbachia screening.
Trichomonas vaginalis origins, molecular pathobiology and clinical considerations.
Hirt, Robert P; Sherrard, Jackie
2015-02-01
To integrate a selection of the most recent data on Trichomonas vaginalis origins, molecular cell biology and T. vaginalis interactions with the urogenital tract microbiota with trichomoniasis symptoms and clinical management. Transcriptomics and proteomics datasets are accumulating, facilitating the identification and prioritization of key target genes to study T. vaginalis pathobiology. Proteins involved in host sensing and cytoskeletal plasticity during T. vaginalis amoeboid transformation were identified. T. vaginalis was shown to secrete exosomes and a macrophage migration inhibitory factor-like protein that both influence host-parasite interactions. T. vaginalis co-infections with Mycoplasma species and viruses were shown to modulate the inflammatory responses, whereas T. vaginalis interactions with various Lactobacillus species inhibit parasite interactions with human cells. T. vaginalis infections were also shown to be associated with bacterial vaginosis. A broader range of health sequelae is also becoming apparent. Diagnostics for both women and men based on the molecular approaches are being refined, in particular for men. New developments in the molecular and cellular basis of T. vaginalis pathobiology combined with data on the urogenital tract microbiota and immunology have enriched our knowledge on human-microbe interactions that will contribute to increasing our capacity to prevent and treat T. vaginalis and other sexually transmitted infections.
Bidochka, M J; Walsh, S R; Ramos, M E; St Leger, R J; Silver, J C; Roberts, D W
1996-01-01
In North America there are two generally recognized pathotypes (pathotypes 1 and 2) of the fungus Entomophaga grylli which show host-preferential infection of grasshopper subfamilies. Pathotype 3, discovered in Australia, has a broader grasshopper host range and was considered to be a good biocontrol agent. Between 1989 and 1991 pathotype 3 was introduced at two field sites in North Dakota. Since resting spores are morphologically indistinguishable among pathotypes, we used pathotype-specific DNA probes to confirm pathotype identification in E. grylli-infected grasshoppers collected at the release sites in 1992, 1993, and 1994. In 1992, up to 23% of E. grylli-infected grasshoppers of the subfamilies Melanoplinae, Oedipodinae, and Gomphocerinae were infected by pathotype 3, with no infections > 1 km from the release sites. In 1993, pathotype 3 infections declined to 1.7%. In 1994 grasshopper populations were low and no pathotype 3 infections were found. The frequency of pathotype 3 infection has declined to levels where its long-term survival in North America is questionable. Analyses of biocontrol releases are critical to evaluating the environmental risks associated with these ecological manipulations, and molecular probes are powerful tools for monitoring biocontrol releases. Images Fig. 1 PMID:8570660
Parasites, ecosystems and sustainability: an ecological and complex systems perspective.
Horwitz, Pierre; Wilcox, Bruce A
2005-06-01
Host-parasite relationships can be conceptualised either narrowly, where the parasite is metabolically dependent on the host, or more broadly, as suggested by an ecological-evolutionary and complex systems perspective. In this view Host-parasite relationships are part of a larger set of ecological and co-evolutionary interdependencies and a complex adaptive system. These interdependencies affect not just the hosts, vectors, parasites, the immediate agents, but also those indirectly or consequentially affected by the relationship. Host-parasite relationships also can be viewed as systems embedded within larger systems represented by ecological communities and ecosystems. So defined, it can be argued that Host-parasite relationships may often benefit their hosts and contribute significantly to the structuring of ecological communities. The broader, complex adaptive system view also contributes to understanding the phenomenon of disease emergence, the ecological and evolutionary mechanisms involved, and the role of parasitology in research and management of ecosystems in light of the apparently growing problem of emerging infectious diseases in wildlife and humans. An expanded set of principles for integrated parasite management is suggested by this perspective.
Bacterial Lipopolysaccharide Destabilizes Influenza Viruses
2017-01-01
ABSTRACT Depending on the specific viral pathogen, commensal bacteria can promote or reduce the severity of viral infection and disease progression in their hosts. Influenza A virus (IAV) has a broad host range, comprises many subtypes, and utilizes different routes of transmission, including the fecal-oral route in wild birds. It has been previously demonstrated that commensal bacteria can interact with the host’s immune system to protect against IAV pathogenesis. However, it is unclear whether bacteria and their products may be interacting directly with IAV to impact virion stability. Herein we show that gastrointestinal (GI) tract bacterial isolates in an in vitro system significantly reduce the stability of IAV. Moreover, bacterial lipopolysaccharide (LPS), found on the exterior surfaces of bacteria, was sufficient to significantly decrease the stability of both human and avian viral strains in a temperature-dependent manner, including at the relevant temperatures of their respective hosts and the external aquatic habitat. The subtype and host origin of the viruses were shown to affect the extent to which IAV was susceptible to LPS. Furthermore, using a receptor binding assay and transmission electron microscopy, we observed that LPS binds to and alters the morphology of influenza virions, suggesting that direct interaction with the viral surface contributes to the observed antiviral effect of LPS on influenza. IMPORTANCE Influenza A virus (IAV), transmitted primarily via the fecal-oral route in wild birds, encounters high concentrations of bacteria and their products. Understanding the extent to which bacteria affect the infectivity of IAV will lead to a broader understanding of viral ecology in reservoir hosts and may lead to insights for the development of therapeutics in respiratory infection. Herein we show that bacteria and lipopolysaccharide (LPS) interact with and destabilize influenza virions. Moreover, we show that LPS reduces the long-term persistence and freeze-thaw stability of IAV, which is important information for modeling the movement and emergence of novel strains from animal hosts. Our results, demonstrating that the subtype and host origin of a virus also influence its susceptibility to LPS, raise key questions about the fitness of viruses in reservoir hosts, their potential to transmit to humans, and the importance of bacterial-viral interactions in viral ecology. PMID:29034326
Lang, Andreas; Otto, Mathias
2015-08-31
Non-target butterfly larvae may be harmed by feeding on host plants dusted with Bt maize pollen. Feeding patterns of larvae and their utilization of host plants can affect the adverse Bt impact because the maize pollen is distributed unequally on the plant. In a field study, we investigated the feeding of larvae of the Small Tortoiseshell, Aglais urticae, on nettles, Urtica dioica. Young larvae used smaller host plants than older larvae. In general, the position of the larvae was in the top part of the host plant, but older larvae showed a broader vertical distribution on the nettles. Leaf blades and leaf tips were the plant parts most often consumed. Leaf veins were consumed but midribs were fed on to a lesser extent than other plant veins, particularly by young larvae. The feeding behavior of the larvae may increase possible exposure to Bt maize pollen because pollen densities are expected to be higher on the top parts and along leaf veins of nettles.
Fidelity and Promiscuity in an Ant-Plant Mutualism: A Case Study of Triplaris and Pseudomyrmex
Sanchez, Adriana
2015-01-01
The association between the myrmecophyte Triplaris and ants of the genus Pseudomyrmex is an often-reported example of mutualism but no molecular studies have examined this association to date. In this study, the interspecific relationships of Triplaris were reconstructed using five molecular markers (two chloroplast and three nuclear), and the relationships of the associated Pseudomyrmex using two molecular regions (one mitochondrial and one nuclear). A data set including all known collections of plant hosts and resident ants was also compiled. The pattern of distribution of both organisms reveals that there are varying degrees of host specificity; most ants show broader host usage (promiscuous) but one species (P. dendroicus) is faithful to a single species of Triplaris. In most ant-plant interactions, host usage is not specific at the species level and preferences may result from geographical or ecological sorting. The specificity of P. dendroicus could be based on chemical recognition of the host they were raised on. PMID:26630384
USDA-ARS?s Scientific Manuscript database
The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacte...
Application of molecular genetic tools to studies of forest pathosystems [Chapter 2
Mee-Sook Kim; Ned B. Klopfenstein; Richard C. Hamelin
2005-01-01
The use of molecular genetics in forest pathology has greatly increased over the past 10 years. For the most part, molecular genetic tools were initially developed to focus on individual components (e.g., pathogen, host) of forest pathosystems. As part of broader forest ecosystem complexes, forest pathosystems involve dynamic interactions among living components (e.g...
Epstein-Barr Virus Nuclear Antigen Leader Protein Coactivates EP300.
Wang, Chong; Zhou, Hufeng; Xue, Yong; Liang, Jun; Narita, Yohei; Gerdt, Catherine; Zheng, Amy Y; Jiang, Runsheng; Trudeau, Stephen; Peng, Chih-Wen; Gewurz, Benjamin E; Zhao, Bo
2018-05-01
Epstein-Barr virus nuclear antigen (EBNA) leader protein (EBNALP) is one of the first viral genes expressed upon B-cell infection. EBNALP is essential for EBV-mediated B-cell immortalization. EBNALP is thought to function primarily by coactivating EBNA2-mediated transcription. Chromatin immune precipitation followed by deep sequencing (ChIP-seq) studies highlight that EBNALP frequently cooccupies DNA sites with host cell transcription factors (TFs), in particular, EP300, implicating a broader role in transcription regulation. In this study, we investigated the mechanisms of EBNALP transcription coactivation through EP300. EBNALP greatly enhanced EP300 transcription activation when EP300 was tethered to a promoter. EBNALP coimmunoprecipitated endogenous EP300 from lymphoblastoid cell lines (LCLs). EBNALP W repeat serine residues 34, 36, and 63 were required for EP300 association and coactivation. Deletion of the EP300 histone acetyltransferase (HAT) domain greatly reduced EBNALP coactivation and abolished the EBNALP association. An EP300 bromodomain inhibitor also abolished EBNALP coactivation and blocked the EP300 association with EBNALP. EBNALP sites cooccupied by EP300 had significantly higher ChIP-seq signals for sequence-specific TFs, including SPI1, RelA, EBF1, IRF4, BATF, and PAX5. EBNALP- and EP300-cooccurring sites also had much higher H3K4me1 and H3K27ac signals, indicative of activated enhancers. EBNALP-only sites had much higher signals for DNA looping factors, including CTCF and RAD21. EBNALP coactivated reporters under the control of NF-κB or SPI1. EP300 inhibition abolished EBNALP coactivation of these reporters. Clustered regularly interspaced short palindromic repeat interference targeting of EBNALP enhancer sites significantly reduced target gene expression, including that of EP300 itself. These data suggest a previously unrecognized mechanism by which EBNALP coactivates transcription through subverting of EP300 and thus affects the expression of LCL genes regulated by a broad range of host TFs. IMPORTANCE Epstein-Barr virus was the first human DNA tumor virus discovered over 50 years ago. EBV is causally linked to ∼200,000 human malignancies annually. These cancers include endemic Burkitt lymphoma, Hodgkin lymphoma, lymphoma/lymphoproliferative disease in transplant recipients or HIV-infected people, nasopharyngeal carcinoma, and ∼10% of gastric carcinoma cases. EBV-immortalized human B cells faithfully model key aspects of EBV lymphoproliferative diseases and are useful models of EBV oncogenesis. EBNALP is essential for EBV to transform B cells and transcriptionally coactivates EBNA2 by removing repressors from EBNA2-bound DNA sites. Here, we found that EBNALP can also modulate the activity of the key transcription activator EP300, an acetyltransferase that activates a broad range of transcription factors. Our data suggest that EBNALP regulates a much broader range of host genes than was previously appreciated. A small-molecule inhibitor of EP300 abolished EBNALP coactivation of multiple target genes. These findings suggest novel therapeutic approaches to control EBV-associated lymphoproliferative diseases. Copyright © 2018 American Society for Microbiology.
Brucella taxonomy and evolution
Ficht, Thomas
2010-01-01
Taxonomy and nomenclature represent man-made systems designed to enhance understanding of the relationship between organisms by comparison of discrete sets of properties. Initial efforts at bacterial taxonomy were flawed as a result of the previous use of nonsystematic approaches including common names resulting in confusing and inaccurate nomenclature. A decision was made to start afresh with bacterial nomenclature and to avoid the hazards experienced in the taxonomic classification of higher organisms. This was achieved by developing new rules designed to simplify classification and avoid unnecessary and confusing changes. This article reviews the work of a number of scientists attempting to reconcile new molecular data describing the phylogenetic relationship between Brucella organisms and a broader family of organisms with widely variant phenotypes that include human virulence and host range against a backdrop of strict regulatory requirements that fail to recognize significant differences between organisms with similar nomenclature. PMID:20521932
The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease.
Cohen, Jeremy M; Venesky, Matthew D; Sauer, Erin L; Civitello, David J; McMahon, Taegan A; Roznik, Elizabeth A; Rohr, Jason R
2017-02-01
Parasites typically have broader thermal limits than hosts, so large performance gaps between pathogens and their cold- and warm-adapted hosts should occur at relatively warm and cold temperatures, respectively. We tested this thermal mismatch hypothesis by quantifying the temperature-dependent susceptibility of cold- and warm-adapted amphibian species to the fungal pathogen Batrachochytrium dendrobatidis (Bd) using laboratory experiments and field prevalence estimates from 15 410 individuals in 598 populations. In both the laboratory and field, we found that the greatest susceptibility of cold- and warm-adapted hosts occurred at relatively warm and cool temperatures, respectively, providing support for the thermal mismatch hypothesis. Our results suggest that as climate change shifts hosts away from their optimal temperatures, the probability of increased host susceptibility to infectious disease might increase, but the effect will depend on the host species and the direction of the climate shift. Our findings help explain the tremendous variation in species responses to Bd across climates and spatial, temporal and species-level variation in disease outbreaks associated with extreme weather events that are becoming more common with climate change. © 2017 John Wiley & Sons Ltd/CNRS.
Integration of plastids with their hosts: Lessons learned from dinoflagellates
Dorrell, Richard G.; Howe, Christopher J.
2015-01-01
After their endosymbiotic acquisition, plastids become intimately connected with the biology of their host. For example, genes essential for plastid function may be relocated from the genomes of plastids to the host nucleus, and pathways may evolve within the host to support the plastid. In this review, we consider the different degrees of integration observed in dinoflagellates and their associated plastids, which have been acquired through multiple different endosymbiotic events. Most dinoflagellate species possess plastids that contain the pigment peridinin and show extreme reduction and integration with the host biology. In some species, these plastids have been replaced through serial endosymbiosis with plastids derived from a different phylogenetic derivation, of which some have become intimately connected with the biology of the host whereas others have not. We discuss in particular the evolution of the fucoxanthin-containing dinoflagellates, which have adapted pathways retained from the ancestral peridinin plastid symbiosis for transcript processing in their current, serially acquired plastids. Finally, we consider why such a diversity of different degrees of integration between host and plastid is observed in different dinoflagellates and how dinoflagellates may thus inform our broader understanding of plastid evolution and function. PMID:25995366
Integration of plastids with their hosts: Lessons learned from dinoflagellates.
Dorrell, Richard G; Howe, Christopher J
2015-08-18
After their endosymbiotic acquisition, plastids become intimately connected with the biology of their host. For example, genes essential for plastid function may be relocated from the genomes of plastids to the host nucleus, and pathways may evolve within the host to support the plastid. In this review, we consider the different degrees of integration observed in dinoflagellates and their associated plastids, which have been acquired through multiple different endosymbiotic events. Most dinoflagellate species possess plastids that contain the pigment peridinin and show extreme reduction and integration with the host biology. In some species, these plastids have been replaced through serial endosymbiosis with plastids derived from a different phylogenetic derivation, of which some have become intimately connected with the biology of the host whereas others have not. We discuss in particular the evolution of the fucoxanthin-containing dinoflagellates, which have adapted pathways retained from the ancestral peridinin plastid symbiosis for transcript processing in their current, serially acquired plastids. Finally, we consider why such a diversity of different degrees of integration between host and plastid is observed in different dinoflagellates and how dinoflagellates may thus inform our broader understanding of plastid evolution and function.
Gruda, Maryann C; Ruggeberg, Karl-Gustav; O'Sullivan, Pamela; Guliashvili, Tamaz; Scheirer, Andrew R; Golobish, Thomas D; Capponi, Vincent J; Chan, Phillip P
2018-01-01
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. In sepsis and septic shock, pathogen-associated molecular pattern molecules (PAMPS), such as bacterial exotoxins, cause direct cellular damage and/or trigger an immune response in the host often leading to excessive cytokine production, a maladaptive systemic inflammatory response syndrome response (SIRS), and tissue damage that releases DAMPs, such as activated complement and HMGB-1, into the bloodstream causing further organ injury. Cytokine reduction using extracorporeal blood filtration has been correlated with improvement in survival and clinical outcomes in experimental studies and clinical reports, but the ability of this technology to reduce a broader range of inflammatory mediators has not been well-described. This study quantifies the size-selective adsorption of a wide range of sepsis-related inflammatory bacterial and fungal PAMPs, DAMPs and cytokines, in a single compartment, in vitro whole blood recirculation system. Purified proteins were added to whole blood at clinically relevant concentrations and recirculated through a device filled with CytoSorb® hemoadsorbent polymer beads (CytoSorbents Corporation, USA) or control (no bead) device in vitro. Except for the TNF-α trimer, hemoadsorption through porous polymer bead devices reduced the levels of a broad spectrum of cytokines, DAMPS, PAMPS and mycotoxins by more than 50 percent. This study demonstrates that CytoSorb® hemoadsorbent polymer beads efficiently remove a broad spectrum of toxic PAMPS and DAMPS from blood providing an additional means of reducing the uncontrolled inflammatory cascade that contributes to a maladaptive SIRS response, organ dysfunction and death in patients with a broad range of life-threatening inflammatory conditions such as sepsis, toxic shock syndrome, necrotizing fasciitis, and other severe inflammatory conditions.
Factors affecting host range in a generalist seed pathogen of semi-arid shrublands
Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg
2014-01-01
Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora...
Poxviruses and the Evolution of Host Range and Virulence
Haller, Sherry L.; Peng, Chen; McFadden, Grant; Rothenburg, Stefan
2013-01-01
Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health. PMID:24161410
Commensal bacteria modulate the tumor microenvironment.
Poutahidis, Theofilos; Erdman, Susan E
2016-09-28
It has been recently shown that gut microbes modulate whole host immune and hormonal factors impacting the fate of distant preneoplastic lesions toward malignancy or regression. This raises the possibility that the tumor microenvironment interacts with broader systemic microbial-immune networks. These accumulated findings suggest novel therapeutic opportunities for holobiont engineering in emerging tumor microenvironments. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Van Goor, Justin; Piatscheck, Finn; Houston, Derek D.; Nason, John D.
2018-07-01
Mutualisms are interactions between two species in which the fitnesses of both symbionts benefit from the relationship. Although examples of mutualism are ubiquitous in nature, the ecology, evolution, and stability of mutualism has rarely been studied in the broader, multi-species community context in which they occur. The pollination mutualism between figs and fig wasps provides an excellent model system for investigating interactions between obligate mutualists and antagonists. Compared to the community of non-pollinating fig wasps that develop within fig inflorescences at the expense of fig seeds and pollinators, consequences of interactions between female pollinating wasps and their host-specialist nematode parasites is much less well understood. Here we focus on a tri-partite system comprised of a fig (Ficus petiolaris), pollinating wasp (Pegoscapus sp.), and nematode (Parasitodiplogaster sp.), investigating geographical variation in the incidence of attack and mechanisms through which nematodes may limit the fitness of their wasp hosts at successive life history stages. Observational data reveals that nematodes are ubiquitous across their host range in Baja California, Mexico; that the incidence of nematode infection varies across seasons within- and between locations, and that infected pollinators are sometimes associated with fitness declines through reduced offspring production. We find that moderate levels of infection (1-9 juvenile nematodes per host) are well tolerated by pollinator wasps whereas higher infection levels (≥10 nematodes per host) are correlated with a significant reduction in wasp lifespan and dispersal success. This overexploitation, however, is estimated to occur in only 2.8% of wasps in each generation. The result that nematode infection appears to be largely benign - and the unexpected finding that nematodes frequently infect non-pollinating wasps - highlight gaps in our knowledge of pollinator-Parasitodiplogaster interactions and suggest previously unappreciated ways in which this nematode may influence fig and pollinator fitness, mutualism persistence, and non-pollinator community dynamics.
Wilson, Michael B.; Held, Benjamin W.; Freiborg, Amanda H.; Blanchette, Robert A.
2017-01-01
White-nose syndrome (WNS) is a devastating fungal disease that has been causing the mass mortality of hibernating bats in North America since 2006 and is caused by the psychrophilic dermatophyte Pseudogymnoascus destructans. Infected bats shed conidia into hibernaculum sediments and surfaces, but it is unknown if P. destructans can form stable, reproductive populations outside its bat hosts. Previous studies have found non-pathogenic Pseudogymnoascus in bat hibernacula, and these fungi may provide insight into the natural history of P. destructans. We compared the relatedness, resource capture, and competitive ability of non-pathogenic Pseudogymnoascus isolates with P. destructans to determine if they have similar adaptations for survival in hibernacula sediment. All non-pathogenic Pseudogymnoascus isolates grew faster, utilized a broader range of substrates with higher efficiency, and were generally more resistant to antifungals compared to P. destructans. All isolates also showed the ability to displace P. destructans in co-culture assays, but only some produced extractible antifungal metabolites. These results suggest that P. destructans would perform poorly in the same environmental niche as non-pathogenic Pseudogymnoascus, and must have an alternative saprophytic survival strategy if it establishes active populations in hibernaculum sediment and non-host surfaces. PMID:28617823
Wilson, Michael B; Held, Benjamin W; Freiborg, Amanda H; Blanchette, Robert A; Salomon, Christine E
2017-01-01
White-nose syndrome (WNS) is a devastating fungal disease that has been causing the mass mortality of hibernating bats in North America since 2006 and is caused by the psychrophilic dermatophyte Pseudogymnoascus destructans. Infected bats shed conidia into hibernaculum sediments and surfaces, but it is unknown if P. destructans can form stable, reproductive populations outside its bat hosts. Previous studies have found non-pathogenic Pseudogymnoascus in bat hibernacula, and these fungi may provide insight into the natural history of P. destructans. We compared the relatedness, resource capture, and competitive ability of non-pathogenic Pseudogymnoascus isolates with P. destructans to determine if they have similar adaptations for survival in hibernacula sediment. All non-pathogenic Pseudogymnoascus isolates grew faster, utilized a broader range of substrates with higher efficiency, and were generally more resistant to antifungals compared to P. destructans. All isolates also showed the ability to displace P. destructans in co-culture assays, but only some produced extractible antifungal metabolites. These results suggest that P. destructans would perform poorly in the same environmental niche as non-pathogenic Pseudogymnoascus, and must have an alternative saprophytic survival strategy if it establishes active populations in hibernaculum sediment and non-host surfaces.
Lang, Andreas; Otto, Mathias
2015-01-01
Non-target butterfly larvae may be harmed by feeding on host plants dusted with Bt maize pollen. Feeding patterns of larvae and their utilization of host plants can affect the adverse Bt impact because the maize pollen is distributed unequally on the plant. In a field study, we investigated the feeding of larvae of the Small Tortoiseshell, Aglais urticae, on nettles, Urtica dioica. Young larvae used smaller host plants than older larvae. In general, the position of the larvae was in the top part of the host plant, but older larvae showed a broader vertical distribution on the nettles. Leaf blades and leaf tips were the plant parts most often consumed. Leaf veins were consumed but midribs were fed on to a lesser extent than other plant veins, particularly by young larvae. The feeding behavior of the larvae may increase possible exposure to Bt maize pollen because pollen densities are expected to be higher on the top parts and along leaf veins of nettles. PMID:26463415
Conditioning Individual Mosquitoes to an Odor: Sex, Source, and Time
Sanford, Michelle R.; Tomberlin, Jeffery K.
2011-01-01
Olfactory conditioning of mosquitoes may have important implications for vector-pathogen-host dynamics. If mosquitoes learn about specific host attributes associated with pathogen infection, it may help to explain the heterogeneity of biting and disease patterns observed in the field. Sugar-feeding is a requirement for survival in both male and female mosquitoes. It provides a starting point for learning research in mosquitoes that avoids the confounding factors associated with the observer being a potential blood-host and has the capability to address certain areas of close-range mosquito learning behavior that have not previously been described. This study was designed to investigate the ability of the southern house mosquito, Culex quinquefasciatus Say to associate odor with a sugar-meal with emphasis on important experimental considerations of mosquito age (1.2 d old and 3–5 d old), sex (male and female), source (laboratory and wild), and the time between conditioning and testing (<5 min, 1 hr, 2.5 hr, 5 hr, 10 hr, and 24 hr). Mosquitoes were individually conditioned to an odor across these different experimental conditions. Details of the conditioning protocol are presented as well as the use of binary logistic regression to analyze the complex dataset generated from this experimental design. The results suggest that each of the experimental factors may be important in different ways. Both the source of the mosquitoes and sex of the mosquitoes had significant effects on conditioned responses. The largest effect on conditioning was observed in the lack of positive response following conditioning for females aged 3–5 d derived from a long established colony. Overall, this study provides a method for conditioning experiments involving individual mosquitoes at close range and provides for future discussion of the relevance and broader questions that can be asked of olfactory conditioning in mosquitoes. PMID:21887384
Strategies for microbial synthesis of high-value phytochemicals
NASA Astrophysics Data System (ADS)
Li, Sijin; Li, Yanran; Smolke, Christina D.
2018-03-01
Phytochemicals are of great pharmaceutical and agricultural importance, but often exhibit low abundance in nature. Recent demonstrations of industrial-scale production of phytochemicals in yeast have shown that microbial production of these high-value chemicals is a promising alternative to sourcing these molecules from native plant hosts. However, a number of challenges remain in the broader application of this approach, including the limited knowledge of plant secondary metabolism and the inefficient reconstitution of plant metabolic pathways in microbial hosts. In this Review, we discuss recent strategies to achieve microbial biosynthesis of complex phytochemicals, including strategies to: (1) reconstruct plant biosynthetic pathways that have not been fully elucidated by mining enzymes from native and non-native hosts or by enzyme engineering; (2) enhance plant enzyme activity, specifically cytochrome P450 activity, by improving efficiency, selectivity, expression or electron transfer; and (3) enhance overall reaction efficiency of multi-enzyme pathways by dynamic control, compartmentalization or optimization with the host's metabolism. We also highlight remaining challenges to — and future opportunities of — this approach.
Thomas, Torsten; Evans, Flavia F; Schleheck, David; Mai-Prochnow, Anne; Burke, Catherine; Penesyan, Anahit; Dalisay, Doralyn S; Stelzer-Braid, Sacha; Saunders, Neil; Johnson, Justin; Ferriera, Steve; Kjelleberg, Staffan; Egan, Suhelen
2008-09-24
Colonisation of sessile eukaryotic host surfaces (e.g. invertebrates and seaweeds) by bacteria is common in the marine environment and is expected to create significant inter-species competition and other interactions. The bacterium Pseudoalteromonas tunicata is a successful competitor on marine surfaces owing primarily to its ability to produce a number of inhibitory molecules. As such P. tunicata has become a model organism for the studies into processes of surface colonisation and eukaryotic host-bacteria interactions. To gain a broader understanding into the adaptation to a surface-associated life-style, we have sequenced and analysed the genome of P. tunicata and compared it to the genomes of closely related strains. We found that the P. tunicata genome contains several genes and gene clusters that are involved in the production of inhibitory compounds against surface competitors and secondary colonisers. Features of P. tunicata's oxidative stress response, iron scavenging and nutrient acquisition show that the organism is well adapted to high-density communities on surfaces. Variation of the P. tunicata genome is suggested by several landmarks of genetic rearrangements and mobile genetic elements (e.g. transposons, CRISPRs, phage). Surface attachment is likely to be mediated by curli, novel pili, a number of extracellular polymers and potentially other unexpected cell surface proteins. The P. tunicata genome also shows a utilisation pattern of extracellular polymers that would avoid a degradation of its recognised hosts, while potentially causing detrimental effects on other host types. In addition, the prevalence of recognised virulence genes suggests that P. tunicata has the potential for pathogenic interactions. The genome analysis has revealed several physiological features that would provide P. tunciata with competitive advantage against other members of the surface-associated community. We have also identified properties that could mediate interactions with surfaces other than its currently recognised hosts. This together with the detection of known virulence genes leads to the hypothesis that P. tunicata maintains a carefully regulated balance between beneficial and detrimental interactions with a range of host surfaces.
Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review
Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos
2017-01-01
The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses’ host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings. PMID:29112165
Broader context for social, economic, and cultural components
Patricia L. Winter; Jonathan W. Long; Frank K. Lake; Susan Charnley
2014-01-01
This chapter sets the context for the following sociocultural sections of the synthesis by providing information on the broader social, cultural, and economic patterns in the Sierra Nevada and southern Cascade Range. Demographic influences surrounding population change, including those accounted for through amenity migration, are examined. Social and cultural concerns...
Macchi, Claudio; Biricolti, Claudia; Cappelli, Lorenza; Galli, Francesca; Molino-Lova, Raffaele; Cecchi, Francesca; Corigliano, Alvaro; Miniati, Benedetta; Conti, Andrea A; Gulisano, Massimo; Catini, Claudio; Gensini, Gian Franco
2002-01-01
A key feature in physiotherapeutic treatment of patients with motion disturbances is the appropriate ranging of the trunk and pelvis motility. Eighty subjects randomly selected and free from known pathology of the muscular-skeletal and/or of the neurological system classed into four groups according to the age and the sex have been assessed, by using a new, simple and easy administrable tool. Our results demonstrate that the new measurement tool showed a very low intra- and inter-observer variability, that healthy subjects showed a more adduced and elevated right scapula if compared to the contralateral one and, as regard as the pelvic motion, a broader joint excursion in passive motion compared with active motion in the overall group, a broader joint excursion in young subjects compared with elderly ones, and a broader joint excursion in female subjects compared with males subjects. In conclusion our study allowed to identify a range of physiological asymmetry and pelvis motility. Such a range of physiological asymmetry might be useful as a reference for the physiotherapists.
Development of Next Generation Synthetic Biology Tools for Use in Streptomyces venezuelae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelan, Ryan M.; Sachs, Daniel; Petkiewicz, Shayne J.
Streptomyces have a rich history as producers of important natural products and this genus of bacteria has recently garnered attention for its potential applications in the broader context of synthetic biology. However, the dearth of genetic tools available to control and monitor protein production precludes rapid and predictable metabolic engineering that is possible in hosts such as Escherichia coli or Saccharomyces cerevisiae. In an effort to improve genetic tools for Streptomyces venezuelae, we developed a suite of standardized, orthogonal integration vectors and an improved method to monitor protein production in this host. These tools were applied to characterize heterologous promotersmore » and various attB chromosomal integration sites. A final study leveraged the characterized toolset to demonstrate its use in producing the biofuel precursor bisabolene using a chromosomally integrated expression system. In conclusion, these tools advance S. venezuelae to be a practical host for future metabolic engineering efforts.« less
Jorge, Fátima; Perera, Ana; Poulin, Robert; Roca, Vicente; Carretero, Miguel A
2018-01-01
Episodes of expansion and isolation in geographic range over space and time, during which parasites have the opportunity to expand their host range, are linked to the development of host-parasite mosaic assemblages and parasite diversification. In this study, we investigated whether island colonization events lead to host range oscillations in a taxon of host-specific parasitic nematodes of the genus Spauligodon in the Canary Islands. We further investigated whether range oscillations also resulted in shifts in host breadth (i.e., specialization), as expected for parasites on islands. Parasite phylogeny and divergence time estimates were inferred from molecular data with Bayesian methods. Host divergence times were set as calibration priors after a priori evaluation with a global-fit method of which individual host-parasite associations likely represent cospeciation links. Parasite colonization history was reconstructed, followed by an estimation of oscillation events and specificity level. The results indicate the presence of four Spauligodon clades in the Canary Islands, which originated from at least three different colonization events. We found evidence of host range oscillations to truly novel hosts, which in one case led to higher diversification. Contemporary host-parasite associations show strong host specificity, suggesting that changes in host breadth were limited to the shift period. Lineages with more frequent and wider taxonomic host range oscillations prior to the initial colonization event showed wider range oscillations during colonization and diversification within the archipelago. Our results suggest that a lineage's evolutionary past may be the best indicator of a parasite's potential for future range expansions. © 2017 John Wiley & Sons Ltd.
Novel application of species richness estimators to predict the host range of parasites.
Watson, David M; Milner, Kirsty V; Leigh, Andrea
2017-01-01
Host range is a critical life history trait of parasites, influencing prevalence, virulence and ultimately determining their distributional extent. Current approaches to measure host range are sensitive to sampling effort, the number of known hosts increasing with more records. Here, we develop a novel application of results-based stopping rules to determine how many hosts should be sampled to yield stable estimates of the number of primary hosts within regions, then use species richness estimation to predict host ranges of parasites across their distributional ranges. We selected three mistletoe species (hemiparasitic plants in the Loranthaceae) to evaluate our approach: a strict host specialist (Amyema lucasii, dependent on a single host species), an intermediate species (Amyema quandang, dependent on hosts in one genus) and a generalist (Lysiana exocarpi, dependent on many genera across multiple families), comparing results from geographically-stratified surveys against known host lists derived from herbarium specimens. The results-based stopping rule (stop sampling bioregion once observed host richness exceeds 80% of the host richness predicted using the Abundance-based Coverage Estimator) worked well for most bioregions studied, being satisfied after three to six sampling plots (each representing 25 host trees) but was unreliable in those bioregions with high host richness or high proportions of rare hosts. Although generating stable predictions of host range with minimal variation among six estimators trialled, distribution-wide estimates fell well short of the number of hosts known from herbarium records. This mismatch, coupled with the discovery of nine previously unrecorded mistletoe-host combinations, further demonstrates the limited ecological relevance of simple host-parasite lists. By collecting estimates of host range of constrained completeness, our approach maximises sampling efficiency while generating comparable estimates of the number of primary hosts, with broad applicability to many host-parasite systems. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Nitrogen comes down to earth: report from the 5th European Nitrogen Fixation Conference.
De Hoff, Peter; Hirsch, Ann M
2003-05-01
For four days and four nights, with almost 50 presentations and more than 175 posters, the 5th European Nitrogen Fixation Conference continued a tradition of excellence, bringing scientists from diverse fields such as microbiology, biochemistry, computational genomics, and plant physiology together to address the complex problems associated with biological nitrogen fixation (BNF). The conference was hosted by the John Innes Center and the University of East Anglia in Norwich, England and took place from September 6 through 10, 2002. A diverse range of topics was presented, from the evolution of rhizobial genomes to the plant genes involved in bacterial and fungal symbiosis, to the structure of nitrogenase, and to the means by which nitrogen is shuttled between the symbiotic bacteria and the plant. Additionally, sessions involving broader issues, such as nitrogen fertilizer use and work being done in developing countries, brought home the importance of the research being carried out in BNF around the world.
Martin, D S; Desser, S S
1990-01-01
Trypanosoma fallisi n. sp. is described from Bufo americanus in Ontario. The parasite was observed in 65 of 94 toads examined. The trypanosomes were pleomorphic with respect to the age of infections, being longer and broader in early infections (during spring and summer) and shorter and more slender during late summer and autumn. They ranged in size from 38-76 microns in body length and 3-8 microns in width, with a free flagellum 6-30 microns long. Epizootiological and experimental evidence suggests that this trypanosome is transmitted to the toads by the leech, Batracobdella picta. Trypanosoma fallisi is morphologically similar to T. bufophlebotomi described in Bufo boreas from California, but geographic isolation, host and vector differences as well as slight morphological differences indicate that speciation has occurred. Similar trypanosomes from Bufo americanus (which were identified as T. bufophlebotomi) in Michigan, are probably T. fallisi. This species shares many ultrastructural features with trypanosomes of other lower vertebrates and also of mammals.
Summary Report for the Radiation Detection for Nuclear Security Summer School 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runkle, Robert C.; Baciak, James E.; Stave, Jean A.
The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the inaugural Radiation Detection for Nuclear Security Summer School from June 11 – 22, 2012. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. The first week of the summer school focused on the foundational knowledge required by technology practitioners; themore » second week focused on contemporary applications. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security.« less
Burbank, Lindsey P; Stenger, Drake C
2016-08-01
The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.
Shieh, Fwu-Shan; Jongeneel, Patrick; Steffen, Jamin D; Lin, Selena; Jain, Surbhi; Song, Wei; Su, Ying-Hsiu
2017-01-01
Identification of viral integration sites has been important in understanding the pathogenesis and progression of diseases associated with particular viral infections. The advent of next-generation sequencing (NGS) has enabled researchers to understand the impact that viral integration has on the host, such as tumorigenesis. Current computational methods to analyze NGS data of virus-host junction sites have been limited in terms of their accessibility to a broad user base. In this study, we developed a software application (named ChimericSeq), that is the first program of its kind to offer a graphical user interface, compatibility with both Windows and Mac operating systems, and optimized for effectively identifying and annotating virus-host chimeric reads within NGS data. In addition, ChimericSeq's pipeline implements custom filtering to remove artifacts and detect reads with quantitative analytical reporting to provide functional significance to discovered integration sites. The improved accessibility of ChimericSeq through a GUI interface in both Windows and Mac has potential to expand NGS analytical support to a broader spectrum of the scientific community.
Shieh, Fwu-Shan; Jongeneel, Patrick; Steffen, Jamin D.; Lin, Selena; Jain, Surbhi; Song, Wei
2017-01-01
Identification of viral integration sites has been important in understanding the pathogenesis and progression of diseases associated with particular viral infections. The advent of next-generation sequencing (NGS) has enabled researchers to understand the impact that viral integration has on the host, such as tumorigenesis. Current computational methods to analyze NGS data of virus-host junction sites have been limited in terms of their accessibility to a broad user base. In this study, we developed a software application (named ChimericSeq), that is the first program of its kind to offer a graphical user interface, compatibility with both Windows and Mac operating systems, and optimized for effectively identifying and annotating virus-host chimeric reads within NGS data. In addition, ChimericSeq’s pipeline implements custom filtering to remove artifacts and detect reads with quantitative analytical reporting to provide functional significance to discovered integration sites. The improved accessibility of ChimericSeq through a GUI interface in both Windows and Mac has potential to expand NGS analytical support to a broader spectrum of the scientific community. PMID:28829778
Large and linked in scientific publishing
2012-01-01
We are delighted to announce the launch of GigaScience, an online open-access journal that focuses on research using or producing large datasets in all areas of biological and biomedical sciences. GigaScience is a new type of journal that provides standard scientific publishing linked directly to a database that hosts all the relevant data. The primary goals for the journal, detailed in this editorial, are to promote more rapid data release, broader use and reuse of data, improved reproducibility of results, and direct, easy access between analyses and their data. Direct and permanent connections of scientific analyses and their data (achieved by assigning all hosted data a citable DOI) will enable better analysis and deeper interpretation of the data in the future. PMID:23587310
Large and linked in scientific publishing.
Goodman, Laurie; Edmunds, Scott C; Basford, Alexandra T
2012-07-12
We are delighted to announce the launch of GigaScience, an online open-access journal that focuses on research using or producing large datasets in all areas of biological and biomedical sciences. GigaScience is a new type of journal that provides standard scientific publishing linked directly to a database that hosts all the relevant data. The primary goals for the journal, detailed in this editorial, are to promote more rapid data release, broader use and reuse of data, improved reproducibility of results, and direct, easy access between analyses and their data. Direct and permanent connections of scientific analyses and their data (achieved by assigning all hosted data a citable DOI) will enable better analysis and deeper interpretation of the data in the future.
Group 3 Innate Lymphoid Cells: Communications Hubs of the Intestinal Immune System.
Withers, David R; Hepworth, Matthew R
2017-01-01
The maintenance of mammalian health requires the generation of appropriate immune responses against a broad range of environmental and microbial challenges, which are continually encountered at barrier tissue sites including the skin, lung, and gastrointestinal tract. Dysregulated barrier immune responses result in inflammation, both locally and systemically in peripheral organs. Group 3 innate lymphoid cells (ILC3) are constitutively present at barrier sites and appear to be highly specialized in their ability to sense a range of environmental and host-derived signals. Under homeostatic conditions, ILC3 respond to local cues to maintain tissue homeostasis and restrict inflammatory responses. In contrast, perturbations in the tissue microenvironment resulting from disease, infection, or tissue damage can drive dysregulated pro-inflammatory ILC3 responses and contribute to immunopathology. The tone of the ILC3 response is dictated by a balance of "exogenous" signals, such as dietary metabolites and commensal microbes, and "endogenous" host-derived signals from stromal cells, immune cells, and the nervous system. ILC3 must therefore have the capacity to simultaneously integrate a wide array of complex and dynamic inputs in order to regulate barrier function and tissue health. In this review, we discuss the concept of ILC3 as a "communications hub" in the intestinal tract and associated lymphoid tissues and address the variety of signals, derived from multiple biological systems, which are interpreted by ILC3 to modulate the release of downstream effector molecules and regulate cell-cell crosstalk. Successful integration of environmental cues by ILC3 and downstream propagation to the broader immune system is required to maintain a tolerogenic and anti-inflammatory tone and reinforce barrier function, whereas dysregulation of ILC3 responses can contribute to the onset or progression of clinically relevant chronic inflammatory diseases.
Group 3 Innate Lymphoid Cells: Communications Hubs of the Intestinal Immune System
Withers, David R.; Hepworth, Matthew R.
2017-01-01
The maintenance of mammalian health requires the generation of appropriate immune responses against a broad range of environmental and microbial challenges, which are continually encountered at barrier tissue sites including the skin, lung, and gastrointestinal tract. Dysregulated barrier immune responses result in inflammation, both locally and systemically in peripheral organs. Group 3 innate lymphoid cells (ILC3) are constitutively present at barrier sites and appear to be highly specialized in their ability to sense a range of environmental and host-derived signals. Under homeostatic conditions, ILC3 respond to local cues to maintain tissue homeostasis and restrict inflammatory responses. In contrast, perturbations in the tissue microenvironment resulting from disease, infection, or tissue damage can drive dysregulated pro-inflammatory ILC3 responses and contribute to immunopathology. The tone of the ILC3 response is dictated by a balance of “exogenous” signals, such as dietary metabolites and commensal microbes, and “endogenous” host-derived signals from stromal cells, immune cells, and the nervous system. ILC3 must therefore have the capacity to simultaneously integrate a wide array of complex and dynamic inputs in order to regulate barrier function and tissue health. In this review, we discuss the concept of ILC3 as a “communications hub” in the intestinal tract and associated lymphoid tissues and address the variety of signals, derived from multiple biological systems, which are interpreted by ILC3 to modulate the release of downstream effector molecules and regulate cell–cell crosstalk. Successful integration of environmental cues by ILC3 and downstream propagation to the broader immune system is required to maintain a tolerogenic and anti-inflammatory tone and reinforce barrier function, whereas dysregulation of ILC3 responses can contribute to the onset or progression of clinically relevant chronic inflammatory diseases. PMID:29085366
Host-feeding patterns of mosquito species in Germany.
Börstler, Jessica; Jöst, Hanna; Garms, Rolf; Krüger, Andreas; Tannich, Egbert; Becker, Norbert; Schmidt-Chanasit, Jonas; Lühken, Renke
2016-06-03
Mosquito-borne pathogens are of growing importance in many countries of Europe including Germany. At the same time, the transmission cycles of most mosquito-borne pathogens (e.g. viruses or filarial parasites) are not completely understood. There is especially a lack of knowledge about the vector capacity of the different mosquito species, which is strongly influenced by their host-feeding patterns. While this kind of information is important to identify the relevant vector species, e.g. to direct efficient control measures, studies about the host-feeding patterns of mosquito species in Germany are scarce and outdated. Between 2012 and 2015, 775 blood-fed mosquito specimens were collected. Sampling was conducted with Heavy Duty Encephalitis Vector Survey traps, Biogents Sentinel traps, gravid traps, hand-held aspirators, sweep nets, and human-bait collection. The host species for each mosquito specimen was identified with polymerase chain reactions and subsequent Sanger sequencing of the cytochrome b gene. A total of 32 host species were identified for 23 mosquito species, covering 21 mammalian species (including humans) and eleven bird species. Three mosquito species accounted for nearly three quarters of all collected blood-fed mosquitoes: Aedes vexans (363 specimens, 46.8 % of all mosquito specimens), Culex pipiens pipiens form pipiens (100, 12.9 %) and Ochlerotatus cantans (99, 12.8 %). Non-human mammals dominated the host species (572 specimens, 73.8 % of all mosquito specimens), followed by humans (152, 19.6 %) and birds (51, 6.6 %). The most common host species were roe deer (Capreolus capreolus; 258 mosquito specimens, 33.3 % of all mosquito specimens, 65 % of all mosquito species), humans (Homo sapiens; 152, 19.6 %, 90 %), cattle (Bos taurus; 101, 13.0 %, 60 %), and wild boar (Sus scrofa; 116, 15.0 %, 50 %). There were no statistically significant differences in the spatial-temporal host-feeding patterns of the three most common mosquito species. Although the collected blood-fed mosquito species had a strong overlap of host species, two different host-feeding groups were identified with mosquito species feeding on (i) non-human mammals and humans or (ii) birds, non-human mammals, and humans, which make them potential vectors of pathogens only between mammals or between mammals and birds, respectively. Due to the combination of their host-feeding patterns and wide distribution in Germany, Cx. pipiens pipiens form pipiens and Cx. torrentium are potentially most important vectors for pathogens transmitted from birds to humans and the species Ae. vexans for pathogens transmitted from non-human mammals to humans. Finally, the presented study indicated a much broader host range compared to the classifications found in the literature for some of the species, which highlights the need for studies on the host-feeding patterns of mosquitoes to further assess their vector capacity and the disease ecology in Europe.
Moritz, Max A; Odion, Dennis C
2005-06-01
Fire can be a dominant process in the ecology of forest vegetation and can also affect forest disease dynamics. Little is known about the relationship between fire and an emerging disease epidemic called Sudden Oak Death, which is caused by a new pathogen, Phytophthora ramorum. This disease has spread across a large, fire-prone portion of California, killing great numbers of oaks and tanoaks and infecting most associated woody plants. Suitable hosts cover a much broader geographic range, raising concern over where the disease may spread. To understand the strength and potential sensitivities of a fire-disease relationship, we examined geographic patterns of confirmed P. ramorum infections in relation to past fire history. We found these infections to be extremely rare within the perimeter of any area burned since 1950. This finding is not caused by spatial bias in sampling for the disease, and is robust to variation in host abundance scenarios and to aggregation of closely spaced sampling locations. We therefore investigated known fire-related factors that could result in significantly lower incidence of the disease in relatively recently burned landscapes. Chemical trends in post-fire environments can influence the success of pathogens like P. ramorum, either by increasing plant nutrient stress or by reducing the occurrence of chemicals antagonistic to Phytophthoras. Succession in the absence of fire leads to greater abundance of host species, which will provide increased habitat for P. ramorum; this will also increase intraspecific competition where these trees are abundant, and other density-dependent effects (e.g. shading) can reduce resource allocation to defenses. Despite these findings about a fire-disease relationship, a much deeper understanding is necessary before fire can be actively used as a tool in slowing the epidemic.
WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiorentino, Giuliana; Bono, Giuseppe; Monelli, Matteo
2015-01-01
We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittariusmore » are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.« less
DNA of Piroplasms of Ruminants and Dogs in Ixodid Bat Ticks.
Hornok, Sándor; Szőke, Krisztina; Kováts, Dávid; Estók, Péter; Görföl, Tamás; Boldogh, Sándor A; Takács, Nóra; Kontschán, Jenő; Földvári, Gábor; Barti, Levente; Corduneanu, Alexandra; Sándor, Attila D
2016-01-01
In this study 308 ticks (Ixodes ariadnae: 26 larvae, 14 nymphs, five females; I. vespertilionis: 89 larvae, 27 nymphs, eight females; I. simplex: 80 larvae, 50 nymphs, nine females) have been collected from 200 individuals of 17 bat species in two countries, Hungary and Romania. After DNA extraction these ticks were molecularly analysed for the presence of piroplasm DNA. In Hungary I. ariadnae was most frequently identified from bat species in the family Vespertilionidae, whereas I. vespertilionis was associated with Rhinolophidae. Ixodes ariadnae was not found in Romania. Four, four and one new bat host species of I. ariadnae, I. vespertilionis and I. simplex were identified, respectively. DNA sequences of piroplasms were detected in 20 bat ticks (15 larvae, four nymphs and one female). I. simplex carried piroplasm DNA sequences significantly more frequently than I. vespertilionis. In I. ariadnae only Babesia vesperuginis DNA was detected, whereas in I. vespertilionis sequences of both B. vesperuginis and B. crassa. From I. simplex the DNA of B. canis, Theileria capreoli, T. orientalis and Theileria sp. OT3 were amplified, as well as a shorter sequence of the zoonotic B. venatorum. Bat ticks are not known to infest dogs or ruminants, i.e. typical hosts and reservoirs of piroplasms molecularly identified in I. vespertilionis and I. simplex. Therefore, DNA sequences of piroplasms detected in these bat ticks most likely originated from the blood of their respective bat hosts. This may indicate either that bats are susceptible to a broader range of piroplasms than previously thought, or at least the DNA of piroplasms may pass through the gut barrier of bats during digestion of relevant arthropod vectors. In light of these findings, the role of bats in the epidemiology of piroplasmoses deserves further investigation.
DNA of Piroplasms of Ruminants and Dogs in Ixodid Bat Ticks
Hornok, Sándor; Szőke, Krisztina; Kováts, Dávid; Estók, Péter; Görföl, Tamás; Boldogh, Sándor A.; Takács, Nóra; Kontschán, Jenő; Földvári, Gábor; Barti, Levente; Corduneanu, Alexandra; Sándor, Attila D.
2016-01-01
In this study 308 ticks (Ixodes ariadnae: 26 larvae, 14 nymphs, five females; I. vespertilionis: 89 larvae, 27 nymphs, eight females; I. simplex: 80 larvae, 50 nymphs, nine females) have been collected from 200 individuals of 17 bat species in two countries, Hungary and Romania. After DNA extraction these ticks were molecularly analysed for the presence of piroplasm DNA. In Hungary I. ariadnae was most frequently identified from bat species in the family Vespertilionidae, whereas I. vespertilionis was associated with Rhinolophidae. Ixodes ariadnae was not found in Romania. Four, four and one new bat host species of I. ariadnae, I. vespertilionis and I. simplex were identified, respectively. DNA sequences of piroplasms were detected in 20 bat ticks (15 larvae, four nymphs and one female). I. simplex carried piroplasm DNA sequences significantly more frequently than I. vespertilionis. In I. ariadnae only Babesia vesperuginis DNA was detected, whereas in I. vespertilionis sequences of both B. vesperuginis and B. crassa. From I. simplex the DNA of B. canis, Theileria capreoli, T. orientalis and Theileria sp. OT3 were amplified, as well as a shorter sequence of the zoonotic B. venatorum. Bat ticks are not known to infest dogs or ruminants, i.e. typical hosts and reservoirs of piroplasms molecularly identified in I. vespertilionis and I. simplex. Therefore, DNA sequences of piroplasms detected in these bat ticks most likely originated from the blood of their respective bat hosts. This may indicate either that bats are susceptible to a broader range of piroplasms than previously thought, or at least the DNA of piroplasms may pass through the gut barrier of bats during digestion of relevant arthropod vectors. In light of these findings, the role of bats in the epidemiology of piroplasmoses deserves further investigation. PMID:27930692
Forde, Taya L.; Orsel, Karin; Zadoks, Ruth N.; Biek, Roman; Adams, Layne G.; Checkley, Sylvia L.; Davison, Tracy; De Buck, Jeroen; Dumond, Mathieu; Elkin, Brett T.; Finnegan, Laura; Macbeth, Bryan J.; Nelson, Cait; Niptanatiak, Amanda; Sather, Shane; Schwantje, Helen M.; van der Meer, Frank; Kutz, Susan J.
2016-01-01
Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors.
Ramsay, Joshua D.; Ueti, Massaro W.; Johnson, Wendell C.; Scoles, Glen A.; Knowles, Donald P.; Mealey, Robert H.
2013-01-01
Theileria equi has a biphasic life cycle in horses, with a period of intraleukocyte development followed by patent erythrocytic parasitemia that causes acute and sometimes fatal hemolytic disease. Unlike Theileria spp. that infect cattle (Theileria parva and Theileria annulata), the intraleukocyte stage (schizont) of Theileria equi does not cause uncontrolled host cell proliferation or other significant pathology. Nevertheless, schizont-infected leukocytes are of interest because of their potential to alter host cell function and because immune responses directed against this stage could halt infection and prevent disease. Based on cellular morphology, Theileria equi has been reported to infect lymphocytes in vivo and in vitro, but the specific phenotype of schizont-infected cells has yet to be defined. To resolve this knowledge gap in Theileria equi pathogenesis, peripheral blood mononuclear cells were infected in vitro and the phenotype of infected cells determined using flow cytometry and immunofluorescence microscopy. These experiments demonstrated that the host cell range of Theileria equi was broader than initially reported and included B lymphocytes, T lymphocytes and monocyte/macrophages. To determine if B and T lymphocytes were required to establish infection in vivo, horses affected with severe combined immunodeficiency (SCID), which lack functional B and T lymphocytes, were inoculated with Theileria equi sporozoites. SCID horses developed patent erythrocytic parasitemia, indicating that B and T lymphocytes are not necessary to complete the Theileria equi life cycle in vivo. These findings suggest that the factors mediating Theileria equi leukocyte invasion and intracytoplasmic differentiation are common to several leukocyte subsets and are less restricted than for Theileria annulata and Theileria parva. These data will greatly facilitate future investigation into the relationships between Theileria equi leukocyte tropism and pathogenesis, breed susceptibility, and strain virulence. PMID:24116194
Ramsay, Joshua D; Ueti, Massaro W; Johnson, Wendell C; Scoles, Glen A; Knowles, Donald P; Mealey, Robert H
2013-01-01
Theileria equi has a biphasic life cycle in horses, with a period of intraleukocyte development followed by patent erythrocytic parasitemia that causes acute and sometimes fatal hemolytic disease. Unlike Theileria spp. that infect cattle (Theileria parva and Theileria annulata), the intraleukocyte stage (schizont) of Theileria equi does not cause uncontrolled host cell proliferation or other significant pathology. Nevertheless, schizont-infected leukocytes are of interest because of their potential to alter host cell function and because immune responses directed against this stage could halt infection and prevent disease. Based on cellular morphology, Theileria equi has been reported to infect lymphocytes in vivo and in vitro, but the specific phenotype of schizont-infected cells has yet to be defined. To resolve this knowledge gap in Theileria equi pathogenesis, peripheral blood mononuclear cells were infected in vitro and the phenotype of infected cells determined using flow cytometry and immunofluorescence microscopy. These experiments demonstrated that the host cell range of Theileria equi was broader than initially reported and included B lymphocytes, T lymphocytes and monocyte/macrophages. To determine if B and T lymphocytes were required to establish infection in vivo, horses affected with severe combined immunodeficiency (SCID), which lack functional B and T lymphocytes, were inoculated with Theileria equi sporozoites. SCID horses developed patent erythrocytic parasitemia, indicating that B and T lymphocytes are not necessary to complete the Theileria equi life cycle in vivo. These findings suggest that the factors mediating Theileria equi leukocyte invasion and intracytoplasmic differentiation are common to several leukocyte subsets and are less restricted than for Theileria annulata and Theileria parva. These data will greatly facilitate future investigation into the relationships between Theileria equi leukocyte tropism and pathogenesis, breed susceptibility, and strain virulence.
Ruggeberg, Karl-Gustav; O’Sullivan, Pamela; Guliashvili, Tamaz; Scheirer, Andrew R.; Golobish, Thomas D.; Capponi, Vincent J.; Chan, Phillip P.
2018-01-01
Objective Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. In sepsis and septic shock, pathogen-associated molecular pattern molecules (PAMPS), such as bacterial exotoxins, cause direct cellular damage and/or trigger an immune response in the host often leading to excessive cytokine production, a maladaptive systemic inflammatory response syndrome response (SIRS), and tissue damage that releases DAMPs, such as activated complement and HMGB-1, into the bloodstream causing further organ injury. Cytokine reduction using extracorporeal blood filtration has been correlated with improvement in survival and clinical outcomes in experimental studies and clinical reports, but the ability of this technology to reduce a broader range of inflammatory mediators has not been well-described. This study quantifies the size-selective adsorption of a wide range of sepsis-related inflammatory bacterial and fungal PAMPs, DAMPs and cytokines, in a single compartment, in vitro whole blood recirculation system. Measurements and main results Purified proteins were added to whole blood at clinically relevant concentrations and recirculated through a device filled with CytoSorb® hemoadsorbent polymer beads (CytoSorbents Corporation, USA) or control (no bead) device in vitro. Except for the TNF-α trimer, hemoadsorption through porous polymer bead devices reduced the levels of a broad spectrum of cytokines, DAMPS, PAMPS and mycotoxins by more than 50 percent. Conclusions This study demonstrates that CytoSorb® hemoadsorbent polymer beads efficiently remove a broad spectrum of toxic PAMPS and DAMPS from blood providing an additional means of reducing the uncontrolled inflammatory cascade that contributes to a maladaptive SIRS response, organ dysfunction and death in patients with a broad range of life-threatening inflammatory conditions such as sepsis, toxic shock syndrome, necrotizing fasciitis, and other severe inflammatory conditions. PMID:29370247
Kargarfard, Fatemeh; Sami, Ashkan; Mohammadi-Dehcheshmeh, Manijeh; Ebrahimie, Esmaeil
2016-11-16
Recent (2013 and 2009) zoonotic transmission of avian or porcine influenza to humans highlights an increase in host range by evading species barriers. Gene reassortment or antigenic shift between viruses from two or more hosts can generate a new life-threatening virus when the new shuffled virus is no longer recognized by antibodies existing within human populations. There is no large scale study to help understand the underlying mechanisms of host transmission. Furthermore, there is no clear understanding of how different segments of the influenza genome contribute in the final determination of host range. To obtain insight into the rules underpinning host range determination, various supervised machine learning algorithms were employed to mine reassortment changes in different viral segments in a range of hosts. Our multi-host dataset contained whole segments of 674 influenza strains organized into three host categories: avian, human, and swine. Some of the sequences were assigned to multiple hosts. In point of fact, the datasets are a form of multi-labeled dataset and we utilized a multi-label learning method to identify discriminative sequence sites. Then algorithms such as CBA, Ripper, and decision tree were applied to extract informative and descriptive association rules for each viral protein segment. We found informative rules in all segments that are common within the same host class but varied between different hosts. For example, for infection of an avian host, HA14V and NS1230S were the most important discriminative and combinatorial positions. Host range identification is facilitated by high support combined rules in this study. Our major goal was to detect discriminative genomic positions that were able to identify multi host viruses, because such viruses are likely to cause pandemic or disastrous epidemics.
Imo, Miriam; Maixner, Michael; Johannesen, Jes
2013-04-01
The epidemiology of vector transmitted plant diseases is highly influenced by dispersal and the host-plant range of the vector. Widening the vector's host range may increase transmission potential, whereas specialization may induce specific disease cycles. The process leading to a vector's host shift and its epidemiological outcome is therefore embedded in the frameworks of sympatric evolution vs. immigration of preadapted populations. In this study, we analyse whether a host shift of the stolbur phytoplasma vector, Hyalesthes obsoletus from field bindweed to stinging nettle in its northern distribution range evolved sympatrically or by immigration. The exploitation of stinging nettle has led to outbreaks of the grapevine disease bois noir caused by a stinging nettle-specific phytoplasma strain. Microsatellite data from populations from northern and ancestral ranges provide strong evidence for sympatric host-race evolution in the northern range: Host-plant associated populations were significantly differentiated among syntopic sites (0.054 < F(HT) < 0.098) and constant over 5 years. While gene flow was asymmetric from the old into the predicted new host race, which had significantly reduced genetic diversity, the genetic identity between syntopic host-race populations in the northern range was higher than between these populations and syntopic populations in ancestral ranges, where there was no evidence for genetic host races. Although immigration was detected in the northern field bindweed population, it cannot explain host-race diversification but suggests the introduction of a stinging nettle-specific phytoplasma strain by plant-unspecific vectors. The evolution of host races in the northern range has led to specific vector-based bois noir disease cycles. © 2013 Blackwell Publishing Ltd.
Host range, host specificity and hypothesized host shift events among viruses of lower vertebrates
2011-01-01
The successful replication of a viral agent in a host is a complex process that often leads to a species specificity of the virus and can make interspecies transmission difficult. Despite this difficulty, natural host switch seems to have been frequent among viruses of lower vertebrates, especially fish viruses, since there are several viruses known to be able to infect a wide range of species. In the present review we will focus on well documented reports of broad host range, variations in host specificity, and host shift events hypothesized for viruses within the genera Ranavirus, Novirhabdovirus, Betanodavirus, Isavirus, and some herpesvirus. PMID:21592358
Luijckx, Pepijn; Duneau, David; Andras, Jason P; Ebert, Dieter
2014-02-01
A parasite's host range can have important consequences for ecological and evolutionary processes but can be difficult to infer. Successful infection depends on the outcome of multiple steps and only some steps of the infection process may be critical in determining a parasites host range. To test this hypothesis, we investigated the host range of the bacterium Pasteuria ramosa, a Daphnia parasite, and determined the parasites success in different stages of the infection process. Multiple genotypes of Daphnia pulex, Daphnia longispina and Daphnia magna were tested with four Pasteuria genotypes using infection trials and an assay that determines the ability of the parasite to attach to the hosts esophagus. We find that attachment is not specific to host species but is specific to host genotype. This may suggest that alleles on the locus controlling attachment are shared among different host species that diverged 100 million year. However, in our trials, Pasteuria was never able to reproduce in nonnative host species, suggesting that Pasteuria infecting different host species are different varieties, each with a narrow host range. Our approach highlights the explanatory power of dissecting the steps of the infection process and resolves potentially conflicting reports on parasite host ranges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Sharma, Vivek; Salwan, Richa; Sharma, Prem N; Kanwar, S S
2017-02-01
In the present study, different transcripts of Trichoderma harzianum ThHP-3 were evaluated for their response against four fungal pathogens Fusarium oxysporum, Colletotrichum capsici, Colletotrichum truncatum and Gloesercospora sorghi using RT-qPCR. The time course study of T. harzianum transcripts related to signal transduction, lytic enzymes, secondary metabolites and various transporters revealed variation in expression against four fungal pathogens. In a broader term, the transcripts were upregulated at various time intervals but the optimum expression of cyp3, abc, nrp, tga1, pmk, ech42 and glh20 varied with respect to host fungi. Additionally, the expression of transcripts related to transporters/cytochromes was also observed against Fusarium oxysporum after 96h whereas transcripts related to secondary metabolites and lytic enzymes showed significant difference in expression against Colletotrichum spp. from 72 to 96h. This is first study on transcriptomic response of T. harzianum against pathogenic fungi which shows their host specific response. Copyright © 2016 Elsevier B.V. All rights reserved.
Sieber, Michael; Gudelj, Ivana
2014-04-01
In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host-use trade-offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade-offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria-phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade-offs. © 2014 John Wiley & Sons Ltd/CNRS.
Extending the Host Range of Bacteriophage Particles for DNA Transduction.
Yosef, Ido; Goren, Moran G; Globus, Rea; Molshanski-Mor, Shahar; Qimron, Udi
2017-06-01
A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability. Copyright © 2017 Elsevier Inc. All rights reserved.
Geological duration of ammonoids controlled their geographical range of fossil distribution.
Wani, Ryoji
2017-01-01
The latitudinal distributions in Devonian-Cretaceous ammonoids were analyzed at the genus level, and were compared with the hatchling sizes (i.e., ammonitella diameters) and the geological durations. The results show that (1) length of temporal ranges of ammonoids effected broader ranges of fossil distribution and paleobiogeography of ammonoids, and (2) the hatchling size was not related to the geographical range of fossil distribution of ammonoids. Reducing the influence of geological duration in this analysis implies that hatchling size was one of the controlling factors that determined the distribution of ammonoid habitats at any given period in time: ammonoids with smaller hatchling sizes tended to have broader ammonoid habitat ranges. These relationships were somewhat blurred in the Devonian, Carboniferous, Triassic, and Jurassic, which is possibly due to (1) the course of development of a reproductive strategy with smaller hatchling sizes in the Devonian and (2) the high origination rates after the mass extinction events.
Flores-Prado, Luis; Pinto, Carlos F; Rojas, Alejandra; Fontúrbel, Francisco E
2014-01-01
Host plants are used by herbivorous insects as feeding or nesting resources. In wood-boring insects, host plants features may impose selective forces leading to phenotypic differentiation on traits related to nest construction. Carpenter bees build their nests in dead stems or dry twigs of shrubs and trees; thus, mandibles are essential for the nesting process, and the nest is required for egg laying and offspring survival. We explored the shape and intensity of natural selection on phenotypic variation on three size measures of the bees (intertegular width, wing length, and mandible area) and two nest architecture measures (tunnel length and diameter) on bees using the native species Chusquea quila (Poaceae), and the alloctonous species Rubus ulmifolius (Rosaceae), in central Chile. Our results showed significant and positive linear selection gradients for tunnel length on both hosts, indicating that bees building long nests have more offspring. Bees with broader mandibles show greater fitness on C. quila but not on R. ulmifolius. Considering that C. quila represents a selective force on mandible area, we hypothesized a high adaptive value of this trait, resulting in higher fitness values when nesting on this host, despite its wood is denser and hence more difficult to be bored. PMID:24963379
Flores-Prado, Luis; Pinto, Carlos F; Rojas, Alejandra; Fontúrbel, Francisco E
2014-05-01
Host plants are used by herbivorous insects as feeding or nesting resources. In wood-boring insects, host plants features may impose selective forces leading to phenotypic differentiation on traits related to nest construction. Carpenter bees build their nests in dead stems or dry twigs of shrubs and trees; thus, mandibles are essential for the nesting process, and the nest is required for egg laying and offspring survival. We explored the shape and intensity of natural selection on phenotypic variation on three size measures of the bees (intertegular width, wing length, and mandible area) and two nest architecture measures (tunnel length and diameter) on bees using the native species Chusquea quila (Poaceae), and the alloctonous species Rubus ulmifolius (Rosaceae), in central Chile. Our results showed significant and positive linear selection gradients for tunnel length on both hosts, indicating that bees building long nests have more offspring. Bees with broader mandibles show greater fitness on C. quila but not on R. ulmifolius. Considering that C. quila represents a selective force on mandible area, we hypothesized a high adaptive value of this trait, resulting in higher fitness values when nesting on this host, despite its wood is denser and hence more difficult to be bored.
Yang, Zhaoshou; Hou, Yongheng; Hao, Taofang; Rho, Hee-Sool; Wan, Jun; Luan, Yizhao; Gao, Xin; Yao, Jianping; Pan, Aihua; Xie, Zhi; Qian, Jiang; Liao, Wanqin; Zhu, Heng; Zhou, Xingwang
2017-01-01
Toxoplasma kinase ROP18 is a key molecule responsible for the virulence of Toxoplasma gondii; however, the mechanisms by which ROP18 exerts parasite virulence via interaction with host proteins remain limited to a small number of identified substrates. To identify a broader array of ROP18 substrates, we successfully purified bioactive mature ROP18 and used it to probe a human proteome array. Sixty eight new putative host targets were identified. Functional annotation analysis suggested that these proteins have a variety of functions, including metabolic process, kinase activity and phosphorylation, cell growth, apoptosis and cell death, and immunity, indicating a pleiotropic role of ROP18 kinase. Among these proteins, four candidates, p53, p38, UBE2N, and Smad1, were further validated. We demonstrated that ROP18 targets p53, p38, UBE2N, and Smad1 for degradation. Importantly, we demonstrated that ROP18 phosphorylates Smad1 Ser-187 to trigger its proteasome-dependent degradation. Further functional characterization of the substrates of ROP18 may enhance understanding of the pathogenesis of Toxoplasma infection and provide new therapeutic targets. Similar strategies could be used to identify novel host targets for other microbial kinases functioning at the pathogen-host interface. PMID:28087594
Impact of a Sophomore Seminar on the Desire of STEM Majors to Pursue a Science Career
ERIC Educational Resources Information Center
Sweeder, Ryan D.; Strong, Philip E.
2012-01-01
This study focuses on the impact of a sophomore seminar on STEM majors desire to pursue a science career. This seminar was a component in a broader scholarship program and focused on helping students gain a broader understanding of the process of science, expose students to a range of career options and provide opportunities for outside of class…
NASA Astrophysics Data System (ADS)
Mandel, Kaisey; Scolnic, Daniel; Shariff, Hikmatali; Foley, Ryan; Kirshner, Robert
2017-01-01
Inferring peak optical absolute magnitudes of Type Ia supernovae (SN Ia) from distance-independent measures such as their light curve shapes and colors underpins the evidence for cosmic acceleration. SN Ia with broader, slower declining optical light curves are more luminous (“broader-brighter”) and those with redder colors are dimmer. But the “redder-dimmer” color-luminosity relation widely used in cosmological SN Ia analyses confounds its two separate physical origins. An intrinsic correlation arises from the physics of exploding white dwarfs, while interstellar dust in the host galaxy also makes SN Ia appear dimmer and redder. Conventional SN Ia cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (MB vs. B-V) slope βint differs from the host galaxy dust law RB, this convolution results in a specific curve of mean extinguished absolute magnitude vs. apparent color. The derivative of this curve smoothly transitions from βint in the blue tail to RB in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope βapp between βint and RB. We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a dataset of SALT2 optical light curve fits of 277 nearby SN Ia at z < 0.10. The conventional linear fit obtains βapp ≈ 3. Our model finds a βint = 2.2 ± 0.3 and a distinct dust law of RB = 3.7 ± 0.3, consistent with the average for Milky Way dust, while correcting a systematic distance bias of ~0.10 mag in the tails of the apparent color distribution. This research is supported by NSF grants AST-156854, AST-1211196, and NASA grant NNX15AJ55G.
Role of dynamic capsomere supply for viral capsid self-assembly
NASA Astrophysics Data System (ADS)
Boettcher, Marvin A.; Klein, Heinrich C. R.; Schwarz, Ulrich S.
2015-02-01
Many viruses rely on the self-assembly of their capsids to protect and transport their genomic material. For many viral systems, in particular for human viruses like hepatitis B, adeno or human immunodeficiency virus, that lead to persistent infections, capsomeres are continuously produced in the cytoplasm of the host cell while completed capsids exit the cell for a new round of infection. Here we use coarse-grained Brownian dynamics simulations of a generic patchy particle model to elucidate the role of the dynamic supply of capsomeres for the reversible self-assembly of empty T1 icosahedral virus capsids. We find that for high rates of capsomere influx only a narrow range of bond strengths exists for which a steady state of continuous capsid production is possible. For bond strengths smaller and larger than this optimal value, the reaction volume becomes crowded by small and large intermediates, respectively. For lower rates of capsomere influx a broader range of bond strengths exists for which a steady state of continuous capsid production is established, although now the production rate of capsids is smaller. Thus our simulations suggest that the importance of an optimal bond strength for viral capsid assembly typical for in vitro conditions can be reduced by the dynamic influx of capsomeres in a cellular environment.
Adoptive immunotherapy for cancer.
Ruella, Marco; Kalos, Michael
2014-01-01
Recent clinical success has underscored the potential for immunotherapy based on the adoptive cell transfer (ACT) of engineered T lymphocytes to mediate dramatic, potent, and durable clinical responses. This success has led to the broader evaluation of engineered T-lymphocyte-based adoptive cell therapy to treat a broad range of malignancies. In this review, we summarize concepts, successes, and challenges for the broader development of this promising field, focusing principally on lessons gleaned from immunological principles and clinical thought. We present ACT in the context of integrating T-cell and tumor biology and the broader systemic immune response. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Julie Beckstead; Susan E. Meyer; Toby S. Ishizuka; Kelsey M. McEvoy; Craig E. Coleman
2016-01-01
Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora...
Evaluating the impact of domestication and captivity on the horse gut microbiome.
Metcalf, Jessica L; Song, Se Jin; Morton, James T; Weiss, Sophie; Seguin-Orlando, Andaine; Joly, Frédéric; Feh, Claudia; Taberlet, Pierre; Coissac, Eric; Amir, Amnon; Willerslev, Eske; Knight, Rob; McKenzie, Valerie; Orlando, Ludovic
2017-11-14
The mammal gut microbiome, which includes host microbes and their respective genes, is now recognized as an essential second genome that provides critical functions to the host. In humans, studies have revealed that lifestyle strongly influences the composition and diversity of the gastrointestinal microbiome. We hypothesized that these trends in humans may be paralleled in mammals subjected to anthropogenic forces such as domestication and captivity, in which diets and natural life histories are often greatly modified. We investigated fecal microbiomes of Przewalski's horse (PH; Equus ferus przewalskii), the only horses alive today not successfully domesticated by humans, and herded, domestic horse (E. f. caballus) living in adjacent natural grasslands. We discovered PH fecal microbiomes hosted a distinct and more diverse community of bacteria compared to domestic horses, which is likely partly explained by different plant diets as revealed by trnL maker data. Within the PH population, four individuals were born in captivity in European zoos and hosted a strikingly low diversity of fecal microbiota compared to individuals born in natural reserves in France and Mongolia. These results suggest that anthropogenic forces can dramatically reshape equid gastrointestinal microbiomes, which has broader implications for the conservation management of endangered mammals.
Evidence of Varroa-mediated deformed wing virus spillover in Hawaii.
Santamaria, Jessika; Villalobos, Ethel M; Brettell, Laura E; Nikaido, Scott; Graham, Jason R; Martin, Stephen
2018-01-01
Varroa destructor, a parasitic mite of honey bees, is also a vector for viral diseases. The mite displays high host specificity and requires access to colonies of Apis spp. to complete its lifecycle. In contrast, the Deformed Wing Virus (DWV), one of the many viruses transmitted by V. destructor, appears to have a much broader host range. Previous studies have detected DWV in a variety of insect groups that are not directly parasitized by the mite. In this study, we take advantage of the discrete distribution of the Varroa mite in the Hawaiian archipelago to compare DWV prevalence on non-Apis flower visitors, and test whether Varroa presence is linked to a "viral spillover". We selected two islands with different viral landscapes: Oahu, where V. destructor has been present since 2007, and Maui, where the mite is absent. We sampled individuals of Apis mellifera, Ceratina smaragdula, Polistes aurifer, and Polistes exclamens, to assess and compare the DWV prevalence in the Hymenoptera community of the two islands. The results indicated that, as expected, honey bee colonies on Oahu have much higher incidence of DWV compared to Maui. Correspondingly, DWV was detected on the Non-Apis Hymenoptera collected from Oahu, but was absent in the species examined on Maui. The study sites selected shared a similar geography, climate, and insect fauna, but differed in the presence of the Varroa mite, suggesting an indirect, but significant, increase on DWV prevalence in the Hymenoptera community on mite-infected islands. Published by Elsevier Inc.
The impact of fuels on aircraft technology through the year 2000
NASA Technical Reports Server (NTRS)
Grobman, J.; Reck, G. M.
1980-01-01
In the future, it may be necessary to use jet fuels with a broader range of properties in order to insure a more flexible and reliable supply and to minimize energy consumption and processing costs at the refinery. This paper describes research being conducted to (1) determine the potential range of properties for future jet fuels, (2) establish a data base of fuel property effects on propulsion system components, (3) evolve and evaluate advanced component technology that would permit the use of broader property fuels and (4) identify technical and economic trade-offs within the overall fuel production-air transportation system associated with variations in fuel properties.
Methods of expanding bacteriophage host-range and bacteriophage produced by the methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crown, Kevin K.; Santarpia, Joshua
A method of producing novel bacteriophages with expanded host-range and bacteriophages with expanded host ranges are disclosed. The method produces mutant phage strains which are infectious to a second host and can be more infectious to their natural host than in their natural state. The method includes repeatedly passaging a selected phage strain into bacterial cultures that contain varied ratios of its natural host bacterial strain with a bacterial strain that the phage of interest is unable to infect; the target-host. After each passage the resulting phage are purified and screened for activity against the target-host via double-overlay assays. Whenmore » mutant phages that are shown to infect the target-host are discovered, they are further propagated in culture that contains only the target-host to produce a stock of the resulting mutant phage.« less
Better Broader Impacts through National Science Foundation Centers
NASA Astrophysics Data System (ADS)
Campbell, K. M.
2010-12-01
National Science Foundation Science and Technology Centers (STCs) play a leading role in developing and evaluating “Better Broader Impacts”; best practices for recruiting a broad spectrum of American students into STEM fields and for educating these future professionals, as well as their families, teachers and the general public. With staff devoted full time to Broader Impacts activities, over the ten year life of a Center, STCs are able to address both a broad range of audiences and a broad range of topics. Along with other NSF funded centers, such as Centers for Ocean Sciences Education Excellence, Engineering Research Centers and Materials Research Science and Engineering Centers, STCs develop both models and materials that individual researchers can adopt, as well as, in some cases, direct opportunities for individual researchers to offer their disciplinary research expertise to existing center Broader Impacts Programs. The National Center for Earth-surface Dynamics is an STC headquartered at the University of Minnesota. NCED’s disciplinary research spans the physical, biological and engineering issues associated with developing an integrative, quantitative and predictive understanding of rivers and river basins. Funded in 2002, we have had the opportunity to partner with individuals and institutions ranging from formal to informal education and from science museums to Tribal and women’s colleges. We have developed simple table top physical models, complete museum exhibitions, 3D paper maps and interactive computer based visualizations, all of which have helped us communicate with this wide variety of learners. Many of these materials themselves or plans to construct them are available online; in many cases they have also been formally evaluated. We have also listened to the formal and informal educators with whom we partner, from whom we have learned a great deal about how to design Broader Impacts activities and programs. Using NCED as a case study, this session showcases NCED’s materials, approaches and lessons learned. We will also introduce the work of our sister STCs, whose disciplines span the STEM fields.
Desbiez, C; Lecoq, H
2004-08-01
Watermelon mosaic virus (WMV, Potyvirus) is a potyvirus with a worldwide distribution, mostly in temperate and mediterranean regions. According to the partial sequences that were available, WMV appeared to share high sequence similarity with Soybean mosaic virus (SMV), and it was almost considered as a strain of SMV in spite of its different and much broader host range. Like SMV, it was also related to legume-infecting potyviruses belonging to the " Bean common mosaic virus (BCMV) subgroup". In this paper we obtained the full-length sequence of WMV, and we confirmed that this virus is very closely related to SMV in most of its genome; however, there is evidence for an interspecific recombination in the P1 protein, as the P1 of WMV was 135 amino-acids longer than that of SMV, and the N-terminal half of the P1 showed no relation to SMV but was 85% identical to BCMV. This suggests that WMV has emerged through an ancestral recombination event, and supports the distinction of WMV and SMV as separate taxonomic units.
Rheological Design of Sustainable Block Copolymers
NASA Astrophysics Data System (ADS)
Mannion, Alexander M.
Block copolymers are extremely versatile materials that microphase separate to give rise to a rich array of complex behavior, making them the ideal platform for the development of rheologically sophisticated soft matter. In line with growing environmental concerns of conventional plastics from petroleum feedstocks, this work focuses on the rheological design of sustainable block copolymers--those derived from renewable sources and are degradable--based on poly(lactide). Although commercially viable, poly(lactide) has a number of inherent deficiencies that result in a host of challenges that require both creative and practical solutions that are cost-effective and amenable to large-scale production. Specifically, this dissertation looks at applications in which both shear and extensional rheology dictate performance attributes, namely chewing gum, pressure-sensitive adhesives, and polymers for blown film extrusion. Structure-property relationships in the context of block polymer architecture, polymer composition, morphology, and branching are explored in depth. The basic principles and fundamental findings presented in this thesis are applicable to a broader range of substances that incorporate block copolymers for which rheology plays a pivotal role.
Summary Report for the Radiation Detection for Nuclear Security Summer School 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runkle, Robert C.; Baciak, James E.; Woodring, Mitchell L.
Executive Summary The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the 3rd Radiation Detection for Nuclear Security Summer School from 16 – 27 June 2014. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectivesmore » of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security. In fact, we are beginning to see previous students both enroll in graduate programs (former undergraduates) and complete internships at agencies like the National Nuclear Security Administration.« less
Hall, Matthew D; Vettiger, Andrea; Ebert, Dieter
2013-04-01
Interactions between environmental stressors play an important role in shaping the health of an organism. This is particularly true in terms of the prevalence and severity of infectious disease, as stressors in combination will not always act to simply decrease the immune function of a host, but may instead interact to compound or even oppose the influence of parasitism on the health of an organism. Here, we explore the impact of environmental stress on host-parasite interactions using the water flea Daphnia magna and it is obligate parasite Pasteuria ramosa. Utilising an ecologically relevant stressor, we focus on the combined effect of salinity and P. ramosa on the fecundity and survival of the host, as well as on patterns of infectivity and the proliferation of the parasite. We show that in the absence of the parasite, host fecundity and survival was highest in the low salinity treatments. Once a parasite was introduced into the environment, however, salinity and parasitism acted antagonistically to influence both host survival and fecundity, and these patterns of disease were unrelated to infection rates or parasite spore loads. By summarising the form of interactions found in the broader Daphnia literature, we highlight how the combined effect of stress and parasitism will vary with the type of stressor, the trait used to describe the health of Daphnia and the host-parasite combination under observation. Our results highlight how the context-dependent nature of interactions between stress and parasitism inevitably complicates the link between environmental factors and the prevalence and severity of disease.
Vidal, Erica A. G.; Fernández-Álvarez, Fernando Á.; Nabhitabhata, Jaruwat
2016-01-01
Cephalopods (nautiluses, cuttlefishes, squids and octopuses) exhibit direct development and display two major developmental modes: planktonic and benthic. Planktonic hatchlings are small and go through some degree of morphological changes during the planktonic phase, which can last from days to months, with ocean currents enhancing their dispersal capacity. Benthic hatchlings are usually large, miniature-like adults and have comparatively reduced dispersal potential. We examined the relationship between early developmental mode, hatchling size and species latitudinal distribution range of 110 species hatched in the laboratory, which represent 13% of the total number of live cephalopod species described to date. Results showed that species with planktonic hatchlings reach broader distributional ranges in comparison with species with benthic hatchlings. In addition, squids and octopods follow an inverse relationship between hatchling size and species latitudinal distribution. In both groups, species with smaller hatchlings have broader latitudinal distribution ranges. Thus, squid and octopod species with larger hatchlings have latitudinal distributions of comparatively minor extension. This pattern also emerges when all species are grouped by genus (n = 41), but was not detected for cuttlefishes, a group composed mainly of species with large and benthic hatchlings. However, when hatchling size was compared to adult size, it was observed that the smaller the hatchlings, the broader the latitudinal distributional range of the species for cuttlefishes, squids and octopuses. This was also valid for all cephalopod species with benthic hatchlings pooled together. Hatchling size and associated developmental mode and dispersal potential seem to be main influential factors in determining the distributional range of cephalopods. PMID:27829039
Péron, Guillaume; Altwegg, Res; Jamie, Gabriel A; Spottiswoode, Claire N
2016-09-01
As populations shift their ranges in response to global change, local species assemblages can change, setting the stage for new ecological interactions, community equilibria and evolutionary responses. Here, we focus on the range dynamics of four avian brood parasite species and their hosts in southern Africa, in a context of bush encroachment (increase in woody vegetation density in places previously occupied by savanna-grassland mosaics) favouring some species at the expense of others. We first tested whether hosts and parasites constrained each other's ability to expand or maintain their ranges. Secondly, we investigated whether range shifts represented an opportunity for new host-parasite and parasite-parasite interactions. We used multispecies dynamic occupancy models with interactions, fitted to citizen science data, to estimate the contribution of interspecific interactions to range shifts and to quantify the change in species co-occurrence probability over a 25-year period. Parasites were able to track their hosts' range shifts. We detected no deleterious effect of the parasites' presence on either the local population viability of host species or the hosts' ability to colonize newly suitable areas. In the recently diversified indigobird radiation (Vidua spp.), following bush encroachment, the new assemblages presented more potential opportunities for speciation via host switch, but also more potential for hybridization between extant lineages, also via host switch. Multispecies dynamic occupancy models with interactions brought new insights into the feedbacks between range shifts, biotic interactions and local demography: brood parasitism had little detected impact on extinction or colonization processes, but inversely the latter processes affected biotic interactions via the modification of co-occurrence patterns. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.
Braschler, Brigitte; Hill, Jane K
2007-05-01
1. Some species have expanded their ranges during recent climate warming and the availability of breeding habitat and species' dispersal ability are two important factors determining expansions. The exploitation of a wide range of larval host plants should increase an herbivorous insect species' ability to track climate by increasing habitat availability. Therefore we investigated whether the performance of a species on different host plants changed towards its range boundary, and under warmer temperatures. 2. We studied the polyphagous butterfly Polygonia c-album, which is currently expanding its range in Britain and apparently has altered its host plant preference from Humulus lupulus to include other hosts (particularly Ulmus glabra and Urtica dioica). We investigated insect performance (development time, larval growth rate, adult size, survival) and adult flight morphology on these host plants under four rearing temperatures (18-28.5 degrees C) in populations from core and range margin sites. 3. In general, differences between core and margin populations were small compared with effects of rearing temperature and host plant. In terms of insect performance, host plants were generally ranked U. glabra > or = U. dioica > H. lupulus at all temperatures. Adult P. c-album can either enter diapause or develop directly and higher temperatures resulted in more directly developing adults, but lower survival rates (particularly on the original host H. lupulus) and smaller adult size. 4. Adult flight morphology of wild-caught individuals from range margin populations appeared to be related to increased dispersal potential relative to core populations. However, there was no difference in laboratory reared individuals, and conflicting results were obtained for different measures of flight morphology in relation to larval host plant and temperature effects, making conclusions about dispersal potential difficult. 5. Current range expansion of P. c-album is associated with the exploitation of more widespread host plants on which performance is improved. This study demonstrates how polyphagy may enhance the ability of species to track climate change. Our findings suggest that observed differences in climate-driven range shifts of generalist vs. specialist species may increase in the future and are likely to lead to greatly altered community composition.
NASA Astrophysics Data System (ADS)
Glasl, Bettina; Bongaerts, Pim; Elisabeth, Nathalie H.; Hoegh-Guldberg, Ove; Herndl, Gerhard J.; Frade, Pedro R.
2017-06-01
Mesophotic coral ecosystems (MCEs) are generally poorly studied, and our knowledge of lower MCEs (below 60 m depth) is largely limited to visual surveys. Here, we provide a first detailed assessment of the prokaryotic community associated with scleractinian corals over a depth gradient to the lower mesophotic realm (15-85 m). Specimens of three Caribbean coral species exhibiting differences in their depth distribution ranges ( Agaricia grahamae, Madracis pharensis and Stephanocoenia intersepta) were collected with a manned submersible on the island of Curaçao, and their prokaryotic communities assessed using 16S rRNA gene sequencing analysis. Corals with narrower depth distribution ranges (depth-specialists) were associated with a stable prokaryotic community, whereas corals with a broader niche range (depth-generalists) revealed a higher variability in their prokaryotic community. The observed depth effects match previously described patterns in Symbiodinium depth zonation. This highlights the contribution of structured microbial communities over depth to the coral's ability to colonize a broader depth range.
Sota, Masahiro; Yano, Hirokazu; Hughes, Julie; Daughdrill, Gary W.; Abdo, Zaid; Forney, Larry J.; Top, Eva M.
2011-01-01
The ability of bacterial plasmids to adapt to novel hosts and thereby shift their host range is key to their long-term persistence in bacterial communities. Promiscuous plasmids of the IncP-1 group can colonize a wide range of hosts, but it is not known if and how they can contract, shift or further expand their host range. To understand the evolutionary mechanisms of host range shifts of IncP-1 plasmids, an IncP-1β mini-replicon was experimentally evolved in four hosts wherein it was initially unstable. After 1000 generations in serial batch cultures under antibiotic selection for plasmid maintenance (kanamycin resistance), the stability of the mini-plasmid had dramatically improved in all coevolved hosts. However, only plasmids evolved in Shewanella oneidensis showed improved stability in the ancestor, indicating that adaptive mutations had occurred in the plasmid itself. Complete genome sequence analysis of nine independently evolved plasmids showed seven unique plasmid genotypes that had various kinds of single mutations at one locus, namely the N-terminal region of the replication initiation protein TrfA. Such parallel evolution indicates that this region was under strong selection. In five of the seven evolved plasmids these trfA mutations resulted in a significantly higher plasmid copy number. Evolved plasmids were found to be stable in four other naïve hosts, but could no longer replicate in Pseudomonas aeruginosa. This study demonstrates that plasmids can specialize to a novel host through trade-offs between improved stability in the new host and the ability to replicate in a previously permissive host. PMID:20520653
NASA Astrophysics Data System (ADS)
Asquini, Rita; d'Alessandro, Antonio; Salusti, Andrea; Gizzi, Claudio
2003-08-01
A tunable waveguide grating router (WGR) design is reported, where a subpicosecond phase shift is obtained by means of the electro-optically induced refractive index change in the arms of an arrayed-waveguide grating (AWG) made of highly nonlinear poled polymer CLD-75/APC. The polymer consists of a guest-host system, formed by a ring-locked phenyltetraene bridged cromophore dispersed in an amorphous polycarbonate, with coefficient r33=55pm/V and propagation losses of 1.7dB/cm. We propose a multilayer structure on Si substrate, where segments of each waveguide of the AWG are sandwiched between a ground gold electrode and electrodes whose length varies over the AWG. Numerical simulations of a device with electrode length difference of 250μm show a tuning range of 11nm centered at 1550nm by varying the applied voltage from -90V to +90V. From the optimized AWG, a WGR operating with 16 channels spaced by 100GHz has been designed. The WGR is made of single-mode rib waveguides and buffers whose thicknesses are respectively 1.8μm and 1.7μm. A broader tunability range is obtained using the push-pull technique, which induces a refractive index change of opposite sign in two halves of the AWG. A crosstalk of -40dB with tuning range of 22nm over the C-band was figured out.
Quiroga, Gabriela; Erice, Gorka; Aroca, Ricardo; Chaumont, François; Ruiz-Lozano, Juan M.
2017-01-01
The arbuscular mycorrhizal (AM) symbiosis has been shown to improve maize tolerance to different drought stress scenarios by regulating a wide range of host plants aquaporins. The objective of this study was to highlight the differences in aquaporin regulation by comparing the effects of the AM symbiosis on root aquaporin gene expression and plant physiology in two maize cultivars with contrasting drought sensitivity. This information would help to identify key aquaporin genes involved in the enhanced drought tolerance by the AM symbiosis. Results showed that when plants were subjected to drought stress the AM symbiosis induced a higher improvement of physiological parameters in drought-sensitive plants than in drought-tolerant plants. These include efficiency of photosystem II, membrane stability, accumulation of soluble sugars and plant biomass production. Thus, drought-sensitive plants obtained higher physiological benefit from the AM symbiosis. In addition, the genes ZmPIP1;1, ZmPIP1;3, ZmPIP1;4, ZmPIP1;6, ZmPIP2;2, ZmPIP2;4, ZmTIP1;1, and ZmTIP2;3 were down-regulated by the AM symbiosis in the drought-sensitive cultivar and only ZmTIP4;1 was up-regulated. In contrast, in the drought-tolerant cultivar only three of the studied aquaporin genes (ZmPIP1;6, ZmPIP2;2, and ZmTIP4;1) were regulated by the AM symbiosis, resulting induced. Results in the drought-sensitive cultivar are in line with the hypothesis that down-regulation of aquaporins under water deprivation could be a way to minimize water loss, and the AM symbiosis could be helping the plant in this regulation. Indeed, during drought stress episodes, water conservation is critical for plant survival and productivity, and is achieved by an efficient uptake and stringently regulated water loss, in which aquaporins participate. Moreover, the broader and contrasting regulation of these aquaporins by the AM symbiosis in the drought-sensitive than the drought-tolerant cultivar suggests a role of these aquaporins in water homeostasis or in the transport of other solutes of physiological importance in both cultivars under drought stress conditions, which may be important for the AM-induced tolerance to drought stress. PMID:28674550
Giron, David; Huguet, Elisabeth; Stone, Graham N; Body, Mélanie
2016-01-01
Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pathogen ‘Roid Rage: Cholesterol Utilization by Mycobacterium tuberculosis
Wipperman, Matthew F.; Sampson, Nicole S.; Thomas, Suzanne, T.
2014-01-01
The ability of science and medicine to control the pathogen Mycobacterium tuberculosis (Mtb) requires an understanding of the complex host environment within which it resides. Pathological and biological evidence overwhelmingly demonstrate how the mammalian steroid cholesterol is present throughout the course of infection. Better understanding Mtb requires a more complete understanding of how it utilizes molecules like cholesterol in this environment to sustain the infection of the host. Cholesterol uptake, catabolism, and broader utilization are important for maintenance of the pathogen in the host and it has been experimentally validated to contribute to virulence and pathogenesis. Cholesterol is catabolized by at least three distinct sub-pathways, two for the ring system and one for the side chain, yielding dozens of steroid intermediates with varying biochemical properties. Our ability to control this worldwide infectious agent requires a greater knowledge of how Mtb uses cholesterol to its advantage throughout the course of infection. Herein, the current state of knowledge of cholesterol metabolism by Mtb is reviewed from a biochemical perspective with a focus on the metabolic genes and pathways responsible for cholesterol steroid catabolism. PMID:24611808
USDA-ARS?s Scientific Manuscript database
In its native range the invasive weed, Rhodomyrtus tomentosa is host to a suite of herbivores. One, Strepsicrates sp. (Lepidoptera: Tortricidae) was collected in China in 2014, introduced under quarantine in Florida, USA and tested against related species to determine its host range and suitability ...
Host density drives the postglacial migration of the tree parasite, Epifagus virginiana.
Tsai, Yi-Hsin Erica; Manos, Paul S
2010-09-28
To survive changes in climate, successful species shift their geographic ranges to remain in suitable habitats. For parasites and other highly specialized species, distributional changes not only are dictated by climate but can also be engineered by their hosts. The extent of host control on parasite range expansion is revealed through comparisons of host and parasite migration and demographic histories. However, understanding the codistributional history of entire forest communities is complicated by challenges in synthesizing datasets from multiple interacting species of differing datatypes. Here we integrate genetic and fossil pollen datasets from a host-parasite pair; specifically, the population structure of the parasitic plant (Epifagus virginiana) was compared with both its host (Fagus grandifolia) genetic patterns and abundance data from the paleopollen record of the last 21,000 y. Through tests of phylogeographic structure and spatial linear regression models we find, surprisingly, host range changes had little effect on the parasite's range expansion and instead host density is the main driver of parasite spread. Unlike other symbionts that have been used as proxies to track their host's movements, this parasite's migration routes are incongruent with the host and instead reflect the greater importance of host density in this community's assembly. Furthermore, these results confirm predictions of disease ecological models regarding the role of host density in the spread of pathogens. Due to host density constraints, highly specialized species may have low migration capacities and long lag times before colonization of new areas.
Codon optimization underpins generalist parasitism in fungi
Badet, Thomas; Peyraud, Remi; Mbengue, Malick; Navaud, Olivier; Derbyshire, Mark; Oliver, Richard P; Barbacci, Adelin; Raffaele, Sylvain
2017-01-01
The range of hosts that parasites can infect is a key determinant of the emergence and spread of disease. Yet, the impact of host range variation on the evolution of parasite genomes remains unknown. Here, we show that codon optimization underlies genome adaptation in broad host range parasites. We found that the longer proteins encoded by broad host range fungi likely increase natural selection on codon optimization in these species. Accordingly, codon optimization correlates with host range across the fungal kingdom. At the species level, biased patterns of synonymous substitutions underpin increased codon optimization in a generalist but not a specialist fungal pathogen. Virulence genes were consistently enriched in highly codon-optimized genes of generalist but not specialist species. We conclude that codon optimization is related to the capacity of parasites to colonize multiple hosts. Our results link genome evolution and translational regulation to the long-term persistence of generalist parasitism. DOI: http://dx.doi.org/10.7554/eLife.22472.001 PMID:28157073
Optimization of a Host Diet for in vivo Production of Entomopathogenic Nematodes
Shapiro-Ilan, David; Guadalupe Rojas, M.; Morales-Ramos, Juan A.; Louis Tedders, W.
2012-01-01
To facilitate improved in vivo culture of entomopathogenic nematodes, production of both insect hosts and nematodes should be optimized for maximum fitness, quality, and cost efficiency. In previous studies, we developed an improved diet for Tenebrio molitor, a host that is used for in vivo nematode production, and we demonstrated that single insect diet components (e.g., lipids and proteins) can have a positive or negative impact on entomopathogenic nematode fitness and quality. In this study, we tested components of our improved T. molitor diet (lipids, cholesterol, and a salt [MnSO4]) alone and in combination for effects on host susceptibility and reproductive capacity of Heterorhabditis indica and Steinernema carpocapsae. Our results indicated that moderate levels of lipids (10%) increased host susceptibility to S. carpocapsae but did not affect H. indica, whereas cholesterol and MnSO4 increased host susceptibility to H. indica but not S. carpocapsae. The combined T. molitor diet (improved for increased insect growth) increased host susceptibility to S. carpocapsae and had a neutral effect on H. indica; interactions among single diet ingredients were observed. No effects of insect host diet were detected on the reproductive capacity of either nematode species in T. molitor. Subsequently, progeny infective juveniles, derived from nematodes grown in T. molitor that were fed diets with varying nutritive components were tested for virulence to and reproduction capacity in the target pest Diaprepes abbreviatus. The progeny nematodes produced from differing T. molitor diet treatments did not differ in virulence except H. indica derived from a diet that lacked cholesterol or MnS04 (but contained lipids) did not cause significant D. abbreviatus suppression relative to the water control. We conclude that the improved insect host diet is compatible with production of H. indica and S. carpocapsae, and increases host susceptibility in S. carpocapsae. Furthermore, in a general sense, our results indicate host diets can be optimized for improved in vivo entomopathogenic nematode production efficiency. This is the first report of an insect diet that was optimized for both host and entomopathogenic nematode production. Additionally, our study indicates that host diet may impact broader aspects of entomopathogenic nematode ecology and pest control efficacy. PMID:23481558
Srivastava, Ruchi; Dervillez, Xavier; Khan, Arif A.; Chentoufi, Aziz A.; Chilukuri, Sravya; Shukr, Nora; Fazli, Yasmin; Ong, Nicolas N.; Afifi, Rasha E.; Osorio, Nelson; Geertsema, Roger; Nesburn, Anthony B.
2016-01-01
ABSTRACT Persistent pathogens, such as herpes simplex virus 1 (HSV-1), have evolved a variety of immune evasion strategies to avoid being detected and destroyed by the host's immune system. A dynamic cross talk appears to occur between the HSV-1 latency-associated transcript (LAT), the only viral gene that is abundantly transcribed during latency, and the CD8+ T cells that reside in HSV-1 latently infected human and rabbit trigeminal ganglia (TG). The reactivation phenotype of TG that are latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT+ TG) is significantly higher than TG latently infected with LAT-null mutant (i.e., LAT− TG). Whether LAT promotes virus reactivation by selectively shaping a unique repertoire of HSV-specific CD8+ T cells in LAT+ TG is unknown. In the present study, we assessed the frequency, function, and exhaustion status of TG-resident CD8+ T cells specific to 40 epitopes derived from HSV-1 gB, gD, VP11/12, and VP13/14 proteins, in human leukocyte antigen (HLA-A*0201) transgenic rabbits infected ocularly with LAT+ versus LAT– virus. Compared to CD8+ T cells from LAT– TG, CD8+ T cells from LAT+ TG (i) recognized a broader selection of nonoverlapping HSV-1 epitopes, (ii) expressed higher levels of PD-1, TIM-3, and CTLA-4 markers of exhaustion, and (iii) produced less tumor necrosis factor alpha, gamma interferon, and granzyme B. These results suggest a novel immune evasion mechanism by which the HSV-1 LAT may contribute to the shaping of a broader repertoire of exhausted HSV-specific CD8+ T cells in latently infected TG, thus allowing for increased viral reactivation. IMPORTANCE A significantly larger repertoire of dysfunctional (exhausted) HSV-specific CD8+ T cells were found in the TG of HLA transgenic rabbits latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT+ TG) than in a more restricted repertoire of functional HSV-specific CD8+ T cells in the TG of HLA transgenic rabbits latently infected with LAT-null mutant (i.e., LAT– TG). These findings suggest that the HSV-1 LAT locus interferes with the host cellular immune response by shaping a broader repertoire of exhausted HSV-specific CD8+ T cells within the latency/reactivation TG site. PMID:26842468
Drought and host selection influence bacterial community dynamics in the grass root microbiome
Naylor, Dan; DeGraaf, Stephanie; Purdom, Elizabeth; Coleman-Derr, Devin
2017-01-01
Root endophytes have been shown to have important roles in determining host fitness under periods of drought stress, and yet the effect of drought on the broader root endosphere bacterial community remains largely uncharacterized. In this study, we present phylogenetic profiles of bacterial communities associated with drought-treated root and rhizosphere tissues of 18 species of plants with varying degrees of drought tolerance belonging to the Poaceae family, including important crop plants. Through 16S rRNA gene profiling across two distinct watering regimes and two developmental time points, we demonstrate that there is a strong correlation between host phylogenetic distance and the microbiome dissimilarity within root tissues, and that drought weakens this correlation by inducing conserved shifts in bacterial community composition. We identify a significant enrichment in a wide variety of Actinobacteria during drought within the roots of all hosts, and demonstrate that this enrichment is higher within the root than it is in the surrounding environments. Furthermore, we show that this observed enrichment is the result of an absolute increase in Actinobacterial abundance and that previously hypothesized mechanisms for observed enrichments in Actinobacteria in drought-treated soils are unlikely to fully account for the phenomena observed here within the plant root. PMID:28753209
Drought and host selection influence bacterial community dynamics in the grass root microbiome.
Naylor, Dan; DeGraaf, Stephanie; Purdom, Elizabeth; Coleman-Derr, Devin
2017-12-01
Root endophytes have been shown to have important roles in determining host fitness under periods of drought stress, and yet the effect of drought on the broader root endosphere bacterial community remains largely uncharacterized. In this study, we present phylogenetic profiles of bacterial communities associated with drought-treated root and rhizosphere tissues of 18 species of plants with varying degrees of drought tolerance belonging to the Poaceae family, including important crop plants. Through 16S rRNA gene profiling across two distinct watering regimes and two developmental time points, we demonstrate that there is a strong correlation between host phylogenetic distance and the microbiome dissimilarity within root tissues, and that drought weakens this correlation by inducing conserved shifts in bacterial community composition. We identify a significant enrichment in a wide variety of Actinobacteria during drought within the roots of all hosts, and demonstrate that this enrichment is higher within the root than it is in the surrounding environments. Furthermore, we show that this observed enrichment is the result of an absolute increase in Actinobacterial abundance and that previously hypothesized mechanisms for observed enrichments in Actinobacteria in drought-treated soils are unlikely to fully account for the phenomena observed here within the plant root.
Effects of Cucumber mosaic virus infection on vector and non-vector herbivores of squash.
Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C
2010-11-01
Plant chemicals mediating interactions with insect herbivores seem a likely target for manipulation by insectvectored plant pathogens. Yet, little is currently known about the chemical ecology of insect-vectored diseases or their effects on the ecology of vector and nonvector insects. We recently reported that a widespread plant pathogen, Cucumber mosaic virus (CMV), greatly reduces the quality of host-plants (squash) for aphid vectors, but that aphids are nevertheless attracted to the odors of infected plants-which exhibit elevated emissions of a volatile blend otherwise similar to the odor of healthy plants. This finding suggests that exaggerating existing host-location cues can be a viable vector attraction strategy for pathogens that otherwise reduce host quality for vectors. Here we report additional data regarding the effects of CMV infection on plant interactions with a common nonvector herbivore, the squash bug, Anasa tristis, which is a pest in this system. We found that adult A. tristis females preferred to oviposit on healthy plants in the field, and that healthy plants supported higher populations of nymphs. Collectively, our recent findings suggest that CMV-induced changes in host plant chemistry influence the behavior of both vector and non-vector herbivores, with significant implications both for disease spread and for broader community-level interactions.
Nunn, Charles L; Brezine, Carrie; Jolles, Anna E; Ezenwa, Vanessa O
2014-04-01
Most wild animals face concurrent challenges by multiple infectious organisms, and immunological responses triggered by some parasites may increase susceptibility to other infectious agents. Immune-mediated interactions among parasites have been investigated among individuals in a population, but less is known about broader comparative patterns. We investigated the "macro-micro facilitation hypothesis" that higher helminth prevalence in a host species provides greater opportunities for intracellular parasites to invade, resulting in higher richness of intracellular microparasites. We obtained data on average helminth prevalence for 70 primate hosts, along with data on richness of intra- and extracellular infectious organisms. Using Bayesian phylogenetic methods, we found that primate species with higher overall helminth prevalence harbored more species of intracellular microparasites, while the positive association between helminth prevalence and extracellular microparasite species richness was weaker. The relationships held after controlling for potentially confounding variables, but associations were not found in focused tests of prevalence for six genera of well-studied helminths. The magnitude of support and effect sizes for overall helminth prevalence on intracellular microparasite species richness was similar to support for other well recognized ecological and life-history drivers of parasite species richness. Our findings therefore suggest that intrahost parasite interactions are as important as some ecological characteristics of hosts in accounting for parasite richness across host species.
An NMR study of microvoids in polymers
NASA Technical Reports Server (NTRS)
Toy, James; Mattix, Larry
1995-01-01
An understanding of polymer defect structures, like microvoids in polymeric matrices, is crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally be found naturally in polymer or in NMR probe materials. There are two NMR active xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb the Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe(129)-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts line Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A single Xe-129 line at 83.003498 Mhz (with protons at 300 Mhz) was observed for the gas. With the xenon charged PMR-15 samples, a second broader line is observed 190 ppm downfield from the gas line (also observed). The width of the NMR line from the Xe-129 absorbed in the polymer is at least partially due to the distribution of microvoid sizes. From the chemical shift (relative to the gas line) and the line width, we estimate the average void sizes to be 2.74 +/- 0.20 angstroms. Since Xe-129 has such a large chemical shift range (approximately 5000 ppm), we expect the chemical shift anisotropy to contribute to the line width (delta upsilon = 2.5 kHz).
NASA Astrophysics Data System (ADS)
Veglia, A. J.; Milford, C. R.; Marston, M.
2016-02-01
Viruses infecting marine Synechococcus are abundant in coastal marine environments and influence the community composition and abundance of their cyanobacterial hosts. In this study, we focused on the cyanopodoviruses which have smaller genomes and narrower host ranges relative to cyanomyoviruses. While previous studies have compared the genomes of diverse podoviruses, here we analyzed the genomic variation, host ranges, and infection kinetics of podoviruses within the same OTU. The genomes of fifty-five podoviral isolates from the coastal waters of New England were fully sequenced. Based on DNA polymerase gene sequences, these isolates fall into five discrete OTUs (termed RIP - Rhode Island Podovirus). Although all the isolates belonging to the same RIP have very similar DNA polymerase gene sequences (>98% sequence identity), differences in genome content, particularly in regions associated with tail fiber genes, were observed among isolates in the same RIP. Host range tests reveal variation both across and within RIPs. Notably within RIP1, isolates that had similar tail fiber regions also had similar host ranges. Isolates belonging to RIP4 do not contain the host-derived psbA photosynthesis gene, while isolates in the other four RIPs do possess a psbA gene. Nevertheless, infection kinetic experiments suggest that the latent period and burst size for RIP4 isolates are similar to RIP1 isolates. We are continuing to investigate the correlations among genome content, host range, and infection kinetics of isolates belonging to the same OTU. Our results to date suggest that there is substantial genomic variation within an OTU and that this variation likely influences cyanopodoviral - host interactions.
Pseudomonas syringae pv. phaseolicola isolated from weeds in bean crop fields.
Fernández-Sanz, A M; Rodicio, M R; González, A J
2016-04-01
Pseudomonas syringae pv. phaseolicola, the causative agent of halo blight in common bean (Phaseolus vulgaris L.), was isolated from weeds associated with bean crops in Spain. The bacterium was recovered from Fumaria sp, Mercurialis annua, Solanum nigrum and Sonchus oleraceus. Ps. s. pv. phaseolicola had previously been isolated from leguminous plants and S. nigrum, but to our knowledge, this is the first time it was recovered from the other three species. The isolates were phenotypically and genetically characterized, and they were compared with isolates recovered from common beans. Five different genotypic profiles were detected by PmeI-PFGE, two of them being of new description. Weed isolates were as pathogenic on bean plants as bean isolates, but they were not pathogenic on S. nigrum. Regarding the survival of the pathogen in weeds, Ps. s. pv. phaseolicola was isolated from So. oleraceus 11 weeks after the end of the bean crop. These results strongly support the idea of weeds as a potential source of inoculum for halo blight in bean. It has traditionally been considered that the main source of inoculum of Pseudomonas syringae pv. phaseolicola causing halo blight disease in Phaseolus vulgaris are the bean seeds, and that the host range of the bacterium is almost restricted to leguminous plants. In this study, the bacterium was recovered from four nonleguminous weed species collected in bean fields, and its permanence in weeds for at least 11 weeks after the harvesting of the beans was demonstrated. We have also proved that the strains isolated from weeds were pathogenic on bean plants. Accordingly, the host range of Ps. s. pv. phaseolicola could be broader than previously thought and weeds appear to be acting as a reservoir of the pathogen until the next crop. © 2016 The Society for Applied Microbiology.
Bacterial growth, flow, and mixing shape human gut microbiota density and composition.
Arnoldini, Markus; Cremer, Jonas; Hwa, Terence
2018-03-13
The human gut microbiota is highly dynamic, and host physiology and diet exert major influences on its composition. In our recent study, we integrated new quantitative measurements on bacterial growth physiology with a reanalysis of published data on human physiology to build a comprehensive modeling framework. This can generate predictions of how changes in different host factors influence microbiota composition. For instance, hydrodynamic forces in the colon, along with colonic water absorption that manifests as transit time, exert a major impact on microbiota density and composition. This can be mechanistically explained by their effect on colonic pH which directly affects microbiota competition for food. In this addendum, we describe the underlying analysis in more detail. In particular, we discuss the mixing dynamics of luminal content by wall contractions and its implications for bacterial growth and density, as well as the broader implications of our insights for the field of gut microbiota research.
Standley, C J; Stothard, J R
2012-10-01
While Schistosoma rodhaini is typically considered a parasite of small mammals and is very scantly distributed in the Lake Victoria basin, it is known to hybridize with the more widespread Schistosoma mansoni, the causative agent of intestinal schistosomiasis. As part of broader parasitological and malacological surveys for S. mansoni across Lake Victoria, schistosome cercariae were harvested from a field-caught Biomphalaria choanomphala taken on Ngamba Island Chimpanzee Sanctuary, Uganda. Upon DNA barcoding, these cercariae were found to be a mixture of both S. rodhaini and S. mansoni, with further phylogenetic analysis revealing a hitherto unknown sub-lineage within S. rodhaini. Despite repeated sampling for eggs and miracidia from both chimpanzees and staff on Ngamba Island Sanctuary, detection of S. rodhaini within local definitive hosts awaits additional efforts, which should be mindful of a potential host role of spotted-necked otters.
Modulating airway defenses against microbes.
Reynolds, Herbert Y
2002-05-01
Prevention and treatment of respiratory infections remain an important health care challenge as the US population ages, contains more susceptible or high-risk people, and encounters new pathogens or antibiotic resistant bacteria. Reasonably protective vaccines against very common microbes are available for childhood and adult immunization, but, generally, these are underutilized. A broader definition of higher risk individuals is evolving, which will include more for immunization. Different approaches to vaccine development through design of new component vaccines are necessary. This review has updated host defense mechanisms at three levels in the human respiratory tract: naso-oropharynx (upper airways), conducting airways, and alveolar space. Examples of representative pathogenic microbes have been inserted at the respective airway segment where they may colonize or create infection (influenza, measles virus, Porphyromonas gingivalis causing periodontitis, Bordetella pertussis, Chlamydia pneumoniae, Streptococcus pneumoniae, and Bacillus anthracis ). Hopefully, microbe-host interactions will suggest new approaches for preventing these kinds of infections.
Ye, Yixin H.; Woolfit, Megan; Huttley, Gavin A.; Rancès, Edwige; Caragata, Eric P.; Popovici, Jean; O'Neill, Scott L.; McGraw, Elizabeth A.
2013-01-01
Background Cytosine methylation is one of several reversible epigenetic modifications of DNA that allow a greater flexibility in the relationship between genotype and phenotype. Methylation in the simplest models dampens gene expression by modifying regions of DNA critical for transcription factor binding. The capacity to methylate DNA is variable in the insects due to diverse histories of gene loss and duplication of DNA methylases. Mosquitoes like Drosophila melanogaster possess only a single methylase, DNMT2. Description Here we characterise the methylome of the mosquito Aedes aegypti and examine its relationship to transcription and test the effects of infection with a virulent strain of the endosymbiont Wolbachia on the stability of methylation patterns. Conclusion We see that methylation in the A. aegypti genome is associated with reduced transcription and is most common in the promoters of genes relating to regulation of transcription and metabolism. Similar gene classes are also methylated in aphids and honeybees, suggesting either conservation or convergence of methylation patterns. In addition to this evidence of evolutionary stability, we also show that infection with the virulent wMelPop Wolbachia strain induces additional methylation and demethylation events in the genome. While most of these changes seem random with respect to gene function and have no detected effect on transcription, there does appear to be enrichment of genes associated with membrane function. Given that Wolbachia lives within a membrane-bound vacuole of host origin and retains a large number of genes for transporting host amino acids, inorganic ions and ATP despite a severely reduced genome, these changes might represent an evolved strategy for manipulating the host environments for its own gain. Testing for a direct link between these methylation changes and expression, however, will require study across a broader range of developmental stages and tissues with methods that detect splice variants. PMID:23840485
INTEGRATING PARASITES AND PATHOGENS INTO THE STUDY OF GEOGRAPHIC RANGE LIMITS.
Bozick, Brooke A; Real, Leslie A
2015-12-01
The geographic distributions of all species are limited, and the determining factors that set these limits are of fundamental importance to the fields of ecology and evolutionary biology. Plant and animal ranges have been of primary concern, while those of parasites, which represent much of the Earth's biodiversity, have been neglected. Here, we review the determinants of the geographic ranges of parasites and pathogens, and explore how parasites provide novel systems with which to investigate the ecological and evolutionary processes governing host/parasite spatial distributions. Although there is significant overlap in the causative factors that determine range borders of parasites and free-living species, parasite distributions are additionally constrained by the geographic range and ecology of the host species' population, as well as by evolutionary factors that promote host-parasite coevolution. Recently, parasites have been used to infer population demographic and ecological information about their host organisms and we conclude that this strategy can be further exploited to understand geographic range limitations of both host and parasite populations.
Greiman, Stephen E.; Tkach, Vasyl V.; Pulis, Eric; Fayton, Thomas J.; Curran, Stephen S.
2014-01-01
Digeneans are endoparasitic flatworms with complex life cycles including one or two intermediate hosts (first of which is always a mollusk) and a vertebrate definitive host. Digeneans may harbor intracellular endosymbiotic bacteria belonging to the genus Neorickettsia (order Rickettsiales, family Anaplasmataceae). Some Neorickettsia are able to invade cells of the digenean's vertebrate host and are known to cause diseases of wildlife and humans. In this study we report the results of screening 771 digenean samples for Neorickettsia collected from various vertebrates in terrestrial, freshwater, brackish, and marine habitats in the United States, China and Australia. Neorickettsia were detected using a newly designed real-time PCR protocol targeting a 152 bp fragment of the heat shock protein coding gene, GroEL, and verified with nested PCR and sequencing of a 1371 bp long region of 16S rRNA. Eight isolates of Neorickettsia have been obtained. Sequence comparison and phylogenetic analysis demonstrated that 7 of these isolates, provisionally named Neorickettsia sp. 1–7 (obtained from allocreadiid Crepidostomum affine, haploporids Saccocoelioides beauforti and Saccocoelioides lizae, faustulid Bacciger sprenti, deropegid Deropegus aspina, a lecithodendriid, and a pleurogenid) represent new genotypes and one (obtained from Metagonimoides oregonensis) was identical to a published sequence of Neorickettsia known as SF agent. All digenean species reported in this study represent new host records. Three of the 6 digenean families (Haploporidae, Pleurogenidae, and Faustulidae) are also reported for the first time as hosts of Neorickettsia. We have detected Neorickettsia in digeneans from China and Australia for the first time based on PCR and sequencing evidence. Our findings suggest that further surveys from broader geographic regions and wider selection of digenean taxa are likely to reveal new Neorickettsia lineages as well as new digenean host associations. PMID:24911315
Teixeira-Costa, Luíza; Ceccantini, Gregório C. T.
2016-01-01
The complex endophytic structure formed by parasitic plant species often represents a challenge in the study of the host-parasite interface. Even with the large amounts of anatomical slides, a three-dimensional comprehension of the structure may still be difficult to obtain. In the present study we applied the High Resolution X-ray Computed Tomography (HRXCT) analysis along with usual plant anatomy techniques in order to compare the infestation pattern of two mistletoe species of the genus Phoradendron. Additionally, we tested the use of contrasting solutions in order to improve the detection of the parasite’s endophytic tissue. To our knowledge, this is the first study to show the three-dimensional structure of host-mistletoe interface by using HRXCT technique. Results showed that Phoradendron perrottetii growing on the host Tapirira guianensis forms small woody galls with a restricted endophytic system. The sinkers were short and eventually grouped creating a continuous interface with the host wood. On the other hand, the long sinkers of P. bathyoryctum penetrate deeply into the wood of Cedrela fissilis branching in all directions throughout the woody gall area, forming a spread-out infestation pattern. The results indicate that the HRXCT is indeed a powerful approach to understand the endophytic system of parasitic plants. The combination of three-dimensional models of the infestation with anatomical analysis provided a broader understanding of the host-parasite connection. Unique anatomic features are reported for the sinkes of P. perrottetii, while the endophytic tissue of P. bathyoryctum conformed to general anatomy observed for other species of this genus. These differences are hypothesized to be related to the three-dimensional structure of each endophytic system and the communication stablished with the host. PMID:27630661
Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes.
Sanders, Jon G; Powell, Scott; Kronauer, Daniel J C; Vasconcelos, Heraldo L; Frederickson, Megan E; Pierce, Naomi E
2014-03-01
Correlation between gut microbiota and host phylogeny could reflect codiversification over shared evolutionary history or a selective environment that is more similar in related hosts. These alternatives imply substantial differences in the relationship between host and symbiont, but can they be distinguished based on patterns in the community data themselves? We explored patterns of phylogenetic correlation in the distribution of gut bacteria among species of turtle ants (genus Cephalotes), which host a dense gut microbial community. We used 16S rRNA pyrosequencing from 25 Cephalotes species to show that their gut community is remarkably stable, from the colony to the genus level. Despite this overall similarity, the existing differences among species' microbiota significantly correlated with host phylogeny. We introduced a novel analytical technique to test whether these phylogenetic correlations are derived from recent bacterial evolution, as would be expected in the case of codiversification, or from broader shifts more likely to reflect environmental filters imposed by factors such as diet or habitat. We also tested this technique on a published data set of ape microbiota, confirming earlier results while revealing previously undescribed patterns of phylogenetic correlation. Our results indicated a high degree of partner fidelity in the Cephalotes microbiota, suggesting that vertical transmission of the entire community could play an important role in the evolution and maintenance of the association. As additional comparative microbiota data become available, the techniques presented here can be used to explore trends in the evolution of host-associated microbial communities. © 2014 John Wiley & Sons Ltd.
Schneider, Sean E.; Thomas, James H.
2014-01-01
We show here that 105 regions in two Lepidoptera genomes appear to derive from horizontally transferred wasp DNA. We experimentally verified the presence of two of these sequences in a diverse set of silkworm (Bombyx mori) genomes. We hypothesize that these horizontal transfers are made possible by the unusual strategy many parasitoid wasps employ of injecting hosts with endosymbiotic polydnaviruses to minimize the host's defense response. Because these virus-like particles deliver wasp DNA to the cells of the host, there has been much interest in whether genetic information can be permanently transferred from the wasp to the host. Two transferred sequences code for a BEN domain, known to be associated with polydnaviruses and transcriptional regulation. These findings represent the first documented cases of horizontal transfer of genes between two organisms by a polydnavirus. This presents an interesting evolutionary paradigm in which host species can acquire new sequences from parasitoid wasps that attack them. Hymenoptera and Lepidoptera diverged ∼300 MYA, making this type of event a source of novel sequences for recipient species. Unlike many other cases of horizontal transfer between two eukaryote species, these sequence transfers can be explained without the need to invoke the sequences ‘hitchhiking’ on a third organism (e.g. retrovirus) capable of independent reproduction. The cellular machinery necessary for the transfer is contained entirely in the wasp genome. The work presented here is the first such discovery of what is likely to be a broader phenomenon among species affected by these wasps. PMID:25296163
Suárez-Esquivel, Marcela; Baker, Kate S.; Ruiz-Villalobos, Nazareth; Hernández-Mora, Gabriela; Barquero-Calvo, Elías; González-Barrientos, Rocío; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Chacón-Díaz, Carlos; Cloeckaert, Axel; Chaves-Olarte, Esteban; Thomson, Nicholas R.; Moreno, Edgardo
2017-01-01
Abstract Intracellular bacterial pathogens probably arose when their ancestor adapted from a free-living environment to an intracellular one, leading to clonal bacteria with smaller genomes and less sources of genetic plasticity. Still, this plasticity is needed to respond to the challenges posed by the host. Members of the Brucella genus are facultative-extracellular intracellular bacteria responsible for causing brucellosis in a variety of mammals. The various species keep different host preferences, virulence, and zoonotic potential despite having 97–99% similarity at genome level. Here, we describe elements of genetic variation in Brucella ceti isolated from wildlife dolphins inhabiting the Pacific Ocean and the Mediterranean Sea. Comparison with isolates obtained from marine mammals from the Atlantic Ocean and the broader Brucella genus showed distinctive traits according to oceanic distribution and preferred host. Marine mammal isolates display genetic variability, represented by an important number of IS711 elements as well as specific IS711 and SNPs genomic distribution clustering patterns. Extensive pseudogenization was found among isolates from marine mammals as compared with terrestrial ones, causing degradation in pathways related to energy, transport of metabolites, and regulation/transcription. Brucella ceti isolates infecting particularly dolphin hosts, showed further degradation of metabolite transport pathways as well as pathways related to cell wall/membrane/envelope biogenesis and motility. Thus, gene loss through pseudogenization is a source of genetic variation in Brucella, which in turn, relates to adaptation to different hosts. This is relevant to understand the natural history of bacterial diseases, their zoonotic potential, and the impact of human interventions such as domestication. PMID:28854602
Hird, Sarah M; Carstens, Bryan C; Cardiff, Steven W; Dittmann, Donna L; Brumfield, Robb T
2014-01-01
Brown-headed Cowbirds (Molothrus ater) are the most widespread avian brood parasite in North America, laying their eggs in the nests of approximately 250 host species that raise the cowbird nestlings as their own. It is currently unknown how these heterospecific hosts influence the cowbird gut microbiota relative to other factors, such as the local environment and genetics. We test a Nature Hypothesis (positing the importance of cowbird genetics) and a Nurture Hypothesis (where the host parents are most influential to cowbird gut microbiota) using the V6 region of 16S rRNA as a microbial fingerprint of the gut from 32 cowbird samples and 16 potential hosts from nine species. We test additional hypotheses regarding the influence of the local environment and age of the birds. We found no evidence for the Nature Hypothesis and little support for the Nurture Hypothesis. Cowbird gut microbiota did not form a clade, but neither did members of the host species. Rather, the physical location, diet and age of the bird, whether cowbird or host, were the most significant categorical variables. Thus, passerine gut microbiota may be most strongly influenced by environmental factors. To put this variation in a broader context, we compared the bird data to a fecal microbiota dataset of 38 mammal species and 22 insect species. Insects were always the most variable; on some axes, we found more variation within cowbirds than across all mammals. Taken together, passerine gut microbiota may be more variable and environmentally determined than other taxonomic groups examined to date.
Carstens, Bryan C.; Cardiff, Steven W.; Dittmann, Donna L.; Brumfield, Robb T.
2014-01-01
Brown-headed Cowbirds (Molothrus ater) are the most widespread avian brood parasite in North America, laying their eggs in the nests of approximately 250 host species that raise the cowbird nestlings as their own. It is currently unknown how these heterospecific hosts influence the cowbird gut microbiota relative to other factors, such as the local environment and genetics. We test a Nature Hypothesis (positing the importance of cowbird genetics) and a Nurture Hypothesis (where the host parents are most influential to cowbird gut microbiota) using the V6 region of 16S rRNA as a microbial fingerprint of the gut from 32 cowbird samples and 16 potential hosts from nine species. We test additional hypotheses regarding the influence of the local environment and age of the birds. We found no evidence for the Nature Hypothesis and little support for the Nurture Hypothesis. Cowbird gut microbiota did not form a clade, but neither did members of the host species. Rather, the physical location, diet and age of the bird, whether cowbird or host, were the most significant categorical variables. Thus, passerine gut microbiota may be most strongly influenced by environmental factors. To put this variation in a broader context, we compared the bird data to a fecal microbiota dataset of 38 mammal species and 22 insect species. Insects were always the most variable; on some axes, we found more variation within cowbirds than across all mammals. Taken together, passerine gut microbiota may be more variable and environmentally determined than other taxonomic groups examined to date. PMID:24711971
Dos Santos, Caroline Spitz; de Jesus, Vera Lúcia Teixeira; McIntosh, Douglas; Carreiro, Caroline Cunha; Batista, Lilian Cristina Oliveira; do Bomfim Lopes, Bruno; Neves, Daniel Marchesi; Lopes, Carlos Wilson Gomes
2017-09-01
Non-human primates are our closest relatives and represent an interesting model for comparative parasitological studies. However, research on this topic particularly in relation to intestinal parasites has been fragmentary and limited mainly to animals held in captivity. Thus, our knowledge of host-parasite relationships in this species-rich group of mammals could be considered rudimentary. The current study combined morphological, ultrastructural, and molecular analyses to characterize isolates of intestinal tetratrichomonads recovered from the feces of three species of South American, non-human primates. Fecal samples were collected from 16 animals, representing 12 distinct species. Parabasalid-like organisms were evident in five samples (31%) of feces: two from Alouatta sara, two from Callithrix penicillata, and one from Sapajus apella. The five samples presented morphologies consistent with the description of Tetratrichomonas sp., with four anterior flagella of unequal length, a well-developed undulating membrane, and a long recurrent flagellum. Sequencing of the ITS1-5.8S rRNA-ITS2 region demonstrated that the isolates from A. sara, and C. penicillata were closely related and highly similar to isolates of Tetratrichomonas brumpti, recovered previously from tortoises (Geochelone sp.). The flagellate recovered from S. apella demonstrated a similar morphology to those of the other isolates, however, sequence analysis showed it to be identical to an isolate of Tetratrichomonas sp. recovered from white-lipped peccaries (Tayassu pecari). The findings of this study extend and enhance our knowledge of parasitism of non-human primates by members of the genus Tetratrichomonas and indicate that the host range of these parasites is broader than previously believed.
Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology.
Poon, Art F Y
2015-09-01
The shapes of phylogenetic trees relating virus populations are determined by the adaptation of viruses within each host, and by the transmission of viruses among hosts. Phylodynamic inference attempts to reverse this flow of information, estimating parameters of these processes from the shape of a virus phylogeny reconstructed from a sample of genetic sequences from the epidemic. A key challenge to phylodynamic inference is quantifying the similarity between two trees in an efficient and comprehensive way. In this study, I demonstrate that a new distance measure, based on a subset tree kernel function from computational linguistics, confers a significant improvement over previous measures of tree shape for classifying trees generated under different epidemiological scenarios. Next, I incorporate this kernel-based distance measure into an approximate Bayesian computation (ABC) framework for phylodynamic inference. ABC bypasses the need for an analytical solution of model likelihood, as it only requires the ability to simulate data from the model. I validate this "kernel-ABC" method for phylodynamic inference by estimating parameters from data simulated under a simple epidemiological model. Results indicate that kernel-ABC attained greater accuracy for parameters associated with virus transmission than leading software on the same data sets. Finally, I apply the kernel-ABC framework to study a recent outbreak of a recombinant HIV subtype in China. Kernel-ABC provides a versatile framework for phylodynamic inference because it can fit a broader range of models than methods that rely on the computation of exact likelihoods. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
USDA-ARS?s Scientific Manuscript database
We have fulfilled Koch’s postulates and conducted host range tests with Septoria lepidii Desm. on five geographical accessions of hoary cress. Host range results showed the fungus specific to Lepidium spp. and damaging to hoary cress. This fungus is potentially an important biological control agent ...
Derek W. Rosenberger; Robert C. Venette; Brian H. Aukema; Jörg Müller
2018-01-01
Some subcortical insects have devastating effects on native tree communities in new ranges, despite benign interactions with their historical hosts. Examples of how insects, aggressive in their native habitat might respond in novel host environs are less common. One aggressive tree-killing insect undergoing a dramatic range shift is the mountain pine beetle (...
Donald, Kirsten M; Spencer, Hamish G
2016-08-01
Digenean parasites infecting four Cominella whelk species (C. glandiformis, C. adspersa, C. maculosa and C. virgata), which inhabit New Zealand's intertidal zone, were analysed using molecular techniques. Mitochondrial 16S and cytochrome oxidase 1 (COI) and nuclear rDNA ITS1 sequences were used to infer phylogenetic relationships amongst digenea. Host species were parasitized by a diverse range of digenea (Platyhelminthes, Trematoda), representing seven families: Echinostomatidae, Opecoelidae, Microphallidae, Strigeidae and three, as yet, undetermined families A, B and C. Each parasite family infected between one and three host whelk species, and infection levels were typically low (average infection rates ranged from 1·4 to 3·6%). Host specificity ranged from highly species-specific amongst the echinostomes, which were only ever observed infecting C. glandiformis, to the more generalist opecoelids and strigeids, which were capable of infecting three out of four of the Cominella species analysed. Digeneans displayed a highly variable geographic range; for example, echinostomes had a large geographic range stretching the length of New Zealand, from Northland to Otago, whereas Family B parasites were restricted to fairly small areas of the North Island. Our results add to a growing body of research identifying wide ranges in both host specificity and geographic range amongst intertidal, multi-host parasite systems.
USDA-ARS?s Scientific Manuscript database
Open-field host-specificity testing assesses the host-range of a biological control agent in a setting that permits the agent to use its full complement of host-seeking behaviors. This form of testing, particularly when it includes a no-choice phase in which the target weed is killed, may provide th...
Patrock, Richard J. W.; Porter, Sanford D.; Gilbert, Lawrence E.; Folgarait, Patricia J.
2009-01-01
Classical biological control efforts against imported fire ants have largely involved the use of Pseudacteon parasitoids. To facilitate further exploration for species and population biotypes a database of collection records for Pseudacteon species was organized, including those from the literature and other sources. These data were then used to map the geographical ranges of species associated with the imported fire ants in their native range in South America. In addition, we found geographical range metrics for all species in the genus and related these metrics to latitude and host use. Approximately equal numbers of Pseudacteon species were found in temperate and tropical regions, though the majority of taxa found only in temperate areas were found in the Northern Hemisphere. No significant differences in sizes of geographical ranges were found between Pseudacteon associated with the different host complexes of fire ants despite the much larger and systemic collection effort associated with the S. saevissima host group. The geographical range of the flies was loosely associated with both the number of hosts and the geographical range of their hosts. Pseudacteon with the most extensive ranges had either multiple hosts or hosts with broad distributions. Mean species richnesses of Pseudacteon in locality species assemblages associated with S. saevissima complex ants was 2.8 species, but intensively sampled locations were usually much higher. Possible factors are discussed related to variation in the size of geographical range, and areas in southern South America are outlined that are likely to have been under-explored for Pseudacteon associated with imported fire ants. PMID:20050779
Xie, Yicheng; Wahab, Laith; Gill, Jason J
2018-04-12
Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format.
Xie, Yicheng; Wahab, Laith
2018-01-01
Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format. PMID:29649135
Host selection and lethality of attacks by sea lampreys (Petromyzon marinus) in laboratory studies
Swink, William D.
2003-01-01
Parasitic-phase sea lampreys (Petromyzon marinus) are difficult to study in the wild. A series of laboratory studies (1984-1995) of single attacks on lake trout (Salvelinus namaycush), rainbow trout (Oncorhynchus mykiss), and burbot (Lota lota) examined host size selection; determined the effects of host size, host species, host strain, and temperature on host mortality; and estimated the weight of hosts killed per lamprey. Rainbow trout were more able and burbot less able to survive attacks than lake trout. Small sea lampreys actively selected the larger of two small hosts; larger sea lampreys attacked larger hosts in proportion to the hosts' body sizes, but actively avoided shorter hosts (a?? 600 mm) when larger were available. Host mortality was significantly less for larger (43-44%) than for smaller hosts (64%). However, the yearly loss of hosts per sea lamprey was less for small hosts (range, 6.8-14.2 kg per sea lamprey) than larger hosts (range, 11.4-19.3 kg per sea lamprey). Attacks at the lower of two temperature ranges (6.1-11.8A?C and 11.1-15.0A?C) did not significantly reduce the percentage of hosts killed (54% vs. 69%, p > 0.21), but longer attachment times at lower temperatures reduced the number of hosts attacked (33 vs. 45), and produced the lowest loss of hosts (6.6 kg per sea lamprey). Low temperature appeared to offset other factors that increase host mortality. Reanalysis of 789 attacks pooled from these studies, using forward stepwise logistic regression, also identified mean daily temperature as the dominant factor affecting host mortality. Observations in Lakes Superior, Huron, and Ontario support most laboratory results.
Pentecost, M; Ross, F C; Macnab, A
2018-02-01
Pregnant women, children under 2 and the first thousand days of life have been principal targets for Developmental Origins of Health and Disease interventions. This paradigm has been criticized for laying responsibility for health outcomes on pregnant women and mothers and through the thousand days focus inadvertently deflecting attention from other windows for intervention. Drawing on insights from the South African context, this commentary argues for integrated and inclusive interventions that encompass broader social framings. First, future interventions should include a wider range of actors. Second, broader action frameworks should encompass life-course approaches that identify multiple windows of opportunity for intervention. Using two examples - the inclusion of men, and engagement with adolescents - this commentary offers strategies for producing more inclusive interventions by using a broader social framework.
Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário
2016-02-01
Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.
The MVMp P4 promoter is a host cell-type range determinant in vivo.
Meir, Chen; Mincberg, Michal; Rostovsky, Irina; Tal, Saar; Vollmers, Ellen M; Levi, Adi; Tattersall, Peter; Davis, Claytus
2017-06-01
The protoparvovirus early promoters, e.g. P4 of Minute Virus of Mice (MVM), play a critical role during infection. Initial P4 activity depends on the host transcription machinery only. Since this is cell-type dependent, it is hypothesized that P4 is a host cell-type range determinant. Yet host range determinants have mapped mostly to capsid, never P4. Here we test the hypothesis using the mouse embryo as a model system. Disruption of the CRE element of P4 drastically decreased infection levels without altering range. However, when we swapped promoter elements of MVM P4 with those from equivalent regions of the closely related H1 virus, we observed elimination of infection in fibroblasts and chondrocytes and the acquisition of infection in skeletal muscle. We conclude that P4 is a host range determinant and a target for modifying the productive infection potential of the virus - an important consideration in adapting these viruses for oncotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Liang; Cooper, Tamara; Eldi, Preethi; Garcia-Valtanen, Pablo; Diener, Kerrilyn R; Howley, Paul M; Hayball, John D
2017-04-01
Recombinant vaccinia viruses (rVACVs) are promising antigen-delivery systems for vaccine development that are also useful as research tools. Two common methods for selection during construction of rVACV clones are (i) co-insertion of drug resistance or reporter protein genes, which requires the use of additional selection drugs or detection methods, and (ii) dominant host-range selection. The latter uses VACV variants rendered replication-incompetent in host cell lines by the deletion of host-range genes. Replicative ability is restored by co-insertion of the host-range genes, providing for dominant selection of the recombinant viruses. Here, we describe a new method for the construction of rVACVs using the cowpox CP77 protein and unmodified VACV as the starting material. Our selection system will expand the range of tools available for positive selection of rVACV during vector construction, and it is substantially more high-fidelity than approaches based on selection for drug resistance.
One Health and Food-Borne Disease: Salmonella Transmission between Humans, Animals, and Plants.
Silva, Claudia; Calva, Edmundo; Maloy, Stanley
2014-02-01
There are >2,600 recognized serovars of Salmonella enterica. Many of these Salmonella serovars have a broad host range and can infect a wide variety of animals, including mammals, birds, reptiles, amphibians, fish, and insects. In addition, Salmonella can grow in plants and can survive in protozoa, soil, and water. Hence, broad-host-range Salmonella can be transmitted via feces from wild animals, farm animals, and pets or by consumption of a wide variety of common foods: poultry, beef, pork, eggs, milk, fruit, vegetables, spices, and nuts. Broad-host-range Salmonella pathogens typically cause gastroenteritis in humans. Some Salmonella serovars have a more restricted host range that is associated with changes in the virulence plasmid pSV, accumulation of pseudogenes, and chromosome rearrangements. These changes in host-restricted Salmonella alter pathogen-host interactions such that host-restricted Salmonella organisms commonly cause systemic infections and are transmitted between host populations by asymptomatic carriers. The secondary consequences of efforts to eliminate host-restricted Salmonella serovars demonstrate that basic ecological principles govern the environmental niches occupied by these pathogens, making it impossible to thwart Salmonella infections without a clear understanding of the human, animal, and environmental reservoirs of these pathogens. Thus, transmission of S. enterica provides a compelling example of the One Health paradigm because reducing human infections will require the reduction of Salmonella in animals and limitation of transmission from the environment.
Suzuki, Hiromu C; Ozaki, Katsuhisa; Makino, Takashi; Uchiyama, Hironobu; Yajima, Shunsuke; Kawata, Masakado
2018-06-01
The host plant range of herbivorous insects is a major aspect of insect-plant interaction, but the genetic basis of host range expansion in insects is poorly understood. In butterflies, gustatory receptor genes (GRs) play important roles in host plant selection by ovipositing females. Since several studies have shown associations between the repertoire sizes of chemosensory gene families and the diversity of resource use, we hypothesized that the increase in the number of genes in the GR family is associated with host range expansion in butterflies. Here, we analyzed the evolutionary dynamics of GRs among related species, including the host generalist Vanessa cardui and three specialists. Although the increase of the GR repertoire itself was not observed, we found that the gene birth rate of GRs was the highest in the lineage leading to V. cardui compared with other specialist lineages. We also identified two taxon-specific subfamilies of GRs, characterized by frequent lineage-specific duplications and higher non-synonymous substitution rates. Together, our results suggest that frequent gene duplications in GRs, which might be involved in the detection of plant secondary metabolites, were associated with host range expansion in the V. cardui lineage. These evolutionary patterns imply that the capability to perceive various compounds during host selection was favored during adaptation to diverse host plants.
Nylin, Sören; Slove, Jessica; Janz, Niklas
2014-01-01
It has been suggested that phenotypic plasticity is a major factor in the diversification of life, and that variation in host range in phytophagous insects is a good model for investigating this claim. We explore the use of angiosperm plants as hosts for nymphalid butterflies, and in particular the evidence for past oscillations in host range and how they are linked to host shifts and to diversification. At the level of orders of plants, a relatively simple pattern of host use and host shifts emerges, despite the 100 million years of history of the family Nymphalidae. We review the evidence that these host shifts and the accompanying diversifications were associated with transient polyphagous stages, as suggested by the “oscillation hypothesis.” In addition, we investigate all currently polyphagous nymphalid species and demonstrate that the state of polyphagy is rare, has a weak phylogenetic signal, and a very apical distribution in the phylogeny; we argue that these are signs of its transient nature. We contrast our results with data from the bark beetles Dendroctonus, in which a more specialized host use is instead the apical state. We conclude that plasticity in host use is likely to have contributed to diversification in nymphalid butterflies. PMID:24372598
ERIC Educational Resources Information Center
McCaull, Julian
1972-01-01
Presents a profile of Dr. Victor Sidel, one of an increasing number of physicians who are finding that the environmental factors which cause disease often lie outside the range of their professional training. To prevent, rather than treat disease, the physician finds himself grappling with issues which range from pollution to poverty. (BL)
High-Quality Traineeships: Identifying What Works. Good Practice Guide
ERIC Educational Resources Information Center
National Centre for Vocational Education Research (NCVER), 2009
2009-01-01
Traineeships were introduced alongside apprenticeships to increase the reach of contracted training to a wider range of occupations and industries and to a broader range of learners (particularly women) and to improve the labour market prospects of young people. Traineeships have given hundreds of thousands of Australians access to nationally…
Inferring the Ecological Niche of Toxoplasma gondii and Bartonella spp. in Wild Felids.
Escobar, Luis E; Carver, Scott; Romero-Alvarez, Daniel; VandeWoude, Sue; Crooks, Kevin R; Lappin, Michael R; Craft, Meggan E
2017-01-01
Traditional epidemiological studies of disease in animal populations often focus on directly transmitted pathogens. One reason pathogens with complex lifecycles are understudied could be due to challenges associated with detection in vectors and the environment. Ecological niche modeling (ENM) is a methodological approach that overcomes some of the detection challenges often seen with vector or environmentally dependent pathogens. We test this approach using a unique dataset of two pathogens in wild felids across North America: Toxoplasma gondii and Bartonella spp. in bobcats ( Lynx rufus ) and puma ( Puma concolor ). We found three main patterns. First, T. gondii showed a broader use of environmental conditions than did Bartonella spp. Also, ecological niche models, and Normalized Difference Vegetation Index satellite imagery, were useful even when applied to wide-ranging hosts. Finally, ENM results from one region could be applied to other regions, thus transferring information across different landscapes. With this research, we detail the uncertainty of epidemiological risk models across novel environments, thereby advancing tools available for epidemiological decision-making. We propose that ENM could be a valuable tool for enabling understanding of transmission risk, contributing to more focused prevention and control options for infectious diseases.
The Global Positioning System: a high-tech success story
NASA Astrophysics Data System (ADS)
Ashby, Neil
2002-03-01
The Global Positioning System (GPS) consists of 24 or more satellites in twelve-hour orbits, each carrying atomic clocks and transmitting synchronized time and position information. The satellite system is supported by time referencing and processing centers, and data collection stations around the world. The signals make possible accurate navigation anywhere in the vicinity of Earth. There is probably no other large engineering system that relies on a broader range of applications of fundamental modern physics, such as special and general relativity, and atomic physics. Atomic clocks only a few inches on a side have been developed to an almost incredible stage of reliability and stability. Modern circuit fabrication techniques produce GPS receivers on a chip at cost comparable to that of handheld cell phones. Widespread availability and low cost in the civilian sector has led to a host of interesting applications. The economic impact of GPS is in the billions of dollars annually and is increasing. A comparable system, currently with only a few satellites, is the Soviet GLONASS. Europeans are developing another competitor, GALILEO, and have plans to place Hydrogen masers in space. These systems are changing the way we determine where we are and are revolutionizing many fields of scientific research.
Mast cells in endometriosis: guilty or innocent bystanders?
Kirchhoff, Dennis; Kaulfuss, Stefan; Fuhrmann, Ulrike; Maurer, Marcus; Zollner, Thomas M
2012-03-01
Endometriosis (EMS) is a chronic, estrogen-dependent inflammatory disease characterized by growth of endometrial tissue outside the uterine cavity. Symptoms in EMS patients include severe pelvic pain, dysmenorrhea, dyspareunia and infertility. To date, medical therapies are mostly based on hormonal suppressive drugs that induce a hypoestrogenic state. Although being effective regarding the reduction of endometriotic tissue masses and pelvic pain, this treatment is accompanied by severe side effects. Since EMS is associated with chronic inflammation, novel therapeutic strategies also focus on immune modulating drugs. However, little is known about how and to what extent immune cell subsets contribute to the network of locally produced cytokines, chemokines and other mitogenic factors that modulate the growth of ectopic endometrial implants and the inflammation associated with them. Mast cells (MCs) are known to be key players of the immune system, especially during allergic reactions. However, in recent years MCs have been identified to exhibit a far broader range of functions and to be involved in host defense and wound healing responses. Here, recent reports that imply an involvement of MCs in EMS has been reviewed, while the value of novel mouse models for clarifying their contribution to the pathology of this condition has been discussed.
Horizontal Gene Transfers in Mycoplasmas (Mollicutes).
Citti, C; Dordet-Frisoni, E; Nouvel, L X; Kuo, C H; Baranowski, E
2018-04-12
The class Mollicutes (trivial name "mycoplasma") is composed of wall-less bacteria with reduced genomes whose evolution was long thought to be only driven by gene losses. Recent evidences of massive horizontal gene transfer (HGT) within and across species provided a new frame to understand the successful adaptation of these minimal bacteria to a broad range of hosts. Mobile genetic elements are being identified in a growing number of mycoplasma species, but integrative and conjugative elements (ICEs) are emerging as pivotal in HGT. While sharing common traits with other bacterial ICEs, such as their chromosomal integration and the use of a type IV secretion system to mediate horizontal dissemination, mycoplasma ICEs (MICEs) revealed unique features: their chromosomal integration is totally random and driven by a DDE recombinase related to the Mutator-like superfamily. Mycoplasma conjugation is not restricted to ICE transmission, but also involves the transfer of large chromosomal fragments that generates progenies with mosaic genomes, nearly every position of chromosome being mobile. Mycoplasmas have thus developed efficient ways to gain access to a considerable reservoir of genetic resources distributed among a vast number of species expanding the concept of minimal cell to the broader context of flowing information.
Effector proteins of rust fungi.
Petre, Benjamin; Joly, David L; Duplessis, Sébastien
2014-01-01
Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.
IRIS Earthquake Browser with Integration to the GEON IDV for 3-D Visualization of Hypocenters.
NASA Astrophysics Data System (ADS)
Weertman, B. R.
2007-12-01
We present a new generation of web based earthquake query tool - the IRIS Earthquake Browser (IEB). The IEB combines the DMC's large set of earthquake catalogs (provided by USGS/NEIC, ISC and the ANF) with the popular Google Maps web interface. With the IEB you can quickly and easily find earthquakes in any region of the globe. Using Google's detailed satellite images, earthquakes can be easily co-located with natural geographic features such as volcanoes as well as man made features such as commercial mines. A set of controls allow earthquakes to be filtered by time, magnitude, and depth range as well as catalog name, contributor name and magnitude type. Displayed events can be easily exported in NetCDF format into the GEON Integrated Data Viewer (IDV) where hypocenters may be visualized in three dimensions. Looking "under the hood", the IEB is based on AJAX technology and utilizes REST style web services hosted at the IRIS DMC. The IEB is part of a broader effort at the DMC aimed at making our data holdings available via web services. The IEB is useful both educationally and as a research tool.
Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini.
Janz, N; Nyblom, K; Nylin, S
2001-04-01
Two general patterns that have emerged from the intense studies on insect-host plant associations are a predominance of specialists over generalists and a taxonomic conservatism in host-plant use. In most insect-host plant systems, explanations for these patterns must be based on biases in the processes of host colonizations, host shifts, and specialization, rather than cospeciation. In the present paper, we investigate changes in host range in the nymphalid butterfly tribe Nymphalini, using parsimony optimizations of host-plant data on the butterfly phylogeny. In addition, we performed larval establishment tests to search for larval capacity to feed and survive on plants that have been lost from the female egg-laying repertoire. Optimizations suggested an ancestral association with Urticaceae, and most of the tested species showed a capacity to feed on Urtica dioica regardless of actual host-plant use. In addition, there was a bias among the successful establishments on nonhosts toward plants that are used as hosts by other species in the Nymphalini. An increased likelihood of colonizing ancestral or related plants could also provide an alternative explanation for the observed pattern that some plant families appear to have been colonized independently several times in the tribe. We also show that there is no directionality in host range evolution toward increased specialization, that is, specialization is not a dead end. Instead, changes in host range show a very dynamic pattern.
The potential management of oral candidiasis using anti-biofilm therapies.
Chanda, Warren; Joseph, Thomson P; Wang, Wendong; Padhiar, Arshad A; Zhong, Mintao
2017-09-01
Candida albicans is a minor component of the oral microbiota and an opportunistic pathogen that takes advantage of the immunocompromised host and causes oral mucositis and oral candidiasis. This organism is able to undergo phenotypic modification from a yeast to hyphae growth phase, one of the key arsenals for immune cell evasion, tissue invasion and biofilm formation. The latter property coupled with overgrowth and immune compromising factors such as HIV/AIDS, cancer treatments, organ transplantation, diabetes, corticosteroid use, dentures, and broad-spectrum antibiotic use have modified the fungus from a normal component of the microflora to a foe of an oral cavity and resulting in reduced sensitivity towards commonly utilised antifungal agents. Hence, the need for alternative therapy to curb this plight is of importance. Making use of biomolecules produced by Streptococcus mutans, application of lactoferrin which is a nonspecific host defense factor found in saliva with metal chelating and broader antimicrobial properties, use of probiotics which have the capacity to boost the host immunity through eliciting Immunoglobulin A synthesis, and perturbing the pathogen's environment via competition of space and food, and application of photodynamic therapy can help to manage the burden of oral candidiasis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Distributional ecology of Andes hantavirus: a macroecological approach.
Astorga, Francisca; Escobar, Luis E; Poo-Muñoz, Daniela; Escobar-Dodero, Joaquin; Rojas-Hucks, Sylvia; Alvarado-Rybak, Mario; Duclos, Melanie; Romero-Alvarez, Daniel; Molina-Burgos, Blanca E; Peñafiel-Ricaurte, Alexandra; Toro, Frederick; Peña-Gómez, Francisco T; Peterson, A Townsend
2018-06-22
Hantavirus pulmonary syndrome (HPS) is an infection endemic in Chile and Argentina, caused by Andes hantavirus (ANDV). The rodent Oligoryzomys longicaudatus is suggested as the main reservoir, although several other species of Sigmodontinae are known hosts of ANDV. Here, we explore potential ANDV transmission risk to humans in southern South America, based on eco-epidemiological associations among: six rodent host species, seropositive rodents, and human HPS cases. We used ecological niche modeling and macroecological approaches to determine potential geographic distributions and assess environmental similarity among rodents and human HPS cases. Highest numbers of rodent species (five) were in Chile between 35° and 41°S latitude. Background similarity tests showed niche similarity in 14 of the 56 possible comparisons: similarity between human HPS cases and the background of all species and seropositive rodents was supported (except for Abrothrix sanborni). Of interest among the results is the likely role of O. longicaudatus, Loxodontomys micropus, Abrothrix olivaceus, and Abrothrix longipilis in HPS transmission to humans. Our results support a role of rodent species' distributions as a risk factor for human HPS at coarse scales, and suggest that the role of the main reservoir (O. longicaudatus) may be supported by the broader rodent host community in some areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman-Derr, Devin; Tringe, Susannah G.
The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attemptedmore » to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here in this paper, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions« less
Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses.
Li, Ailing; Qiu, Dong
2011-12-01
The possibility of using phytic acid as a precursor to synthesize CaO-P(2)O(5)-SiO(2) glasses by sol-gel method has been explored and the pseudo ternary phase diagram has been established. It was shown that gel-glasses over a broader range of compositions could be prepared compared to other phosphorus precursors or melt-quenching method. Furthermore, phytic acid was found to assist calcium being incorporated into glass networks. In vitro tests in simulated body fluid (SBF) were performed on the above gel-glasses and it was found that they were bioactive over a much broader compositional range especially at high phosphate content, thus enabling one to design bioactive materials with various degradation rates by adjusting the phosphate content.
Bulgarella, Mariana; Heimpel, George E
2015-09-01
Parasite host range can be influenced by physiological, behavioral, and ecological factors. Combining data sets on host-parasite associations with phylogenetic information of the hosts and the parasites involved can generate evolutionary hypotheses about the selective forces shaping host range. Here, we analyzed associations between the nest-parasitic flies in the genus Philornis and their host birds on Trinidad. Four of ten Philornis species were only reared from one species of bird. Of the parasite species with more than one host bird species, P. falsificus was the least specific and P. deceptivus the most specific attacking only Passeriformes. Philornis flies in Trinidad thus include both specialists and generalists, with varying degrees of specificity within the generalists. We used three quantities to more formally compare the host range of Philornis flies: the number of bird species attacked by each species of Philornis, a phylogenetically informed host specificity index (Poulin and Mouillot's S TD), and a branch length-based S TD. We then assessed the phylogenetic signal of these measures of host range for 29 bird species. None of these measures showed significant phylogenetic signal, suggesting that clades of Philornis did not differ significantly in their ability to exploit hosts. We also calculated two quantities of parasite species load for the birds - the parasite species richness, and a variant of the S TD index based on nodes rather than on taxonomic levels - and assessed the signal of these measures on the bird phylogeny. We did not find significant phylogenetic signal for the parasite species load or the node-based S TD index. Finally, we calculated the parasite associations for all bird pairs using the Jaccard index and regressed these similarity values against the number of nodes in the phylogeny separating bird pairs. This analysis showed that Philornis on Trinidad tend to feed on closely related bird species more often than expected by chance.
Host range diversification within the IncP-1 plasmid group
Yano, Hirokazu; Rogers, Linda M.; Knox, Molly G.; Heuer, Holger; Smalla, Kornelia; Brown, Celeste J.
2013-01-01
Broad-host-range plasmids play a critical role in the spread of antibiotic resistance and other traits. In spite of increasing information about the genomic diversity of closely related plasmids, the relationship between sequence divergence and host range remains unclear. IncP-1 plasmids are currently classified into six subgroups based on the genetic distance of backbone genes. We investigated whether plasmids from two subgroups exhibit a different host range, using two IncP-1γ plasmids, an IncP-1β plasmid and their minireplicons. Efficiencies of plasmid establishment and maintenance were compared using five species that belong to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. The IncP-1β plasmid replicated and persisted in all five hosts in the absence of selection. Of the two IncP-1γ plasmids, both were unable to replicate in alphaproteobacterial host Sphingobium japonicum, and one established itself in Agrobacterium tumefaciens but was very unstable. In contrast, both IncP-1γ minireplicons, which produced higher levels of replication initiation protein than the wild-type plasmids, replicated in all strains, suggesting that poor establishment of the native plasmids is in part due to suboptimal replication initiation gene regulation. The findings suggest that host ranges of distinct IncP-1 plasmids only partially overlap, which may limit plasmid recombination and thus result in further genome divergence. PMID:24002747
Truyen, U; Parrish, C R
1992-01-01
Canine parvovirus (CPV) emerged as an apparently new virus during the mid-1970s. The origin of CPV is unknown, but a variation from feline panleukopenia virus (FPV) or another closely related parvovirus is suspected. Here we examine the in vitro and in vivo canine and feline host ranges of CPV and FPV. Examination of three canine and six feline cell lines and mitogen-stimulated canine and feline peripheral blood lymphocytes revealed that CPV replicates in both canine and feline cells, whereas FPV replicates efficiently only in feline cells. The in vivo host ranges were unexpectedly complex and distinct from the in vitro host ranges. Inoculation of dogs with FPV revealed efficient replication in the thymus and, to some degree, in the bone marrow, as shown by virus isolation, viral DNA recovery, and Southern blotting and by strand-specific in situ hybridization. FPV replication could not be demonstrated in mesenteric lymph nodes or in the small intestine, which are important target tissues in CPV infection. Although CPV replicated well in all the feline cells tested in vitro, it did not replicate in any tissue of cats after intramuscular or intravenous inoculation. These results indicate that these viruses have complex and overlapping host ranges and that distinct tissue tropisms exist in the homologous and heterologous hosts. Images PMID:1323703
Elsheikha, Hany M
2009-08-26
The question of how Sarcocystis neurona is able to overcome species barrier and adapt to new hosts is central to the understanding of both the evolutionary origin of S. neurona and the prediction of its field host range. Therefore, it is worth reviewing current knowledge on S. neurona host specificity. The available host range data for S. neurona are discussed in relation to a subject of evolutionary importance-specialist or generalist and its implications to understand the strategies of host adaptation. Current evidences demonstrate that a wide range of hosts exists for S. neurona. This parasite tends to be highly specific for its definitive host but much less so for its intermediate host (I.H.). The unique specificity of S. neurona for its definitive host may be mediated by a probable long coevolutionary relationship of the parasite and carnivores in a restricted ecological niche 'New World'. This might be taken as evidence that carnivores are the 'original' host group for S. neurona. Rather, the capacity of S. neurona to exploit an unusually large number of I.H. species probably indicates that S. neurona maintains non-specificity to its I.H. as an adaptive response to insure the survival of the parasite in areas in which the 'preferred' host is not available. This review concludes with the view that adaptation of S. neurona to a new host is a complex interplay that involves a large number of determinants.
Suárez-Esquivel, Marcela; Baker, Kate S; Ruiz-Villalobos, Nazareth; Hernández-Mora, Gabriela; Barquero-Calvo, Elías; González-Barrientos, Rocío; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Chacón-Díaz, Carlos; Cloeckaert, Axel; Chaves-Olarte, Esteban; Thomson, Nicholas R; Moreno, Edgardo; Guzmán-Verri, Caterina
2017-07-01
Intracellular bacterial pathogens probably arose when their ancestor adapted from a free-living environment to an intracellular one, leading to clonal bacteria with smaller genomes and less sources of genetic plasticity. Still, this plasticity is needed to respond to the challenges posed by the host. Members of the Brucella genus are facultative-extracellular intracellular bacteria responsible for causing brucellosis in a variety of mammals. The various species keep different host preferences, virulence, and zoonotic potential despite having 97-99% similarity at genome level. Here, we describe elements of genetic variation in Brucella ceti isolated from wildlife dolphins inhabiting the Pacific Ocean and the Mediterranean Sea. Comparison with isolates obtained from marine mammals from the Atlantic Ocean and the broader Brucella genus showed distinctive traits according to oceanic distribution and preferred host. Marine mammal isolates display genetic variability, represented by an important number of IS711 elements as well as specific IS711 and SNPs genomic distribution clustering patterns. Extensive pseudogenization was found among isolates from marine mammals as compared with terrestrial ones, causing degradation in pathways related to energy, transport of metabolites, and regulation/transcription. Brucella ceti isolates infecting particularly dolphin hosts, showed further degradation of metabolite transport pathways as well as pathways related to cell wall/membrane/envelope biogenesis and motility. Thus, gene loss through pseudogenization is a source of genetic variation in Brucella, which in turn, relates to adaptation to different hosts. This is relevant to understand the natural history of bacterial diseases, their zoonotic potential, and the impact of human interventions such as domestication. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Host tree resistance against the polyphagous
W. D. Morewood; K. Hoover; P. R. Neiner; J.R. McNeil; J. C. Sellmer
2004-01-01
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiini) is an invasive wood-boring beetle with an unusually broad host range and a proven ability to increase its host range as it colonizes new areas and encounters new tree species. The beetle is native to eastern Asia and has become an invasive pest in North America and Europe,...
Hosts of stolbur phytoplasmas in maize redness affected fields
USDA-ARS?s Scientific Manuscript database
The plant host range of a phytoplasma is strongly dependent on the host range of its insect vector. Maize redness in Serbia is caused by stolbur phytoplasma (subgroup 16SrXII-A) and is transmitted by the cixiid planthoper, Reptalus panzeri (Löw). R. panzeri was the only potential vector found to be ...
Eop1 from a Rubus strain of Erwinia amylovora functions as a host-range limiting factor.
Asselin, J E; Bonasera, J M; Kim, J F; Oh, C-S; Beer, S V
2011-08-01
Strains of Erwinia amylovora, the bacterium causing the disease fire blight of rosaceous plants, are separated into two groups based on host range: Spiraeoideae and Rubus strains. Spiraeoideae strains have wide host ranges, infecting plants in many rosaceous genera, including apple and pear. In the field, Rubus strains infect the genus Rubus exclusively, which includes raspberry and blackberry. Based on comparisons of limited sequence data from a Rubus and a Spiraeoideae strain, the gene eop1 was identified as unusually divergent, and it was selected as a possible host specificity factor. To test this, eop1 genes from a Rubus strain and a Spiraeoideae strain were cloned and mutated. Expression of the Rubus-strain eop1 reduced the virulence of E. amylovora in immature pear fruit and in apple shoots. Sequencing the orfA-eop1 regions of several strains of E. amylovora confirmed that forms of eop1 are conserved among strains with similar host ranges. This work provides evidence that eop1 from a Rubus-specific strain can function as a determinant of host specificity in E. amylovora.
A model for the energy band gap of GaSbxAs1-x and InSbxAs1-x in the whole composition range
NASA Astrophysics Data System (ADS)
Zhao, Chuan-Zhen; Ren, He-Yu; Wei, Tong; Wang, Sha-Sha; Wang, Jun
2018-04-01
The band gap evolutions of GaSbxAs1-x and InSbxAs1-x in the whole composition range are investigated. It is found that the band gap evolutions of GaSbxAs1-x and InSbxAs1-x are determined by two factors. One is the impurity-host interaction in the As-rich and Sb-rich composition ranges. The other is the intraband coupling within the conduction band and separately within the valence band in the moderate composition range. Based on the band gap evolutions of GaSbxAs1-x and InSbxAs1-x, a model is established. In addition, it is found that the impurity-host interaction is determined by not only the mismatches in size and electronegativity between the introduced atoms in the host material and the anions of the host material, but also the difference in electronegativity between the introduced atoms in the host material and the cations of the host material.
Split Personality of a Potyvirus: To Specialize or Not to Specialize?
Kehoe, Monica A.; Coutts, Brenda A.; Buirchell, Bevan J.; Jones, Roger A. C.
2014-01-01
Bean yellow mosaic virus (BYMV), genus Potyvirus, has an extensive natural host range encompassing both dicots and monocots. Its phylogenetic groups were considered to consist of an ancestral generalist group and six specialist groups derived from this generalist group during plant domestication. Recombination was suggested to be playing a role in BYMV's evolution towards host specialization. However, in subsequent phylogenetic analysis of whole genomes, group names based on the original hosts of isolates within each of them were no longer supported. Also, nine groups were found and designated I-IX. Recombination analysis was conducted on the complete coding regions of 33 BYMV genomes and two genomes of the related Clover yellow vein virus (CYVV). This analysis found evidence for 12 firm recombination events within BYMV phylogenetic groups I–VI, but none within groups VII–IX or CYVV. The greatest numbers of recombination events within a sequence (two or three each) occurred in four groups, three which formerly constituted the single ancestral generalist group (I, II and IV), and group VI. The individual sequences in groups III and V had one event each. These findings with whole genomes are consistent with recombination being associated with expanding host ranges, and call into question the proposed role of recombination in the evolution of BYMV, where it was previously suggested to play a role in host specialization. Instead, they (i) indicate that recombination explains the very broad natural host ranges of the three BYMV groups which infect both monocots and dicots (I, II, IV), and (ii) suggest that the three groups with narrow natural host ranges (III, V, VI) which also showed recombination now have the potential to reduce host specificity and broaden their natural host ranges. PMID:25148372
New Hepatitis B Virus of Cranes That Has an Unexpected Broad Host Range
Prassolov, Alexej; Hohenberg, Heinz; Kalinina, Tatyana; Schneider, Carola; Cova, Lucyna; Krone, Oliver; Frölich, Kai; Will, Hans; Sirma, Hüseyin
2003-01-01
All hepadnaviruses known so far have a very limited host range, restricted to their natural hosts and a few closely related species. This is thought to be due mainly to sequence divergence in the large envelope protein and species-specific differences in host components essential for virus propagation. Here we report an infection of cranes with a novel hepadnavirus, designated CHBV, that has an unexpectedly broad host range and is only distantly evolutionarily related to avihepadnaviruses of related hosts. Direct DNA sequencing of amplified CHBV DNA as well a sequencing of cloned viral genomes revealed that CHBV is most closely related to, although distinct from, Ross' goose hepatitis B virus (RGHBV) and slightly less closely related to duck hepatitis B virus (DHBV). Phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from RGHBV and DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This is the first report of a rather broad host range of an avihepadnavirus. Our data imply either usage of similar or identical entry pathways and receptors by DHBV and CHBV, unusual host and virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation. PMID:12525630
New hepatitis B virus of cranes that has an unexpected broad host range.
Prassolov, Alexej; Hohenberg, Heinz; Kalinina, Tatyana; Schneider, Carola; Cova, Lucyna; Krone, Oliver; Frölich, Kai; Will, Hans; Sirma, Hüseyin
2003-02-01
All hepadnaviruses known so far have a very limited host range, restricted to their natural hosts and a few closely related species. This is thought to be due mainly to sequence divergence in the large envelope protein and species-specific differences in host components essential for virus propagation. Here we report an infection of cranes with a novel hepadnavirus, designated CHBV, that has an unexpectedly broad host range and is only distantly evolutionarily related to avihepadnaviruses of related hosts. Direct DNA sequencing of amplified CHBV DNA as well a sequencing of cloned viral genomes revealed that CHBV is most closely related to, although distinct from, Ross' goose hepatitis B virus (RGHBV) and slightly less closely related to duck hepatitis B virus (DHBV). Phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from RGHBV and DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This is the first report of a rather broad host range of an avihepadnavirus. Our data imply either usage of similar or identical entry pathways and receptors by DHBV and CHBV, unusual host and virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation.
González, M T; Oliva, M E
2009-04-01
Nested structure is a pattern originally described in island biogeography to characterize how a set of species is distributed among a set of islands. In parasite communities, nestedness has been intensively studied among individual fish from a locality. However, nested patterns among parasite assemblages from different host populations (localities) have scarcely been investigated. We recorded the occurrence of parasites in 9 fish species widely distributed along the southeastern Pacific coast to determine whether the ecto- and endoparasite assemblages of marine fishes show a nested structure associated with host distributional range. Nestedness was tested using Brualdi-Sanderson index of discrepancy (BR); and 5 null models incorporated in a 'Nestedness' programme (Ulrich, 2006). The ecto- and endoparasite richness do not show similar patterns of latitudinal gradients among fish hosts, with 33-66% of analysed ectoparasite assemblages, and 25-75% of endoparasite assemblages showing nested structures through the host distributional range. For ectoparasites, species richness gradients and nested structure (when present) might be associated with decreased host densities or could reflect negative environmental conditions in the distributional border of the host species, whereas for endoparasites might be caused by geographical breaks of prey or changes in prey availability (intermediate hosts). The sampled extension of the distributional range of the host species, as well as the lack of specificity of some parasites, could influence the detection of nestedness.
Association and Host Selectivity in Multi-Host Pathogens
Malpica, José M.; Sacristán, Soledad; Fraile, Aurora; García-Arenal, Fernando
2006-01-01
The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens. PMID:17183670
Sheth, Seema N; Angert, Amy L
2014-10-01
The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within-population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Morelli, Federico; Benedetti, Yanina; Møller, Anders Pape; Liang, Wei; Carrascal, Luis M
2018-05-01
The evolutionary distinctiveness (ED) score is a measure of phylogenetic isolation that quantifies the evolutionary uniqueness of a species. Here, we compared the ED score of parasitic and non-parasitic cuckoo species world-wide, to understand whether parental care or parasitism represents the largest amount of phylogenetic uniqueness. Next, we focused only on 46 cuckoo species characterized by brood parasitism with a known number of host species, and we explored the associations among ED score, number of host species and breeding range size for these species. We assessed these associations using phylogenetic generalized least squares (PGLS) models, taking into account the phylogenetic signal. Parasitic cuckoo species were not more unique in terms of ED than non-parasitic species. However, we found a significant negative association between the evolutionary uniqueness and host range and a positive correlation between the number of host species and range size of parasitic cuckoos, probably suggesting a passive sampling of hosts by parasitic species as the breeding range broadens. The findings of this study showed that more generalist brood parasites occupied very different positions in a phylogenetic tree, suggesting that they have evolved independently within the Cuculiformes order. Finally, we demonstrated that specialist cuckoo species also represent the most evolutionarily unique species in the order of Cuculiformes. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Sugar maple: its characteristics and potentials
Ralph D. Nyland
1999-01-01
Sugar maple dominates the northern hardwood forest, but grows over a broader geographic area. Conditions of soil and climate largely limit its distribution, and account for its less continuous cover along fringes of the range. Sugar maple regenerates readily following a wide range of overstory treatments. Success depends upon its status as advance regeneration,...
Wolfe, Benjamin E; Pringle, Anne
2012-04-01
The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.
Wolfe, Benjamin E; Pringle, Anne
2012-01-01
The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world. PMID:22134645
Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?
Arnold, A Elizabeth; Lutzoni, F
2007-03-01
Fungal endophytes are found in asymptomatic photosynthetic tissues of all major lineages of land plants. The ubiquity of these cryptic symbionts is clear, but the scale of their diversity, host range, and geographic distributions are unknown. To explore the putative hyperdiversity of tropical leaf endophytes, we compared endophyte communities along a broad latitudinal gradient from the Canadian arctic to the lowland tropical forest of central Panama. Here, we use molecular sequence data from 1403 endophyte strains to show that endophytes increase in incidence, diversity, and host breadth from arctic to tropical sites. Endophyte communities from higher latitudes are characterized by relatively few species from many different classes of Ascomycota, whereas tropical endophyte assemblages are dominated by a small number of classes with a very large number of endophytic species. The most easily cultivated endophytes from tropical plants have wide host ranges, but communities are dominated by a large number of rare species whose host range is unclear. Even when only the most easily cultured species are considered, leaves of tropical trees represent hotspots of fungal species diversity, containing numerous species not yet recovered from other biomes. The challenge remains to recover and identify those elusive and rarely cultured taxa with narrower host ranges, and to elucidate the ecological roles of these little-known symbionts in tropical forests.
Effects of host species and population density on Anoplophora glabripennis flight propensity
Joseph A. Francese; David R. Lance; Baode Wang; Zhichun Xu; Alan J. Sawyer; Victor C. Mastro
2007-01-01
Anoplophora glabripennis Motschulsky (Coleoptera: Cerambycidae), the Asian longhorned beetle (ALB) is a pest of hardwoods in its native range of China. While the host range of this pest has been studied extensively, its mechanisms for host selection are still unknown. Our goal was to study the factors influencing movement and orientation of adult ALB...
Host specialization in ticks and transmission of tick-borne diseases: a review
McCoy, Karen D.; Léger, Elsa; Dietrich, Muriel
2013-01-01
Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock. PMID:24109592
Host specialization in ticks and transmission of tick-borne diseases: a review.
McCoy, Karen D; Léger, Elsa; Dietrich, Muriel
2013-01-01
Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock.
Sarcoptes scabiei: The Mange Mite with Mighty Effects on the Common Wombat (Vombatus ursinus)
Simpson, Kellie; Johnson, Christopher N.; Carver, Scott
2016-01-01
Parasitism has both direct and indirect effects on hosts. Indirect effects (such as behavioural changes) may be common, although are often poorly described. This study examined sarcoptic mange (caused by the mite Sarcoptes scabiei) in the common wombat (Vombatus ursinus), a species that shows severe symptoms of infection and often causes mortality. Wombats showed alterations to above ground behaviours associated with mange. Infected wombats were shown to be active outside of the burrow for longer than healthy individuals. Additionally, they spent more time scratching and drinking, and less time walking as a proportion of time spent above ground when compared with healthy individuals. They did not spend a higher proportion of time feeding, but did have a slower feeding rate and were in poorer body condition. Thermal images showed that wombats with mange lost considerably more heat to the environment due to a diminished insulation layer. Infection status did not have an effect on burrow emergence time, although this was strongly dependent on maximum daily temperature. This study, through the most detailed behavioural observations of wombats to date, contributes to a broader understanding of how mange affects wombat health and abundance, and also to our understanding of the evolution of host responses to this parasite. Despite being globally dispersed and impacting over 100 species with diverse intrinsic host traits, the effects of mange on hosts are relatively poorly understood, and it is possible that similar effects of this disease are conserved in other host species. The indirect effects that we observed may extend to other pathogen types. PMID:26943790
Stieglitz, Jonathan; Trumble, Benjamin C; Thompson, Melissa Emery; Blackwell, Aaron D; Kaplan, Hillard; Gurven, Michael
2015-10-01
Sadness is an emotion universally recognized across cultures, suggesting it plays an important functional role in regulating human behavior. Numerous adaptive explanations of persistent sadness interfering with daily functioning (hereafter "depression") have been proposed, but most do not explain frequent bidirectional associations between depression and greater immune activation. Here we test several predictions of the host defense hypothesis, which posits that depression is part of a broader coordinated evolved response to infection or tissue injury (i.e. "sickness behavior") that promotes energy conservation and reallocation to facilitate immune activation. In a high pathogen population of lean and relatively egalitarian Bolivian forager-horticulturalists, we test whether depression and its symptoms are associated with greater baseline concentration of immune biomarkers reliably associated with depression in Western populations (i.e. tumor necrosis factor alpha [TNF-α], interleukin-1 beta [IL-1β], interleukin-6 [IL-6], and C-reactive protein [CRP]). We also test whether greater pro-inflammatory cytokine responses to ex vivo antigen stimulation are associated with depression and its symptoms, which is expected if depression facilitates immune activation. These predictions are largely supported in a sample of older adult Tsimane (mean±SD age=53.2±11.0, range=34-85, n=649) after adjusting for potential confounders. Emotional, cognitive and somatic symptoms of depression are each associated with greater immune activation, both at baseline and in response to ex vivo stimulation. The association between depression and greater immune activation is therefore not unique to Western populations. While our findings are not predicted by other adaptive hypotheses of depression, they are not incompatible with those hypotheses and future research is necessary to isolate and test competing predictions. Copyright © 2015 Elsevier Inc. All rights reserved.
Bartling, Pascal; Brinkmann, Henner; Bunk, Boyke; Overmann, Jörg; Göker, Markus; Petersen, Jörn
2017-01-01
A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for Alphaproteobacteria. The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. RepABC plasmids represent the most abundant alphaproteobacterial replicon type. The currently known homologous replication modules of rhizobia and Rhodobacteraceae are phylogenetically distinct. In this study, we surveyed type-strain genomes from the One Thousand Microbial Genomes (KMG-I) project and identified a roseobacter-specific RepABC-type operon in the draft genome of the marine rhizobium Martelella mediterranea DSM 17316T. PacBio genome sequencing demonstrated the presence of three circular ECRs with sizes of 593, 259, and 170-kb. The rhodobacteral RepABC module is located together with a rhizobial equivalent on the intermediate sized plasmid pMM259, which likely originated in the fusion of a pre-existing rhizobial ECR with a conjugated roseobacter plasmid. Further evidence for horizontal gene transfer (HGT) is given by the presence of a roseobacter-specific type IV secretion system on the 259-kb plasmid and the rhodobacteracean origin of 62% of the genes on this plasmid. Functionality tests documented that the genuine rhizobial RepABC module from the Martelella 259-kb plasmid is only maintained in A. tumefaciens C58 (Rhizobiaceae) but not in Phaeobacter inhibens DSM 17395 (Rhodobacteraceae). Unexpectedly, the roseobacter-like replication system is functional and stably maintained in both host strains, thus providing evidence for a broader host range than previously proposed. In conclusion, pMM259 is the first example of a natural plasmid that likely mediates genetic exchange between roseobacters and rhizobia. PMID:28983283
Prasad, Yogendra; Arpana; Kumar, Dinesh; Sharma, A K
2011-03-01
This investigation was aimed to find out appropriate strategy against antibiotic resistant bacterial fish pathogen, F. columnare. This pathogen was found persistently associated with fishes causing columnaris disease and ensuing mass mortality in hatchery and culture system of Sub - Himalayan region. Nine lytic F. columnare phages (FCP1 - FCP9) specific to its fifteen isolates were isolated from the water and bottom sediments of various geo-climatic regions of North India. The F. columnare phage FCP1 (made of hexagonal head and non contractile long tail belonging to family Podovariedae, a member of DNA virus) exhibited broader host range to lyse 9 out of 15 isolates of F. columnare. Therapeutic ability of FCP1 phage was assessed in C. batrachus inoculated intramuscularly (im) with virulent bacterial isolate FC8 and post inoculated (PI) with FCP1 phage (@ 10(8) : 10(6):: cfu : pfu) through intramuscular (im), immersion (bath) and oral (phage impregnated feed) treatment. Significant (p < 0.001) reduction (less than 10(-3) cfu ml(-1)) in host bacterium in the sera, gill, liver and kidney of challenged fishes was noted after 6 hr of phage treatment. Quantum of phage played a significant role in bringing down bacterial population as in the sera of dose 1 (@ 4.55 x 10(6) pfu ml(-1)) and dose 2 (@ 9.15 x 10(6) pfu ml(-1)) treated fishes mean log10 cfu value reduced by 3 logs (58.39%) and 5 logs (73.77%) at 96 hr, respectively. Phage treatment led to disappearance of gross symptoms, negative bacteriological test, detectable phage and 100% survival in experimentally infected C. batrachus. Result of this study provides evidence of profound lytic impact of FCP1 phage and represents its interesting therapeutic importance against antibiotic resistant F. columnare.
2016-07-01
ER D C/ EL C R- 16 -5 Aquatic Plant Control Research Program Complete Host Range Testing on Common Reed with Potential Biological...client/default. Aquatic Plant Control Research Program ERDC/EL CR-16-5 July 2016 Complete Host Range Testing on Common Reed with Potential...and started with sequential no-choice oviposition tests. So far, no eggs were found on any of the 22 test plants offered. The authors also found the
A few good reasons why species-area relationships do not work for parasites.
Strona, Giovanni; Fattorini, Simone
2014-01-01
Several studies failed to find strong relationships between the biological and ecological features of a host and the number of parasite species it harbours. In particular, host body size and geographical range are generally only weak predictors of parasite species richness, especially when host phylogeny and sampling effort are taken into account. These results, however, have been recently challenged by a meta-analytic study that suggested a prominent role of host body size and range extent in determining parasite species richness (species-area relationships). Here we argue that, in general, results from meta-analyses should not discourage researchers from investigating the reasons for the lack of clear patterns, thus proposing a few tentative explanations to the fact that species-area relationships are infrequent or at least difficult to be detected in most host-parasite systems. The peculiar structure of host-parasite networks, the enemy release hypothesis, the possible discrepancy between host and parasite ranges, and the evolutionary tendency of parasites towards specialization may explain why the observed patterns often do not fit those predicted by species-area relationships.
Eilat virus host range restriction is present at multiple levels of the virus life cycle.
Nasar, Farooq; Gorchakov, Rodion V; Tesh, Robert B; Weaver, Scott C
2015-01-15
Most alphaviruses are mosquito-borne and exhibit a broad host range, infecting many different vertebrates, including birds, rodents, equids, humans, and nonhuman primates. This ability of most alphaviruses to infect arthropods and vertebrates is essential for their maintenance in nature. Recently, a new alphavirus, Eilat virus (EILV), was described, and in contrast to all other mosquito-borne viruses, it is unable to replicate in vertebrate cell lines. Investigations into the nature of its host range restriction showed the inability of genomic EILV RNA to replicate in vertebrate cells. Here, we investigated whether the EILV host range restriction is present at the entry level and further explored the viral factors responsible for the lack of genomic RNA replication. Utilizing Sindbis virus (SINV) and EILV chimeras, we show that the EILV vertebrate host range restriction is also manifested at the entry level. Furthermore, the EILV RNA replication restriction is independent of the 3' untranslated genome region (UTR). Complementation experiments with SINV suggested that RNA replication is restricted by the inability of the EILV nonstructural proteins to form functional replicative complexes. These data demonstrate that the EILV host range restriction is multigenic, involving at least one gene from both nonstructural protein (nsP) and structural protein (sP) open reading frames (ORFs). As EILV groups phylogenetically within the mosquito-borne virus clade of pathogenic alphaviruses, our findings have important evolutionary implications for arboviruses. Our work explores the nature of host range restriction of the first "mosquito-only alphavirus," EILV. EILV is related to pathogenic mosquito-borne viruses (Eastern equine encephalitis virus [EEEV], Western equine encephalitis virus [WEEV], Venezuelan equine encephalitis virus [VEEV], and Chikungunya virus [CHIKV]) that cause severe disease in humans. Our data demonstrate that EILV is restricted both at entry and genomic RNA replication levels in vertebrate cells. These findings have important implications for arbovirus evolution and will help elucidate the viral factors responsible for the broad host range of pathogenic mosquito-borne alphaviruses, facilitate vaccine development, and inform potential strategies to reduce/prevent alphavirus transmission. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Li, Cheng-Wei; Chen, Bor-Sen
2010-01-01
Cellular responses to sudden environmental stresses or physiological changes provide living organisms with the opportunity for final survival and further development. Therefore, it is an important topic to understand protective mechanisms against environmental stresses from the viewpoint of gene and protein networks. We propose two coupled nonlinear stochastic dynamic models to reconstruct stress-activated gene and protein regulatory networks via microarray data in response to environmental stresses. According to the reconstructed gene/protein networks, some possible mutual interactions, feedforward and feedback loops are found for accelerating response and filtering noises in these signaling pathways. A bow-tie core network is also identified to coordinate mutual interactions and feedforward loops, feedback inhibitions, feedback activations, and cross talks to cope efficiently with a broader range of environmental stresses with limited proteins and pathways. PMID:20454442
Cappadonna, Justin; Euaparadorn, Melody; Peck, Robert W.; Banko, Paul C.
2009-01-01
The parasitoid wasp Woldstedtius flavolineatus (Gravenhorst) (Ichneumonidae) attacks the larvae of syrphid flies (Syrphidae). Woldstedtius flavolineatus was collected in Hawaii for the first time during an extensive malaise trap-based survey of parasitoids in Hawaiian forests. Since its initial collection on Hawaii Island in January 2006, it has been collected at five additional sites on Hawaii Island and at one site each on Maui and Oahu. Malaise trap results from Hakalau Forest National Wildlife Refuge showed a strong seasonal pattern of abundance, with peak population levels reached during July–September. Rearing of its host, Allograpta obliqua (Say), collected from koa (Acacia koa Gray) at Hakalau over two days, revealed a parasitism rate of approximately 95%. Broader impacts of this alien wasp are unknown, but a reduction in host syrphid abundance could result in an increase in numbers of psyllids and aphids (Homoptera) that are preyed upon by syrphid larvae. Furthermore, a reduction in adult syrphids could impact the reproductive success of some of the plants they pollinate.
The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA.
Booth, David S; Cheng, Yifan; Frankel, Alan D
2014-12-08
The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-Ran(GTP) nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression.
Ecological generalism facilitates the evolution of sociality in snapping shrimps.
Brooks, Katherine C; Maia, Rafael; Duffy, J Emmett; Hultgren, Kristin M; Rubenstein, Dustin R
2017-12-01
Evidence from insects and vertebrates suggests that cooperation may have enabled species to expand their niches, becoming ecological generalists and dominating the ecosystems in which they occur. Consistent with this idea, eusocial species of sponge-dwelling Synalpheus shrimps from Belize are ecological generalists with a broader host breadth and higher abundance than non-eusocial species. We evaluate whether sociality promotes ecological generalism (social conquest hypothesis) or whether ecological generalism facilitates the transition to sociality (social transition hypothesis) in 38 Synalpheus shrimp species. We find that sociality evolves primarily from host generalists, and almost exclusively so for transitions to eusociality. Additionally, sponge volume is more important for explaining social transitions towards communal breeding than to eusociality, suggesting that different ecological factors may influence the independent evolutionary origins of sociality in Synalpheus shrimps. Ultimately, our results are consistent with the social transition hypothesis and the idea that ecological generalism facilitates the transition to sociality. © 2017 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Baums, I. B.; Johnson, M. E.; Devlin-Durante, M. K.; Miller, M. W.
2010-12-01
In preparation for a large-scale coral restoration project, we surveyed host population genetic structure and symbiont diversity of two reef-building corals in four reef zones along the Florida reef tract (FRT). There was no evidence for coral population subdivision along the FRT in Acropora cervicornis or Montastraea faveolata based on microsatellite markers. However, in A. cervicornis, significant genetic differentiation was apparent when extending the analysis to broader scales (Caribbean). Clade diversity of the zooxanthellae differed along the FRT. A. cervicornis harbored mostly clade A with clade D zooxanthellae being prominent in colonies growing inshore and in the mid-channel zones that experience greater temperature fluctuations and receive significant nutrient and sediment input. M. faveolata harbored a more diverse array of symbionts, and variation in symbiont diversity among four habitat zones was more subtle but still significant. Implications of these results are discussed for ongoing restoration and conservation work.
Experimental Adaptation of Burkholderia cenocepacia to Onion Medium Reduces Host Range ▿ † ‡
Ellis, Crystal N.; Cooper, Vaughn S.
2010-01-01
It is unclear whether adaptation to a new host typically broadens or compromises host range, yet the answer bears on the fate of emergent pathogens and symbionts. We investigated this dynamic using a soil isolate of Burkholderia cenocepacia, a species that normally inhabits the rhizosphere, is related to the onion pathogen B. cepacia, and can infect the lungs of cystic fibrosis patients. We hypothesized that adaptation of B. cenocepacia to a novel host would compromise fitness and virulence in alternative hosts. We modeled adaptation to a specific host by experimentally evolving 12 populations of B. cenocepacia in liquid medium composed of macerated onion tissue for 1,000 generations. The mean fitness of all populations increased by 78% relative to the ancestor, but significant variation among lines was observed. Populations also varied in several phenotypes related to host association, including motility, biofilm formation, and quorum-sensing function. Together, these results suggest that each population adapted by fixing different sets of adaptive mutations. However, this adaptation was consistently accompanied by a loss of pathogenicity to the nematode Caenorhabditis elegans; by 500 generations most populations became unable to kill nematodes. In conclusion, we observed a narrowing of host range as a consequence of prolonged adaptation to an environment simulating a specific host, and we suggest that emergent pathogens may face similar consequences if they become host-restricted. PMID:20154121
Darwell, C T; Fox, K A; Althoff, D M
2014-12-01
There is ample evidence that host shifts in plant-feeding insects have been instrumental in generating the enormous diversity of insects. Changes in host use can cause host-associated differentiation (HAD) among populations that may lead to reproductive isolation and eventual speciation. The importance of geography in facilitating this process remains controversial. We examined the geographic context of HAD in the wide-ranging generalist yucca moth Prodoxus decipiens. Previous work demonstrated HAD among sympatric moth populations feeding on two different Yucca species occurring on the barrier islands of North Carolina, USA. We assessed the genetic structure of P. decipiens across its entire geographic and host range to determine whether HAD is widespread in this generalist herbivore. Population genetic analyses of microsatellite and mtDNA sequence data across the entire range showed genetic structuring with respect to host use and geography. In particular, genetic differentiation was relatively strong between mainland populations and those on the barrier islands of North Carolina. Finer scale analyses, however, among sympatric populations using different host plant species only showed significant clustering based on host use for populations on the barrier islands. Mainland populations did not form population clusters based on host plant use. Reduced genetic diversity in the barrier island populations, especially on the derived host, suggests that founder effects may have been instrumental in facilitating HAD. In general, results suggest that the interplay of local adaptation, geography and demography can determine the tempo of HAD. We argue that future studies should include comprehensive surveys across a wide range of environmental and geographic conditions to elucidate the contribution of various processes to HAD. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Local adaptation and the evolution of species' ranges under climate change.
Atkins, K E; Travis, J M J
2010-10-07
The potential impact of climate change on biodiversity is well documented. A well developed range of statistical methods currently exists that projects the possible future habitat of a species directly from the current climate and a species distribution. However, studies incorporating ecological and evolutionary processes remain limited. Here, we focus on the potential role that local adaptation to climate may play in driving the range dynamics of sessile organisms. Incorporating environmental adaptation into a stochastic simulation yields several new insights. Counter-intuitively, our simulation results suggest that species with broader ranges are not necessarily more robust to climate change. Instead, species with broader ranges can be more susceptible to extinction as locally adapted genotypes are often blocked from range shifting by the presence of cooler adapted genotypes that persist even when their optimum climate has left them behind. Interestingly, our results also suggest that it will not always be the cold-adapted phenotypes that drive polewards range expansion. Instead, range shifts may be driven by phenotypes conferring adaptation to conditions prevalent towards the centre of a species' equilibrium distribution. This may have important consequences for the conservation method termed predictive provenancing. These initial results highlight the potential importance of local adaptation in determining how species will respond to climate change and we argue that this is an area requiring urgent theoretical and empirical attention. 2010 Elsevier Ltd. All rights reserved.
Blok, Vivian C; Jones, John T; Phillips, Mark S; Trudgill, David L
2008-03-01
This essay considers biotrophic cyst and root-knot nematodes in relation to their biology, host-parasite interactions and molecular genetics. These nematodes have to face the biological consequences of the physical constraints imposed by the soil environment in which they live while their hosts inhabit both above and below ground environments. The two groups of nematodes appear to have adopted radically different solutions to these problems with the result that one group is a host specialist and reproduces sexually while the other has an enormous host range and reproduces by mitotic parthenogenesis. We consider what is known about the modes of parasitism used by these nematodes and how it relates to their host range, including the surprising finding that parasitism genes in both nematode groups have been recruited from bacteria. The nuclear and mitochondrial genomes of these two nematode groups are very different and we consider how these findings relate to the biology of the organisms.
M. E. Ostry; K. Woeste
2004-01-01
Butternut canker is killing trees throughout the range of butternut in North America and is threatening the viability of many populations in several areas. Although butternut is the primary host, other Juglans species and some hardwood species also are potential hosts. Evidence is building that genetic resistance within butternut populations may be...
Gao, Liu; Zhang, Mian; Zhao, Wanyu; Hao, Lu; Chen, Hongcai; Zhang, Rong; Batzer, Jean C.; Gleason, Mark L.; Sun, Guangyu
2014-01-01
Species in the genus Zygophiala are associated with sooty blotch and flyspeck disease on a wide range of hosts. In this study, 63 Zygophiala isolates collected from flyspeck colonies on a range of plants from several regions of China were used for phylogeny, host range and geographic distribution analysis. Phylogenetic trees were constructed on four genes - internal transcribed spacer (ITS), partial translation elongation factor 1-alpha (TEF), β-tubulin (TUB2), and actin (ACT) – both individually and in combination. Isolates were grouped into 11 clades among which five new species, Z. emperorae, Z. trispora, Z. musae, Z. inaequalis and Z. longispora, were described. Species of Zygophiala differed in observed host range and geographic distribution. Z. wisconsinensis and Z. emperorae were the most prevalent throughout the sampled regions of China, whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were collected only in southern China. The hosts of Z. wisconsinensis and Z. emperorae were mainly in the family Rosaceae whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were found mainly on banana (Musa spp.). Cross inoculation tests provided evidence of host specificity among SBFS species. PMID:25329930
Sala, Marco; Casacci, Luca Pietro; Balletto, Emilio; Bonelli, Simona; Barbero, Francesca
2014-01-01
About 10,000 arthropods live as ants' social parasites and have evolved a number of mechanisms allowing them to penetrate and survive inside the ant nests. Many of them can intercept and manipulate their host communication systems. This is particularly important for butterflies of the genus Maculinea, which spend the majority of their lifecycle inside Myrmica ant nests. Once in the colony, caterpillars of Maculinea “predatory species” directly feed on the ant larvae, while those of “cuckoo species” are fed primarily by attendance workers, by trophallaxis. It has been shown that Maculinea cuckoo larvae are able to reach a higher social status within the colony's hierarchy by mimicking the acoustic signals of their host queen ants. In this research we tested if, when and how myrmecophilous butterflies may change sound emissions depending on their integration level and on stages of their life cycle. We studied how a Maculinea predatory species (M. teleius) can acoustically interact with their host ants and highlighted differences with respect to a cuckoo species (M. alcon). We recorded sounds emitted by Maculinea larvae as well as by their Myrmica hosts, and performed playback experiments to assess the parasites' capacity to interfere with the host acoustic communication system. We found that, although varying between and within butterfly species, the larval acoustic emissions are more similar to queens' than to workers' stridulations. Nevertheless playback experiments showed that ant workers responded most strongly to the sounds emitted by the integrated (i.e. post-adoption) larvae of the cuckoo species, as well as by those of predatory species recorded before any contact with the host ants (i.e. in pre-adoption), thereby revealing the role of acoustic signals both in parasite integration and in adoption rituals. We discuss our findings in the broader context of parasite adaptations, comparing effects of acoustical and chemical mimicry. PMID:24718496
Doyle, Vinson P.; Oudemans, Peter V.; Rehner, Stephen A.; Litt, Amy
2013-01-01
Understanding the factors that drive the evolution of pathogenic fungi is central to revealing the mechanisms of virulence and host preference, as well as developing effective disease control measures. Prerequisite to these pursuits is the accurate delimitation of species boundaries. Colletotrichum gloeosporioides s.l. is a species complex of plant pathogens and endophytic fungi for which reliable species recognition has only recently become possible through a multi-locus phylogenetic approach. By adopting an intensive regional sampling strategy encompassing multiple hosts within and beyond agricultural zones associated with cranberry (Vaccinium macrocarpon Aiton), we have integrated North America strains of Colletotrichum gloeosporioides s.l. from these habitats into a broader phylogenetic framework. We delimit species on the basis of genealogical concordance phylogenetic species recognition (GCPSR) and quantitatively assess the monophyly of delimited species at each of four nuclear loci and in the combined data set with the genealogical sorting index (gsi). Our analysis resolved two principal lineages within the species complex. Strains isolated from cranberry and sympatric host plants are distributed across both of these lineages and belong to seven distinct species or terminal clades. Strains isolated from V. macrocarpon in commercial cranberry beds belong to four species, three of which are described here as new. Another species, C. rhexiae Ellis & Everh., is epitypified. Intensive regional sampling has revealed a combination of factors, including the host species from which a strain has been isolated, the host organ of origin, and the habitat of the host species, as useful indicators of species identity in the sampled regions. We have identified three broadly distributed temperate species, C. fructivorum, C. rhexiae, and C. nupharicola, that could be useful for understanding the microevolutionary forces that may lead to species divergence in this important complex of endophytes and plant pathogens. PMID:23671594
Sala, Marco; Casacci, Luca Pietro; Balletto, Emilio; Bonelli, Simona; Barbero, Francesca
2014-01-01
About 10,000 arthropods live as ants' social parasites and have evolved a number of mechanisms allowing them to penetrate and survive inside the ant nests. Many of them can intercept and manipulate their host communication systems. This is particularly important for butterflies of the genus Maculinea, which spend the majority of their lifecycle inside Myrmica ant nests. Once in the colony, caterpillars of Maculinea "predatory species" directly feed on the ant larvae, while those of "cuckoo species" are fed primarily by attendance workers, by trophallaxis. It has been shown that Maculinea cuckoo larvae are able to reach a higher social status within the colony's hierarchy by mimicking the acoustic signals of their host queen ants. In this research we tested if, when and how myrmecophilous butterflies may change sound emissions depending on their integration level and on stages of their life cycle. We studied how a Maculinea predatory species (M. teleius) can acoustically interact with their host ants and highlighted differences with respect to a cuckoo species (M. alcon). We recorded sounds emitted by Maculinea larvae as well as by their Myrmica hosts, and performed playback experiments to assess the parasites' capacity to interfere with the host acoustic communication system. We found that, although varying between and within butterfly species, the larval acoustic emissions are more similar to queens' than to workers' stridulations. Nevertheless playback experiments showed that ant workers responded most strongly to the sounds emitted by the integrated (i.e. post-adoption) larvae of the cuckoo species, as well as by those of predatory species recorded before any contact with the host ants (i.e. in pre-adoption), thereby revealing the role of acoustic signals both in parasite integration and in adoption rituals. We discuss our findings in the broader context of parasite adaptations, comparing effects of acoustical and chemical mimicry.
Revisiting Trypanosoma rangeli Transmission Involving Susceptible and Non-Susceptible Hosts
Ferreira, Luciana de Lima; Pereira, Marcos Horácio; Guarneri, Alessandra Aparecida
2015-01-01
Trypanosoma rangeli infects several triatomine and mammal species in South America. Its transmission is known to occur when a healthy insect feeds on an infected mammal or when an infected insect bites a healthy mammal. In the present study we evaluated the classic way of T. rangeli transmission started by the bite of a single infected triatomine, as well as alternative ways of circulation of this parasite among invertebrate hosts. The number of metacyclic trypomastigotes eliminated from salivary glands during a blood meal was quantified for unfed and recently fed nymphs. The quantification showed that ~50,000 parasites can be liberated during a single blood meal. The transmission of T. rangeli from mice to R. prolixus was evaluated using infections started through the bite of a single infected nymph. The mice that served as the blood source for single infected nymphs showed a high percentage of infection and efficiently transmitted the infection to new insects. Parasites were recovered by xenodiagnosis in insects fed on mice with infections that lasted approximately four months. Hemolymphagy and co-feeding were tested to evaluate insect-insect T. rangeli transmission. T. rangeli was not transmitted during hemolymphagy. However, insects that had co-fed on mice with infected conspecifics exhibited infection rates of approximately 80%. Surprisingly, 16% of the recipient nymphs became infected when pigeons were used as hosts. Our results show that T. rangeli is efficiently transmitted between the evaluated hosts. Not only are the insect-mouse-insect transmission rates high, but parasites can also be transmitted between insects while co-feeding on a living host. We show for the first time that birds can be part of the T. rangeli transmission cycle as we proved that insect-insect transmission is feasible during a co-feeding on these hosts. PMID:26469403
Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael
2012-01-01
Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector. PMID:23284774
Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael
2012-01-01
Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.
ERIC Educational Resources Information Center
Grover, Lawrence M.; Kim, Eunyoung; Cooke, Jennifer D.; Holmes, William R.
2009-01-01
Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100…
Brewer, Michael J; Noma, Takuji
2010-06-01
We integrated a natural enemy survey of the broader landscape into a more traditional survey for Aphis glycines Matsumura (Hemiptera: Aphididae), parasitoids and predatory flies on soybean using A. glycines-infested soybean, Glycine max (L.) Merr., placed in cropped and noncropped plant systems to complement visual field observations. Across three sites and 5 yr, 18 parasitoids and predatory flies in total (Hymenoptera: Aphelinidae [two species] and Bracondae [seven species], Diptera: Cecidomyiidae [one species], Syrphidae [seven species], Chamaemyiidae [one species]) were detected, with significant variability in recoveries detected across plant system treatments and strong contrasts in habitat affinity detected among species. Lysiphlebus testaceipes Cresson was the most frequently detected parasitoid, and no differences in abundance were detected in cropped (soybean, wheat [Triticum aestivum L.], corn [Zea mays L.], and alfalfa [Medicago sativa L.]) and noncropped (poplar [Populus euramericana (Dode) Guinier] and early successional vegetation) areas. In contrast, Binodoxys kelloggensis Pike, Starý & Brewer had strong habitat affinity for poplar and early successional vegetation. The low recoveries seasonally and across habitats of Aphelinus asychis Walker, Aphelinus sp., and Aphidius colemoni Viereck make their suitability to A. glycines on soybean highly suspect. The widespread occurrence of many of the flies reflects their broad habitat affinity and host aphid ranges. The consistent low field observations of parasitism and predation suggest that resident parasitoids and predatory flies are unlikely to contribute substantially to A. glycines suppression, at least during the conventional time period early in the pest invasion when classical biological control activities are considered. For selected species that were relatively well represented across plant systems (i.e., L. testaceipes and Aphidoletes aphidimyza Rondani), conservation biological control efforts may be fruitful. The additional information gained from expanding the natural enemy survey into the broader landscape was essential in making these distinctions relevant to conservation biological control, while adding agroecosystem-specific information valuable to classical biological control.
Medeiros, Matthew C. I.; Hamer, Gabriel L.; Ricklefs, Robert E.
2013-01-01
Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite–host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range. PMID:23595266
Green Chemistry Challenge: 2017 Small Business Award
Green Chemistry Challenge 2017 award winner, UniEnergy,improved a vanadium redox flow battery to double the energy density, have a broader operating temperature range, a smaller footprint, reduced chemical usage, and very little capacity degradation.
Toxicogenomics and the Regulatory Framework
Toxicogenomics presents regulatory agencies with the opportunity to revolutionize their analyses by enabling the collection of information on a broader range of responses than currently considered in traditional regulatory decision making. Analyses of genomic responses are expec...
Host range, immunity and antigenic properties of lambdoid coliphage HK97.
Dhillon, E K; Dhillon, T S; Lai, A N; Linn, S
1980-09-01
Temperate coliphage HK97 was isolated from pig dung. Although HK97 is antigenically unrelated to coliphage lambda, it has similar morphology, host range and immunity properties, and can recombine with it.
Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya
2014-02-01
Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Changing Notions of Lifelong Education and Lifelong Learning
NASA Astrophysics Data System (ADS)
Tuijnman, Albert; Boström, Ann-Kristin
2002-03-01
Drawing on material from IRE as well as other sources, this article describes how the notion of lifelong education came into prominence in the educational world in the late 1960s, how it related to the concepts of formal, non-formal and informal education, and how it contrasted with the idea of recurrent eduction, as promoted by the OECD. The author goes on to discuss the emergence of the broader and more holistic concept of lifelong learning and the various ways in which it is understood. The article shows how IRE and its host institute have played an important part in the debate on these issues.
A. L. Ross-Davis; J. E. Stewart; J. W. Hanna; M.-S. Kim; B. J. Knaus; R. Cronn; H. Rai; B. A. Richardson; G. I. McDonald; N. B. Klopfenstein
2013-01-01
Armillaria species display diverse ecological roles ranging from beneficial saprobe to virulent pathogen. Armillaria solidipes (formerly A. ostoyae), a causal agent of Armillaria root disease, is a virulent primary pathogen with a broad host range of woody plants across the Northern Hemisphere. This white-rot pathogen grows between trees as rhizomorphs and attacks...
Runge, Fabian; Ndambi, Beninweck; Thines, Marco
2012-01-01
Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation.
Runge, Fabian; Ndambi, Beninweck; Thines, Marco
2012-01-01
Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation. PMID:23166582
Rosas-Valdez, Rogelio; de León, Gerardo Pérez-Ponce
2011-04-01
Host specificity plays an essential role in shaping the evolutionary history of host-parasite associations. In this study, an index of host specificity recently proposed was used to test, quantitatively, the hypothesis that some groups of parasites are characteristics of some host fish families along their distribution range. A database with all published records on the helminth parasites of freshwater siluriforms of Mexico was used. The host specificity index was used considering its advantage to measure the taxonomic heterogeneity of the host assemblages and its appropriateness for unequal sampling data. The helminth parasite fauna of freshwater siluriforms in Mexico seems to be specific for different host taxonomic categories. However, a relatively high number of species (47% of the total helminth fauna) is specific to their respective host family. This result provides further corroboration for the biogeographic hypothesis of the core helminth fauna proposed previously. The statistical values for host specificity obtained herein seem to be independent of host range. However, the accurate taxonomic identification of the parasites is fundamental for the evaluation of host specificity and the accurate evolutionary interpretation of this phenomenon.
LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Tier 1 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slezak, T; Borucki, M; Lenhoff, R
2009-09-29
The Lawrence Livermore National Lab Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to obtain more sequence information across a large range of pathogens, near neighbors, and across a broad geographical and host range. Our role in this project is to research available sequence data for the organisms of interest and identify critical microbial sequence and knowledge gaps that need to be filled to meet TMTI objectives. This effort includes:more » (1) assessing current genomic sequence for each agent including phylogenetic and geographical diversity, host range, date of isolation range, virulence, sequence availability of key near neighbors, and other characteristics; (2) identifying Subject Matter Experts (SME's) and potential holders of isolate collections, contacting appropriate SME's with known expertise and isolate collections to obtain information on isolate availability and specific recommendations; (3) identifying sequence as well as knowledge gaps (eg virulence, host range, and antibiotic resistance determinants); (4) providing specific recommendations as to the most valuable strains to be placed on the DTRA sequencing queue. We acknowledge that criteria for prioritization of isolates for sequencing falls into two categories aligning with priority queues 1 and 2 as described in the summary. (Priority queue 0 relates to DTRA operational isolates whose availability is not predictable in advance.) 1. Selection of isolates that appear to have likelihood to provide information on virulence and antibiotic resistance. This will include sequence of known virulent strains. Particularly valuable would be virulent strains that have genetically similar yet avirulent, or non human transmissible, counterparts that can be used for comparison to help identify key virulence or host range genes. This approach will provide information that can be used by structural biologists to help develop therapeutics and vaccines. We have pointed out such high priority strains of which we are aware, and note that if any such isolates should be discovered, they will rise to the top priority. We anticipate difficulty locating samples with unusual resistance phenotypes, in particular. Sequencing strategies for isolates in queue 1 should aim for as complete finishing status as possible, since high-quality initial annotation (gene-calling) will be necessary for the follow-on protein structure analyses contributing to countermeasure development. Queue 2 for sequencing determination will be more dynamic than queue 1, and samples will be added to it as they become available to the TMTI program. 2. Selection of isolates that will provide broader information about diversity and phylogenetics and aid in specific detection as well as forensics. This approach focuses on sequencing of isolates that will provide better resolution of variants that are (or were) circulating in nature. The finishing strategy for queue 2 does not require complete closing with annotation. This queue is more static, as there is considerable phylogenetic data, and in this report we have sought to reveal gaps and make suggestions to fill them given existing sequence data and strain information. In this report we identify current sequencing gaps in both priority queue categories. Note that this is most applicable to the bacterial pathogens, as most viruses are by default in queue 1. The Phase I focus of this project is on viral hemorrhagic fever viruses and Category A bacterial agents as defined to us by TMTI. We have carried out individual analyses on each species of interest, and these are included as chapters in this report. Viruses and bacteria are biologically very distinct from each other and require different methods of analysis and criteria for sequencing prioritization. Therefore, we will describe our methods, analyses and conclusions separately for each category.« less
Wild and synanthropic reservoirs of Leishmania species in the Americas
Roque, André Luiz R.; Jansen, Ana Maria
2014-01-01
The definition of a reservoir has changed significantly in the last century, making it necessary to study zoonosis from a broader perspective. One important example is that of Leishmania, zoonotic multi-host parasites maintained by several mammal species in nature. The magnitude of the health problem represented by leishmaniasis combined with the complexity of its epidemiology make it necessary to clarify all of the links in transmission net, including non-human mammalian hosts, to develop effective control strategies. Although some studies have described dozens of species infected with these parasites, only a minority have related their findings to the ecological scenario to indicate a possible role of that host in parasite maintenance and transmission. Currently, it is accepted that a reservoir may be one or a complex of species responsible for maintaining the parasite in nature. A reservoir system should be considered unique on a given spatiotemporal scale. In fact, the transmission of Leishmania species in the wild still represents an complex enzootic “puzzle”, as several links have not been identified. This review presents the mammalian species known to be infected with Leishmania spp. in the Americas, highlighting those that are able to maintain and act as a source of the parasite in nature (and are thus considered potential reservoirs). These host/reservoirs are presented separately in each of seven mammal orders – Marsupialia, Cingulata, Pilosa, Rodentia, Primata, Carnivora, and Chiroptera – responsible for maintaining Leishmania species in the wild. PMID:25426421
Merckx, Thomas; Serruys, Mélanie; Van Dyck, Hans
2015-04-01
Recent anthropogenic eutrophication has meant that host plants of nettle-feeding insects became quasi-omnipresent in fertile regions of Western Europe. However, host plant resource quality - in terms of microclimate and nutritional value - may vary considerably between the 'original' forest habitat and 'recent' agricultural habitat. Here, we compared development in both environmental settings using a split-brood design, so as to explore to what extent larval survival and adult morphology in the nettle-feeding butterfly Aglais urticae are influenced by the anthropogenic environment. Nettles along field margins had higher C/N ratios and provided warmer microclimates to larvae. Larvae developed 20% faster and tended to improve their survival rates, on the agricultural land compared to woodland. Our split-brood approach indicated plastic responses within families, but also family effects in the phenotypic responses. Adult males and females had darker wing pigmentation in the drier and warmer agricultural environment, which contrasts with the thermal melanism hypothesis. Developmental plasticity in response to this microclimatically different and more variable habitat was associated with a broader phenotypic parameter space for the species. Both habitat expansion and developmental plasticity are likely contributors to the ecological and evolutionary success of these nettle-feeding insects in anthropogenic environments under high nitrogen load.
Atmospheric transformation of plant volatiles disrupts host plant finding
NASA Astrophysics Data System (ADS)
Li, Tao; Blande, James D.; Holopainen, Jarmo K.
2016-09-01
Plant-emitted volatile organic compounds (VOCs) play important roles in plant-insect interactions. Atmospheric pollutants such as ozone (O3) can react with VOCs and affect the dynamics and fidelity of these interactions. However, the effects of atmospheric degradation of plant VOCs on plant-insect interactions remains understudied. We used a system comprising Brassica oleracea subsp. capitata (cabbage) and the specialist herbivore Plutella xylostella to test whether O3-triggered VOC degradation disturbs larval host orientation, and to investigate the underlying mechanisms. Larvae oriented towards both constitutive and larva-induced cabbage VOC blends, the latter being the more attractive. Such behaviour was, however, dramatically reduced in O3-polluted environments. Mechanistically, O3 rapidly degraded VOCs with the magnitude of degradation increasing with O3 levels. Furthermore, we used Teflon filters to collect VOCs and their reaction products, which were used as odour sources in behavioural tests. Larvae avoided filters exposed to O3-transformed VOCs and spent less time searching on them compared to filters exposed to original VOCs, which suggests that some degradation products may have repellent properties. Our study clearly demonstrates that oxidizing pollutants in the atmosphere can interfere with insect host location, and highlights the need to address their broader impacts when evaluating the ecological significance of VOC-mediated interactions.
Atmospheric transformation of plant volatiles disrupts host plant finding
Li, Tao; Blande, James D.; Holopainen, Jarmo K.
2016-01-01
Plant-emitted volatile organic compounds (VOCs) play important roles in plant-insect interactions. Atmospheric pollutants such as ozone (O3) can react with VOCs and affect the dynamics and fidelity of these interactions. However, the effects of atmospheric degradation of plant VOCs on plant-insect interactions remains understudied. We used a system comprising Brassica oleracea subsp. capitata (cabbage) and the specialist herbivore Plutella xylostella to test whether O3-triggered VOC degradation disturbs larval host orientation, and to investigate the underlying mechanisms. Larvae oriented towards both constitutive and larva-induced cabbage VOC blends, the latter being the more attractive. Such behaviour was, however, dramatically reduced in O3-polluted environments. Mechanistically, O3 rapidly degraded VOCs with the magnitude of degradation increasing with O3 levels. Furthermore, we used Teflon filters to collect VOCs and their reaction products, which were used as odour sources in behavioural tests. Larvae avoided filters exposed to O3-transformed VOCs and spent less time searching on them compared to filters exposed to original VOCs, which suggests that some degradation products may have repellent properties. Our study clearly demonstrates that oxidizing pollutants in the atmosphere can interfere with insect host location, and highlights the need to address their broader impacts when evaluating the ecological significance of VOC-mediated interactions. PMID:27651113
Endangered light-footed clapper rail affects parasite community structure in coastal wetlands
Whitney, Kathleen L.; Hechinger, Ryan F.; Kuris, Armand M.; Lafferty, Kevin D.
2007-01-01
An extinction necessarily affects community members that have obligate relationships with the extinct species. Indirect or cascading effects can lead to even broader changes at the community or ecosystem level. However, it is not clear whether generalist parasites should be affected by the extinction of one of their hosts. We tested the prediction that loss of a host species could affect the structure of a generalist parasite community by investigating the role of endangered Light-footed Clapper Rails (Rallus longirostris levipes) in structuring trematode communities in four tidal wetlands in southern California, USA (Carpinteria Salt Marsh, Mugu Lagoon) and Mexico (Estero de Punta Banda, Bahia Falsa–San Quintín). We used larval trematode parasites in first intermediate host snails (Cerithidea californica) as windows into the adult trematodes that parasitize Clapper Rails. Within and among wetlands, we found positive associations between Clapper Rails and four trematode species, particularly in the vegetated marsh habitat where Clapper Rails typically occur. This suggests that further loss of Clapper Rails is likely to affect the abundance of several competitively dominant trematode species in wetlands with California horn snails, with possible indirect effects on the trematode community and changes in the impacts of these parasites on fishes and invertebrates.
Morrot, Alexandre; Villar, Silvina R; González, Florencia B; Pérez, Ana R
2016-01-01
Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease.
Vongkamjan, Kitiya; Switt, Andrea Moreno; den Bakker, Henk C.; Fortes, Esther D.
2012-01-01
Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools. PMID:23042180
Coates, Andrew; Barnett, Louise K; Hoskin, Conrad; Phillips, Ben L
2017-02-01
Species interactions can determine range limits, and parasitism is the most intimate of such interactions. Intriguingly, the very conditions on range edges likely change host-parasite dynamics in nontrivial ways. Range edges are often associated with clines in host density and with environmental transitions, both of which may affect parasite transmission. On advancing range edges, founder events and fitness/dispersal costs of parasitism may also cause parasites to be lost on range edges. Here we examine the prevalence of three species of parasite across the range edge of an invasive gecko, Hemidactylus frenatus, in northeastern Australia. The gecko's range edge spans the urban-woodland interface at the edge of urban areas. Across this edge, gecko abundance shows a steep decline, being lower in the woodland. Two parasite species (a mite and a pentastome) are coevolved with H. frenatus, and these species become less prevalent as the geckos become less abundant. A third species of parasite (another pentastome) is native to Australia and has no coevolutionary history with H. frenatus. This species became more prevalent as the geckos become less abundant. These dramatic shifts in parasitism (occurring over 3.5 km) confirm that host-parasite dynamics can vary substantially across the range edge of this gecko host.
Ground penetrating radar (GPR) analysis : Phase I.
DOT National Transportation Integrated Search
2009-11-01
"The objective of this work is to evaluate the feasibility of expanding the MDT's Ground Penetrating : Radar (GPR) program to a broader range of pavement evaluation activities. Currently, MDT uses GPR in : conjunction with its Falling Weight Deflecto...
Investigation of warm-mix asphalt for Iowa roadways.
DOT National Transportation Integrated Search
2013-09-01
Phase II of this study further evaluated the performance of plant-produced warm-mix asphalt (WMA) mixes by conducting : additional mixture performance tests at a broader range of temperatures, adding additional pavements to the study, comparing : vir...
Short-sighted evolution of virulence in parasitic honeybee workers ( Apis mellifera capensis Esch.)
NASA Astrophysics Data System (ADS)
Moritz, Robin F. A.; Pirk, Christian W. W.; Hepburn, H. Randall; Neumann, Peter
2008-06-01
The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.
Detection of Pathogen Exposure in African Buffalo Using Non-Specific Markers of Inflammation
Glidden, Caroline K.; Beechler, Brianna; Buss, Peter Erik; Charleston, Bryan; de Klerk-Lorist, Lin-Mari; Maree, Francois Frederick; Muller, Timothy; Pérez-Martin, Eva; Scott, Katherine Anne; van Schalkwyk, Ockert Louis; Jolles, Anna
2018-01-01
Detecting exposure to new or emerging pathogens is a critical challenge to protecting human, domestic animal, and wildlife health. Yet, current techniques to detect infections typically target known pathogens of humans or economically important animals. In the face of the current surge in infectious disease emergence, non-specific disease surveillance tools are urgently needed. Tracking common host immune responses indicative of recent infection may have potential as a non-specific diagnostic approach for disease surveillance. The challenge to immunologists is to identify the most promising markers, which ideally should be highly conserved across pathogens and host species, become upregulated rapidly and consistently in response to pathogen invasion, and remain elevated beyond clearance of infection. This study combined an infection experiment and a longitudinal observational study to evaluate the utility of non-specific markers of inflammation [NSMI; two acute phase proteins (haptoglobin and serum amyloid A), two pro-inflammatory cytokines (IFNγ and TNF-α)] as indicators of pathogen exposure in a wild mammalian species, African buffalo (Syncerus caffer). Specifically, in the experimental study, we asked (1) How quickly do buffalo mount NSMI responses upon challenge with an endemic pathogen, foot-and-mouth disease virus; (2) for how long do NSMI remain elevated after viral clearance and; (3) how pronounced is the difference between peak NSMI concentration and baseline NSMI concentration? In the longitudinal study, we asked (4) Are elevated NSMI associated with recent exposure to a suite of bacterial and viral respiratory pathogens in a wild population? Among the four NSMI that we tested, haptoglobin showed the strongest potential as a surveillance marker in African buffalo: concentrations quickly and consistently reached high levels in response to experimental infection, remaining elevated for almost a month. Moreover, elevated haptoglobin was indicative of recent exposure to two respiratory pathogens assessed in the longitudinal study. We hope this work motivates studies investigating suites of NSMI as indicators for pathogen exposure in a broader range of both pathogen and host species, potentially transforming how we track disease burden in natural populations. PMID:29375568
Analytic EoS and PTW strength model recommendation for Starck Ta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjue, Sky K.; Prime, Michael B.
2016-09-01
The purpose of this document is to provide an analytic EoS and PTW strength model for Starck Ta that can be consistently used between different platforms and simulations at three labs. This should provide a consistent basis for comparison of the results of calculations, but not the best implementation for matching a wide variety of experimental data. Another version using SESAME tables should follow, which will provide a better physical representation over a broader range of conditions. The data sets available at the time only include one Hopkinson bar at a strain rate of 1800/s; a broader range of high-ratemore » calibration data would be preferred. The resulting fit gives the PTW parameter p = 0. To avoid numerical issues, p = 0:001 has been used in FLAG. The PTW parameters that apply above the maximum strain rate in the data use the values from the original publication.« less
Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie
2015-01-01
Municipal wastewater treatment facilities are considered to be “hotspots” for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7–9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3-like plasmids concomitant to phylogenetic analysis of housekeeping genes from host Klebsiella strains, revealed that these plasmids are limited to a predominantly human-associated sub-clade of Klebsiella, suggesting that their host range is very narrow. Conversely, the pGNB2-like plasmids had a much broader host range and appeared to be associated with Klebsiella residing in natural environments. This study suggests that: (A) qnrB-harboring multidrug-resistant pKPN3-like plasmids can endure the rigorous wastewater treatment process and may therefore be disseminated to downstream environments; and (B) that small qnrS-harboring pGNB2-like plasmids are ubiquitous in wastewater treatment facilities and are most likely environmental in origin. PMID:26696974
Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie
2015-01-01
Municipal wastewater treatment facilities are considered to be "hotspots" for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7-9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3-like plasmids concomitant to phylogenetic analysis of housekeeping genes from host Klebsiella strains, revealed that these plasmids are limited to a predominantly human-associated sub-clade of Klebsiella, suggesting that their host range is very narrow. Conversely, the pGNB2-like plasmids had a much broader host range and appeared to be associated with Klebsiella residing in natural environments. This study suggests that: (A) qnrB-harboring multidrug-resistant pKPN3-like plasmids can endure the rigorous wastewater treatment process and may therefore be disseminated to downstream environments; and (B) that small qnrS-harboring pGNB2-like plasmids are ubiquitous in wastewater treatment facilities and are most likely environmental in origin.
von Beeren, Christoph; Brückner, Adrian; Maruyama, Munetoshi; Burke, Griffin; Wieschollek, Jana; Kronauer, Daniel J C
2018-01-01
Host-symbiont interactions are embedded in ecological communities and range from unspecific to highly specific relationships. Army ants and their arthropod guests represent a fascinating example of species-rich host-symbiont associations where host specificity ranges across the entire generalist - specialist continuum. In the present study, we compared the behavioral and chemical integration mechanisms of two extremes of the generalist - specialist continuum: generalist ant-predators in the genus Tetradonia (Staphylinidae: Aleocharinae: Athetini), and specialist ant-mimics in the genera Ecitomorpha and Ecitophya (Staphylinidae: Aleocharinae: Ecitocharini). Similar to a previous study of Tetradonia beetles, we combined DNA barcoding with morphological studies to define species boundaries in ant-mimicking beetles. This approach found four ant-mimicking species at our study site at La Selva Biological Station in Costa Rica. Community sampling of Eciton army ant parasites revealed that ant-mimicking beetles were perfect host specialists, each beetle species being associated with a single Eciton species. These specialists were seamlessly integrated into the host colony, while generalists avoided physical contact to host ants in behavioral assays. Analysis of the ants' nestmate recognition cues, i.e. cuticular hydrocarbons (CHCs), showed close similarity in CHC composition and CHC concentration between specialists and Eciton burchellii foreli host ants. On the contrary, the chemical profiles of generalists matched host profiles less well, indicating that high accuracy in chemical host resemblance is only accomplished by socially integrated species. Considering the interplay between behavior, morphology, and cuticular chemistry, specialists but not generalists have cracked the ants' social code with respect to various sensory modalities. Our results support the long-standing idea that the evolution of host-specialization in parasites is a trade-off between the range of potential host species and the level of specialization on any particular host.
David D. Diaz; Susan Charnley; Hannah Gosnell
2009-01-01
There are opportunities for forest owners and ranchers to participate in emerging carbon markets and contribute to climate change mitigation through carbon oriented forest and range management activities. These activities often promote sutainable forestry and ranching and broader conservation goals while having the potential to provide a new income stream for...
The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage
Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko
2016-01-01
Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729
Environmental parasitology: Parasites as accumulation bioindicators in the marine environment
NASA Astrophysics Data System (ADS)
Nachev, Milen; Sures, Bernd
2016-07-01
Parasites can be used as effective monitoring tools in environmental impact studies as they are able to accumulate certain pollutants (e.g. metals) at levels much higher than those of their ambient environment and of free-living sentinels. Thus, they provide valuable information not only about the chemical conditions of their and their hosts' environment but also deliver insights into the biological availability of allochthonous substances. While a large number of different freshwater parasites (mainly acanthocephalans and cestodes) were investigated in terms of pollutant bioaccumulation, studies based on marine host-parasites systems remain scarce. However, available data show that different marine parasite taxa such as nematodes, cestodes and acanthocephalans exhibit also an excellent metal accumulation capacity. The biological availability of metals and their uptake routes in marine biota and parasites differ from those of freshwater organisms. We assume that a large part of metals and other pollutants are also taken up via the digestive system of the host. Therefore, in addition to environmental conditions the physiology of the host also plays an important role for the accumulation process. Additionally, we highlight some advantages in using parasites as accumulation indicators in marine ecosystems. As parasites occur ubiquitously in marine food webs, the monitoring of metals in their tissues can deliver information about the spatial and trophic distribution of pollutants. Accordingly, parasites as indicators offer an ecological assessment on a broader scale, in contrast to established free-living marine indicators, which are mostly benthic invertebrates and therefore limited in habitat distribution. Globally distributed parasite taxa, which are highly abundant in a large number of host species, are suggested as worldwide applicable sentinels.
Intestinal microbiota composition in fishes is influenced by host ecology and environment.
Wong, Sandi; Rawls, John F
2012-07-01
The digestive tracts of vertebrates are colonized by complex assemblages of micro-organisms, collectively called the gut microbiota. Recent studies have revealed important contributions of gut microbiota to vertebrate health and disease, stimulating intense interest in understanding how gut microbial communities are assembled and how they impact host fitness (Sekirov et al. 2010). Although all vertebrates harbour a gut microbiota, current information on microbiota composition and function has been derived primarily from mammals. Comparisons of different mammalian species have revealed intriguing associations between gut microbiota composition and host diet, anatomy and phylogeny (Ley et al. 2008b). However, mammals constitute <10% of all vertebrate species, and it remains unclear whether similar associations exist in more diverse and ancient vertebrate lineages such as fish. In this issue, Sullam et al. (2012) make an important contribution toward identifying factors determining gut microbiota composition in fishes. The authors conducted a detailed meta-analysis of 25 bacterial 16S rRNA gene sequence libraries derived from the intestines of different fish species. To provide a broader context for their analysis, they compared these data sets to a large collection of 16S rRNA gene sequence data sets from diverse free-living and host-associated bacterial communities. Their results suggest that variation in gut microbiota composition in fishes is strongly correlated with species habitat salinity, trophic level and possibly taxonomy. Comparison of data sets from fish intestines and other environments revealed that fish gut microbiota compositions are often similar to those of other animals and contain relatively few free-living environmental bacteria. These results suggest that the gut microbiota composition of fishes is not a simple reflection of the micro-organisms in their local habitat but may result from host-specific selective pressures within the gut (Bevins & Salzman 2011).
Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C. Miguel; Vallejo, Gustavo A.
2015-01-01
Abstract Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(−)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579
Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J
2015-12-01
Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru.
Watershed Management Optimization Support Tool (WMOST) Webinar
EPA’s WMOST is a publicly available tool that can be used by state and local managers to screen a wide-range of options for cost-effective management of water resources, and it supports a broader integrated watershed management approach.
Morphological variation and host range of two Ganoderma species from Papua New Guinea.
Pilotti, Carmel A; Sanderson, Frank R; Aitken, Elizabeth A B; Armstrong, Wendy
2004-08-01
Two species of Ganoderma belonging to different subgenera which cause disease on oil palms in PNG are identified by basidiome morphology and the morphology of their basidiospores. The names G. boninense and G. tornatum have been applied. Significant pleiomorphy was observed in basidiome characters amongst the specimens examined. This variation in most instances did not correlate well with host or host status. Spore morphology appeared uniform within a species and spore indices varied only slightly. G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms in Papua New Guinea.
Design of a compact CMOS-compatible photonic antenna by topological optimization.
Pita, Julián L; Aldaya, Ivan; Dainese, Paulo; Hernandez-Figueroa, Hugo E; Gabrielli, Lucas H
2018-02-05
Photonic antennas are critical in applications such as spectroscopy, photovoltaics, optical communications, holography, and sensors. In most of those applications, metallic antennas have been employed due to their reduced sizes. Nevertheless, compact metallic antennas suffer from high dissipative loss, wavelength-dependent radiation pattern, and they are difficult to integrate with CMOS technology. All-dielectric antennas have been proposed to overcome those disadvantages because, in contrast to metallic ones, they are CMOS-compatible, easier to integrate with typical silicon waveguides, and they generally present a broader wavelength range of operation. These advantages are achieved, however, at the expense of larger footprints that prevent dense integration and their use in massive phased arrays. In order to overcome this drawback, we employ topological optimization to design an all-dielectric compact antenna with vertical emission over a broad wavelength range. The fabricated device has a footprint of 1.78 µm × 1.78 µm and shows a shift in the direction of its main radiation lobe of only 4° over wavelengths ranging from 1470 nm to 1550 nm and a coupling efficiency bandwidth broader than 150 nm.
Lorenc, Theo; Felix, Lambert; Petticrew, Mark; Melendez-Torres, G J; Thomas, James; Thomas, Sian; O'Mara-Eves, Alison; Richardson, Michelle
2016-11-16
Complex or heterogeneous data pose challenges for systematic review and meta-analysis. In recent years, a number of new methods have been developed to meet these challenges. This qualitative interview study aimed to understand researchers' understanding of complexity and heterogeneity and the factors which may influence the choices researchers make in synthesising complex data. We conducted interviews with a purposive sample of researchers (N = 19) working in systematic review or meta-analysis across a range of disciplines. We analysed data thematically using a framework approach. Participants reported using a broader range of methods and data types in complex reviews than in traditional reviews. A range of techniques are used to explore heterogeneity, but there is some debate about their validity, particularly when applied post hoc. Technical considerations of how to synthesise complex evidence cannot be isolated from questions of the goals and contexts of research. However, decisions about how to analyse data appear to be made in a largely informal way, drawing on tacit expertise, and their relation to these broader questions remains unclear.
Benefits of fidelity: does host specialization impact nematode parasite life history and fecundity?
Koprivnikar, J; Randhawa, H S
2013-04-01
The range of hosts used by a parasite is influenced by macro-evolutionary processes (host switching, host-parasite co-evolution), as well as 'encounter filters' and 'compatibility filters' at the micro-evolutionary level driven by host/parasite ecology and physiology. Host specialization is hypothesized to result in trade-offs with aspects of parasite life history (e.g. reproductive output), but these have not been well studied. We used previously published data to create models examining general relationships among host specificity and important aspects of life history and reproduction for nematodes parasitizing animals. Our results indicate no general trade-off between host specificity and the average pre-patent period (time to first reproduction), female size, egg size, or fecundity of these nematodes. However, female size was positively related to egg size, fecundity, and pre-patent period. Host compatibility may thus not be the primary determinant of specificity in these parasitic nematodes if there are few apparent trade-offs with reproduction, but rather, the encounter opportunities for new host species at the micro-evolutionary level, and other processes at the macro-evolutionary level (i.e. phylogeny). Because host specificity is recognized as a key factor determining the spread of parasitic diseases understanding factors limiting host use are essential to predict future changes in parasite range and occurrence.
Lim, Jun Hyung; Lee, Seung Muk; Kim, Hyun-Suk; Kim, Hyun You; Park, Jozeph; Jung, Seung-Boo; Park, Geun Chul; Kim, Jungho; Joo, Jinho
2017-02-03
We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In 3+ ) and smaller (Ga 3+ ) than the host Zn 2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications.
Connecting HL Tau to the observed exoplanet sample
NASA Astrophysics Data System (ADS)
Simbulan, Christopher; Tamayo, Daniel; Petrovich, Cristobal; Rein, Hanno; Murray, Norman
2017-08-01
The Atacama Large Millimeter/submilimeter Array (ALMA) recently revealed a set of nearly concentric gaps in the protoplanetary disc surrounding the young star HL Tauri (HL Tau). If these are carved by forming gas giants, this provides the first set of orbital initial conditions for planets as they emerge from their birth discs. Using N-body integrations, we have followed the evolution of the system for 5 Gyr to explore the possible outcomes. We find that HL Tau initial conditions scaled down to the size of typically observed exoplanet orbits naturally produce several populations in the observed exoplanet sample. First, for a plausible range of planetary masses, we can match the observed eccentricity distribution of dynamically excited radial velocity giant planets with eccentricities >0.2. Secondly, we roughly obtain the observed rate of hot Jupiters around FGK stars. Finally, we obtain a large efficiency of planetary ejections of ≈2 per HL Tau-like system, but the small fraction of stars observed to host giant planets makes it hard to match the rate of free-floating planets inferred from microlensing observations. In view of upcoming Gaia results, we also provide predictions for the expected mutual inclination distribution, which is significantly broader than the absolute inclination distributions typically considered by previous studies.
Astrometric exoplanet detection with Gaia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perryman, Michael; Hartman, Joel; Bakos, Gáspár Á.
2014-12-10
We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sample of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the signal-to-noise ratio of the astrometric signature per field crossing, easilymore » reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (±6000) high-mass (∼1-15M {sub J}) long-period planets should be discovered out to distances of ∼500 pc for the nominal 5 yr mission (including at least 1000-1500 around M dwarfs out to 100 pc), rising to some 70,000 (±20, 000) for a 10 yr mission. We indicate some of the expected features of this exoplanet population, amongst them ∼25-50 intermediate-period (P ∼ 2-3 yr) transiting systems.« less
NASA Astrophysics Data System (ADS)
Lim, Jun Hyung; Lee, Seung Muk; Kim, Hyun-Suk; Kim, Hyun You; Park, Jozeph; Jung, Seung-Boo; Park, Geun Chul; Kim, Jungho; Joo, Jinho
2017-02-01
We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In3+) and smaller (Ga3+) than the host Zn2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications.
Stewart, Alexander; Jackson, Joseph; Barber, Iain; Eizaguirre, Christophe; Paterson, Rachel; van West, Pieter; Williams, Chris; Cable, Joanne
2017-01-01
The three-spined stickleback (Gasterosteus aculeatus) is a model organism with an extremely well-characterized ecology, evolutionary history, behavioural repertoire and parasitology that is coupled with published genomic data. These small temperate zone fish therefore provide an ideal experimental system to study common diseases of coldwater fish, including those of aquacultural importance. However, detailed information on the culture of stickleback parasites, the establishment and maintenance of infections and the quantification of host responses is scattered between primary and grey literature resources, some of which is not readily accessible. Our aim is to lay out a framework of techniques based on our experience to inform new and established laboratories about culture techniques and recent advances in the field. Here, essential knowledge on the biology, capture and laboratory maintenance of sticklebacks, and their commonly studied parasites is drawn together, highlighting recent advances in our understanding of the associated immune responses. In compiling this guide on the maintenance of sticklebacks and a range of common, taxonomically diverse parasites in the laboratory, we aim to engage a broader interdisciplinary community to consider this highly tractable model when addressing pressing questions in evolution, infection and aquaculture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Richness and diversity of helminth communities in tropical freshwater fishes: Empirical evidence
Choudhury, A.; Dick, T.A.
2000-01-01
Aim: Published information on the richness and diversity of helminth parasite communities in tropical freshwater fishes is reviewed in response to expectations of species-rich parasite communities in tropical regions. Location: Areas covered include the tropics and some subtropical areas. In addition, the north temperate area of the nearctic zone is included for comparison. Methods: Data from 159 communities in 118 species of tropical freshwater fish, summarized from 46 published studies, were used for this review. Parasite community descriptors used in the analyses included component community richness and calculated mean species richness. Data from 130 communities in 47 species of nearctic north temperate freshwater fish were summarized from 31 studies and used for comparison. Results: The component helminth communities of many tropical freshwater fish are species-poor, and considerable proportions of fish from certain parts of the tropics, e.g. West African drainages, are uninfected or lightly infected. Mean helminth species richness was low and equaled or exceeded 2.0 in only 22 of 114 communities. No single group of helminths was identified as a dominant component of the fauna and species composition was variable among and within broader geographical areas. The richest enteric helminth assemblages were found in mochokid and clariid catfish with a mixed carnivorous diet, whereas algal feeders, herbivores and detritivores generally had species-poor gut helminth communities. Comparisons indicated that certain areas in the north temperate region had higher helminth species richness in fishes than areas in the tropics. Main conclusions: Expectations of high species richness in helminth communities of tropical freshwater fishes are not fulfilled by the data. Direct comparisons of infracommunities and component communities in host species across widely separated phylogenetic and geographical lines are inappropriate. Examination of latitudinal differences in richness of monophyletic parasite groups or of compound communities may uncover patterns different from those found in this study. Richness of helminth communities may be ultimately determined not by the number of host species present but by the degree of divergence of host lineages and by their diversification modes. A phylogenetic framework for hosts and parasites will reveal if increased host species richness within host clades, when host speciation is accompanied by habitat or diet specialization, or both, leads to lower helminth diversity in host species by fragmentation of a core helminth fauna characteristic or specific of the larger host clade. This pattern may be analysed in the context of cospeciation and acquisition from other unrelated hosts (host-sharing or host-switching).
Heidel-Fischer, Hanna M; Freitak, Dalial; Janz, Niklas; Söderlind, Lina; Vogel, Heiko; Nylin, Sören
2009-01-01
Background The mechanisms that shape the host plant range of herbivorous insect are to date not well understood but knowledge of these mechanisms and the selective forces that influence them can expand our understanding of the larger ecological interaction. Nevertheless, it is well established that chemical defenses of plants influence the host range of herbivorous insects. While host plant chemistry is influenced by phylogeny, also the growth forms of plants appear to influence the plant defense strategies as first postulated by Feeny (the "plant apparency" hypothesis). In the present study we aim to investigate the molecular basis of the diverse host plant range of the comma butterfly (Polygonia c-album) by testing differential gene expression in the caterpillars on three host plants that are either closely related or share the same growth form. Results In total 120 genes were identified to be differentially expressed in P. c-album after feeding on different host plants, 55 of them in the midgut and 65 in the restbody of the caterpillars. Expression patterns could be confirmed with an independent method for 14 of 27 tested genes. Pairwise similarities in upregulation in the midgut of the caterpillars were higher between plants that shared either growth form or were phylogenetically related. No known detoxifying enzymes were found to be differently regulated in the midgut after feeding on different host plants. Conclusion Our data suggest a complex picture of gene expression in response to host plant feeding. While each plant requires a unique gene regulation in the caterpillar, both phylogenetic relatedness and host plant growth form appear to influence the expression profile of the polyphagous comma butterfly, in agreement with phylogenetic studies of host plant utilization in butterflies. PMID:19878603
Heidel-Fischer, Hanna M; Freitak, Dalial; Janz, Niklas; Söderlind, Lina; Vogel, Heiko; Nylin, Sören
2009-10-31
The mechanisms that shape the host plant range of herbivorous insect are to date not well understood but knowledge of these mechanisms and the selective forces that influence them can expand our understanding of the larger ecological interaction. Nevertheless, it is well established that chemical defenses of plants influence the host range of herbivorous insects. While host plant chemistry is influenced by phylogeny, also the growth forms of plants appear to influence the plant defense strategies as first postulated by Feeny (the "plant apparency" hypothesis). In the present study we aim to investigate the molecular basis of the diverse host plant range of the comma butterfly (Polygonia c-album) by testing differential gene expression in the caterpillars on three host plants that are either closely related or share the same growth form. In total 120 genes were identified to be differentially expressed in P. c-album after feeding on different host plants, 55 of them in the midgut and 65 in the restbody of the caterpillars. Expression patterns could be confirmed with an independent method for 14 of 27 tested genes. Pairwise similarities in upregulation in the midgut of the caterpillars were higher between plants that shared either growth form or were phylogenetically related. No known detoxifying enzymes were found to be differently regulated in the midgut after feeding on different host plants. Our data suggest a complex picture of gene expression in response to host plant feeding. While each plant requires a unique gene regulation in the caterpillar, both phylogenetic relatedness and host plant growth form appear to influence the expression profile of the polyphagous comma butterfly, in agreement with phylogenetic studies of host plant utilization in butterflies.
Evolution in action: climate change, biodiversity dynamics and emerging infectious disease
Hoberg, Eric P.; Brooks, Daniel R.
2015-01-01
Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host–parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)—phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference—provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization. PMID:25688014
Heuer, Holger; Fox, Randal E; Top, Eva M
2007-03-01
IncP-1 plasmids are known to be promiscuous, but it is not understood if they are equally well adapted to various species within their host range. Moreover, little is known about their fate in bacterial communities. We determined if the IncP-1beta plasmid pB10 was unstable in some Proteobacteria, and whether plasmid stability was enhanced after long-term carriage in a single host and when regularly switched between isogenic hosts. Plasmid pB10 was found to be very unstable in Pseudomonas putida H2, and conferred a high cost (c. 20% decrease in fitness relative to the plasmid-free host). H2(pB10) was then evolved under conditions that selected for plasmid maintenance, with or without regular plasmid transfer (host-switching). When tested in the ancestral host, the evolved plasmids were more stable and their cost was significantly reduced (9% and 16% for plasmids from host-switched and nonswitched lineages, respectively). Our findings suggest that IncP-1 plasmids can rapidly adapt to an unfavorable host by improving their overall stability, and that regular conjugative transfer accelerates this process.
Raymond J. Gagné; John C. Moser
1997-01-01
Many Holarctic genera of trees and shrubs are host over much of their ranges to particular genera of Cecidomyiidae. As examples, willows host gall midges of Rabdophaga and Iteomyia, oaks host Macrodiplosis and Polystepha, and birches host Semudobia in both the Nearctic and...
Identification of Mycobacterium avium subsp. hominissuis Isolated From Drinking Water
Mycobacterium avium (MA) is divided into four subspecies based primarily on host-range and consists of MA subsp. avium (birds), MA subsp. silvaticum (wood pigeons), MA subsp. paratuberculosis (broad, poorly-defined host range), and the recently described MA subsp. hominissuis (hu...
Morrot, Alexandre; Villar, Silvina R.; González, Florencia B.; Pérez, Ana R.
2016-01-01
Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease. PMID:27242726
Ecology of coliphages in southern California coastal waters.
Reyes, V C; Jiang, S C
2010-08-01
This study aims to investigate the ecology of coliphages, an important microbial pollution indicator. Specifically, our experiments address (i) the ability of environmental Escherichia coli (E. coli) to serve as hosts for coliphage replication, and (ii) the temporal and spatial distribution of coliphages in coastal waters. Water samples from three locations in California's Newport Bay watershed were tested for the presence of coliphages every 2 weeks for an entire year. A total of nine E. coli strains isolated from various sources served as hosts for coliphage detection. Coliphage occurrence was significantly different between freshwater, estuarine and coastal locations and correlated with water temperature, salinity and rainfall in the watershed. The coliphages isolated on the environmental hosts had a broad host-range relative to the coliphages isolated on an E. coli strain from sewage and a US EPA recommended strain for coliphage detection. Coliphage occurrence was related to the temperature, rainfall and salinity within the bay. The adaptation to a broad host-range may enable the proliferation of coliphages in the aquatic environment. Understanding the seasonal variation of phages is useful for establishing a background level of coliphage presence in coastal waters. The broad host-range of coliphages isolated on the environmental E. coli host calls for investigation of coliphage replication in the aquatic environment.
Laser shock compression experiments on precompressed water in ``SG-II'' laser facility
NASA Astrophysics Data System (ADS)
Shu, Hua; Huang, Xiuguang; Ye, Junjian; Fu, Sizu
2017-06-01
Laser shock compression experiments on precompressed samples offer the possibility to obtain new hugoniot data over a significantly broader range of density-temperature phase than was previously achievable. This technique was developed in ``SG-II'' laser facility. Hugoniot data were obtained for water in 300 GPa pressure range by laser-driven shock compression of samples statically precompressed in diamond-anvil cells.
Illicit Drugs and the Environment
Beginning in the 1970s, the range of chemicals recognized as contributing to widespread contamination of the environment began to be extended to pharmaceuticals, with the topic beginning to attract broader scientific attention around the mid-1990s (Daughton 2009a). Occurring gen...
Evolution in action: climate change, biodiversity dynamics and emerging infectious disease.
Hoberg, Eric P; Brooks, Daniel R
2015-04-05
Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host-parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)--phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference--provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Lopes, Ana M; Breiman, Adrien; Lora, Mónica; Le Moullac-Vaidye, Béatrice; Galanina, Oxana; Nyström, Kristina; Marchandeau, Stephane; Le Gall-Reculé, Ghislaine; Strive, Tanja; Neimanis, Aleksija; Bovin, Nicolai V; Ruvoën-Clouet, Nathalie; Esteves, Pedro J; Abrantes, Joana; Le Pendu, Jacques
2017-11-29
The rabbit hemorrhagic disease virus (RHDV) and the European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus , respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged and many non-pathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, non-pathogenic lagoviruses and EBHSV potentially play a role in determining host range and virulence of lagoviruses. We observed binding to A, B or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits ( Oryctolagus cuniculus ), that have recently been classified as GI strains. Yet, we could not explain the emergence of virulence since similar glycan specificities were found between several pathogenic and non-pathogenic strains. By contrast, EBHSV, recently classified as GII.1, bound to terminal β-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species ( Oryctolagus cuniculus, Lepus europaeus and Sylvilagus floridanus ) showed species-specific patterns regarding the susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagoviruses host specificity and range. IMPORTANCE Lagoviruses constitute a genus of the Caliciviridae family, comprising highly pathogenic viruses, RHDV and EBHSV, which infect rabbits and hares, respectively. Recently, non-pathogenic strains were discovered and new pathogenic strains have emerged. In addition, host jumps between lagomorphs are observed. The mechanisms responsible for the emergence of pathogenicity and host-species range are unknown. Previous studies showed that RHDV strains attach to glycans expressed in the upper respiratory and digestive tracts of rabbits, the likely doors of virus entry. Here we studied the glycan-binding properties of novel pathogenic and non-pathogenic strains looking for a link between glycan-binding and virulence or between glycan specificity and host range. We found that glycan binding did not correlate with virulence. However, expression of glycan motifs in the upper respiratory and digestive tracts of lagomorphs revealed species-specific patterns associated with the host range of the virus strains, suggesting that glycan diversity contributes to lagoviruses' host range. Copyright © 2017 American Society for Microbiology.
Novel narrow-host-range vectors for direct cloning of foreign DNA in Pseudomonas.
Boivin, R; Bellemare, G; Dion, P
1994-01-01
Narrow-host-range vectors, based on an indigenous replicon and containing a multiple cloning site, have been constructed in a Pseudomonas host capable of growth on unusual substrates. The new cloning vectors yield sufficient amounts of DNA for preparative purposes and belong to an incompatibility group different from that of the incP and incQ broad-host-range vectors. One of these vectors, named pDB47F, was used to clone, directly in Pseudomonas, DNA fragments from Agrobacterium, Pseudomonas, and Rhizobium. A clone containing Agrobacterium and KmR gene sequences was transformed with a higher efficiency than an RSF1010-derived vector (by as much as 1250-fold) in four out of five Pseudomonas strains tested. The considerable efficiency obtained with this system makes possible the direct cloning and phenotypic selection of foreign DNA in Pseudomonas.
USDA-ARS?s Scientific Manuscript database
The wide host range of Cucumber mosaic virus (CMV) has been expanded by the identification of Odontonema cuspidatum (firespike) and Psychotria punctata (dotted wild coffee) as CMV hosts in Florida....
Cole, Susan P. C.
2014-01-01
The multidrug resistance protein 1 (MRP1) encoded by ABCC1 was originally discovered as a cause of multidrug resistance in tumor cells. However, it is now clear that MRP1 serves a broader role than simply mediating the ATP-dependent efflux of drugs from cells. The antioxidant GSH and the pro-inflammatory cysteinyl leukotriene C4 have been identified as key physiological organic anions effluxed by MRP1, and an ever growing body of evidence indicates that additional lipid-derived mediators are also substrates of this transporter. As such, MRP1 is a multitasking transporter that likely influences the etiology and progression of a host of human diseases. PMID:25281745
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Joshua
In 2014, the IEA PVPS Task 13 added the PVPMC as a formal activity to its technical work plan for 2014-2017. The goal of this activity is to expand the reach of the PVPMC to a broader international audience and help to reduce PV performance modeling uncertainties worldwide. One of the main deliverables of this activity is to host one or more PVPMC workshops outside the US to foster more international participation within this collaborative group. This report reviews the results of the first in a series of these joint IEA PVPS Task 13/PVPMC workshops. The 4th PV Performance Modelingmore » Collaborative Workshop was held in Cologne, Germany at the headquarters of TÜV Rheinland on October 22-23, 2015.« less
Surfing for history: dental library and dental school websites.
Kreinbring, Mary
2007-01-01
Library and academic websites are among the most reliable Internet resources available today. Schools of all types use the Internet as a means of sharing information; and libraries provide broader access to their collections via the Web. For researchers seeking specific, authoritative resources on dental history, library and dental school websites are most helpful in identifying print and online resources, in describing manuscript collections, and in presenting a history of the host institution. A library site often can provide sufficient information online to eliminate the need for an in-person visit to the library. On the other hand, a library site may tantalize the historian with enough information on unique collections that a trip can be justified.
Occurrence and expression of gene transfer agent genes in marine bacterioplankton.
Biers, Erin J; Wang, Kui; Pennington, Catherine; Belas, Robert; Chen, Feng; Moran, Mary Ann
2008-05-01
Genes with homology to the transduction-like gene transfer agent (GTA) were observed in genome sequences of three cultured members of the marine Roseobacter clade. A broader search for homologs for this host-controlled virus-like gene transfer system identified likely GTA systems in cultured Alphaproteobacteria, and particularly in marine bacterioplankton representatives. Expression of GTA genes and extracellular release of GTA particles ( approximately 50 to 70 nm) was demonstrated experimentally for the Roseobacter clade member Silicibacter pomeroyi DSS-3, and intraspecific gene transfer was documented. GTA homologs are surprisingly infrequent in marine metagenomic sequence data, however, and the role of this lateral gene transfer mechanism in ocean bacterioplankton communities remains unclear.
Occurrence and Expression of Gene Transfer Agent Genes in Marine Bacterioplankton▿
Biers, Erin J.; Wang, Kui; Pennington, Catherine; Belas, Robert; Chen, Feng; Moran, Mary Ann
2008-01-01
Genes with homology to the transduction-like gene transfer agent (GTA) were observed in genome sequences of three cultured members of the marine Roseobacter clade. A broader search for homologs for this host-controlled virus-like gene transfer system identified likely GTA systems in cultured Alphaproteobacteria, and particularly in marine bacterioplankton representatives. Expression of GTA genes and extracellular release of GTA particles (∼50 to 70 nm) was demonstrated experimentally for the Roseobacter clade member Silicibacter pomeroyi DSS-3, and intraspecific gene transfer was documented. GTA homologs are surprisingly infrequent in marine metagenomic sequence data, however, and the role of this lateral gene transfer mechanism in ocean bacterioplankton communities remains unclear. PMID:18359833
NASA Technical Reports Server (NTRS)
Walkmeyer, J.
1973-01-01
This memorandum explores a host of considerations meriting attention from those who are concerned with designing organizational structures for development and control of a large scale educational telecommunications system using satellites. Part of a broader investigation at Washington University into the potential uses of fixed/broadcast satellites in U.S. education, this study lays ground work for a later effort to spell out a small number of hypothetical organizational blueprints for such a system and for assessment of potential short and long term impacts. The memorandum consists of two main parts. Part A deals with subjects of system-wide concern, while Part B deals with matters related to specific system components.
Jenkins, Emily J; Appleyard, Greg D; Hoberg, Eric P; Rosenthal, Benjamin M; Kutz, Susan J; Veitch, Alasdair M; Schwantje, Helen M; Elkin, Brett T; Polley, Lydden
2005-06-01
Molecular identification of dorsal-spined larvae (DSL) from fecal samples indicates that the protostrongylid parasite Parelaphostrongylus odocoilei occupies a broader geographic range in western North America than has been previously reported. We analyzed 2,124 fecal samples at 29 locations from thinhorn sheep (Ovis dalli dalli and O. d. stonei), bighorn sheep (Ovis canadensis canadensis and O. c. californiana), mountain goats (Oreamnos americanus), woodland caribou (Rangifer tarandus caribou), mule deer (Odocoileus hemionus hemionus), and black-tailed deer (O. h. columbianus). The DSL were recovered from populations of thinhorn sheep south, but not north, of the Arctic Circle, and they were not recovered from any of the bighorn sheep populations that we examined. In total, DSL were recovered from 20 locations in the United States and Canada (Alaska, Yukon Territory, Northwest Territories, British Columbia, Alberta, and California). The DSL were identified as P. odocoilei by comparing sequences of the second internal transcribed spacer (ITS2) region of ribosomal RNA among 9 protostrongylid species validated by adult comparative morphology. The ITS2 sequences were markedly different between Parelaphostrongylus and other protostrongylid genera. Smaller fixed differences served as diagnostic markers for the 3 species of Parelaphostrongylus. The ITS2 sequences (n = 60) of P. odocoilei were strongly conserved across its broad geographic range from California to Alaska. Polymorphism at 5 nucleotide positions was consistent with multiple copies of the ITS2 within individual specimens of P. odocoilei. This work combines extensive fecal surveys, comparative morphology, and molecular diagnostic techniques to describe comprehensively the host associations and geographic distribution of a parasitic helminth.
Graham, G.E.; Kelley, K.D.; Slack, J.F.; Koenig, A.E.
2009-01-01
The Zn-Pb-Ag metallogenic province of the western and central Brooks Range, Alaska, contains two distinct but mineralogically similar deposit types: shale-hosted massive sulphide (SHMS) and smaller vein-breccia occurrences. Recent investigations of the Red Dog and Anarraaq SHMS deposits demonstrated that these deposits are characterized by high trace-element concentrations of As, Ge, Sb and Tl. This paper examines geochemistry of additional SHMS deposits (Drenchwater and Su-Lik) to determine which trace elements are ubiquitously elevated in all SHMS deposits. Data from several vein-breccia occurrences are also presented to see if trace-element concentrations can distinguish SHMS deposits from vein-breccia occurrences. Whole-rock geochemical data indicate that Tl is the most consistently and highly concentrated characteristic trace element in SHMS deposits relative to regional unmineralized rock samples. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and sphalerite indicate that Tl is concentrated in pyrite in SHMS. Stream sediment data from the Drenchwater and Su-Lik SHMS show that high Tl concentrations are more broadly distributed proximal to known or suspected mineralization than As, Sb, Zn and Pb anomalies. This broader distribution of Tl in whole-rock and particularly stream sediment samples increases the footprint of exposed and shallowly buried SHMS mineralization. High Tl concentrations also distinguish SHMS mineralization from the vein-breccia deposits, as the latter lack high concentrations of Tl but can otherwise have similar trace-element signatures to SHMS deposits. ?? 2009 AAG/Geological Society of London.
Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.
2015-01-01
Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686
Carr, Michael; Gonzalez, Gabriel; Sasaki, Michihito; Dool, Serena E; Ito, Kimihito; Ishii, Akihiro; Hang'ombe, Bernard M; Mweene, Aaron S; Teeling, Emma C; Hall, William W; Orba, Yasuko; Sawa, Hirofumi
2017-10-06
Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.
The Trw Type IV Secretion System of Bartonella Mediates Host-Specific Adhesion to Erythrocytes
Vayssier-Taussat, Muriel; Le Rhun, Danielle; Deng, Hong Kuan; Biville, Francis; Cescau, Sandra; Danchin, Antoine; Marignac, Geneviève; Lenaour, Evelyne; Boulouis, Henri Jean; Mavris, Maria; Arnaud, Lionel; Yang, Huanming; Wang, Jing; Quebatte, Maxime; Engel, Philipp; Saenz, Henri; Dehio, Christoph
2010-01-01
Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The α-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals. PMID:20548954
Coelho, Marcel Serra; Carneiro, Marco Antônio Alves; Branco, Cristina Alves; Borges, Rafael Augusto Xavier; Fernandes, Geraldo Wilson
2018-01-01
This study describes differences in species richness and composition of the assemblages of galling insects and their host plants at different spatial scales. Sampling was conducted along altitudinal gradients composed of campos rupestres and campos de altitude of two mountain complexes in southeastern Brazil: Espinhaço Range and Mantiqueira Range. The following hypotheses were tested: i) local and regional richness of host plants and galling insects are positively correlated; ii) beta diversity is the most important component of regional diversity of host plants and galling insects; and iii) Turnover is the main mechanism driving beta diversity of both host plants and galling insects. Local richness of galling insects and host plants increased with increasing regional richness of species, suggesting a pattern of unsaturated communities. The additive partition of regional richness (γ) into local and beta components shows that local richnesses (α) of species of galling insects and host plants are low relative to regional richness; the beta (β) component incorporates most of the regional richness. The multi-scale analysis of additive partitioning showed similar patterns for galling insects and host plants with the local component (α) incorporated a small part of regional richness. Beta diversity of galling insects and host plants were mainly the result of turnover, with little contribution from nesting. Although the species composition of galling insects and host plant species varied among sample sites, mountains and even mountain ranges, local richness remained relatively low. In this way, the addition of local habitats with different landscapes substantially affects regional richness. Each mountain contributes fundamentally to the composition of regional diversity of galling insects and host plants, and so the design of future conservation strategies should incorporate multiple scales.
Venette, Robert C.; Maddox, Mitchell P.; Aukema, Brian H.
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death. PMID:28472047
Rosenberger, Derek W; Venette, Robert C; Maddox, Mitchell P; Aukema, Brian H
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death.
A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP.
Spanò, Stefania; Gao, Xiang; Hannemann, Sebastian; Lara-Tejero, María; Galán, Jorge E
2016-02-10
Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is counteracted by two Salmonella effectors. Mice lacking Rab-32 or its nucleotide exchange factor BLOC-3 are permissive to S. Typhi infection and exhibit increased susceptibility to S. Typhimurium. S. Typhimurium counters this defense pathway by delivering two type III secretion effectors, SopD2, a Rab32 GAP, and GtgE, a specific Rab32 protease. An S. Typhimurium mutant strain lacking these two effectors exhibits markedly reduced virulence, which is fully restored in BLOC-3-deficient mice. These results demonstrate that a cell-autonomous, Rab32-dependent host defense pathway plays a central role in the defense against vacuolar pathogens and describe a mechanism evolved by a bacterial pathogen to counter it. Copyright © 2016 Elsevier Inc. All rights reserved.
The iron chelator deferasirox protects mice from mucormycosis through iron starvation
Ibrahim, Ashraf S.; Gebermariam, Teclegiorgis; Fu, Yue; Lin,, Lin; Husseiny, Mohamed I.; French, Samuel W.; Schwartz, Julie; Skory, Christopher D.; Edwards, John E.; Spellberg, Brad J.
2007-01-01
Mucormycosis causes mortality in at least 50% of cases despite current first-line therapies. Clinical and animal data indicate that the presence of elevated available serum iron predisposes the host to mucormycosis. Here we demonstrate that deferasirox, an iron chelator recently approved for use in humans by the US FDA, is a highly effective treatment for mucormycosis. Deferasirox effectively chelated iron from Rhizopus oryzae and demonstrated cidal activity in vitro against 28 of 29 clinical isolates of Mucorales at concentrations well below clinically achievable serum levels. When administered to diabetic ketoacidotic or neutropenic mice with mucormycosis, deferasirox significantly improved survival and decreased tissue fungal burden, with an efficacy similar to that of liposomal amphotericin B. Deferasirox treatment also enhanced the host inflammatory response to mucormycosis. Most importantly, deferasirox synergistically improved survival and reduced tissue fungal burden when combined with liposomal amphotericin B. These data support clinical investigation of adjunctive deferasirox therapy to improve the poor outcomes of mucormycosis with current therapy. As iron availability is integral to the pathogenesis of other infections (e.g., tuberculosis, malaria), broader investigation of deferasirox as an antiinfective treatment is warranted. PMID:17786247
Contact networks structured by sex underpin sex-specific epidemiology of infection.
Silk, Matthew J; Weber, Nicola L; Steward, Lucy C; Hodgson, David J; Boots, Mike; Croft, Darren P; Delahay, Richard J; McDonald, Robbie A
2018-02-01
Contact networks are fundamental to the transmission of infection and host sex often affects the acquisition and progression of infection. However, the epidemiological impacts of sex-related variation in animal contact networks have rarely been investigated. We test the hypothesis that sex-biases in infection are related to variation in multilayer contact networks structured by sex in a population of European badgers Meles meles naturally infected with Mycobacterium bovis. Our key results are that male-male and between-sex networks are structured at broader spatial scales than female-female networks and that in male-male and between-sex contact networks, but not female-female networks, there is a significant relationship between infection and contacts with individuals in other groups. These sex differences in social behaviour may underpin male-biased acquisition of infection and may result in males being responsible for more between-group transmission. This highlights the importance of sex-related variation in host behaviour when managing animal diseases. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
The Fate of Exoplanets and the Red Giant Rapid Rotator Connection
NASA Astrophysics Data System (ADS)
Carlberg, Joleen K.; Majewski, Steven R.; Arras, Phil; Smith, Verne V.; Cunha, Katia; Bizyaev, Dmitry
2011-03-01
We have computed the fate of exoplanet companions around main sequence stars to explore the frequency of planet ingestion by their host stars during the red giant branch evolution. Using published properties of exoplanetary systems combined with stellar evolution models and Zahn's theory of tidal friction, we modeled the tidal decay of the planets' orbits as their host stars evolve. Most planets currently orbiting within 2 AU of their star are expected to be ingested by the end of their stars' red giant branch ascent. Our models confirm that many transiting planets are sufficiently close to their parent star that they will be accreted during the main sequence lifetime of the star. We also find that planet accretion may play an important role in explaining the mysterious red giant rapid rotators, although appropriate planetary systems do not seem to be plentiful enough to account for all such rapid rotators. We compare our modeled rapid rotators and surviving planetary systems to their real-life counterparts and discuss the implications of this work to the broader field of exoplanets.
Rodrigues, M M; Alencar, B C G de; Claser, C; Tzelepis, F
2009-03-01
Intense immune responses are observed during human or experimental infection with the digenetic protozoan parasite Trypanosoma cruzi. The reasons why such immune responses are unable to completely eliminate the parasites are unknown. The survival of the parasite leads to a parasite-host equilibrium found during the chronic phase of chagasic infection in most individuals. Parasite persistence is recognized as the most likely cause of the chagasic chronic pathologies. Therefore, a key question in Chagas' disease is to understand how this equilibrium is established and maintained for a long period. Understanding the basis for this equilibrium may lead to new approaches to interventions that could help millions of individuals at risk for infection or who are already infected with T. cruzi. Here, we propose that the phenomenon of immunodominance may be significant in terms of regulating the host-parasite equilibrium observed in Chagas' disease. T. cruzi infection restricts the repertoire of specific T cells generating, in some cases, an intense immunodominant phenotype and in others causing a dramatic interference in the response to distinct epitopes. This immune response is sufficiently strong to maintain the host alive during the acute phase carrying them to the chronic phase where transmission usually occurs. At the same time, immunodominance interferes with the development of a higher and broader immune response that could be able to completely eliminate the parasite. Based on this, we discuss how we can interfere with or take advantage of immunodominance in order to provide an immunotherapeutic alternative for chagasic individuals.
Hybridization between two cestode species and its consequences for intermediate host range
2013-01-01
Background Many parasites show an extraordinary degree of host specificity, even though a narrow range of host species reduces the likelihood of successful transmission. In this study, we evaluate the genetic basis of host specificity and transmission success of experimental F1 hybrids from two closely related tapeworm species (Schistocephalus solidus and S. pungitii), both highly specific to their respective vertebrate second intermediate hosts (three- and nine-spined sticklebacks, respectively). Methods We used an in vitro breeding system to hybridize Schistocephalus solidus and S. pungitii; hybridization rate was quantified using microsatellite markers. We measured several fitness relevant traits in pure lines of the parental parasite species as well as in their hybrids: hatching rates, infection rates in the copepod first host, and infection rates and growth in the two species of stickleback second hosts. Results We show that the parasites can hybridize in the in vitro system, although the proportion of self-fertilized offspring was higher in the heterospecific breeding pairs than in the control pure parental species. Hybrids have a lower hatching rate, but do not show any disadvantages in infection of copepods. In fish, hybrids were able to infect both stickleback species with equal frequency, whereas the pure lines were only able to infect their normal host species. Conclusions Although not yet documented in nature, our study shows that hybridization in Schistocephalus spp. is in principle possible and that, in respect to their expanded host range, the hybrids are fitter. Further studies are needed to find the reason for the maintenance of the species boundaries in wild populations. PMID:23390985
Expanding the Entamoeba Universe: New Hosts Yield Novel Ribosomal Lineages.
Jacob, Alison S; Busby, Eloise J; Levy, Abigail D; Komm, Natasha; Clark, C Graham
2016-01-01
Removing the requirement for cell culture has led to a substantial increase in the number of lineages of Entamoeba recognized as distinct. Surveying the range of potential host species for this parasite genus has barely been started and it is clear that additional sampling of the same host in different locations often identifies additional diversity. In this study, using small subunit ribosomal RNA gene sequencing, we identify four new lineages of Entamoeba, including the first report of Entamoeba from an elephant, and extend the host range of some previously described lineages. In addition, examination of microbiome data from a number of host animals suggests that substantial Entamoeba diversity remains to be uncovered. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.
Review of "A Complete Education"
ERIC Educational Resources Information Center
Warren, Beth
2010-01-01
The research summary, "A Complete Education," presents the Obama administration's proposal for ensuring that all students have a comprehensive education. The key areas include: strengthening instruction in literacy and in science, technology, engineering, and mathematics (STEM); increasing access to instruction in a broader range of subject…
Universities Face Wide-Ranging Changes
ERIC Educational Resources Information Center
Krieger, James H.
1976-01-01
Discusses problems facing the research university, including declining enrollments and funds, fewer opportunities for graduates, and the complexity of research problems. Recommends making more efficient use of resources, improving communications with the broader public, and reducing economic and social barriers to obtaining a higher education.…
USDA-ARS?s Scientific Manuscript database
Colletotrichum gloeosporioides f. sp. salsolae (Penz.) Penz. & Sacc. in Penz. (CGS) is a facultative parasitic fungus being evaluated as a classical biological control agent of Russian thistle or tumbleweed (Salsola tragus L.). In initial host range determination tests, Henderson’s mixed model equat...
Yanzhuo Zhang; James L. Hanula; Scott Horn; Cera Jones; S. Kristine Braman; Jianghua Sun
2016-01-01
Chinese privet, Ligustrum sinense Lour., is an invasive shrub within riparian areas of the southeastern United States. Biological control is considered the most suitable management option for Chinese privet. The potential host range of the lace bug, Leptoypha hospita Drake et...
Beckstead, Julie; Meyer, Susan E.; Ishizuka, Toby S.; McEvoy, Kelsey M.; Coleman, Craig E.
2016-01-01
Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora semeniperda by reciprocally inoculating pathogen strains from Bromus tectorum and from four other winter annual grass weeds (Bromus diandrus, Bromus rubens, Bromus arvensis and Taeniatherum caput-medusae) onto dormant seeds of B. tectorum and each alternate host. We found that host species varied in resistance and pathogen strains varied in aggressiveness, but there was no evidence for host specialization. Most variation in aggressiveness was among strains within populations and was expressed similarly on both hosts, resulting in a positive correlation between strain-level disease incidence on B. tectorum and on the alternate host. In spite of this lack of host specialization, we detected weak but significant population genetic structure as a function of host species using two neutral marker systems that yielded similar results. This genetic structure is most likely due to founder effects, as the pathogen is known to be dispersed with host seeds. All host species were highly susceptible to their own pathogen races. Tolerance to infection (i.e., the ability to germinate even when infected and thereby avoid seed mortality) increased as a function of seed germination rate, which in turn increased as dormancy was lost. Pyrenophora semeniperda apparently does not require host specialization to fully exploit these winter annual grass species, which share many life history features that make them ideal hosts for this pathogen. PMID:26950931
Molecular basis of recognition between phytophthora pathogens and their hosts.
Tyler, Brett M
2002-01-01
Recognition is the earliest step in any direct plant-microbe interaction. Recognition between Phytophthora pathogens, which are oomycetes, phylogenetically distinct from fungi, has been studied at two levels. Recognition of the host by the pathogen has focused on recognition of chemical, electrical, and physical features of plant roots by zoospores. Both host-specific factors such as isoflavones, and host-nonspecific factors such as amino acids, calcium, and electrical fields, influence zoospore taxis, encystment, cyst germination, and hyphal chemotropism in guiding the pathogen to potential infection sites. Recognition of the pathogen by the host defense machinery has been analyzed using biochemical and genetic approaches. Biochemical approaches have identified chemical elicitors of host defense responses, and in some cases, their cognate receptors from the host. Some elicitors, such as glucans and fatty acids, have broad host ranges, whereas others such as elicitins have narrow host ranges. Most elicitors identified appear to contribute primarily to basic or nonhost resistance. Genetic analysis has identified host resistance (R) genes and pathogen avirulence (Avr) genes that interact in a gene-for-gene manner. One Phytophthora Avr gene, Avr1b from P. sojae, has been cloned and characterized. It encodes a secreted elicitor that triggers a system-wide defense response in soybean plants carrying the cognate R gene, Rps1b.
Auty, Harriet; Cleaveland, Sarah; Malele, Imna; Masoy, Joseph; Lembo, Tiziana; Bessell, Paul; Torr, Stephen; Picozzi, Kim; Welburn, Susan C.
2016-01-01
Background Identifying hosts of blood-feeding insect vectors is crucial in understanding their role in disease transmission. Rhodesian human African trypanosomiasis (rHAT), also known as acute sleeping sickness is caused by Trypanosoma brucei rhodesiense and transmitted by tsetse flies. The disease is commonly associated with wilderness areas of east and southern Africa. Such areas hold a diverse range of species which form communities of hosts for disease maintenance. The relative importance of different wildlife hosts remains unclear. This study quantified tsetse feeding preferences in a wilderness area of great host species richness, Serengeti National Park, Tanzania, assessing tsetse feeding and host density contemporaneously. Methods Glossina swynnertoni and G. pallidipes were collected from six study sites. Bloodmeal sources were identified through matching Cytochrome B sequences amplified from bloodmeals from recently fed flies to published sequences. Densities of large mammal species in each site were quantified, and feeding indices calculated to assess the relative selection or avoidance of each host species by tsetse. Results The host species most commonly identified in G. swynnertoni bloodmeals, warthog (94/220), buffalo (48/220) and giraffe (46/220), were found at relatively low densities (3-11/km2) and fed on up to 15 times more frequently than expected by their relative density. Wildebeest, zebra, impala and Thomson’s gazelle, found at the highest densities, were never identified in bloodmeals. Commonly identified hosts for G. pallidipes were buffalo (26/46), giraffe (9/46) and elephant (5/46). Conclusions This study is the first to quantify tsetse host range by molecular analysis of tsetse diet with simultaneous assessment of host density in a wilderness area. Although G. swynnertoni and G. pallidipes can feed on a range of species, they are highly selective. Many host species are rarely fed on, despite being present in areas where tsetse are abundant. These feeding patterns, along with the ability of key host species to maintain and transmit T. b. rhodesiense, drive the epidemiology of rHAT in wilderness areas. PMID:27706167
McClure, Melanie; Elias, Marianne
2016-06-16
Understanding the processes underlying diversification is a central question in evolutionary biology. For butterflies, access to new host plants provides opportunities for adaptive speciation. On the one hand, locally abundant host species can generate ecologically significant selection pressure. But a diversity of host plant species within the geographic range of each population and/or species might also eliminate any advantage conferred by specialization. This paper focuses on four Melinaea species, which are oligophagous on the family Solanaceae: M. menophilus, M. satevis, M. marsaeus, and finally, M. mothone. We examined both female preference and larval performance on two host plant species that commonly occur in this butterfly's native range, Juanulloa parasitica and Trianaea speciosa, to determine whether the different Melinaea species show evidence of local adaptation. In choice experiments, M. mothone females used both host plants for oviposition, whereas all other species used J. parasitica almost exclusively. In no choice experiment, M. mothone was the only species that readily accepted T. speciosa as a larval host plant. Larval survival was highest on J. parasitica (82.0 % vs. 60.9 %) and development took longer on T. speciosa (14.12 days vs. 13.35 days), except for M. mothone, which did equally well on both host plants. For all species, average pupal weight was highest on J. parasitica (450.66 mg vs. 420.01 mg), although this difference was least apparent in M. mothone. We did not find that coexisting species of Melinaea partition host plant resources as expected if speciation is primarily driven by host plant divergence. Although M. mothone shows evidence of local adaptation to a novel host plant, T. speciosa, which co-occurs, it does not preferentially lay more eggs on or perform better on this host plant than on host plants used by other Melinaea species and not present in its distributional range. It is likely that diversification in this genus is driven by co-occurring Müllerian mimics and the resulting predation pressure, although this is also likely made possible by greater niche diversity as a consequence of plasticity for potential hosts.
Current and future trends in fecal source tracking and deployment in the Lake Taihu Region of China
NASA Astrophysics Data System (ADS)
Hagedorn, Charles; Liang, Xinqiang
The emerging discipline of microbial and/or chemical source tracking (collectively termed fecal source tracking (FST)) is being used to identify origins of fecal contamination in polluted waters in many countries around the world. FST has developed rapidly because standard methods of measuring contamination in water by enumerating fecal indicator bacteria (FIB) such as fecal coliforms and enterococci do not identify the sources of the contamination. FST is an active area of research and development in both the academic and private sectors and includes: Developing and testing new microbial and chemical FST methods. Determining the geographic application and animal host ranges of existing and emerging FST techniques. Conducting experimental comparisons of FST techniques. Combining direct monitoring of human pathogens associated with waterborne outbreaks and zoonotic pathogens responsible for infections among people, wildlife, or domesticated animals with the use of FST techniques. Applying FST to watershed analysis and coastal environments. Designing appropriate statistical and probability analysis of FST data and developing models for mass loadings of host-specific fecal contamination. This paper includes a critical review of FST with emphasis on the extent to which methods have been tested (especially in comparison with other methods and/or with blind samples), which methods are applicable to different situations, their shortcomings, and their usefulness in predicting public health risk or pathogen occurrence. In addition, the paper addresses the broader question of whether FST and fecal indicator monitoring is the best approach to regulate water quality and protect human health. Many FST methods have only been tested against sewage or fecal samples or isolates in laboratory studies (proof of concept testing) and/or applied in field studies where the “real” answer is not known, so their comparative performance and accuracy cannot be assessed. For FST to be quantitative, stability of ratios between host-specific markers in the environment must be established. In addition, research is needed on the correlation between host-specific markers and pathogens, and survival of markers after waste treatments. As a result of the exclusive emphasis on FIB by regulatory agencies, monitoring and FST development has concentrated on FIB rather than the actual pathogens. A more rational approach to regulating water quality might be to use available epidemiological data to identify pathogens of concern in a particular water body, and then use targeted pathogen monitoring coupled with very specific FST approaches to control the pathogens. Baseline monitoring of FIB would be just one tool among many in this example.
USDA-ARS?s Scientific Manuscript database
Visual cues may be the first line of host plant recognition and an important determining factor when selecting host plants for feeding and oviposition, especially for highly polyphagous insects, such as leafhoppers, which have a broad range of potential host plants. Temperate Empoasca fabae and trop...
Merckx, Thomas; Serruys, Mélanie; Van Dyck, Hans
2015-01-01
Recent anthropogenic eutrophication has meant that host plants of nettle-feeding insects became quasi-omnipresent in fertile regions of Western Europe. However, host plant resource quality – in terms of microclimate and nutritional value – may vary considerably between the ‘original’ forest habitat and ‘recent’ agricultural habitat. Here, we compared development in both environmental settings using a split-brood design, so as to explore to what extent larval survival and adult morphology in the nettle-feeding butterfly Aglais urticae are influenced by the anthropogenic environment. Nettles along field margins had higher C/N ratios and provided warmer microclimates to larvae. Larvae developed 20% faster and tended to improve their survival rates, on the agricultural land compared to woodland. Our split-brood approach indicated plastic responses within families, but also family effects in the phenotypic responses. Adult males and females had darker wing pigmentation in the drier and warmer agricultural environment, which contrasts with the thermal melanism hypothesis. Developmental plasticity in response to this microclimatically different and more variable habitat was associated with a broader phenotypic parameter space for the species. Both habitat expansion and developmental plasticity are likely contributors to the ecological and evolutionary success of these nettle-feeding insects in anthropogenic environments under high nitrogen load. PMID:25926881
[Prostate cancer microenvironment: Its structure, functions and therapeutic applications].
Lorion, R; Bladou, F; Spatz, A; van Kempen, L; Irani, J
2016-06-01
In the field of prostate cancer there is a growing tendency for more and more studies to emphasise the predominant role of the zone situated between the tumour and the host: the tumour microenvironment. The aim of this article is to describe the structure and the functions of the prostate cancer microenvironment as well as the principal treatments that are being applied to it. PubMed and ScienceDirect databases have been interrogated using the association of keywords "tumour microenvironment" and "neoplasm therapy" along with "microenvironnement tumoral" and "traitements". Of the 593 articles initially found, 50 were finally included. The tumour microenvironment principally includes host elements that are diverted from their primary functions and encourage the development of the tumour. In it we find immunity cells, support tissue as well as vascular and lymphatic neovascularization. Highlighting the major role played by this microenvironment has led to the development of specific treatments, notably antiangiogenic therapy and immunotherapy. The tumour microenvironment, the tumour and the host influence themselves mutually and create a variable situation over time. Improvement of the knowledge of the prostate cancer microenvironment gradually enables us to pass from an approach centred on the tumour to a broader approach to the whole tumoral ecosystem. This enabled the emergence of new treatments whose place in the therapeutic arsenal still need to be found. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
What Can TRAPPIST-1 Tell Us About Radiation From M-Dwarf Chromospheres And Coronae
NASA Astrophysics Data System (ADS)
Linsky, Jeffrey
2017-05-01
The recent discovery of 7 planets orbiting the nearby star TRAPPIST-1 (Gillon et al. Nature 2017) and the discovery that this M8 V host star has very weak chromospheric compared to coronal emission (Bourrier et al. A+A 2017) raises the broader question of the relation of chromospheres to coronae in host stars. This question is important because chromospheric emission, primarily in the Lyman-alpha line, controls photochemical reactions in the outer atmospheres of exoplanets, whereas coronal X-ray emission and associated coronal mass ejections play critical roles in atmospheric mass loss. Both chromospheric and coronal emission from the host star can, therefore, determine whether a planet is habitable. I will show that the amount of emission in the Lyman-alpha line is proportional to that in X-rays for F-K dwarf stars, but that chromospheric emission becomes relatively weak in the early M dwarfs and very weak in the late-M dwarfs such as TRAPPIST-1.Stellar emission lines formed in a star's chromosphere and transition region can be separated into narrow and broad Gaussian components with the broad components formed by microflaring events or high speed flows. I will show how the broad component activity indicator depends on stellar effective temperature and age.I will also describe the results concerning star-planet interactions obtained by MUSCLES Treasury Survey team.
Defensins: antifungal lessons from eukaryotes
Silva, Patrícia M.; Gonçalves, Sónia; Santos, Nuno C.
2014-01-01
Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed. PMID:24688483
Molecular epidemiology and evolution of fish Novirhabdoviruses
Kurath, Gael
2014-01-01
The genus Novirhabdoviridae contains several of the important rhabdoviruses that infect fish hosts. There are four established virus species: Infectious hematopoietic necrosis virus (IHNV), Viral hemorrhagic septicemia virus (VHSV), Hirame rhabdovirus(HIRRV), and Snakehead rhabdovirus (SHRV). Viruses of these species vary in host and geographic range, and they have all been studied at the molecular and genomic level. As globally significant pathogens of cultured fish, IHNV and VHSV have been particularly well studied in terms of molecular epidemiology and evolution. Phylogenic analyses of hundreds of field isolates have defined five major genogroups of IHNV and four major genotypes of VHSV worldwide. These phylogenies are informed by the known histories of IHNV and VHSV, each involving a series of viral emergence events that are sometimes associated with host switches, most often into cultured rainbow trout. In general, IHNV has relatively low genetic diversity and a narrow host range, and has been spread from its endemic source in North American to Europe and Asia due to aquaculture activities. In contrast, VHSV has broad host range and high genetic diversity, and the source of emergence events is virus in widespread marine fish reservoirs in the northern Atlantic and Pacific Oceans. Common mechanisms of emergence and host switch events include use of raw feed, proximity to wild fish reservoirs of virus, and geographic translocations of virus or naive fish hosts associated with aquaculture.
Aphids (Hemiptera, Aphididae) on ornamental plants in greenhouses in Bulgaria
Yovkova, Mariya; Petrović-Obradović, Olivera; Tasheva-Terzieva, Elena; Pencheva, Aneliya
2013-01-01
Abstract Investigations on the species composition and host range of aphids on ornamental greenhouse plants in Bulgaria was conducted over a period of five years, from 2008 to 2012. Twenty greenhouses, growing ornamentals for landscaping, plant collections and other purposes were observed. They were located in the regions of Sofia, Plovdiv, Smolyan, Pavlikeni, Varna and Burgas. The total number of collected aphid samples was 279. Their composition included 33 aphid species and one subspecies from 13 genera and 5 subfamilies. Twenty-eight species were found to belong to subfamily Aphidinae. Almost 70 % of all recorded species were polyphagous. The most widespread aphid species was Myzus persicae, detected in 13 greenhouses all year round, followed by Aulacorthum solani (10 greenhouses) and Aphis gossypii (9 greenhouses). The widest host range was shown by Myzus persicae (43 hosts), Aulacorthum solani (32 hosts) and Aulacorthum circumflexum (23 hosts). The list of host plants includes 114 species from 95 genera and 58 families. The greatest variety of aphid species was detected on Hibiscus (9 species). Out of all aphid samples 12.9 % were collected on Hibiscus and 6.8 %, on Dendranthema. The greatest variety of aphid species was detected on Hibiscus (9 species). Periphyllus californiensis and Aphis (Aphis) fabae mordvilkoi are reported for the first time for Bulgaria. Furthermore, Aphis spiraecola has been found in new localities and has widened its host range in this country. PMID:24039530
Comparative whole genome analysis of six diagnostic brucellaphages.
Farlow, Jason; Filippov, Andrey A; Sergueev, Kirill V; Hang, Jun; Kotorashvili, Adam; Nikolich, Mikeljon P
2014-05-15
Whole genome sequencing of six diagnostic brucellaphages, Tbilisi (Tb), Firenze (Fz), Weybridge (Wb), S708, Berkeley (Bk) and R/C, was followed with genomic comparisons including recently described genomes of the Tb phage from Mexico (TbM) and Pr phage to elucidate genomic diversity and candidate host range determinants. Comparative whole genome analysis revealed high sequence homogeneity among these brucellaphage genomes and resolved three genetic groups consistent with defined host range phenotypes. Group I was composed of Tb and Fz phages that are predominantly lytic for Brucella abortus and Brucella neotomae; Group II included Bk, R/C, and Pr phages that are lytic mainly for B. abortus, Brucella melitensis and Brucella suis; Group III was composed of Wb and S708 phages that are lytic for B. suis, B. abortus and B. neotomae. We found that the putative phage collar protein is a variable locus with features that may be contributing to the host specificities exhibited by different brucellaphage groups. The presence of several candidate host range determinants is illustrated herein for future dissection of the differential host specificity observed among these phages. Published by Elsevier B.V.
78 FR 37877 - Request for Transit Rail Advisory Committee for Safety (TRACS) Nominations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
... transportation as FTA implements new statutory authority for public transportation safety oversight. FOR FURTHER... public transportation. Therefore, TRACS membership will be reconfigured to reflect a broader range of... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Request for Transit Rail Advisory...
Are adaptation costs necessary to build up a local adaptation pattern?
Magalhães, Sara; Blanchet, Elodie; Egas, Martijn; Olivieri, Isabelle
2009-08-03
Ecological specialization is pervasive in phytophagous arthropods. In such specialization mode, limits to host range are imposed by trade-offs preventing adaptation to several hosts. The occurrence of such trade-offs is inferred by a pattern of local adaptation, i.e., a negative correlation between relative performance on different hosts. To establish a causal link between local adaptation and trade-offs, we performed experimental evolution of spider mites on cucumber, tomato and pepper, starting from a population adapted to cucumber. Spider mites adapted to each novel host within 15 generations and no further evolution was observed at generation 25. A pattern of local adaptation was found, as lines evolving on a novel host performed better on that host than lines evolving on other hosts. However, costs of adaptation were absent. Indeed, lines adapted to tomato had similar or higher performance on pepper than lines evolving on the ancestral host (which represent the initial performance of all lines) and the converse was also true, e.g. negatively correlated responses were not observed on the alternative novel host. Moreover, adapting to novel hosts did not result in decreased performance on the ancestral host. Adaptation did not modify host ranking, as all lines performed best on the ancestral host. Furthermore, mites from all lines preferred the ancestral to novel hosts. Mate choice experiments indicated that crosses between individuals from the same or from a different selection regime were equally likely, hence development of reproductive isolation among lines adapted to different hosts is unlikely. Therefore, performance and preference are not expected to impose limits to host range in our study species. Our results show that the evolution of a local adaptation pattern is not necessarily associated with the evolution of an adaptation cost.
Eight new Arthrinium species from China
Wang, Mei; Tan, Xiao-Ming; Liu, Fang; Cai, Lei
2018-01-01
Abstract The genus Arthrinium includes important plant pathogens, endophytes and saprobes with a wide host range and geographic distribution. In this paper, 74 Arthrinium strains isolated from various substrates such as bamboo leaves, tea plants, soil and air from karst caves in China were examined using a multi-locus phylogeny based on a combined dataset of ITS rDNA, TEF1 and TUB2, in conjunction with morphological characters, host association and ecological distribution. Eight new species were described based on their distinct phylogenetic relationships and morphological characters. Our results indicated a high species diversity of Arthrinium with wide host ranges, amongst which, Poaceae and Cyperaceae were the major host plant families of Arthrinium species. PMID:29755262
Eight new Arthrinium species from China.
Wang, Mei; Tan, Xiao-Ming; Liu, Fang; Cai, Lei
2018-01-01
The genus Arthrinium includes important plant pathogens, endophytes and saprobes with a wide host range and geographic distribution. In this paper, 74 Arthrinium strains isolated from various substrates such as bamboo leaves, tea plants, soil and air from karst caves in China were examined using a multi-locus phylogeny based on a combined dataset of ITS rDNA, TEF1 and TUB2, in conjunction with morphological characters, host association and ecological distribution. Eight new species were described based on their distinct phylogenetic relationships and morphological characters. Our results indicated a high species diversity of Arthrinium with wide host ranges, amongst which, Poaceae and Cyperaceae were the major host plant families of Arthrinium species.
Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L.
Hernandez-Lucas, I; Segovia, L; Martinez-Romero, E; Pueppke, S G
1995-07-01
We determined the nucleotide sequences of 16S rRNA gene segments from five Rhizobium strains that have been isolated from tropical legume species. All share the capacity to nodulate Phaseolus vulgaris L., the common bean. Phylogenetic analysis confirmed that these strains are of two different chromosomal lineages. We defined the host ranges of two strains of Rhizobium etli and three strains of R. tropici, comparing them with those of the two most divergently related new strains. Twenty-two of the 43 tested legume species were nodulated by three or more of these strains. All seven strains have broad host ranges that include woody species such as Albizia lebbeck, Gliricidia maculata, and Leucaena leucocephala.
Liu, Jia; Wennier, Sonia; Moussatche, Nissin; Reinhard, Mary; Condit, Richard
2012-01-01
The myxoma virus (MYXV) carries three tandem C7L-like host range genes (M062R, M063R, and M064R). However, despite the fact that the sequences of these three genes are similar, they possess very distinctive functions in vivo. The role of M064 in MYXV pathogenesis was investigated and compared to the roles of M062 and M063. We report that M064 is a virulence factor that contributes to MYXV pathogenesis but lacks the host range properties associated with M062 and M063. PMID:22379095
Liu, Jia; Wennier, Sonia; Moussatche, Nissin; Reinhard, Mary; Condit, Richard; McFadden, Grant
2012-05-01
The myxoma virus (MYXV) carries three tandem C7L-like host range genes (M062R, M063R, and M064R). However, despite the fact that the sequences of these three genes are similar, they possess very distinctive functions in vivo. The role of M064 in MYXV pathogenesis was investigated and compared to the roles of M062 and M063. We report that M064 is a virulence factor that contributes to MYXV pathogenesis but lacks the host range properties associated with M062 and M063.
Hahn, D.C.; O'Connor, R.J.; Scott, J. Michael; Heglund, Patricia J.; Morrison, Michael L.; Haufler, Jonathan B.; Wall, William A.
2002-01-01
Avian species distributions are typically regarded as constrained by spatially extensive variables such as climate, habitat, spatial patchiness, and microhabitat attributes. We hypothesized that the distribution of a brood parasite depends as strongly on host distribution patterns as on biophysical factors and examined this hypothesis with respect to the national distribution of the Brown-headed Cowbird (Molothrus ater). We applied a classification and regression (CART) analysis to data from the Breeding Bird Survey (BBS) and the Christmas Bird Count (CBC) and derived hierarchically organized statistical models of the influence of climate and weather, cropping and land use, and host abundance and distribution on the distribution of the Brown-headed Cowbird within the conterminous United States. The model accounted for 47.2% of the variation in cowbird incidence, and host abundance was the top predictor with an R2 of 18.9%. The other predictors identified by the model (crops 15.7%, weather and climate 14.3%, and region 9.6%) fit the ecological profile of this cowbird. We showed that host abundance was independent of these environmental predictors of cowbird distribution. At the regional scale host abundance played a very strong role in determining cowbird abundance in the cowbird?s colonized range east and west of their ancestral range in the Great Plains (26.6%). Crops were not a major predictor for cowbirds in their ancestral range, although they are the most important predictive factor (33%) for the grassland passerines that are the cowbird?s ancestral hosts. Consequently our findings suggest that the distribution of hosts does indeed take precedence over habitat attributes in shaping the cowbird?s distribution at a national scale, within an envelope of constraint set by biophysical factors.
Beadell, J.S.; Gering, E.; Austin, J.; Dumbacher, J.P.; Peirce, M.A.; Pratt, T.K.; Atkinson, C.T.; Fleischer, R.C.
2004-01-01
The degree to which widespread avian blood parasites in the genera Plasmodium and Haemoproteus pose a threat to novel hosts depends in part on the degree to which they are constrained to a particular host or host family. We examined the host distribution and host-specificity of these parasites in birds from two relatively understudied and isolated locations: Australia and Papua New Guinea. Using polymerase chain reaction (PCR), we detected infection in 69 of 105 species, representing 44% of individuals surveyed (n = 428). Across host families, prevalence of Haemoproteus ranged from 13% (Acanthizidae) to 56% (Petroicidae) while prevalence of Plasmodium ranged from 3% (Petroicidae) to 47% (Ptilonorhynchidae). We recovered 78 unique mitochondrial lineages from 155 sequences. Related lineages of Haemoproteus were more likely to derive from the same host family than predicted by chance at shallow (average LogDet genetic distance = 0, n = 12, P = 0.001) and greater depths (average distance = 0.014, n = 11, P < 0.001) within the parasite phylogeny. Within two major Haemoproteus subclades identified in a maximum likelihood phylogeny, host-specificity was evident up to parasite genetic distances of 0.029 and 0.007 based on logistic regression. We found no significant host relationship among lineages of Plasmodium by any method of analysis. These results support previous evidence of strong host-family specificity in Haemoproteus and suggest that lineages of Plasmodium are more likely to form evolutionarily-stable associations with novel hosts.
Characterization of two biologically distinct variants of Tomato spotted wilt virus
USDA-ARS?s Scientific Manuscript database
Significant economic losses result on a wide range of crops due to infection with Tomato spotted wilt virus (TSWV). In this study, two TSWV isolates, one from basil and a second from tomato, were established in a common plant host. Viral proteins were monitored over time, plant host ranges were comp...
USDA-ARS?s Scientific Manuscript database
Chinese tallow, Triadica sebifera, is an invasive weed that infests natural and agricultural areas of the southeastern USA. A candidate for biological control of Chinese tallow has been studied under quarantine conditions. The biology and host range of a primitive leaf feeding beetle, Heterapoderops...
USDA-ARS?s Scientific Manuscript database
Sclerotinia sclerotiorum and S. trifoliorum cause Sclerotinia stem and crown rot of chickpea and white mold on many economically important crops. The host range of S. trifoliorum is mainly on cool season forage and grain legumes of about 40 plant species, whereas the host range of S. sclerotiorum ...
USDA-ARS?s Scientific Manuscript database
The fundamental host range of the arundo leafminer, Lasioptera donacis a candidate agent for the invasive weed, Arundo donax was evaluated. Lasioptera donacis collects and inserts spores of a saprophytic fungus, Arthrinium arundinis, during oviposition. Larvae feed and develop in the decomposing le...
Anthropogenic drivers of gypsy moth spread
Kevin M. Bigsby; Patrick C. Tobin; Erin O. Sills
2011-01-01
The gypsy moth, Lymantria dispar (L.), is a polyphagous defoliator introduced to Medford, Massachusetts in 1869. It has spread to over 860,000 km2 in North America, but this still only represents 1/4 of its susceptible host range in the United States. To delay defoliation in the remaining susceptible host range, the government...
NREL to Host Range of Activities for Energy Awareness Month
Host Range of Activities for Energy Awareness Month Events devoted to energy savings Golden, Colo., Sept. 20, 2000 - Visitors will get an inside look at advanced energy technologies and learn tips for cutting utility bills when the U.S. Department of Energy's National Renewable Energy
Bridle, Jon R; Buckley, James; Bodsworth, Edward J; Thomas, Chris D
2014-02-07
Generalist species and phenotypes are expected to perform best under rapid environmental change. In contrast to this view that generalists will inherit the Earth, we find that increased use of a single host plant is associated with the recent climate-driven range expansion of the UK brown argus butterfly. Field assays of female host plant preference across the UK reveal a diversity of adaptations to host plants in long-established parts of the range, whereas butterflies in recently colonized areas are more specialized, consistently preferring to lay eggs on one host plant species that is geographically widespread throughout the region of expansion, despite being locally rare. By common-garden rearing of females' offspring, we also show an increase in dispersal propensity associated with the colonization of new sites. Range expansion is therefore associated with an increase in the spatial scale of adaptation as dispersive specialists selectively spread into new regions. Major restructuring of patterns of local adaptation is likely to occur across many taxa with climate change, as lineages suited to regional colonization rather than local success emerge and expand.
Infectious disease agents mediate interaction in food webs and ecosystems
Selakovic, Sanja; de Ruiter, Peter C.; Heesterbeek, Hans
2014-01-01
Infectious agents are part of food webs and ecosystems via the relationship with their host species that, in turn, interact with both hosts and non-hosts. Through these interactions, infectious agents influence food webs in terms of structure, functioning and stability. The present literature shows a broad range of impacts of infectious agents on food webs, and by cataloguing that range, we worked towards defining the various mechanisms and their specific effects. To explore the impact, a direct approach is to study changes in food-web properties with infectious agents as separate species in the web, acting as additional nodes, with links to their host species. An indirect approach concentrates not on adding new nodes and links, but on the ways that infectious agents affect the existing links across host and non-host nodes, by influencing the ‘quality’ of consumer–resource interaction as it depends on the epidemiological state host involved. Both approaches are natural from an ecological point of view, but the indirect approach may connect more straightforwardly to commonly used tools in infectious disease dynamics. PMID:24403336
Daniel R. West; Jennifer S. Briggs; William R. Jacobi; Jose F. Negron
2016-01-01
Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for...
Amphibian chytridiomycosis: a review with focus on fungus-host interactions.
Van Rooij, Pascale; Martel, An; Haesebrouck, Freddy; Pasmans, Frank
2015-11-25
Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host's skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit.
Reverter, Miriam; Cutmore, Scott C; Bray, Rodney; Cribb, Thomas H; Sasal, Pierre
2016-10-01
We studied the monogenean communities of 34 species of butterflyfish from the tropical Indo-West Pacific, identifying 13 dactylogyrid species (including two species that are presently undescribed). Monogenean assemblages differed significantly between host species in terms of taxonomic structure, intensity and prevalence. Parasite richness ranged from 0 (Chaetodon lunulatus) to 11 (C. auriga, C. citrinellus and C. lunula). Host specificity varied between the dactylogyrids species, being found on 2-29 of the 34 chaetodontid species examined. Sympatric butterflyfish species were typically parasitized by different combinations of dactylogyrid species, suggesting the existence of complex host-parasite interactions. We identified six clusters of butterflyfish species based on the similarities of their dactylogyrid communities. Dactylogyrid richness and diversity were not related to host size, diet specialization, depth range or phylogeny of butterflyfish species. However, there was a weak positive correlation between monogenean richness and diversity and host geographical range. Most communities of dactylogyrids were dominated by Haliotrema aurigae and H. angelopterum, indicating the importance of the genus Haliotrema in shaping monogenean communities of butterflyfishes. This study casts light on the structure of the monogenean communities of butterflyfishes, suggesting that the diversity and complexity of community structures arises from a combination of host species-specific parameters.
Fire blight: applied genomic insights of the pathogen and host
USDA-ARS?s Scientific Manuscript database
The enterobacterial phytopathogen, Erwinia amylovora, causes fire blight, an invasive disease that threatens a wide range of commercial and ornamental Rosaceae host plants. The response elicited by E. amylovora in its host during disease development is similar to the hypersensitive reaction that ty...
Roles of Long and Short Replication Initiation Proteins in the Fate of IncP-1 Plasmids
Yano, Hirokazu; Deckert, Gail E.; Rogers, Linda M.
2012-01-01
Broad-host-range IncP-1 plasmids generally encode two replication initiation proteins, TrfA1 and TrfA2. TrfA2 is produced from an internal translational start site within trfA1. While TrfA1 was previously shown to be essential for replication in Pseudomonas aeruginosa, its role in other bacteria within its broad host range has not been established. To address the role of TrfA1 and TrfA2 in other hosts, efficiency of transformation, plasmid copy number (PCN), and plasmid stability were first compared between a mini-IncP-1β plasmid and its trfA1 frameshift variant in four phylogenetically distant hosts: Escherichia coli, Pseudomonas putida, Sphingobium japonicum, and Cupriavidus necator. TrfA2 was sufficient for replication in these hosts, but the presence of TrfA1 enhanced transformation efficiency and PCN. However, TrfA1 did not contribute to, and even negatively affected, long-term plasmid persistence. When trfA genes were cloned under a constitutive promoter in the chromosomes of the four hosts, strains expressing either both TrfA1 and TrfA2 or TrfA1 alone, again, generally elicited a higher PCN of an IncP1-β replicon than strains expressing TrfA2 alone. When a single species of TrfA was produced at different concentrations in E. coli cells, TrfA1 maintained a 3- to 4-fold higher PCN than TrfA2 at the same TrfA concentrations, indicating that replication mediated by TrfA1 is more efficient than that by TrfA2. These results suggest that the broad-host-range properties of IncP-1 plasmids are essentially conferred by TrfA2 and the intact replication origin alone but that TrfA1 is nonetheless important to efficiently establish plasmid replication upon transfer into a broad range of hosts. PMID:22228734
Australian Employers' Adoption of Traineeships
ERIC Educational Resources Information Center
Smith, Erica; Comyn, Paul; Brennan Kemmis, Ros; Smith, Andy
2011-01-01
Traineeships are apprenticeship-like training arrangements that were initiated in Australia in 1985. They were designed to introduce apprenticeship training to a broader range of industries, occupations and individuals; they are available in occupations outside the traditional trades and crafts. Many companies use them on a large scale, some…
Energy Perspective: Is Hydroelectricity Green?
ERIC Educational Resources Information Center
Childress, Vincent W.
2009-01-01
The current worldwide concern over energy is primarily related to imported oil, oil drilling and refining capacity, and transportation capacity. However, this concern has bolstered interest in a broader range of "green" energy technologies. In this article, the author discusses the use of hydroelectricity as an alternative energy source…
The Long and Winding Path (from Instructional Design to Performance Technology).
ERIC Educational Resources Information Center
Carr, Clay; Totzke, Larry
1995-01-01
Presents a case study based on experiences at Amway Corporation that explains how the Human Resources Development Department progressed from providing training to providing a broader range of human performance technology interventions. Strategic planning is described, including identifying incentives and required competencies, providing for…
Heermann, Ralf; Fuchs, Thilo M
2008-01-01
Background Photorhabdus luminescens and Yersinia enterocolitica are both enteric bacteria which are associated with insects. P. luminescens lives in symbiosis with soil nematodes and is highly pathogenic towards insects but not to humans. In contrast, Y. enterocolitica is widely found in the environment and mainly known to cause gastroenteritis in men, but has only recently been shown to be also toxic for insects. It is expected that both pathogens share an overlap of genetic determinants that play a role within the insect host. Results A selective genome comparison was applied. Proteins belonging to the class of two-component regulatory systems, quorum sensing, universal stress proteins, and c-di-GMP signalling have been analysed. The interorganismic synopsis of selected regulatory systems uncovered common and distinct signalling mechanisms of both pathogens used for perception of signals within the insect host. Particularly, a new class of LuxR-like regulators was identified, which might be involved in detecting insect-specific molecules. In addition, the genetic overlap unravelled a two-component system that is unique for the genera Photorhabdus and Yersinia and is therefore suggested to play a major role in the pathogen-insect relationship. Our analysis also highlights factors of both pathogens that are expressed at low temperatures as encountered in insects in contrast to higher (body) temperature, providing evidence that temperature is a yet under-investigated environmental signal for bacterial adaptation to various hosts. Common degradative metabolic pathways are described that might be used to explore nutrients within the insect gut or hemolymph, thus enabling the proliferation of P. luminescens and Y. enterocolitica in their invertebrate hosts. A strikingly higher number of genes encoding insecticidal toxins and other virulence factors in P. luminescens compared to Y. enterocolitica correlates with the higher virulence of P. luminescens towards insects, and suggests a putative broader insect host spectrum of this pathogen. Conclusion A set of factors shared by the two pathogens was identified including those that are involved in the host infection process, in persistence within the insect, or in host exploitation. Some of them might have been selected during the association with insects and then adapted to pathogenesis in mammalian hosts. PMID:18221513
William S. Currie; Mark E. Harmon; Ingrid C. Burke; Stephen C. Hart; William J. Parton; Whendee L. Silver
2009-01-01
We analyzed results from 10-year long field incubations of foliar and fine root litter from the Long-term lntersite Decomposition Experiment Team (LIDET) study. We tested whether a variety of climate and litter quality variables could be used to develop regression models of decomposition parameters across wide ranges in litter quality and climate and whether these...
Vision-mediated exploitation of a novel host plant by a tephritid fruit fly.
Piñero, Jaime C; Souder, Steven K; Vargas, Roger I
2017-01-01
Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion.
Vision-mediated exploitation of a novel host plant by a tephritid fruit fly
2017-01-01
Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion. PMID:28380069
Seasonal parasitism and host specificity of Trissolcus japonicus in northern China
USDA-ARS?s Scientific Manuscript database
The Asian egg parasitoid Trissolcus japonicus is considered the most promising species for classical biological control of Halyomorpha halys. We investigated the fundamental and ecological host range of T. japonicus in northern China to define its host specificity, and we determined that T. japonicu...
Andreou, Demetra; Gozlan, Rodolphe Elie
2016-08-01
The rosette agent Sphaerothecum destruens is a novel pathogen, which is currently believed to have been introduced into Europe along with the introduction of the invasive fish topmouth gudgeon Pseudorasbora parva (Temminck & Schlegel, 1846). Its close association with P. parva and its wide host species range and associated host mortalities, highlight this parasite as a potential source of disease emergence in European fish species. Here, using a meta-analysis of the reported S. destruens prevalence across all reported susceptible hosts species; we calculated host-specificity providing support that S. destruens is a true generalist. We have applied all the available information on S. destruens and host-range to an established framework for risk-assessing non-native parasites to evaluate the risks posed by S. destruens and discuss the next steps to manage and prevent disease emergence of this generalist parasite.
NASA Astrophysics Data System (ADS)
van Alderwerelt, B. M.; Ukstins Peate, I.; Ramos, F. C.
2016-12-01
Faulting in the upper crust of the Central Andes has provided passage for small volumes of mafic magma to reach the surface, providing a window into petrogenetic processes in the region's deep crust and upper mantle. Mafic lavas are rare in the Central Andean region dominated by intermediate-composition arc volcanism and massive sheets of silicic ignimbrite, and provide key data on magmatic origin, evolution, and transport. This work characterizes fault-controlled, within-arc monogenetic eruptive centers representative of the most mafic volcanism in the Altiplano-Puna region of the Andes since (at least) the Mesozoic. Olivine-phyric basaltic andesite (54 wt% SiO2, 7.3 wt% MgO) at Cerro Overo maar and associated dome, La Albóndiga Grande, and an olivine-clinopyroxene flow (53 wt% SiO2, 6.7 wt% MgO) from Cordón de Puntas Negras have been erupted at the intersection of regional structural features and the modern volcanic arc. Bulk magma chemistry, radiogenic isotopes, and microanalyses of mineral and melt inclusion composition provide insight on the composition(s) of mafic magmas being delivered to the lowermost crust and the deep crustal processes which shape central Andean magma. Bulk major and trace elements follow regional arc differentiation trends and are clearly modified by crustal magmatic processes. In contrast, microanalyses reveal a much richer history with olivine-hosted melt inclusions recording multiple distinct magmas, including potential primary melts. Single crystal olivine 87Sr/86Sr from Cerro Overo (0.7041-0.7071) define a broader range than whole rock (0.7062-0.7065), indicating preservation of juvenile melt in olivine-hosted inclusions lost at the whole rock scale. Mineral chemistry (via EMPA) P-T calculations define a petrogenetic history for these endmember lavas. Field mapping, bulk chemistry, and microanalyses outline the generation, storage, transportation, and eventual eruption of the "hidden" mafic component of the Andean arc.
USDA-ARS?s Scientific Manuscript database
Host range tests were conducted with Colletotrichum gloeosporioides f. sp. salsolae (CGS) in quarantine to determine whether the fungus is safe to release in N. America for biological control of tumbleweed (Salsola tragus L., Chenopodiaceae). Ninety-two accessions were analyzed from 19 families and...
USDA-ARS?s Scientific Manuscript database
The host range of Eucosmophora schinusivora Davis & Wheeler (Lepidoptera: Gracillariidae) was studied to assess its suitability as a biological control agent of Schinus terebinthifolius Raddi (Anacardiaceae), a serious environmental and agricultural weed in the USA and elsewhere in the world. The l...
USDA-ARS?s Scientific Manuscript database
In this study we investigated the host range, transmission and symptom development of TVCV in several species of plants, as a step toward developing management strategy against seed transmissible viruses. While several species of plants failed to show symptoms of TVCV infection, we report that bush ...
Feng, Yansong; Li, Ping; Zhuang, Xuming; Ye, Kaiqi; Peng, Tai; Liu, Yu; Wang, Yue
2015-08-14
A novel phosphorescent host FPYPCA possessing the bipolar charge transporting ability realizes the most efficient deep-red PhOLED, which maintains very high-level EQEs of >23% at rather a high and wide luminance range of 1000-10 000 cd m(-2).
USDA-ARS?s Scientific Manuscript database
Apanteles opuntiarum, a parasitoid of cactus-feeding lepidopteran larvae, was incorrectly identified as A. alexanderi during the last 50 years. The discovery of A. opuntiarum as a new and separate species was followed by studies of its native host range. These studies revealed that the host range o...
Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L.
Hernandez-Lucas, I; Segovia, L; Martinez-Romero, E; Pueppke, S G
1995-01-01
We determined the nucleotide sequences of 16S rRNA gene segments from five Rhizobium strains that have been isolated from tropical legume species. All share the capacity to nodulate Phaseolus vulgaris L., the common bean. Phylogenetic analysis confirmed that these strains are of two different chromosomal lineages. We defined the host ranges of two strains of Rhizobium etli and three strains of R. tropici, comparing them with those of the two most divergently related new strains. Twenty-two of the 43 tested legume species were nodulated by three or more of these strains. All seven strains have broad host ranges that include woody species such as Albizia lebbeck, Gliricidia maculata, and Leucaena leucocephala. PMID:7618891
Okada, Hajime; Tanaka, Momoko; Kiriyama, Hiromitsu; Nakai, Yoshiki; Ochi, Yoshihiro; Sugiyama, Akira; Daido, Hiroyuki; Kimura, Toyoaki; Yanagitani, Takagimi; Yagi, Hideki; Meichin, Noriyuki
2010-09-15
We have successfully developed and demonstrated broadband emission Nd-doped mixed scandium garnets based on laser ceramic technology. The inhomogeneous broadening of Nd(3+) fluorescence lines results in a bandwidth above 5 nm that is significantly broader than that for Nd:YAG and enables subpicosecond mode-locked pulse durations. We have also found the emission cross section of 7.8 × 10(-20) cm(2) to be adequate for efficient energy extraction and thermal conductivity of 4.7 W/mK from these new Nd-doped laser ceramics. The new laser ceramics are good candidates for laser host material in a diode-pumped subpicosecond laser system with high efficiency and high repetition rate.
Nurses, nannies and caring work: importation, visibility and marketability.
Brush, Barbara L; Vasupuram, Rukmini
2006-09-01
This paper examines nurses' international migration within the broader context of female migration, particularly against more studied groups of women who have migrated for employment in care-giving roles. We analyze the similarities and differences between skilled professional female migrants (nurses) and domestic workers (nannies and in-home caretakers) and how societal expectations, meanings, and values of care and 'women's work', together with myriad social, cultural, economic and political processes, construct the female migrant care-giver experience. We argue that, as the recruitment of foreign workers gains visibility, strategies are introduced to better prepare female migrant care-givers for the marketplace. Language, specifically command of English and accent modification, is highlighted as one means to assimilate migrant care-givers to host communities.
Hrynaszkiewicz, Iain
2010-09-02
BMC Research Notes aims to ensure that data files underlying published articles are made available in standard, reusable formats, and the journal is calling for contributions from the scientific community to achieve this goal. Educational Data Notes included in this special series should describe a domain-specific data standard and provide an example data set with the article, or a link to data that are permanently hosted elsewhere. The contributions should also provide some evidence of the data standard's application and preparation guidance that could be used by others wishing to conduct similar experiments. The journal is also keen to receive contributions on broader aspects of scientific data sharing, archiving, and open data.
Plasma Physics at the National Science Foundation
NASA Astrophysics Data System (ADS)
Lukin, Vyacheslav
2017-10-01
The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.
NASA Astrophysics Data System (ADS)
Caumont, Herve; Brito, Fabrice; Mathot, Emmanuel; Barchetta, Francesco; Loeschau, Frank
2015-04-01
We present recent achievements with the Geohazards Exploitation Platform (GEP), a European contribution to the GEO SuperSites, and its interoperability with the MEDiterranean SUpersite Volcanoes (MED-SUV) e- infrastructure. The GEP is a catalyst for the use of satellite Earth observation missions, providing data to initiatives such as the GEO Geohazard Supersites and Natural Laboratories (GSNL), the Volcano and Seismic Hazards CEOS Pilots or the European Plate Observing System (EPOS). As satellite sensors are delivering increasing amounts of data, researchers need more computational science tools and services. The GEP contribution in this regard allows scientists to access different data types, relevant to the same area and phenomena and to directly stage selected inputs to scalable processing applications that deliver EO-based science products. With the GEP concept of operation for improved collaboration, a partner can bring its processing tools, use from his workspace other shared toolboxes and access large data repositories. GEP is based on Open Source Software components, on a Cloud Services architecture inheriting a range of ESA and EC funded innovations, and is associating the scientific community and SMEs in implementing new capabilities. Via MED-SUV, we are making discoverable and accessible a large number of products over the Mt. Etna, Vesu- vius/Campi Flegrei volcanic areas, which are of broader interest for Geosciences researchers, so they can process ENVISAT MERIS, ENVISAT ASAR, and ERS SAR data (both Level 1 and Level 2) hosted in the ESA clusters and in ESA's Virtual Archive, TerraSAR-X data hosted in DLR's Virtual Archive, as well as data hosted in other dedicated MED-SUV Virtual Archives (e.g. for LANDSAT, EOS-1). GEP will gradually access Sentinel-1A data, other space agencies data and value-added products. Processed products can also be published and archived on the MED-SUV e-Infrastructure. In this effort, data policy rules applied to the acquisitions are verified against the GEOSS Data Collection of Open Resources for Everyone (GEOSS Data-CORE) principles. The resulting infras- tructure repositories include connectivity to the GEOSS Data Access Broker (DAB), through the "OGC CS-W OpenSearch Geo and Time extensions" interface standard, a key interoperability arrangement used by the MED- SUV systems, making EO data products available to both the project partners and the broader initiatives. GEP is also proposing and further developing hosted processing, aimed at MED-SUV researchers' work on new methods to integrate in-situ and satellite sensors data: a set of users services (concept of Platform-as-a-Service, or PaaS) for generating value-added products, including tools to design and develop Hadoop-enabled processing chains. The PaaS core engine is the Developer Cloud Sandboxes service, where scalable processing chains are prepared and validated. The PaaS makes use of Virtual Machines technology, and of middleware for scaling-out processing tasks via interfaces to commercial Cloud Providers, or through research agreements to academic re- sources like EGI.eu. After integration, processors are deployed and invoked 'as-a-Service' by partners via OGC Web Processing Service standard interface, or shared as reusable virtualized resources. Recent integration work covered e.g. ROI_PAC, GMTSAR and DORIS ADORE toolboxes along with supporting processing services such as DEM generation. Such approach has been discussed also with the MARSite project, ensuring the adopted solu- tions are aligned. As part of the MED-SUV project, we are developing tools and services supporting researchers working on new data fusion methods, and fostering collaboration between different end users and partners, including towards the GEO communities. Overall, the approach provides an integrated European contribution for the exploitation of decades of scientific data gathered from Earth observation satellites.
Hoddle, Mark S; Pandey, Raju
2014-02-01
ABSTRACT Tests evaluating the host range of Tamarixia radiata (Waterson) (Hymenoptera: Eulophidae), a parasitoid of the pestiferous Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), sourced from the Punjab of Pakistan, were conducted in quarantine at the University of California, Riverside, CA. Seven nontarget psyllid species (five native and two self-introduced species) representing five families were exposed to T radiata under the following three different exposure scenarios: 1) sequential no-choice tests, 2) static no-choice tests, and 3) choice tests. Nontarget species were selected for testing based on the following criteria: 1) taxonomic relatedness to the target, D. citri; 2) native psyllids inhabiting native host plants related to citrus that could release volatiles attractive to T. radiata; 3) native psyllids with a high probability of occurrence in native vegetation surrounding commercial citrus groves that could be encountered by T. radiata emigrating from D. citri-infested citrus orchards; 4) a common native pest psyllid species; and 5) a beneficial psyllid attacking a noxious weed. The results of host range testing were unambiguous; T radiata exhibited a narrow host range and high host specificity, with just one species of nontarget psyllid, the abundant native pest Bactericera cockerelli Sulc, being parasitized at low levels (< 5%). These results suggest that the likelihood of significant nontarget impacts is low, and the establishment of T. radiata in southern California for the classical biological control of D. citri poses negligible environmental risk.
The Effects of a Comprehensive Guidance Model on a Rural School's Counseling Program.
ERIC Educational Resources Information Center
Bergin, James J.; And Others
1990-01-01
Examined the reactions and opinions of students, school personnel, and community members regarding the counseling program after the students had experienced a broader range of counseling activities than they had previously experienced. Results indicated the comprehensive developmental guidance program's activities had evoked favorable responses…
This research expands upon earlier Indices of Biotic Integrity (IBI) efforts that have been developed for the Northwest including the Willamette Valley IBI and the Coast Range coldwater IBI. This Oregon/Washington IBI presently being developed encompasses a broader geographic sca...
Recent Research on Children's Testimony about Experienced and Witnessed Events
ERIC Educational Resources Information Center
Pipe, M.E.; Lamb, M.E.; Orbach, Y.; Esplin, P.W.
2004-01-01
Research on memory development has increasingly moved out of the laboratory and into the real world. Whereas early researchers asked whether confusion and susceptibility to suggestion made children unreliable witnesses, furthermore, contemporary researchers are addressing a much broader range of questions about children's memory, focusing not only…
Witnessing Violence: Making the Invisible Visible.
ERIC Educational Resources Information Center
Holton, John K.
1995-01-01
Explores the problem of urban violence, and discusses a research strategy that can help to explain this phenomenon. The author contends that research might best address violence if it was designed to include variables of poverty and racism and was more inclusive of research from a broader range of scientific disciplines. (GR)
Gravity-dependent transport in industrial processes
NASA Technical Reports Server (NTRS)
Ostrach, Simon; Kamotani, Yasuhiro
1994-01-01
Gravity-dependent transport phenomena in various industrial processes are investigated in order to address a broader range of microgravity phenomena and to develop new applications of microgravity. A number of important topics are identified and analyzed in detail. The present article describes results on coating flow, zeolite growth, and rotating electrochemical system.
Diversity and Difference in Early Childhood Education: Issues for Theory and Practice
ERIC Educational Resources Information Center
Robinson, Kerry; Diaz, Criss Jones
2005-01-01
Early childhood professionals are often required to work with children and families from a range of diverse backgrounds. This book goes beyond simplistic definitions of diversity, encouraging a much broader understanding and helping early childhood educators develop a critical disposition towards assumptions about children and childhood in…
77 FR 6527 - Internet Publication of Administrative Seizure and Forfeiture Notices
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-08
.... USCBP-2011-0022] RIN 1651-AA94 Internet Publication of Administrative Seizure and Forfeiture Notices... improve the effectiveness of CBP's notice procedures as Internet publication would reach a broader range... appropriate U.S. Border Patrol sector office. CBP believes that the use of Internet publication for CBP...
76 FR 10874 - Implementation of Revised Lacey Act Provisions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2008-0119] Implementation of Revised Lacey Act Provisions AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... Lacey Act to expand its protections to a broader range of plant species, extended its reach to encompass...
Potential of diazotrophic bacteria associated with sugarcane for energycane production
USDA-ARS?s Scientific Manuscript database
Crosses between sugarcane and wild species of Saccharum and other closely related genera are made to introgress new genes from the wild species into sugarcane. Characteristics of the progeny from these crosses may include increased biomass and the ability to be grown in a broader geographical range ...
NASA Astrophysics Data System (ADS)
Smith, D. J.; Parra, M.; Lane, M.; Almeida, E. A.; Space Biosciences Research Branch
2018-02-01
A compilation of NASA's smallest biological hardware systems (plus 1-g gravity controls and ancillary sensors) that will allow for a wide range of specimen cultivation and analysis, from molecular measurements to broader cell and tissue assays.
Yale University Press: Disseminating "Lux et Veritas"?
ERIC Educational Resources Information Center
Parrott, John B.
2010-01-01
America's university presses are situated within a network of over one hundred universities, learned societies, and scholarly associations. According to a pamphlet put out by the American Association of University Presses, these presses "make available to the broader public the full range and value of research generated by university faculty."…
NASA Astrophysics Data System (ADS)
Ibrahim, Alaa; Ahmed, Yasmin
2015-04-01
Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science This work is part of the PEER research project 2-239 sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htm website: http://CleanAirEgypt.org Links to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: https://vimeo.com/100427525
NASA Astrophysics Data System (ADS)
Ibrahim, A. I.; Tutwiler, R.; Zakey, A.; Shokr, M. E.; Ahmed, Y.; Jereidini, D.; Eid, M.
2014-12-01
Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science Note: This presentation is a PEER project sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htmwebsite: http://CleanAirEgypt.orgLinks to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: http://CleanAirEgypt.org
Host plants of the wheat stem sawfly (Hymenoptera: Cephidae)
USDA-ARS?s Scientific Manuscript database
Wheat stem sawfly (Cephus cinctus Norton) is a pest of economic importance across much of the wheat cultivating areas of the western Great Plains as well as an ecologically important insect due to its wide range of grass hosts. Little research has been published involving the native host preference ...
Identifying Francisella tularensis genes required for growth in host cells
USDA-ARS?s Scientific Manuscript database
Technical Abstract: Francisella tularensis is a highly virulent Gram negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cel...
Uromyces ciceris-arietini, the cause of chickpea rust: new hosts in the Trifolieae, Fabaceae
USDA-ARS?s Scientific Manuscript database
Plants of Medicago polymorpha in Riverside and San Diego, California were collected with severe rust caused by Uromyces ciceris-arietini. Reported hosts of U. ciceris-arietini are Cicer arietinum (chickpea) and Medicago polyceratia. To confirm the potential new host range, a monouredinial isolate RM...
Vision-Mediated exploitation of a novel host plant by a tephritid fruit fly
USDA-ARS?s Scientific Manuscript database
Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera cucurbitae (Coquillett)(Diptera:Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female ...
On the promotion of human flourishing
VanderWeele, Tyler J.
2017-01-01
Many empirical studies throughout the social and biomedical sciences focus only on very narrow outcomes such as income, or a single specific disease state, or a measure of positive affect. Human well-being or flourishing, however, consists in a much broader range of states and outcomes, certainly including mental and physical health, but also encompassing happiness and life satisfaction, meaning and purpose, character and virtue, and close social relationships. The empirical literature from longitudinal, experimental, and quasiexperimental studies is reviewed in attempt to identify major determinants of human flourishing, broadly conceived. Measures of human flourishing are proposed. Discussion is given to the implications of a broader conception of human flourishing, and of the research reviewed, for policy, and for future research in the biomedical and social sciences. PMID:28705870
Host Specificity and Source of Enterocytozoon bieneusi Genotypes in a Drinking Source Watershed
Guo, Yaqiong; Alderisio, Kerri A.; Yang, Wenli; Cama, Vitaliano; Xiao, Lihua
2014-01-01
To assess the host specificity of Enterocytozoon bieneusi and to track the sources of E. bieneusi contamination, we genotyped E. bieneusi in wildlife and stormwater from the watershed of New York City's source water, using ribosomal internal transcribed spacer (ITS)-based PCR and sequence analyses. A total of 255 specimens from 23 species of wild mammals and 67 samples from stormwater were analyzed. Seventy-four (29.0%) of the wildlife specimens and 39 (58.2%) of the stormwater samples from streams were PCR positive. Altogether, 20 E. bieneusi genotypes were found, including 8 known genotypes and 12 new ones. Sixteen and five of the genotypes were seen in animals and stormwater from the watershed, respectively, with WL4 being the most common genotype in both animals (35 samples) and stormwater (23 samples). The 20 E. bieneusi genotypes belonged to five genogroups (groups 1, 3, 4, and 7 and an outlier), with only 23/113 (20.4%) E. bieneusi-positive samples belonging to zoonotic genogroup 1 and 3/20 genotypes ever being detected in humans. The two genogroups previously considered host specific, groups 3 and 4, were both detected in multiple groups of mammals. Thus, with the exception of the type IV, Peru11, and D genotypes, which were detected in only 7, 5, and 2 animals, respectively, most E. bieneusi strains in most wildlife samples and all stormwater samples in the watershed had no known public health significance, as these types have not previously been detected in humans. The role of different species of wild mammals in the contribution of E. bieneusi contamination in stormwater was supported by determinations of host-adapted Cryptosporidium species/genotypes in the same water samples. Data from this study indicate that the host specificity of E. bieneusi group 3 is broader than originally thought, and wildlife is the main source of E. bieneusi in stormwater in the watershed. PMID:24141128
Castro, Ruth M.; Moreira, Lisela; Rojas, María R.; Gilbertson, Robert L.; Hernández, Eduardo; Mora, Floribeth; Ramírez, Pilar
2013-01-01
Leaf samples of Solanum lycopersicum, Capsicum annuum, Cucurbita moschata, Cucurbita pepo, Sechium edule and Erythrina spp. were collected. All samples were positive for begomoviruses using polymerase chain reaction and degenerate primers. A sequence of ∼1,100 bp was obtained from the genomic component DNA-A of 14 samples. In addition, one sequence of ∼580 bp corresponding to the coat protein (AV1) was obtained from a chayote (S. edule) leaf sample. The presence of Squash yellow mild mottle virus (SYMMoV) and Pepper golden mosaic virus (PepGMV) were confirmed. The host range reported for SYMMoV includes species of the Cucurbitaceae, Caricaceae and Fabaceae families. This report extends the host range of SYMMoV to include the Solanaceae family, and extends the host range of PepGMV to include C. moschata, C. pepo and the Fabaceae Erythrina spp. This is the first report of a begomovirus (PepGMV) infecting chayote in the Western Hemisphere. PMID:25288955
Castro, Ruth M; Moreira, Lisela; Rojas, María R; Gilbertson, Robert L; Hernández, Eduardo; Mora, Floribeth; Ramírez, Pilar
2013-09-01
Leaf samples of Solanum lycopersicum, Capsicum annuum, Cucurbita moschata, Cucurbita pepo, Sechium edule and Erythrina spp. were collected. All samples were positive for begomoviruses using polymerase chain reaction and degenerate primers. A sequence of ∼1,100 bp was obtained from the genomic component DNA-A of 14 samples. In addition, one sequence of ∼580 bp corresponding to the coat protein (AV1) was obtained from a chayote (S. edule) leaf sample. The presence of Squash yellow mild mottle virus (SYMMoV) and Pepper golden mosaic virus (PepGMV) were confirmed. The host range reported for SYMMoV includes species of the Cucurbitaceae, Caricaceae and Fabaceae families. This report extends the host range of SYMMoV to include the Solanaceae family, and extends the host range of PepGMV to include C. moschata, C. pepo and the Fabaceae Erythrina spp. This is the first report of a begomovirus (PepGMV) infecting chayote in the Western Hemisphere.
Distinct frontal regions for processing sentence syntax and story grammar.
Sirigu, A; Cohen, L; Zalla, T; Pradat-Diehl, P; Van Eeckhout, P; Grafman, J; Agid, Y
1998-12-01
Time is a fundamental dimension of cognition. It is expressed in the sequential ordering of individual elements in a wide variety of activities such as language, motor control or in the broader domain of long range goal-directed actions. Several studies have shown the importance of the frontal lobes in sequencing information. The question addressed in this study is whether this brain region hosts a single supramodal sequence processor, or whether separate mechanisms are required for different kinds of temporally organised knowledge structures such as syntax and action knowledge. Here we show that so-called agrammatic patients, with lesions in Broca's area, ordered word groups correctly to form a logical sequence of actions but they were severely impaired when similar word groups had to be ordered as a syntactically well-formed sentence. The opposite performance was observed in patients with dorsolateral prefrontal lesions, that is, while their syntactic processing was intact at the sentence level, they demonstrated a pronounced deficit in producing temporally coherent sequences of actions. Anatomical reconstruction of lesions from brain scans revealed that the sentence and action grammar deficits involved distinct, non-overlapping sites within the frontal lobes. Finally, in a third group of patients whose lesions encompassed both Broca's area and the prefrontal cortex, the two types of deficits were found. We conclude that sequence processing is specific to knowledge domains and involves different networks within the frontal lobes.
Kobayashi, Hirokazu; Morinaga, Yuka; Fujimori, Etsuko; Asaji, Tetsuo
2014-07-10
New inclusion compounds (ICs) were prepared using the organic 1D nanochannels of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) as a nanosized template and nitronyl nitroxide (NN) radicals such as phenylnitronylnitroxide (PhNN) and p-nitrophenylnitronylnitroxide (p-NPNN). ESR measurements below 255 K for the CLPOT ICs diluted with spacer molecules gave rigid limit spectra similar to that for PhNN molecules in a glassy ethanol matrix at low temperature, which suggests isolation of the radical molecules. ESR measurements for them in the range of 290-400 K gave a modulated quintet ESR signal, which suggested uniaxial rotational diffusion of NN radicals in the nanochannels approximately around the principal y-axis of the g-tensors. In the ESR measurements to 430 K for the [(CLPOT)2-(p-NPNN)0.07] IC without spacers, the broader line width than the case in dilution was observed by inter-radical dipolar interaction. In every case, the rotational diffusion activation energies of NN radicals in the CLPOT nanochannels were several times larger than those of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical derivatives (4-X-TEMPO) in CLPOT nanochannels. This is expected due to the larger molecular size of NN radicals than 4-X-TEMPO or stronger interaction between NN radicals and the surrounding host or guest molecules.
Roy, Hervé; Ibba, Michael
2009-01-01
Aminoacylphosphatidylglycerol synthases (aaPGSs) are multiple peptide resistance factors that transfer amino acids from aminoacyl-tRNAs to phosphatidylglycerol (PG) in the cytoplasmic membrane. Aminoacylation of PG is used by bacteria to decrease the net negative charge of the cell envelope, diminishing affinity for charged molecules and allowing for adaptation to environmental changes. Lys-PGS, which transfers lysine to PG, is essential for the virulence of certain pathogens, providing resistance to both host cationic antimicrobial peptides and therapeutic antibiotics. Ala-PGS was also recently described, but little is known about the possible activities of other members of the highly diverse aaPGS family of proteins. Systematic deletion of the predicted membrane-inserted domains of several aaPGSs revealed that the carboxyl-terminal hydrophilic domain alone is sufficient for aminoacylphosphatidylglycerol transferase catalytic activity. In contrast to previously characterized aaPGSs, the Enterococcus faecium enzyme used an expanded repertoire of amino acids to modify PG with Ala, Arg, or Lys. Reexamination of previously characterized aaPGSs also revealed broader than anticipated substrate specificity, for example Bacillus subtilis Lys-PGS was shown to also catalyze Ala-PG synthesis. The relaxed substrate specificities of these aaPGSs allows for more elaborate remodeling of membrane lipids than previously thought, potentially providing bacteria that harbor these enzymes resistance to a broad spectrum of antibiotics and environmental stresses. PMID:19734140
Replication and persistence of VHSV IVb in freshwater turtles.
Goodwin, Andrew E; Merry, Gwenn E
2011-05-09
With the emergence of viral hemorrhagic septicemia virus (VHSV) strain IVb in the Great Lakes of North America, hatchery managers have become concerned that this important pathogen could be transmitted by animals other than fish. Turtles are likely candidates because they are poikilotherms that feed on dead fish, but there are very few reports of rhabdovirus infections in reptiles and no reports of the fish rhabdoviruses in animals other than teleosts. We injected common snapping turtles Chelydra serpentine and red-eared sliders Trachemys scripta elegans intraperitoneally with 10(4) median tissue culture infectious dose (TCID50) of VHSV-IVb and 21 d later were able to detect the virus by quantitative real-time reverse transcriptase PCR (qrt-RTPCR) in pools of kidney, liver, and spleen. In a second experiment, snapping turtles, red-eared sliders, yellow-bellied sliders T. scripta scripta, and northern map turtles Grapetemys geographica at 14 degrees C were allowed to feed on tissues from bluegill dying of VHSV IVb disease. Turtle kidney, spleen, and brain pools were not positive by qrt-RTPCR on Day 3 post feeding, but were positive on Days 10 and 20. Map turtles on Day 20 post-feeding were positive by both qrt-RTPCR and by cell culture. Our work shows that turtles that consume infected fish are a possible vector for VHSV IVb, and that the fish rhabdoviruses may have a broader host range than previously suspected.
Forming Hot Jupiters: Observational Constraints on Gas Giant Formation and migration
NASA Astrophysics Data System (ADS)
Becker, Juliette; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta
2018-04-01
Since the first extrasolar planets were detected, the existence of hot Jupiters has challenged prevailing theories of planet formation. The three commonly considered pathways for hot Jupiter formation are in situ formation, runaway accretion in the outer disk followed by disk migration, and tidal migration (occurring after the disk has dissipated). None of these explains the entire observed sample of hot Jupiters, suggesting that different selections of systems form via different pathways. The way forward is to use observational data to constrain the migration pathways of particular classes of systems, and subsequently assemble these results into a coherent picture of hot Jupiter formation. We present constraints on the migratory pathway for one particular type of system: hot Jupiters orbiting cool stars (T< 6200 K). Using the full observational sample, we find that the orbits of most wide planetary companions to hot Jupiters around these cool stars must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. The population of systems containing both a hot Jupiter and an exterior companion around a cool star thus generally exist in roughly coplanar configurations, consistent with the idea that disk-driven migratory mechanisms have assembled most of this class of systems. We then discuss the overall applicability of this result to a wider range of systems and the broader implications on planet formation.
Lim, Jun Hyung; Lee, Seung Muk; Kim, Hyun-Suk; Kim, Hyun You; Park, Jozeph; Jung, Seung-Boo; Park, Geun Chul; Kim, Jungho; Joo, Jinho
2017-01-01
We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In3+) and smaller (Ga3+) than the host Zn2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications. PMID:28155879
Wu, Yantao; Li, Li; Zhu, Guoqiang; Li, Wenhui; Zhang, Nianzhang; Li, Shuangnan; Yao, Gang; Tian, Wenjun; Fu, Baoquan; Yin, Hong; Zhu, Xingquan; Yan, Hongbin; Jia, Wanzhong
2018-03-09
Cervids used to be considered the only animal intermediate hosts of the G10 genotype of Echinococcus canadensis. Yaks are often herded in the Qinghai-Tibet Plateau, China, where echinococcosis remains prevalent. However, no E. canadensis G10 cases have been recorded in yaks until now. The aim of our study was to identify causative agents of echinococcosis in yaks in this region. Total genomic DNA was extracted from the germinal layer of one hydatid using a Blood and Tissue Kit. Full-length mitochondrial (mt) cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 1 (nad1) genes were amplified by PCR. All purified PCR products were directly sequenced in both directions. Then seven pairs of overlap primers were designed to amplify the entire mt genome sequence of a suspected E. canadensis G10 isolate. Phylogenetic analyses were performed based on concatenated nucleotides from the 12 protein-coding genes of mt genomes of Echinococcus species in a Bayesian framework using MrBayes v3.1 and implementing the GTR + I + G model. Hydatids were found in yaks (n = 129) when organs were inspected at the slaughterhouse in Maqu county, Gannan Tibetan Autonomous Prefecture, Gansu Province, China in October 2016. Of these, 33 (25.6%) harbored up to a dozen hydatid cysts. One cyst from each yak was characterized by sequencing its mitochondrial (mt) cox1 and nad1 genes. On the basis of these sequence data, 32 cysts were identified as Echinococcus granulosus (sensu stricto) (G1-G3) and the remaining one was identified as the G10 genotype of E. canadensis. Its mt genome was then fully sequenced and compared with that of the G10 genotype in GenBank (AB745463). Phylogenetic analysis using complete mt genomes confirmed the Chinese cyst as belonging to the G10 genotype. To our knowledge, this is the first report globally of E. canadensis (G10) from yaks in China, which suggests that the G10 genotype has a wider geographical distribution and broader host range than previously believed. This genotype has therefore potential risks to human health and animal husbandry.
Kim, Jaynee R.; Hayes, Kenneth A.; Yeung, Norine W.; Cowie, Robert H.
2014-01-01
Eosinophilic meningitis caused by the parasitic nematode Angiostrongylus cantonensis is an emerging infectious disease with recent outbreaks primarily in tropical and subtropical locations around the world, including Hawaii. Humans contract the disease primarily through ingestion of infected gastropods, the intermediate hosts of Angiostrongylus cantonensis. Effective prevention of the disease and control of the spread of the parasite require a thorough understanding of the parasite's hosts, including their distributions, as well as the human and environmental factors that contribute to transmission. The aim of this study was to screen a large cross section of gastropod species throughout the main Hawaiian Islands to determine which act as hosts of Angiostrongylus cantonensis and to assess the parasite loads in these species. Molecular screening of 7 native and 30 non-native gastropod species revealed the presence of the parasite in 16 species (2 native, 14 non-native). Four of the species tested are newly recorded hosts, two species introduced to Hawaii (Oxychilus alliarius, Cyclotropis sp.) and two native species (Philonesia sp., Tornatellides sp.). Those species testing positive were from a wide diversity of heterobranch taxa as well as two distantly related caenogastropod taxa. Review of the global literature showed that many gastropod species from 34 additional families can also act as hosts. There was a wide range of parasite loads among and within species, with an estimated maximum of 2.8 million larvae in one individual of Laevicaulis alte. This knowledge of the intermediate host range of Angiostrongylus cantonensis and the range of parasite loads will permit more focused efforts to detect, monitor and control the most important hosts, thereby improving disease prevention in Hawaii as well as globally. PMID:24788772
Interplay between Candida albicans and the Mammalian Innate Host Defense
Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan
2012-01-01
Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867
Pathogenic and host range determinants of the feline aplastic anemia retrovirus.
Riedel, N; Hoover, E A; Dornsife, R E; Mullins, J I
1988-01-01
Feline leukemia virus (FeLV) C-Sarma (or FSC) is a prototype of subgroup C FeLVs, which induce fatal aplastic anemia in outbred specific-pathogen-free (SPF) cats. FeLV C isolates also possess an extended host range in vitro, including an ability, unique among FeLVs, to replicate in guinea pig cells. To identify the viral determinants responsible for the pathogenicity and host range of FSC we constructed a series of proviral DNAs by exchanging gene fragments between FSC and FeLV-61E (or F6A), the latter of which is minimally pathogenic and whose host range in vitro is restricted to feline cells. Transfer of an 886-base-pair (bp) fragment of FSC, encompassing the codons for 73 amino acids at the 3' end of pol (the integrase/endonuclease gene) and the codons for 241 amino acids of the N-terminal portion of env [the extracellular glycoprotein (gp70) gene], into the F6A genome was sufficient to confer onto chimeric viruses the ability to induce fatal aplastic anemia in SPF cats. In contrast, no chimera lacking this sequence induced disease. When assayed in vitro, all chimeric viruses containing the 886-bp fragment of FSC acquired the ability to replicate in heterologous cells, including dog and guinea pig cells. Thus, the pathogenic and the host range determinants of the feline aplastic anemia retrovirus colocalize to a 3' pol-5' env region of the FSC genome and likely reside within a region encoding 241 amino acid residues of the N terminus of the extracellular glycoprotein. Images PMID:2833751
Sedivy, Claudio; Praz, Christophe J; Müller, Andreas; Widmer, Alex; Dorn, Silvia
2008-10-01
To trace the evolution of host-plant choice in bees of the genus Chelostoma (Megachilidae), we assessed the host plants of 35 Palearctic, North American and Indomalayan species by microscopically analyzing the pollen loads of 634 females and reconstructed their phylogenetic history based on four genes and a morphological dataset, applying both parsimony and Bayesian methods. All species except two were found to be strict pollen specialists at the level of plant family or genus. These oligolectic species together exploit the flowers of eight different plant orders that are distributed among all major angiosperm lineages. Based on ancestral state reconstruction, we found that oligolecty is the ancestral state in Chelostoma and that the two pollen generalists evolved from oligolectic ancestors. The distinct pattern of host broadening in these two polylectic species, the highly conserved floral specializations within the different clades, the exploitation of unrelated hosts with a striking floral similarity as well as a recent report on larval performance on nonhost pollen in two Chelostoma species clearly suggest that floral host choice is physiologically or neurologically constrained in bees of the genus Chelostoma. Based on this finding, we propose a new hypothesis on the evolution of host range in bees.
Gehman, Alyssa-Lois M; Hall, Richard J; Byers, James E
2018-01-23
Host-parasite systems have intricately coupled life cycles, but each interactor can respond differently to changes in environmental variables like temperature. Although vital to predicting how parasitism will respond to climate change, thermal responses of both host and parasite in key traits affecting infection dynamics have rarely been quantified. Through temperature-controlled experiments on an ectothermic host-parasite system, we demonstrate an offset in the thermal optima for survival of infected and uninfected hosts and parasite production. We combine experimentally derived thermal performance curves with field data on seasonal host abundance and parasite prevalence to parameterize an epidemiological model and forecast the dynamical responses to plausible future climate-warming scenarios. In warming scenarios within the coastal southeastern United States, the model predicts sharp declines in parasite prevalence, with local parasite extinction occurring with as little as 2 °C warming. The northern portion of the parasite's current range could experience local increases in transmission, but assuming no thermal adaptation of the parasite, we find no evidence that the parasite will expand its range northward under warming. This work exemplifies that some host populations may experience reduced parasitism in a warming world and highlights the need to measure host and parasite thermal performance to predict infection responses to climate change.
Five challenges in evolution and infectious diseases.
Metcalf, C J E; Birger, R B; Funk, S; Kouyos, R D; Lloyd-Smith, J O; Jansen, V A A
2015-03-01
Evolution is a key aspect of the biology of many pathogens, driving processes ranging from immune escape to changes in virulence. Because evolution is inherently subject to feedbacks, and because pathogen evolution plays out at scales ranging from within-host to between-host and beyond, evolutionary questions provide special challenges to the modelling community. In this article, we provide an overview of five challenges in modelling the evolution of pathogens and their hosts, and point to areas for development, focussing in particular on the issue of linking theory and data. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Host specificity in biological control: insights from opportunistic pathogens
Brodeur, Jacques
2012-01-01
Host/prey specificity is a significant concern in biological control. It influences the effectiveness of a natural enemy and the risks it might have on non-target organisms. Furthermore, narrow host specificity can be a limiting factor for the commercialization of natural enemies. Given the great diversity in taxonomy and mode of action of natural enemies, host specificity is a highly variable biological trait. This variability can be illustrated by opportunist fungi from the genus Lecanicillium, which have the capacity to exploit a wide range of hosts – from arthropod pests to fungi causing plant diseases – through different modes of action. Processes determining evolutionary trajectories in host specificity are closely linked to the modes of action of the natural enemy. This hypothesis is supported by advances in fungal genomics concerning the identity of genes and biological traits that are required for the evolution of life history strategies and host range. Despite the significance of specificity, we still need to develop a conceptual framework for better understanding of the relationship between specialization and successful biological control. The emergence of opportunistic pathogens and the development of ‘omic’ technologies offer new opportunities to investigate evolutionary principles and applications of the specificity of biocontrol agents. PMID:22949922
Oleiro, Marina; Mc Kay, Fernando; Wheeler, Gregory S
2011-06-01
During surveys for natural enemies that could be used as classical biological control agents of Schinus terebinthifolius Raddi (Brazilian pepper), the caterpillar, Tecmessa elegans Schaus (Lepidoptera: Notodontidae), was recorded feeding on the leaves of the shrub in South America. The biology and larval and adult host range of this species were examined to determine the insect's suitability for biological control of this invasive weed in North America and Hawaii. Biological observations indicate that the larvae have five instars. When disturbed, the late instar larvae emit formic acid from a prothoracic gland that may protect larvae from generalist predators. Larval host range tests conducted both in South and North America indicated that this species feeds and completes development primarily on members of the Anacardiaceae within the tribe Rhoeae. Oviposition tests indicated that when given a choice in large cages the adults will select the target weed over Pistacia spp. However, considering the many valued plant species in its host range, especially several North American natives, this species will not be considered further for biological control of S. terebinthifolius in North America.
Interspecific nest parasitism by chukar on greater sage-grouse
Fearon, Michelle L.; Coates, Peter S.
2014-01-01
Nest parasitism occurs when a female bird lays eggs in the nest of another and the host incubates the eggs and may provide some form of parental care for the offspring (Lyon and Eadie 1991). Precocial birds (e.g., Galliformes and Anseriformes) are typically facultative nest parasites of both their own and other species (Lyon and Eadie 1991). This behavior increases a female’s reproductive success when she parasitizes other nests while simultaneously raising her own offspring. Both interspecific and conspecific nest parasitism have been well documented in several families of the order Galliformes, particularly the Phasianidae (Lyon and Eadie 1991, Geffen and Yom-Tov 2001, Krakauer and Kimball 2009). The Chukar (Alectoris chukar) has been widely introduced as a game bird to western North America from Eurasia and is now well established within the Great Basin from northeastern California east to Utah and north to Idaho and Oregon (Christensen 1996). Over much of this range the Chukar occurs with other phasianids, including the native Greater Sage-Grouse (Centrocercus urophasianus), within sagebrush (Artemisia spp.) steppe (Christensen 1996, Schroeder et al. 1999, Connelly et al. 2000). Chukar typically exploit a broader range of habitats than do sage-grouse, but both species use the same species of sagebrush and other shrubs for nesting cover (Christensen 1996, Schroeder et al. 1999). Chukar are known to parasitize nests of other individuals of their own species (Geffen and Yom-Tov 2001), but we are unaware of reported evidence that Chukar may parasitize nests of sage-grouse. Here we describe a case of a Chukar parasitizing a sage-grouse nest in the sagebrush steppe of western Nevada.
Goldacre, Ben; Gray, Jonathan
2016-04-08
OpenTrials is a collaborative and open database for all available structured data and documents on all clinical trials, threaded together by individual trial. With a versatile and expandable data schema, it is initially designed to host and match the following documents and data for each trial: registry entries; links, abstracts, or texts of academic journal papers; portions of regulatory documents describing individual trials; structured data on methods and results extracted by systematic reviewers or other researchers; clinical study reports; and additional documents such as blank consent forms, blank case report forms, and protocols. The intention is to create an open, freely re-usable index of all such information and to increase discoverability, facilitate research, identify inconsistent data, enable audits on the availability and completeness of this information, support advocacy for better data and drive up standards around open data in evidence-based medicine. The project has phase I funding. This will allow us to create a practical data schema and populate the database initially through web-scraping, basic record linkage techniques, crowd-sourced curation around selected drug areas, and import of existing sources of structured and documents. It will also allow us to create user-friendly web interfaces onto the data and conduct user engagement workshops to optimise the database and interface designs. Where other projects have set out to manually and perfectly curate a narrow range of information on a smaller number of trials, we aim to use a broader range of techniques and attempt to match a very large quantity of information on all trials. We are currently seeking feedback and additional sources of structured data.
Moser, Josef W; Prielhofer, Roland; Gerner, Samuel M; Graf, Alexandra B; Wilson, Iain B H; Mattanovich, Diethard; Dragosits, Martin
2017-03-17
Pichia pastoris is a widely used eukaryotic expression host for recombinant protein production. Adaptive laboratory evolution (ALE) has been applied in a wide range of studies in order to improve strains for biotechnological purposes. In this context, the impact of long-term carbon source adaptation in P. pastoris has not been addressed so far. Thus, we performed a pilot experiment in order to analyze the applicability and potential benefits of ALE towards improved growth and recombinant protein production in P. pastoris. Adaptation towards growth on methanol was performed in replicate cultures in rich and minimal growth medium for 250 generations. Increased growth rates on these growth media were observed at the population and single clone level. Evolved populations showed various degrees of growth advantages and trade-offs in non-evolutionary growth conditions. Genome resequencing revealed a wide variety of potential genetic targets associated with improved growth performance on methanol-based growth media. Alcohol oxidase represented a mutational hotspot since four out of seven evolved P. pastoris clones harbored mutations in this gene, resulting in decreased Aox activity, despite increased growth rates. Selected clones displayed strain-dependent variations for AOX-promoter based recombinant protein expression yield. One particularly interesting clone showed increased product titers ranging from a 2.5-fold increase in shake flask batch culture to a 1.8-fold increase during fed batch cultivation. Our data indicate a complex correlation of carbon source, growth context and recombinant protein production. While similar experiments have already shown their potential in other biotechnological areas where microbes were evolutionary engineered for improved stress resistance and growth, the current dataset encourages the analysis of the potential of ALE for improved protein production in P. pastoris on a broader scale.
Straus, Marco R.; Whittaker, Gary R.
2017-01-01
Cleavage activation of the hemagglutinin (HA) protein by host proteases is a crucial step in the infection process of influenza A viruses (IAV). However, IAV exists in eighteen different HA subtypes in nature and their cleavage sites vary considerably. There is uncertainty regarding which specific proteases activate a given HA in the human respiratory tract. Understanding the relationship between different HA subtypes and human-specific proteases will be valuable in assessing the pandemic potential of circulating viruses. Here we utilized fluorogenic peptides mimicking the HA cleavage motif of representative IAV strains causing disease in humans or of zoonotic/pandemic potential and tested them with a range of proteases known to be present in the human respiratory tract. Our results show that peptides from the H1, H2 and H3 subtypes are cleaved efficiently by a wide range of proteases including trypsin, matriptase, human airway tryptase (HAT), kallikrein-related peptidases 5 (KLK5) and 12 (KLK12) and plasmin. Regarding IAVs currently of concern for human adaptation, cleavage site peptides from H10 viruses showed very limited cleavage by respiratory tract proteases. Peptide mimics from H6 viruses showed broader cleavage by respiratory tract proteases, while H5, H7 and H9 subtypes showed variable cleavage; particularly matriptase appeared to be a key protease capable of activating IAVs. We also tested HA substrate specificity of Factor Xa, a protease required for HA cleavage in chicken embryos and relevant for influenza virus production in eggs. Overall our data provide novel tool allowing the assessment of human adaptation of IAV HA subtypes. PMID:28358853
Campião, Karla Magalhães; Ribas, Augusto Cesar de Aquino; Morais, Drausio Honorio; da Silva, Reinaldo José; Tavares, Luiz Eduardo Roland
2015-01-01
There is an increasing interest in unveiling the dynamics of parasite infection. Understanding the interaction patterns, and determinants of host-parasite association contributes to filling knowledge gaps in both community and disease ecology. Despite being targeted as a relevant group for conservation efforts, determinants of the association of amphibians and their parasites in broad scales are poorly understood. Here we describe parasite biodiversity in South American amphibians, testing the influence of host body size and geographic range in helminth parasites species richness (PSR). We also test whether parasite diversity is related to hosts' phylogenetic diversity. Results showed that nematodes are the most common anuran parasites. Host-parasite network has a nested pattern, with specialist helminth taxa generally associated with hosts that harbour the richest parasite faunas. Host size is positively correlated with helminth fauna richness, but we found no support for the association of host geographic range and PSR. These results remained consistent after correcting for uneven study effort and hosts' phylogenic correlation. However, we found no association between host and parasite diversity, indicating that more diversified anuran clades not necessarily support higher parasite diversity. Overall, considering both the structure and the determinants of PRS in anurans, we conclude that specialist parasites are more likely to be associated with large anurans, which are the ones harbouring higher PSR, and that the lack of association of PSR with hosts' clade diversification suggests it is strongly influenced by ecological and contemporary constrains.
Staphylococcus aureus pathogenesis in diverse host environments
Balasubramanian, Divya; Harper, Lamia; Shopsin, Bo; Torres, Victor J.
2017-01-01
Abstract Staphylococcus aureus is an eminent human pathogen that can colonize the human host and cause severe life-threatening illnesses. This bacterium can reside in and infect a wide range of host tissues, ranging from superficial surfaces like the skin to deeper tissues such as in the gastrointestinal tract, heart and bones. Due to its multifaceted lifestyle, S. aureus uses complex regulatory networks to sense diverse signals that enable it to adapt to different environments and modulate virulence. In this minireview, we explore well-characterized environmental and host cues that S. aureus responds to and describe how this pathogen modulates virulence in response to these signals. Lastly, we highlight therapeutic approaches undertaken by several groups to inhibit both signaling and the cognate regulators that sense and transmit these signals downstream. PMID:28104617
USDA-ARS?s Scientific Manuscript database
Pathogenic leptospires colonize the renal tubules of reservoir hosts of infection and are excreted via urine into the environment. Reservoir hosts include a wide range of domestic and wild animal species and include cattle, dogs and rats which can persistently excrete large numbers of pathogenic lep...
M. Garbelotto; W.J. Otrosina; F.W. Cobb; T.D. Bruns
1998-01-01
Populations of the basidiomycete Heterobasidion annosum display varying degrees, of intersterility and differential host specialization. At least three intersterility groups have been formally described, each characterized by a range of "preferred" hosts. It has been hypothesized that processes of host-pathogen compatibility may have been...
Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS)
NASA Astrophysics Data System (ADS)
Daniels, M. D.; Graves, S. J.; Vernon, F.; Kerkez, B.; Chandra, C. V.; Keiser, K.; Martin, C.
2014-12-01
Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS) Access, utilization and management of real-time data continue to be challenging for decision makers, as well as researchers in several scientific fields. This presentation will highlight infrastructure aimed at addressing some of the gaps in handling real-time data, particularly in increasing accessibility of these data to the scientific community through cloud services. The Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS) system addresses the ever-increasing importance of real-time scientific data, particularly in mission critical scenarios, where informed decisions must be made rapidly. Advances in the distribution of real-time data are leading many new transient phenomena in space-time to be observed, however real-time decision-making is infeasible in many cases that require streaming scientific data as these data are locked down and sent only to proprietary in-house tools or displays. This lack of accessibility to the broader scientific community prohibits algorithm development and workflows initiated by these data streams. As part of NSF's EarthCube initiative, CHORDS proposes to make real-time data available to the academic community via cloud services. The CHORDS infrastructure will enhance the role of real-time data within the geosciences, specifically expanding the potential of streaming data sources in enabling adaptive experimentation and real-time hypothesis testing. Adherence to community data and metadata standards will promote the integration of CHORDS real-time data with existing standards-compliant analysis, visualization and modeling tools.
Diverse Broad-Host-Range Plasmids from Freshwater Carry Few Accessory Genes
Sen, Diya; Yano, Hirokazu; Bauer, Matthew L.; Rogers, Linda M.; Van der Auwera, Geraldine A.
2013-01-01
Broad-host-range self-transferable plasmids are known to facilitate bacterial adaptation by spreading genes between phylogenetically distinct hosts. These plasmids typically have a conserved backbone region and a variable accessory region that encodes host-beneficial traits. We do not know, however, how well plasmids that do not encode accessory functions can survive in nature. The goal of this study was to characterize the backbone and accessory gene content of plasmids that were captured from freshwater sources without selecting for a particular phenotype or cultivating their host. To do this, triparental matings were used such that the only required phenotype was the plasmid's ability to mobilize a nonconjugative plasmid. Based on complete genome sequences of 10 plasmids, only 5 carried identifiable accessory gene regions, and none carried antibiotic resistance genes. The plasmids belong to four known incompatibility groups (IncN, IncP-1, IncU, and IncW) and two potentially new groups. Eight of the plasmids were shown to have a broad host range, being able to transfer into alpha-, beta-, and gammaproteobacteria. Because of the absence of antibiotic resistance genes, we resampled one of the sites and compared the proportion of captured plasmids that conferred antibiotic resistance to their hosts with the proportion of such plasmids captured from the effluent of a local wastewater treatment plant. Few of the captured plasmids from either site encoded antibiotic resistance. A high diversity of plasmids that encode no or unknown accessory functions is thus readily found in freshwater habitats. The question remains how the plasmids persist in these microbial communities. PMID:24096417
Life history and biology of Fascioloides magna (Trematoda) and its native and exotic hosts
Malcicka, Miriama
2015-01-01
Host–parasite interactions are model systems in a wide range of ecological and evolutionary fields and may be utilized for testing numerous theories and hypotheses in terms of both applied and fundamental research. For instance, they are important in terms of studying coevolutionary arms races, species invasions, and in economic terms the health of livestock and humans. Here, I present a comprehensive description of the life history, biogeography, and biology of the giant liver fluke, Fascioloides magna, and both its intermediate and definitive hosts. F. magna is native to North America where it uses several species of freshwater snails (Lymnaeidae) as intermediate hosts and four main species of ungulates as definitive hosts. The fluke has also been introduced into parts of Europe where it is now established in two lymnaeid snail species and three ungulate species. This study gives a comprehensive description of different developmental stages of the fluke in its two host classes, as well as detailed notes on historical and present distributions of F. magna in North America and Europe as well as in its snail and deer hosts (with range maps provided). Aberrant and dead-end hosts are also discussed in detail, and descriptive phylogenies are provided for all of the organisms. I briefly discuss how F. magna represents a model example of multiple-level ecological fitting, a phenomenon not yet described in the empirical literature. Lastly, I explore possible future scenarios for fluke invasion in Europe, where it is currently expanding its range. PMID:25897378
Pérez Pulido, Rubén; Grande Burgos, Maria José; Gálvez, Antonio; Lucas López, Rosario
2016-10-01
Bacteriophages have attracted great attention for application in food biopreservation. Lytic bacteriophages specific for human pathogenic bacteria can be isolated from natural sources such as animal feces or industrial wastes where the target bacteria inhabit. Lytic bacteriophages have been tested in different food systems for inactivation of main food-borne pathogens including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Salmonella enterica, Shigella spp., Campylobacter jejuni and Cronobacter sakazkii, and also for control of spoilage bacteria. Application of lytic bacteriophages could selectively control host populations of concern without interfering with the remaining food microbiota. Bacteriophages could also be applied for inactivation of bacteria attached to food contact surfaces or grown as biofilms. Bacteriophages may receive a generally recognized as safe status based on their lack of toxicity and other detrimental effects to human health. Phage preparations specific for L. monocytogenes, E. coli O157:H7 and S. enterica serotypes have been commercialized and approved for application in foods or as part of surface decontamination protocols. Phage endolysins have a broader host specificity compared to lytic bacteriophages. Cloned endolysins could be used as natural preservatives, singly or in combination with other antimicrobials such as bacteriocins.
Ectoparasitic mites and their Drosophila hosts.
Perez-Leanos, Alejandra; Loustalot-Laclette, Mariana Ramirez; Nazario-Yepiz, Nestor; Markow, Therese Ann
2017-01-02
Only two parasite interactions are known for Drosophila to date: Allantonematid nematodes associated with mycophagous Drosophilids and the ectoparasitic mite Macrocheles subbadius with the Sonoran Desert endemic Drosophila nigrospiracula. Unlike the nematode-Drosophila association, breadth of mite parasitism on Drosophila species is unknown. As M. subbadius is a generalist, parasitism of additional Drosophilids is expected. We determined the extent and distribution of mite parasitism in nature Drosophilids collected in Mexico and southern California. Thirteen additional species of Drosophilids were infested. Interestingly, 10 belong to the repleta species group of the subgenus Drosophila, despite the fact that the majority of flies collected were of the subgenus Sophophora. In all cases but 2, the associated mites were M. subbadius. Drosophila hexastigma was found to have not only M. subbadius, but another Mesostigmatid mite, Paragarmania bakeri, as well. One D. hydei was also found to have a mite from genus Lasioseius attached. In both choice and no-choice experiments, mites were more attracted to repleta group species than to Sophophoran. The extent of mite parasitism clearly is much broader than previously reported and suggests a host bias mediated either by mite preference and/or some mechanism of resistance in particular Drosophilid lineages.
NASA Astrophysics Data System (ADS)
Fischer, Travis C.; Kraemer, S. B.; Schmitt, H. R.; Longo Micchi, L. F.; Crenshaw, D. M.; Revalski, M.; Vestergaard, M.; Elvis, M.; Gaskell, C. M.; Hamann, F.; Ho, L. C.; Hutchings, J.; Mushotzky, R.; Netzer, H.; Storchi-Bergmann, T.; Straughn, A.; Turner, T. J.; Ward, M. J.
2018-04-01
We present a Hubble Space Telescope survey of extended [O III] λ5007 emission for a sample of 12 nearby (z < 0.12), luminous Type 2 quasars (QSO2s), which we use to measure the extent and kinematics of their AGN-ionized gas. We find that the size of the observed [O III] regions scale with luminosity in comparison to nearby, less luminous Seyfert galaxies and radially outflowing kinematics to exist in all targets. We report an average maximum outflow radius of ∼600 pc, with gas continuing to be kinematically influenced by the central active galactic nucleus (AGN) out to an average radius of ∼1130 pc. These findings question the effectiveness of AGNs being capable of clearing material from their host bulge in the nearby universe and suggest that disruption of gas by AGN activity may prevent star formation without requiring evacuation. Additionally, we find a dichotomy in our targets when comparing [O III] radial extent and nuclear FWHM, where QSO2s with compact [O III] morphologies typically possess broader nuclear emission lines.
Ectoparasitic mites and their Drosophila hosts
Perez-Leanos, Alejandra; Loustalot-Laclette, Mariana Ramirez; Nazario-Yepiz, Nestor; Markow, Therese Ann
2017-01-01
ABSTRACT Only two parasite interactions are known for Drosophila to date: Allantonematid nematodes associated with mycophagous Drosophilids and the ectoparasitic mite Macrocheles subbadius with the Sonoran Desert endemic Drosophila nigrospiracula. Unlike the nematode-Drosophila association, breadth of mite parasitism on Drosophila species is unknown. As M. subbadius is a generalist, parasitism of additional Drosophilids is expected. We determined the extent and distribution of mite parasitism in nature Drosophilids collected in Mexico and southern California. Thirteen additional species of Drosophilids were infested. Interestingly, 10 belong to the repleta species group of the subgenus Drosophila, despite the fact that the majority of flies collected were of the subgenus Sophophora. In all cases but 2, the associated mites were M. subbadius. Drosophila hexastigma was found to have not only M. subbadius, but another Mesostigmatid mite, Paragarmania bakeri, as well. One D. hydei was also found to have a mite from genus Lasioseius attached. In both choice and no-choice experiments, mites were more attracted to repleta group species than to Sophophoran. The extent of mite parasitism clearly is much broader than previously reported and suggests a host bias mediated either by mite preference and/or some mechanism of resistance in particular Drosophilid lineages. PMID:27540774
Advances in the microbial etiology and pathogenesis of early childhood caries
Hajishengallis, Evlambia; Parsaei, Yassmin; Klein, Marlise I.; Koo, Hyun
2016-01-01
Early childhood caries (ECC) is one of the most prevalent infectious diseases affecting children worldwide. ECC is an aggressive form of dental caries, which left untreated, can result in rapid and extensive cavitation in teeth (rampant caries) that is painful and costly to treat. Furthermore, it affects mostly children from impoverished background, and thus constitutes a major challenge in public health. The disease is a prime example of the consequences arising from complex, dynamic interactions between microorganisms, host and diet, leading to the establishment of highly pathogenic (cariogenic) biofilms. To date, there are no effective methods to identify those at risk of developing ECC or control the disease in affected children. Recent advances in deep-sequencing technologies, novel imaging methods and (meta)proteomics-metabolomics approaches provide an unparalleled potential to reveal new insights to illuminate our current understanding about the etiology and pathogenesis of the disease. In this concise review, we provide a broader perspective about the etiology and pathogenesis of ECC based on previous and current knowledge on biofilm matrix, microbial diversity and host-microbe interactions which could have direct implications for developing new approaches for improved risk assessment and prevention of this devastating and costly childhood health condition. PMID:26714612
Jacquin, Lisa; Mori, Quentin; Pause, Mickaël; Steffen, Mélanie; Medoc, Vincent
2014-01-01
Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation whose efficiency does not depend on the biotic context is likely to facilitate its trophic transmission in a wide range of aquatic environments.
Species coextinctions and the biodiversity crisis.
Koh, Lian Pin; Dunn, Robert R; Sodhi, Navjot S; Colwell, Robert K; Proctor, Heather C; Smith, Vincent S
2004-09-10
To assess the coextinction of species (the loss of a species upon the loss of another), we present a probabilistic model, scaled with empirical data. The model examines the relationship between coextinction levels (proportion of species extinct) of affiliates and their hosts across a wide range of coevolved interspecific systems: pollinating Ficus wasps and Ficus, parasites and their hosts, butterflies and their larval host plants, and ant butterflies and their host ants. Applying a nomographic method based on mean host specificity (number of host species per affiliate species), we estimate that 6300 affiliate species are "coendangered" with host species currently listed as endangered. Current extinction estimates need to be recalibrated by taking species coextinctions into account.
Bamunusinghe, Devinka; Naghashfar, Zohreh; Buckler-White, Alicia; Plishka, Ronald; Baliji, Surendranath; Liu, Qingping; Kassner, Joshua; Oler, Andrew J; Hartley, Janet; Kozak, Christine A
2016-04-01
Mouse leukemia viruses (MLVs) are found in the common inbred strains of laboratory mice and in the house mouse subspecies ofMus musculus Receptor usage and envelope (env) sequence variation define three MLV host range subgroups in laboratory mice: ecotropic, polytropic, and xenotropic MLVs (E-, P-, and X-MLVs, respectively). These exogenous MLVs derive from endogenous retroviruses (ERVs) that were acquired by the wild mouse progenitors of laboratory mice about 1 million years ago. We analyzed the genomes of seven MLVs isolated from Eurasian and American wild mice and three previously sequenced MLVs to describe their relationships and identify their possible ERV progenitors. The phylogenetic tree based on the receptor-determining regions ofenvproduced expected host range clusters, but these clusters are not maintained in trees generated from other virus regions. Colinear alignments of the viral genomes identified segmental homologies to ERVs of different host range subgroups. Six MLVs show close relationships to a small xenotropic ERV subgroup largely confined to the inbred mouse Y chromosome.envvariations define three E-MLV subtypes, one of which carries duplications of various sizes, sequences, and locations in the proline-rich region ofenv Outside theenvregion, all E-MLVs are related to different nonecotropic MLVs. These results document the diversity in gammaretroviruses isolated from globally distributedMussubspecies, provide insight into their origins and relationships, and indicate that recombination has had an important role in the evolution of these mutagenic and pathogenic agents. Laboratory mice carry mouse leukemia viruses (MLVs) of three host range groups which were acquired from their wild mouse progenitors. We sequenced the complete genomes of seven infectious MLVs isolated from geographically separated Eurasian and American wild mice and compared them with endogenous germ line retroviruses (ERVs) acquired early in house mouse evolution. We did this because the laboratory mouse viruses derive directly from specific ERVs or arise by recombination between different ERVs. The six distinctively different wild mouse viruses appear to be recombinants, often involving different host range subgroups, and most are related to a distinctive, largely Y-chromosome-linked MLV ERV subtype. MLVs with ecotropic host ranges show the greatest variability with extensive inter- and intrasubtype envelope differences and with homologies to other host range subgroups outside the envelope. The sequence diversity among these wild mouse isolates helps define their relationships and origins and emphasizes the importance of recombination in their evolution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Host Factors in Ebola Infection.
Rasmussen, Angela L
2016-08-31
Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.
The relation of growth to heterozygosity in pitch pine
F. Thomas Ledig; Raymond P. Guries; Barbara A. Bonefeld
1983-01-01
The connection between fitness and heterozygosity has eluded geneticists for decades. The classic form of the Neo-Darwinian argument hypothesizes that heterozygosity confers genetic homeostasis (Lerner, 1954); i.e., multiple, molecular forms of the same enzyme endow the organism with a broader range of tolerance to environmental variation because different forms may...
ERIC Educational Resources Information Center
Elgort, Irina
2018-01-01
Technology-mediated vocabulary development (TMVD) in a second language (L2) covers a wide range of instructional and learning treatments, contexts, and technologies and is situated in a broader field of second language vocabulary learning. Vocabulary knowledge is a complex, multidimensional construct that has been interpreted and categorized in…
Curriculum Integration: The Use of Technology to Support Learning
ERIC Educational Resources Information Center
Jackson, Allen; Gaudet, Laura; McDaniel, Larry; Brammer, Dawn
2009-01-01
Our understanding of how people learn is continually changing. Howard Gardner's Theory of Multiple Intelligences revolutionized the field education, because it accounts for a broader range of human potential in children and adults and suggests that individuals learn in a multitude of ways. Gardner's theory suggests there are a variety of…
ERIC Educational Resources Information Center
Rideout, Glenn; Windle, Sheila
2013-01-01
The objectives of this study were (a) to identify the direction of pupil control ideology (PCI) shifts during participants' beginning teaching years, and (b) to identify a broader range of "emergent" (participant-identified) predictors of PCI that beginning teachers saw as accounting for the tendency for their classroom learning…
ERIC Educational Resources Information Center
Women's Bureau (DOL), Washington, DC.
Statistical information pertaining to one of the most important changes in the American economy in this century--the increase in the number of women who work outside the home--is presented as an introduction to the broader range of topics which will be considered by the Advisory Committee on the Economic Role of Women. Job-related aspects of…
ERIC Educational Resources Information Center
Energy Information Administration (DOE), Washington, DC.
This booklet is a compilation of energy data providing a reference to a much broader range of domestic and international energy data. It is designed especially as a quick reference to major facts about energy. The data includes information for 1976 through 1988, except for international energy data, which is for 1977 through 1987. Graphs, charts,…
Does Webinar-Based Financial Education Affect Knowledge and Behavior?
ERIC Educational Resources Information Center
Johnson, Carrie L.; Schumacher, Joel B.
2016-01-01
Using webinar delivery for Extension financial education programs allows educators to reach a broader range of clientele. It can, however, be difficult to gauge participants' learning of concepts in an online environment. Evaluations of two webinar series, one in Montana and the other in South Dakota, sought to determine the effectiveness of using…
The Legacy and Future of a Model for Engaged Scholarship: Supporting a Broader Range of Scholarship
ERIC Educational Resources Information Center
Franz, Nancy
2016-01-01
In this commentary, author Nancy Franz reflects on her 2009 " Journal of Higher Education Outreach and Engagement" article "A Holistic Model of Engaged Scholarship: Telling the Story across Higher Education's Missions" (EJ905411) reprinted in this 20th anniversary issue of "Journal of Higher Education Outreach and…
The Pneumatic Fracturing Extraction (PFE) process developed by Accutech Remedial Systems, Inc. makes it possible to use vapor extraction to remove volatile organics at increased rates from a broader range of vadose zones. The low permeability of silts, clays, shales, etc. would o...
Ecologically Based Family Therapy Outcome with Substance Abusing Runaway Adolescents
ERIC Educational Resources Information Center
Slesnick, N.; Prestopnik, J.L.
2005-01-01
Runaway youth report a broader range and higher severity of substance-related, mental health and family problems relative to non-runaway youth. Most studies to date have collected self-report data on the family and social history; virtually no research has examined treatment effectiveness with this population. This study is a treatment development…
ERIC Educational Resources Information Center
Palmer, Nigel; Bexley, Emmaline; James, Richard
2011-01-01
A range of imperatives underpin university selection practices. These include demonstrating merit based on prior academic achievement and supporting successful graduate outcomes in the professions and in broader fields of endeavour. They also include improving diversity of participation and equality of educational opportunity. Selection for…
Prior Knowledge of Mechanics amongst First Year Engineering Students
ERIC Educational Resources Information Center
Clements, Dick
2007-01-01
In the last 25 years, A-level Mathematics syllabi have changed very considerably, introducing a broader range of application areas but reducing the previous emphasis on classical mechanics. This article describes a baseline survey undertaken to establish in detail the entry levels in mechanics for the cohort of students entering Engineering…
Governance Failure in Social Enterprise
ERIC Educational Resources Information Center
Low, Chris; Chinnock, Chris
2008-01-01
This article aims to evaluate the effectiveness of the participative, democratic model of governance commonly found within social enterprises. This model has its origins in the broader not-for-profit sector where it is widely adopted. A core assumption of this governance form is that it ensures that the organisation will take a range of views into…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, L.; Owel, W.R.
This paper discusses the VISA (Vulnerability of Integrated Safeguards Analysis) method, developed in 1976-77 for the Nuclear Regulatory Commission, and which has been adapted more recently to a broader range of uses. The performance of VISA systems is evaluated in terms of how they perform as an integrated safeguards/security system. The resulting method has been designated VISA-2. 7 refs.
Opportunity Theory and Agricultural Crime Victimization
ERIC Educational Resources Information Center
Mears, Daniel P.; Scott, Michelle L.; Bhati, Avinash S.
2007-01-01
A growing body of research lends support to opportunity theory and its variants, but has yet to focus systematically on a number of specific offenses and contexts. Typically, the more crimes and contexts to which a theory applies, the broader its scope and range, respectively, and thus generalizability. In this paper, we focus on agricultural…
Eudaimonia and Creativity: The Art of Human Flourishing
ERIC Educational Resources Information Center
Wright, Peter R.; Pascoe, Robin
2015-01-01
In times of rapid change the Arts have been shown to contribute through an array of processes to a range of outcomes that improve social and emotional health. While this observation has caused debates in the field such as, intrinsic versus instrumental value, individuality versus sociality, skill development focus versus broader aesthetic…
The World Society Perspective: Concepts, Assumptions, and Strategies
ERIC Educational Resources Information Center
Ramirez, Francisco O.
2012-01-01
For decades the world society perspective has influenced comparative research on a broad range of issues across the social sciences. The perspective emerged to make sense of an empirical puzzle: why did nation-state after nation-state expand mass schooling after World War II? The perspective evolved to address broader issues such as the authority…
ERIC Educational Resources Information Center
Swahn, Monica H.
2012-01-01
The current special issue brings together intriguing and important cross-country comparisons of issues pertinent to early adolescence that can inform the design and implementation of broader and relevant public health prevention strategies. The findings illustrate the importance of cross-country analyses for better understanding a range of…
Scripted Curriculum: What Movies Teach about Dis/ability and Black Males
ERIC Educational Resources Information Center
Agosto, Vonzell
2014-01-01
Background/Context: Tropes of dis/ability in the movies and master-narratives of Black males in education and society are typically treated in isolation. Furthermore, education research on Hollywood movies has typically focused on portrayals of schools, principals, and teachers even though education professionals are exposed to a broader range of…
Mexico Higher Education. Reviews of National Policies for Education.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France).
This review focuses on higher education in Mexico and also covers the upper secondary level including the broader range of education and training courses and institutions for students who complete basic education. Part 1 provides background data on Mexico and its system of higher education. Chapter 1 includes a general description of Mexico today…
Medical Settings as a Context for Research on Cognitive Development
ERIC Educational Resources Information Center
Salmon, Karen; Brown, Deirdre A.
2013-01-01
Medical contexts provide a rich opportunity to study important theoretical questions in cognitive development and to investigate the influence of a range of interacting factors relating to the child, the experience, and the broader social context on children's cognition. In the context of examples of research investigating these issues, we…
A framework for evaluating disciplinary contributions to river restoration
G. E. Grant
2008-01-01
As river restoration has matured into a global-scale intervention in rivers, a broader range of technical disciplines are informing restoration goals, strategies, approaches, and methods. The ecological, geomotphological, hydrological, and engineering sciences each bring a distinct focus and set of perspectives and tools, and are themselves embedded in a larger context...
Reproduction, women, and the workplace: legal issues.
Bertin, J E
1986-01-01
Legal conflict has marked the effort to protect workers against reproductive injury, and legal activity in the management of occupational risks reflects a much broader range of important social issues, such as sexual discrimination in the workplace. This article describes the evolving law related to reproductive hazards that concern men, women and children.
Tete a Tete: Reading Groups and Peer Learning
ERIC Educational Resources Information Center
Finlay, Sara-Jane; Faulkner, Guy
2005-01-01
This project was inspired by an awareness of the lack of engagement with the research literature by our students. The project consisted of self-help reading groups that centralized student discussion with three research objectives: to encourage students to engage with a broader range of literature, to encourage critical thinking around subject…
Legal Concepts in Sport: A Primer. 3rd Edition
ERIC Educational Resources Information Center
Carpenter, Linda Jean
2008-01-01
When most people think of legal issues in sport, they think about negligence. However, most professionals will face a much broader range of issues. For instance, topics such as sexual harassment, corporal punishment, drug testing, transportation, and hazing are all of special importance today. Also anti-discrimination laws and the concepts…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu T; Lantz, Eric J; Mowers, Matthew
Improvements to wind technologies have, in part, led to substantial deployment of U.S. wind power in recent years. The degree to which technology innovation will continue is highly uncertain adding to uncertainties in future wind deployment. We apply electric sector modeling to estimate the potential wind deployment opportunities across a range of technology advancement projections. The suite of projections considered span a wide range of possible cost and technology innovation trajectories, including those from a recent expert elicitation of wind energy experts, a projection based on the broader literature, and one reflecting estimates based on a U.S. DOE research initiative.more » In addition, we explore how these deployment pathways may impact the electricity system, electricity consumers, the environment, and the wind-related workforce. Overall, our analysis finds that wind technology innovation can have consequential implications for future wind power development throughout the United States, impact the broader electricity system, lower electric system and consumer costs, provide potential environmental benefits, and grow the U.S. wind workforce.« less
Ham, Anthony S; Buckheit, Robert W
2015-02-01
Current and emerging formulation strategies for skin permeation are poised to open the transdermal drug delivery to a broader range of small molecule compounds that do not fit the traditional requirements for successful transdermal drug delivery, allowing the development of new patch technologies to deliver antiretroviral drugs that were previously incapable of being delivered through transdermal means. Transdermal drug delivery offers several distinct advantages over traditional dosage forms. Current antiretroviral drugs used for the treatment of HIV infection include a variety of highly active small molecule compounds with significantly limited skin permeability, and thus new and novel means of enhancing transport through the skin are needed. Current and emerging formulation strategies are poised to open the transdermal drug delivery to a broader range of compounds that do not fit the traditional requirements for successful transdermal drug delivery, allowing the development of new patch technologies to deliver antiretroviral drugs that were previously incapable of being delivered through transdermal means. Thus, with continuing research into skin permeability and patch formulation strategies, there is a large potential for antiretroviral transdermal drug delivery.
Current and emerging formulation strategies for the effective transdermal delivery of HIV inhibitors
Ham, Anthony S; Buckheit, Robert W
2015-01-01
Current and emerging formulation strategies for skin permeation are poised to open the transdermal drug delivery to a broader range of small molecule compounds that do not fit the traditional requirements for successful transdermal drug delivery, allowing the development of new patch technologies to deliver antiretroviral drugs that were previously incapable of being delivered through transdermal means. Transdermal drug delivery offers several distinct advantages over traditional dosage forms. Current antiretroviral drugs used for the treatment of HIV infection include a variety of highly active small molecule compounds with significantly limited skin permeability, and thus new and novel means of enhancing transport through the skin are needed. Current and emerging formulation strategies are poised to open the transdermal drug delivery to a broader range of compounds that do not fit the traditional requirements for successful transdermal drug delivery, allowing the development of new patch technologies to deliver antiretroviral drugs that were previously incapable of being delivered through transdermal means. Thus, with continuing research into skin permeability and patch formulation strategies, there is a large potential for antiretroviral transdermal drug delivery. PMID:25690088
Tomé, Beatriz; Pereira, Ana; Jorge, Fátima; Carretero, Miguel A; Harris, D James; Perera, Ana
2018-03-19
Host-parasite relationships are expected to be strongly shaped by host specificity, a crucial factor in parasite adaptability and diversification. Because whole host communities have to be considered to assess host specificity, oceanic islands are ideal study systems given their simplified biotic assemblages. Previous studies on insular parasites suggest host range broadening during colonization. Here, we investigate the association between one parasite group (haemogregarines) and multiple sympatric hosts (of three lizard genera: Gallotia, Chalcides and Tarentola) in the Canary Islands. Given haemogregarine characteristics and insular conditions, we hypothesized low host specificity and/or occurrence of host-switching events. A total of 825 samples were collected from the three host taxa inhabiting the seven main islands of the Canarian Archipelago, including locations where the different lizards occurred in sympatry. Blood slides were screened to assess prevalence and parasitaemia, while parasite genetic diversity and phylogenetic relationships were inferred from 18S rRNA gene sequences. Infection levels and diversity of haplotypes varied geographically and across host groups. Infections were found in all species of Gallotia across the seven islands, in Tarentola from Tenerife, La Gomera and La Palma, and in Chalcides from Tenerife, La Gomera and El Hierro. Gallotia lizards presented the highest parasite prevalence, parasitaemia and diversity (seven haplotypes), while the other two host groups (Chalcides and Tarentola) harbored one haplotype each, with low prevalence and parasitaemia levels, and very restricted geographical ranges. Host-sharing of the same haemogregarine haplotype was only detected twice, but these rare instances likely represent occasional cross-infections. Our results suggest that: (i) Canarian haemogregarine haplotypes are highly host-specific, which might have restricted parasite host expansion; (ii) haemogregarines most probably reached the Canary Islands in three colonization events with each host genus; and (iii) the high number of parasite haplotypes infecting Gallotia hosts and their restricted geographical distribution suggest co-diversification. These findings contrast with our expectations derived from results on other insular parasites, highlighting how host specificity depends on parasite characteristics and evolutionary history.
Mogi, M; Armbruster, P A; Tuno, N; Aranda, C; Yong, H S
2017-11-07
We compared climatic distribution ranges between Aedes albopictus (Skuse) (Diptera: Culicidae) and the five wild (nondomesticated) species of Albopictus Subgroup of Scutellaris Group of Aedes (Stegomyia) in southern Asia. Distribution sites of the wild species concentrate in seasonal forest and savannah climate zones in India, Indochina, and southern China. The distribution of Ae. albopictus is broader than the wild species under 1) tropical rain-forest climate, 2) steppe and temperate savannah climate, and 3) continental climate with large seasonal temperature variation (hot summer and cold winter) at temperate lowlands (northernmost sites 40°N in Ae. albopictus vs 32°N in the wild species). However, the distribution of Ae. albopictus is more limited at tropical and subtropical highlands where the climate is cool but less continental (small seasonal variation, mild summer, and winter). We discuss a possibility that the broader climate ranges of Ae. albopictus are ecological or eco-evolutionary consequences of adaptation to human habitats. We also propose a general scenario for the origin, dispersal, and adaptation of Ae. albopictus in Asia as a hypothesis for future research. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dorchin, Netta; Astrin, Jonas J.; Bodner, Levona; Harris, Keith M.
2015-01-01
The Palaearctic gall-midge genus Ozirhincus is unique among the Cecidomyiidae for its morphology and biology. Unlike most other phytophagous gall midges, species in this genus do not induce galls but develop inside achenes of Asteraceae plants. The heads of adults are characterized by an unusually elongate proboscis, the function of which is unclear. Despite a lot of attention from taxonomists in the 19th and early 20th century, a proper revision of the genus has been hindered by complex host associations, the loss of most relevant type material, and the lack of a thorough comparative study of all life stages. The present revision integrated morphological, molecular, and life-history data to clearly define species boundaries within Ozirhincus, and delimit host-plant ranges for each of them. A phylogenetic analysis based on the mitochondrial COI and 16S genes confirmed the validity of four distinct species but did not resolve the relationships among them. All species are oligophages, and some may occur together on the same host plant. Species with wider host-plant ranges have wider European and circum-Mediterranean distribution ranges, whereas species with narrower host ranges are limited to Europe and the Russian Far East. As part of the present work, O. hungaricus is reinstated from synonymy, O. tanaceti is synonymized under O. longicollis, neotypes are designated for O. longicollis and O. millefolii, and a lectotype is designated for O. anthemidis. PMID:26134526
Management Options for Control of a Stunt and Needle Nematode in Southern Forest Nurseries
Michelle M. Cram; Stephen W. Fraedrich
2005-01-01
Crop rotation and fallow are management options that can be used to control plant parasitic nematodes in forest tree nurseries. Before these options can be put into practice, it is important to determine the host range and survivability under fallow of the parasitic nematode to be controlled. The results of host range tests on a needle nematode (Longidorus...
Filtered Rayleigh Scattering Measurements in a Buoyant Flowfield
2007-03-01
common filter used in FRS applications . Iodine is more attractive than mercury to use in a filter due to its broader range of blocking and transmission...is a 4032x2688 pixel camera with a monochrome or colored CCD imaging sensor. The binning range of the camera is (HxV) 1x1 to 2x8. The manufacturer...center position of the jet of the time averaged image . The z center position is chosen so that it is the average z value bounding helium
Invertebrate Iridoviruses: A Glance over the Last Decade
Özcan, Orhan; Ilter-Akulke, Ayca Zeynep; Scully, Erin D.; Özgen, Arzu
2018-01-01
Members of the family Iridoviridae (iridovirids) are large dsDNA viruses that infect both invertebrate and vertebrate ectotherms and whose symptoms range in severity from minor reductions in host fitness to systemic disease and large-scale mortality. Several characteristics have been useful for classifying iridoviruses; however, novel strains are continuously being discovered and, in many cases, reliable classification has been challenging. Further impeding classification, invertebrate iridoviruses (IIVs) can occasionally infect vertebrates; thus, host range is often not a useful criterion for classification. In this review, we discuss the current classification of iridovirids, focusing on genomic and structural features that distinguish vertebrate and invertebrate iridovirids and viral factors linked to host interactions in IIV6 (Invertebrate iridescent virus 6). In addition, we show for the first time how complete genome sequences of viral isolates can be leveraged to improve classification of new iridovirid isolates and resolve ambiguous relations. Improved classification of the iridoviruses may facilitate the identification of genus-specific virulence factors linked with diverse host phenotypes and host interactions. PMID:29601483
Invertebrate Iridoviruses: A Glance over the Last Decade.
İnce, İkbal Agah; Özcan, Orhan; Ilter-Akulke, Ayca Zeynep; Scully, Erin D; Özgen, Arzu
2018-03-30
Members of the family Iridoviridae (iridovirids) are large dsDNA viruses that infect both invertebrate and vertebrate ectotherms and whose symptoms range in severity from minor reductions in host fitness to systemic disease and large-scale mortality. Several characteristics have been useful for classifying iridoviruses; however, novel strains are continuously being discovered and, in many cases, reliable classification has been challenging. Further impeding classification, invertebrate iridoviruses (IIVs) can occasionally infect vertebrates; thus, host range is often not a useful criterion for classification. In this review, we discuss the current classification of iridovirids, focusing on genomic and structural features that distinguish vertebrate and invertebrate iridovirids and viral factors linked to host interactions in IIV6 (Invertebrate iridescent virus 6). In addition, we show for the first time how complete genome sequences of viral isolates can be leveraged to improve classification of new iridovirid isolates and resolve ambiguous relations. Improved classification of the iridoviruses may facilitate the identification of genus-specific virulence factors linked with diverse host phenotypes and host interactions.
Jensen, Annette Bruun; Eilenberg, Jørgen; López Lastra, Claudia
2009-11-01
Three DNA regions (ITS 1, LSU rRNA and GPD) of isolates from the insect-pathogenic fungus genus Entomophthora originating from different fly (Diptera) and aphid (Hemiptera) host taxa were sequenced. The results documented a large genetic diversity among the fly-pathogenic Entomophthora and only minor differences among aphid-pathogenic Entomophthora. The evolutionary time of divergence of the fly and the aphid host taxa included cannot account for this difference. The host-driven divergence of Entomophthora, therefore, has been much greater in flies than in aphids. Host-range differences or a recent host shift to aphid are possible explanations.
Maixner, Michael; Albert, Andreas; Johannesen, Jes
2014-01-01
Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host-race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant-specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan–Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant-transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative mating within host races and a reduction in the likelihood of oviposition on the alternative plant and thus the acquisition of alternative stolbur strains. PMID:25247065
Maixner, Michael; Albert, Andreas; Johannesen, Jes
2014-08-01
Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host-race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant-specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan-Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant-transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative mating within host races and a reduction in the likelihood of oviposition on the alternative plant and thus the acquisition of alternative stolbur strains.
D. Huberli; M. Garbelotto
2011-01-01
Variation in virulence was examined among isolates of Phytophthora ramorum from epidemiologically important or infectious (non-oak) and transmissive dead-end (oak) hosts from North America. Twelve isolates representative of the genetic, geographic and host range of P. ramorum in the western United States were inoculated on...
Janz, N.; Nylin, S.
1997-01-01
Recent theoretical studies have suggested that host range in herbivorous insects may be more restricted by constraints on information processing on the ovipositing females than by trade-offs in larval feeding efficiency. We have investigated if females from polyphagous species have to pay for their ability to localize and evaluate plants from different species with a lower ability to discriminate between conspecific host plants with differences in quality. Females of the monophagous butterflies Polygonia satyrus, Vanessa indica and Inachis io and the polyphagous P. c-album and Cynthia cardui (all in Lepidoptera, Nymphalidae) were given a simultaneous choice of stinging nettles (Urtica dioica) of different quality. In addition, the same choice trial was given to females from two populations of P. c-album with different degrees of specificity. As predicted from the information processing hypothesis, all specialists discriminated significantly against the bad quality nettle, whereas the generalists laid an equal amount of eggs on both types of nettle. There were no corresponding differences between specialist and generalist larvae in their ability to utilize poor quality leaves. Our study therefore suggests that female host-searching behaviour plays an important role in determining host plant range.
NASA Astrophysics Data System (ADS)
Janz, Niklas; Nylin, Soren
1997-05-01
Recent theoretical studies have suggested that host range in herbivorous insects may be more restricted by constraints on information processing on the ovipositing females than by trade-offs in larval feeding efficiency. We have investigated if females from polyphagous species have to pay for their ability to localize and evaluate plants from different species with a lower ability to discriminate between conspecific host plants with differences in quality. Females of the monophagous butterflies Polygonia satyrus, Vanessa indica and Inachis io and the polyphagous P. c-album and Cynthia cardui (all in Lepidoptera, Nymphalidae) were given a simultaneous choice of stinging nettles (Urtica dioica) of different quality. In addition, the same choice trial was given to females from two populations of P. c-album with different degrees of specificity. As predicted from the information processing hypothesis, all specialists discriminated significantly against the bad quality nettle, whereas the generalists laid an equal amount of eggs on both types of nettle. There were no corresponding differences between specialist and generalist larvae in their ability to utilize poor quality leaves. Our study therefore suggests that female host-searching behaviour plays an important role in determining host plant range.
Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens.
John Von Freyend, Simona; Kwok-Schuelein, Terry; Netter, Hans J; Haqshenas, Gholamreza; Semblat, Jean-Philippe; Doerig, Christian
2017-04-21
Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.
Outcomes in adult life among siblings of individuals with autism.
Howlin, Patricia; Moss, Philippa; Savage, Sarah; Bolton, Patrick; Rutter, Michael
2015-03-01
Little is known about adult siblings of individuals with autism. We report on cognitive, social and mental health outcomes in 87 adult siblings (mean age 39 years). When younger all had been assessed either as being "unaffected" by autism (n = 69) or as meeting criteria for the "Broader Autism Phenotype" (BAP, n = 18). As adults, all scored within the average range on tests of intelligence, numeracy and literacy. "Unaffected" siblings were functioning well in terms of jobs, independence and social relationships. Levels of social relationships and employment were significantly lower in the BAP group; autism traits and mental health problems were significantly higher. The data suggest that the "broader autism phenotype" is a meaningful concept but more sensitive diagnostic measures are required.
A checklist of macroparasites of Liza haematocheila (Temminck & Schlegel) (Teleostei: Mugilidae)
Kostadinova, Aneta
2008-01-01
Background The mugilid fish Liza haematocheila (syn. Mugil soiuy), native to the Western North Pacific, provides opportunities to examine the changes of its parasite fauna after its translocation to the Sea of Azov and subsequent establishment in the Black Sea. However, the information on macroparasites of this host in both ranges of its current distribution comes from isolated studies published in difficult-to-access literature sources. Materials and methods Data from 53 publications, predominantly in Chinese, Russian and Ukrainian, were compiled from an extensive search of the literature and the Host-Parasite Database maintained up to 2005 at the Natural History Museum, London. Results The complete checklist of the metazoan parasites of L. haematocheila throughout its distributional range comprises summarised information for 69 nominal species of helminth and ectoparasitic crustacean parasites, from 45 genera and 27 families (370 host-parasite records in total) and includes the name of the parasite species, the area/locality of the host capture, and the author and date of the published record. The taxonomy is updated and the validity of the records and synonymies are critically evaluated. A comparison of the parasite faunas based on the records in the native and introduced/invasive range of L. haematocheila suggests that a large number of parasite species was 'lost' in the new distributional range whereas an even greater number was 'gained'. Conclusion Although the present checklist provides information that will facilitate future studies, the interesting question of macroparasite faunal diversity in L. haematocheila in its natural and introduced/invasive ranges cannot be dealt with the current data because of unreliability associated with the large number of non-documented and questionable records. This stresses the importance of data quality analysis in using host-parasite database and checklist data. PMID:19117506
A checklist of macroparasites of Liza haematocheila (Temminck & Schlegel) (Teleostei: Mugilidae).
Kostadinova, Aneta
2008-12-31
The mugilid fish Liza haematocheila (syn. Mugil soiuy), native to the Western North Pacific, provides opportunities to examine the changes of its parasite fauna after its translocation to the Sea of Azov and subsequent establishment in the Black Sea. However, the information on macroparasites of this host in both ranges of its current distribution comes from isolated studies published in difficult-to-access literature sources. Data from 53 publications, predominantly in Chinese, Russian and Ukrainian, were compiled from an extensive search of the literature and the Host-Parasite Database maintained up to 2005 at the Natural History Museum, London. The complete checklist of the metazoan parasites of L. haematocheila throughout its distributional range comprises summarised information for 69 nominal species of helminth and ectoparasitic crustacean parasites, from 45 genera and 27 families (370 host-parasite records in total) and includes the name of the parasite species, the area/locality of the host capture, and the author and date of the published record. The taxonomy is updated and the validity of the records and synonymies are critically evaluated. A comparison of the parasite faunas based on the records in the native and introduced/invasive range of L. haematocheila suggests that a large number of parasite species was 'lost' in the new distributional range whereas an even greater number was 'gained'. Although the present checklist provides information that will facilitate future studies, the interesting question of macroparasite faunal diversity in L. haematocheila in its natural and introduced/invasive ranges cannot be dealt with the current data because of unreliability associated with the large number of non-documented and questionable records. This stresses the importance of data quality analysis in using host-parasite database and checklist data.
Plant Distribution Data Show Broader Climatic Limits than Expert-Based Climatic Tolerance Estimates
Curtis, Caroline A.; Bradley, Bethany A.
2016-01-01
Background Although increasingly sophisticated environmental measures are being applied to species distributions models, the focus remains on using climatic data to provide estimates of habitat suitability. Climatic tolerance estimates based on expert knowledge are available for a wide range of plants via the USDA PLANTS database. We aim to test how climatic tolerance inferred from plant distribution records relates to tolerance estimated by experts. Further, we use this information to identify circumstances when species distributions are more likely to approximate climatic tolerance. Methods We compiled expert knowledge estimates of minimum and maximum precipitation and minimum temperature tolerance for over 1800 conservation plant species from the ‘plant characteristics’ information in the USDA PLANTS database. We derived climatic tolerance from distribution data downloaded from the Global Biodiversity and Information Facility (GBIF) and corresponding climate from WorldClim. We compared expert-derived climatic tolerance to empirical estimates to find the difference between their inferred climate niches (ΔCN), and tested whether ΔCN was influenced by growth form or range size. Results Climate niches calculated from distribution data were significantly broader than expert-based tolerance estimates (Mann-Whitney p values << 0.001). The average plant could tolerate 24 mm lower minimum precipitation, 14 mm higher maximum precipitation, and 7° C lower minimum temperatures based on distribution data relative to expert-based tolerance estimates. Species with larger ranges had greater ΔCN for minimum precipitation and minimum temperature. For maximum precipitation and minimum temperature, forbs and grasses tended to have larger ΔCN while grasses and trees had larger ΔCN for minimum precipitation. Conclusion Our results show that distribution data are consistently broader than USDA PLANTS experts’ knowledge and likely provide more robust estimates of climatic tolerance, especially for widespread forbs and grasses. These findings suggest that widely available expert-based climatic tolerance estimates underrepresent species’ fundamental niche and likely fail to capture the realized niche. PMID:27870859
Host range, host ecology, and distribution of more than 11800 fish parasite species
Strona, Giovanni; Palomares, Maria Lourdes D.; Bailly, Nicholas; Galli, Paolo; Lafferty, Kevin D.
2013-01-01
Our data set includes 38 008 fish parasite records (for Acanthocephala, Cestoda, Monogenea, Nematoda, Trematoda) compiled from the scientific literature, Internet databases, and museum collections paired to the corresponding host ecological, biogeographical, and phylogenetic traits (maximum length, growth rate, life span, age at maturity, trophic level, habitat preference, geographical range size, taxonomy). The data focus on host features, because specific parasite traits are not consistently available across records. For this reason, the data set is intended as a flexible resource able to extend the principles of ecological niche modeling to the host–parasite system, providing researchers with the data to model parasite niches based on their distribution in host species and the associated host features. In this sense, the database offers a framework for testing general ecological, biogeographical, and phylogenetic hypotheses based on the identification of hosts as parasite habitat. Potential applications of the data set are, for example, the investigation of species–area relationships or the taxonomic distribution of host-specificity. The provided host–parasite list is that currently used by Fish Parasite Ecology Software Tool (FishPEST, http://purl.oclc.org/fishpest), which is a website that allows researchers to model several aspects of the relationships between fish parasites and their hosts. The database is intended for researchers who wish to have more freedom to analyze the database than currently possible with FishPEST. However, for readers who have not seen FishPEST, we recommend using this as a starting point for interacting with the database.
Diversity and Hidden Host Specificity of Chytrids infecting Colonial Volvocacean Algae.
Van den Wyngaert, Silke; Rojas-Jimenez, Keilor; Seto, Kensuke; Kagami, Maiko; Grossart, Hans-Peter
2018-05-12
Chytrids are zoosporic fungi that play an important, but yet understudied, ecological role in aquatic ecosystems. Many chytrid species have been morphologically described as parasites on phytoplankton. However, the majority of them have rarely been isolated and lack DNA sequence data. In this study we isolated and cultivated three parasitic chytrids, infecting a common volvocacean host species, Yamagishiella unicocca. In order to identify the chytrids, we characterized morphology and life cycle, and analyzed phylogenetic relationships based on 18S and 28S rDNA genes. Host range and specificity of the chytrids was determined by cross infection assays with host strains, characterized by rbcL and ITS markers. We were able to confirm the identity of two chytrid strains as Endocoenobium eudorinae Ingold and Dangeardia mamillata Schröder and described the third chytrid strain as Algomyces stechlinensis gen. et sp. nov. The three chytrids were assigned to novel and phylogenetically distant clades within the phylum Chytridiomycota, each exhibiting different host specificities. By integrating morphological and molecular data of both the parasitic chytrids and their respective host species, we unveiled cryptic host-parasite associations. This study highlights that a high prevalence of (pseudo)cryptic diversity requires molecular characterization of both phytoplankton host and parasitic chytrid to accurately identify and compare host range and specificity, and to study phytoplankton-chytrid interactions in general. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Host Range and Selectivity of the Hemiparasitic Plant Thesium chinense (Santalaceae)
Suetsugu, Kenji; Kawakita, Atsushi; Kato, Makoto
2008-01-01
Background and Aims Thesium chinense is a hemiparasitic plant that is common in grassland habitats of eastern Asia. Although the physiology of Thesium has been well studied in attempts to control its weedy habit, there have been few ecological investigations of its parasitic life history. Thesium chinense is thought to parasitize species of Poaceae, but evidence remains circumstantial. Methods A vegetation survey was conducted to test whether any plant species occurs significantly more often in plots with T. chinense than expected. In addition, haustorial connections were examined directly by excavating the roots and post-attachment host selectivity was evaluated by comparing the observed numbers of haustoria on different hosts against those expected according to the relative below-ground biomass. Haustorium sizes were also compared among host species. Key Results Only two of the 38 species recorded, Lespedeza juncea and Eragrostis curvula, occurred more often in plots with Thesium than expected. In contrast to this, T. chinense parasitized 22 plant species in 11 families, corresponding to 57·9 % of plant species found at the study site. Haustoria were non-randomly distributed among host species, suggesting that there is some post-attachment host selectivity. Thesium chinense generally preferred the Poaceae, although haustoria formed on the Fabaceae were larger than those on other hosts. Conclusions This is the first quantitative investigation of the host range and selectivity of hemiparasitic plants of the Santalales. The preference for Fabaceae as hosts may be linked to the greater nutrient availability in these nitrogen-fixing plants. PMID:18492736
Jupe, Julietta; Stam, Remco; Howden, Andrew J M; Morris, Jenny A; Zhang, Runxuan; Hedley, Pete E; Huitema, Edgar
2013-06-25
Plant-microbe interactions feature complex signal interplay between pathogens and their hosts. Phytophthora species comprise a destructive group of fungus-like plant pathogens, collectively affecting a wide range of plants important to agriculture and natural ecosystems. Despite the availability of genome sequences of both hosts and microbes, little is known about the signal interplay between them during infection. In particular, accurate descriptions of coordinate relationships between host and microbe transcriptional programs are lacking. Here, we explore the molecular interaction between the hemi-biotrophic broad host range pathogen Phytophthora capsici and tomato. Infection assays and use of a composite microarray allowed us to unveil distinct changes in both P. capsici and tomato transcriptomes, associated with biotrophy and the subsequent switch to necrotrophy. These included two distinct transcriptional changes associated with early infection and the biotrophy to necrotrophy transition that may contribute to infection and completion of the P. capsici lifecycle Our results suggest dynamic but highly regulated transcriptional programming in both host and pathogen that underpin P. capsici disease and hemi-biotrophy. Dynamic expression changes of both effector-coding genes and host factors involved in immunity, suggests modulation of host immune signaling by both host and pathogen. With new unprecedented detail on transcriptional reprogramming, we can now explore the coordinate relationships that drive host-microbe interactions and the basic processes that underpin pathogen lifestyles. Deliberate alteration of lifestyle-associated transcriptional changes may allow prevention or perhaps disruption of hemi-biotrophic disease cycles and limit damage caused by epidemics.
Cirtwill, Alyssa R; Stouffer, Daniel B; Poulin, Robert; Lagrue, Clément
2016-01-01
Variations in levels of parasitism among individuals in a population of hosts underpin the importance of parasites as an evolutionary or ecological force. Factors influencing parasite richness (number of parasite species) and load (abundance and biomass) at the individual host level ultimately form the basis of parasite infection patterns. In fish, diet range (number of prey taxa consumed) and prey selectivity (proportion of a particular prey taxon in the diet) have been shown to influence parasite infection levels. However, fish diet is most often characterized at the species or fish population level, thus ignoring variation among conspecific individuals and its potential effects on infection patterns among individuals. Here, we examined parasite infections and stomach contents of New Zealand freshwater fish at the individual level. We tested for potential links between the richness, abundance and biomass of helminth parasites and the diet range and prey selectivity of individual fish hosts. There was no obvious link between individual fish host diet and helminth infection levels. Our results were consistent across multiple fish host and parasite species and contrast with those of earlier studies in which fish diet and parasite infection were linked, hinting at a true disconnect between host diet and measures of parasite infections in our study systems. This absence of relationship between host diet and infection levels may be due to the relatively low richness of freshwater helminth parasites in New Zealand and high host-parasite specificity.
Zimmerman, S C; Saionz, K W; Zeng, Z
1993-01-01
The synthesis of hosts with improved binding affinities for nitroaromatic guests is described. Association constants for several host-guest complexes were measured in chloroform solution and ranged over three orders of magnitude. Two hosts were covalently linked to silica gel to produce chemically bonded stationary phases for HPLC. The use of these phases for HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons is discussed. PMID:8433981
Morse, Solon F; Dick, Carl W; Patterson, Bruce D; Dittmar, Katharina
2012-12-01
We investigated previously unknown associations between bacterial endosymbionts and bat flies of the subfamily Nycterophiliinae (Diptera, Streblidae). Molecular analyses revealed a novel clade of Gammaproteobacteria in Nycterophilia bat flies. This clade was not closely related to Arsenophonus-like microbes found in its sister genus Phalconomus and other bat flies. High population infection rates in Nycterophilia across a wide geographic area, the presence of the symbionts in pupae, the general codivergence between hosts and symbionts, and high AT composition bias in symbiont genes together suggest that this host-symbiont association is obligate in nature and ancient in origin. Some Nycterophilia samples (14.8%) also contained Wolbachia supergroup F (Alphaproteobacteria), suggesting a facultative symbiosis. Likelihood-based ancestral character mapping revealed that, initially, obligate symbionts exhibited association with host-specific Nycterophilia bat flies that use a broad temperature range of cave environments for pupal development. As this mutualism evolved, the temperature range of bat flies narrowed to an exclusive use of hot caves, which was followed by a secondary broadening of the bat flies' host associations. These results suggest that the symbiosis has influenced the environmental tolerance of parasite life history stages. Furthermore, the contingent change to an expanded host range of Nycterophilia bat flies upon narrowing the ecological niche of their developmental stages suggests that altered environmental tolerance across life history stages may be a crucial factor in shaping parasite-host relationships.
Morse, Solon F.; Dick, Carl W.; Patterson, Bruce D.
2012-01-01
We investigated previously unknown associations between bacterial endosymbionts and bat flies of the subfamily Nycterophiliinae (Diptera, Streblidae). Molecular analyses revealed a novel clade of Gammaproteobacteria in Nycterophilia bat flies. This clade was not closely related to Arsenophonus-like microbes found in its sister genus Phalconomus and other bat flies. High population infection rates in Nycterophilia across a wide geographic area, the presence of the symbionts in pupae, the general codivergence between hosts and symbionts, and high AT composition bias in symbiont genes together suggest that this host-symbiont association is obligate in nature and ancient in origin. Some Nycterophilia samples (14.8%) also contained Wolbachia supergroup F (Alphaproteobacteria), suggesting a facultative symbiosis. Likelihood-based ancestral character mapping revealed that, initially, obligate symbionts exhibited association with host-specific Nycterophilia bat flies that use a broad temperature range of cave environments for pupal development. As this mutualism evolved, the temperature range of bat flies narrowed to an exclusive use of hot caves, which was followed by a secondary broadening of the bat flies' host associations. These results suggest that the symbiosis has influenced the environmental tolerance of parasite life history stages. Furthermore, the contingent change to an expanded host range of Nycterophilia bat flies upon narrowing the ecological niche of their developmental stages suggests that altered environmental tolerance across life history stages may be a crucial factor in shaping parasite-host relationships. PMID:23042170